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Abstract

We describe an approach to shape recognition based on asking relational questions
about the arrangement of landmarks, basically localized and oriented boundary seg-
ments. The questions are grouped into highly structured inquiries in the form of a tree.
There are. in fact, many trees. each constructed from training data based on entropy
reduction. The outcome of each tree is not a classification but rather a distribution
over shape classes. The final classification is based on an aggregate distribution.

The framework is non-Euclidean and there is no feature vector in the standard
sense. Instead, the representation of the image data is graphical and each question is
associated with a labeled subgraph. The ordering of the questions is highly constrained
in order to maintain computational feasibility, and dependence among the trees is
reduced by randomly sub-sampling from the available pool of questions.

Experiments are reported on the recognition of handwritten digits. Although the
amount of training data is modest by today’s standards, the rates we achieve are
competitive with those reported elsewhere using neural network, nearest-neighbor. and

other nonparametric classifiers.

Keywords. Shape recognition, handwritten digits, decision trees, stochastic indexing, com-

putational learning.

1 Introduction

We explore a new approach for recognizing shapes by asking many questions about the

spatial arrangement of local “landmarks.”

Like the parlor game “Twenty Questions.” the
questions are asked one at a time. answered “yes” or “no,” and the ordering is adaptive.
Consequently, the whole procedure is organized into a binary tree. There are, in fact, many
trees, whose construction is randomized to reduce correlation, and which can be run in
parallel. Each tree yields a distribution (“soft decision”) rather than a classification; the
final classification is based on an aggregate distribution. To date, our experiments involve
deformable, planar shapes. specifically handwritten digits, but the method appears generic
and should be adaptable to other visual recognition problems.

The trees are created off-line with training data. Each new question is chosen from a large
pool in order to remove as much residual uncertainty as possible about the true hypothesis
and taking into account the answers to the previous questions. (In our experiments, the data
are images of individual handwritten numerals and the set X" of possible hypotheses is simply

0,1,...,9.) Uncertainty is measured by the entropy of the pending posterior probability




distribution over the classes, i.e., the updated class likelihoods given the test results. Unlike
the parlor game. however, the responses are highly ambiguous (due mainly to variations in
the presentations of shapes)' and therefore the true hypothesis cannot be determined without
error by a deterministic process of elimination. Consequently, the most natural way to label
the terminal nodes is by a distribution on X rather than a specific hypothesis in X.

A departure from ordinary tree-structured methods is that our framework is non-Euclidean.
In the standard approach to nonparametric learning and estimation, there is a training set;
each instance is classified and assigned a numerical feature vector of fixed dimension. The
questions are then scalar functions of this vector, perhaps simple ones such as “halfplane
questions” which divide a single axis and thereby progressively subdivide the “feature space”
into rectangular cells, or more complex ones involving linear or non-linear functions of many
coordinates.

In our case each data point is an image, classified in X'. There is no natural feature vector,
unless one takes this to be the raw image data themselves, i.e., the “vector” of grey levels.
(This in fact is what is done in certain neural networks and nearest-neighbor schemes.) Nor
do we extract numerical or “statistical” features in the usual sense. Instead, we consider an
extension of the so-called “structural approach” based on a graphical representation of the
raw image data. (There is no preprocessing.) We then construct relational trees based on
probing this representation, progressively updating the distribution on X' as more and more
information about spatial relationships is accumulated.

The graphical representation is only implicit; it is never explicitly calculated and stored.
The vertices are labeled by certain types of local binary patterns (landmarks), together with
an image location. There is no sub-classification problem: the landmarks are deterministic
functions of the data which do not have complex interpretations in terms of differential
properties of curves (“concavity” etc.) or structural configurations (“ending,” “turn” etc.).
The edges of the representation graph are labeled by possible planar arrangements among
the vertex locations, such as “north-south” and “next to.” The arrangements need not
necessarily involve nearby landmarks and can convey highly global information.

Questions are associated with the existence of generic subgraphs (partial representations),
meaning that the vertex labels are location-independent. The high complexity of subgraph
isomorphism is avoided by structuring the trees to limit the rate of growth of the subgraphs
and maintain connectivity. In other words, at each node the set of questions investigated
depends on the questions previously asked and their responses. More specifically, this set
depends on the “pending subgraph” - the partial representation determined by all the pre-

vious “yes” answers along that branch back to the root. The new question may enlarge this




by at most one new vertex and one new relation. In effect. the questions are of the form: *Is
(existing) vertex two northwest of (existing) vertex three?” or ~Is there a vertex of type A
south of (existing) vertex three?”. Recognition is very fast since there is no on-line optimiza-
tion, template-matching, or other computationally intensive procedures; we need oniy follow
a pre-computed set of instructions to search for particular landmarks in particular regions.

By construction, the questions are scale-invariant, translation- invariant, and deformation-
invariant. Partial rotation invariance is achieved by using internal coordinates, i.e.. coordi-
nate systems based on vertex locations.

