AN AUTOMATED COST UNCERTAINTY PROGRAM

THESIS

DALE N. FLETCHER
GM-13

AFIT/GCA/LAS/94S-4

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
AN AUTOMATED COST UNCERTAINTY PROGRAM

THESIS

DALE N. FLETCHER
GM-13

AFIT/GCA/LAS/94S-4

Approved for public release; distribution unlimited
"The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U. S. Government."
AN AUTOMATED COST UNCERTAINTY PROGRAM

THESIS

Presented to the Faculty of the Graduate School of Logistics and Acquisition Management of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Cost Analysis

Dale N. Fletcher, B.S.
GM-13

September 1994

Approved for public release; distribution unlimited
Acknowledgements

I wish to thank MAJ Wendell Simpson and LTC Carl Templin, my thesis advisors for their guidance, assistance, encouragement and most of all their patience throughout this research effort. A special thanks to Dr. Dave Barr and Prof. Dan Reynolds for supplying their expertise in statistics and computer programming. I would also like to thank the 94 GCA class for their support. Most importantly, I would like to thank my wife Denise for her presence and understanding.

Dale N. Fletcher
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>General Issue</td>
<td>1</td>
</tr>
<tr>
<td>Specific Problem</td>
<td>4</td>
</tr>
<tr>
<td>Research Objective</td>
<td>5</td>
</tr>
<tr>
<td>II. Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>Overview</td>
<td>7</td>
</tr>
<tr>
<td>Simulation Methods</td>
<td>7</td>
</tr>
<tr>
<td>Heuristic Methods</td>
<td>8</td>
</tr>
<tr>
<td>III. Methodology</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>Software Design</td>
<td>10</td>
</tr>
<tr>
<td>Analysis</td>
<td>11</td>
</tr>
<tr>
<td>FunctionalSpecification</td>
<td>11</td>
</tr>
<tr>
<td>Design</td>
<td>16</td>
</tr>
<tr>
<td>Implementation</td>
<td>16</td>
</tr>
<tr>
<td>Validation and Verification</td>
<td>19</td>
</tr>
<tr>
<td>Evolution</td>
<td>22</td>
</tr>
<tr>
<td>IV. Program Design</td>
<td>23</td>
</tr>
<tr>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>Program Structure</td>
<td>23</td>
</tr>
<tr>
<td>File Management</td>
<td>24</td>
</tr>
<tr>
<td>Cost Uncertainty Analysis</td>
<td>25</td>
</tr>
<tr>
<td>Query Function</td>
<td>34</td>
</tr>
<tr>
<td>V. Conclusion</td>
<td>35</td>
</tr>
<tr>
<td>Summary</td>
<td>35</td>
</tr>
<tr>
<td>Areas for Future Research</td>
<td>35</td>
</tr>
<tr>
<td>Appendix A: User's Guide</td>
<td>37</td>
</tr>
<tr>
<td>Appendix B: Source Code</td>
<td>54</td>
</tr>
<tr>
<td>Appendix C: Test Cases</td>
<td>92</td>
</tr>
<tr>
<td>Bibliography</td>
<td>103</td>
</tr>
<tr>
<td>Vita</td>
<td>106</td>
</tr>
</tbody>
</table>

iii
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Correlation Consistency Checking</td>
<td>15</td>
</tr>
<tr>
<td>2.</td>
<td>Program Data Flow</td>
<td>17</td>
</tr>
</tbody>
</table>
Abstract

The purpose of this research was to develop a menu driven, computer program that implemented heuristic methodologies for cost uncertainty analysis.

Cost uncertainties have been quantified using either simulation techniques or through heuristic means. Simulation techniques require time to run the required number of iterations. Current computer based heuristic methods do not check correlation matrices for consistency nor do they enable the analyst to perform queries.

This research resulted in the development of an automated heuristic cost uncertainty program which alleviates the limitations of current computer programs. The program contains a file editor for creating and modifying data files, a cost uncertainty module for computing decile level total system cost probabilities and a query function.

The FORTRAN computer program is completely menu driven for ease of use.
AN AUTOMATED COST UNCERTAINTY PROGRAM

I. Introduction

General Issue

The cost of weapon systems is estimated utilizing various techniques and/or methodologies. Parametric equations, analogous systems, and engineering estimates are common types of techniques employed (21:12). The estimates obtained from these techniques yield a singular value or point estimate. Garvey defines the point estimate as the cost derived for an element in the work breakdown structure which excludes the effect of uncertainties in the element’s technical definition or cost estimation methodology (1:2;14:165). Typically these cost estimates do not assign nor address a level of confidence which can be placed in these values. By accepting these point estimates as the expected cost of a system, we are inferring an accuracy in these values that may not be warranted (21:1). As a result, the cost uncertainty accompanying these point estimates is ignored.

Weapon systems have exceeded their estimated values as a result of variations in system configuration, changes in quantities, unstable program schedules and fluctuations in labor and material costs (21:9). These factors are of major concern to cost analysts for it is within these areas that the majority of the program’s uncertainty can be found.
(8:1). These uncertainties often manifest themselves as negative impacts to a weapon system’s cost.

The major sources of uncertainty can be grouped into two broad categories. These categories are: requirements uncertainty and cost-estimating uncertainty (12:1). Requirements uncertainty originates from changes in a system’s specified configuration. System configuration denotes deviations from original specifications or assumptions regarding hardware characteristics and/or system operational concepts. Cost estimating uncertainty refers to variations in cost estimates of a system when the configuration of the system remains constant (8:1). It originates from errors in cost models and methodologies, technical definition uncertainties, economic uncertainties and uncertainties in the data (11:4;16:2-9).

At best, an estimate represents a snapshot of what the cost of a system would be if all the assumptions upon which it is based were simultaneously realized (16:9). Cost, however, is a variable quantity that depends upon a set of conditions, any of which can change over the life cycle of the system. To answer the question: What is the chance that a particular estimate is likely to be exceeded?, it is helpful to present an estimate as a probability distribution. This approach permits random variation to operate in the variables that determine a system’s cost estimate.
A work breakdown structure (WBS) is a hierarchical system of subordinate-level cost elements that are directly related to activities that define a project under development or production (23:13). There exists a distribution of cost for each WBS cost element. Each cost element has an associated probability density function (PDF) encompassing its true estimated cost (14:163). The probability density function represents the distribution of probability for an event occurrence (26:6). The area under the curve defined by an element’s PDF will equal one (30:1). Cost uncertainty analysis is applied to cost estimates through the cost element WBS.

The primary output or goal of cost uncertainty analysis is the probability distribution of total system cost. This is known as the cumulative probability distribution (16:12). It is formulated by accumulating the input probabilities (30:2). The cumulative probability distribution depicts the set of all possible outcomes for a specified degree of random variation in the cost of individual elements (16:12). Generating the cumulative probability distribution of total system cost provides important insights into issues such as: determining the change and the amount that a point estimate is likely to be exceeded, and isolating the cost variance drivers and contributing factors that account for the build-up of uncertainty (16:14). Generating the total system cost depends however, on the assumptions regarding the shape of
the individual cost element distributions as well as their interdependencies (26:6).

Cost uncertainties can be quantified either through heuristic means or by way of simulation (23:2). The most notable of the simulation approaches is the Monte Carlo technique. This method has been used extensively to simulate cost (32:VII-11) or schedule uncertainties (34:66-70). However, simulation techniques in general can become quite expensive with respect to the amount of resources required. This is due primarily to the computational time necessary to run the specified number of iterations (30-3).

Heuristic methods have been proposed as an alternative to simulation. Analytical methods assume a distribution for total system cost rather than the empirical approximation employed by Monte Carlo Simulation. One such method, developed by Phillip Young, is the Formal Risk Assessment of System Cost Estimates (FRISK) which employs a heuristic approach in estimating a system's cost risk (1). The most advanced of these analytical models is Paul Garvey and Audrey Taub's method for estimating cost and schedule uncertainties using joint probability distributions (15).

Specific Problem

At present, most heuristic methods for estimating cost uncertainty require a cost analyst to create their own implementation. For the more sophisticated models, the user must not only have the time to perform the tedious calculations but must also be fully versed in both
statistics and calculus and must have access to a mathematical solver like Mathcad® or Mathematica®. Existing computer based implementations of heuristic methods such as FRISK, are not complete in that they assume a consistent correlation matrix (37). In addition, these software programs do not allow the analyst to perform queries. As a result, these alternatives to Monte Carlo simulation are restrictive in their capabilities.

Research Objective

The goal of this research is to develop a menu driven, computer program which will implement heuristic methodologies for cost uncertainty analysis. It is primarily because of the speed with which heuristic methodologies perform probability computations that this research has settled on developing an automated heuristic cost uncertainty model. This effort has centered around alleviating the limitations of current computer programs by instituting correlation consistency checking and incorporating a query capability. The following objectives will be accomplished in order to address the previously mentioned problem:

1. Identify and assess the usefulness of the different uncertainty methodologies as well as the different computer models currently available to the analyst.

2. Determine recommended approaches to designing software.
3. Develop a menu driven computer program which employs the heuristic approach in performing cost uncertainty analysis.

The model, titled the Automated Cost Uncertainty Program (ACUP), seeks to build on the tools and techniques already available to the analyst. ACUP incorporates the attributes of the previously mentioned models and adds the normal and lognormal distributions as added options for cost element input distributions. In addition to expanding the types of input distributions, the model incorporates a consistency check of the correlation matrix and provides the analyst with the added capability of querying the model for a probability given a cost estimate or alternatively, computing a cost requirement given a specific probability level.

Chapter two of this paper will cover the first objective. A review of uncertainty in cost analysis and current techniques and models will be accomplished.

Chapter three will review a recommended approach to designing computer software. Chapter four presents the program’s design including a discussion of the algorithms.

Chapter five concludes this paper with a summary and an area for further study.
II. Literature Review

Overview

This chapter will present an overview of cost uncertainty analysis techniques. These techniques may be divided into two categories: simulation and heuristic (30:2).

Simulation Methods

Simulation methods generally use the Monte Carlo method to derive the total cost distribution by sampling the input distributions and then using convolution to obtain the shape of the total cost distribution. Convolution is a mathematical method of summing two or more statistically independent probability density functions (26:21).

The initial step in the simulation process requires the analyst to specify a probability distribution for each cost element. Most simulation programs provide the user with various choices of possible distributions. The Normal, Lognormal, Exponential and Weibull are examples of the types of distributions available (22:158-168). This method for obtaining the total cost distribution is straightforward when the cost elements to be simulated are independent. Each cost element realization is generated as a random draw from its specified distribution. This procedure is repeated typically 500 to 1,000 times in order to obtain a sample from the unknown distribution of cost (32:VII-11). After all cost elements have been generated, they are then
summed to obtain a single realization for the total cost (23:24-25). The frequency distribution of these outcomes is an approximation of the distribution of the cost of the total system (32:VII-11). However, the lack of an acceptable method for generating correlated, non-normal random variables with bounded domains (such as the Beta and Triangular distributions) is one major drawback (23:25).

Monte Carlo simulation has been established as an accurate method for cost uncertainty analysis. The advantage of the simulation method is that it allows more realism in the analysis (32:VII-11). The technique is accurate in that the total cost probability distribution function produced by a simulation is a close approximation of the 'true' total cost distribution (30:3). Performing a Monte Carlo simulation however, can be expensive with respect to the time required to conduct the simulation. Another drawback to performing simulations is the lack of an acceptable method for generating correlated non-normal random variables (23:25).

Heuristic Methods

Two representative heuristic models are Abramson and Young's Formal Risk Evaluation Methodology (FRISKEM) model and Garvey's Analytical Cost Probability (ACOP) model (1;14). Both of these models were developed as alternatives to simulation methods. The FRISKEM model does not allow the analyst to employ any distribution shapes other than triangular. The model assumes all lower level WBS cost
element distributions can be characterized by the same cost distribution shape. FRISKEM also assumes the total cost distribution is lognormally distributed (1). Alternatively, the ACOP model is flexible enough to accommodate all types of lower level cost element distributions (14). In contrast to FRISKEM, the ACOP model assumes the total cost distribution is normally distributed (14:167). Simpson and Grant investigated how the shape (normal or lognormal) of the total cost distribution impacts the total system cost. They showed that for uncertainty analyses containing more than ten cost elements, the normal distribution models the total cost distribution reasonably accurately (30:7-16).

Both the FRISKEM and ACOP models accomplish quantification of dependencies among cost elements by incorporating a correlation matrix (1:14). However, the responsibility of assuring consistency among the pair-wise correlation values between lower level cost elements is left to the analyst.

The principle advantage to using an analytical technique is the rapidity with which this method derives its computations. Heuristic techniques on the other hand have been characterized as having one major deficiency in that the total cost distribution shape is initially assumed to be either normally or lognormally distributed (30:4).
III. Methodology

Introduction

This chapter will provide an overview of the process by which the Automated Cost Uncertainty Program (ACUP) was developed.

Software Design

Freeman and Wasserman state that increased effort in the earlier stages of software development will be reflected in a software product of high quality and more likely to fulfill the needs of its users (13:610). Emphasis was therefore placed on the initial planning of this research effort. The preliminary effort required the development of a software design methodology.

Software design is a structured process which delineates the specific phases of software development. The phases are analysis, functional specification, design, implementation, validation and evolution and are defined as follows:

Analysis - a step concerned with understanding the problem and describing the activities, data, information flow, relationships and constraints of the problem; the typical result of the analysis phase is a requirements definition;

Functional Specification - the process of going from the statement of the requirements to a description of the functions to be performed by the system to process the required data;

Design - the process of devising the internal structure of the software to provide functions specified in the previous stage, resulting in a description of the system structure, the architecture of the system components, the
algorithms to be used, and the logical data structures;

Implementation - the production of executable code that realizes the design specified in the previous stage;

Validation - the process of assuring that each phase of the development process is of acceptable quality and is an accurate transformation from the previous phase;

Evolution - the ongoing modifications (repair, adaptation to new conditions, enhancement with new functions) to a system caused by new requirements and/or the discovery of errors in the current version of the system (13:611).

Analysis. Most cost uncertainty models are based on a Monte Carlo (simulation) method and furthermore assume that all cost elements are statistically independent (26:26).

The existing automated heuristic models which allow for statistically dependent cost elements do not include correlation consistency checking nor a query capability (1).

Therefore, an automated heuristic approach which incorporates both a means of checking correlation consistency and a query function can increase the productivity of the cost uncertainty user.

Functional Specification. Cost uncertainty methodologies rely on the definition of cost distributions for each cost element (26:6). To be compatible with existing cost uncertainty methodologies, the program must utilize similar data input conventions. Typically, these conventions require each cost element be defined in terms of a range of possible costs (minimum, most likely and maximum). The minimum cost corresponds to a value that
would be realized only under the most fortuitous circumstances while the maximum value reflects a pessimistic perspective (21:13). The most likely value represents the cost element's cost mode or point estimate (32:VII-5). In addition to estimating the range of possible costs, a shape is specified that describes the probability distribution of cost within the range of possible values (16:12). These distribution shapes can range from the simplistic uniform to the flexible beta (22).

