Technical Report 1682
October 1994

Development of an Artificial Neural Network for Real-time Classification of Cone Penetrometer Strain Gauge Data

John M. Andrews
Computer Sciences Corporation

Stephen H. Lieberman
NCCOSC RDT&E Division

Approved for public release; distribution is unlimited.
Development of an Artificial Neural Network for Real-time Classification of Cone Penetrometer Strain Gauge Data

John M. Andrews
Computer Sciences Corporation

Stephen H. Lieberman
NCCOSC RDT&E Division
ADMINISTRATIVE INFORMATION

The work in this document was a combined effort of personnel from the Environmental Chemistry/Biotechnology Branch (Code 521) of the NCCOSC RDT&E Division (NRaD) and Computer Sciences Corporation. Sponsorship was provided by the Strategic Environmental Research and Development Program (SERDP), and the Naval Facilities Engineering Command (NAVFACENGCOM).

Released by
J. G. Grovhoug, Acting Head
Environmental Chemistry/
Biotechnology Branch

Under authority of
P. F. Seligman, Head
Environmental Sciences
Division

Technology detailed in this document is covered by a U.S. Patent Application assigned to the U.S. Government. Parties interested in licensing this technology may direct inquiries to:

Harvey Fendelman
Legal Counsel for Patents
Code 0012
NCCOSC, RDT&E Division
San Diego, CA 92152–5765
(619) 553–3001
SUMMARY

OBJECTIVE

The purpose of this study was to develop a neural-network-based computer program for determining soil behavior type from cone penetration strain gauge measurements.

CONCLUSIONS

The neural-network-based algorithm for soil classification has been implemented and is currently meeting all performance expectations. However, Site Characterization and Analysis Penetrometer System (SCAPS) needs may change and it is impossible to anticipate all future requirements. At some later date, improvements or changes to the original program may be necessary.

RECOMMENDATIONS

Improving the accuracy up to 100% is certainly possible. The program may also be made smaller and faster. Each of these considerations may be investigated by performing a more thorough study of results obtained by using different network architectures and connectivity. Also, given the one-of-n encoding of the output variable, use of the SOFTMAX activation function in the output layer may help improve training.

If it becomes necessary to change the input units from tons per square foot (TSF) to some other measure of force, either the input to TSF must be rescaled or another network retrained. Making use of additional input parameters, such as pore pressure or a depth correction factor, will require complete retraining of the network.
CONTENTS

INTRODUCTION ... 1

BACKGROUND ... 1

SCAPS PROGRAM ... 1

NETWORK DEVELOPMENT ... 3

PREPARATION OF TRAINING DATA ... 3

NETWORK ARCHITECTURE AND TRAINING ... 3

RESULTS .. 5

CONCLUSIONS/RECOMMENDATIONS .. 10

ACRONYMS .. 11

REFERENCES .. 11

APPENDIX A: SOURCE CODE .. A-1

FIGURES

1. Simplified soil-behavior-type classification chart for standard electric friction cone ... 2

2. Data points (represented by +) causing CPTINT errors 4

3. Root-mean-square output error versus number of training iterations. Data shown are for a three-layer 2x9x12 neural network ... 5

4. Data points (represented by +) misclassified by a 2x9x12 single hidden-layer neural network after training ... 7

5. Data points (represented by +) misclassified by a 2x21x12 single hidden-layer neural network after training ... 7

6. Data points (represented by +) misclassified by a 2x11x9x12 two hidden-layer neural network after training ... 9

7. Data points (represented by +) misclassified by a 2x15x15x12 two hidden-layer neural network after training. Of all the networks trained, this one is the most accurate with a classification accuracy rate of 98.2% ... 9

TABLES

1. Neural networks with one hidden layer .. 6

2. Neural networks with two layers of hidden processing elements 8
INTRODUCTION

BACKGROUND

The purpose of this study was to develop a neural-network-based computer program for determining soil behavior type from cone penetration strain gauge measurements. The primary requirements were that the algorithm operate online in real time to provide highly accurate and verifiable determinations of 12 standard geotechnical soil classifications. Once developed, the program was to be integrated into the data acquisition software of the NReD prototype Site Characterization and Analysis Penetrometer System (SCAPS). This manuscript, which serves to document both the network development process and the resulting C source code, may be used as a guideline for the future development of improved or modified versions of the original algorithm.

SCAPS PROGRAM

SCAPS is a modified truck-mounted cone penetrometer system that utilizes fiber-optic-based chemical sensors to measure underground contaminants in situ (reference 1). SCAPS maintains the ability to perform stratigraphic profiling by electric cone penetration testing while simultaneously gathering spectroscopic data. The electric cone penetration test (CPT) is achieved by measuring the response of two strain gauges mounted inside the penetrometer probe. As the probe is hydraulically pressed into the ground, strain gauges measure the pressure incident upon the cone-shaped probe tip and the frictional resistance along the probe axis. The CPT strain gauge measurements may be evaluated to determine soil classification type. Classification charts, such as the one shown in figure 1, can be used for this purpose (reference 2).

SCAPS was conceived of as a tool to provide an immediate onsite assessment of environmental contamination through the data acquired by its sensors. Hence, the need for a soil classification method that operates online in real time to convert raw CPT data to soil class information. No direct functional relationship exists for converting CPT values to soil behavior type. A look-up table could be programmed to perform this task; however, memory requirements for such a table would make this method difficult to incorporate into existing SCAPS data acquisition and control software.

