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1.0 Introduction and Summary

This document is the Final Report prepared under contract N62269-89-C-0519 with the Naval Air
Development Center in Warminster, Pennsylvania. The contract was awarded in response to a Phase I
SBIR proposal originally submitted by Space Computer Corporation in January 1988 to the Office of
Naval Technology under SBIR Topic Number N88-15. The period of performance was 28 March 1989 to
28 September 1989.

In accordance with NADC's direction, the basic problem addressed in the Phase I study was the
use of adaptive spatial filtering concepts to enhance the detectability of long-range targets viewed against
background clutter by, an airborne Infrared Search and Track (IRST) system. For the most part, these
stressing threats appear to the IRST sensor as unresolved "point" targets moving against a structured
background scene consisting of clouds, blue sky and possibly terrain. The IRST signal processor must be
capable of detecting such targets at the lowest possible signal-to-clutter ratios, while strictly controlling
the number of false alarms that must be dealt with by higher levels of data processing (e.g., scan-to-scan
tracking). The detection signal processing must typically be performed on tens of thousands of pixels in
two-dimensional "frames" collected at sensor scan periods on the order of 10 seconds.

Adaptive spatial filtering is a robust approach to spatial discrimination that is based on the general
theory of statistical hypothesis testing. In this approach, a likelihood ratio decision statistic is used to test
for the presence of a hypothesized target signal at each pixel location. Application of the test over an en-
tire scan frame constitutes a nonlinear spatial filter whose parameters are continuously adjusted, as a
function of the locally measured background clutter covariance, to optimize detection performance for a
specified target response.

The potential advantages of a fully-adaptive filter with respect to existing IRST processing schemes
are improved detection sensitivity in unknown, nonhomogeneous clutter backgrounds, and better false
alarm regulation. The main disadvantage is the additional computational cost of implementing such a
filter, which results primarily from the need to estimate and invert a clutter covariance matrix at each pixel
location in the frame. This problem was clearly recognized in our Phase I proposal, where we noted that
applying relatively simple prefilters to IR scenes often served to approximately "diagonalize" (or locally
whiten) the background covariance and greatly simply the adaptive filter implementation. The use of
linear and nonlinear prefilters for this purpose was therefore an important topic of investigation.

Our technical approach to the Phase I study was to formulate and implement adaptive spatial fil-
ters for IRST point target detection, and to compare their performance and computational costs with
those of a baseline IRST processor which employs a precomputed filter bank. Following some initial
trade studies, two candidate adaptive filter configurations were selected for further evaluation. The first
scheme employed linear high-pass prefiltering followed by a fully-adaptive spatial filter, with no prior as-
sumptions about the structure of the background covariance. The second was a simplified adaptive filter
designed to exploit the clutter decorrelation provided by a small-kernel median-removal filter. It was
based on the assumption that the clutter covariance matrix was diagonalized by the prefiltering.

Algorithm performance evaluation was carried out using the TSCORE evaluation method on a set
of seven reference scenes provided by NADC. These scenes were derived from IRAMMP data and were
reprocessed to simulate representative backgrounds for a particular airborne IRST sensor. Performance
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comparisons were based on a T-90 metric, defined as the peak additive target amplitude required for 90%
probability of detection in each reference scene (at a fixed false alarm probability of 3x10"5 ).

The TSCORE results indicated that the fully-adaptive filter configuration provided an average gain
in detection sensitivity of 2.6 dB with respect to the baseline IRST processor. The simplified adaptive fil-
ter outperformed the baseline by an average of 1.9 dB. although its T-90 values showed more variation
from one reference scene to another. Both adaptive filters appeared capable of providing a more nearly
constant (and more predictable) false alarm rate than the baseline processor. In terms of relative com-
putational cost per pixel, the fully-adaptive filter would be over an order of magnitude more complex to
implement than the baseline IRST processor, while the simplified adaptive filter would require nearly the
same amount of computation as the baseline.

The Phase I effort was successful in demonstrating the application of adaptive spatial filtering to
the IRST target detection problem, and in developing a simplified adaptive filter with acceptable detec-
tion performance. However, the further development of adaptive algorithms which operate solely in the
spatial domain probably cannot be justified by the relatively small performance gains obtained with
respect to the existing baseline processor.
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2. Results of Phase I Work

2.1 Statement of Problem

The basic problem addressed in the Phase I study was the use of adaptive spatial filtering concepts
to enhance the detectability of long-range targets viewed against background clutter by an airborne
Infrared Search and Track (IRST) system. For the most part, these stressing threats appear to the IRST
sensor as unresolved "point" targets moving against a structured background scene consisting of clouds,
blue sky and possibly terrain. The IRST signal processor must be capable of detecting such targets at the
lowest possible signal-to-clutter ratios, while strictly controlling the number of false alarms that must be
dealt with by higher levels of data processing (e.g., scan-to-scan tracking). The detection signal process-
ing must typically be performed on tens of thousands of pixels in two-dimensional "frames" collected at
sensor scan periods on the order of 10 seconds.

Although it is recognized that temporal, spectral and/or polarization discriminants are likely to
play an increasing role in the detection processing chains of future systems, near-term IRST systems will
continue to rely primarily on spatial processing to perform critical clutter suppression and target detec-
tion functions. Thus, the optimization of spatial detection discriminants is a subject of considerable
importance. The general areas which must be considered in the design of a practical spatial discrimina-
tion scheme are as follows:

a) the type of filtering to be employed;
b) filter adaptation to the clutter and noise background;
c) filter output thresholding (i.e., the detection decision logic); and
d) performance vs. computation trades.

Of particular interest are relatively simple spatial filtering schemes which can provide high detection sen-
sitivity in a wide variety of backgrounds while maintaining a low and nearly-constant false alarm rate.

2.1.1 Existing Approaches
Existing approaches to IRST spatial filtering appear to fall into one of two general categories: 1)

fixed filtering schemes and 2) semi-adaptive filter bank techniques. Fixed filtering involves the applica-
tion of a single linear or nonlinear spatial filter to the entire scan frame. A number of fixed filters which
have been considered in the IRST context are discussed in [1]. A single "matched filter" can be designed
to provide near-optimum detection performance in a known clutter background, and, for the case of a
point target, is often fairly simple to implement. However, the performance of any fixed filter is limited
by the inherently nonstationary nature of real-world scenes, where the clutter statistics may change unpre-
dictably from one region to another. Mismatch between the actual background characteristics and those
assumed in the design of the filter can result in reduced target sensitivity and/or an increased number of
false alarms.

One proposed solution to the mismatch problem is the use of several different filters, each op-
timized for a particular type of background, in conjuction with a selection logic to decide which filter
should be employed in various portions of the scene. A semi-adaptive "filter bank" approach of this type
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is described in [2]. The approach is based on partitioning the continuum of background power spectral
densities (PSDs) that might be encountered by the IRST sensor into several distinct classes (typically 3 or

4). One class, for example, might represent a nearly white background consisting of blue sky or sensor

noise, while another could correspond to a region with extended clouds. For each background class, one

designs a suitable matched filter to detect the known target signature. The clutter partitioning and filter

design process is carried out entirely off-line, using a training set of representative IR scenes. On-line fil-

ter selection is implemented on a pixel-by-pixel basis by means of a sliding-window clutter average.

Although ideally the filter choice would be based on the measured PSD (or spatial covariance) of the local

background, it has been found empirically that the background type can often be reliably predicted by

much simpler surrogate measures, such as local rms intensity.
A precomputed filter bank solution is attractive because it provides a limited degree of adaptivity

with a relatively simple computational structure. However, its performance ultimately depends on the

number and types of filters selected and on the extent to which the training data used in the filter design
are representative of the wide range of clutter conditions encountered in the real world.

2.1.2 Fully-Adaptive Spatial Filtering
A more robust approach to spatial discrimination is motivated by the general theory of statistical

hypothesis testing, which has been applied to signal detection problems by Kelly [3] and Reed et. al. [4-6].

In this approach, a likelihood ratio decision statistic is used to test for the presence of a hypothesized tar-

get signal at each pixel location. Application of the test over an entire frame constitutes a nonlinear

spatial filter whose parameters are continuously adjusted, as a function of the locally measured back-

ground clutter covariance, to optimize detection performance for a specified target response.
A fully-adaptive filter offers several potential advantages with respect to the spatial filter bank tech-

nique. Most important is the fact that the filter parameters can be locally adjusted to closely match the
background statistics actually encountered in each scan frame, rather than those encountered in an off-

line training sample. In highly nonhomogeneous clutter, one would expect a fully-adaptive filter to

outperform even a well-designed bank of precomputed filters, so long as its clutter estimates are suffi-

ciently accurate and adapt rapidly enough to the nonstationary background.

