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A Brief History of Laser Guided
Lightning Discharge Models and

Experiments

1. INTRODUCTION

Lightning and its possible capture for use has held the interest of scientists seemingly forever.

Benjamin Franklin with his kite experiments attempted to understand the characteristics of

lightning. Today, lightning discharge and possible capture have transcended Franklin's

experiments to include several significant applications such as protection of space shuttle and

missile launches, air traffic control, and energy capture and transmission, to name a few. These

modern, possible applications are all related by research into lightning and, more specifically,

artificially triggered lightning techniques.

This report will emphasize the history leading up to laser guided lightning discharges (LGLD),
the research completed on laser induced lightning and the advantages and disadvantages of this

particular triggered lightning technique.

2. BACKGROUND

Before LGLD are specifically addressed, lightning models and rocket-guided lightning

discharges must be examined. Several studies have been conducted in an attempt to help identify

the exact nature of lightning discharges. Since 1967 when Newman et al.' first succeeded in

triggering lightning using the classical, rocket technique, other experiments have followed in the

United States, Japan, France, Indonesia,' and China.2

Most notably, Mazur and Ruhnke3 report that they applied and evaluated Kasemir's theory

[1950] of a bi-directional, uncharged leader. Mazur and Ruhnke also applied and evaluated the

theory of a unidirectional, charged leader in an ambient electric field in order to help derive basic
physical concepts applicable to processes of all lightning discharges, natural and triggered. 3
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They compared their theoretical predictions against rocket-triggered lightning discharges (RTLD).

They concluded that intracloud (IC) flashes closely resembled RTLD in branching patterns,

negative recoil streamer and positive leader channels and direction of negative pulses and recoil

streamers. Mazur et al. also reported that "Waldteufel et al. 11980] determined that luminous

images are produced by sequences of negative current pulses moving downward, and by ground

potential waves (return strokes) moving upward (at 0.5-1.5.108 ms-) along the branches on the

positive leaders."3

Mazur and Ruhnke cited Kito et al. 119851, and Kawasaki and Mazur 11992] found, that

rocket-triggered discharges under a positive space charge overhead were not followed by dart
leaders or return strokes. 3 Experiments conducted in Florida by Willett et al.,4 and jointly by the

Centre Etudes Nucleaires de Grenoble (CENG) and the National Aeronautics and Space

Administration (NASA), generated 202 of 299 RTLDs for negative overhead space charge (67

percent success rate) and only 6 of 20 RTLDs for positive overhead space charge (30 percent

success rate). Liu et al. reported from similar results their RTLD experiments in Gansu, China.

Only 10 of 35 rocket launchers triggered discharges for positive overhead space charge (29

percent success rate).2 This may be attributed to the greater amount of energy positive strokes

carry. Therefore, positive strokes are more destructive when lightning is produced. Clearly,

however, LGLDs will also face the problem of not being able to discharge clouds with positive

overhead space charge easily.

3. THEORY

The theoretical models for cloud charge and flux density are given by Uman5 and Ruhnke and

Kasemir [19881, respectively.2

jI(t) H(t) [H2(t) + DB2]-° (1)

B(t) =

2 xr DB

Where:

B(t) = magnetic field

9 = permeability of air

I(t) = leader current

H(t) = height of leader tip at any moment
DB = distance of magnetic flux density from base of triggered lightning

and

dQ(t) H(t) [H2(t) + DE2I-'5  (2)
dE(t) =

2lt
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Where:

dE(t) = change in field produced at distance DE

dQ(t) = charge on the channel tip

H(t) = height of leader tip at any moment

DE = distance of electric flux density from base of triggered lightning

E = permittivity of air

These equations are the bases of characterizing RTLD. With reasonable certainty, we may

also presume that the same characteristics and principles displayed by RTLD models should also

be applied and exhibited by LGLD. This presumption, however, is a topic for further research as it

has not been thoroughly studied.

Mazur and Ruhnke, from their study on bi-directional uncharged leaders and monopolar

charged leaders, defined and outlined the main physical principles they found to govern lightning

processes. The following nine points are taken directly from Mazur and Ruhnke.