Five cost element distribution shapes were chosen as allowable inputs to the program. The shapes selected were the uniform, triangular, beta, normal and lognormal distributions. The uniform distribution is appropriate in situations where the analyst is completely uncertain about a given cost except that it must be between some specified minimum and maximum values. The triangular distribution can be used when a most likely value can be ascertained along with a minimum and maximum and a piecewise linear density function. The beta distribution is useful because it can take a wide variety of shapes— from negatively skewed to bell-shaped to positively skewed (32:VII-3). The normal and lognormal distributions are included as input distribution shapes because they represent more precisely uncertainty situations of symmetry and skewness respectively.

Minimum, most likely and maximum values can be used to compute the mean and variance for each cost element given any one of the previously mentioned distribution shapes.
However, in certain instances minimum and maximum values are not available. Rather, the selected distribution's mode and standard deviation are provided. The program must be able to accept data entries in the form of minimum/maximum values as well as in the form of a mode and standard deviation.

The final piece of information required by cost uncertainty models is a quantification of the dependencies among cost elements. Garvey, in his paper *A General Analytic Approach To System Cost Uncertainty Analysis*, cautions against assuming all cost elements are independent by stating:

> It is typically an oversimplification to assume that all of the engineering activities defined by the cost elements of a system are independent. Such assumptions can yield low estimates of a system's cost variance, and therefore, unrealistically small differences in cost between the tails of the probability distribution is likely to be seen (14:167).

Garvey further admonishes that, "correlation among the elements of cost can be an important contributor to the magnitude of the system cost variance (14:167)." Simpson and Grant add further credence to this position by noting the assumption of independent cost elements is difficult to defend (30:6). Therefore, in order to more accurately approximate total cost variance, the interdependencies between cost elements must be considered.

Existing cost uncertainty models allow for quantification of dependencies among cost elements in the form of a correlation matrix (1:1). However, these models do not check the correlation matrix for consistency. A
correlation matrix is considered to be consistent if the following criteria are met:
1. The correlation coefficients are consistent in sign;
2. The correlation coefficients are consistent in magnitude;
3. The cost element distribution shapes are consistent with the correlation coefficients (25:10).

Figure 1 portrays these relationships. It therefore becomes the responsibility of the user of any dependent cost uncertainty methodology, as noted by O'Hara, to specify internally consistent correlations (26:49). An erroneous total cost variance due to inconsistent correlation coefficients can be identified with the inclusion of a consistency check.

A major output of cost uncertainty analysis is the probability distribution (PDF) of total system cost (16:12). The total cost PDF provides two valuable pieces of information. A range in which the total system is likely to fall and an estimate of probabilities associated with possible values of total system cost (30:2). Generating the total cost PDF depends on the assumptions of cost dependency and the shape of the cost element distributions (26:6). Cost element dependencies can be addressed using correlation values. The availability of different input distribution types provides the analyst flexibility in the selection of
Consistency Check #1
Consistent in Sign

Permissible signs for rho (n=3)

A <-> B	A <-> C	B <-> C	
+	+	+	OK
+	+	-	NO
+	-	-	OK
-	-	-	NO

Consistency Check #2
Consistent in Sign

\[
\text{rho} = 0.95 \\
\text{rho} = 0.95 \\
\text{rho} \geq 0.8
\]

Consistency Check #3
Consistent in Sign

Rho between A and B is 0.95

Figure 1. Correlation Consistency Checking
an appropriate distribution shape for each cost element. However, the shape of the total cost distribution has been purported to be normal as well as lognormal (1:1;21:17-25). It is beyond the scope of this paper to determine which (if any) total cost distribution shape is more correct. Simpson and Grant have addressed the issue of differing total cost distribution shapes. In their paper An Investigation of Heuristic Methods for Cost Uncertainty Analysis, they determined the normal distribution more accurately depicts uncertainty analyses containing ten or more elements. Because both the normal and lognormal distributions have been used to characterize the shape of the total cost distribution, the program must provide results expressed in terms of both distributions.

Design. The Automated Cost Uncertainty Program (ACUP) is a menu driven computer program comprised of separate and distinct subprograms each designed to perform specific tasks. These tasks include file editing, correlation consistency checking, cost uncertainty computations and the query routine. The modularity of the program facilitates coding and testing. Figure 2 displays the program organization and data flow (20:30-31).

Implementation. The program was compiled on a personal computer and will only run on a 80386 or better machine. The programming language used for ACUP is FORTRAN77. FORTRAN77 is a problem oriented language which enables users
Figure 2. Program Data Flow
to write the solution of problems utilizing familiar mathematical expressions (4:7). The reasons for the selection of FORTRAN77 were due to its excellent mathematical capabilities and the accessibility of existing FORTRAN subroutines.

Three of the subroutines which perform essential computations were incorporated into the program (3:27). The following list specifies the three incorporated subroutines and gives a brief description of their functions.

Jacobi. Jacobi is a FORTRAN subroutine that is used to compute the eigenvalues and eigenvectors of a square matrix (33:112-114). ACUP uses this subprogram to check correlation matrices for consistency. The computed eigenvalues and eigenvectors were verified using test matrices (17:55-61).

ALNORM. This FORTRAN subroutine calculates the upper, or lower, tail area of the standardized normal curve corresponding to any given argument (2;6:186-188;9;18:374-375;19:424-427). ALNORM is used in the ACUP query routine to compute an uncertainty level (probability) given a total cost estimate.

PPND16. This last FORTRAN subroutine computes the percentage point of the standard normal distribution corresponding to a prescribed value of the lower tail area (35:477-484). PPND16 is used by ACUP as the counterpart to
ALNORM. This subroutine returns a total cost given an uncertainty level.

Values obtained from the subroutines ALNORM and PPND16 were compared to probability integral tables in order to verify their accuracy and precision (10:227:27:116-120).

Validation and Verification. As stated previously, the modularity of ACUP facilitated extensive testing. The program's modularity allowed for faster fault isolation. Program testing was accomplished in three stages: subprogram testing, integration testing and acceptance testing (28).

Subprogram Testing. In subprogram testing, individual program units were tested for correctness. This entailed entering controlled data into each subprogram unit and comparing the observed outputs with known results. As an example, test data (mode, min/max or standard deviation) values were entered for each distribution type. The computed mean and variances were compared to known values obtained from a mathematical solver. The mathematical solver used for this thesis was Mathcad 5.0. In this way, the mean and variance computations for each of the five distribution types was verified for accuracy. Test matrices specifically designed for assessing the accuracy of algorithms was used to verify the correctness of the correlation consistency checking. This effort included entering both valid and inconsistent correlation values and verifying the resulting
computed eigenvalues. In addition, this insured that matrices declared inconsistent were indeed inconsistent and those matrices the program deemed valid were in fact valid. Finally, the accuracy of the integration subroutines used by the query routine to compute costs and probabilities was verified using integral tables which represent areas under the normal curve for values ranging from .0001 to .9999.

Integration Testing. Following successful subprogram testing the individual subprograms were progressively combined and tested. This type of testing provides confirmation that values passed between subprogram units maintain their integrity. Integration testing also exposes errors resulting from the improper specification of subprogram interrelationships. One major error that surfaced during this phase was the loss of significance resulting from the logarithmic calculations. This error was overcome by increasing the number of significant digits maintained by the program. Not until all subprograms were successfully combined and demonstrated to be error free was this phase considered complete.

Acceptance Testing. Due to time constraints and personnel availability, analysts were selected from the Air Force Institute of Technology's Graduate Cost Analysis Program to test the complete program. A program user's guide, three test cases and evaluation forms were made
available (see Appendix C). The test cases represented fictitious cost uncertainty problems.

Case #1 contained six dependent cost elements. The individual distributions for these cost elements was triangular. The range of allowable costs were expressed in terms of minimum/maximum values. This case was a duplicate of an uncertainty problem previously solved by the graduate students using simulation. It was included in the evaluation in order to give the test participants a tangible means of comparing the speed of heuristic techniques with that of simulation.

Case #2 contained nine cost elements. All five distribution types (uniform, triangular, normal, lognormal and beta) were represented in this case. The range of allowable costs were required to be entered either as minimum/maximum values or as a standard deviation. Unlike case #1 where all cost elements were dependent, several of the cost elements were designated as independent. Inclusion of non-correlated elements was used to insure the resulting correlation data file would not be affected by independent elements.

The third and last case combined the attributes of the first two cases with file editing requirements. A temporary file (WORKFILE.CST) containing twenty three independent cost elements was supplied to the participants. They were required to add, delete and modify cost element data within both the cost and correlation data files.
The analysts reported and documented any erroneous results using the supplied evaluation forms. The first testing sequence uncovered problems with the clarity of the program. Data requests by the program were in certain instances not clear to the analysts which in turn led to erroneous computations. Program termination due to incorrect data specification was another problem identified and corrected during this sequence. Once these errors were corrected, the test was then administered to a second group of analysts and the process repeated. The test participants were also instructed to defeat the program. During this sequence, problems such as entering correlation values outside of the acceptable range (-1 to +1) led to program execution errors. The program was honed and refined based largely on user inputs and suggestions.

Evolution. Modularity was deliberately designed into the program to aide in verification and validation. The relative independence of subprogram units also facilitates the program's upgrading. Individual subprogram elements may be altered without compromising the entire program. Entire subprograms may be replaced as long as the original program interfaces are maintained. The adaptability of the program to changing conditions will insure its continued utility.
IV. **Program Design**

Introduction

Chapter four consists of three sections. Each section represents an overview of the program's three main functions corresponding to file editing, cost uncertainty and the query function.

Program Structure

The computer program contains the following three application modules:

1. **File Management:** The file editor allows the analyst to create, edit and view the cost and correlation data files.

2. **Cost Uncertainty Analysis:** This module will compute the total cost uncertainty probabilities (deciles) depicting a normal total system distribution and a lognormal total system distribution.

3. **Query:** This capability is a subset of the Cost Uncertainty Analysis module and can only be accessed from that module. It allows the user to compute the probability associated with an estimate. The analyst is alternatively able to compute the total cost associated with a specified probability level. These computations can be applied to either the normal or lognormal probability distributions.

The first two modules can be accessed from the main menu. As was stated previously, the query function can only be accessed via the cost uncertainty analysis module. The
following subsections discuss the formulas and algorithms representing the foundation of the preceding three modules.

File Management. The first requirement of the file editor is to create a data file. The number of cost elements making up a work breakdown structure (WBS) can vary considerably. Some of the larger weapon system cost estimates have been observed to contain close to two hundred separate cost elements. The program was therefore designed to accommodate up to two hundred cost elements. This upper bound on the number of cost elements can be readily increased if necessary. This can be accomplished by increasing the size of the parameter value within the source code to a larger value (see Appendix B for source code). The parameter statement is used to size the arrays which hold the various data items.

The cost data is entered in the following format: cost element name, estimated cost (mode), distribution type (uniform, triangular, normal, lognormal and beta), either minimum/maximum values, or a standard deviation, and an indication of dependence. As the information is entered, it is echoed onto the screen for verification. Once all the data has been entered for a particular cost cell, the entries along with the computed mean and variance are displayed at the bottom of the screen. After completion of the cost data input, the pairwise correlations must be entered. For each element the analyst previously annotated as being dependent, the program requests the following
inputs: correlated with which element(s) and the value or strength of the relationship. When the cost and the correlation information has been successfully entered, the files are saved on disk under a filename supplied by the analyst.

The edit routine allows the analyst to view either the cost data file or the correlation data file. The data within these files can then be edited as required. Options available to the user while in the edit routine include modifying existing cost elements, inserting additional elements and deleting elements. All editing functions are contained within the program and do not depend on the operating system of the host computer.

Cost Uncertainty Analysis. This section will discuss the formulas and algorithms used to compute the cost element mean and variance, check the correlation matrix for consistency and compute the total cost probabilities.

As part of the data file creation routine, the analyst is required to supply a point estimate (cost mode), minimum/maximum value or standard deviation, distribution shape and an indication of dependency for each cost element. The cost element’s mean and variance are computed based on the input values and the type of probability distribution selected. Depending on the shape of the each cost element’s distribution, the mean and variance for the individual elements are computed using the following equations:
Uniform Distribution. The mean and variation of the uniform distribution are computed using the following formulas:

\[
\mu = \frac{\text{min} + \text{max}}{2} \quad (1)
\]

\[
\sigma^2 = \frac{(\text{min} + \text{max})^2}{12} \quad (2)
\]

where \(\mu \) = mean
\(\sigma^2 \) = variance
min = minimum value
max = maximum value

Triangular Distribution.

\[
\mu = \frac{\text{min} + \text{mode} + \text{max}}{3} \quad (3)
\]

\[
\sigma^2 = \frac{\text{min} (\text{min} - \text{mode}) + \text{max} (\text{max} - \text{min}) + \text{mode} (\text{mode} - \text{max})}{18} \quad (4)
\]

where \(\mu \) = mean
\(\sigma^2 \) = variance
min = minimum value
max = maximum value
mode = point estimate

Beta Distribution. The beta distribution is specified as:

\[
f(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta) (h-l)^{\alpha-1} (y-1)^{\beta-1}} \quad (5)
\]

where \(\alpha > 0 \) and \(\beta > 0 \) are shape parameters, \(l \) is the lower bound and \(h \) is the upper bound of the distribution (23:9).

However, because \(\alpha \) and \(\beta \) may not always be available and to maintain consistency with the input conventions of the other four distributions, PERT beta is used in its place. This methodology approximates the mean and variance of the beta
distribution using the parameters minimum, maximum, and mode (32:VII-11).

\[\mu = \frac{\min + 4\text{mode} + \max}{6} \] \hspace{1cm} (6)

\[\sigma^2 = \frac{(\max - \min)^2}{36} \] \hspace{1cm} (7)

where \(\mu \) = mean
\(\sigma^2 \) = variance
\(\min \) = minimum value
\(\max \) = maximum value (32:VI-5)

Normal Distribution. A cost element with a normal probability distribution will accept a cost range expressed in terms of either a mode and standard deviation (\(\sigma \)) or minimum/maximum values. If the mode and standard deviation option is selected, the mean and the variance are computed as follows:

\[\mu = \text{mode} \] \hspace{1cm} (8)

\[\sigma^2 = \sigma \ast \sigma \] \hspace{1cm} (9)

Devore states that 99.7% of the values in any normal population lie within three standard deviations of the mean (7:150). Therefore the minimum and maximum values for the normal distribution can be approximated using the following equation:

\[\min = \mu - 3\sigma \] \hspace{1cm} (10)

\[\max = \mu + 3\sigma \] \hspace{1cm} (11)
If the range of the possible cost values for the normal distribution are entered in the form of minimum and maximum values, the following equation is used to approximate the variance.

\[\sigma^2 = \left(\frac{\text{max} - \text{min}}{6} \right)^2 \] \hspace{1cm} (12)

This approximation represents ± 3\(\sigma \) from the mean.