The distribution associated with each terminal node is the empirical one generated by
the training points which land there. Consequently, these trees are themselves distribution-
valued questions. actually random measures in an appropriate stochastic framework. Each
tree could itself be regarded as a classifier by plurality rule. i.e.. taking the mode of the
distribution. For any given training set. there is then a fundamental trade-off between the
depth of the tree and its generality: deep trees have relatively peaked distributions. but have
many nodes and require very large training sets in order to avoid over-dedication: shallow
trees are obviously less decisive and accurate. but tend to be more representative of the
global popuiation from which the training set is sampled.

We attempt to overcome this dilemma by constructing many trees; hopefully an aggregate
result reliably signals the true hypothesis. The trees are generated automatically by randomly
sub-sampling from the pool of questions, exploring perhaps one to ten percent of the total
number of allowable questions at each junction, and choosing the best question from this
random subset. The fact that we can make many trees (at least 100) with anv degree
of “orthogonality” (statistical independence) is a consequence of the sub-sampling and the
remarkable richness of the world of spatial relationships.

The manner in which the results are aggregated is ad hoc; in fact, we just sum the
distributions and take the aggregate mode. We report experiments with several protocols for
tree depth. randomization, etc. Even with training sets of order 10,000, which are small by
today’s standards (see §7,8), we achieve recognition rates around 98% with no rejection. This
is competitive with the best statistical, neural network, and other nonparametric classifiers:
see §7 and i48]. Given more data, it is not necessary to construct new trees from scratch:
one can simply “enrich” the terminal nodes (i.e., update the counts) and occasionally deepen
the trees by splitting a terminal node if the amount of the data and degree of uncertainty
warrant a new question. It should then be possible to exploit training sets of order 100, 000.

In the next section, §2, we identify and summarize some work related to ours. The general

classification tree methodology, including the principle of entropy reduction, is reviewed




in §3. We introduce our relational framework in §4 and discuss distribution-valued trees.
progressive learning, and the depth/generality tradeoff. Multiple trees are introduced in
85 as well as the role of random sampling of the questions. The issue of invariance with
respect to deformations. distortions of data, and affine transformations is treated in §6. The
character recognition problem is briefly outlined in §7 ana some details about training and
testing, together with experiments on handwritten digits. are presented in §8. Finally, a few

speculative remarks are made in §9.

2 Tree-Based and Related Recognition Strategies

Single decision, search. and classification trees have already been used to a limited extent
for pattern and object recognition ([11],[21]). In the context of rigid objects. Swain ([46])
constructs a tree based on high level features, entropy reduction, and object topology in
order to recognize a small number of polyhedra. See aiso Spirkovska ({43]). Goad ([18])
uses search trees to match detected vs. predicted edges, and emphasizes pre-processing
to reduce recognition time. Hansen and Henderson ([20]) use CAD models to generate a
“strategy tree” based on features (e.g., edges and surface patches) which is used to generate
hypotheses about object poses. Sossa and Horaud ({42]) explore a variation of geometric
hashing based on relational graphs which capture the intrinsic topology of objects. Arkin
et al ([4]) use decision trees for classifying convex planar shapes, asking whether individual
pixels are “inside” or “outside.” Wang and Suen ([47]) attempt to classify printed characters
with trees. Decision trees have also been used for recognizing deformable shapes, for instance
handwritten Chinese characters ([19]), biological shapes (32]) and roads ([13], [16]), although
in the latter work the tree is constructed on-line.

Our work has aspects in common with some of these approaches, but differs in sev-
eral important respects. such as the use of multiple trees generated by randomization. In
addition, our “features™ are low level, robust and avoid subclassification; our trees are au-
tomatically generated from training data, not modeled by the user; and our questions are
purely relational.

Besides classification trees, our method resembles other computational strategies for ob-
ject recognition. For example, in the popular “hypothesis and test” paradigm, there is usually
a feature-based representation for the objects (perhaps graphical), and two sub-processes are
iterated: “indexing,” in which a few detected features are used to elicit a candidate set of
objects and/or poses; and “matching,” in which a more global correspondence is investi-

gated. In contrast to the repeated elicitation of candidate hypotheses, the indexing in our




approach, such as it exists. is dvnamic and stochastic. We gradually formulate specific con-
jectures. There is an evolving distribution on hypotheses which is continually updated in
light of the additional information derived from the most recent question. In fact, since
these questions are associated with image locations (relative to established landmarks), our
approach might be considered an example of “active vision™ and proposals for aggregating
the evidence accumulated by an active sensor.

The counterpart of object recognition is model registration. In ([2}) the issue of model
registration for deformable objects is addressed using graphs describing the planar arrange-
ment of local landmarks: see also ([3]). There the graphs are created by hand and are
matched to the data using dynamic programming on decomposable subgraphs. The com-
mon premise here and there is that objects can be identified and discriminated through the

planar arrangement of simple and robust local features.

3 Decision Trees

Decision trees are ubiquitous. We have already mentioned some applications to recognition.
In addition, tree-structured protocols for searching, classifying, and other decision-making
tasks appear in Information Theory, Combinatorial Optimization. Machine Learning and
Statistics. For example. variations of the deterministic “Twenty Questions Game” corre-
spond to well-known problems in coding theory and combinatorial optimization. In particu-
lar, the optimal strategy for choosing subsets is given by the Huffman code ([26], [49]) since
the problem may be viewed as one of code construction under the constraint of minimizing
the number of bits to examine during decoding. Generally, however. optimal strategies for
choosing and ordering questions are virtually impossible to construct ([27]) and work centers
on “greedy” strategies, sometimes called “splitting algorithms™ ([12],{13],[33]).