A second advantage is that the output detection statistic from an adaptive filter can be automati-

cally normalized to provide true constant false alarm rate (CFAR) performance in an unknown Gaussian

clutter background. This simplifies the detection logic by eliminating the need for separate threshold es-

timation procedures, and provides for improved false alarm regulation.
The main disadvantage of a fully-adaptive filter is the computational cost of implementing it. This

added complexity results primarily from the need to estimate and invert a clutter covariance matrix at

each pixel location in the frame. This problem was clearly recognized in our Phase I proposal, where we

noted that applying relatively simple prefilters to IR scenes often served to approximately "diagonalize"

(or locally whiten) the background covariance and greatly simply the adaptive filter implementation. The

use of linear and nonlinear prefilters for this purpose was therefore an important topic of investigation

under the Phase I study.
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2.2 Phase I Technical Objectives

With the above background in mind, the fundamental questions addressed by our Phase I study can
be briefly summarized as follows:

1) Does fully-adaptive spatial filtering provide a significant improvement in IRST point-target
detection performance, compared to a precomputed filter bank approach?

2) Can this improved performance be obtained at a reasonable cost in terms of overall computa-
tional complexity?

The baseline for comparison was a precomputed spatial filter bank developed by GE and NADC for
IRST detection processing.

2.3 Technical Approach

Our technical approach to the Phase I study was to formulate and implement an adaptive spatial
filtering approach to IRST point target detection, and to compare its performance and computational
costs with those of an existing baseline filter bank. A robust adaptive filter design was first selected based
on the theory of statistical hypothesis testing. This filter, which is designed for the detection of a known
target response in a Gaussian clutter background, is fully adaptive to measured clutter statistics and can
be shown to provide constant false alarm rate (CFAR) performance.

It has been empirically verified that optical and IR scenes can often be characterized by nonstation-
ary Gaussian random processes with rapidly varying means and more slowly varying covariance functions
[7]. For this reason, an adaptive spatial filter is generally preceded by a high-pass prefilter that converts
the arbitrary background into one which is approximately zero-mean Gaussian with locally stationary
second-order statistics. Since the prefilter turns out to have a significant impact on adaptive filter perfor-
mance and complexity, prefilter selection trades were investigated in some detail.

Although theoretical predictions of adaptive filter detection performance can be obtained for the
ideal case of a Gaussian clutter background, it was felt that a more realistic comparative evaluation should
be made using a set of seven actual IRST reference scenes provided by NADC. Therefore, the detection
sensitivity of both the IRST baseline processor and two candidate adaptive filtering approaches was
measured for each reference scene using a variation of the TSCORE analysis method [1]. Estimates of
computational complexity were also obtained for each algorithm so that performance/cost trades could be
evaluated.

In the following sections, we discuss the baseline and adaptive filtering methods which were con-
sidered, the role of spatial prefiltering in adaptive filter implementation, the selection of candidate
adaptive filter configurations, and the results of a comparative evaluation of detection performance and
computational complexity.
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2.4 Baseline Spatial Filter Bank

2.4.1 Baseline Processor Description

A block diagram of an IRST spatial filter bank scheme developed by GE under NADC sponsor-

ship is shown in Figure 1. A 21x7 pixel mean removal filter is first applied to the frame video to subtract

the local background dc component. Then, for each pixel location in the frame, one of three different 7x5

linear filter kernels is selected and applied to the prefiltered data. The filter selection is based on the es-

timated clutter magnitude in a 21x7 pixel window centered at each pixel.

The detection logic consists of comparing the rectified spatial filter output at each pixel against an

adaptive threshold computed as a constant threshold factor k times the locally-averaged output clutter

magnitude. The local absolute clutter average is computed by a background normalizer consisting of a

sliding-window of outer dimensions 21x7 pixels and inner dimensions 7x5 pixels. This allows the effective

threshold level to increase in areas of high clutter (such as cloud edges) to control the number of false

alarms. The inner window (or "hole") is used to avoid target self-thresholding effects.

This processor, which had been implemented and evaluated in previous studies, was adopted as a

baseline for the performance and computation load comparisons made during the Phase I study. Specific

filter weights and thresholds were provided to Space Computer Corporation by NADC, and are sum-

marized in Table 1.

2.4.2 Application to IRST Point Target Detection

The application of the baseline filtering scheme to IRST target detection is demonstrated by

processing Reference Scene 3 with injected targets. Figure 2(a) shows a grey-scale plot of Scene 3; one of

seven such scenes provided by NADC for algorithm evaluation. The frame shown has dimensions of

475x118 pixels and contains a representative background of long-wave IR cloud and sky clutter for a par-

ticular airborne IRST system. Gaussian sensor noise (1 LSB rms) was also added to the scene to simulate

the noise floor in the system of interest.

The ten synthetic point target responses shown in Figure 2(b) were injected by simple addition into

the background scene in Figure 2(a) at a peak amplitude of +50. The target responses were calculated

from the following 2-D Gaussian point-spread function:

s(x,y) = A- exp a[x 2 - 2 (1)

x= horizontal blur radius = 0.926 pixels

y= vertical blur radius = 0.726 pixels

x = target position in horizontal frame dimension

y= target position in vertical frame dimension

A = additive target amplitude

Figure 3(a) plots the output of the 21x7 mean removal filter for Scene 3 plus targets (the first step

in the processing sequence of Figure 1). This prefiltering operation enhances point target responses,
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Table 1. Baseline Processor Parameters

Pfa specification: 3 x 10-5

Pd specification: 90%

',ocal OC Remove:

Outer window: 21 az X 7 el pixels
No Inner window

Clutter Estimator:

Outer window: 21 az X 7 el pixels
No Inner window
Threshold 1: 6.5
Threshold 2: 2810

Spatial Filter

Filter #1 coefficients:

6.4196ZE-2 1,43601E-2 -3.09115E-2 -0.12691 -2.84954E-2 1,24690E-2 7,60164E-Z

-1.65398E-2 -6,97523E-3 -1.30432E-Z 8.77677E-2 -4.95103E-3 2.75489ET-3 -5.70457E-2

-o.19Q5s -a.09027E-2 7,60695E-Z* 0.48568 9.09153E-2 -7,71Z9gE-2 -0.19818

-.4,W3161E-Z 1.07323E-Z 7.09682E-3 4.91853E-2 -3,35438E-Z -1-35654E-2 5..I0128E-3

8.23992E-2 9.56220E-3 -3.14281E-Z -0.1385Z -2.48941E-2 2.05879E-2 6.7891;E-2

F1Iter #2 coefficients:

4.95556E-Z -7.74Z60E-3 6.17393E-3 -9.66699E-Z 7,84275E-3 -1,34985E-Z 5.56884E-2

2.60009E-2 1,75524E-2 -7.26968E-2 Z.74039E-Z -5,098O1E-2 3,20178E-2 L.09579E-2

-0.19790 -8.12331E-2 -).63643E-2 0.57084 !,14468E-Z -7.72364E-2 -0.20355
1.88873E-2 3.71829E-2 -1.77961E-Z -1.40784E-2 -9,15137E-2 6,70704E-3 5.15049E-Z
5.95764E-2 -2.13615E-2 6,05144E-3 -0,10340 2.14771E-2 -1,20005E-3 4,14710E-2

Filter #3 coefficients:

Z.O5683E-3 -6.03061E-3 8,00S34E-2 -4.5592E-Z 7,67835E-2 -5.76763E-2 2.33199E-3

4.810s3E-2 0,13576 -0.17468 -l.57866E-Z -0.14745 0,10188 6.16529E-2

-0,15051 8.11574E-2 -0,37235 0.837ZS -0.32042 ",26099E-2 -0,16139

6,71539E-2 6.83343E-.2 6.13683E-2 -7.87872E-2 -0,17614 J.12027 7.07233E-Z

2.72921E-3 -5,94086E-e 7.37c'-2-Z -5.a2136E-2 0,10786 -6.17016C-2. -.7.72587E-3

Background Ncrmalizer:
Ou~tir Window: 21 az X 7 el pixels
Inner Window: 7 az X 5 el' oixels
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Figure 2. (a) NADC Reference Scene 3.
(b) Ten Gaussian Point Targets Injected into Scene 3

at Peak Amplitude +50.
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Figure 3. (a) Scene 3 after 2107 Mean Removal Prefiltering.
(b) Filter Selection for Scene 3.