It was decided to develop a software model of an artificial neural network to perform a mapping of CPT data to soil classification. One attractive aspect of this approach was that a neural network could learn the mapping algorithm by example. Expert knowledge in soil classification would not be necessary. Also, the network would be fast enough, even in its serial implementation, to run in real time. In addition, the memory requirements of the executable code are typically small enough to be easily added onto existing SCAPS software.
Figure 1. Simplified soil-behavior-type classification chart for standard electric friction cone.
NETWORK DEVELOPMENT

PREPARATION OF TRAINING DATA

Neural networks require the use of training data to adaptively learn a relationship. Training data for neural networks of the type used with this project consist of a set of input data points paired with the appropriate class association (desired network output). In this instance, the input data includes the two strain gauge measurements, while the associated output corresponds to the derived soil classification. The training data used in this study were generated through the application program CPTINT. A CPT data interpretation program available from the University of British Columbia, CPTINT takes strain measurements as input parameters and reports the associated soil classification (reference 3). In that way, CPTINT is functionally similar to the neural algorithm being developed here. However, it is limited to offline data analysis using file input and output.

The CPNN program (appendix A) was written to generate artificial strain gauge readings and provide an input data file for CPTINT. CPNN creates 12,120 equidistant pairs of simulated strain gauge data points. The range for generated cone pressure values is 0 to 1000. Sleeve friction values range from 0 to 8% of cone pressure. The cone pressure values are unitless because CPTINT can be set to interpret data in terms of various pressure units. CPNN also associates a dummy depth variable with each data pair. This a requirement of CPTINT.

The output file generated by CPTINT consists of the original input values along with integer values ranging from 1 to 12, corresponding to the interpreted soil classification. Of the 12,120 input records, CPTINT generated an error response for 223; a 1.8% error rate. The errors were transmitted as soil class 1e99. As seen in figure 2, most of the errors occurred along the exterior boundary of the soil classification chart. These are presumably out-of-range errors. Other errors occurred along the decision boundaries between classification regions.

The file was edited for use as a formatted neural network training file using DataSculptor, a visual programming tool for data processing and analysis (reference 4).

DataSculptor was used to cull the error causing records from the training set. It was also used to dimension the original cone pressure values to log cone pressure in tons per square foot (TSF). The soil class encoding was changed from a 1 to 12 scalar value (thermometer code) to a 12-digit one-of-n coding. To avoid network saturation during training, the input parameters were linearly scaled to values between −0.8 and +0.8.

NETWORK ARCHITECTURE AND TRAINING

NeuralWorks Professional II/Plus2 neural network development tool was used for network development. The backpropagation paradigm was selected. There is no known method for making a priori determinations of the optimal neural architecture. Hence, several networks designs based upon variations of the general feedforward backpropagation theme were trained and tested. Networks with one and two hidden layers of processing elements were investigated. Single hidden-layer networks where the input nodes are connected to both hidden and output layers (NeuralWorks connect prior option) were also tested. The initial weight values were also randomly varied since training performance is somewhat dependent upon starting conditions.
Figure 2. Data points (represented by +) causing CPTINT errors.

The network input layer for each of the networks consisted of two processing elements corresponding to the two input parameters; log cone pressure and friction ratio. The input units were set to TSF. The network output layer consisted of 12 processing elements corresponding to the 12 possible soil classes as represented by a one-of-n code. The output layer was competitive in that only the processing element with the highest activation output a 1. All others output a zero. The following training parameters were used:

- learning coefficients at start:
 - first hidden layer: 0.4
 - second hidden layer: 0.35
 - output layer: 0.3
- momentum coefficient at start: 0.4
- transition points: 25000; 75000; 175000 iterations
- learning rule: normalized cumulative delta (epoch = 16)
- transfer function: Hyperbolic tangent
Each of the networks was trained for a total of 300,000 iterations. Additional training yielded no significant improvement in performance. Furthermore, since the set of all possible input values has a limited and well defined range, and since this set was uniformly represented by a very large set of training data, there was no possibility of “overtraining” the networks. Overtraining refers to a situation in which a network has essentially memorized the training data and is unable to make generalizations with new data.

RESULTS

Figure 3 follows the root-mean-square (RMS) training error as training proceeds for a three-layer (single hidden-layer) network. The shape of the curve signifies the rate at which the network learned, and at what point the weight values stabilized. It is typical of the other networks, both the three- and four-layer versions, in that most of the learning took place within the first 100,000 iterations.

Figure 3. Root-mean-square output error versus number of training iterations. Data shown are for a three-layer 2x9x12 neural network.
After training, each network was tested on the same input data used for training. During the testing phase, actual network output is recorded to a result file. Program Start.C (appendix A) was written to sort through the NeuralWorks' result files and count the number of correctly and incorrectly classified data points. These numbers were then used to compare the performance differences of the various trained networks.

The RMS output errors for the single hidden-layer networks are shown in table 1. Networks with the same number of layers and processing elements differed only in the random weight values assigned to each connection prior to the start of training. It can be seen that the networks with direct connections between the input and output layers (connect prior) consistently performed worse than the other networks. The incorrectly classified data pairs for two of the networks are displayed in figures 4 and 5. Note that all of the errors occur near the decision boundaries. Given the overall number of errors and the breadth of the error regions, the classification performance of this series of networks is considered poor.

