Comparison of Audiograms Determined Using Pure Tone and One-third Octave Bands of Noise as Stimuli for the Chinchilla

By

James H. Patterson, Jr.
Ben T. Mozo
Elmaree Gordon
Jesus R. Canales
Julieta D. Saldivar

Aircrew Protection Division

and

C. E. Hargett, Jr.

State University of New York at Plattsburgh

September 1994

Approved for public release; distribution.
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Animal use

In conducting the research described in this report, the investigators adhered to the Guide for Laboratory Animal Facilities and Care, as promulgated by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences-National Research Council.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

Released for publication:

ROGER W. WILEY, O.D., Ph.D.
Chairman, Scientific Review Committee

DENNIS F. SHANAHAN
Colonel, MC, MFS
Commanding
Comparison of audiograms determined using pure tones and one-third octave bands of noise as stimuli for the chinchilla

Audiograms were obtained from chinchillas using conventional pure tone stimuli and using 1/3 octave bands of noise as stimuli. The average hearing threshold levels in dB SPL were found to be comparable. The audiograms determined using the 1/3 octave bands of noise were slightly more reliable (lower test-retest variability).
Table of contents

Introduction ... 3
Methods .. 3
Results and discussion ... 4
Conclusion ... 7
References ... 8

List of tables

1. Average values and standard deviations of the thresholds determined using one-third octave bands of noise .. 4
2. Average values and standard deviations of the thresholds determined using pure tone stimuli ... 5
3. F-ratios formed by dividing the test-retest variance of thresholds determined using pure tone stimuli by thresholds determined using one-third octave bands of noise .. 6

List of figures

1. Average threshold in sound pressure level determined using pure tone and 1/3 octave bands of noise as stimuli .. 6
This page left blank intentionally.
Introduction

The chinchilla audiometric procedure currently in use for noise hazard studies at the U.S. Army Aeromedical Research Laboratory (USAARL) at Fort Rucker, Alabama, uses pure tone stimuli in a sound field test environment (Patterson et al., 1986). The animals are trained in a shuttlebox to respond to sounds by moving from where they are to the other end of the shuttlebox. They are free to move about the test cage throughout the test. The tonal test stimuli are presented by a speaker located in one corner of an audiometric room with sound absorbing walls, thus creating a progressive and directional sound field. The animals are typically monaural. This leads to a possibility that they may orient their "hearing" ear differently with respect to the sound source from time to time. Since the orientation of the head relative to a sound source affects the level reaching the ear, the threshold will vary as the orientation is changed. This adds to the measurement error and is a source of uncontrolled variability in the threshold shifts measured in noise exposure studies.

An obvious solution to this problem is to always orient the subject's ear toward the sound source. One way to assure that the subject is always orienting the ear of interest toward the sound source is to make the source surround the subject. This can be done by using a quasireverberant test room to produce a nondirectional sound field. The ANSI standard method for real ear attenuation (ANSI, 1984) is based on this type of sound field. It uses one-third octave bands of noise originating from three speakers in a hard walled room as audiometric test stimuli. This study was undertaken to determine whether an audiometric test procedure for the chinchilla based on this quasireverberant sound field will lead to more reliable threshold estimates.

Methods

The subjects for this study were five male chinchillas from the USAARL chinchilla colony. They were monauralized by surgical destruction of the left cochlea. The surgery was done with the animal anesthetized by isoflurane gas inhalation. Aseptic procedures were followed during surgery. At least 1 week recovery was allowed after surgery before audiometric training or testing was conducted.

The audiometric testing employed a shock avoidance procedure in a two compartment shuttlebox (Patterson et al., 1986). The one-third octave band stimuli had center frequencies at 0.125, 0.25, 0.5, 1.0, 1.6, 2.0, 3.15, 4.0, 6.3, and 8.0 kHz. Each subject was trained in the audiometric procedure using one-third octave bands of noise until their thresholds reached asymptote. Then, 20 additional audiograms were obtained using the noise stimuli. This was followed by five audiograms using pure tone stimuli for transition training. Finally, 15 to 20 pure tone audiograms were obtained. The pure tone stimuli had frequencies of 0.125, 0.25, 0.5, 1.0, 1.4, 2.0, 2.8, 4.0, 5.6, and 8.0 kHz.

The 15 to 20 audiograms from each type of test stimulus were used to calculate a test-retest variance estimate for each subject (except for one subject who died before completing the pure
tone test) at each test frequency. Under the null hypothesis that there is no difference in the test-retest variability of these two procedures, the ratio of these variance estimates is distributed as F (Brownlee, 1960). This test was used to determine the significance of differences in test-retest reliability of the two procedures.