(White=Filter 1; Grey=Filter 2; Black=Filter 3)
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high-frequency clutter features (i.e., edges), and sensor pattern noise. Filter selection, the next step, is
based on a 21x7 sliding-window magnitude average over the prefiltered scene. The results of the filter
selection process applied to Figure 3(a) are graphically illustrated by Figure 3(b). Areas with relatively
low rms clutter, plotted as white in Figure 3(b), are assumed to be dominated by blue sky clutter or sensor
noise and are processed by an approximation to a "white noise" spatial matched filter (filter number 1).
Regions with very high clutter, shown in black, are processed by a specially-designed colored noise filter
(filter number 3). An intermediate filter (filter 2) is used in the remaining "grey" areas of moderate clut-
ter.

Figure 4(a) is a plot of the adaptive spatial filter bank output for the prefiltered scene, after nor-
malization by the local clutter estimate from the GE background normalizer. The filter output is plotted
in unrectified form for convenience. Note that the point targets now appear to stand out against the sup-
pressed background.

Applying a two-sided threshold k to the scene shown in Figure 4(a) is equivalent to the detection
logic shown in Figure 1. The detected output for such a threshold (k= 10), which is set just high enough
to avoid false alarms, is plotted in Figure 4(b). Comparison with Figure 2(b) shows that all ten targets are
detected. The results of adaptive filtering are more readily seen in Figure 5, which shows the signal in one
of the target channels (number 68) before processing and just prior to thresholding.

2.5 Adaptive Spatial Filtering

The mathematical theory for the adaptive filtering concepts investigated during the Phase I study
has been developed in key papers by EJ. Kelly [3] and I.S. Reed et.al. [5,6]. The general problem is that
of detecting the presence of a specified signal shape in a background of Gaussian clutter with unknown
statistics, using the theory of optimum statistical hypothesis testing. In this approach, a generalized
likelihood ratio detector is formulated to test the hypothesis that the signal is present in a "vector" of
lexicographically-ordered pixel observations from the frame. A set of independent reference vectors
formed from pixels in the vicinity of this test vector is used to estimate the unknown local covariance of
the clutter, and formulate an optimum approximation to the matched spatial filter. A test statistic consist-
ing of a normalized matched filter output is then compared with a fixed threshold for detection. This test
statistic, which is a nonlinear function of pixel observations, can be shown to have a probability distribu-
tion which is completely independent of the level or structure of the background (when no signal is
present). A fixed detection threshold therefore provides a constant false alarm rate (CFAR) in an un-
known Gaussian clutter background.

2.5.1 Mathematical Formulation
Consider a vector observation X consisting of N lexicographically-ordered pixels taken from a 2-D

sub-window of a scan frame. We wish to test this observation for the possible presence of a signal of
known shape in a combined clutter and noise background. For sub-pixel target detection the signal can
be approximated as additive. Then if the target is present we model the observation to be tested as

x=As+n (2)
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Figure 4 (a) Normalized Filter Bank Output for Scene 3.
(b) Threshold Exceedances in Figure 4(a) for k= 10.
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Figure 5 (a) Channel 68 from Scene 3 (with Injected Targets)

(b) Normalized Filter Output for Channel 68.

The five threshold crossings correspond to targets.
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where s is the known target response shape (arbitrarily scaled), A is the target amplitude, and n repre-
sents the random background. To make the filter derivation tractable, we will assume that the local

background (after suitable preprocessing) is jointly Gaussian with zero mean and NxN spatial covariance

matrix

M = EnnT (3)

where 'T' denotes the matrix transpose and "E" indicates an ensemble average. Both the target
amplitude A and the background spatial statistics represented by M are unknown a priori.

Information about the unknown background is available in the form of K N-vectors Xk, k=l,...,K,

which constitute "secondary" inputs to the detector. Typically, the Xk-vectors are obtained from N-pixel
sub-windows in the immediate spatial vicinity of the test window x. It is assumed that 1) the target signal,
if present, occupies only the pixels in the test window, and 2) the clutter observations from the test win-

dow and the surrounding secondary windows are mutually uncorrelated and share the same Gaussian

spatial statistics. The degree to which this latter assumption is valid is highly dependent on the frame

data, the type of prefilter that has been applied to the data, and the size and arrangement of the various

sub-windows. These important issues are discussed further in Section 2.6 below.
In the generalized likelihood ratio detection approach, the respective probability densities of the

inputs (X,'l...,K) under each hypothesis are maximized separately over the unknown parameters; in this
case, the elements of the NxN positive definite covariance matrix M and the target amplitude A. The
ratio of these maxima forms a test statistic which can be compared against a threshold for detection. This

is a standard technique for statistical hypothesis testing which has been applied to signal detection

problems arising in radar, communication and electro-optical systems.
The derivation of the test begins with the joint probability densities of the input observations under

the hypotheses Ho (no signal present)*and H1 (signal present). Based on the assumptions outlined above,
the appropriate joint Gaussian probability density under the Ho hypothesis is

K

po(_,,...,_K) =( 2-m)-N/2 IMI l-1/ 2 exp{_1xTM-_ 1 }.7-T(27)-N/2 I M[I '1/2exp{ M T k1
k=1

= [(27)N/2 IM "l/2 exp{Itr(M-lTo)}] K+1 (4)

where

K

T +1 ~~ (5)

k=1

The latter equality in (4) is obtained by rewriting each inner product of the form !M-l£ in terms of a

matrix trace as
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vM-lv = tr(M'lwT) (6)

Under the signal present hypothesis H1, the joint probability density also has a Gaussian form similar to

that given in (4), except that the test vector x now has a nonzero mean and X is replaced by X-Ex x-A_ in

accordance with (2). The joint density for H1 is then

• r 1 K+1

... INK) [(2-N/2 I M I -/2exp{-tr(M-1Ti)} j K+1 (7)

where

K

T g{(XAs)(XAa) T + T Xkxl (8)

k=1

The generalized likelihood ratio test of HI vs. Ho is formally defined by

max max H,•(,l,.,X)=A M Pl (x' Xl,... I XK) >1N 9
-. = max < 0 (9)

M Po(x'x " X • " X-K) Ho

where Ao is a pre-selected threshold. It is not necessary to maximize the denominator of (9) over A since

po(. ) does not depend on that parameter.

A useful expression for the detection statistic is found by performing the indicated maximizations

using the respective probability densities po(• ) and pl(.) given in (4) and (7). First, we note that the maxi-

mizations over the unknown covariance matrix elements are equivalent to finding the maximum-

likelihood estimates of M under Ho and H 1. Under Ho, the Gaussian vector observations (_,.,K) are

independent and identically distributed, and the maximum likelihood estimate of their common

covariance M is provided by the well-known sample covariance matrix, which in this case is given by To in

(5). Substituting To for M in (4) we obtain

max Po(' [(2,ne)" N/2 I 'T0 1/2] (K+) (10)

Similarly, for the H1 case we have

max = [(2ne)- N2 T 1 11/2] K+1) (11)

Using the above results in the likelihood test (9), and raising each side to the 2/(K+1) power for con-

venience, yields
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maxTI T IT I l oAT1 0.K (12)ITO I~ Ho

where the new threshold is o = a2/(K+1)
01O

To perform the remaining minimization over the unknown target amplitude A we first use (5) and
(8) to write expressions for To and T, as

(K+1)To = xT + KM (13)

(K+1)T1 = (x-As)(x-Aj)T + KM (14)

where Mi is the sample covariance formed from the secondary (signal-free) data vectors only:

K

Xk-x-k(15)

k=1

The matrix M is nonsingular with probability one if K>N [3] (i.e., if the number of secondary vector outer
products being averaged is at least as large as the test vector dimension). Assuming that this condition is
satisfied, the determinants of both sides of (13) and (14) can be evaluated to obtain the following expres-

sions for ITO I and IT, I:

KN.
IT01 = [I•Nl- iI [li+JTI•-'lx] (16)

IT1  M = [ 1 +--N' [+ (x-As)Ti4l(_-A_)] (17)

It is straightforward to show that the target amplitude which minimizes (17) is A=(T^ x)_T^'1

Substituting this value for A into (17), and using (12), the likelihood test becomes

1 H1o

1W(x1 > (18)
TK iT [-ls +1 1 M- x Ho_ Kx Mix

Following the approach of Kelly [3], we define a new test statistic

1 T^ 1 2

7(X) = sS f [1 +1xTM .1] (19)

such that
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1- 'I (20)

The generalized likelihood test is then written in the form

W< 70 (21)
Ho

where no = 1-1/0,o is a normalized threshold that lies on the interval (0,1).
To obtain a test which is more readily compared with conventional spatial filters, we rewrite (19) in

the equivalent form

5-i 1 XyWx_ =r TM-I L - - > ,xlrl11 to (22a)
-M_ is [H+ 2<0

K

i4T (22b)

k=1

where to = ,K7o is the detection threshold. We selected this particular form of the adaptive filter detector for
implementation in the Phase I study.