"1. Lightning initiation in the atmosphere occurs as a bi-directional, uncharged leader and as

an electrodeless discharge (IC [intra-cloud lightning], CG [cloud-to-ground lightning], aircraft-

triggered, tipsy rocket-triggered flashes [non-grounded RTLDI), or at the ground as a monopolar,

charged leader and as an electrode discharge (rocket-triggered flashes with grounded wire,

lightning from tall buildings).

2. Induced charges on the leader are determined by the ambient potential distribution, with a

net zero charge on the leader unless the leader is connected to the ground. In the latter case, and

also in the return stroke process, a uniform charge per unit length is added to the channel, and

the channel assumes the ground potential.

3. Any current-carrying leader channel is equipotential. This potential is determined by the

environmental potential distribution. In the case of a leader triggered from the ground, and in the

return stroke process, this potential is zero.

4. The electrical breakdown process at the leader tip depends only on the potential gradient

there, which equals the difference between the leader potential and the cloud potential. This

process drives leader development after initiation.

5. The growing branches of the leader act like current producers; current production

continues only as long as branch propagation.

6. Branching of leaders creates a substantial "screening" of the electric fields in the parts of

the channel at lower levels, and the propagation of lower branches ceases when the cloud

potential at their tips is shadowed by the outer branches which are exposed to higher cloud

potential. This results in a cutoff of current in lower parts of the leader channel. Branches that

were choked remain conductive for a period of several milliseconds due to thermal ionization.

New channels continue to be created as long as the breakdown process continues at the upper

branches.

3



7. After current cutoff, the induced charges with opposite polarity to that at the leader tip

increase on the bottom of the channel and on choked branches. This phenomenon is observed as

the recovery of the E-field on the ground close to the flash. The opposite potential shifts in the

upper, conductive, versus the lower, non-conductive channel, lead to a potential gradient

sufficient for negative breakdown at the cutoff point. This produces recoil streamers in IC flashes,

or dart leaders in CG flashes, and constitutes restoration of the bi-directional character of leader

development.

8. The occurrence of recoil streamers on the negative end of the conductive channel is

followed by increased positive charge on the opposite end, thus energizing the positive leader

breakdown process there. A similar, but more powerful effect results from ground potential waves

of return strokes following dart leaders. Thus a new cycle of interstroke processes (positive

leader-cutoff-recoil streamer sequence) begins.

9. The leader channel ceases to propagate when the difference between the leader potential

and the cloud potential at the tip is below the threshold levels required to continue breakdown.

When that happens in all branches of the channel the entire lightning process comes to an end."3

Thus, under the assumption that triggered lightning discharges will behave like natural

lightning discharges, theories and experiments have been proposed and conducted to determine

the feasibility of LGLD using these principles.

4. EXPERIMENT

While comparatively much research and experimentation has been conducted on RTLD, little

has been done to explore the laser option for guided lightning discharge. Some of the more

notable attempts at LGLD were conducted in the USA and Japan. The Americans are primarily

concerned with the problems lightning poses to aircraft and space vehicle launches, including the

Space Shuttle, while the Japanese are more interested in the energy harvesting and power

transmission line protection aspects of LGLD. See Appendix A for an economic analysis on

potential use of lightning as a viable source of electricity.

LGLD have some inherent problems that must be overcome before a full-size, laser lightning

guide can be implemented. In presenting LGLD, we must remember to separate the two entities

composing artificial lightning -- triggering and guiding. On the laboratory scale, both Diels et al.6

and Shindo et al.' have been successful in triggering guided lightning discharges using lasers;

however, due to the characteristics of the electromagnetic propagation through the air over large

distances or times, several other factors must be addressed. Problems include:

1. The exact charge distribution function in clouds is not known. Some models suggest that

the cloud charge density is evenly distributed.3 Others suggest that the charge can be assumed to

be located at the center of the cloud.7 Still others assume that the charge is concentrated as a

thin rod passing through the center of the cloud.7

2. The wavelength for optimization of lightning discharge and energy minimization is still

undetermined. Shindo et al. experimented with a 10.6 gm pulsed CO 2 laser.' Diels et al.

experimented with a 248 nm KrF femtosecond pulsed laser to trigger a discharge and a 530 nm
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laser to maintain a conductive path6 , while OPHIR Corporation8 proposed using a tunable dye

laser with a Raman shifted 308 nm XeCl laser to produce a 314.5 nm laser to excite argon in the

air.