In Machine Learning ([40]) and Statistics (e.g., CART [6]) the construction of decision
trees is data-driven. The posterior distribution over hypotheses given certain test results is
the empirical one determined by the training data. This is the approach taken here.

Papers dealing with the general methodology of tree construction include [6],[9],[22], [29],
[37], [40], and [41); see also the discussion in [21].

Nonparametric Tree Construction.

Nonparametric (=data-driven) construction of a (single) tree begins with:

o A set X of hypotheses (i.e.. classification labels);




o A training set Q;, of data points with known labels X(w) € X,w € Q4

o Aset @ = {Q1,...,Qn} of questions {or tests or experiments), where each Q, is a

scalar function on
o A set of decisions D.

In our case, the training set consists of binary images of isolated handwritten digits, the
questions are relational functionals of the image data. (specific examples are given later), and
the decisions are distributions on &'.

When we write expressions such as P(X = z), P(Q1 = ¢1,....,O~ = qz|/X = z) and
P(X = z|Qq,..., Q) we are regarding X and @)4,..., QN as random variables relative to the
empirical distribution P on Qy,: P(A) = §A/{Q;., where A C Q4 and $A4 is the number of
elements in A. Thus, for example. the initial distribution po over hypotheses is

_ Hw € 2ulX(w) = o)
- ﬁQtr .

fo(z)

Similarly,

o o H{w € Q| X (w) = z,Q1(w) = ¢}
PX =l =)= et @) = 0}

the proportion of training points which answer “¢” to question @;.

It will also be useful to imagine a much larger universe Q of “data” from which the
training set is randomly sampled or otherwise selected, each element having “true” label
X(w). In our case, €. is the set of images in our particular database of isolated handwritten
digits and § is the set of all images of handwritten digits. Of course we hope that the
distributional properties of the tree we construct, such as classification rates, generalize to
Q, or at least to “test sets” drawn from ().

The questions are asked sequentially and adaptively, meaning that at each stage we may
utilize the results of previous responses in order to choose the next one. Let the index of
the first question chosen be 7; € {1,..., N}, the index of the second question 7, = m,(g;),
which depends on the response ¢; to the first question, the index of the third question
73 = 73(q1,q2), which depends on the first two responses, etc. The tree has Q,, at the
root (or level-one) node, which branches into nodes corresponding to the possible answers
to Qr,, etc. Our problem is then to ask these questions in an “optimal” order relative to
some criterion, for instance asking as few as possible at a given accuracy level, or achieving
the best accuracy with a given number of questions. Since these problems are intractable,

we simply try to minimize uncertainty about X as much as possible at each step.

-~




Therefore.

™= arglglnig_H(XlQn).

In other words. we choose 7y to minimize the expected amount of uncertainty about X given
the answer to @, which is the same as maximizing the expected gain in information. Now
suppose the first £ levels have been made. and we are at some level k£ 4+ 1 node. £ > 1. Let
B = {Qr, = q,..,Qx, = qr}, the set of data points in {,, which respond ¢y, .... ¢ to the
first & questions along the branch we are on. These data points are “sitting” at the current
node under construction and will be used to determine the next split. Again, we choose the

question which minimizes the expected uncertainty, but now under the “current” posterior
P(-|By):
Ter1(qry o qr) = arg12i§r}\l H(XIB:, Q)
= arg min Z P(Qn = q|Bx)H(X|Bk,@Qn = q).

1<n<N
== gefou)
Under the empirical distribution, this means choosing n to minimize:

3 :({Qn = q} N By) 5 1({X =z.Q. = ¢} N By) log H{X =2,Qn = ¢}NBs)
§ Bx = {@=d}NBx)  1({@n =} NBy)

q€{0,1}

where {Qr = ¢} = {w € Q,;|Qn(w) = ¢}, and similarly for {X = z,Q, = q}.

We stop asking questions when one of the hypotheses becomes overwhelmingly likely.
This is equivalent to stopping as soon as the entropy of the posterior distribution P(-|By)
falls below a threshold. Such a node is declared to be “terminal.” and labeled by one of the
decisions d € D. If D = X, i.e., if we make a guess X about the true hypothesis at each
terminal node. then each label will be associated with many terminal nodes, and following
such a terminal node back to the root will produce one sequence of observations for which
X = ¢. For each z, the totality of such sequences determines a region of observation space
- the event {X = z}.