We can interpret y(_) above as a nonlinear spatial filter applied to the test data vector 3, with K
secondary vectors (__j,...'_K) used to estimate the covariance matrix M and adapt the fiter to the statistics of
the local background. A target detection is declared if y(x) exceeds a normalized detection threshold to
which lies between 0 and 4M The value of this threshold controls the false alarm rate of the test in the ab-
sence of target.

2.5.2 Properties of the Adaptive Filter
The mathematical properties of adaptive detectors defined by (22) have been studied for the

complex-valued (radar) case by Kelly [3]. With suitable modifications for real-valued data, the same basic
properties carry over to electro-optical image processing applications as well. The most important of
these properties in terms of adaptive filter performance and implementation are summarized below.

Scale Invariance. The adaptive filter output y(j) is insensitive to a scale change in either the signal
template s or the data vectors (XX,...xK). This is due to the data and signal dependent normalization fac-
tors that appear in the denominator of (22a).

OuWput Ranue. The adaptive filter output is a normalized quantity that always lies between zero and iX
where K is the number of secondary vector inputs used to form the covariance estimate M. Clearly, the
detection threshold to must also be in this range.
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It is sometimes more convenient to present the adaptive filter output in its unrectified form (i.e., to

omit the I - I operation in the numerator of (22a)). In this case, the filter output range is ±+MX and to is inter-

preted as a two-sided threshold.

CFAR Property. The adaptive filter defined by (22) achieves a constant false alarm rate (CFAR) in a

Gaussian clutter background. That is, for a given threshold to, the detection test (22a) has a fixed prob-
ability of false alarm which is completely independent of the level or structure of the background

covariance M. The theoretical relationship for the false alarm probability Pfa in terms of the threshold to

is in fact given by

Pfa =1- AK+1N('r)
(23)

t 2 /K 1/2"=[(K+1-N). t2/K]1

1-t2/ KJ

where Av(-r) is the Student-t cumulative distribution function with v degrees-of-freedom [8, p. 948], N is

the dimension of the test vector and K is the number of secondary data vectors. The claimed CFAR

property holds since Pfa depends only on the threshold and the dimensional parameters N and K.

Figure 6 shows typical curves of Pfa vs. the threshold to for several combinations of the parameters

N and K. The curve labeled K=- shown in each plot corresponds to the Pfa curve for a single rectified

unit-power Gaussian variable. The Pfa characteristic for the adaptive filter approaches this standard curve

asymptotically as K--c* for any value of N. In this limit, the filter output pdf (under Ho) therefore becomes

a rectified standard normal distribution.

Relationship to Matched Filter. The adaptive filter detector reduces to the conventional colored noise

matched filter as the clutter covariance estimate becomes "perfect." To see this, let the number of secon-
daries K-,* so that M converges to the true clutter covariance M. Then the detection test shown in (22) can

be written as

-ST- Ix- 1-Ht (24)
0 H 0

where ao is

Oo [ITM-s] = (rms filter output under H, (25)

The numerator of the left side of (24) is the classical matched filter for detecting the signal I in
Gaussian noise of known covariance M. Note that this same generic form also appears in the numerator
of the adaptive filter output in (22a), with the estimate M replacing M.



SCC-R-121-2 19 December 1989

02-
M: C
tj

LUI

.--

C[:

02

U-

ED

I-,7

cro
0.o KI 203T44

0 2 4 6

THRESHOLD VALUE

02

K=24

a•:
CE-
u_

Cr N-15

LLJ 34

C--
L-U

ED

'ra

o 2 4L 6
THRESHOLD VALUE

Figure 6. Pfa Curves for Several Adaptive Detector Configurations



SCC-R-121-2 20 December 1989

The classical matched filter output, when properly normalized by its standard deviation a in (25),
is compared against a fixed threshold to for detection. The role of the denominator of the adaptive filter
output (22a) is entirely analogous to that of a0 : it normalizes the output of the estimated matched filter
I M x I so that its probability distribution (under Ho) does not depend on either the signal template or the
clutter covariance. This CFAR property is an important practical feature that does not hold for most spa-
tial filters. Primarily for this reason, the use of a filter derived from the generalized likelihood principle is
conceptually superior to ad-hoc approaches to spatial adaptivity, such as simply plugging a local estimate
of M into the standard matched filter equation.

2.5.3 Application to IRST Point Target Detection
A block diagram of the adaptive filter processor is shown in Figure 7. The input frame is first

passed through a high-pass prefilter to convert the arbitrary background to one that is more nearly ap-
proximately by zero-mean Gaussian statistics (the role of prefiltering is discussed further in Section 2.6).
Adaptive spatial filtering is then implemented in sliding-window fashion on the prefiltered data. At each
pixel location, the filter output is computed according to the numerator of (22a), based on the locally-
measured clutter covariance and the shape of the desired signal. This output is then normalized and
compared against a fixed CFAR threshold for detection.

Figure 8 shows a typical sliding window configuration for an adaptive spatial filter, with a 5x3 pixel
(N = 15) "test window" x surrounded by a total of K= 34 5x3 "secondary" or "CFAR" windows xk arranged
in a 7x5 block pattern (we refer to this as a 5x3/7x5 configuration). The underlying assumptions here are
that 1) the target signal, if present, occupies only the pixels in the filter window, and that 2) the clutter ob-
servations in the filter window and the surrounding CFAR windows are mutually uncorrelated and share
the same Gaussian spatial statistics (after prefiltering).

At each filter position, pixel data from the 34 surrounding CFAR windows are used to form a set of
secondary data vectors 1k, each of length 15. The outer products of these vectors are averaged to estimate
the unknown clutter covariance matrix for the 15 pixels of the filter window. This covariance matrix is
then inverted to calculate the filter weights needed to implement the adaptive filter and properly normal-
ize its output for CFAR detection. The estimation and inversion of the covariance matrix for each pixel
location turns out to be the major driver of computational complexity for the fully-adaptive filter.

The application of the 5x3/7x5 adaptive filter to IRST point target detection is demonstated using
using Reference Scene 3 with ten inserted Gaussian point targets of peak amplitude 50. The scene with
the injected targets shown in Figure 1(b) is plotted in Figure 9(a). The adaptive filter is matched to a 5x3
pixel signal vector s obtained from the Gaussian point spread function (1).

The first step, spatial prefiltering, is implemented here with a sliding-window mean-removal filter
having outer dimensions of 7x5 pixels and inner dimensions (or "hole") of 3x3 pixels. This filter does a
reasonable job of removing the local background mean while avoiding self-suppression of the desired tar-
get response. The prefilter output frame is plotted in Figure 9(b). Point target responses are now evident
but a significant amount of structured clutter remains, particularly in the vicinity of cloud edges.

The unrectified adaptive filter output for this prefiltered frame is plotted in a grey-scale format in
Figure 10(a), with black and white corresponding to the boundaries of the filter output range (+±"32). Since
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Figure 7. Adaptive Spatial Filter Processor



SCC-R-121-2 22 December 1989

5 x 3 17 x 5 Configuration

lilt Fite.. nd w fo.. .. tCeteed a

t- -, ,-

(1 p.ixls . . i a M" .1 - .m .. . . .