<table>
<thead>
<tr>
<th>File Name</th>
<th>H. PEs</th>
<th>Special</th>
<th>RMS_ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT01</td>
<td>7</td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>CPT02</td>
<td>7</td>
<td></td>
<td>.24</td>
</tr>
<tr>
<td>CPT03</td>
<td>7</td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>CPT04</td>
<td>7</td>
<td></td>
<td>.24</td>
</tr>
<tr>
<td>CPT05</td>
<td>9</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>CPT06</td>
<td>9</td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>CPT07</td>
<td>11</td>
<td></td>
<td>.21</td>
</tr>
<tr>
<td>CPT08</td>
<td>11</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>CPT09</td>
<td>13</td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>CPT10</td>
<td>13</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>CPT11</td>
<td>15</td>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>CPT12</td>
<td>15</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>CPT13</td>
<td>21</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>CPT14</td>
<td>21</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>CPT15</td>
<td>21</td>
<td>Connect Prior</td>
<td>.35</td>
</tr>
<tr>
<td>CPT16</td>
<td>21</td>
<td>Connect Prior</td>
<td>.35</td>
</tr>
<tr>
<td>CPT17</td>
<td>15</td>
<td>Connect Prior</td>
<td>.35</td>
</tr>
<tr>
<td>CPT18</td>
<td>15</td>
<td>Connect Prior</td>
<td>.35</td>
</tr>
<tr>
<td>CPT19</td>
<td>11</td>
<td>Connect Prior</td>
<td>.35</td>
</tr>
<tr>
<td>CPT20</td>
<td>11</td>
<td>Connect Prior</td>
<td>.35</td>
</tr>
</tbody>
</table>
Figure 4. Data points (represented by +) misclassified by a 2x9x12 single hidden-layer neural network after training.

Figure 5. Data points (represented by +) misclassified by 2x21x12 single hidden-layer neural network after training.
The networks utilizing two hidden layers outperformed the single hidden-layer networks. Table 2 shows the classification results and accuracy for the networks with two hidden layers. The misclassified points for two of the networks are shown in figures 6 and 7. Again, the errors occur on the boundaries between class regions. For example, at the boundary between class 1 and 2, a class 1 soil may be classified as a class 2. This is a far more acceptable type of error than a class 1 soil being incorrectly identified as a nonneighboring class. This is particularly true because the soil class boundaries are considered somewhat inexact (fuzzy) anyway with some overlap between zones.

Table 2. Neural networks with two layers of hidden processing elements. Columns correspond to the root name of associated files, the number of processing elements in each hidden layer (layer two x layer three), the number of correct and incorrect soil classifications across the training set, and prediction accuracy after training.

<table>
<thead>
<tr>
<th>File Name</th>
<th>H. PEs</th>
<th>Correct</th>
<th>Wrong</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP5x9a</td>
<td>5x9</td>
<td>10943</td>
<td>954</td>
<td>92.0%</td>
</tr>
<tr>
<td>CP5x9b</td>
<td>5x9</td>
<td>10155</td>
<td>1742</td>
<td>85.4%</td>
</tr>
<tr>
<td>CP7x7a</td>
<td>7x7</td>
<td>10923</td>
<td>974</td>
<td>91.8%</td>
</tr>
<tr>
<td>CP7x7b</td>
<td>7x7</td>
<td>11136</td>
<td>761</td>
<td>93.6%</td>
</tr>
<tr>
<td>CP9x5a</td>
<td>9x5</td>
<td>10282</td>
<td>1615</td>
<td>86.4%</td>
</tr>
<tr>
<td>CP9x5b</td>
<td>9x5</td>
<td>10311</td>
<td>1586</td>
<td>86.7%</td>
</tr>
<tr>
<td>CP9x7a</td>
<td>9x7</td>
<td>1026</td>
<td>871</td>
<td>92.7%</td>
</tr>
<tr>
<td>CP9x7b</td>
<td>9x7</td>
<td>11164</td>
<td>733</td>
<td>93.8%</td>
</tr>
<tr>
<td>CP10x8a</td>
<td>10x8</td>
<td>11377</td>
<td>520</td>
<td>95.6%</td>
</tr>
<tr>
<td>CP10x8b</td>
<td>10x8</td>
<td>11117</td>
<td>780</td>
<td>93.4%</td>
</tr>
<tr>
<td>CP11x7a</td>
<td>11x7</td>
<td>11087</td>
<td>810</td>
<td>93.2%</td>
</tr>
<tr>
<td>CP11x7b</td>
<td>11x7</td>
<td>11255</td>
<td>642</td>
<td>94.6%</td>
</tr>
<tr>
<td>CP11x9a</td>
<td>11x9</td>
<td>11587</td>
<td>310</td>
<td>97.4%</td>
</tr>
<tr>
<td>CP11x9b</td>
<td>11x9</td>
<td>11443</td>
<td>454</td>
<td>96.2%</td>
</tr>
<tr>
<td>CP11x11a</td>
<td>11x11</td>
<td>11559</td>
<td>338</td>
<td>97.2%</td>
</tr>
<tr>
<td>CP11x11b</td>
<td>11x11</td>
<td>11538</td>
<td>359</td>
<td>97.0%</td>
</tr>
<tr>
<td>CP15x15a</td>
<td>15x15</td>
<td>11579</td>
<td>318</td>
<td>97.3%</td>
</tr>
<tr>
<td>CP15x15b</td>
<td>15x15</td>
<td>11682</td>
<td>215</td>
<td>98.2%</td>
</tr>
<tr>
<td>CP21x21a</td>
<td>21x21</td>
<td>11656</td>
<td>241</td>
<td>98.0%</td>
</tr>
<tr>
<td>CP21x21b</td>
<td>21x21</td>
<td>11638</td>
<td>259</td>
<td>97.8%</td>
</tr>
<tr>
<td>CP50x50</td>
<td>50x50</td>
<td>11613</td>
<td>284</td>
<td>97.6%</td>
</tr>
</tbody>
</table>
Figure 6. Data points (represented by +) misclassified by a 2x11x9x12 two hidden-layer neural network after training.