4 Relational Trees

4.1 Euclidean vs. Relational Framework

In the standard applications of the above construction above ([6], [40]), [21]) there is a “fea-
ture vector” Y;(w), ..., Yu(w) of fixed dimension associated with each data point w € Q,, and

a set of questions is based on this vector. (In some cases the feature vector is categorical. e.g.,
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in machine learning.) Often. the questions are of the form Qn(w) = I4,(Y1(w), ..., Yar(w))
where A, is a linear subspace of feature space and 14, is the indicator function. For example.
in CART, the questions involve halfplanes, i.e., each question is of the form “Is Y, (w) < ¢ 7"
for some particular coordinate n and cutpoint ¢. Other examples involve linear combinations
of the feature variables. In general all the questions can be asked at a given node. Many
methods have been proposed for deciding when to stop splitting nodes, i.e., declare nodes to
be terminal. For example. rather long trees may be grown and then pruned back. Generally
the terminal nodes are assigned one of the possible classifications and it is well-known that
good performance on the training set may not be reflected in results on test data. See [6].
It is possible, but awkward, to express our questions in such a framework. Perhaps the
easiest way is the following. Recall that our data representation is based on a labeled graph.
and our questions concern the existence of subgraphs. Now index a binary feature vector by

3-tuples from the set
{vertez labels}® x {image locations}* x {relations}.

If  is one of these 3-tuples, the corresponding feature, Y;, assumes the value 1 if the indicated
relation holds between the indicated vertex labels (landmarks) at the indicated locations, and
Y; = 0 otherwise. The subgraph questions are then of the form Q. = I4,(Y1, ..., Yys) where
M is the size of the index set (very large) and A, is, in general, an extremely complicated
subset of {0,1}", partly because the questions involve matching generic subgraphs which
involve landmarks and relations but no locations. Clearly. this representation is unnatural.
Hence we view our approach as inherently relational and non-Euclidean.

Let £ and R denote. respectively, the set of possible vertex and edge labels. These will be
made precise momentarily. The corresponding set of generic labeled (or attributed) graphs
is denoted G; thus each g € G consists of a set of vertices {v1,...,vx} with v; € £ and a set
of ordered edges {B(is.Js)}, R(ts,js) € R,1 < 45,55 < k,s=1,...,5.

There is a question @, for every labeled graph g € G. The answers are Q (w) =1ifgisa
subgraph of G(w) and Q,(w) = 0 otherwise. In other words. we are asking whether or not the
“configuration” ¢ appears in the image w. In principle, once £ and R are specified, one could
attempt to build trees exactly as above. But this would obviously not be computationally
feasible since the set of possible questions is too large and checking subgraph isomorphism
is too intensive.

The basic idea is to severely restrict the set of allowable questions at each junction. The
restricted set depends on By. The entropy minimization problem is then highly constrained.

We shall explain how this is accomplished after defining G.




4.2 Landmarks

The possible vertex labels are defined based on the eight masks. Recall that our data points
are binary images, say dark digits on a white background. (We will indicate how to accom-
modate grey levels in §6.1.) In the masks, the 1's represent digit pixels, the 0’s represent
background pixels and the 2's couid be either digit or background. Loosely speaking, the
masks are designed to detect locations where the tangents to object boundaries lie in one
of four possible directions: north-south, east-west, northeast- southwest, and northwest-
southeast. Four of the masks are shown below. The other four result from switching the 0’s

and 1’s, i.e., switching the object-background orientation.

2211 2 2 2 211 2 2
00 2 11 1 1 1 11
00 2 1 1 2 2111 2 11111 21 11 2 2
00 2111 1112 00
0 0 2 11 2 2 2 2 2
0 00 2 11 11 2 0 0 0
0 0 2 11 0 0 0 0O
00 2 11 2 000 2 2 0000 0 2 2 000 2
2200 2 2 2 2 00 2 2

Figure 1: The first four masks used to identify landmarks

Clearly this is a very primitive set of masks; plenty of additional possibilities (e.g., including
more directions) could be tried.

There are sixteen vertex labels corresponding to sixteen landmark types, L, ..., Lis. A
pixel u is lighted as an instance of one of the first eight landmarks if there is a perfect match
between the corresponding mask and image data when the mask is centered at u. The second
group of landmarks is a “robust” version of the first group. Occurrence of one of these means
the same as above, except that there needn’t be a perfect match: specifically, the number
of matching zeros and the number of matching ones must both exceed some threshold. In

Iigure 2 we show an image together with all the instances of landmarks L, and L.

Figure 2: Instances of landmarks 4 and 12.

These landmarks are very crude and do not represent distinguishing or complex properties
of object boundaries. In general. many (sometimes all) of the sixteen landmarks occur at

least somewhere in every image and there is consequently very little information in mere
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existence. On the other hand, there is no sub-classification problem: the occurrence or
non-occurrence of a landmark at an image location is unambiguous.

~ In order to simplify the book-keeping involved in storing instances edges, we have clus-
tered the instances of individual landmarks. All the pixels in disjoint blocks which light up
for a given landmark are represented by one pixel at the center of mass. In Figure 3 we show

the locations of the landmarks in Figure 2 after clustering.

Figure 3: Instances of landmarks 4 and 12 after clustering.

Finally, there is one more landmark, Lg, which is the “OR landmark” and occurs at pixel
u if any of the sixteen others occur there. It is informative to know where there is stroke

and where there is background.