3. Ionization. of the surrounding air would cause the air to act as a conductor and hence

absorb the laser's energy. This is known as inverse bremsstrahlung.' A conductive path is

needed to direct the lightning discharge to ground, as lightning appears to follow the path of least

resistance 8, however, complete ionization of the air within a relatively short distance, as induced

by high energy lasers at one of the resonant frequencies of air, would render LGLD ineffective.

The resonant frequencies and ionization potentials for air's major components: nitrogen, oxygen,

water, carbon dioxide, and argon must be addressed. A wavelength must be picked to minimize

energy loss to ionization of the air while maximizing the range the laser beam propagates.9

Currently, laser-induced, ionized-air columns for triggered lightning guides have propagated at

most some 60 meters before absorption of the laser beam'; however, for the beam to discharge

clouds, the beam must be capable of propagating on the order of 1000-3000 meters.

Shindo et al. propose that a series of focused laser beams, each creating a small ionized

column, would eliminate the problem of electromagnetic absorption, but would still allow the

lightning a preferred path for discharge.' Shindo et al. cite a discharge experiment using a 200

meter rope with pieces of metal strung out over several meters as the basis for their assumption.'

4. Thunderstorms can either be positively or negatively charged. The negative overhead

charged clouds were shown to be readily discharged; however, the positive overhead charge

scenarios were either not dischargeable or had only a small occurrence of discharge."' Whether

both positively and negatively charged clouds can be discharged by the laser is yet to be

determined.

5. When a cloud is triggered, the amount of time and energy it takes to discharge the entire

cloud or cloud system may allow for recharging of the cloud. Recharging of the cloud system

would still allow for triggering by another external source such as an airplane or spacecraft.

Both Diels et al.6 and Shindo et al.' were capable of LGLD on a laboratory scale; however,

neither completed a full-scale experiment. Other experiments in LGLD are listed in Appendix B.

Well known names in this field are listed in Appendix C.

5. DISCUSSION

Possible solutions to the problems facing LGLD include:

1. Producing a long plasma channel with a special focusing system in which the focusing

surface is varied stepwise on a mirror (multi-focus system) or which has no definite focal length'

2. Using a rapid but smooth motion of a focus toward the laser'

3. Ionizing 02 and/or N2-- Diels et al. 11992], New Mexico 6

4. Ionizing Argon -- OPHIR Corporation, NASA contract6

5
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5. Using a pulsed microwave beam at a resonant frequency different from the major resonant
frequencies of water, oxygen, carbon dioxide, argon, and nitrogen [Kozma, Wacker. & Gjone

USAFA Physics 362 project, not published].9

Diels et al. cite the advantages of LGLD over RTLD including: 1) that the conductive volume
created at the speed of light negates any space accumulated charge that can shield rocket guided
discharges. 2) lasers will provide a ten-fold field enhancement, created by triggering the lightning

at I/10 of the self-breakdown field in air. while also providing a preferential discharge path that
will prevent subsequent triggerings by other elements such as airplanes or rockets, and 3) laser
triggering can be repeated at a rate exceeding 10 Hz while rockets cannot be continuously fired.'

Diels et al. report that 'the discharge Is guided by the light, as seen in the photograph [Figure
I.]. This result is significant, because the preferential path for the discharge is not along the
beam. Indeed, in contrast to the experiment by the group in Japan. where the discharge is
triggered between two needle shaped electrodes (hence there is a local field enhancement present
prior to the creation of the laser induced plasma), our electrodes are profiled for uniform field.
The holes leaving passage to the beam are profiled also. The field is minimum on axis, and the
discharge should ultimately make contact at normal incidence with electrodes. The two
extremities of the discharge are bent towards the normal to the profiled hole in the electrodes. '

Figure 1. Electrical Discharge in the Laboratory Cell (1/7 atmosphere) Induced by a Nanosecond
Pulse of the Excimer Laser (Peak Power 1 GW / cm•). The discharges follow the path of the beam.
except that it bends towards a normal to the profiled electrodes at the two extremities.