Figure 7. Data points (represented by +) misclassified by 2x15x15x12 two hidden-layer neural network after training. Of all the networks trained, this one is the most accurate with a classification accuracy rate of 98.2%.
The best performing network made use of a four-layer 2x15x15x12 architecture. This network responds with over 98% accuracy. That is, its classifications agree with the CPTINT program in 98.2% of the cases. Close-in performance was a 2x11x9x2 network with a 97.4% accuracy rate. The number of processing element interconnections for the smaller of these two networks is 263, counting the bias element. The larger network contains 479 interconnections. This computational overhead corresponds to nearly twice the memory requirements and half the recall speed. However, it was decided to incorporate the 2x15x15x12 network into the SCAPS software anyway. It is still sufficiently fast to run in real time and the memory requirements are reasonable. There is no need to compromise and give up the better classification performance.

The developed network was output in C code via Neuralware Flashcode option. Some modifications were made to clean up the code and make it more readable. The resulting program, SOIL.C, is reproduced in appendix A. The program was ported to BASIC by Palladin Software (San Diego, CA) for compatibility with other SCAPS software. The BASIC version was incorporated into SCAPS software in October 1993. Preliminary reports from initial SCAPS field studies at Naval Air Station North Island show excellent agreement between the neural-network-based CPT soil classification and laboratory classification of sample soils.

CONCLUSIONS/RECOMMENDATIONS

The neural-network-based algorithm for soil classification has been implemented and is currently meeting all performance expectations. However, SCAPS needs may change and it is impossible to anticipate all future requirements. It may be necessary to make improvements or changes to the original program at some later date.

Improving the accuracy up to 100% is certainly possible. The program may also be made smaller and faster. Each of these considerations may be investigated by performing a more thorough study of results obtained by using different network architectures and connectivity. Also, given the one-of-n encoding of the output variable, use of the SOFTMAX activation function in the output layer may help improve training.

If changing the input units from TSF to some other measure of force becomes necessary, either the input to TSF must be rescaled, or another network retrained. Making use of additional input parameters, such as pore pressure or a depth correction factor, will require complete retraining of the network.
ACRONYMS

CPT Cone Penetration Test
RMS Root-Mean-Square
SCAPS Site Characterization and Analysis Penetrometer System
TSF Tons per Square Foot

REFERENCES

3. Wong, T. CPTINT, Civil Engineering Department, University of British Columbia, Vancouver, B.C. VGT 1Z4.

4. DataSculptor and NeuralWorks, NeuralWare, Inc., Penn Center West, Pittsburgh, PA.
APPENDIX A

SOURCE CODE:

CPNN.CPP
START.CPP
SOIL.C
//
// CPNN.CPP
// Program to Generate Data for Input for CPTINT
//
// by: John Andrews, 12 August 1993
// Computer Sciences Corporation
//
// This program creates artificial input data for "CPTINT". "CPTINT" is
// a cone data interpretation program distributed by the Civil Engineering
// Department, University of British Colombia, Vancouver, B.C. Canada
// phone number: (604) 822-2637.
//
// Execution of this program creates a file named "nnncpt.dat". It contains
// three space delimited fields, Depth, Qc, and Fs. A new line separates
// records. The file "nnncpt.dat" can be read directly by "CPTINT".
//
//---

#include <iostream.h>
#include <fstream.h>
#include <math.h>

main()
{
 float qc;
 int depth = 0;
 // cone bearing (bar)
 // dummy depth variable

 ofstream nnncpt("nnncpt.dat");
 // create file nnncpt.dat

 for(float x=0; x<=3; x+=0.03){
 qc = pow(10.0,x);
 for(int n=1; n<=120; n++){
 nnncpt << depth++ << " ";
 nnncpt << qc << " ";
 nnncpt << qc*(.08*n/120) << \n';
 }
 }
}

A-3
This program reads a NeuralWare *.nnr file having 2 input fields and 12 output fields (each desired and actual). The input file is entered as a command line argument. The program creates two files for storing correctly and incorrectly classified records. It also displays the number of correct and incorrect classifications.

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <graphics.h>

main(int argc, char *argv[])
{
 float input1, input2, maxvalue;
 float desout[12];
 float acout[12];
 int i, desclass, actclass;
 int numcor = 0, nummis = 0;

 cout << argv[1];

 ifstream nnrfile(argv[1]);
 if (!nnrfile) {
 cerr << "Can't open the file";
 return(0);
 }

 ofstream corfile("cor.nnr");
 ofstream misfile("mis.nnr");

 while (!nnrfile.eof()) {
 nnrfile >> input1;
 nnrfile >> input2;

 for(i=0; i<12; i++){
 nnrfile >> desout[i];
 if (desout[i] == 1.00)
 desclass = i;
 }

 nnrfile >> acout[0];
 actclass = 0;
 maxvalue = acout[0];

 for(i=1; i<12; i++){
 nnrfile >> acout[i];
 if(acout[i] > maxvalue){
 actclass = i;
 maxvalue = acout[i];
 }
 }