Results and discussion

Table 1 contains the average audiometric thresholds determined using the one-third octave band stimuli and the standard deviation of these thresholds for each of the five subjects. These results are based on 20 repeated determinations of threshold for each subject. Table 2 contains the corresponding results from the pure tone audiometry for the same subjects. The number of pure tone thresholds for each subject is indicated since not all subjects were tested 20 times. Table 3 contains F ratios resulting from dividing the variance of the pure tone thresholds by the variance of the one-third octave band thresholds. These F-ratios have 19 degrees of freedom (DF) in the

<table>
<thead>
<tr>
<th>Subject</th>
<th>0.125</th>
<th>0.250</th>
<th>0.50</th>
<th>1.0</th>
<th>1.6</th>
<th>2.0</th>
<th>3.1</th>
<th>4.0</th>
<th>6.3</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X63</td>
<td>21.8</td>
<td>13.0</td>
<td>2.5</td>
<td>2.3</td>
<td>1.3</td>
<td>2.0</td>
<td>-3.5</td>
<td>-1.8</td>
<td>0.8</td>
<td>-1.5</td>
</tr>
<tr>
<td>sd</td>
<td>8.8</td>
<td>4.2</td>
<td>4.2</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
<td>3.7</td>
<td>6.8</td>
<td>7.8</td>
<td>3.7</td>
</tr>
<tr>
<td>X64</td>
<td>20.5</td>
<td>10.0</td>
<td>-1.3</td>
<td>-2.8</td>
<td>1.8</td>
<td>-1.3</td>
<td>0.3</td>
<td>-0.3</td>
<td>2.8</td>
<td>-0.3</td>
</tr>
<tr>
<td>sd</td>
<td>4.3</td>
<td>6.0</td>
<td>5.0</td>
<td>5.6</td>
<td>5.3</td>
<td>3.1</td>
<td>4.9</td>
<td>3.3</td>
<td>6.2</td>
<td>3.3</td>
</tr>
<tr>
<td>X66</td>
<td>21.8</td>
<td>13.8</td>
<td>0.5</td>
<td>-1.0</td>
<td>-3.3</td>
<td>-1.3</td>
<td>1.0</td>
<td>-5.3</td>
<td>-1.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>sd</td>
<td>4.5</td>
<td>4.4</td>
<td>7.0</td>
<td>5.9</td>
<td>5.3</td>
<td>4.1</td>
<td>6.9</td>
<td>4.0</td>
<td>5.4</td>
<td>4.0</td>
</tr>
<tr>
<td>X68</td>
<td>19.3</td>
<td>11.0</td>
<td>1.5</td>
<td>-2.8</td>
<td>0.0</td>
<td>-2.5</td>
<td>0.3</td>
<td>2.8</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>sd</td>
<td>4.5</td>
<td>5.7</td>
<td>6.0</td>
<td>5.4</td>
<td>6.6</td>
<td>5.2</td>
<td>7.2</td>
<td>5.6</td>
<td>6.8</td>
<td>5.7</td>
</tr>
<tr>
<td>X55</td>
<td>19.5</td>
<td>9.3</td>
<td>-4.3</td>
<td>-3.8</td>
<td>-0.8</td>
<td>0.8</td>
<td>1.8</td>
<td>1.3</td>
<td>3.5</td>
<td>5.8</td>
</tr>
<tr>
<td>sd</td>
<td>5.3</td>
<td>4.5</td>
<td>5.5</td>
<td>5.2</td>
<td>5.8</td>
<td>5.8</td>
<td>7.6</td>
<td>4.4</td>
<td>5.4</td>
<td>3.3</td>
</tr>
<tr>
<td>GP av</td>
<td>20.6</td>
<td>11.4</td>
<td>-0.2</td>
<td>-1.6</td>
<td>-0.2</td>
<td>-0.5</td>
<td>-0.1</td>
<td>-0.7</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>GP sd</td>
<td>1.1</td>
<td>3.0</td>
<td>5.6</td>
<td>4.5</td>
<td>3.1</td>
<td>2.6</td>
<td>3.3</td>
<td>7.5</td>
<td>2.8</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Table 2.
Average values and standard deviations of the thresholds
determined using pure tone stimuli.