(Taken directly from Diels et al..' Figure 15.I

6
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6. CONCLUSIONS

Laser guided lightning discharges (LGLD) have dual-use potentials for aerospace safety, high-

value asset protection, and electrical power applications, if technically refined. Proposed

reliability and versatility characteristics of the laser exceed those of rocket-triggered lightning

discharges (RTLD). With LGLD, both the initial triggering and subsequent guiding of the induced

lightning discharge must be accommodated. Although currently it is difficult to exactly predict

the characteristics of thunderstorms and especially lightning, laser-triggered lightning discharges

may help reduce some of the unpredictability of lightning. While it might be possible to use

lightning as electricity, lightning harvesting as a viable energy source seems uneconomical at this

time. Yet, theoretical models and experiments have been conducted examining and indicating the
feasibility of the LGLD technique.

7. RECOMMENDATIONS

With LGLD successes on the laboratory scale, research and experimentation must shift to the

actual building and testing of full-scale models. Research begun under Air Force and Phillips
Laboratory contracts is now being undertaken by NASA contracts. LGLD dual-use potentials for

aerospace safety, high-value asset protection, and electrical power protection and harvesting

applications should continue to be tested and exploited for both military and civilian use.

7
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Appendix A

Feasibility Of Harvesting Lightning As An
Electricity Source

The following set of calculations disprove the economic feasibility of harvesting electricity.
Although the technology is readily becoming available to discharge a cloud and store its energy, it
currently is not economically advantageous to do so. Some researchers have used the breakdown
voltage of air (3 kV) to compute the possible value of harvesting lightning as electricity, but Dr.
Stan Heckman's model incorporates experimentally determined, maximum cloud potentials and
charge transfers in calculating the value of discharging a cloud. The values for cloud potential
and the charge lightning transfers are taken from The Lightning Discharge, by Martin A. Uman.5

Cloud Potential = 10 8 - 10 9  V

Charge Lightning Transfers = 10 C

Total EnergyLghtnig = 109- 10 J

Using the conversion factor: 1 kW-hr = 3.6. 106 j

Total EnergyL6 ghtning = 300 - 3000 kW~hr

Value of electricity harvested by lightning, assuming that all of the charge within the cloud
was withdrawn, at $.06 kW-hr is $20 - $200. Using the full, air breakdown voltage of 3 kV would
mislead one by a magnitude of three for a possible $200,000 worth of electricity.

The above calculations were completed by Dr. Stan Heckman, Geophysics Scholar,
Geophysics Directorate, Phillips Laboratory, Hanscom AFB, MA.
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K. Horii beam
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Appendix C

Names In The Field

Aihara, Yoshinori Institute of Electrical Engineers of Japan

Barnes, Arnold A. Geophysics Directorate, Phillips Laboratory, Hanscom AFB, MA

Diels, Jean-Claude Dept. of Physics and Astronomy, University of New Mexico,

Albuquerque, NM

Heckman, Stan Geophysics Scholar, Geophysics Directorate, Phillips Laboratory,

Hanscom AFB, MA

Kasemir, H. W. New Mexico Institute of Mining, Socorro, NM

Kawasaki, Zen Osaka University, Osaka, Japan

Liu, Xinsheng Lanzhou Institute of Plateau Atmospheric Physics, Chinese

Academy of Sciences, China

Miki, Megumu Central Research Institute of Electric Power Industry, Tokyo,

Japan

Mazur, V. National Severe Storms Laboratory, Norman, OK

Nelson, Loren D. OPHIR Corporation, Lakewood, CO

Ruhnke, Lothar H. Reston, VA

Shindo, Takatoshi Central Research Institute of Electric Power Industry, Tokyo,

Japan

Suzuki, Toshio Institute of Electrical Engineers of Japan

Uman, M. A. Department of Electrical Engineering, University of Florida,

Gainesville, FL

Willett, John C. Geophysics Directorate, Phillips Laboratory, Hanscom AFB, MA
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