 //read 2 input fields
 //read 12 desired output fields
 //determine desired class
 //read 12 actual output fields
 //determine highest actual output
 }
}
} //write correctly classified
//records to file
if (actclass == desclass) {
 numcor++;
 corfile << input1 << "\t" << input2 << "\t" << actclass + 1 << "\n";
} //write incorrectly classified
//records to other file
else{
 nummis++;
 misfile << input1 << "\t" << input2 << "\t" << actclass + 1 << "\n";
}
 //output results of last
//record (for code testing)
for(i=0;i<12;i++)
 cout<< desout[i] << " " << actout[i] << "\n";
cout<< desclass << " " << actclass << " " << maxvalue <<"\n\n\n";
cout << input1 << " " << input2 << "\n";
cout << numcor << " " << nummis << "\n\n"; //output numbers cor & !cor
}
SOIL.C

by: John Andrews, September 1993
Computer Sciences Corporation

This program implements a four layer feedforward neural network for CPT soil classification.
It takes two parameters, log Qc and Rf (TSF units).
It returns soil class integer 1-12.
The network has a 2x15x15x12 architecture.
The output layer is competitive (recall mode).

Mon Sep 20 14:36:49 1993 (cpl5.c)
Recall-Only Run-time for <cpl5\x15b>
Modification of NeuralWorks Flash code.
Control Strategy is: <backprop>

#include <math.h>

int soil(float cone, float csratio) /* log cone pressure, sleeve/cone */ {
 float Xout[46]; /* work arrays */
 float CmpV; /* competitive value */
 int ICmpX; /* competitive index */

 /* Read and scale input into network */
 Xout[2] = cone * (0.67342337) + (-1.0128631);
 Xout[3] = csratio * (0.25211143) + (-1.0168915);

 /* Generating code for PE 0 in layer 3 */
 (float)(0.70192885) * Xout[3];
 Xout[4] = tanh(Xout[4]);

 /* Generating code for PE 1 in layer 3 */
 (float)(1.1557226) * Xout[3];
 Xout[5] = tanh(Xout[5]);

 /* Generating code for PE 2 in layer 3 */
 (float)(0.2549077) * Xout[3];
 Xout[6] = tanh(Xout[6]);

 /* Generating code for PE 3 in layer 3 */
 (float)(2.479882) * Xout[3];
 Xout[7] = tanh(Xout[7]);

 /* Generating code for PE 4 in layer 3 */
 (float)(3.760468) * Xout[3];
 Xout[8] = tanh(Xout[8]);

 /* Generating code for PE 5 in layer 3 */
 Xout[9] = (float)(0.92435199) + (float)(0.45118952) * Xout[2] +
 (float)(-0.390686) * Xout[3];
Xout[9] = tanh(Xout[9]);

/* Generating code for PE 6 in layer 3 */
 (float)(3.2453654) * Xout[3];
Xout[10] = tanh(Xout[10]);

/* Generating code for PE 7 in layer 3 */
 (float)(-8.394412) * Xout[3];

/* Generating code for PE 8 in layer 3 */
 (float)(4.0742674) * Xout[3];
Xout[12] = tanh(Xout[12]);

/* Generating code for PE 9 in layer 3 */
 (float)(7.9877915) * Xout[3];
Xout[13] = tanh(Xout[13]);

/* Generating code for PE 10 in layer 3 */
Xout[14] = (float)(-2.9832273) + (float)(-0.30514637) * Xout[2] +
 (float)(-6.6823497) * Xout[3];
Xout[14] = tanh(Xout[14]);

/* Generating code for PE 11 in layer 3 */
 (float)(11.728964) * Xout[3];
Xout[15] = tanh(Xout[15]);

/* Generating code for PE 12 in layer 3 */
Xout[16] = (float)(0.6612637) + (float)(-6.8429189) * Xout[2] +
 (float)(0.44200832) * Xout[3];
Xout[16] = tanh(Xout[16]);

/* Generating code for PE 13 in layer 3 */
 (float)(6.4878182) * Xout[3];
Xout[17] = tanh(Xout[17]);

/* Generating code for PE 14 in layer 3 */
Xout[18] = (float)(0.9410491) + (float)(-4.5457315) * Xout[2] +
 (float)(-0.30045751) * Xout[3];
Xout[18] = tanh(Xout[18]);

/* Generating code for PE 0 in layer 4 */
Xout[19] = (float)(-0.34009913) + (float)(0.6707626) * Xout[4] +
 (float)(-1.4701272) * Xout[5] + (float)(-0.7071514) * Xout[6] +
 (float)(1.2409499) * Xout[13] + (float)(-0.78926444) * Xout[14] +
 (float)(2.8454196) * Xout[15] + (float)(-0.73372024) * Xout[16] +
 (float)(0.87041885) * Xout[17] + (float)(0.75311923) * Xout[18];
Xout[19] = tanh(Xout[19]);