4.3 Relations.

"«

Basically, the edge labels are the eight oriented relationships “south,” “southeast,” “east,”

etc., with each interpreted at three “tolerances,” yielding twenty-four possible binary rela-
tions. We abbreviate these as R = {5}, 5,53, SEy,SE,,SFE3,...}. The precise definition
depends on the orientation of the vector between two landmarks locations.

Note: We shall describe the set-up in an absolute coordinate system. In order to achieve
rotation invariance, it is necessary to use internal coordinates based on relative vertex loca-

tions. For simplicity we shall omit the details.

An edge R € R exists between an instance of landmark L; at location u = (uy,u;) and
an instance of landmark L; at location w = (wy, w,) if the vector V = (w; — uy, wy — uy) lies
in a polar wedge associated with R. The three tolerances are £ /4,47 /8 and +x/16. Thus,
for example. there is an edge of type S5; if the angle between the vectors V and (0, —1) falls in
(—m/4,7/4) (i.e., L; is roughly “below” L;); of type S, if this angle falls in (—7/8,7/8); and
of type S if it falls in (—x/16,7,16) (i.e., L; lies almost directly south of L;). Notice that

11




two landmarks may be linked by several distinct edge tvpes, and that edges exist between
every pair of landmarks.

The graph G(w) assigned to an image w is the one determined by all (clustered) land-
mark locations and all existing relations. The amount of information extracted with these
ingredients is immense. Moreover. one can also consider ternary relations (invoiving the tri-
angle formed by three landmark locations) and relations between relations, such as parallel,
co-linear. etc.. (“perceptual groupings”- [34]). We have only considered binary relations.
Notice that any graph ¢ € G may have many “instances” in w, i.e., there may be many

copies of g in G(w); see Figure 4.

4.4 Growth Constraints

The pool of questions available at the top node of the tree ask whether a specific relation
exists between two specific types of landmarks. (This is the minimal configuration with any
discriminatory power.) In other words, the first question is @», where 7, is a graph with two
vertices and one edge, hence of the form (v, = Li|Rk|v, = L;) where Ry € R. If Q,, = 0, we
choose again from such graphs. If @, = I, there are one or more instances of the pending
graph, 7. In principle all these instances should be stored and any future question should
be answered for every instance. (In practice, however, we maintain a limit on the number
of kept instances, a form of pruning.) We now choose choose m2(1) from among extensions
of m, to connected graphs with either: (i) Two vertices and two edges, or (ii) Three vertices
and two edges.

In general terms, let ¢ be a level £ + 1 node and let G, be the set of allowed choices.
The graphs at the ancestor nodes are 7;,j = I.....k; the one with the largest index ;= with
Q,,; = 1 is the “pending graph,” i.e., the largest confirmed graph. Any g € G, must expand
Gre by either (i) one edge or (ii) one vertex and one edge involving this vertex. In this way,
the pending graph grows slowly and remains connected. In practice, these constraints reduce
the search to several hundred questions. In Figure 4 we show two instances of one graph ¢
found in in an image of an “8”, the same graph found in an image of a “2”, together with

the description of the labels of this specific pending graph.



Figure 4: Two instances of a graph found in an 8, and one instance found in a 2. The labeled vertices and edges are:

(‘U1 = L7|NE1|U2 = LlG)v(vl = L7|N;|v3 = L4),(‘U3 = L4|NW2|‘U4 = L2),(1}4 = L2|JVE1|‘U5 = Llo),(’U4 = L')]S] "Us = L5).

NOTE: Some degree of connectivity is crucial for performance. For example, if the pending
graph consists entirely of disconnected subgraphs of size two (e.g., if the procedure at the
root node is repeated at every node) then the results are relatively poor. It is the gradual
accumulation of relationships among a growing, but relatively small, number of landmarks

that provides discriminating power.

4.5 GGeneralization

Obviously performance and other attributes of the system depend on the size and choice of
the training set. We do not know how performance is affected by the size of Q,, since we
have not done systematic experiments (such as those in [44]) with the database we have (see
§8), let alone with very large ones.

Another issue is the extent of performance deterioration from training to test data. This
will be pronounced unless the trees are very shallow, so that every question is chosen based on
a population of data points sufficiently large that the same question would be chosen for any
other large sample of data points with the same “history.” In this case, the performance of
the individual classifiers is generally mediocre, unless, of course, the training set is extremely
large, in which case the trees can be both general and deep. One alternative is to construct
trees with one training set and then enrich them (i.e., update the counts) with considerably

more data. In this case the performance fall-off is largely eliminated. A closely related
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issue is the extent to which equally-sized training sets might yield different classifiers, i.e..
the problem of “over-dedication.” (See the discussion in [17] about the *bias-variance”
dilemma.)

Suppose a tree is constructed based on ;.. Thus, for each data point w € 9,,, we define

a probability distribution uiw) = {y(z,w),z € X'} where

_0.w)
How) = S0 0)

Here (}(w) is the portion of the training set which lands in the same terminal node of the
tree as does w, and Q(z..1 is the set of points in {2(w) which have label 2. We regard p as a
distribution-valued random variable on ;,. Then, almost by definition. for any distribution
v on the classes, P(X = rip = v) = v(z). In other words. given we are in the set of data
points which land in any terminal node with distribution v. the conditional probability under
P that the label is z is v(z). Still fixing the tree, and given another, larger set €2, u is again a
random distribution on Q. and one may ask whether the resulting conditional distribution of
X given p is still p itself. i.e.. whether u(w) still represents the correct posterior distribution
on the labels of data points. but now across the larger domain, most of which may not have
been used in the construction of the tree. If this property remains valid than indeed the tree
“generalizes” from €2, to Q.