The normal distribution is symmetric with respect to its mean. Therefore the supplied minimum and maximum values should be equi-distant from the cost mode. If the minimum and maximum values do not describe symmetry about the cost mode, the program adjusts one of the endpoints. The program will compare the distance between the mode and each of the endpoints. The greater of the two distances is used as the new minimum or maximum value. This adjustment reflects a conservative estimate rather than an optimistic estimate.

Lognormal Distribution. A cost element with a lognormal probability distribution will accept a cost range expressed in terms of either a mode and standard deviation or as minimum/maximum values. If the mode (\(\text{mode}_x \)) and standard deviation (\(\sigma_x \)) option is selected, the analyst must insure that \(\sigma_x \) represents the standard deviation of the underlying normal distribution. This requirement stems from the fact that the standard deviation (\(\sigma_x \)) of a lognormal distribution does not lend itself to a closed form solution.
when the mean (μ_x) is not available. Given the mode, and σ_y, the mean and variance of the underlying normal distribution is computed using the following equations:

$$\mu_y = \ln(\text{mode}_x) + \sigma_y^2$$ \hspace{1cm} (13)

$$\sigma_y^2 = \sigma_y \ast \sigma_y$$ \hspace{1cm} (14)

Again, μ_y and σ_y^2 represent the mean and variance of the underlying normal distribution. The mean (μ_x) and variance (σ_x^2) of the lognormal distribution can then be computed using the equations:

$$\mu_x = e^{(\mu_y + \sigma_y^2 / 2)}$$ \hspace{1cm} (15)

$$\sigma_x^2 = e^{(2\mu_y + \sigma_y^2)} \ast (e^{\sigma_y^2} - 1)$$ \hspace{1cm} (16)

Approximations for the minimum and maximum values are obtained using the fact that six standard deviations represent 99.7% of the values of a normal population.

$$\min_y = \mu_y - 3\sigma_y$$ \hspace{1cm} (17)

$$\max_y = \mu_y + 3\sigma_y$$ \hspace{1cm} (18)
Min_y and max_y represent the upper and lower values of the underlying normal distributions. These values are transformed to the values for the lognormal using:

\[\min_x = e^{\min_y} \] \hspace{1cm} (19)

\[\max_x = e^{\max_y} \] \hspace{1cm} (20)

As was the case for the normal distribution, the mean and variance of the lognormal distribution can be determined from the analyst supplied minimum and maximum values. These values are first transformed into the minimum and maximum values of its underlying normal distribution.

\[\min_y = \ln(\min_x) \] \hspace{1cm} (21)

\[\max_y = \ln(\max_x) \] \hspace{1cm} (22)

Since the cost element input distribution is lognormal, the probability density function is normally distributed in log space (7:167). Therefore, the mean (\(\mu_y \)) and variance (\(\sigma_y^2 \)) can be approximated using the same methodology as was used for the normal distribution.

\[\mu_y = \frac{\max_y + \min_y}{2} \] \hspace{1cm} (23)

\[\sigma_y^2 = \left(\frac{\max_y - \min_y}{6} \right)^2 \] \hspace{1cm} (24)
These values are then transformed to reflect the values of the lognormal distribution using the equations 15 and 16.

Correlation Consistency. Contained in O’Hara’s review of cost risk models is a methodology for determining the validity of a correlation matrix (26). The logic is as follows:

A square matrix C is said to be positive definite if it satisfies:
(a) $C = C^T$, i.e., C is a Hermitian matrix (26:33).
(b) $x^TCx > 0$ for all $x \neq 0$ (5:431-435;24:554).

A Hermitian matrix C is positive definite (positive semi-definite) if and only if all eigenvalues of C are positive (non-negative) (26:33;36:24-26).

Searle states that a correlation matrix is non-negative definite (21:348;26:33). Searle also notes that all symmetric matrices are a subset of Hermitian matrices (21:342;26:33). O’Hara concludes his observation by stating that the test for valid correlation matrices is to calculate the eigenvalues of the correlation matrix. The eigenvalues of a real symmetric matrix are real (5:411). If all eigenvalues are non-negative, the correlation matrix is valid (26:34).

The methodology for checking the validity of correlation matrices is contained within the Automated Cost Uncertainty Program. The program’s algorithms used in determining consistency were tested using matrices specifically designed for testing computer computations (17;31:18).
The program computes the eigenvalues of the correlation matrices using the previously mentioned Jacobi FORTRAN subroutine. If any of the eigenvalues are less than zero, the correlation matrix is declared to be inconsistent.

Total Cost Distribution. The total cost probability distribution function (PDF) can be described by three pieces of information. The location (mean) of the PDF, the dispersion (variance) of the PDF and the shape of the PDF (30:4). If the lower level cost elements are independent the summation of their means and variances will result in the total cost mean and total cost variance.

\[
\mu_{total} = \sum_{i=1}^{n} \mu_i \tag{25}
\]

\[
\sigma^2_{total} = \sum_{i=1}^{n} \sigma^2_i \tag{26}
\]

If however, any of the lower level cost elements are dependent, it becomes necessary to quantify the relationship between these elements. This is accomplished by adding the covariance between cost elements to the total cost variance. Equation 27 shows the two components of the total cost variance. The first term represents the cost element variance. The second term captures the pair-wise interdependencies between cost elements.

\[
\sigma^2_{total} = \sum_{i=1}^{n} \sigma^2_i + 2 \sum_{i=2}^{n} \sum_{j=1}^{i-1} \sigma_{ij} \tag{27}
\]
The covariance (σ_{ij}) can be estimated using the correlation coefficient (ρ_{ij}).

\[\sigma_{ij} = \rho_{ij} \sigma_i \sigma_j \quad (28) \]

(7:204)

The total cost mean for the dependent case is computed using equation 25. The correlation between cost elements does not affect the mean of the cost elements.

The mean of the total cost PDF (μ_{total}) and the variance of the total cost PDF (σ_{total}^2) are used to compute the percentiles in 10% increments (including 95% and 99%) for both normal and lognormal total cost distribution shapes. The equations used for the normal and lognormal total cost distributions are described in the following sections.

Normally Distributed. The calculation for the normal total cost distribution is as follows:

\[\text{Probability}(\%) = \mu_{total} + Z_p \cdot \sigma_{total} \quad (29) \]

Here, z_p represents the 100^{th} percentile of the standard normal distribution. If z_p is the desired percentile for the standard normal distribution, the desired percentile for the normal distribution is then z standard deviations from the mean (7:151).
Lognormally Distributed. For the lognormal total cost distribution, the mean (\(\mu_x \)) and variance (\(\sigma_x^2 \)) are expressed in normal space and must be transformed into log-space using the following equations:

\[
\mu_y = \frac{1}{2} \ln \left(\frac{\mu_x^4}{\mu_x^2 + \sigma_x^2} \right) \quad (30)
\]

\[
\sigma_y^2 = \ln \left(\frac{\mu_x^2 + \sigma_x^2}{\mu_x^2} \right) \quad (1:4)
\]

The total cost probabilities can then be expressed in normal space by using the following equation:

\[
\text{Probability}(%) = e^{(\mu_{\text{total}} + z_p \cdot \sigma_{\text{total}})} \quad (32)
\]

Query Function.

The query function is incorporated into the program to facilitate "what-if" exercises. It allows the analyst to enter a cost uncertainty level and obtain an associated total cost. Conversely, the analyst can provide a total cost value and obtain the related uncertainty level. These two options are made possible by the inclusion of the two previously mentioned FORTRAN subroutines, ALNORM and PPND16. These subroutines compute the area under the normal curve (probability) and compute the value (total cost) equated to a designated area under the curve.
V. Conclusion

Summary

The Automated Cost Uncertainty Program enables the analyst to employ heuristic methods in solving cost uncertainty problems. The program allows the analyst to compute probabilities associated with independent or dependent cost elements exhibiting either normal or lognormal total cost distributions. The program incorporates two capabilities previously not included in other automated heuristic models. The first capability enables the analyst to compute probabilities associated with different costs and the costs associated with different uncertainty levels. The second performs a consistency check of the correlation matrix.

The menu driven features of the Automated Cost Uncertainty Program enable the analyst to fully utilize the program’s capabilities.

Areas for Future Research

ACUP allows the analyst to specify the range of possible costs for each cost element by entering the element’s cost mode and either minimum/maximum values or a standard deviation. Currently, using the lognormal distribution requires input of the standard deviation of the underlying normal distribution in order to compute the mean and variance. A method allowing the analyst to enter the
The program employs heuristic methods to compute cost uncertainties. This same methodology can be employed to develop a program which would address schedule uncertainties. Together with the ACUP program, it would be possible to automate Garvey and Taub's method for estimating cost and schedule uncertainty using joint probability distributions (15).
Appendix A: User's Guide

The Automated Cost Uncertainty Program

USER'S GUIDE

by

Dale N. Fletcher
ASA(RD&A)
TABLE OF CONTENTS

Introduction .. i
Overview ... ii

Part I Getting Started
System Requirements 1
Installation .. 1

Part II File Management Module
File Creation
 Cost Data ... 2
 Correlation Data 3
Editing Files .. 5
Inserting Cost Elements 6
Deleting Cost Elements 6
Modifying Cost Elements 7
Printing Data Files 8

Part III Cost Uncertainty Module
Output Report 9
Query Function 10

Appendix A Equations and Methodologies
INTRODUCTION

The major output of cost uncertainty analysis is the probability distribution of total system cost. This is known as the cumulative probability distribution. It depicts the set of all possible outcomes for a specified degree of random variation in the cost of individual elements. Generating the cumulative probability distribution of total system cost provides important insights into issues such as: determining the change and the amount that a point estimate is likely to be exceeded, and isolating the cost variance drivers and contributing factors that account for the build-up of risk.

Cost and schedule uncertainties can be quantified either through analytical means or by way of simulation. The most notable of these simulated approaches is the Monte Carlo technique. This method has been used extensively to simulate cost or schedule uncertainties. However, simulation techniques in general can become quite expensive with respect to the amount of resources required. This is due primarily to the computational time necessary to run the specified number of iterations.

Analytical methods have been proposed as an alternative to simulation. Analytical methods assume a distribution for total system cost rather than the empirical approximation employed by Monte Carlo Simulation. The advantage of analytical methods is that cost uncertainty can be estimated very quickly. Unfortunately, most analytical techniques require the analyst to either perform complex hand calculations or construct advanced computer spreadsheets in order to derive cost or schedule uncertainties.
OVERVIEW

The Automated Cost Uncertainty Program is comprised of two modules. The first is labeled the File Management Module. This module is used to create, edit and print the cost and correlation data files. The second, entitled the Cost Uncertainty Module is used to compute the associated probabilities. This last module contains a query function which facilitates what-if scenarios.

This program is designed to compute cost uncertainties utilizing the faster analytical techniques. The analyst is required to supply cost information to include the number of cost elements, the cost element's point estimate, the shape of the probability distribution (Uniform, Triangular, Normal, Lognormal or Beta) and the necessary distribution parameters. The resulting cost uncertainties are expressed as probabilities at the decile level and include 95% and 99%. The query function will compute the probability associated with a point estimate or alternatively a point estimate given an uncertainty level.
PART I GETTING STARTED

System Requirements
The Automated Cost Uncertainty Program is a DOS based program which is self contained on one 3.5" computer diskette. The program is designed to run on an 80386 or 80486-based computer. There are two files required to run the program which are contained on the accompanying diskette, UNCTY.EXE and DOSXMSF.EXE.

Program Installation
It is not necessary to install the program on a hard disk. The program may be run directly from the program diskette. However, the program may be copied to a hardisk using the supplied installation program. To install the program on the hard disk, change to the drive containing the program diskette and enter the command INSTALL. The install procedure will create a directory on the hard drive labeled C:\UNCTY, and copy in the necessary files.

PART II FILE MANAGEMENT MODULE

File management is the first selection found under the program's Main Menu. This option enables access to the program's file editor. It is through the file management procedure the analyst is able to build as well as modify the program's required data files.

MAIN MENU

1) File Management
2) Cost Uncertainty
3) Quit Program

Enter Selection: 1

In order to perform a cost uncertainty analysis, the program requires two data files. A cost data file (file extension .CST) and a correlation data file (file extension .COR). To construct these files the user must first begin by selecting the option Create Data Files under the File Management menu.

FILE MANAGEMENT

1) Create Data Files
2) Edit Existing File
3) Print Data Files
4) Return to Main Menu

Enter Selection: 1
Creating Cost Data Files

Selecting Create Data Files will allow the user to initially create a new cost and correlation data file. The program begins the data file creation procedure by first prompting the user for a filename (the file extension is not required). This filename will serve as the name for both the cost data file (filename.CST) as well as the correlation data file (filename.COR). The next prompt appearing on the screen will request the user to supply the number of cost elements the cost data file will contain. The program can accommodate between 1 and 200 distinct cost elements.

CREATE DATA FILE

Enter Filename: COSTFILE

Enter number of cost elements: 4

Upon selecting Create Data Files, assigning a filename and indicating the desired number of cost elements, the next step is to supply the data for each cost element. This data includes the cost element name, the minimum/maximum values bounding the point estimate, the shape of the probability distribution, and an indication of whether the cost element is correlated with any of the other cost elements. The following screen will facilitate the data input process.

COST UNCERTAINTY
Data Input

Element # CES Name Sys T&E

3 Estimated Cost (mode) 986

Distribution Shape N
(U,T,N,L,B)

Select input type 1) Min/Max 2) Std Dev 1

Minimum 860
Maximum 1671
Correlated? (Y/N) Y

Is this correct? (Y/N) Y

NAME MIN COST MAX DISTR MEAN VAR
Sys T&E 301.0 986.0 1671.0 N 986.0 52135.1

Press [RETURN] to Continue

The available distribution shapes are the Uniform, Triangular, Normal, Lognormal and Beta (represented by U,T,N,L,B respectively). If either the normal or lognormal distribution shapes are selected, the analyst is given two alternative means of describing the shape parameters. Either minimum/maximum values may be entered or the distribution's
standard deviation may be entered. Again, this method is only available for the normal or lognormal distributions. The standard deviation is then translated into representative minimum and maximum values\(^1\). The user must insure the minimum and maximum values used for the normal distribution describe symmetry about the estimated cost mode.\(^2\)

Maximum, minimum and the cost mode figures may be entered with values as large as $9\ billion. Once the data is entered and deemed correct, the inputs along with the computed mean and variance are displayed at the bottom of the screen. The last input required on the Data Input screen is an indication of whether or not this cost element is correlated with any other cost element.