/* Generating code for PE 1 in layer 4 */
 (float)(-0.7071514) * Xout[6] + (float)(3.078223) * Xout[8] +
 (float)(1.2409499) * Xout[13] + (float)(-0.78926444) * Xout[14] +
 (float)(2.8454196) * Xout[15] + (float)(-0.73372024) * Xout[16] +
 (float)(0.87041885) * Xout[17] + (float)(0.75311923) * Xout[18];
Xout[20] = tanh(Xout[20]);
(float)(-2.9404998) * Xout[5] + (float)(-0.64095086) * Xout[6] +
(float)(-2.8091729) * Xout[7] + (float)(0.51963592) * Xout[8] +
(float)(-2.1504614) * Xout[13] + (float)(-0.27361864) * Xout[14] +
(float)(-5.3734245) * Xout[15] + (float)(-0.30357832) * Xout[16] +
(float)(0.31644058) * Xout[17] + (float)(-0.16554987) * Xout[18];

Xout[20] = tanh(Xout[20]);

/* Generating code for PE 2 in layer 4 */
(float)(-0.74303836) * Xout[7] + (float)(1.5295234) * Xout[8] +
(float)(-2.4525895) * Xout[17] + (float)(-1.8309394) * Xout[18];

Xout[21] = tanh(Xout[21]);

/* Generating code for PE 3 in layer 4 */
Xout[22] = (float)(0.96787357) + (float)(-0.88769686) * Xout[4] +
(float)(0.33483446) * Xout[7] + (float)(0.12007745) * Xout[8] +
(float)(-0.6169895) * Xout[9] + (float)(-1.3958707) * Xout[10] +
(float)(0.91249472) * Xout[13] + (float)(-1.8335599) * Xout[14] +
(float)(1.3337294) * Xout[17] + (float)(0.92064232) * Xout[18];

Xout[22] = tanh(Xout[22]);

/* Generating code for PE 4 in layer 4 */
Xout[23] = (float)(-0.36530879) + (float)(-0.59072089) * Xout[4] +
(float)(1.6768456) * Xout[7] + (float)(-0.50899112) * Xout[8] +
(float)(0.83034575) * Xout[9] + (float)(-0.94205385) * Xout[10] +
(float)(0.64400119) * Xout[13] + (float)(-0.18732649) * Xout[14] +
(float)(0.71088886) * Xout[15] + (float)(0.28635231) * Xout[16] +
(float)(0.10100901) * Xout[17] + (float)(0.48917824) * Xout[18];

Xout[23] = tanh(Xout[23]);

/* Generating code for PE 5 in layer 4 */
(float)(1.8855346) * Xout[17] + (float)(2.3863194) * Xout[18];

Xout[24] = tanh(Xout[24]);

/* Generating code for PE 6 in layer 4 */
(float)(-1.8639184) * Xout[5] + (float)(-0.3860828) * Xout[6] +
(float)(-0.77581334) * Xout[15] + (float)(-1.4044687) * Xout[16] +
(float)(-0.62049146) * Xout[17] + (float)(-0.57259399) * Xout[18];
Xout[25] = tanh(Xout[25]);

/* Generating code for PE 7 in layer 4 */
Xout[26] = (float)(-0.52494174) + (float)(0.5791747) * Xout[4] +
(float)(-1.5575159) * Xout[5] + (float)(-0.22171608) * Xout[6] +
(float)(-3.5944927) * Xout[7] + (float)(-0.24836895) * Xout[8] +
(float)(-0.10356036) * Xout[13] + (float)(-0.001189249) * Xout[14] +
(float)(-0.32207805) * Xout[17] + (float)(-0.64801431) * Xout[18];
Xout[26] = tanh(Xout[26]);

/* Generating code for PE 8 in layer 4 */
Xout[27] = (float)(1.6821843) + (float)(-1.1902723) * Xout[4] +
(float)(0.99234951) * Xout[5] + (float)(0.76882249) * Xout[6] +
(float)(0.4855696) * Xout[7] + (float)(1.5828314) * Xout[8] +
(float)(-0.70475209) * Xout[15] + (float)(2.4308791) * Xout[16] +
(float)(-2.0018756) * Xout[17] + (float)(1.2343072) * Xout[18];
Xout[27] = tanh(Xout[27]);

/* Generating code for PE 9 in layer 4 */
Xout[28] = (float)(0.066524662) + (float)(0.2381712) * Xout[4] +
(float)(0.36230001) * Xout[5] + (float)(-0.32556629) * Xout[6] +
(float)(0.84901702) * Xout[7] + (float)(-0.005911367) * Xout[8] +
(float)(0.22432239) * Xout[9] + (float)(0.20808095) * Xout[10] +
(float)(-0.76741439) * Xout[11] + (float)(-1.933818) * Xout[12] +
(float)(-0.28691539) * Xout[13] + (float)(-0.048413601) * Xout[14] +
(float)(0.45335075) * Xout[15] + (float)(0.39268398) * Xout[16] +
(float)(-0.35602769) * Xout[17] + (float)(-0.26055622) * Xout[18];
Xout[28] = tanh(Xout[28]);

/* Generating code for PE 10 in layer 4 */
Xout[29] = (float)(0.20022397) + (float)(-0.35824397) * Xout[4] +
(float)(-0.10193466) * Xout[5] + (float)(0.44272116) * Xout[6] +
(float)(-0.25799647) * Xout[7] + (float)(1.3102238) * Xout[8] +
(float)(-0.054711644) * Xout[9] + (float)(-1.0969514) * Xout[10] +
(float)(0.17795166) * Xout[11] + (float)(-0.57731533) * Xout[12] +
(float)(-0.69488567) * Xout[13] + (float)(1.3976555) * Xout[14] +
(float)(-1.0415714) * Xout[15] + (float)(0.32586724) * Xout[16] +
(float)(-1.3062199) * Xout[17] + (float)(0.31708151) * Xout[18];
Xout[29] = tanh(Xout[29]);

/* Generating code for PE 11 in layer 4 */
Xout[30] = (float)(0.91501057) + (float)(0.32980675) * Xout[4] +
(float)(-0.065754704) * Xout[5] + (float)(0.15424739) * Xout[6] +
(float)(-0.2029167) * Xout[7] + (float)(-0.37174666) * Xout[8] +
(float)(0.082694367) * Xout[9] + (float)(0.036902208) * Xout[10] +
(float)(0.01518704) * Xout[13] + (float)(0.85283083) * Xout[14] +
(float)(-0.93645924) * Xout[15] + (float)(-0.19907707) * Xout[16] +
(float)(-0.34797958) * Xout[17] + (float)(-0.17012013) * Xout[18];
Xout[30] = tanh(Xout[30]);

/* Generating code for PE 12 in layer 4 */
Xout[31] = (float)(-0.19556384) + (float)(-1.4724393) * Xout[4] +
(float)(-0.15674546) * Xout[9] + (float)(-0.92516965) * Xout[10] +
(float)(-0.050786) * Xout[11] + (float)(-1.3713385) * Xout[12] +
(float)(0.71045846) * Xout[15] + (float)(-0.16340141) * Xout[16] +
(float)(2.8538706) * Xout[17] + (float)(1.0720434) * Xout[18];

Xout[31] = tanh(Xout[31]);

/* Generating code for PE 13 in layer 4 */
(float)(-2.3590434) * Xout[17] + (float)(-1.7398988) * Xout[18];
Xout[32] = tanh(Xout[32]);

/* Generating code for PE 14 in layer 4 */
Xout[33] = (float)(1.5249654) + (float)(-0.061132118) * Xout[4] +
(float)(-0.31993854) * Xout[11] + (float)(-2.2329035) * Xout[12] +
(float)(-0.79235321) * Xout[13] + (float)(0.25259238) * Xout[14] +
(float)(1.8125871) * Xout[15] + (float)(-0.27512208) * Xout[16] +
(float)(-0.17584039) * Xout[17] + (float)(-0.065280482) * Xout[18];
Xout[33] = tanh(Xout[33]);

/* Generating code for PE 0 in layer 5 */
Xout[34] = (float)(-0.87790149) + (float)(-1.0692201) * Xout[19] +
(float)(0.03755356) * Xout[20] + (float)(0.096775234) * Xout[21] +
(float)(-0.049250424) * Xout[22] + (float)(0.10390767) * Xout[23] +
(float)(-0.096084803) * Xout[24] + (float)(0.014091688) * Xout[25] +
(float)(0.0051135253) * Xout[26] + (float)(0.06910155) * Xout[27] +
(float)(-0.041864727) * Xout[28] + (float)(0.064484537) * Xout[29] +
(float)(-1.089339) * Xout[30] + (float)(-0.084535331) * Xout[31] +
(float)(-0.016315376) * Xout[32] + (float)(0.021016486) * Xout[33];
Xout[34] = tanh(Xout[34]);
CmpV = Xout[34]; IcmpX = 34; /* start competition */

/* Generating code for PE 1 in layer 5 */
Xout[35] = (float)(-0.23339362) + (float)(-0.23561044) * Xout[19] +
(float)(-0.050891768) * Xout[20] + (float)(-0.10643666) * Xout[21] +
(float)(0.018222565) * Xout[22] + (float)(-0.097888283) * Xout[23] +
(float)(0.047541238) * Xout[24] + (float)(-0.059924994) * Xout[25] +
(float)(-0.028140228) * Xout[26] + (float)(-0.12535518) * Xout[27] +
(float)(0.040437236) * Xout[28] + (float)(-0.0028511814) * Xout[29] +
(float)(0.92822611) * Xout[30] + (float)(0.21035294) * Xout[31] +
(float)(0.007625306) * Xout[32] + (float)(-0.068101816) * Xout[33];
Xout[35] = tanh(Xout[35]);
if (Xout[35] > CmpV) { CmpV = Xout[35]; IcmpX = 35; } /* track winner */

/* Generating code for PE 2 in layer 5 */
Xout[36] = (float)(-2.3662107) + (float)(0.93160915) * Xout[19] +
(float)(-0.11621797) * Xout[20] + (float)(0.024368644) * Xout[21] +
(float)(-0.14027528) * Xout[22] + (float)(-0.2152873) * Xout[23] +
(float)(0.01436625) * Xout[24] + (float)(-1.1697067) * Xout[25] +
(float)(0.037573472) * Xout[26] + (float)(0.011277422) * Xout[27] +
(float)(0.094070829) * Xout[28] + (float)(0.05417366) * Xout[29] +
(float)(-0.16597992) * Xout[30] + (float)(1.2443105) * Xout[31] +
(float)(-0.14807294) * Xout[32] + (float)(0.020404585) * Xout[33];
Xout[36] = tanh(Xout[36]);
if (Xout[36] > CmpV) { CmpV = Xout[36]; ICmpX = 36; } /* track winner */