Again, shallow trees are more general than deep ones, and questions made with relatively
few data points will tend to be over-dedicated to the training set, resulting in distributions

which can be significantly different from those obtained by enrichment.

4.6 Progressive Learning

We therefore consider a two-step learning procedure consisting of (i) initial construction
and (ii) enrichment and deepening. In the first step we are building the basic classifier and
obtaining an initial estimate of the “parameters,” namely the weights at the terminal nodes.
In the second step we are updating our estimates based on new data, and enlarging the tree
by splitting some terminal nodes. Each new (classified) data point adds one count (to each
tree). The procedure is computationally efficient since the initial construction is based on
very “conservative” stopping rules and hence can be accomplished with moderately-sized
training sets.
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4.7 On-Line Execution

The training (=tree construction) may be intensive, but the on-line recognition is extremely
simple: we need only execute the strategy, i.e., follow the instructions. There is no on-line
optimization. Moreover, since we traverse exactly one path of the tree it doesn’t matter
how many different questions are represented in the entire tree: we must only ask the those
encountered on the path dictated by the data.

If the classification is based on a single tree theén the obvious decision rule is to classify
a terminal node by the mode of the (empirical) distribution g(w) - that class which has the
most representatives at that node. The performance of this classifier was not satisfactory

(see §8.6). which led us to consider multiple trees.

5 Multiple Trees

The idea of using multiple decision trees is relatively new although it appears to be quickly
gaining popularity. Some authors have suggested using multiple “pruned” or “shrunken”
subtrees of one single decision tree ([10]) . Others have created mutiple decision trees through
interaction with the user ([30]). A very recent idea is to use mutiple “decision stumps”,
namely depth two trees; see [39]. In [7], multiple trees are created by generating bootstrap
replicates of the learning set and creating a decision tree for each such replicate. Most
of these papers are dealing with relatively small data sets, fixed size feature vectors, and
questions or splits of the single coordinate type. All accounts of multiple trees point to an
increase in performance and stability of the classifier.

In our context the data sets are very large and the family of allowable relational questions
is immense. This suggests yet another mechanism for generating multiple trees: choosing
a random subset of the allowable questions at each node and selecting the best question
from this subset. This is an automatic procedure which appears to promote “orthogonality”
among the trees. It should be emphasized that this is not a procedure which simply picks a
question at random at each node. thereby generating completely random trees, as suggested
in Mingers ([36]) and criticized in Buntine and Niblett ([8]).

Our procedure is the following.

e Start with a training set §;, of modest size and separately create many trees of modest
depth;

e Promote “orthogonality” among the trees by generating a small random subset from

the pool of questions at every node and choosing from that subset the question with
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most information gain ;

o Declare nodes to be terminal when the number of data points falls below a threshold.

the node is sufficiently “pure.” or a maximum depth is reached;
o Label each terminal node by the histogram of counts from Q;

e Enrich the terminal nodes with any additional training data by updating the counts.
occastonally expanding nodes when there is enough data and uncertainty to warrant a

new question;

o Classify using the mode of the aggregate distribution.

5.1 Individual vs. Simultaneous Construction

We have chosen to make the trees individually. using the same or separate protocols for each
tree. In particular, the questions chosen at the nodes of tree j have no impact on those
chosen for tree [. Consequently, the trees are constructed one at a time, without reference
to those already built, and following a protocol which incorporates the constraints on graph-
growing described in §4.4 as well as random sub-sampling of the questions meeting those
constraints: an example will be given in §8. (In principle, all the trees could be constructed
in parallel.) For each sampled question, the resulting average empirical entropy over the
classes is computed and the question is chosen for which this is smallest, as described in §3.

Another possibility is to construct the trees simultaneously. in an interdependent fashion.
where the criterion itself for selecting a question in any one tree will depend on the partial
construction of all other trees. For example. one might build all the trees to depth one.
then all to depth two, etc., or randomly select any (current) terminal node for splitting,
allowing the trees to grow at different rates. The entropy criterion would be replaced by
one which takes into account the overall system performance based on the pending terminal
distributions. One example would be the overall misclassification rate. Another is the sum
over all training points of the aggregate mass (see §5.3 below) placed on the label of the

training point. Experiments in this domain are still preliminary.

5.2 Orthogonality

Conditional on X, suppose the trees were actually independent as random variables on a

suitably large space of images Q2; then if each tree individually had any discriminating power,
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the overall performance could be made arbitrarily high. Obviously this is not possible and
the trees are in fact quite dependent, even conditionally given X.

Our approach is not based on assessing statistical independence with an appropriate
stochastic framework. Instead, we simply try to make the trees as “different™ as possible by
trying to avoid asking the same questions in comparable situations (similar node histograms
from tree to tree.