Creating Correlation Data Files

The correlation data file contains the pairwise correlation coefficients (p-values) associated with the previously created cost data file. The Create Correlation Matrix screen follows directly after the cost input screen once all cost data information has been correctly entered.\(^3\)

```
CREATE CORRELATION MATRIX

Cost Element Number:  3   Cell Name:  Sys T&E

Current Correlations
1  Init Spare  .70
2  Data       .83
4  Training   .88

Add correlation? (Y/N)  Y

Correlated With Element:  5

Correlation Coefficient:  -.79

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Cell Name</th>
<th>Correlated With Element</th>
<th>Cell Name</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Sys T&amp;E</td>
<td>5</td>
<td>SE/PM</td>
<td>-.79</td>
</tr>
</tbody>
</table>

Is this correct? (Y/N)
```

This screen will display the cost element identified as being dependent during the data input process. The analyst is then prompted for the number of the cost element this cell is correlated with as well as the value of the correlation coefficient. The values for the correlation coefficient must range between -1 and +1. Values outside this interval will be

\(^1\)See Appendix A for equations which translate \(\sigma\) to min/max values.

\(^2\)NOTE: The normal distribution is symmetric with respect to the estimated cost mode. Therefore, if the input values used for the minimum and maximum do not describe a symmetric shape, the program will adjust either the minimum or maximum value to insure symmetry.

\(^3\)If all cost elements are independent, this screen will not appear.
rejected. It is possible to stipulate that cost element '3' is correlated with element '2' as well as stating element '2' is correlated with element '3'. However, if the values entered are not equal, the previously entered correlation coefficient is displayed and the user is asked whether the existing value is to be replaced.

Currently

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Cell Name</th>
<th>Correlated With</th>
<th>Cell Name</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Training</td>
<td>3 Training</td>
<td>.92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Replace? (Y/N)

An affirmative response will cause the previous value to be overwritten. Otherwise this value is ignored. The correlation input procedure for each dependent element will be terminated once the user indicates there are no more correlations to be added. After correlation values have been entered for each cost element previously designated as dependent during the data input procedure, the correlation information for all cost elements is then displayed on the screen.

CORRELATION VALUES

<table>
<thead>
<tr>
<th>Element Number</th>
<th>Cell Name</th>
<th>Correlated with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Init Spare</td>
<td>2 Data</td>
<td>.75</td>
</tr>
<tr>
<td></td>
<td>3 Sys T&E</td>
<td>.70</td>
</tr>
</tbody>
</table>

| 2 Data | correlated with: |
| | 3 Sys T&E | .83 |

3 Sys T&E	correlated with:	
	4 Training	.88
	5 SE/PM	-.79

Press [RETURN] to Continue

Following the display of the correlation values, the validity of the correlation matrix is determined. This is to insure the relationships among the correlated cost elements are consistent. This procedure is transparent to the analyst. It requires the calculation of the eigenvalues of the correlation matrix. If all eigenvalues are non-negative the matrix is considered valid. If on the other hand any of the eigenvalues are negative, the matrix will fail the test and the analyst will be informed the matrix is invalid. The analyst must then rebuild the correlation matrix. This concludes the procedures used for the creation of the cost and correlation data files.
Editing Data Files

Option '2' of the File Management menu enables the user to add to, delete from or modify previously created cost and correlation data files.

FILE MANAGEMENT

1) Create Data Files
2) Edit Existing File
3) Print Data Files
4) Return to Main Menu

Enter Selection: 2

Following the selection of Edit Existing File, the program prompts for the name of the datafile to be modified. It is not necessary nor is it required to identify the accompanying correlation data file as both files are retrieved simultaneously. The following screen will appear once the name of the file to be edited has been entered.

EDIT DATA FILE

1) Edit Data File
2) Save File
3) Return to File Management

Enter Selection: 1

To begin the file editor function, select Edit Data File. Choosing this option will display the cost data file to be modified and allow access to the various editing options.

EDIT COST DATA

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Mode</th>
<th>Max</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init Spare</td>
<td>1676.0</td>
<td>1942.0</td>
<td>2453.0</td>
<td>U</td>
</tr>
<tr>
<td>Data</td>
<td>3469.2</td>
<td>4029.7</td>
<td>5287.6</td>
<td>T</td>
</tr>
<tr>
<td>Sys T&E</td>
<td>301.1</td>
<td>986.0</td>
<td>1671.0</td>
<td>N</td>
</tr>
<tr>
<td>Training</td>
<td>366.7</td>
<td>576.2</td>
<td>963.9</td>
<td>L</td>
</tr>
<tr>
<td>SE/PM</td>
<td>10.9</td>
<td>287.2</td>
<td>402.5</td>
<td>B</td>
</tr>
</tbody>
</table>

1) Insert 2) Delete 3) Modify 4) Next Page 5) Return

Insert after element number: 2

Inserting Cost Elements

Selecting option '1' will enable the analyst to add cost elements to the existing data. The user is prompted for the point of insertion. Although an element may not be added to the beginning of the data (as element number 1), an element may be added to the end of the
Inserting a cost element is similar to the procedure used when creating a cost data file.

INSERT

Element #

3 CES Name Software

Estimated Cost (mode) 681

Distribution Shape N
(U,T,N,L,B)

Select input type 1) Min/Max 2) Std Dev 1

Minimum 371
Maximum 1011
Correlated? (Y/N) N

Is this correct? (Y/N) Y

<table>
<thead>
<tr>
<th>NAME</th>
<th>MIN</th>
<th>COST</th>
<th>MAX</th>
<th>DISTR</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>371.0</td>
<td>681.0</td>
<td>1011.0</td>
<td>N</td>
<td>681.0</td>
<td>11377.8</td>
</tr>
</tbody>
</table>

Press [RETURN] to Continue

As was the case when initially creating a cost data file, if the cost element is classified as dependent, the correlation data input screen will appear. The element is then added to the correlation data file. If, as in the example above the cost element is independent, this step is omitted and the analyst will be returned to the *EDIT COST DATA* screen.

Deleting Cost Elements

Option number '2' enables the user to delete a cost element. An element designated for deletion will only be removed from the cost data if the user supplies confirmation. Transparent to the user, the cost element is also deleted from the correlation data file.

EDIT COST DATA

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Mode</th>
<th>Max</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init Spare</td>
<td>1676.0</td>
<td>1942.0</td>
<td>2453.0</td>
<td>U</td>
</tr>
<tr>
<td>Data</td>
<td>3469.2</td>
<td>4029.7</td>
<td>5287.6</td>
<td>T</td>
</tr>
<tr>
<td>Sys T&E</td>
<td>301.1</td>
<td>986.0</td>
<td>1671.0</td>
<td>N</td>
</tr>
<tr>
<td>Training</td>
<td>366.7</td>
<td>576.2</td>
<td>963.9</td>
<td>L</td>
</tr>
<tr>
<td>SE/PM</td>
<td>10.9</td>
<td>287.2</td>
<td>402.5</td>
<td>B</td>
</tr>
</tbody>
</table>

1) Insert 2) Delete 3) Modify 4) Next Page 5) Return 2

Enter CES number to delete: 3
Delete CES number: 3 Sys T&E
Confirm (Y/N): Y

46
Modifying Cost Elements

Option number '3' of the EDIT COST DATA screen is used to change the data for each cost element. All data previously entered may be altered using this selection. The following screen will appear once the modify function has been invoked.

REPLACE

Element # CES Name: Sys T&E
3 Name: Testing
 Replace (Y/N) Y

Estimate (mode):
Mode: 792
Replace (Y/N) Y

Distribution: N
Enter (U,T,N,L,B): B
Replace (Y/N) Y

Minimum Value:
Min: 639
Replace (Y/N) Y

Maximum Value: 1011.0
Replace (Y/N) N

Correlated? (Y/N): Yes
Enter (Y/N): N
Replace (Y/N) Y

In the above example it will be noted the cost element was changed from correlated to uncorrelated. The accompanying correlation data will be modified to reflect this alteration. Transparent to the user all correlation values associated with the representative cost element (in this case Sys T&E) will be deleted. The EDIT COST DATA screen will reappear once the modification process is completed.

EDIT COST DATA

costfile.CST

<table>
<thead>
<tr>
<th>Name</th>
<th>Min</th>
<th>Mode</th>
<th>Max</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Init Spare</td>
<td>1676.0</td>
<td>1942.0</td>
<td>2453.0</td>
<td>U</td>
</tr>
<tr>
<td>2 Data</td>
<td>3469.2</td>
<td>4029.7</td>
<td>5287.6</td>
<td>T</td>
</tr>
<tr>
<td>3 Sys T&E</td>
<td>301.1</td>
<td>986.0</td>
<td>1671.0</td>
<td>N</td>
</tr>
<tr>
<td>4 Training</td>
<td>366.7</td>
<td>576.2</td>
<td>963.9</td>
<td>L</td>
</tr>
<tr>
<td>5 SE/PM</td>
<td>10.9</td>
<td>287.2</td>
<td>402.5</td>
<td>B</td>
</tr>
</tbody>
</table>

1) Insert 2) Delete 3) Modify 4) Next Page 5) Return

The final two selections available to the user on this screen are Next Page and Return. Ten cost elements are displayed on one screen. Next Page will display the remaining cost elements. If the Return option is selected the program re-checks the correlation matrix for consistency and returns the user to the EDIT DATA FILE menu.
EDIT DATA FILE

1) Edit Data File
2) Save File
3) Return to File Management

Enter Selection: 2

All changes made to the cost and correlation data files to this point are temporary. Not until the user elects to save the file will the data become permanent.

Printing Data Files

To obtain a hardcopy of the data files, the analyst may select the Print Data Files option found under the FILE MANAGEMENT menu. This selection will enable the analyst to print the cost and correlation data contained in the file identified by the user.

FILE MANAGEMENT

1) Create Data Files
2) Edit Existing File
3) Print Data Files
4) Return to Main Menu

Enter Selection: 3

PART III COST UNCERTAINTY MODULE

Probability Output Report

The output report presents the total cost mean and standard deviation as well as the resulting total cost uncertainties associated with previously created cost and correlation data files. The report may be accessed via the second option under the MAIN MENU.

MAIN MENU

1) File Management
2) Cost Uncertainty
3) Quit Program

Enter Selection: 2

The output report displays the resulting total cost uncertainty expressed as probabilities at the decile level to include the 95% and 99% levels. In addition, the total cost mean and total cost standard deviation are displayed.
<table>
<thead>
<tr>
<th>Percentile</th>
<th>Normal Value (est)</th>
<th>Log Normal Value (est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>181.9</td>
<td>183.6</td>
</tr>
<tr>
<td>20%</td>
<td>195.5</td>
<td>195.2</td>
</tr>
<tr>
<td>30%</td>
<td>205.4</td>
<td>204.0</td>
</tr>
<tr>
<td>40%</td>
<td>213.8</td>
<td>211.9</td>
</tr>
<tr>
<td>50%</td>
<td>221.7</td>
<td>219.5</td>
</tr>
<tr>
<td>60%</td>
<td>229.5</td>
<td>227.4</td>
</tr>
<tr>
<td>70%</td>
<td>238.0</td>
<td>236.2</td>
</tr>
<tr>
<td>80%</td>
<td>247.8</td>
<td>246.9</td>
</tr>
<tr>
<td>90%</td>
<td>261.5</td>
<td>262.5</td>
</tr>
<tr>
<td>95%</td>
<td>272.7</td>
<td>276.1</td>
</tr>
<tr>
<td>99%</td>
<td>293.9</td>
<td>303.6</td>
</tr>
</tbody>
</table>

1) Query 2) Return to Main Menu 1
3) Normal 4) Lognormal 3
5) Cost -> Prob 6) Prob -> Cost 5
Enter Estimate: 250

81.92%

The Query Function

The example above shows the probability output screen. The report presents the different levels of the total cost probability distributed either normally or lognormally. At the bottom of the output report listed under option '1' is the query function. This function allows the user to perform what-if scenarios based on the currently referenced data files. The user may select either a normal or lognormal total cost distribution. Option '5' enables the user to obtain an uncertainty level (expressed as a probability) for a particular cost value. In the previous example the query function was used to compute the probability associated with a cost of $250. Alternatively, option '6' of the query function may be used to obtain the cost required to attain a specific probability level. The probability inputs are restricted to the interval defined by .01% and 99.99% inclusive.

Finally, the user may terminate program execution by selecting option '3' of the Main Menu.

MAIN MENU

1) File Management
2) Cost Uncertainty
3) Quit Program

Enter Selection: 3

*See Appendix A for the methodologies used to compute the probabilities and costs using the query function.
Uniform Distribution

Inputs: Estimated Cost (mode)
Minumum Value (min)
Maximum Value (max)

Compute: Cost Mean (μ)
 Cost Variance (σ²)

\[μ = \frac{\text{min} + \text{max}}{2} \]
\[σ² = \frac{(\text{max} - \text{min})^2}{12} \]

Triangular Distribution

Inputs: Estimated Cost (mode)
Minumum Value (min)
Maximum Value (max)

Compute: Cost Mean (μ)
 Cost Variance (σ²)

\[μ = \frac{\text{min} + \text{mode} + \text{max}}{3} \]
\[σ² = \frac{\text{min} \cdot (\text{min} - \text{mode}) + \text{max} \cdot (\text{max} - \text{min}) + \text{mode} \cdot (\text{mode} - \text{max})}{18} \]
APPENDIX A
Distribution Parameters

Normal Distribution (method #1)

Inputs: Estimated Cost (mode)
Minimum Value (min)
Maximum Value (max)

Compute: Cost Mean (μ)
Cost Variance (σ^2)

$$\mu=\text{mode}$$

$$\sigma^2=\left(\frac{\text{max} - \text{min}}{6}\right)^2$$

Note: Approximately 99.7% lie within three standard deviations of μ. This equation is used as an approximation of σ^2 for a normal distribution.