<table>
<thead>
<tr>
<th>Frequency in kHz</th>
<th>Subject</th>
<th>0.125</th>
<th>0.250</th>
<th>0.50</th>
<th>1.0</th>
<th>1.6</th>
<th>2.0</th>
<th>3.1</th>
<th>4.0</th>
<th>6.3</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X63</td>
<td></td>
<td>21.8</td>
<td>5.3</td>
<td>-3.3</td>
<td>0.3</td>
<td>-4.3</td>
<td>-2.5</td>
<td>3.0</td>
<td>-3.5</td>
<td>-1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>sd</td>
<td></td>
<td>7.5</td>
<td>6.4</td>
<td>6.6</td>
<td>8.6</td>
<td>10.3</td>
<td>8.2</td>
<td>9.7</td>
<td>6.2</td>
<td>8.2</td>
<td>7.6</td>
</tr>
<tr>
<td>X64</td>
<td></td>
<td>17.5</td>
<td>2.5</td>
<td>-5.8</td>
<td>-8.8</td>
<td>-5.0</td>
<td>-2.8</td>
<td>1.3</td>
<td>-2.3</td>
<td>1.5</td>
<td>-2.3</td>
</tr>
<tr>
<td>sd</td>
<td></td>
<td>4.5</td>
<td>8.1</td>
<td>6.8</td>
<td>4.7</td>
<td>5.8</td>
<td>6.8</td>
<td>4.7</td>
<td>6.4</td>
<td>9.0</td>
<td>6.6</td>
</tr>
<tr>
<td>X66</td>
<td></td>
<td>22.8</td>
<td>6.5</td>
<td>-7.5</td>
<td>-3.5</td>
<td>0.2</td>
<td>-6.5</td>
<td>-3.2</td>
<td>-2.2</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>sd</td>
<td></td>
<td>5.3</td>
<td>3.7</td>
<td>5.2</td>
<td>3.7</td>
<td>5.4</td>
<td>4.9</td>
<td>6.5</td>
<td>5.3</td>
<td>8.0</td>
<td>7.5</td>
</tr>
<tr>
<td>X68</td>
<td></td>
<td>19.8</td>
<td>9.5</td>
<td>-3.2</td>
<td>-6.2</td>
<td>1.2</td>
<td>-3.8</td>
<td>1.5</td>
<td>0.5</td>
<td>1.5</td>
<td>7.2</td>
</tr>
<tr>
<td>sd</td>
<td></td>
<td>10.1</td>
<td>3.1</td>
<td>7.3</td>
<td>5.0</td>
<td>5.3</td>
<td>5.6</td>
<td>8.1</td>
<td>6.9</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>X55</td>
<td></td>
<td>17.5</td>
<td>-1.6</td>
<td>-1.1</td>
<td>-5.2</td>
<td>-10.2</td>
<td>-5.7</td>
<td>2.0</td>
<td>4.8</td>
<td>-2.0</td>
<td>4.3</td>
</tr>
<tr>
<td>sd</td>
<td></td>
<td>7.7</td>
<td>8.7</td>
<td>7.1</td>
<td>5.8</td>
<td>2.5</td>
<td>6.5</td>
<td>7.5</td>
<td>7.2</td>
<td>6.2</td>
<td>6.1</td>
</tr>
<tr>
<td>GP av</td>
<td></td>
<td>19.9</td>
<td>4.4</td>
<td>-4.2</td>
<td>-4.7</td>
<td>-3.6</td>
<td>-4.3</td>
<td>0.9</td>
<td>-0.5</td>
<td>0.3</td>
<td>2.1</td>
</tr>
<tr>
<td>GP sd</td>
<td></td>
<td>4.7</td>
<td>14.1</td>
<td>4.9</td>
<td>9.0</td>
<td>16.6</td>
<td>2.5</td>
<td>4.5</td>
<td>8.7</td>
<td>2.3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

denominator and the numerator DF are as indicated in the table. Large values of F indicated the one-third octave band thresholds are more reliable. The F-ratio is significant at the 0.05 level in 13 cases out of 50, or 26 percent of the cases. Inverting the F-ratios will test for the cases where the pure tone thresholds are more reliable. The F-ratios are significant at the 0.05 level in three cases, or only 6 percent of the cases. This overall pattern of variance ratios indicates that the audiometric procedure using one-third octave bands represents some improvement in the test-retest reliability of the thresholds. This effect is most pronounced in subject X63 that showed increased reliability at most frequencies. In contrast, subject X68 showed no improvement in reliability with the one-third octave band stimuli.

Figure 1 compares the average audiograms determined by the two procedures. Since the one-third octave band stimuli are relatively narrow band, we would expect the band levels at threshold to agree with the pure tone levels at threshold. Generally, the agreement is fair. There are a few frequencies at which the thresholds seem to differ, e.g., 0.25 through 2.0 kHz; however, these differences are not large (4 to 7 dB). An analysis of variance (Winer, 1962) was used to test for equivalence of the average audiograms determined by the two methods. The main effect for stimulus type was significant at the .05 level, indicating there was a difference in the SPL at
Table 3
F-ratios formed by dividing the test-retest variance of thresholds determined using pure tone stimuli by thresholds determined using one-third octave bands of noise.

