Title: MICROWAVE CHARACTERIZATION OF SUB-MICRON N- AND P-CHANNEL MOSFETS FABRICATED WITH THIN FILM SILICON-ON-SAPPHIRE

Authors: C. E. Chang, P. M. Asbeck, P. R. de la Houssaye, G. Imthurn, G. A. Garcia, and I. Lagrano

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES):
Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

ABSTRACT:
This paper reports on microwave characteristics for n- and p- MOS transistors fabricated with thin-film Silicon-on-Sapphire technology. The gates were defined with I-line optical lithography, and ranged down to 0.5 μm (drawn dimension). The fT values of the transistors reach 22 GHz for the n-channel structures and 21 GHz for the p-channel devices. The PMOS results are significantly higher than found with other Si or III-V technologies, and can potentially lead to high performance complementary microwave circuits. Small signal transistor models are similar to the ones for GaAs FETs. Dependence of model parameters on gate length were determined.

DISTRIBUTION/AVAILABILITY STATEMENT:
Approved for public release; distribution is unlimited.

19941227 106

1994 IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 405-408, May 1994.
<table>
<thead>
<tr>
<th>Accession For</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIS CRADL</td>
<td>X</td>
</tr>
<tr>
<td>DTIC TAB</td>
<td></td>
</tr>
<tr>
<td>Unannounced</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
</tbody>
</table>

By __

Distribution: _______________________________

NSN 7540-01-280-5500

UNCLASSIFIED
Microwave Characterization of Sub-micron n- and p- channel MOSFETs Fabricated with Thin Film Silicon-On-Sapphire

C.E. Chang, P.M. Asbeck
Electrical and Computer Engineering Department
University of California, San Diego
La Jolla, CA 92093-0407

P.R. de la Houssaye, G. Imthurn, G.A. Garcia, & I. Lagnado
Naval Command, Control, and Ocean Surveillance Center Research, Development, Test, and Evaluation Division (NRaD) 553
San Diego CA 92152-7633

Abstract
Microwave characteristics are reported for n- and p-MOS transistors fabricated with thin-film Silicon-on-Sapphire technology. The gates were defined with 1-line optical lithography, and ranged down to 0.5 μm (drawn dimension). The fT values of the transistors reach 22 GHz for the n-channel structures and 21 GHz for the p-channel devices. The PMOS results are significantly higher than found with other Si or III-V technologies, and can potentially lead to high performance complementary microwave circuits. Small signal transistor models are similar to the ones for GaAs FETs. Dependence of model parameters on gate length were determined.

Introduction
The evolution of digital Si MOSFET technology has resulted in sub-micron gate length devices which exhibit high microwave gain.1,2 These devices may be considered for use in Si monolithic microwave integrated circuits (MMICs); however, the conductive properties of the bulk Si substrates and the high capacitance in some SOI technologies which use a thin isolation oxide on a conductive Si substrate prevent the realization of high-Q passive elements typically associated with MMICs. On the other hand, the sapphire substrate used in SOS is ideally suited for MMIC applications due to its insulating properties and high thermal conductivity as compared to the SiO2 layers used in SIMOX or BESOI.

Fully depleted thin-film SOS FETs exhibit well behaved I-V curves, good sub-threshold characteristics, reduced hot-electron effects, radiation hardness, and higher breakdown voltage than thick-film SOS. We report here that digital thin-film SOS devices based on a 0.5 μm silicon gate length, exhibit fT > 20 GHz for both p- and n-channel devices. These results are the highest ever shown for SOS FETs fabricated with optical lithography and are comparable to the best ever reported for electron-beam processed structures.3 Unlike typical devices fabricated by III-V, bulk Si, or other SOI technologies, the fT of the thin-film SOS PMOS approaches the NMOS fT for short gate lengths. This opens up a new possibility for complementary microwave amplifiers. The technology is also promising for the co-integration of microwave and VLSI digital ICs.

In this work, we characterize the microwave performance of digital thin-film SOS devices, determine the variation of the small signal model elements as a function of gate length for both the n- and p-channel devices, and compare the thin-film SOS performance with competing III-V and Si technologies.

Fabrication Technology
A cross section of an SOS MOSFET representative of those used for this work is diagrammed in fig. 1. Fabrication of the high quality single crystal Si films on sapphire is accomplished using an amorphization implant and solid phase re-growth process described elsewhere.4 The Si films correspond to (100) planes, and are deposited on (1102) sapphire surface. The result is a 100 nm Si film with low defect density despite the lattice mismatch between Si and sapphire at the interface. An 1-line stepper is used to define the 380 nm thick polysilicon gateon top of the 25 nm thick gate oxide, resulting in a minimum controlled gate length of 0.5 μm. The effective gate length (Lg,eff) varies uniformly from the center to the edge and is about 0.15 ± 0.05 μm smaller than the drawn gate length (Lg), as measured by the Moneda algorithm on adjacent test devices. Lg,eff is similar for adjacent n- and p-channel devices in the same die. The gate length reduction is due to a combination of undercutting during the gate etch and diffusion of the source/drain implants under the gate. The source/drain regions are formed by implantation, which is self-aligned to the gate. A 100 nm oxide sidewall spacer is formed next to the gate and TiSi2 is formed on all exposed silicon surfaces. In this process, the regions outside of the spacer become silicide, almost to the sapphire interface; this tends to reduce Rg and Rp.

![Cross sectional diagram of a thin-film SOS MOSFET with self-aligned ohmic contacts and a silicide gate](image)

The enhancement mode devices have Vd around 0.7 V for the NMOS and -0.9 V for the PMOS. Various gate lengths were fabricated on the same wafer using the same doping profile; thus, the devices were not optimized for a specific gate length. The digital SOS MOSFETs with the silicide/polysilicon gate tend to have high gate resistance which reduces the power gain and increases the noise at microwave frequencies; however, Rp can be reduced with an Al overlay.3

An important feature of the thin-film SOS technology is the high fT of the PMOS as compared to that of bulk Si or other SOI technologies. The enhancement is believed to result from the strain due to the silicon/sapphire interface which splits the valence band degeneracy and reduces the hole effective mass. As a consequence, the hole mobility is increased.5,6,7
Microwave Characterization

For microwave characterization, standard n- and p-channel digital MOSFETs were fabricated with co-planar microwave pads which can be probed with 100 µm pitch co-planar microwave probes. These microwave devices were fabricated side-by-side with LSI digital circuits such as CMOS 16 x 16 multipliers and memory circuits, demonstrating the possibility of this technology for low-power combined microwave and digital ICs. The s-parameters were measured with a HP 8510B network analyzer from 1 to 40 GHz. Typical h21 and MAGMAG plots which were used to obtain the figures-of-merit are shown in fig. 2a and 2b. The low pad parasitic capacitance of the sapphire substrate does not significantly degrade the measured results; thus, de-embedding the pad parasitics to determine the device performance (as used in bulk Si, SIMOX, and BESOI) is not required for SOS.

Table 1 lists the as-measured performance of the devices. In thin-film SOS technology, with the 0.5 µm optically defined gate, the f1 for the PMOS is 21 GHz, which is close to the 22 GHz f1 for the NMOS. The measured Lg_eff of the PMOS is 0.3 µm while the measured Lg_eff for the NMOS is 0.35 µm. The high performance of the PMOS raises the possibility of high-speed, low-voltage, and high-efficiency class A/B or class B power amplifiers.

Gain (dB)

Gain (dB)

Frequency (GHz)

Fig. 2: Measured h21 and MAGMAG is shown for a) Lg = 0.5 mm (drawn) PMOS b) Lg = 0.7 mm (drawn) NMOS

The f1 vs. Lg_eff is plotted for both types of devices in fig. 3. For saturated carrier velocities, simple analysis predicts a L^{-1.4} scaling for f1 vs. Lg_eff. For non-saturated carrier velocities, the gradual channel model predicts a L^{-0.2} trend. The f1 vs. Lg_eff for the NMOS behaves as L^{-1.4} which implies that the carrier velocities are largely saturated. On the other hand, the f1 vs. Lg_eff for the PMOS shows an L^{-1.3} trend. This implies that the carrier velocity in the PMOS is saturated for only part of the channel length. Since the hole velocity saturates at a higher electric field than for electrons, a shorter gate length is needed for the PMOS to exhibit strong saturation effects. These results indicate that thin-film SOS CMOS is capable of achieving significant microwave performance with sub-micron gates.

<table>
<thead>
<tr>
<th>Device</th>
<th>Lg (um)</th>
<th>Vgs (V)</th>
<th>Vds (V)</th>
<th>f1 (GHz)</th>
<th>fmax (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>0.9</td>
<td>2.5</td>
<td>2.5</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>NMOS</td>
<td>0.7</td>
<td>3.5</td>
<td>3.5</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>NMOS</td>
<td>1.0</td>
<td>3.0</td>
<td>3.0</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>PMOS</td>
<td>0.5</td>
<td>-4.0</td>
<td>-3.0</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>PMOS</td>
<td>0.7</td>
<td>-4.0</td>
<td>-3.0</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>PMOS</td>
<td>1.0</td>
<td>-4.0</td>
<td>-2.0</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 1: Measured f1, fmax, and bias for the digital NMOS & PMOS

Microwave Modeling

The measured device s-parameters were fitted to the small signal model shown in fig. 4 with the aid of EEEsoft's LIBRA. Due to the insulating properties of sapphire, the SOS MOSFET small signal model is the same as for GaAs MESFETs on semi-insulating GaAs. Open pad patterns without the device were measured to determine the values of the pad parasitic capacitance for the small signal model and to verify that the parasitic capacitance does not significantly affect the as-measured f1 and fmax. The models were derived from measurements at biases for maximum f1 and fmax as listed in table 1.

The typical fits achieved between the small signal model and the measured s-parameter data are illustrated in figs. 5a and 5b. Table 2 contains the extracted parameters for the NMOS and the PMOS for various gate lengths. Due to the self-aligned silicide process, Rg and Rg are quite low for all the devices at 0.1 ohms-mm. Due to the insulating properties of sapphire and the shielding properties of the inverted thin-film Si, the feedback capacitance, Cgs, is quite small. Cgs does not scale with gate length and differences among the measurements are due to the various Vgs and Vds values used in biasing the device.

The variations of the parameters Cgs, Rgs, Tau, & gm as Lg_eff is changed are plotted in figs. 6a and 6b. Both Cgs and the gm delay, Tau, scale as L^{-1} for both the NMOS and the PMOS. Rgs vs. Lg_eff scales with L for both device types. Rg for the PMOS (average Rg of 5.5 ohms/square) is close to the Rg for the NMOS (6.3 ohms/square).

Under the gradual channel model, gm vs. Lg_eff scales as L^{-1}. For the saturated velocity model, gm is constant. In the NMOS, there is a weak scaling of gm with inverse L which suggests that the majority of
the channel is in the carrier velocity saturation regime as suggested by the \(f_t \) vs. \(L_{g_{\text{eff}}} \) results. In the PMOS case, \(g_{m} \) vs. \(L_{g_{\text{eff}}} \) scales as \(L_{g_{\text{eff}}}^{-1} \), where \(\gamma \) is less than 1 but higher then for the n-channel MOSFET which suggests that a smaller part of the channel is in the velocity saturation region. The PMOS results are consistent with the \(f_t \) vs. \(L_{g_{\text{eff}}} \) results. It is expected that the PMOS will eventually follow the NMOS trend as the gate length continues to shrink since the hole velocity will saturate at higher electric fields obtained with shorter gates at constant drain bias.

The high \(R_g \) of the digital MOSFETs with the silicide gate limits the microwave gain, \(f_{\text{max}} \). Fortunately, the gate resistance in the digital process can be reduced with an Al overlay on the gate silicide. Small signal modeling showed that the Al overlay would (by reducing \(R_g \) by a factor of 10 or more) result in an increase of \(f_{\text{max}} \) to around 40 GHz as shown in fig. 7. These results show that digital devices with high \(f_t \) can also achieve high \(f_{\text{max}} \) with the Al overlay.

Fig. 4: Small signal MOSFET model (with pad parasitics)

Fig. 5: Measured data vs. small signal model for a 0.5 mm NMOS a) \(S_{11} \) and \(S_{22} \), b) \(S_{12} \) and \(S_{21} \)

<table>
<thead>
<tr>
<th>NMOS 1.0 (\mu)m</th>
<th>NMOS 0.7 (\mu)m</th>
<th>NMOS 0.5 (\mu)m</th>
<th>PMOS 1.0 (\mu)m</th>
<th>PMOS 0.7 (\mu)m</th>
<th>PMOS 0.5 (\mu)m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_g)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>(R_g)</td>
<td>96</td>
<td>130</td>
<td>236</td>
<td>90</td>
<td>107</td>
</tr>
<tr>
<td>(C_{gs})</td>
<td>44</td>
<td>30</td>
<td>20</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>(R_t)</td>
<td>65</td>
<td>70</td>
<td>79</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>(C_{os})</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>(R_b)</td>
<td>2200</td>
<td>1100</td>
<td>490</td>
<td>1580</td>
<td>670</td>
</tr>
<tr>
<td>(C_{ds})</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>(R_{d})</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(L_{d})</td>
<td>86</td>
<td>55</td>
<td>40</td>
<td>85</td>
<td>62</td>
</tr>
<tr>
<td>(g_m)</td>
<td>3.27</td>
<td>4.15</td>
<td>4.7</td>
<td>2.11</td>
<td>2.96</td>
</tr>
<tr>
<td>(\tau)</td>
<td>1.98</td>
<td>1.64</td>
<td>1</td>
<td>2.25</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Small signal model parameters extracted from the measured results