/* Generating code for PE 3 in layer 5 */
Xout[37] = (float)(-1.1655524) + (float)(0.14780924) * Xout[19] +
(float)(0.20306671) * Xout[20] + (float)(0.051306705) * Xout[21] +
(float)(-0.59072953) * Xout[22] + (float)(0.22242334) * Xout[23] +
(float)(0.1092864) * Xout[24] + (float)(0.98674974) * Xout[25] +
(float)(-1.0761287) * Xout[26] + (float)(0.11027345) * Xout[27] +
(float)(0.086110197) * Xout[28] + (float)(-0.13758875) * Xout[29] +
(float)(0.29757303) * Xout[30] + (float)(-0.018368572) * Xout[31] +
(float)(-0.53483301) * Xout[32] + (float)(-0.22306475) * Xout[33];
Xout[37] = tanh(Xout[37]);
if (Xout[37] > CmpV) { CmpV = Xout[37]; ICmpX = 37; } /* track winner */

/* Generating code for PE 4 in layer 5 */
Xout[38] = (float)(-2.9970107) + (float)(1.1596954) * Xout[19] +
(float)(-1.1503054) * Xout[20] + (float)(0.005177083) * Xout[21] +
(float)(-0.096239172) * Xout[22] + (float)(-0.024488389) * Xout[23] +
(float)(-0.051597442) * Xout[24] + (float)(0.28520513) * Xout[25] +
(float)(1.0015672) * Xout[26] + (float)(0.81431431) * Xout[27] +
(float)(-0.1415341) * Xout[28] + (float)(0.026307182) * Xout[29] +
(float)(-0.053032927) * Xout[30] + (float)(-0.011248631) * Xout[31] +
(float)(-1.0334851) * Xout[32] + (float)(0.28688434) * Xout[33];
Xout[38] = tanh(Xout[38]);
if (Xout[38] > CmpV) { CmpV = Xout[38]; ICmpX = 38; } /* track winner */

/* Generating code for PE 5 in layer 5 */
Xout[39] = (float)(-1.6181245) + (float)(0.03928183) * Xout[19] +
(float)(0.9619223) * Xout[20] + (float)(0.0081323469) * Xout[21] +
(float)(0.34299639) * Xout[22] + (float)(-0.15945068) * Xout[23] +
(float)(-0.1256876) * Xout[24] + (float)(0.59323692) * Xout[25] +
(float)(0.030090949) * Xout[26] + (float)(0.044754967) * Xout[27] +
(float)(-0.067690797) * Xout[28] + (float)(0.001090379) * Xout[29] +
(float)(0.016745619) * Xout[30] + (float)(0.56472063) * Xout[31] +
(float)(-0.83290011) * Xout[32] + (float)(0.6618259) * Xout[33];
Xout[39] = tanh(Xout[39]);
if (Xout[39] > CmpV) { CmpV = Xout[39]; ICmpX = 39; } /* track winner */

/* Generating code for PE 6 in layer 5 */
Xout[40] = (float)(-1.0943762) + (float)(-0.035113763) * Xout[19] +
(float)(-0.24052712) * Xout[20] + (float)(-1.1928893) * Xout[21] +
(float)(-0.30317307) * Xout[22] + (float)(-0.15959917) * Xout[23] +
(float)(-0.07071659) * Xout[24] + (float)(0.0035665662) * Xout[25] +
(float)(-0.014620778) * Xout[26] + (float)(-0.01583972) * Xout[27] +
(float)(0.052799445) * Xout[28] + (float)(0.0028659943) * Xout[29] +
(float)(-0.098308317) * Xout[30] + (float)(0.010499664) * Xout[31] +
(float)(0.93895841) * Xout[32] + (float)(0.01171761) * Xout[33];
Xout[40] = tanh(Xout[40]);
if (Xout[40] > CmpV) { CmpV = Xout[40]; ICmpX = 40; } /* track winner */

/* Generating code for PE 7 in layer 5 */
Xout[41] = (float)(-1.528774) + (float)(0.044951025) * Xout[19] +
(float)(-0.24355549) * Xout[20] + (float)(1.1148211) * Xout[21] +
(float)(0.20645723) * Xout[22] + (float)(-0.12182666) * Xout[23] +

A-11
This document describes the development of an artificial neural-network-based algorithm for classifying soil behavior type from cone penetrometer strain gauge data. The network input consists of the two standard cone penetration test parameters: the logarithm of cone pressure and the percentage of sleeve friction to cone pressure (friction ratio). Network output is a one-of-n coding of 12 soil classifications. Three- and four-layer backpropagation networks are trained to associate over 11,000 data points with the appropriate soil type. The best recall performance is obtained from a four-layer, 2x15x15x12 network with a tested accuracy rate of 98.2%. All classification errors occur at the decision boundaries between class regions. The network was incorporated into the data collection software of the prototype SCAPS vehicle in October 1993. The C source code is included as appendix A.
<table>
<thead>
<tr>
<th>21a. NAME OF RESPONSIBLE INDIVIDUAL</th>
<th>21b. TELEPHONE (Include Area Code)</th>
<th>21c. OFFICE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven H. Lieberman</td>
<td>(619) 553-2778</td>
<td>Code 521</td>
</tr>
<tr>
<td>Code</td>
<td>Name</td>
<td>Quantity</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>0012</td>
<td>Patent Counsel</td>
<td>(1)</td>
</tr>
<tr>
<td>0271</td>
<td>Archive/Stock</td>
<td>(6)</td>
</tr>
<tr>
<td>0274</td>
<td>Library</td>
<td>(2)</td>
</tr>
<tr>
<td>521</td>
<td>J. M. Andrews</td>
<td>(100)</td>
</tr>
</tbody>
</table>

Defense Technical Information Center
Alexandria, VA 22304–6145 (4)