Normal Distribution (method #2)

Inputs: Estimated Cost (mode)
Standard Deviation (σ)

Compute: Minimum Value (min)
Maximum Value (max)
Cost Mean (μ)
Cost Variance (σ^2)

$$\mu=\text{mode} \quad \sigma^2=\sigma \cdot \sigma$$

$$\text{min}=\mu - 3 \cdot \sigma \quad \text{max}=\mu + 3 \cdot \sigma$$
APPENDIX A
Distribution Parameters

Lognormal Distribution (method #1)

Inputs:
- Estimated Cost \(\text{mode}_x \)
- Minimum Value \(\text{min}_x \)
- Maximum Value \(\text{max}_x \)

Compute:
- Cost Mean \(\mu_x \)
- Cost Variance \(\sigma_x^2 \)

\[
\begin{align*}
\min y &= \ln(\min x) \\
\max y &= \ln(\max x) \\
\mu_y &= \frac{\max y + \min y}{2} \\
\sigma_y^2 &= \left(\frac{\max y - \min y}{6}\right)^2 \\
\sigma_x^2 &= e^{2\mu_y + \sigma_y^2} \cdot \left(e^{\sigma_y^2} - 1\right) \\
\mu_x &= e^{\mu_y + \frac{\sigma_y^2}{2}} \\
\sigma_x^2 &= e^{2\mu_y + \sigma_y^2} \cdot \left(e^{\sigma_y^2} - 1\right)
\end{align*}
\]

Lognormal Distribution (method #2)

Inputs:
- Estimated Cost \(\text{mode}_x \)
- Standard Deviation \(\sigma_y \)

Compute:
- Minimum Value \(\text{min}_x \)
- Maximum Value \(\text{max}_x \)
- Cost Mean \(\mu_x \)
- Cost Variance \(\sigma_x^2 \)

\[
\begin{align*}
\mu_y &= \ln(\text{mode}_x) + \sigma_y^2 \\
\min y &= \mu_y - 3\cdot\sigma_y \\
\max y &= \mu_y + 3\cdot\sigma_y \\
\min x &= e^{\min y} \\
\max x &= e^{\max y} \\
\mu_x &= e^{\mu_y + \frac{\sigma_y^2}{2}} \\
\sigma_x^2 &= e^{2\mu_y + \sigma_y^2} \cdot \left(e^{\sigma_y^2} - 1\right)
\end{align*}
\]

52
APPENDIX A
Distribution Parameters

Beta Distribution

Inputs: Estimated Cost (mode)
 Minimum Value (min)
 Maximum Value (max)

Compute: Cost Mean (μ)
 Cost Variance (σ^2)

\[
\mu = \frac{\text{min} + 4 \cdot \text{mode} + \text{max}}{6}
\]
\[
\sigma^2 = \frac{(\text{max} - \text{min})^2}{36}
\]
APPENDIX B: SOURCE CODE

INCLUDE 'FGRAFHF.FR'
INCLUDE 'FGRAFHF.FD'

CALL CLEARSCREEN($GCLEARSCREEN)
CALL TITLE
CALL INTRO
CALL MENU
END

Title Page

SUBROUTINE TITLE
PRINT 1
PRINT 2
PRINT 3
PRINT 4
PRINT 1
PRINT 1
PRINT 7
PRINT 8
PRINT 9
PRINT 10
PRINT 11
PRINT 1
PRINT 9
PRINT 13

1 FORMAT ('0')
2 FORMAT ('1',31X,'The Automated')
3 FORMAT ('2',35X,'Cost')
4 FORMAT ('3',28X,'Uncertainty Program')
7 FORMAT ('4',32X,'Version 1.0')
8 FORMAT ('5',31X,'November 1994')
9 FORMAT ('6')
10 FORMAT ('7',36X,'by')
11 FORMAT ('8',30X,'Dale N. Fletcher')
13 FORMAT ('9',25X,'Press [RETURN] to Continue',\)
 READ (*,*)
 CALL CLEARSCREEN($GCLEARSCREEN)
 END

Introduction Page

SUBROUTINE INTRO
WRITE (*,1)
WRITE (*,4)
WRITE (*,5)
WRITE (*,6)
WRITE (*,7)
WRITE (*,8)
WRITE (*,9)
WRITE (*,10)
WRITE (*,11)
WRITE (*,12)
WRITE (*,13)
WRITE (*,14)
WRITE (*,15)
WRITE (*,16)
WRITE (*,17)
WRITE (*,18)
WRITE (*,19)
WRITE (*,20)
WRITE (*,21)
WRITE (*,3)
READ (*,*)
1 FORMAT (',32X,'INTRODUCTION')
2 FORMAT (')
3 FORMAT ('0',26X,'Press [RETURN] to Continue',\)
4 FORMAT ('0',15X,'This program employs an analytical technique to')
5 FORMAT (',10X,
 +'analyze cost uncertainty. The program is comprised of')
6 FORMAT (',10X,
 +'two modules. The first module is used to create and edit')
7 FORMAT (',10X,
 +'the cost uncertainty data files while the second module')
8 FORMAT (',10X,
 +'is used to compute the probabilities. The second module')
9 FORMAT (',10X,
 +'includes a query capability used to calculate uncertain-')
10 FORMAT (',10X,
 +'ties given either a cost estimate or a desired probability')
11 FORMAT (',10X,'level.')
12 FORMAT ('0',15X,
 +'The program requires the user to supply cost')
13 FORMAT (',10X,
 +'information to include the number of cost elements, the')
14 FORMAT (',10X,
 +'cost element point estimate, the shape of the probability')
15 FORMAT (',10X,
 +'distribution (Uniform, Triangular, Normal, Lognormal or')
16 FORMAT (',10X,
 +'Beta) and the necessary distribution parameters.')
17 FORMAT ('0',15X,
 +'The program presents the resulting cost uncertain-')
18 FORMAT (',10X,
 +'ties expressed as probabilities at the decile level to')
19 FORMAT (',10X,
 +'include 95 and 99%. In addition, the program will')
20 FORMAT (',10X,
 +'compute the probability associated with a point estimate')
21 FORMAT (',10X,
 +'or a point estimate given an uncertainty level.')
CALL CLEARSCREEN($GCLEARSSCREEN)
END

C
C
C

SUBROUTINE MENU

10 CALL CLEARSCREEN($GCLEARSSCREEN)
PRINT 11
PRINT 11
WRITE (*,13)
WRITE (*,14)
WRITE (*,15)
WRITE (*,16)
WRITE (*,17)
WRITE (*,18)
PRINT 12
WRITE (*,19)
READ (*,*,ERR=10) SELECT
 IF (SELECT .EQ. 1) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL FILMGT
 ELSE IF (SELECT .EQ. 2) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL CSTUNC
 ELSE IF (SELECT .EQ. 3) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL TERM
 ELSE
 CALL CLEARSCREEN($GCLEARSCREEN)
 GOTO 10
 END IF
11 FORMAT ('0')
12 FORMAT ('')
13 FORMAT ('0',34X,'MAIN MENU')
14 FORMAT ('0','26X,'File Management')
15 FORMAT ('','26X,'Cost Uncertainty')
16 FORMAT ('','26X,'Quit Program')
19 FORMAT ('0','31X,'Enter Selection: ',\')
END

File Management Menu

SUBROUTINE FILMGT
PARAMETER (NP=200)
DIMENSION MIN(NP),COST(NP),MAX(NP),DISTR(NP),CORMAT(NP,NP),
+ NAME(NP),CORR(NP),STDDEV(NP),COUNT(NP)
REAL COST,MIN,MAX,CORMAT,STDDEV
INTEGER COUNT,CORR
CHARACTER FLNM*8, DISTR*1, NAME*10
100 CALL CLEARSCREEN($GCLEARSCREEN)
 I = 0
 PRINT 2
 PRINT 2
 WRITE (*,53)
 WRITE (*,54)
 WRITE (*,55)
 WRITE (*,56)
 WRITE (*,57)
 PRINT 1
 WRITE (*,58)
READ (*,*,ERR=100) SELECT
IF (SELECT .EQ. 1) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL CBUILD
ELSE IF (SELECT .EQ. 2) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL EDIT
C Print data files
ELSE IF (SELECT .EQ. 3) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 2
 PRINT 2
 WRITE (*, '(1x,a)') 'Enter name of file to print: '
 READ (*,'(A)')FLNM
 OPEN (UNIT=1,FILE=FLNM(:LEN_TRIM(FLNM))//'.CST',
 STATUS='OLD',ACCESS='SEQUENTIAL',ERR=105)
 GOTO 110
 105 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 1
 PRINT 2
 PRINT 2
 WRITE (*,60)
 PRINT 1
 PRINT 2
 PRINT 99
 READ (*,*)
 GOTO 100
 110 OPEN (UNIT=2,FILE='LPT1')
 WRITE (2,8) FLNM(:LEN_TRIM(FLNM))
 WRITE (2,2)
 WRITE (2,5)
 WRITE (2,6)
 DO WHILE (.NOT. EOF(1))
 I=I+1
 READ (1,4) COUNT(I),NAME(I),MIN(I),COST(I),MAX(I),
 DISTR(I),CORR(I),STDDEV(I)
 WRITE (2,7) I,NAME(I),MIN(I),COST(I),MAX(I),
 DISTR(I)
 LINE=LINE+1
 IF (LINE.EQ.50) THEN
 WRITE (2,3)
 WRITE (2,19) FLNM(:LEN_TRIM(FLNM))
 WRITE (2,2)
 WRITE (2,5)
 WRITE (2,6)
 LINE=0
 END IF
 END DO
 CLOSE (UNIT=1,STATUS='KEEP')
 WRITE (2,3)
 OPEN (UNIT=3,FILE=FLNM(:LEN_TRIM(FLNM))//'.COR',
 STATUS='OLD',ACCESS='SEQUENTIAL',ERR=100)
 DO 115 L=1,I
 DO 120 M=1,I
 READ (3,9) CORMAT(L,M)
 120 CONTINUE
 115 CONTINUE

57
CONTINUE
CLOSE (UNIT=3, STATUS='KEEP')
OPEN (UNIT=2, FILE='LPT1')
LINE = 5
WRITE (2,10) FLNM(LEN_TRIM(FLNM))
WRITE (2,1)
WRITE (2,11)
WRITE (2,12)
WRITE (2,13)
DO 210 L=1,I-1
 DO 220 K=L+1,I
 IF (CORMAT(L,K).NE.0) THEN
 SUM=SUM+1
 END IF
 CONTINUE
220 IF (SUM.EQ.0) GOTO 210
WRITE (2,14) L,NAMEx(L)
DO 230 M=L+1,I
 IF (CORMAT(L,M).EQ.0) GOTO 230
 WRITE (2,15) M,NAMEx(M),CORMAT(L,M)
 LINE=LINE+1
 IF (LINE.EQ.46) THEN
 WRITE (2,3)
 WRITE (2,17) FLNM(LEN_TRIM(FLNM))
 PRINT 1
 WRITE (2,11)
 WRITE (2,12)
 WRITE (2,13)
 LINE=0
 END IF
230 CONTINUE
WRITE (2,16)
LINE=LINE+2
SUM = 0
CONTINUE
WRITE (2,3)
CLOSE (UNIT=2)
GOTO 100
ELSE IF (SELECT .EQ. 4) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CALL MENU
ELSE
 CALL CLEARSCREEN($GCLEARSCREEN)
 GOTO 100
END IF
1 FORMAT (' ')
2 FORMAT ('0')
3 FORMAT ('1')
4 FORMAT (I3,A10,3F15.4,A1,I1,F8.5)
5 FORMAT (' ',11X,'NAME',16X,'MIN',8X,'MODE',9X,'MAX'
 + ,5X,'Distribution')
6 FORMAT (' ',11X,---',16X,---',8X,---',9X,---'
 + ,5X,---')
7 FORMAT (6X,I3,3X,A10,1X,3F12.1,10X,A1)
8 FORMAT ('0',39X,'COST DATA',15X,A8,'.CST')
SUBROUTINE CBUILD
PARAMETER (NP=200)
DIMENSION COST(NP),MIN(NP),MAX(NP),DISTR(NP),CMEAN(NP),RHO(NP),
+ CVAR(NP),NAME(NP),CORMAT(NP,NP),CORR(NP),TEST(NP,NP),
+ STDDVE(NP),V(NP,NP),D(NP)
REAL COST,MIN,MAX,TCMEAN,TCVAR,TNEW,TNEW,TNEW,TCOST,RHO
DOUBLE PRECISION LMIN,LMEAN,LMAX,LVAR,STDDVE,CMEAN,CVAR
INTEGER I,COUNT,WITH,CORR,CONSUN
CHARACTER FLNM*8, DISTR*1, NAME*10, CHOICE*1
100 PRINT 22
PRINT 1
WRITE (*, '(1x,a1)') 'Enter Filename: '
READ (*, '(A1)') FLNM
OPEN (UNIT=0, FILE = FLNM(:LEN_TRIM(FLNM))//'.CST',
+ ACCESS = 'SEQUENTIAL', STATUS = 'NEW', ERR=110)
GOTO 120
110 CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 1
PRINT 1
WRITE (*,70)
PRINT 1
WRITE (*,71)
READ (*, '(A1)') CHOICE
IF (CHOICE.EQ. 'Y' .OR. CHOICE.EQ. 'y') THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 22
PRINT 1
WRITE (*,72) FLNM
OPEN (UNIT=0, FILE = FLNM(:LEN_TRIM(FLNM))//'.CST',
+ ACCESS = 'SEQUENTIAL', STATUS = 'UNKNOWN')
ELSE
 CALL CLEARSCREEN($GCLEARSCREEN)
59
CALL FILMGT
END IF

120 OPEN (UNIT=5, FILE = 'FLNM(:LEN_TRIM(FLNM))/''COR',
+ ACCESS = 'SEQUENTIAL', STATUS = 'UNKNOWN')
PRINT 12
WRITE ('*(x,a)'), 'Enter number of cost elements: '
READ (*,*,ERR=900) COUNT
C Initialize Totals
TCMEAN = 0
TCVAR = 0
TCOST = 0
CORSUM = 0
SUM = 0
C Begin Cost Data Input
DO 160 I = 1,COUNT
140 CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 12
WRITE (*,2)
WRITE (*,3)
PRINT 17
WRITE (*,4) I
READ (*,'(A)') NAME(I)
WRITE (*,5)
READ (*,*,ERR=140) COST(I)
WRITE (*,6)
WRITE (*,7)
READ (*,'(A)') DISTR(I)
IF (DISTR(I).EQ.'N'.OR.DISTR(I).EQ.'n'.OR.
+ DISTR(I).EQ.'L'.OR.DISTR(I).EQ.'l') THEN
WRITE(*,77)
READ (*,*,ERR=140) SELECT
IF (SELECT.EQ.1) GOTO 145
WRITE (*,78)
READ (*,*,ERR=140) STDDEV(I)
GOTO 147
ELSE
STDDEV(I)=0
END IF
145 PRINT 8
READ (*,*,ERR=140) MIN(I)
PRINT 10
READ (*,*,ERR=140) MAX(I)
C Check MINIMUM < Mode < MAXIMUM
IF (COST(I).LT.MIN(I).AND.COST(I).GT.MAX(I)) THEN
CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 1
PRINT 1
WRITE (*,24)
PRINT 1
WRITE (*,25)
WRITE (*,26)
PRINT 1
PRINT 13
READ (*,*)
GOTO 140
ELSE IF (COST(I).GT.MAX(I)) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 1
 PRINT 1
 WRITE (*,24)
 PRINT 1
 WRITE (*,25)
 PRINT 1
 PRINT 1
 PRINT 13
 READ (*,*)
 GOTO 140
ELSE IF (COST(I).LT.MIN(I)) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 1
 PRINT 1
 WRITE (*,24)
 PRINT 1
 WRITE (*,26)
 PRINT 1
 PRINT 1
 PRINT 13
 READ (*,*)
 GOTO 140
END IF
147
PRINT 11
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'y') THEN
 CORR(I) = 1
ELSE
 CORR(I) = 0
ENDIF
IF (DISTR(I) .EQ. 'U' .OR. DISTR(I) .EQ. 'u') THEN

C Uniform Distribution
CMEAN(I)=(MIN(I)+MAX(I))/2
CVAR(I)=((MAX(I)-MIN(I))*(MAX(I)-MIN(I)))/12
ELSE IF (DISTR(I) .EQ. 'T' .OR. DISTR(I) .EQ. 't') THEN