We have experimented with several alternatives; the one which seems to give the best
results is to use random sub-sampling of the questions. Suppose we are at a (current) terminal
node t and let G, be the set of graphs we are allowed to consider (§4.4). The corresponding
set of possible questions is Q; = {@,|g € G:}, the number of which depends on the depth
of node ¢ (more specifically the number of “yes” answers in the node history) because the
question are tied to existing vertices in the pending graph: the more existing vertices the
more possible questions. We randomly select a fixed percentage of the questions in Q, for
example one to ten percent, and choose from among these the one with highest information
gain. Invariably, the discriminating power of each individual tree is reduced. This is to be
expected since there is necessarily a smaller reduction in entropy at each node than would
be the case if all the allowable questions were permitted to actually be used. However, the

aggregate performance of the family of trees can be substantially improved.

5.3 Aggregating Results

The classification is made as follows. Suppose K trees have been made. Given a test set Qyeq:.
each w € ey is dropped down each tree, yielding distributions p(w), ..., px(w). Averaging

over these we obtain the aggregate distribution:

1 K
/—"(wi) = EZﬂk(w’w), TeEX
k=1

The estimated label is then
X(w) = argmax iz, w).

The classification rate (at zero percent rejection) is the proportion of points in . for which
X(w) = X(w).

Various criteria can be used to measure the confidence in the classification. For example.
if the ratio of the weight (X (w),w) of the largest class to that of the second largest class
exceeds some threshold, then the classification is accepted: otherwise it is discarded and the
data point is considered to be unclassified. In §8 we will report some typical values for zero

percent rejection and about six percent rejection.
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5.4 Robustness

One additional advantage of using multiple trees is the insensitivity to changes in the protocol
for individual tree construction. Making what appear to be relatively major changes in
various “parameters.” such as stooping criteria, sampling schemes. landmark masks. and

splitting criteria, has virtually no effect on the overall classification rate.

6 Invariance

Our experiments concern the classification of handwritten digits based on high resolution
binary images. We believe the strategy could be adapted to other visual recognition prob-
lems. Any truly generic and extendible strategy must accommodate a wide range of imaging
scenarios, including variations in shape, pose, and lightning, and the presence of clutter.

occlusion, and noise.

6.1 Data Distortion

We refer to transformations of the raw image data, due, for example, to changes in lighting,
and to other distortions caused by image noise, blur, occlusion, etc. Due to our high quality
data, these issues have not been seriously addressed. Still. the image attributes we utilize are
local and elementary, basically just locations of oriented boundaries; the masks are designed
to accommodate considerable variation in boundary presentation and appear to be stable
against various forms of “binary noise.” Extensions to grey-level images should therefore be
possible by replacing the matched filters with relational masks depending only on relative
brightness, i.e., comparisons.

Finally, the use of multiple trees provides a natural mechanism for dealing with occlu-
sion and clutter. In fact. we have done some preliminary experiments in which trees are
constructed based on differing portions of the image data. for instance using only half the

image (top, left, etc.). The results are encouraging.

6.2 Shape Variation

By construction, the questions are deformation-invariant. in the sense that the responses are

invariant to “rubber sheet” transformations, at least those which preserve the essence of the
shape. i.e., keep a “4” looking like a *4”.
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6.3 Affine Transformations

The method is also translation-invariant by construction. Rotation-invariance can be in-
¢luded by aggregating the questions into invariant classes and using internal coordinates.
For example, full rotation-invariance can be achieved by replacing the first question by an
invariant version in which the entire structure (the two participating landmarks and the
relation between them) is said to exist when the landmarks and relation are rotated through
multiples of some small angle. Once the pending graph is non-empty, future questions are
then based on the coordinate system determined by the locations of the first two vertices.
Naturally there is a fall-off in performance, even bevond such fundamental confusions as
“6”and “9”. Partial rotation-invariance results from using a coordinate frame based on two
existing vertices when searching for a new landmark.

The size range in the database 1s considerable, some digits being up to four times larger
than others in both height and width. Nontheless, we do not assume we know the size. nor do
we estimate it. In particular, neither the clustering nor the masks are adapted to the size of
the digit. Some adjustment for (estimated) scale would likely be helpful, even necessary for
attempting to recognize multiple objects (e.g., reading zip codes), but there does not seem
to be any simple way to accomplish this without confronting the recognition/segmentation

dilemma.

7 Character Recognition

The problem has many variations and the literature is immense. Surveys include [38] and
[43]. Even the problem of handwritten character recognition (as opposed to machine printed
characters) has many facets. depending on whether recognition is on-line or off-line, whether
the characters are isolated or touching, binary or grey-level, etc. The most difficult problem is
the recognition of unconstrained script, i.e., “reading” unsegmented alphanumeric character
strings based on pictures of ordinary handwriting. Zip codes ([l], [35]) and hand-drawn
checks also present a formidable challenge.

The problem we consider is easier, mainly because the digits are segmented from the
background and from each other. Even this problem has drawn enormous attention, including
a competition sponsored by the National Institute of Standards and Technology ([48]).