Thin-Film SOS Comparison

The \(f_t \) values obtained by the digital thin-film SOS devices are compared to the state-of-the-art in Si and III-V FETS in fig. 8. The digital thin-film SOS devices with optically defined gates have performance similar to the microwave thin-film SOS devices fabricated with electron-beam lithography. For the n-channel device, the state-of-the-art microwave SIMOX process (MICROX) results in a \(f_t \) of 23.6 GHz based on a gate length of 0.25 \(\mu \)m. The \(f_t \) is similar to the results obtained with the SOS process; however, the gate length in the MICROX device is smaller. In comparison with the state-of-the-art bulk Si devices, the \(f_t \) of the thin-film SOS devices is lower due to the reduced electron mobility in SOS films; however, the comparison in performance is complicated by the fact that the bulk Si results are de-embedded and the SOS results are not de-embedded. Furthermore, the thin-film digital SOS MOSFET oxide thickness is not optimized for a specific gate length and is significantly thicker than that of the other devices especially at short gate lengths. The \(f_t \) of the thin-film SOS and bulk Si NMOS scale as \(L_{g_{\text{eff}}}^{-1} \). The Si \(f_t \)'s are lower than the state-of-the-art III-V n-channel FET results.
In bulk Si, the PMOS devices have significantly lower f_t's than the n-channel counterparts for the same gate length. In thin-film SOS (both the digital and microwave), the PMOS have f_t's that approach the NMOS for short gate lengths of 0.4 μm or less. As compared to MICROX, f_t for a 0.25 μm L_g PMOS is 9.2 GHz which is lower than the thin-film SOS results. The f_t of the thin-film PMOS is significantly higher than that of the either bulk Si or other SOI PMOS. The f_t vs. L_g vs. f_t of both the bulk Si PMOS and the thin-film SOS PMOS have the same slope.

Like Si, GaAs, the sapphire substrate used in SOS has many advantages for MMIC applications. For power devices, both wafers have similar thermal conductivity (0.42 W/cm°C for sapphire and 0.46 W/cm°C for GaAs). Sapphire has slightly lower dielectric constant (9.3 to 11.5 versus 13.1 for GaAs). Although microstrip transmission lines are difficult to form on sapphire due to the difficulty in etching back-side vias, co-planar transmission lines can be used, which do not require back side vias and wafer thinning. Both substrates should be able to yield high-Q and low-loss passive elements such as capacitors, inductors, and transmission lines. The large sapphire wafers (6 inches) can also potentially increase the throughput.

Conclusion

The measured and modeled results show that thin-film silicon on sapphire technology has achieved both n and p-channel devices capable of high microwave gain, with $f_t > 20$ GHz for optically defined gates. Small-signal models similar to those for GaAs FETs provide an accurate description of the SOS MOSFET characteristics. It is expected that the formation of an optically defined T-gate (by an Al overlay on the silicide/polyinterconnect gate) can significantly improve f_{max} and extend the frequency range of application. The sapphire substrates exhibit excellent microwave characteristics as compared to either bulk Si or many SOI substrates, and can utilize the same co-planar structures typically used in III-V MMICs. High performance NMOS combined with high performance PMOS in thin-film SOS technology can potentially lead to high-speed & high-efficiency power amplifiers as well as other high-speed and low-power microwave circuits. With thick-film SOS, microwave circuits can be fabricated using a proven low-power and high-speed digital LSI technology. This combination of features may be valuable in high-volume and low-cost portable communication applications.

Acknowledgments

The authors would like to acknowledge B. Oford, J. Ruthberg, G. Kelley, and members of the NRRD Microwaves Lab for their assistance in this work. This work was supported by the ONR 6.2 Microelectronics Block at NCCSC RDTE DIV.

References

2. K. Lee, R. Yan, D. Jeon, Y. Kim et al., "0.1 μm p-channel MOSFET with 51 GHz f_t," IEDM Technical Digest, 1992, pg. 1012.