C Triangular Distribution
CMEAN(I)=(MIN(I)+COST(I)+MAX(I))/3
CVAR(I)=(MIN(I)*(MIN(I)-COST(I)))+
+ MAX(I)*(MAX(I)-MIN(I)) +
+ COST(I)*(COST(I)-MAX(I)))/18
ELSE IF (DISTR(I) .EQ. 'N' .OR. DISTR(I) .EQ. 'n') THEN

C Normal Distribution
IF (SELECT.EQ.2) THEN
 CVAR(I)=STDDEV(I)**2
 MAX(I)=COST(I)+3*STDDEV(I)
 MIN(I)=COST(I)-3*STDDEV(I)
ELSE
 C Insure Symmetry of endpoints
 IF (ABS(MAX(I)-COST(I)) .GT. ABS(COST(I)-MIN(I))) THEN
 MIN(I)=COST(I)-(MAX(I)-COST(I))
 ELSE
 MAX(I)=(COST(I)-MIN(I))+COST(I)
 ENDIF

61
END IF
CVAR(I)=((MAX(I)-MIN(I))/5)**2
END IF
CMEAN(I)=COST(I)
ELSE IF (DISTR(I) .EQ. 'L' .OR. DISTR(I) .EQ. 'L') THEN
C Lognormal Distribution
 IF (SELECT.EQ.2) THEN
 LVAR=STDDEV(I)**2
 LMEAN=LOG(COST(I))+LVAR
 LMIN=LMEAN-(3*SQR(LVAR))
 LMAX=(3*SQR(LVAR))+LMEAN
 MIN(I)=EXP(LMIN)
 MAX(I)=EXP(LMAX)
 GOTO 153
 ELSE
 LMAX=LOG(MAX(I))
 IF (MIN(I).LE.0) THEN
 LMIN=0
 ELSE
 LMIN=LOG(MIN(I))
 END IF
 LVAR=((LMAX-LMIN)/6)**2
 LMEAN=((LMAX-LMIN)/2)+LMIN
 END IF
153 CMEAN(I)=EXP(LMEAN+ (.5*LVAR))
CVAR(I)=EXP((2*LMEAN)+LVAR)*EXP(LVAR)-1
ELSE IF (DISTR(I) .EQ. 'B' .OR. DISTR(I) .EQ. 'B') THEN
C BETA Distribution
 CMEAN(I)=(MIN(I)+4*COST(I)+MAX(I))/6
 CVAR(I)=((MAX(I)-MIN(I))**2)/36
ELSE
 GOTO 140
END IF
155 CORSUM = CORSUM + CORR(I)
WRITE (*,38)
READ (*,'(A*)') CHOICE
IF (CHOICE.EQ.'N' .OR. CHOICE.EQ.'n') GOTO 140
PRINT 1
PRINT 20
PRINT 21,NAME(I),MIN(I),COST(I),MAX(I),
+ DISTR(I),CMEAN(I),CVAR(I)
PRINT 13
READ (*,*)
C Write cost data to file ('FLNM'.CST)
WRITE (0,23) I,NAME(I),MIN(I),COST(I),MAX(I),DISTR(I),
+ CORR(I),STDDEV(I)
160 CONTINUE
C Build correlation matrix template
495 DO 170 L=1,COUNT
 DO 180 M=1,COUNT
 IF (L.EQ.M) THEN
 CORMAT(L,M)=1
 ELSE
 CORMAT(L,M)=0
 END IF
 END DO 180
 CONTINUE
CONTINUE

IF (CORSUM.EQ.0) GOTO 700

C Formulate Correlation Matrix
DO 520 J=1, COUNT
 IF (CORR(J).EQ.1) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE (*,30)
 PRINT 12
 WRITE (*,31) J, NAME(J)
 PRINT 12
 WRITE (*,79)
 WRITE (*,80)
 DO 532 K=1, COUNT
 IF (CORMAT(K,J).NE.0 .AND. K.NE.J) THEN
 WRITE (*,81) K, NAME(K), CORMAT(K,J)
 END IF
 IF (CORMAT(J,K).NE.0 .AND. J.NE.K) THEN
 WRITE (*,81) K, NAME(K), CORMAT(J,K)
 END IF
 ENDDO 532
 CONTINUE
 END IF

WRITE (*,39)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ."N" .OR. CHOICE.EQ."n") GOTO 520
WRITE (*,32)
READ (*,*),ERR=530) WITH
 IF (WITH.GT.COUNT .OR. J.EQ.WITH) GOTO 530
 WRITE (*,33)
 READ (*,*),ERR=530) RHO(J)
 IF (RHO(J).LT.-1 .OR. RHO(J).GT.1) GOTO 530
 IF (CORMAT(WITH,J).NE.RHO(J) .AND. CORMAT(WITH,J).NE.0) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 1
 PRINT 1
 WRITE (*,73)
 PRINT 12
 WRITE (*,34)
 WRITE (*,35)
 WRITE (*,36)
 WRITE (*,77) J, NAME(J), WITH, NAME(WITH), CORMAT(WITH,J)
 PRINT 12
 WRITE (*,74)
 READ (*,'(A)') CHOICE
 PRINT 12
 IF (CHOICE.EQ."Y" .OR. CHOICE.EQ."y") THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 CORMAT(WITH,J)=RHO(J)
 WRITE (*,30)
 PRINT 12
 WRITE (*,31) J, NAME(J)
 PRINT 12
 WRITE (*,75) WITH
 PRINT 12
 WRITE (*,76) RHO(J)
 PRINT 1

63
GOTO 535
ELSE
 GOTO 530
END IF
ELSE
 PRINT 12
 CORMAT(J,WITH)=RHO(J)
END IF
535 WRITE (*,34)
WRITE (*,35)
WRITE (*,36)
WRITE (*,37) J,NAME(J),WITH,NAME(WITH),RHO(J)
WRITE (*,38)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'N' .OR. CHOICE.EQ.'n') THEN
 CORMAT(J,WITH)=0
 GOTO 530
ELSE
 GOTO 530
END IF
ELSE
 GOTO 520
END IF
520 CONTINUE
C Check correlation matrix symmetry
DO 620 L=1,COUNT
 DO 630 M=1,COUNT
 IF (L.EQ.M) THEN
 CORMAT(L,M)=1
 ELSE IF (CORMAT(L,M).EQ.CORMAT(M,L)) THEN
 GOTO 630
 ELSE IF (CORMAT(L,M).EQ.0 .AND. CORMAT(M,L).NE.0) THEN
 CORMAT(L,M)=CORMAT(M,L)
 ELSE IF (CORMAT(L,M).NE.0 .AND. CORMAT(M,L).EQ.0) THEN
 CORMAT(M,L)=CORMAT(L,M)
 END IF
630 CONTINUE
620 CONTINUE
C Construct 'TEST' correlation matrix for JACOBI subroutine
DO 640 L=1,COUNT
 DO 650 M=1,COUNT
 IF (L.EQ.M) THEN
 TEST(L,M)=1
 ELSE
 TEST(L,M)=CORMAT(L,M)
 END IF
650 CONTINUE
640 CONTINUE
C Compute Eigenvalues
CALL CLEARSCREEN($GCLEARSCREEN)
CALL jacobi (TEST,COUNT,NP,D,V,NROT)
DO 670 J=1,NP
 IF (D(J).GE.0) THEN
 GOTO 670
 ELSE
PRINT 12
PRINT 12
PRINT 12
WRITE (*,40)
PRINT 12
WRITE (*,13)
READ (*,*)
GOTO 495
END IF
670 CONTINUE
C Write correlation values to file ('FLNM'.COR)
700 DO 710 L=1,COUNT
 DO 720 M=1,COUNT
 WRITE (5,60) CORMAT(L,M)
720 CONTINUE
710 CONTINUE
 IF (CORSUM.EQ.0) GOTO 900
C Display correlation values
800 CALL CLEARSCREEN($GCLEARSCREEN)
 LINE = 5
 WRITE (*,50)
 PRINT 12
 WRITE (*,51)
 WRITE (*,52)
 WRITE (*,53)
 DO 810 L=1,COUNT-1
 DO 820 K=L+1,COUNT
 IF (CORMAT(L,K).NE.0) THEN
 SUM=SUM+1
 END IF
820 CONTINUE
 IF (SUM.EQ.0) GOTO 810
 WRITE (*,54) L,NAME(L)
 DO 830 M=L+1,COUNT
 IF (CORMAT(L,M).EQ.0) GOTO 830
 WRITE (*,55) M,NAME(M),CORMAT(L,M)
 LINE=LINE+1
 IF (LINE.EQ.21) THEN
 WRITE (*,13)
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE (*,57)
 PRINT 12
 WRITE (*,51)
 WRITE (*,52)
 WRITE (*,53)
 LINE=0
 END IF
830 CONTINUE
 WRITE (*,56)
 LINE=LINE+2
 SUM = 0
810 CONTINUE
 PRINT 13
 READ (*,*)
1 FORMAT ('0')
FORMAT ('0', '31X,' 'COST UNCERTAINTY')
FORMAT ('0', '34X, 'Data Input')
FORMAT ('0', '6X, I3, 14X, 'CES Name', ' ', ' ')
FORMAT ('0', '23X, 'Estimated Cost (mode)', ' ', ' ')
FORMAT ('0', '23X, 'Distribution Shape')
FORMAT ('0', '23X, (U,T,N,L,B)
FORMAT ('0', '33X, 'Minimum', ' ', ' ')
FORMAT ('0', '33X, 'Maximum', ' ', ' ')
FORMAT ('0', '23X, 'Correlated? (Y/N)
FORMAT ('0', '26X, 'Press [RETURN] to Continue', ' ')
FORMAT ('0', '21X, 'Number of elements?'
FORMAT ('0', '16X, 'Correlated with element? '
FORMAT ('0', '29X, 'Coefficient '
FORMAT ('0', '3X, 'Element #')
FORMAT ('+', 'NAME', '18X, 'MIN', '8X, 'COST', '9X, 'MAX', '2X, +
 'DISTR', '6X, 'MEAN', '9X, 'VAR')
FORMAT ('0', 'A10, 3X, 3F12.1, 4X, A1, 2F12.1)
FORMAT (I3, A10, 3F15.4, A1, I1, F8.5)
FORMAT ('0', '29X, 'Check Input Values')
FORMAT ('0', '22X, 'Maximum value less than cost mode')
FORMAT ('0', '20X, 'Minimum value greater than cost mode')
FORMAT ('0', '26X, 'CREATE CORRELATION MATRIX')
FORMAT ('0', '10X, 'Cost Element Number:', 1X, I3, 12X, +
 'Cell Name:', 1X, A10)
FORMAT ('0', '24X, 'Correlated With Element: ', ' ')
FORMAT ('0', '24X, 'Correlation Coefficient: ', ' ')
FORMAT ('0', '4X, 'Cost', '9X, 'Cell', '7X, 'Correlated With', +
 '6X, 'Cell', '8X, 'Correlation')
FORMAT ('0', '3X, 'Element', '7X, 'Name', '8X, 'Cost Element', +
 '8X, 'Name', '8X, 'Coefficient')
FORMAT ('0', '3X, '--------', '6X, '--------', '7X, '--------', +
 '7X, '--------')
FORMAT ('0', '5X, I3, 6X, A10, 9X, I3, 10X, A10, 8X, F5.2)
FORMAT ('0', '27X, 'Is this correct? (Y/N)
FORMAT ('0', '29X, 'Add correlation? (Y/N)
FORMAT ('0', '21X, 'Correlation Matrix is Inconsistent')
FORMAT ('0', '30X, 'CORRELATION VALUES')
FORMAT ('0', '13X, 'Element', '5X, 'Cell')
FORMAT ('0', '13X, 'Number', '6X, 'Name')
FORMAT ('0', '13X, '--------', '6X, '----')
FORMAT ('0', '15X, I3, 7X, A10, 6X, 'correlated with:')
FORMAT ('0', '39X, I3, 2X, A10, 2X, F5.2)
FORMAT ('0', '13X, '-------------------------------')
FORMAT ('0', '30X, 'Correlation Values')
FORMAT (F5.2)
FORMAT ('0', '28X, 'File already exists')
FORMAT ('0', '21X, 'Do you want to overwrite it? (Y/N)
FORMAT ('0', 'Enter Filename:', 1X, A8)
FORMAT ('0', '34X, 'Currently')
FORMAT ('0', '32X, 'Replace? (Y/N)
FORMAT ('0', '24X, 'Correlated With Element:', 3X, I3)
FORMAT ('0', '24X, 'Correlation Coefficient:', 1X, F5.2)
FORMAT ('0', '15X, 'Select input type 1) Min/Max 2) Std Dev')
SUBROUTINE EDIT
REAL MIN, COST, MAX, MINTMP, CSTTMP, MAXTMP, CORMAT, TEMP, TEST, RHO
DOUBLE PRECISION LMIN, LMEAN, LMAX, LVAR, STDDEV, STDMAP
PARAMETER (NP=200)
INTEGER COUNT, I, C, CORR, DEL, WITH, CORSUM, NROT
CHARACTER FLNM*8, DISTR*1, NAME*10, NAMTMP*10
DIMENSION COUNT(NP), NAME(NP), MIN(NP), COST(NP), MAX(NP), D(NP),
 V(NP,NP), CORMAT(NP,NP), TEMP(NP,NP), TEST(NP,NP),
 CORR(NP), DISTR(NP), STDDEV(NP)
CALL CLEARSCREEN($GCLEARSCREEN)
I = 0
SUM = 0
LINE = 0
CORSUM = 0
WRITE (*,10)
PRINT 2
WRITE (*, '(1x,a)') 'Enter filename: '
READ (*, '(A)')FLNM
OPEN (UNIT=3, FILE=FLNM(LENTRIM(FLNM))/'.CST',
 STATUS='OLD', ACCESS='SEQUENTIAL', ERR=100)
GOTO 105
100 CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 1
PRINT 2
PRINT 2
WRITE (*, 4)
PRINT 1
PRINT 2
PRINT 99
READ (*,*)
CALL CLEARSCREEN($GCLEARSCREEN)
CALL FILMG
105 DO WHILE (.NOT. EOF(3))
 I=I+1
 READ (3,30) COUNT(I), NAME(I), MIN(I), COST(I), MAX(I),
 DISTR(I), CORR(I), STDDEV(I)
 CORSUM=CORSUM+CORR(I)
END DO
CLOSE (3)
C Read Correlation File
OPEN (UNIT=5, FILE=FLNM(LENTRIM(FLNM))/'.COR',
 ACCESS='SEQUENTIAL', STATUS='UNKNOWN', ERR=100)
DO 110 L=1,I
DO 115 M=1,I
 READ (5,5) CORMAT(L,M)
 TEMP(L,M)=CORMAT(L,M)
115 CONTINUE
110 CONTINUE
CLOSE (5)
140 CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 2
PRINT 2
WRITE (*,10)
PRINT 2
WRITE (*,11)
WRITE (*,12)
WRITE (*,8)
PRINT 1
WRITE (*,9)
READ (*,*),ERR=140) SELECT
IF (SELECT.GT.3 .OR. SELECT.LT.1) GOTO 140
C Edit Cost Data File
IF (SELECT.EQ.1) THEN
150 CALL CLEARSCREEN($GCLEARSCREEN)
WRITE (*,18) FLNM(:LEN_TRIM(FLNM))
PRINT 1
WRITE (*,25)
WRITE (*,26)
DO 600 C=1,I
 LINE=LINE+1
 WRITE (*,35) C,NAME(C),MIN(C),COST(C),MAX(C),
 DISTR(C)
 IF (LINE.EQ.10.OR.C.EQ.1) THEN
 LINE = 0
 WRITE (*,13)
 READ (*,*),ERR=150) SELECT
C Add Cost Element
IF (SELECT.EQ.1) THEN
 PRINT 1
 WRITE (*,27)
 READ (*,*),ERR=150) INS
 IF (INS.LT.1) GOTO 150
 I=I+1
 INS=INS+1
 IF (INS.GT.I) THEN
 INS=I
 END IF
 DO 210 K=INS,I
 NAMTMP = NAME(INS)
 MINTMP = MIN(INS)
 CSTTMP = COST(INS)
 MAXTMP = MAX(INS)
 DISTMP = DISTR(INS)
 CORTMP = CORR(INS)
 STDTMP = STDDEV(INS)
 NAME(INS) = NAME(K+1)
 MIN(INS) = MIN(K+1)
 COST(INS) = COST(K+1)
210 CONTINUE
```plaintext
MAX(INS) = MAX(K+1)
DISTR(INS) = DISTR(K+1)
CORR(INS) = CORR(K+1)
STDDEV(INS) = STDDEV(K+1)
NAME(K+1) = NAMTMP
MIN(K+1) = MINTMP
COST(K+1) = CSTTMP
MAX(K+1) = MAXTMP
DISTR(K+1) = DISTMP
CORR(K+1) = CORTMP
STDDEV(K+1) = STDTMP

210 CONTINUE
215 CALL CLEARSCREEN( $GCLEARSSCREEN )
PRINT 1
WRITE (*,40)
WRITE (*,49)
WRITE (*,41) INS
READ (*,'(A)') NAME(INS)
WRITE (*,43)
READ (*,*ERROR=215) COST(INS)
WRITE (*,45)
WRITE (*,46)
READ (*,'(A)') DISTR(INS)
IF (DISTR(INS).EQ.'N'.OR.DISTR(INS).EQ.'n'.OR.
    + DISTR(INS).EQ.'L'.OR.DISTR(INS).EQ.'l') THEN
    WRITE(*,36)
    READ (*,*ERROR=215) SELECT
    IF (SELECT.EQ.1) GOTO 220
    WRITE (*,37)
    READ (*,*ERROR=215) STDDEV(INS)
    GOTO 225
ELSE
    STDDEV(INS)=0
END IF

220 WRITE (*,42)
READ (*,*ERROR=215) MIN(INS)
WRITE (*,44)
READ (*,*ERROR=215) MAX(INS)
C Check MINIMUM < Mode < MAXIMUM
IF (COST(INS).LT.MIN(INS).AND.COST(INS).GT.
+ MAX(INS)) THEN
    CALL CLEARSCREEN( $GCLEARSSCREEN )
    PRINT 2
    PRINT 2
    WRITE (*,81)
    PRINT 2
    WRITE (*,82)
    WRITE (*,83)
    PRINT 2
    PRINT 2
    WRITE (*,99)
    READ (*,*)
    GOTO 215
ELSE IF (COST(INS).GT.MAX(INS)) THEN
    CALL CLEARSCREEN( $GCLEARSSCREEN )
```

69
PRINT 2
PRINT 2
WRITE (*,81)
PRINT 2
WRITE (*,82)
PRINT 2
PRINT 2
WRITE (*,99)
READ (*,*)
GOTO 215
ELSE IF (COST(INS).LT.MIN(INS)) THEN
CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 2
PRINT 2
WRITE (*,81)
PRINT 2
WRITE (*,83)
PRINT 2
PRINT 2
WRITE (*,99)
READ (*,*)
GOTO 215
END IF

225
WRITE (*,47)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'Y'.OR. CHOICE.EQ.'y') THEN
 CORR(INS)=1
ELSE
 CORR(INS)=0
END IF
WRITE (*,62)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'N'.OR. CHOICE.EQ.'n') GOTO 215
IF (DISTR(INS).EQ.'U'.OR. DISTR(INS).EQ.'u') THEN
 C Uniform Distribution
 CMEAN=(MIN(INS)+MAX(INS))/2
 CVAR=((MAX(INS)-MIN(INS))**2)/12
 ELSE IF (DISTR(INS).EQ.'T'.OR. DISTR(INS).EQ.'t') THEN
 C Triangular Distribution
 CMEAN=(MIN(INS)+COST(INS)+MAX(INS))/3
 CVAR=(MIN(INS)* (MIN(INS) - COST(INS)) +
 MAX(INS)*(MAX(INS) - MIN(INS)) +
 COST(INS)*(COST(INS) - MAX(INS)))/18
 ELSE IF (DISTR(INS).EQ.'N'.OR. DISTR(INS).EQ.'n') THEN
 C Normal Distribution
 IF (SELECT.EQ.2) THEN
 CVAR=STDDEV(INS)**2
 MAX(INS)=3*STDDEV(INS)+COST(INS)
 MIN(INS)=COST(INS)-3*STDDEV(INS)
 ELSE
 C Insure Symmetry of endpoints
 IF (ABS(MAX(INS)-COST(INS)).GT.
 ABS(COST(INS)-MIN(INS))) THEN

MIN(INS)=COST(INS)-(MAX(INS)-COST(INS))
ELSE
MAX(INS)=(COST(INS)-MIN(INS))+COST(INS)
END IF
CVAR=((MAX(INS)-MIN(INS))/6)**2
END IF
CMEAN=COST(INS)
ELSE IF (DISTR(INS).EQ. 'L' .OR. DISTR(INS).EQ. '1')
THEN
C Lognormal Distribution
IF (SELECT.EQ. '2') THEN
LVAR=STDDEV(INS)**2
LMEAN=LOG(COST(INS))+LVAR
LMIN=LMEAN-(3*SQRT(LVAR))
LMAX=(3*SQRT(LVAR))+LMEAN
MIN(INS)=EXP(LMIN)
MAX(INS)=EXP(LMAX)
ELSE
LMAX=LOG(MAX(I))
IF (MIN(I).LE.0) THEN
LMIN=0
ELSE
LMIN=LOG(MIN(I))
END IF
LVAR=((LMAX-LMIN)/6)**2
LMEAN=((LMAX-LMIN)/2)+LMIN
END IF
CMEAN=EXP(LMEAN+ (.5*LVAR))
CVAR=EXP((2*LMEAN+LVAR)*(EXP(LVAR)-1))
ELSE
C BETA Distribution
CMEAN=(MIN(INS)+4*COST(INS)+MAX(INS))/6
CVAR=((MAX(INS)-MIN(INS))**2)/36
END IF
PRINT 2
WRITE (*,38)
WRITE (*,39) NAME(INS),MIN(INS),COST(INS),
+ MAX(INS),DISTR(INS),CMEAN,CVAR
WRITE (*,99)
READ (*,*)
C Add variable to correlation matrix
DO 230 L=1,I
DO 235 M=1,I
IF (L.EQ.M) THEN
TEMP(L,M)=1
ELSE IF (L.EQ.INS .OR. M.EQ.INS) THEN
TEMP(L,M)=0
ELSE IF (L.GT.INS) THEN
IF (M.GT.INS) THEN
TEMP(L,M)=TEMP(L-1,M-1)
ELSE
TEMP(L,M)=TEMP(L-1,M)
END IF
ELSE IF (M.GT.INS) THEN
TEMP(L,M)=TEMP(L,M-1)
END IF
71
ELSE
 TEMP(L,M) = TEMP(L,M)
END IF
CONTINUE

DO 245 K=1,I
 IF (TEMP(INS,K) .NE. 0 .AND. INS .NE. K) THEN
 WRITE (*, 69) K, NAME(K), TEMP(INS,K)
 END IF
 WRITE (*, 70)
READ (*, '(A)') CHOICE
IF (CHOICE .EQ. 'N' .OR. CHOICE .EQ. 'n') GOTO 250
WRITE (*, 71)
READ (*, *, ERR=240) RHO
IF (RHO .LT. -1 .OR. RHO .GT. 1) GOTO 240
TEMP(INS, WITH) = RHO
TEMP(WITH, INS) = RHO
PRINT 1
WRITE (*, 73)
WRITE (*, 74)
WRITE (*, 75)
WRITE (*, 76) INS, NAME(INS), WITH, NAME(WITH), RHO
WRITE (*, 77)
READ (*, '(A)') CHOICE
IF (CHOICE .EQ. 'N' .OR. CHOICE .EQ. 'n') THEN
 TEMP(INS, WITH) = 0
 TEMP(WITH, INS) = 0
 GOTO 240
ELSE
 GOTO 240
END IF
CONTINUE

C Construct 'TEST' correlation matrix for JACOBI subroutine
DO 255 L=1,I
 DO 260 M=1,I
 IF (L .EQ. M) THEN
 TEST(L,M) = 1
 ELSE
 TEST(L,M) = TEMP(L,M)
 END IF
 TEST(M,L) = TEMP(L,M)
 END IF
CONTINUE

END
GOTO 150

C Delete Cost Element
ELSE IF (SELECT.EQ.2) THEN
 PRINT 1
 WRITE (*,28)
 READ (*,*,ERR=150) DEL
 IF (DEL.LT.1 .OR. DEL.GT.I) GOTO 150
 WRITE (*,21) DEL, NAME(DEL)
 WRITE (*,22)
 READ (*,'(A)') CHOICE
 IF (CHOICE.EQ.'Y'.OR.CHOICE.EQ.'y') THEN
 DO 300 K=DEL,I
 COUNT(K) = K
 NAME(K) = NAME(K+1)
 MIN(K) = MIN(K+1)
 COST(K) = COST(K+1)
 MAX(K) = MAX(K+1)
 DISTR(K) = DISTR(K+1)
 CORR(K) = CORR(K+1)
 STDDEV(K) = STDDEV(K+1)
 300 CONTINUE
 ELSE
 GOTO 150
 END IF

C Delete variable from correlation matrix
DO 305 L=I,I
 DO 310 M=L+1,I
 IF (L.EQ.I .OR. M.EQ.I) THEN
 TEMP(L,M)=0
 ELSE IF (L.EQ.M) THEN
 TEMP(L,M)=1
 ELSE IF (L.GE.DEL) THEN
 TEMP(L,M)=TEMP(L+1,M+1)
 ELSE IF (M.GE.DEL) THEN
 TEMP(L,M)=TEMP(L,M+1)
 END IF
 310 CONTINUE
305 CONTINUE

C Check correlation matrix symmetry
DO 315 L=I,I
 DO 320 M=I,I
 IF (L.EQ.M) THEN
 TEMP(L,M)=1
 ELSE IF (TEMP(L,M).EQ.TEMP(M,L)) THEN
 GOTO 320
 ELSE IF (TEMP(L,M).EQ.0 .AND. TEMP(M,L).NE.0) THEN
 TEMP(L,M)=TEMP(M,L)
 ELSE IF (TEMP(L,M).NE.0 .AND. TEMP(M,L).EQ.0) THEN
 TEMP(M,L)=TEMP(L,M)
 END IF
 320 CONTINUE
315 CONTINUE
 TEMP(I,I)=0
 I=I-1

C Construct 'TEST' correlation matrix for JACOBI subroutine
DO 330 L=1,I
 DO 335 M=1,I
 IF (L.EQ.M) THEN
 TEST(L,M)=1
 ELSE
 TEST(L,M)=TEMP(L,M)
 TEST(M,L)=TEMP(L,M)
 END IF
 CONTINUE
335 CONTINUE
GOTO 150

C Modify Cost Element
ELSE IF (SELECT.EQ.3) THEN
 PRINT 1
 WRITE (*,29)
 READ (*,*),MOD,NAME(MOD)
 READ (*,'(A)') CHOICE
 IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'y') THEN
 WRITE (*,51)
 READ (*,'(A)') NAMTMP
 NAME(MOD)=NAMTMP
 ELSE
 NAMTMP=NAME(MOD)
 END IF
 WRITE (*,54) COST(MOD)
 READ (*,'(A)') CHOICE
 IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'y') THEN
 WRITE (*,55)
 READ (*,*),CSTTMP
 COST(MOD)=CSTTMP
 ELSE
 CSTTMP=COST(MOD)
 END IF
 WRITE (*,58) DISTR(MOD)
 READ (*,'(A)') CHOICE
 IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'y') THEN
 WRITE (*,59)
 READ (*,'(A)') DISTMP
 IF (DISTMP.EQ.'N'.OR.DISTMP.EQ.'n') THEN
 DISTR(MOD)=DISTMP
 WRITE(*,36)
 READ (*,*),SELECT
 IF (SELECT.EQ.1) GOTO 405
 WRITE (*,34)
 READ (*,*),STDDEV(MOD)
 MAX(MOD)=3*STDDEV(MOD)+COST(MOD)
 MIN(MOD)=COST(MOD)-3*STDDEV(MOD)
 GOTO 410
 ELSE IF (DISTMP.EQ.'L'.OR.DISTMP.EQ.'l') THEN
 DISTR(MOD)=DISTMP
 END IF
WRITE(*,36)
READ (*,*),ERR=400) SELECT
IF (SELECT.EQ.1) GOTO 405
WRITE (*,34)
READ (*,*,ERR=400) STDDEV(MOD)
LVAR=STDDEV(MOD)**2
LMEAN=LOG(COST(MOD)) + LVAR
LMIN=LMEAN-(3*SQR(LVAR))
LMAX=(3*SQR(LVAR))+LMEAN
MIN(MOD)=EXP(LMIN)
MAX(MOD)=EXP(LMAX)
GOTO 410
END IF
DISTR(MOD)=DISTMP
ELSE
DISTMP=DISTR(MOD)
IF (STDDEV(MOD).NE.0) THEN
WRITE (*,32) STDDEV(MOD)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'Y'.OR. Choice.EQ.'y') THEN
WRITE (*,33)
READ (*,*,ERR=400) STDTMP
STDDEV(MOD)=STDTMP
IF (DISTMP.EQ.'N'.OR. DISTMP.EQ.'n') THEN
MAX(MOD)=3*STDDEV(MOD)+COST(MOD)
MIN(MOD)=COST(MOD)-3*STDDEV(MOD)
ELSE IF (DISTMP.EQ.'L'.OR.
DISTMP.EQ.'1') THEN
LVAR=STDDEV(MOD)**2
LMEAN=LOG(COST(MOD)) + LVAR
LMIN=LMEAN-(3*SQR(LVAR))
LMAX=(3*SQR(LVAR))+LMEAN
MIN(MOD)=EXP(LMIN)
MAX(MOD)=EXP(LMAX)
END IF
ELSE
STDTMP=STDDEV(MOD)
END IF
GOTO 412
END IF
405
STDDEV(MOD)=0
WRITE (*,52) MIN(MOD)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'y'.OR. Choice.EQ.'y') THEN
WRITE (*,53)
READ (*,*,ERR=400) MINTMP
MIN(MOD)=MINTMP
ELSE
MINTMP=MIN(MOD)
END IF
WRITE (*,56) MAX(MOD)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'y'.OR. Choice.EQ.'y') THEN
WRITE (*,57)
75
C Check MINIMUM < Mode < MAXIMUM