35 Pixels

W 5 x 3 Filter Window for Target Centered at U
(15 Pixels -- > 15 x 15 Covariance Matrix)

W5 x 3 CFAR Windows Arranged in 7 x 5 Pattern
(34 Windows for Clutter Covariance Estimation)

Figure 8. Adaptive Filter Window Configuration



SCC-R-121-2 23 December 1989

Cz0

Li

0 100 200 3ý00 400C

SWEEP NUMBEER
(a)

Cz

Lse

0 100 200 300 400
SWEEP NUMBER

(b)

Figure 9 (a) Reference Scene 3 with 10 Injected Targets of Amplitude +50.
(b) Scene 3 after 7x5/3x3 Mean Removal Prefiltering
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this represents the output of a complex nonlinear adaptive filter, it is somewhat misleading to use the rela-
tive intensities in this "scene" to assess the detectability of targets prior to thresholding. Nonetheless, the
targets are readily detected from this output. Figure 10(b) shows the locations of threshold exceedances
in the frame at a theoretical Pfa of 10-6 (to=5.0); these correspond to the 10 injected targets shown in
Figure 2(b).

The results of adaptive filtering are more easily viewed in Figure 11, where plots of signal mag-
nitudes in target channel 68 are shown before and after adaptive filter processing. The solid lines in
Figure 11(b) represent the filter output bounds of ±47T The fixed detection threshold is shown by the
dotted lines.

2.5.4 Theoretical Performance Prediction
The detection performance of the adaptive filter in a Gaussian clutter environment can be explicitly

calculated by specializing the methods developed developed in [3] to the case of real-valued data. Only
four parameters affect this performance:

N = the dimension of the test and secondary vectors (the number of pixels in the test

window);
K = the number of secondary vectors (windows) used to estimate the clutter covariance

matrix;
Pfa = the design probability of false alarm

SCR= a local signal-to-clutter ratio-= -Ex} Ml{Ex}=A2_sTM-_s

Note that the generalized SCR defined here reduces to the more familiar point-target SCR expression
A2/a2 if the background is white (i.e., M= a21) and the signal shape template is normalized to unit power

(sTas=1).
Sample curves of probability of detection (Pd) vs. SCR are shown in Figure 12 for N= 15 (e.g., a 5x3

pixel test window) and several different values of K. The Pfa is fixed at 10-6. The curve labeled K=-m repre-
sents the performance of a perfectly-matched spatial filter where the clutter statistics are completely
known in advance. The SCR differences between this curve and the various adaptive filter curves indicate
the magnitude of the total CFAR losses incurred in using finite samples of data to estimate the clutter
covariance matrix and normalize the filter output for thresholding. These losses can be quite large com-

pared with typical CFAR losses for scalar detectors (where N= 1).
Calculated CFAR losses at Pd=0.9 and Pfa=10"6 for some N=15 and several values of K are

provided in Table 2 below. Clearly, this source of loss can be reduced to an arbitrarily low level if a suffi-

cient number K of secondary windows (having the same statistics as the test window) can be provided to
the detector. In practice, however, the use of a very large value of K (many secondary windows) results in
a spatial filter that is relatively slow to adapt to clutter variations in a nonhomogeneous scene. The

CFAR loss discussed here is only one of several issues to be considered in selecting a window configura-
tion for adaptive spatial filtering.
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The entries in Table 2, along with additional calculations shown in [3], indicate that the CFAR
penalty becomes very large if K drops below about 2N. As a rule of thumb, the number of secondary win-

dows must be at least 2N to hold the total CFAR loss to around 6 dB or less. This is a large penalty to pay

for the benefits of fully-adaptive operation.

Table 2. Adaptive Filter CFAR Loss

Configuration N K CFAR Loss

5x3/5x5 15 24 16.2 dB

5x3,7x5 15 34 6.4

5x3/9x7 15 62 2.8

5x3/-* 15 0.

2.6 Spatial Prefiltering

The spatial prefiltering function is a critical part of the adaptive filter processing chain. The

primary function of the prefilter, which is generally chosen to have a high-pass characteristic, is to remove

the local mean level of the background and "Gaussianize" the residual ac clutter component. This is often

done with simple sliding-window mean removal operators, but it can also be approximated by nonlinear

filtering (such as sliding-window median removal).

It has been empirically verified that many natural IR scenes can be characterized as Gaussian ran-

dom processes with a rapidly varying mean and a more slowly varying covariance [7]. To the extent that

this is true, a high-pass prefilter will tend to convert an arbitrary nonhomogeneous background into one

which is approximately zero-mean Gaussian with locally-stationary second-order statistics. Such a back-

ground is consistent with the assumptions under which the adaptive filter was designed. High-pass

filtering also has an intuitive appeal since it enhances the responses of point targets embedded in a back-

ground of extended features (e.g., clouds).

Prefiltering has a strong affect on the spatial covariance of the frame data which will be processed

by the adaptive filter (i.e., the degree to which neighboring pixels are correlated with one another after

prefiltering). Generally speaking, the smaller the prefilter window, the more the background tends to

decorrelate. Background decorrelation is desirable for the following reasons:

1) It permits the use of smaller adaptive filter windows, providing faster adaptivity in nonstationary

clutter and reducing the real-time computation load; and

2) It may allow much simpler adaptive filters, based on a diagonal approximation to the clutter

covariance matrix, to be successfully employed for target detection.

The prefilter also affects the magnitude and shape of additive target signals in the frame. Large

high-pass prefilter kernels generally cause less point target attenuation than smaller ones. Selecting a

good prefilter therefore involves balancing the desire for robust local mean suppression and maximal
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background decorrelation against the need to avoid excessive target attentuation. These two goals are
conflicting and necessarily imply a tradeoff.

Two generic types of prefilters were examined during the Phase I study: 1) linear high-pass filters
based on sliding-window mean removal and 2) nonlinear filters based on sliding-window median removal.

Their properties are discussed in turn below.

2.6.1 Linear High-Pass Filters
Linear sliding-window mean removal operators are used extensively in image processing. They are

very simple to implement: each pixel in the frame is replaced by its original value minus the local average
computed in a surrounding window.

The key parameters examined in this study were the window dimensions, which determine the spa-
tial frequency passband of the filter. We considered estimation windows of relatively small spatial extent,
such as 3x3, 5x3 and 7x5 pixels (with and without inner windows or "holes"). Such filters do a reasonable
job of tracking the rapidly-varying local mean of the a typical IR background. Given the high degree of
background variation in the NADC Reference Scenes, the 21x7 window used in the baseline filter design
was deemed to be excessively large.

The general performance characteristics of mean removal filters with respect to background

Gaussianization, background decorrelation, and target attenuation are discussed below.

Backeround Gaussianization. A key function of the prefilter is to convert the arbitrary scene background
into one that is reasonably well characterized by zero-mean, locally Gaussian clutter statistics. This al-
lows the considerable body of detection theory that has been developed for Gaussian processes to be
successfully applied to the IRST detection problem.

A simple criterion for selecting a linear prefilter which is "best" in this sense has been investigated
by Reed et.al. [4]. Their approach is to select the window size that minimizes the normalized third mo-
ment of the output clutter histogram, which is zero for the Gaussian distribution. Various tests for
Gaussian statistics, such as chi-square goodness-of-fit or the Kolmogorov-Smirnov test on the sample cdf,
can also be employed.

A related and perhaps more important criterion is the degree to which a prefilter suppresses the
structure in the scene, particularly along edges corresponding to clutter boundaries. Visible edges in a
prefiltered scene indicate the presence of deterministic fine structure that cannot be characterized by a
zero-mean random clutter process. These edges are a major source of false alarms in IR surveillance sen-

sors.
For the NADC Reference Scenes, we found that smaller linear filter windows were consistently su-

perior to larger ones in terms of the above criteria. The qualitative effect of prefilter size is illustrated by
the plots shown in Figures 13, 14 and 15. Figure 13 shows Reference Scene 3 along with its amplitude his-
togram. Figures 14 and 15 show the prefilter outputs obtained from Scene 3 using 7x5/3x3 and 3x3 mean
removal windows, respectively (these frames are plotted on the same grey-scale for comparison).
Although structured clutter is present in both cases, the smaller 3x3 window provides better overall sup-
pression and produces considerably less "smearing" of the cloud edges. Histograms for the two output

frames are also shown. Both prefilters convert the original background histogram in Figure 13(b) to a
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unimodal, symmetric zero-mean distribution. However, the output histogram for the 7x5/3x3 filter in

Figure 14(b) exhibits relatively long tails due to the bright edges. The 3x3 output histogram in Figure

15(b) is closer to a true zero-mean Gaussian distribution in this sense. Moreover, the rms clutter level

from the 3x3 prefilter is considerably lower due to that filter's larger stopband about dc spatial frequency.