<table>
<thead>
<tr>
<th>Frequency in kHz</th>
<th>Subject 0.125</th>
<th>0.250</th>
<th>0.50</th>
<th>1.0</th>
<th>1.6</th>
<th>2.0</th>
<th>3.1</th>
<th>4.0</th>
<th>6.3</th>
<th>8.0</th>
<th>ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>X63</td>
<td>0.71</td>
<td>2.39*</td>
<td>2.47*</td>
<td>2.19*</td>
<td>3.28*</td>
<td>2.09</td>
<td>6.77*</td>
<td>0.85</td>
<td>1.12</td>
<td>4.18*</td>
<td>19.0</td>
</tr>
<tr>
<td>X64</td>
<td>1.08</td>
<td>1.79</td>
<td>1.85</td>
<td>0.71</td>
<td>1.20</td>
<td>4.77*</td>
<td>0.94</td>
<td>3.68*</td>
<td>2.11</td>
<td>3.91*</td>
<td>19.0</td>
</tr>
<tr>
<td>X66</td>
<td>1.36</td>
<td>0.71</td>
<td>0.55</td>
<td>0.40#</td>
<td>1.05</td>
<td>1.40</td>
<td>0.90</td>
<td>1.74</td>
<td>2.16</td>
<td>3.51*</td>
<td>14.0</td>
</tr>
<tr>
<td>X68</td>
<td>4.97</td>
<td>0.28#</td>
<td>1.45</td>
<td>0.87</td>
<td>0.65</td>
<td>1.15</td>
<td>0.66</td>
<td>2.12</td>
<td>1.04</td>
<td>1.08</td>
<td>14.0</td>
</tr>
<tr>
<td>X55</td>
<td>2.07</td>
<td>3.70*</td>
<td>1.64</td>
<td>1.23</td>
<td>0.19#</td>
<td>1.27</td>
<td>0.97</td>
<td>2.62*</td>
<td>1.33</td>
<td>3.52*</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Notes:
1. ndf: numerator degrees of freedom denominator degrees of freedom were 19
2. * 1/3 octave band thresholds significantly more reliable at the .05 level
3. # pure tone thresholds significantly more reliable at the .05 level

Figure 1. Average threshold in sound pressure level determined using pure tone and 1/3 octave bands of noise stimuli.
threshold between the two types of audiograms. In addition, the frequency by stimulus type interaction was significant indicating the differences were not consistent at all frequencies.

Conclusions

The audiograms determined using one-third octave bands of noise in a quasireverberant sound field are at least as reliable as the conventional pure tone audiograms for the chinchilla. The sound pressure levels at threshold are different at least at some frequencies.
References

Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

Director
Federal Aviation Administration
FAA Technical Center
Atlantic City, NJ 08405

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100
IAF Liaison Officer for Safety
USAF Safety Agency/SEFF
9750 Avenue G, SE
Kirtland Air Force Base
NM 87117-5671

Naval Aerospace Medical Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base, FL 33608

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362

U.S. Air Force Institute of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, National Guard Bureau
ATTN: NGB-ARS
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

Commercial Aviation Liaison Officer for Safety
Department of the Air Force/SEFF
9750 Avenue G, SE
Kirtland Air Force Base
NM 87117-5671

U.S. Army Aviation and Troop Command
ATTN: AMSAT-R-ES
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

U.S. Army Aviation and Troop Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

U.S. Army Medical Department and School
ATTN: Library
Fort Sam Houston, TX 78234

U.S. Army Institute of Surgical Research
ATTN: SGRD-USM
Fort Sam Houston, TX 78234-6200

Air University Library (AUL/LSE)
Maxwell Air Force Base, AL 36112

Product Manager
Aviation Life Support Equipment
ATTN: SFAE-AV-LSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander and Director
USAE Waterways Experiment Station
ATTN: CEWES-IM-MI-R,
CD Department
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA20 2YB UK

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base,
CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Strughold Aeromedical Library
Document Service Section
2511 Kennedy Circle
Brooks Air Force Base, TX 78235-5122

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

Director, Airworthiness Qualification Test
Directorate (ATTC)
ATTN: STEAT-AQ-O-TR (Tech Lib)
75 North Flightline Road
Edwards Air Force Base, CA 93523-6100

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander
USAMRMC
ATTN: SGRD-UMZ
Fort Detrick, Frederick, MD 21702-5009
Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U. S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander
USAMRMC
ATTN: SGRD-PLC (COL R. Gifford)
Fort Detrick, Frederick, MD 21702

TRADOC Aviation LO
Unit 21551, Box A-209-A
APO AE 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander, U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Chief
Test & Evaluation Coordinating Board
Cairns Army Air Field
Fort Rucker, AL 36362

Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK