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Abstract. This investigations applies evolutionary search to the cascade-correlation learning network.
Evolutionary search is used to find both the input weights and input connectivity of candidate hidden
_units. A time-series prediction example is used to demonstrate the capabilities of the proposed approach.

Keywords. Evolutionary Search, Cascade-Correlation Learning Architecture, Time-Series Models,
Neural Networks.

1 Introduction

Time-series forecasting is concerned with making future predictions about a process based on its
past behavior. Real applications exist in many fields including economics, engineering, and
science. Since linear time-series models are not always appropriate when attempting to model an
unknown system, a multitude of nonlinear modeling techniques have been proposed (e.g., Casdagli
and Eubank, 1992). For example, artificial neural networks are one common clhss of nonlinear
time-series models as discussed by Cichocki and Unbehauen (1994). However, one drawback with
applying a purely nonlinear modeling approach to an unknown system is that a linear process may
not be easily represented in a nonlinear model (Weigend and Gershenfeld, 1993). The cascade-
correlation learning architecture (CCLA) developed by Fahlman and Lebiere (1990) represents a
modeling approach which accommodates both linear and nonlinear structure within a single model.
The presented work discusses how evolutionary search can be used for generating traditional
CCLAs as well as pruned CCLAs. The benefits of pruning the CCLA during construction are
realized in a parsimonious model with potentially better generalization capabilities.

The present investigation is concerned only with auto-regressive (AR) type models. A
linear AR model for next-step predictions is given by

M
#(k)=Y ax(k—i)+e(k)

=1

where M is the order of the AR model, a represents the coefficient associated with each tapped-
delay, and e is the forcing function or a white noise term. Evolutionary search has been previously
applied by D. Fogel (1991) for determining both the model order and coefficients of linear time-
series models. A predictive, nonlinear AR model is described by
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Figure 1. The cascade-correlation network structure. The boxes O indicate weights which are frozen
when the unit is incorporated into the network. The crosses X indicate weights which are modified after a

new hidden unit is incorporated.
) .

k)= f(x(k=1),..., x(k — M) +e(k)

where f{ ) is the nonlinear mapping. The present investigation is concerned with the combined
linear+nonlinear AR model

M N | :
i)=Y ax(k—i)+ Y b,f,(x(k—1),....x(k — M) +e(k)

i=1 j=1

which may incorporate more than one nonlinear component. This is the essence of the CCLA.

2 The Cascade-Correlation Learning Architecture

The cascade-correlation learning algorithm was introduced by Fahlman and Lebiere (1990) as a
means of automatically constructing feedforward networks by adding hidden units until a desired
mapping is achieved. The network is initialized with only the input units mapped directly to the
output units. New hidden units are added on an individual basis (one-by-one) into the network
until a termination criterion is met. Each new hidden unit is selected from a pool of candidate units
and is incorporated into the network with its input weights frozen. Using a pool of candidate units
increases the likelihood of finding a good hidden unit by reducing the susceptibility to poor initial
conditions. The goal of each candidate unit in the population pool is to maximize the correlation
between its output and the residual output error of the network. This is the correlation aspect of
the cascade-correlation algorithm. Each newly incorporated hidden unit is connected to all input




and previously generated hidden units in the network as shown in Figure 1. Likewise, each newly
incorporated hidden unit is also fully-connected to all of the output units. After each hidden unit is
inserted into the network, training takes place on the output layer weights with the hidden unit
weights remaining fixed.

3 Evolutionary search

Evolutionary search algorithms are based on the paradigm of natural evolution as an optimization
technique. Evolutionary algorithms (EAs) encompass a variety of multi-agent stochastic search
techniques including evolutionary programming (L. Fogel et al., 1966; D. Fogel, 1991; D. Fogel,
1992), evolution strategies (Schwefel, 1981; Bidck and Schwefel, 1993), and genetic algorithms
(Goldberg, 1989; Holland, 1992). The presented work employs a modified version of evolutionary
programming (EP) by adding a recombination operator to the EP paradigm. The resultant
algorithm is very similar to an evolution strategy (ES). A general evolutionary search algorithm is
given in Figure 2.

In 1958, Brooks described a creeping random method where k points were generated via
Gaussian perturbations about a search point. The best point was kept and the process repeated.
Brooks (1958) observed that "there are some rather intriguing analogies that can be made between
the creeping random method and evolution." This analogy was also apparent to L. Fogel et al.
(1966) who applied a random search strategy termed evolutionary programming (EP) to the
optimization of finite state machines. More recently, D. Fogel (1991; 1992) has extended the EP
paradigm to address combinatorial and real-valued function optimization problems as well as
applied it to a variety of problems in system identification and control.

evolutionary search procedure

begin

k=0

initialize parent population P(k)

evaluate P(k)

do {
generate offspring O(k) from P(k)
evaluate O(k)
select P(k+1) from {P(k) U O(k)}
k=k+1

} while (terminate condition not met)

end

Figure 2. An evolutionary search algorithm.