Clutter Decorrelation. The spatial correlation properties of the prefilter output directly affect the design of

the adaptive filter, since the spatial extent of the adaptive filter test window must generally be chosen to

match the actual correlation length of the clutter. This ensures that pixels with significant mutual correla-

tion are processed together in the same 2-D matched filter window, and that the clutter observations in
adjacent "secondary" windows, which are used for clutter averaging, are approximately uncorrelated with

one another. Maximal decorrelation of the background is desirable since it permits the use of small adap-

tive filter windows, which require less computation and adapt faster in nonhomogeneous clutter. The best

possible result is total decorrelation of the background. In this case, the clutter covariance is diagonal and
the matrix inversion required for adaptive filter implementation is greatly simplified.

Not surprisingly, we found that the clutter increasingly decorrelates as the prefilter window gets

smaller. The general trend is illustrated by processing Scene 3 with mean-removal filters of dimensions

21x7 (the GE baseline), 7x5/3x3, and 3x3. Figures 16, 17 and 18 show contour plots of the normalized 2-

D autocorrelation functions for the output scenes from each of these prefilters. Approximate 1/e

correlation lengths and minimum adaptive filter window dimensions are summarized in Table 3 below.

Table 3. Clutter Correlation After Linear Prefiltering

(Reference Scene 3)

Prefilter Clutter Correlation Length (Pixels) Minimum Adaptive

Dimensions Horizontal Dimension Vertical Dimension Filter Window

21x7 4.0 2.5 9x5

7x5/3x3 2.7 1.6 5x3

3x3 2.8 1.0 5x3

The decorrelation obtained with the large 21x7 window is clearly inferior to that of the two smaller win-

dows, which appear to be approximately equivalent in this respect. The correlation lengths obtained with

the smaller 7x5/3x3 and 3x3 prefilters suggest that an adaptive filter window on the order of 5x3 pixels

could be used. However, neither prefilter decorrelates the background to the point where adjacent pixel

correlations can be completely ignored. This apparent limitation of linear prefiltering prompted us to ex-

amine nonlinear filtering as an alternative method of background preprocessing (see below).

Target Attenuation. A potential drawback of mean-removal prefilters is the unwanted attenuation of

desired point target responses. Smaller prefilter windows tend to provide better clutter suppression, but
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do so at the expense of additional point target suppression. Table 4 shows the peak amplitude attenua-
tion incurred with various linear prefilters for the desired Gaussian point target response given in (1):

Table 4. Point Target Amplitude Attenuation for Linear Prefilters

Prefilter Peak Amplitude
Dimensions Attenuation

21x7 0.97
7x5/3x3 0.97

7x5 0.88
5x3 0.73
3x3 0.58

Although very large windows cause little target attenuation, they perform so poorly in other respects as to
be of little interest. Very small prefilters (e.g., 3x3) are good for suppressing and decorrelating structured

backgrounds, but cause significant target self-suppression. Target attenuation is best mitigated through

the use of a moderate-sized outer window with a small inner window that excludes the pixels near the win-
dow center from the local mean estimate. For example, the 7x5/3x3 linear prefilter discussed in several

previous examples represents a fairly good compromise between the conflicting requirements for robust
clutter suppression and minimal target attenuation.

2.6.2 Nonlinear High-Pass Filters

Simple nonlinear high-pass filters based on sliding-window median removal operators were also
investigated under Phase I. These filters work in basically the same way as the linear prefilters discussed
above, except that the sample median in a small window (rather than the mean) is estimated and sub-
tracted from the center pixel.

Median filters are well-known in the image processing community for their ability to preserve
sharp edges and other high-frequency artifacts of a scene. The motivation for using local median subtrac-
tion for IRST preprocessing was the potential for better suppression and decorrelation of structured
clutter. A key problem with mean-removal filters is the edge smearing caused by averaging across clutter
boundaries. Our hope was that the improved edge estimates provided by local median filters would allow

such edges to be suppressed more effectively by subtraction.

Although we examined various window sizes for median filtering, only the very small windows were
found to offer an interesting alternative to mean-removal. A particularly effective window has minimal

outer dimensions of 3x3 with a single-pixel "hole" in the center (a 3x3/lxl configuration). The hole is use-
ful for two reasons. First, it creates a median estimation window with an even number of samples (8).

Since the median in this case is defined as the average of the 4th and 5th order statistics, it is never exactly
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equal to one of the 8 sample values. This prevents an abnormally large proportion of zero-valued pixels
from appearing in the output frame. The hole also reduces attenuation of point targets somewhat.

Background Gaussianization. Since the median is a surrogate estimate of the mean for a locally-stationary
clutter background, a median subtraction filter might be expected to have scene normalization properties
similar to the mean-removal filters. The result of applying the 3x3/lxl median removal filter to Scene 3 in
Figure 13(a) is shown in Figure 19(a). The histogram of this output frame is shown in Figure 19(b).
Although the output pixel values reveal the effects of pixel quantization in the original scene, the envelope
of this histogram is certainly very comparable to a zero-mean Gaussian distribution.

The most interesting aspect of median removal filtering is its ability to break up clutter edges. This
can be seen by comparing Figure 19(a) with the output of the 3x3 mean removal filter shown in Figure
15(a), which are both plotted on the same grey-scale. Although the edges are still discernable in Figure
19(a), they appear to exhibit much less local structure than before.

Backeround Decorrelation. The normalized autocorrelation of the filtered frame in Figure 19(a) is plotted
in Figure 20. A comparison of this function with the function shown in Figure 18 demonstates that local
median subtraction produces a much sharper correlation peak than a comparable mean subtraction
operation. The average correlation of adjacent pixels in Figure 20 is approximately 0.4 and 0.2 in the
horizontal and vertical dimensions, respectively. Thus, for all practical purposes, the residual clutter in
Scene 3 is nearly decorrelated by the median removal processing. This is largely attributed to the reduced
edge structure in the output frame in Figure 19(a). Similar results were observed for several other scenes
in the NADC data set.

Tarzet Attenuation. Small-kernel median removal filters obviously suppress point target responses.
However, due to the nonlinearity of the median estimate, is not so straightforward to calculate this at-
tenuation. In general, it will depend on the specific background observed in the immediate vicinity of the
target, and on the absolute level of the additive target signal itself

We used a scene-specific simulation approach to characterize the target suppression for the high-
pass median filter. For a given reference background (e.g., Scene 3), we injected several hundred point
target responses of peak amplitude Ain at locations throughout the scene. The target responses were cal-
culated from the Gaussian point-spread function (1), and spaced far enough apart in the frame to avoid
multi-target suppression effects. The frame with injected targets was then passed through the 3x3/lxl
median removal prefilter. The peak amplitude for each target in the output frame was measured, and a
mean output level Aout was calculated from the average of these amplitudes. Repeating the experiment for
various Ain produced a scene-specific relationship for the average output amplitude Aout vs- Ain'

An example of such a curve for Scene 3 and a 3x3/lxl median removal prefilter is shown in Figure
21. The symbols show the locations of actual measurements of Aout vs. Ain' The solid line is a 2nnd_
order least-squares polynomial fit to these measurements. For comparison, an equivalent curve for a
3x3/lxl mean-removal filter is shown by the dashed straight line. Note that the median prefilter causes
less target attenuation than the linear prefilter at higher target amplitudes. This occurs because the
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sample median is less influenced by the presence of a few outliers (e.g., a bright point target in the
window) than the sample mean.

2.7 Adaptive Filter Selection

Based on the results of prefilter trade studies and a limited amount of experimentation, we selected
two adaptive filter configurations for further evaluation. These two filtering schemes utilized different
prefilters and adaptive filter implementations.

Adaptive Filter 1. The characteristics of the first adaptive filter processor are summarized as follows:

Adaptive Filter 1:
7x5/3x3 local mean removal prefilter
5x3 adaptive filter window (N= 15 pixels)
5x3 spatial signal matched to Gaussian point-spread
7x5 configuration of 5x3 secondary windows (K=34 windows)
Full covariance matrix processing

The 7x5/3x3 configuration was selected as a baseline linear prefilter because it provided acceptable clutter
decorrelation with practically no attenuation of the Gaussian target response. A 5x3 (N= 15 pixel) adap-
tive filter window is the minimum window size that is consistent with the clutter correlation lengths
produced by this prefilter on several NADC Reference Scenes. For the test window dimension of N= 15,
we selected a 7x5 configuration of secondary windows to provide K=34 vector samples for the local
covariance estimates (this particular window configuration is shown in Figure 8). From Table 2, the
theoretical CFAR loss for this processor in Gaussian clutter is 6.4 dB. A limited set of experiments on
Scene 3 indicated that the potential reductions in CFAR loss obtained through the use of additional
secondary windows were more than offset by the penalties associated with larger (and more slowly-
adapting) filter configurations.

Adaptive Filter 1 employs full 15x15 covariance matrix processing since the pixels in its 5x3 test
window are often significantly correlated after mean-removal prefiltering.

Adaptive Filter 2. Adaptive Filter 2 is a simplified adaptive configuration designed to exploit the spatial
decorrelation provided by a high-pass median prefilter:

Adaptive Filter 2:
3x3/lxl local median removal prefilter
3x3 adaptive filter window (N=9 pixels)

* 3x3 spatial signal matched to Gaussian point-spread
7x3 configuration of 3x3 secondary windows (K=20 windows)

Diagonal approximation to clutter covariance matrix
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As noted above, the 3x3/lxl median high-pass filter decorrelates the residual clutter to the point where its
spatial covariance can be approximated by a diagonal (but not necessarily white) matrix. This simplifies
the covariance processing for an N-yixel adaptive filter by reducing the number of unique matrix ele-

ments to be estimated from N (N + 1)/2 to N, and by eliminating a time-consuming NxN matrix
inversion. (However, it does cause scene-dependent target attenuation as discussed in Section 2.6.2.)

The 3x3 adaptive filter window chosen for Adaptive Filter 2 is the minimum window needed to in-

tegrate the significant portion of the Gaussian point target response (1). The (diagonal) covariance for

this N=9 pixel window is estimated from K=20 secondary windows arranged in a 7x3 block configura-

tion.

2.8 Algorithm Performance Evaluation

The detection performance of the baseline spatial filter bank and the two candidate adaptive filter

configurations was evaluated using a set of seven IR reference scenes provided by NADC. These scenes

were derived from data collected under the IRAMMP program and have been reprocessed to simulate the

clutter that would be seen by a typical IRST system. A typical scene, plotted in grey-scale format in

Figure 2(a), contains cloud and sky clutter plus additive Gaussian sensor noise.

2.8.1 TSCORE Evaluation Methodology
Detection performance was evaluated using the TSCORE method developed by NADC [1].

TSCORE is a general analytical technique for measuring the detection sensitivity of a spatial filter ap-

plied to a particular background scene. For every pixel in the prefiltered scene, one calculates the peak

additive target amplitude that would be needed to obtain a detection (at a specified average false alarm

rate). This calculation must properly account for any scaling that is applied to the target signal by either

the prefilter or the adaptive filter. It also implicitly assumes that the threshold level at the target location
is independent of the target amplitude.

The output of the TSCORE process is another frame which contains the required target amplitude

vs. pixel position. These amplitudes are accumulated in a histogram and integrated to form a cumulative
distribution function which gives the probability of detection vs. target amplitude, averaged over a par-

ticular scene. The results of a TSCORE analysis are often summarized by the so-called "T-90" figure-of-
merit, which is the target amplitude needed to obtain an average detection probability of 90% at a

specified false alarm rate.
A block diagram of the TSCORE procedure for a generic adaptive filter is shown in Figure 22.

Specific TSCORE calculation methods for both the baseline filter bank and the adaptive filter are

developed below.

Baseline Filter Bank. The TSCORE procedure for the GE filter bank technique described in Section 2.4

can be defined by considering what happens to a point target centered at a single pixel in a prefiltered

frame. To simplify matters somewhat, assume that the 21x7 mean removal prefilter has a negligible effect
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on the amplitude of an isolated point target (practically true), and that the filter selection is relatively un-
affected by the presence of a small target in the clutter averaging window. Now define the following 35-

element vectors representing 7x5 windows centered at the pixel of interest:

n = the clutter background in the window (after prefiltering)

x = the target plus clutter observation (after prefiltering)

s = the 2-D Gaussian point spread function (normalized to have unit peak magnitude)
sf = the spatial filter weights selected for this pixel

If a target with additive peak amplitude A is present, the observation in the window is given by x=A+a.

The output of a linear spatial filter if for the pixel of interest is then

T T(As+n) = ATjs +_Tn (26)

The GE detection procedure compares the magnitude of y with an adaptive threshold computed by multi-
plying a local clutter level estimate a times a fixed threshold constant k. The clutter estimate is not

influenced by the target since it is obtained from an average of pixels outside the 7x5 window. From (26),

a detection will be declared at the pixel of interest if the following condition is satisfied:

Al fnI> ka (27)

The TSCORE calculation at a given pixel amounts to solving (27) for the minimum value of A needed for

detection. The solution for positive contrast targets (A>0) is given by

Amin = -k- (28)

where

F = aT0 the spatial filter output for clutter alone

S _s = the signal scaling of the spatial filter

Note that F, S and a can be obtained for all pixels in a prefiltered background scene by running that scene

through the GE adaptive filter processor. The output is three new "scenes" which are combined accord-

ing to (28) to produce a TSCORE frame consisting of the minimum detectable target amplitude vs. pixel

position at a specified threshold level k.

One final detail is the determination of the threshold constant Lk When targets are not present

(A=0), a false detection will be declared if

T = IFI >ka (29)
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at any pixel. To obtain no false alarms, k is chosen such that

k L(30)
a

for every pixel in the frame. More generally, we compute a normalized frame defined by [ F ia, examine
its histogram, and select k to allow no more than a specified number of false detections. The Pfa is then

approximated by the number of allowed detections divided by the total number of pixels processed.

Adaptive Filter. TSCORE calculation for the adaptive spatial filter defined by (22) is a bit more involved

but conceptually quite similar to the procedure discussed above. Even though the filter output is a highly
nonlinear function of the observations, the TSCORE method is still valid because the detection threshold

setting does not depend on target amplitude. A slight complication is introduced by the need to account

for target attenuation in the prefilter, but this can be handled in a straightforward manner.
As before, we define the following vectors having the same dimension as the adaptive filter test win-

dow:

n =the clutter background in the window (after prefiltering)

the target plus clutter observation (after prefiltering)
the 2-D Gaussian point spread function (normalized to have unit peak magnitude)

If the adaptive filter is spatially matched to the target point spread function _, then its scalar output at a
given pixel is defined by the left-hand side of equation (22a):

iy sTM- X1 (31)

Recall that the covariance estimate M is obtained from data in a set of K secondary windows surrounding
the filter window, and is therefore unaffected by the presence of a target in the latter window. A detection

is declared at the center pixel of the filter window if

y > to (32)

where to is a fixed CFAR threshold that is set off-line.

When a target of amplitude A is present, the filter window contains the signal x-A_+n.

Substituting for x in (31) and using (32) results in a quadratic TSCORE inequality

(Y S2)A2 + (2yoSF)A + (F2-toao) 2 0 (33)

where o=l-týo/K and where

F sTiArl'n - the adaptive filter output for the clutter alone
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S = _sTi'l s = the adaptive filter signil-scaling factor

a0  = '5 [1±1nTii_ ] R1 the adaptive filter variance normalization

These quantities are analogous to the TSCORE outputs F, S and a defined for the baseline spatial filter.

They are calculated for every pixel in a prefiltered clutter scene by running the adaptive spatial filter on

that scene.
The smallest positive target amplitude A satisfying (33) is given by

At2a2 _ F2 t2/K]1/2_ Fo~.o -F
0 K0 0 (34)Amin S[1-_ to/K]/

As K--. the adaptive filter reduces to a precomputed matched filter, and the above solution for Amin has the
same form as the fixed filter TSCORE given in equation (28).

The value of Amin defined in (34) is the additive peak target amplitude that is needed in theprefiItered
scene to declare a detection at a given pixel. If the prefilter has a significant effect on the target amplitude,
then this amplitude must be scaled up by an appropriate factor to get the amplitude Ain that would have
been required in the original input scene. This is straightforward for a linear mean-removal filter since the
peak amplitude attenuation is a constant factor for all pixels. For a nonlinear median-removal prefilter,
the amplitude-dependent target attenuation for a particular scene can be estimated from curves similar to
Figure 21. In this approach, the peak amplitudes calculated with the TSCORE method are mapped to
input amplitudes using a least-squares polynomial relationship for Ain as a function of Aoutr This relation-
ship is found for each scene using the simulation approach described in Section 2.6.2.