For nonparametric statistical methods see [5],{23] and [31]. Usually the techniques involve
a neural network or some other form of nonlinear discriminant analysis, and do not address

the description of shape in any direct way. An example of a model-based statistical approach




is found in :24], in which shape is explicitly modeled by crafting prototypes for each class.
It is somewhat difficult ([1], [28]) to assess the state-of-the-art; for example. some “test
sets” are widely considered to be more difficult than others ([44]). At the NIST competition.
the best recognition rate at zero percent rejection was 98.44%. but the next best was 96.84%,
and only about half the systems produced error rates of less than five percent; see 148]. Sev-
eral of the top methods were based on nearest neighbor and neural network classifiers. The
test set was considered quite difficult and recognition rates reported elsewhere are generally
higher. For example, using a nearest-neighbor system, the study in [44] achieves rates of
96.88% with 10,000 training points. 97.92% with 30,000 training points, and 98.61% with
100.000 training points. With smaller training sets (around 3000), the rates are 95 — 96%

with nearest-neighbor and feed-forward neural networks ([25]).

8 Experiments

8.1 Data

The experiments described were carried out with the USPS database produced and dis-
tributed by CEDAR, SUNY Buffalo. The training data consists of 19046 binary digits
segmented from zipcodes; the test set consists of 2213 segmented binary digits. The images
vary widely in dimensions, from approximately 25 x 25 to 100 x 100. No preprocessing step
was implemented to normalize or otherwise alter the data. The distribution over classes in
Q4 1s not uniform, but our results are nearly identical when uniform subsets are selected for

training and testing. Figure 5 shows some digits from the test set.

Figure 5: The first 40 images of the USPS test dataset.



8.2 Questions

Recall that £ and R are. respectively, the set of vertex and edge labels. For the particular
examples described in §4, :£ = 17 and fR = 24. If there are V vertices in the pending
graph, there are V(V — 1) x R possible questions of the first type and V x [R x §£ possible
questions of the second type. These numbers are manageable and it is feasible to construct
trees of considerable depth, say up to 20, even without random sub-sampling. Due to the

stopping rules, the trees are in fact less deep and highly unbalanced.

8.3 Stopping Rules

A stopping rule is used to determine when a node in the graph cannot be split any further.
The trees are grown to a maximum depth D. In addition. a node is not split unless the
number of data points exceeds a minimum value M and the proportion of data points in the
largest class is less than P. Typical values are D =12, M = 50 and P = 90. This results in
trees with approximately 200 — 300 nodes.

8.4 Enrichment

With the USPS database we have enriched trees initially made with approximately 10,000
data points by sending down an additional 10,000. Unless the stopping rules are extremely
conservative, the classification rates based on individual trees and on the initial 10,000 data
points are higher than the rates on the test data. These two rates become virtually identical
when the distributions are updated: however, the overall classification rate is only slightly
improved. We expect additional improvement with sufficient data to warrant expanding the

trees, and work is underway using the recently acquired NIST database ([14]).

8.5 Computation

For both training data and test data the landmark locations were precalculated and stored.
No effort has been made to accelerate any of the computations. For example, it would
be straightforward to search simultaneously for all the landmarks rather than one by one.
Similarly, one could optimize the question-answering routine. Depending on the protocol.
each tree requires about 30 — 60 minutes to build on a Sun Sparc 10. The computation time

for classification is approximately 100 data points per tree per second.




8.6 Test Results

The best performance we could achieve with a single tree was approximately 92%, and we
abandoned this approach. In Figure 6 we show the results for four groups of approximately
fifty trees constructed under various protocols and based on 10,000 training points.

One protocol involves random sampling from the landmark types only, specifically choos-
ing three of the landmarks at each node, but investigating all possible relations. The classi-
fication rate for this group reaches 97.4%, but is over 97% by the fifteenth tree. Moreover
when tested on the remaining 10000 training data points (before the enrichment step) the
classification rate was just over 98%. Another protocol is the same, except that the entropy
criterion is only applied to the two leading classes rather than all ten classes. The other two
protocols involve variations in the stopping criteria, landmark masks. sampling schemes and
the use of ternary questions.

Combining several groups results in rates around 98%. If we demand that the mode X
have at least twice the weight of the next largest class, then 6.3% of the test data is rejected

and the classification rate on the remaining data is 98.8%.
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Figure 6: Cumulative classification rates with four different protocols.
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9 Discussion

We have reported our progress on an approach to shape recognition based on asking questions
about the spatial arrangement of oriented boundary segments. The questions are organized
into many highly structured sequences corresponding to branches on many decision trees.
The outcome of each tree is a distribution over the possible shape classes. The use of trees
for classification is not new, especially within a standard framework with feature vectors.
Nor is data-driven tree construction based on entropy reduction. So far as we know, however,
the use of a graphical or relational framework is new, as well as the use of randomization in

the construction of multiple, distribution-valued trees.

The current implementation suffers several limitations and does not extend as it stands to
the recognition of multiple objects in grey-level images. Nonetheless, we are encouraged by
the recognition rates on binary images of isolated handwritten numerals. especially in view of
the relatively small training sets and the stability of the procedure. We believe that compu-
tational strategies based on the systematic accumulation of relationships hold considerable

promise for general recognition.
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