4 Neural network complexity

Parsimonious networks are less susceptible to overfitting a sample data set and thereby usually
result in neural networks with better generalization capabilities. Techniques employed for
generating parsimonious structures include increasing network size by the addition of hidden
units/layers or pruning an oversized, trained network to yield a smaller network. The CCLA falls
into the former class of approaches. Since it is desirable to construct parsimonious architectures, a
cost or objective function is formulated which incorporates both system performance and model
complexity.

The common form of such a risk function is given by Haykin (1994) as
R(w)=E{w)+\E(w) where E is the standard performance measure, E,, is the complexity penalty,
and A is the regularization parameter. The standard performance measure is usually the sum-
squared error. As noted by Haykin (1994), there exists a similarity between the risk function R(w)
and the composition of statistically derived complexity terms like the minimum description length
(MDL) complexity criterion formulated by Rissanen (1986). Initially, A=0 so that performance is
not sacrificed at the expense of complexity. The regularization parameter A may be adapted during
the training process using a technique described by Weigend et al. (1992).

5 Evolving cascade-correlation architectures

,

Evolving the weights and connectivity structure of a population of candidate hidden units in a
cascade-correlation network is computationally less demanding than evolving the weights and
connectivity of a population of neural networks. A valid criticism of this approach is that in
exchange for these computational savings, one is solving only small parts of a large problem and
thereby reducing the benefits associated with using global search methods .on large scale
optimization problems. However, the combinatorial optimization capabilities ‘of evolutionary
algorithms are beneficial when determining the input weights and connections of the candidate
nodes.

A population of candidate hidden units is randomly initialized with full connectivity as in
the standard CCLA. The same optimization objective (the absolute value of the covariance
between the hidden unit and the residual error) used to train CCLA units is employed to represent
the fitness of each candidate node

(@)=,

where zp represents the output of each candidate node for pattern p and e is the residual error as
measured at the network's output unit 0. The weight vector for each candidate unit is modified
using standard EP (D. Fogel, 1991)

W), =w,, ++/SF 1 5(a;) - N(0,1)

where Sf represents the arbitrarily selected scaling factor. Recombination takes place according to

Y (@, ~T)e,, -E,)




W, =W, +o(w, —w,)

where the indices and scaling coefficient are selected at random such that i,je {I,..,u/, i# j, and
o~U(0,1). Selection is deterministic so that a new parent set is formed from the best 4 members of
the set comprised of the original parents, the mutated offspring, and the recombined offspring.
After an arbitrary number of generations, the best candidate unit is inserted into the network.

The objective function which incorporates the unit's complexity is formulated using the
standard CCLA performance measure S(a;) in the risk function R(w). Thus the complexity cost
retains the general form of the risk function and is given by

®(a;))=-S(a;,)+AE_, (w,k)

where E_ y(w,k) represents the complexity cost for N samples and k parameters. The MDL
complexity term E, p(w,k)=0.5-klogN was employed since the connections are strongly specified.
The variable complexity regularization parameter A is tied to the risk ® of the best candidate node
in the population at each generation. No degree of optimality is implied by the given formulation
of ®(a;). Although not yet implemented, a reasonable stopping criterion would be to test the
current model performance and the newly generated model performance on a validation set. When
the current model has superior performance to the newly created model, training is stopped and no
more units are added. ~

All candidate nodes are initially fully connected. Diversity is introduced in the mutation
step of the algorithm by randomly selecting an input connection to a candidate node and flipping its
bit (i.e., 1—0 or 0—1). Recombination of the connectivity arrays is limited to the bitwise logical
'AND' and 'OR' operators as illustrated in Figure 3. The AND operation reinforces common
connectivity structures while the OR operation retains any connectivity which exists between two
randomly selected candidate nodes. Structural modifications occur less frequently than weight
perturbations as suggested by Yao (1993) who advises that different time-scales should be applied
at different levels of evolution. That is, variable connectivity should be considered a larger
evolutionary step and occur less frequently than a smaller evolutionary step such as weight
perturbations.

The output weights are found deterministically. The optimal (in a least-squares sense)
output weight set is determined using the pseudoinverse. Iterative deterministic methods such as
the LMS rule are also appropriate for determining the weights from the hidden units to the output
units,

Parent Node 1 Operation Parent Node 2 Offspring
[1111 0010] AND [1110 0110] - [1110 0010]
(1111 0010] OR {1110 0110} - (1111 0110]

Figure 3. Bitwise logical operations applied to the candidate node connectivity strings.