To determine the threshold to for the adaptive filter we set A=O in the detection inequality (33):

4_ý to 0(35)
ao

The TSCORE threshold is then calculated as before by computing the normalized output frame I F Ioa',
examining its histogram, and selecting to to pass no more than a specified number of false detections.

2.8.2 TSCORE Results
To compare the performance of the three filters in a consistent manner, we used the seven IRST

Reference Scenes provided by NADC to measure TSCORE amplitude frames and T-90 values for an
average false alarm probability of about 3x10-5. These frames all have dimensions of 475x118 pixels.

Excluding pixels subject to edge effects with the largest adaptive filter configuration reduces the common

frame size for TSCORE computations to 440x103, for a total of 45,320 pixels. The measured TSCORE

threshold settings were based on one allowed false alarm per frame, which corresponds to an average Pfa

slightly less than the desired value. For every Reference Scene, a separate TSCORE evaluation was
carried out for each of the following three filters:
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a) GE Baseline Filter Bank: The baseline IRST spatial filter bank described in Section 2.4.1.
b) Adaptive Filter 1: A fully-adaptive filter implemented as follows:

7x5/3x3 local mean removal prefilter
5x3 adaptive filter window
7x5 configuration of 5x3 secondary windows (34 windows)

c) Adaptive Filter 2: A simplified adaptive filter based on a diagonal covariance approximation,
implemented as follows:
3x3/lx1 local median removal prefilter
3x3 adaptive filter window
7x3 configuration of 3x3 secondary windows (20 windows)

TSCORE curves of average probability of detection vs. peak input target amplitude for the three
filters are shown in Figures 23, 24 and 25, respectively. The measured T-90 values are summarized in
Table 5. Adaptive Filter 1 outperformed the GE baseline filter bank in 5 out of the 7 scenes, performed
roughly the same in one scene, and was somewhat worse in scene 6. The average gain in target detec-
tability for all 7 reference scenes was 2.58 dB with respect to the baseline.

The comparative performance of the simplified Adaptive Filter 2 was decidedly mixed, with im-
proved performance obtained in 4 of the 7 scenes and degraded performance in the other 3. On an
average basis, however, this filter yielded an overall gain in detection sensitivity of 1.95 dB, primarily due
to the large gain obtained for scene 7.

The contrasting results obtained for Reference Scenes 6 and 7 demonstrate the relative advantages
and disadvantages of a fully-adaptive detection approach. Grey-scale plots for these two scenes are shown
in Figure 26.

Scene 6 contains a relatively benign sky clutter background (except for the prominent horizontal
edge near the bottom of the frame). Figure 27 plots the Scene 6 TSCORE peak amplitudes for both the
filter bank and Adaptive Filter 1. In these plots, "black" and "white" correspond to minimum detectable
target amplitudes of 100 and zero, respectively. The darker appearance of Figure 27(b) relative to Figure
27(a) therefore indicates that the adaptive filter suffers a performance loss relative to the fixed filter bank.
The precomputed "white-noise" filter in the fixed bank turns out to be closely matched to the benign clut-
ter in most of the frame, while the adaptive filter incurs a substantial CFAR loss to match itself to the
same clutter. The experiment simply confirms that a properly-matched precomputed filter will always
outperform an adaptive filter, which utilizes imperfect estimates of the background statistics.

Scene 7, on the other hand, is a cloud scene containing a highly variable clutter background. Scene
7 TSCORE amplitudes for the two filtering schemes are plotted in Figure 28 on the same 100-to-zero
grey-scale used for Figure 27. Here the adaptive filter significantly outperforms the filter bank, because it
is able to adapt its weights more effectively to the variable clutter statistics encountered in this scene. This
improved robustness is the real benefit of the fully-adaptive detection approach.

Table 6 lists the measured threshold constants used for the TSCORE computations in each
reference scene, which are set to provide exactly one false alarm per frame (Pfa" 3x10-5 ). Pre-calculated
thresholds for the adaptive filters at Pfa=3xl0-5 are also shown for comparison (these are read from the Pfa
curves in Figure 6). Note that the percentage variation in the measured thresholds over the 7 scenes is
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Table 5. TSCORE Analysis Summary

Scene Baseline Filter Bank Adaptive Filter 1 Adaptive Filter 2
No. T90 T90 Gain T90 Gain

1 42.5 25.0 +4.61 dB 46.0 -0.69 dB

2 30.0 25.0 + 1.58 38.0 -2.05

3 45.0 36.0 + 1.94 32.0 +2.96

4 76.0 53.0 +3.13 64.0 +1.49

5 33.5 36.0 -0.62 27.0 +1.87

6 21.0 34.0 -4.18 24.0 -1.16

7 78.0 42.0 +5.38 40.0 +5.80

Average Gain +2.58 dB + 1.95 dB
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Table 6. Normalized Thresholds from TSCORE Evaluation

(Nominal Pfa= 3XlO0)

Scene GE Baseline Adaptive Filter 1 Adaptive Filter 2
Number k to to

1 7.6 4.5 4.0

2 7.1 4.5 3.8

3 9.5 4.9 3.9

4 9.2 4.9 3.9

5 7.4 4.8 3.8

6 6.4 5.0 3.9

7 10.7 4.7 3.7

Predicted to - 4.5 3.9

(Pfa=3Xl0"
5)
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much lower for the adaptive filters than for the baseline. Also, the measured to values from the 7-scene
TSCORE evaluation are remarkably close to the theoretical values of to that can be predicted off-line
(especially for Adaptive Filter 2). This is attributed to the CFAR property of the adaptive filter output.
These results suggest that the adaptive filters would provide a more nearly constant (and more predict-
able) false alarm rate than the baseline processor in highly variable backgrounds.

2.9 Computation Load Comparison

An estimate of the elementary operation count per pixel was also obtained for each of the three fil-
ters evaluated above. No attempt was made to account for the relative complexity of different arithmetic
operations (such as additions and multiplies), since this is a highly processor dependent factor. Our ob-
jective was to obtain a simple measure of the relative computational complexity of the adaptive filters with
respect to the existing baseline.

Total computation load estimates for the three filters defined above (including prefiltering) are
summarized in Table 7. As expected, Adaptive Filter 1 is significantly more complex than the baseline
filter bank. This is almost entirely due to the computation associated with forming and inverting a 15x15
spatial covariance matrix estimate at each pixel. However, note that the simplified adaptive filter
(Adaptive Filter 2), which does not utilize the full covariance matrix and operates with a smaller 3x3 filter
window, actually requires slightly less computation than the baseline filter bank-

Table 7. Computation Load Estimates

Filter Type Estimated Operations/Pixel

Baseline 548

Adaptive Filter 1 12093

Adaptive Filter 2 475
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3.0 Conclusions of Phase I Study

The main conclusions from our Phase I study can be summarized as follows:

1) A fully adaptive spatial filter provides a consistent gain in target detection sensitivity but is
well over an order of magnitude more complex to implement. The average performance gain
for the 7 IRST Reference Scenes provided by NADC is about 2.6 dB with respect to the exist-
ing baseline filter bank. A lower T90 value (i.e., better detection performance) was obtained
in 5 out of the 7 scenes.

2) The use of a simple nonlinear prefilter, which approximately diagonalizes the background
clutter covariance matrix, allows a simplified form of the adaptive filter to be employed.
Although this simplified adaptive filter is no more complex than the baseline spatial filter
bank, its performance is 1.9 dB better on the average. Lower T90 values were obtained in 4 of
the 7 Reference Scenes.

3) Compared to the baseline processor, the adaptive filter appears to provide improved false
alarm regulation in unknown, variable backgrounds. This is due to the fact that the adaptive
filter output is a true CFAR test statistic.

4) The Phase I effort was successful in demonstrating the application of adaptive spatial filtering
to the IRST target detection problem, and in developing a simplified adaptive filter with ac-
ceptable detection performance. However, it is our belief that further development of
adaptive algorithms which operate solely in the spatial domain cannot be justified by the rela-
tively small performance gains obtained.
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