6 A Time-Series Modeling Example

Evolutionary learning was applied to the CCLA in an effort to model the sunspot time-series data
set. This data set has served as a benchmark for a variety of statistical and neural network models.
The average relative sunspot number represents a daily mean value taken from up to fifty
observing stations throughout the world. The sunspot data set is typically broken down into a
training set (years 1700-1920) and two test sets (years 1921-1955 and 1956-1979). This
distinction results from the different statistical characteristics between the two test sets. The
normalized MSE (NMSE) is used to evaluate the performance of the model which generates next
step predictions. The NMSE is given by

N

2()’;"5’:’)2

NMSE=+——

2()’;"’?)2

=1

where yis the single-step prediction and yis the mean of the target values. An NMSE=1 implies
that the estimate is just the average of the target values. For the sunspot data set, the NMSE is
referenced as the MSE of each data segment scaled by the variance of the full data set

1 < .
NMSE =——-3 (,=5,)

S e

Pruning was not employed in the initial CCLA-EP experiment which consisted of 100
parents (candidate nodes) and 100 evolutionary training iterations. The experiment was arbitrarily
stopped after the addition of three hidden units. We note that as additional hidden units are added,
the performance of each model on a validation set could be used as a termination criterion. This
idea is easily implemented since a new model is built on the existent one. Table 1 shows that the
performance of the relatively more complex model (as demonstrated by the higher number of
parameters) is comparable to results generated using regularization techniques in other
investigations.

The next set of CCLA-EP experiments incorporated pruning during network construction
and consisted of 50 parents with 100 evolutionary training cycles. Training was arbitrarily
stopped after four hidden units were added. Again, a validation set could have been used as a
stopping criterion. For the pruned network, good generalization occurs on both test sets with
roughly half as many parameters as the unpruned CCLA-EP network as given in Table 1. Figure
4 shows the test and training results for the CCLA with complexity regularization.




Table 1. NMSE Performance and complexity of various sunspot models.

NMSE Train: | NMSE Test: | NMSE Test: No. of
1700-1920 1921-1955 1956-1979 parameters

Tong & Lim (1980) 0.097 0.097 0.28 16
Weigend et al. (1992) 0.082 0.086 0.35 43

Svarer et al. (1993) 0.090 0.082 0.35 12-16
Deco et al. (1994) 0.091 0.087 0.32 n/a
CCLA-EP 0.084 0.082 0.36 58

(3 hid. nodes, not pruned)
CCLA-EP 0.094 0.083 0.25 27*
(4 hid. nodes, pruned)

* 25 if output units are pruned. See text.

The linear (AR) portion of the model describes most of the dynamics of the sunspot series.
The linear model is augmented by the nonlinear (sigmoidal) components of the CCLA as shown in
Figure 5. The weights corresponding to the pruned architecture are given in Table 2. The 10 year
difference between the x(k-2) and x(k-12) inputs to the first hidden unit corresponds with the cycle
of maximum power spectral content for the first 280 years (1700-1979). More recent observations
(1980-1987) of sunspot activity indicates that the maximum power spectral content corresponds to
an 11 year cycle for the first 288 years (1700-1987).

Additional pruning may take place on the output vector. For example, zeroing out the two
smallest output weights listed in Table 2 yields the same performance values given in Table 1 and
reduces the model complexity to 25 parameters.

7 Conclusion

Pruned cascade-correlation learning architectures represent a combined linear+nonlinear time-
series modeling technique with potentially better generalization capabilities. Evolutionary search is
appropriate for simultaneously determining both hidden unit input structure and weights. The
reader is cautioned not to draw any statistical conclusions for the presented example since Marple
(1987) points out that time-series models "from short data records is a difficult problem in
general." Additionally, the shift in the maximum power spectral energy content cycle observed for
the example data set implies a time-invariance which is not addressed with the proposed modeling
approach.
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Figure 4. Results of the pruned, 4 hidden node CCLA with evolutionary learning.
(a) An approximation of the sunspot data over the years 1712-1979 and
(b) the magnitude of the residual error for each year.
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Figure 5. The relative contributions of the linear portion and each nonlinear
component of the pruned CCLA. The hidden units are designated by HU and the
order in which they were incorporated. |

Table 2. The hidden unit and output weights for the pruned CCLA sunspot model.

HU Wts x(k-2) x(k-8) x(k-11) x(k-12) HU1 HU2 HU3
HU1 11.318 - - -34.448 - - -
HU2 - - 25.289 -13.869 - - -
HU3 12.231 - - - 8.719 -
HU4 - 22.981 - - -8.998 -11.681 -

Output bias x(k-1) xX(k-2) x(k-3) x(k-4) x(k-3) x(k-6) x(k-7)
Wits 0.0524 -0.086 0.171 -0.062 0.129 -0.001 0.028 0.001

x(k-8) x(k-9) xk-10) | x(k-11) | x(k-12) HU1 HU2 HU3 HU4

-0.052 0.143 -0.159 -0.247 0.878 -0.103 -0.091 0.027 -0.029
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