410 IF (COST(MOD).LT.MIN(MOD).AND.COST(MOD).GT.MAX(MOD)) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 2
 PRINT 2
 WRITE (*,81)
 PRINT 2
 WRITE (*,82)
 WRITE (*,83)
 PRINT 2
 PRINT 2
 WRITE (*,99)
 READ (*,*)
 GOTO 400
ELSE IF (COST(MOD).GT.MAX(MOD)) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 2
 PRINT 2
 WRITE (*,81)
 PRINT 2
 WRITE (*,82)
 PRINT 2
 WRITE (*,83)
 PRINT 2
 WRITE (*,99)
 READ (*,*)
 GOTO 400
ELSE IF (COST(MOD).LT.MIN(MOD)) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 2
 PRINT 2
 WRITE (*,81)
 PRINT 2
 WRITE (*,82)
 PRINT 2
 WRITE (*,83)
 PRINT 2
 WRITE (*,99)
 READ (*,*)
 GOTO 400
END IF

C Insure Symmetry of endpoints
 IF (SELECT.EQ.1) THEN
 IF (DISTR(MOD).EQ.'N'.OR.DISTR(MOD).EQ.'n') THEN
 IF (ABS(MAX(MOD)-COST(MOD)) .GT.
 ABS(COST(MOD)-MIN(MOD))) THEN
 MIN(MOD)=COST(MOD)-(MAX(MOD)-COST(MOD))
 ELSE
 MAX(MOD)=(COST(MOD)-MIN(MOD))+COST(MOD)
 END IF
 END IF
 END IF
END IF
IF (CORR(MOD).EQ.0) THEN
 WRITE (*,60) 'No'
ELSE
 WRITE (*,60) 'Yes'
END IF
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'y') THEN
 WRITE (*,61)
 READ (*,'(A)') CHOICE
 IF (CHOICE.EQ.'Y'.OR.CHOOSE.EQ.'y') THEN
 CORTMP=1
 ELSE IF (CHOICE.EQ.'N'.OR.CHOOSE.EQ.'n') THEN
 CORTMP=0
 DO 415 F=1,I
 IF (F.EQ.MOD) THEN
 TEMP(F,MOD)=1
 ELSE
 TEMP(F,MOD)=0
 TEMP(MOD,F)=0
 END IF
 CONTINUE
 END IF
 CORR(MOD)=CORTMP
 ELSE
 CORTMP=CORR(MOD)
 END IF
WRITE (*,99)
READ (*,*)
IF (CORR(MOD).EQ.0) GOTO 150
CALL CLEARSCREEN($GCLEARSCREEN)
WRITE (*,65)
PRINT 1
WRITE (*,66) MOD,NAME(MOD)
PRINT 1
WRITE (*,67)
WRITE (*,68)
DO 425 K=1,I
 IF (TEMP(K,MOD).NE.0 .AND. K.NE.MOD) THEN
 WRITE (*,69) K,NAME(K),TEMP(K,MOD)
 END IF
 CONTINUE
WRITE (*,70)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'N' .OR. CHOICE.EQ.'n') GOTO 430
WRITE (*,71)
READ (*,*,ERR=420) WITH
IF (WITH.GT.1 .OR. WITH.EQ.MOD) GOTO 420
PRINT 1
WRITE (*,72)
READ (*,*,ERR=420) RHO
IF (RHO.LT.-1 .OR. RHO.GT.1) GOTO 420
TEMP (WITH,MOD)=RHO
TEMP (MOD,WITH)=RHO
PRINT 1
WRITE (*,73)
WRITE (*,74)
WRITE (*,75)
WRITE (*,76) MOD,NAME(MOD),WITH,NAME(WITH),RHO
WRITE (*,77)
READ (*, '(A)') CHOICE
 IF (CHOICE.EQ.'N' .OR. CHOICE.EQ.'n') THEN
 TEMP(MOD,WITH)=0
 TEMP(WITH,MOD)=0
 GOTO 420
 ELSE
 GOTO 420
 END IF
C Construct 'TEST' correlation matrix for JACOBI subroutine
DO 435 L=1,I
 DO 440 M=1,I
 IF (L.EQ.M) THEN
 TEST(L,M)=1
 ELSE
 TEST(L,M)=TEST(L,M)
 TEST(M,L)=TEST(L,M)
 END IF
 CONTINUE
440
435
CONTINUE
GOTO 150
C Return to 'EDIT' menu
ELSE IF (SELECT.EQ.5) THEN
DO 500 L=1,I
 DO 505 M=1,I
 IF (L.EQ.M) THEN
 TEST(L,M)=1
 ELSE
 TEST(L,M)=TEST(L,M)
 TEST(L,M)=TEST(L,M)
 END IF
 CONTINUE
505
500
CONTINUE
C Re-compute Eigenvalues
CALL CLEARSCREEN($GCLEARSCREEN)
CALL jacob (TEST,I,NP,D,V,NROT)
DO 510 L=1,I
 DO 515 M=1,I
 IF (L.EQ.M) THEN
 TEMP(M,L)=1
 ELSE
 TEMP(L,M)=TEST(L,M)
 TEMP(M,L)=TEST(L,M)
 END IF
 CONTINUE
515
510
CONTINUE
DO 520 J=1,I
 IF (D(J).LT.0) THEN
 FAIL=FAIL+1
 END IF
520
CONTINUE
IF (FAIL.GT.0) THEN
 FAIL=0
 PRINT 1
 PRINT 2
 WRITE (*,80)
 PRINT 1
 WRITE (*,99)
 READ (*,*)
 GOTO 140
END IF

GOTO 140

C Continue to next page
ELSE IF (SELECT.EQ.4) THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE (*,18) FLNM(:LEN_TRIM(FLNM))
 PRINT 1
 WRITE (*,25)
 WRITE (*,26)
 GOTO 600
ELSE
 GOTO 150
END IF
END IF
END IF

600
 CONTINUE
GOTO 150

C Save Cost Data File
ELSE IF (SELECT.EQ.2) THEN
700
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 2
 WRITE (*,84)
 PRINT 2
 WRITE (*, '(1x,a)') 'Save file as: '
 READ (*,'(A)') FLNM
 OPEN (UNIT=4, FILE = FLNM(:LEN_TRIM(FLNM))//'.CST',
 ACCESS = 'SEQUENTIAL', STATUS = 'NEW', ERR=710)
GOTO 720

710
 CALL CLEARSCREEN($GCLEARSCREEN)
 PRINT 2
 PRINT 2
 WRITE (*,87)
 PRINT 2
 WRITE (*,88)
 READ (*,'(A)') CHOICE
 IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'Y') THEN
 CALL CLEARSCREEN($GCLEARSCREEN)
 OPEN (UNIT=4, FILE = FLNM(:LEN_TRIM(FLNM))//'.CST',
 ACCESS = 'SEQUENTIAL', STATUS = 'UNKNOWN')
 GOTO 720
 ELSE
 GOTO 700
 END IF
720
 OPEN (UNIT=6, FILE=FLNM(:LEN_TRIM(FLNM))//'.COR',
 STATUS='UNKNOWN', ACCESS='SEQUENTIAL', ERR=100)
 DO 800 K=1,I
WRITE (4,63) K,NAM\(E(K),MIN(K),COST(K),MAX(K),
+ DISTR(K),CORR(K),STDDEV(K)
800 CONTINUE
CLOSE(4)
C Save Correlation Data File
 DO 805 L=1,I
 DO 810 M=1,I
 CORMAT(L,M)=TEMP(L,M)
 WRITE (6,5) CORMAT(L,M)
810 CONTINUE
805 CONTINUE
CLOSE(6)
CALL CLEARSREEN($GCLEARSREEN)
PRINT 2
PRINT 2
PRINT 2
WRITE (*,85) FLNM(:LEN_TRIM(FLNM))
WRITE (*,86) FLNM(:LEN_TRIM(FLNM))
PRINT 2
PRINT 2
PRINT 2
PRINT 99
READ (*,*)
GOTO 140
C Call Subroutine 'FILMGT'
ELSE IF (SELECT.EQ.3) THEN
 CALL CLEARSREEN($GCLEARSREEN)
 CALL FILMGT
END IF
1 FORMAT (' ')
2 FORMAT ('0')
3 FORMAT (F5.2)
4 FORMAT ('0',29X,'File Does Not Exist')
5 FORMAT (F5.2)
8 FORMAT ('0',26X,'3 Return to File Management')
9 FORMAT ('0',31X,'Enter Selection: ',\)
10 FORMAT ('0',31X,'EDIT DATA FILE')
11 FORMAT ('0',26X,'1 Edit Cost Data')
12 FORMAT ('0',26X,'2 Save File')
13 FORMAT ('0',3X,'1 Insert',4X,'2 Delete',4X,'3 Modify',4X,+
4) Next Page',4X,'5 Return ','\)
14 FORMAT ('0',26X,'2 Add Cost Element')
15 FORMAT ('0',26X,'3 Delete Cost Element')
16 FORMAT ('0',26X,'4 Change Cost Element')
17 FORMAT ('0',26X,'5 Return to Previous Menu')
18 FORMAT ('0',31X,'EDIT COST DATA'12X,A8,'.'CST')
19 FORMAT ('0',31X,'EDIT CORRELATION VALUES')
20 FORMAT ('0',26X,'1 Modify Cost Element')
21 FORMAT ('0',26X,'Delete CES number: ',I3,2X,A10)
22 FORMAT ('0',4X,'Confirm (Y/N): ',\)
25 FORMAT ('0',5X,'NAME',16X,'MIN',8X,'MODE',9X,'MAX'
26 FORMAT ('0',5X,'-----',16X,'-----',8X,'-----',9X,'-----'
27 FORMAT ('0','Insert after element number: ',\)
FORMAT ("0", 'Enter CES number to delete: ',)
FORMAT ("0", 'Enter CES number to modify: ',)
FORMAT (I3, A10, 3F15.4, A1, I1, F8.5)
FORMAT ("0", 10X, 'Standard Deviation: ', F8.5,
 + ' Replace (Y/N) ',)
FORMAT ("1", 21X, 'Std Dev: ',)
FORMAT ("0", 10X, 'Standard Deviation: ',)
FORMAT (I3, 3X, A10, 1X, 3F12.1, 10X, A1)
FORMAT ("0", 15X, 'Select input type 1) Min/Max 2) Std Dev ',)
FORMAT ("0", 23X, 'Standard Deviation ',)
FORMAT ("+", 'NAME', 18X, 'MIN', 8X, 'COST', 9X, 'MAX', 2X,
 + 'DISTR', 6X, 'MEAN', 9X, 'VAR')
FORMAT ("0", A10, 3X, 3F12.1, 4X, A1, 2F12.1)
FORMAT ("0", 36X, 'INSERT')
FORMAT ("0", 6X, I3, 14X, 'CES Name ',)
FORMAT ("0", 33X, 'Minimum ',)
FORMAT ("0", 23X, 'Estimated Cost (mode) ',)
FORMAT ("0", 33X, 'Maximum ',)
FORMAT ("0", 23X, 'Distribution Shape')
FORMAT ("0", 23X, 'U', T, N, L, B)
FORMAT ("0", 23X, 'Correlated? (Y/N) ')
FORMAT ("0", 35X, 'REPLACE')
FORMAT ("0", 3X, 'Element #')
FORMAT ("0", 6X, I3, 11X, 'CES Name: ', A10, ' Replace (Y/N) ',)
FORMAT ("0", 24X, 'Name: ',)
FORMAT ("0", 15X, 'Minimum Value: ', F12.1, ' Replace (Y/N) ',)
FORMAT ("0", 25X, 'Min: ',)
FORMAT ("0", 13X, 'Estimate (mode): ', F12.1, ' Replace (Y/N) ',)
FORMAT ("0", 24X, 'Mode: ',)
FORMAT ("0", 15X, 'Maximum Value: ', F12.1, ' Replace (Y/N) ',)
FORMAT ("0", 25X, 'Max: ',)
FORMAT ("0", 16X, 'Distribution: ', A11, ' Replace (Y/N) ',)
FORMAT ("0", 11X, 'Enter (U,T,N,L,B): ',)
FORMAT ("0", 11X, 'Correlated? (Y/N): ', A11,
 + ' Replace (Y/N) ',)
FORMAT ("0", 17X, 'Enter (Y/N): ',)
FORMAT ("0", 27X, 'Is this correct? (Y/N) ',)
FORMAT (I3, A10, 3F15.4, A1, I1, F8.5)
FORMAT ("0", 26X, 'File: ', A8, ' CST saved')
FORMAT ("0", 28X, 'EDIT CORRELATION MATRIX')
FORMAT ("0", 10X, 'Cost Element Number: ', I1, I3, 12X,
 + 'Cell Name: ', I1, A10)
FORMAT ("0", 5X, 'Current Correlations')
FORMAT ("0", 4X, 5X, '---------------------')
FORMAT ("0", 4X, I3, 2X, A10, 2X, F5.2)
FORMAT ("0", 29X, 'Add/change values? (Y/N) ',)
FORMAT ("0", 24X, 'Correlated With Element: ',)
FORMAT ("0", 24X, 'Correlation Coefficient: ',)
 + 6X, 'Cell', 8X, 'Correlation')
FORMAT ("0", 3X, 'Element', 7X, 'Name', 8X, 'Cost Element',
 + 8X, 'Name', 8X, 'Coefficient')
FORMAT ("0", 3X, '----', 6X, '----', 7X, '-------',
 + 7X, '--------')
FORMAT ("0", 5X, I3, 6X, A10, 9X, I3, 10X, A10, 8X, F5.2)
C

Cost Uncertainty Module

SUBROUTINE CSTUNC
PARAMETER (NP=200)
DIMENSION COUNT(NP), NAME(NP), CORMAT(NP, NP), MIN(NP), COST(NP),
 + MAX(NP), CORR(NP), STDDEV(NP), CVAR(NP), DISTR(NP)
DIMENSION PROB(11), LPROB(11), ZSCORE(11), PCENT(11)
DOUBLE PRECISION LMIN, LMEAN, LMAX, LVAR, TCLMEAN, TCLVAR, LPROB, LEST,
 + STDDEV, CMEAN, CVAR, AREA, NEWCST, X, Z
REAL MIN, COST, MAX, TCMEAN, TCVAR, PROB, EST, ZSCORE
INTEGER COUNT, K, L, M, CORR
CHARACTER FLNM*8, DISTR*1, NAME*10, PCENT*3
DATA ZSCORE /-1.28155, -.84162, -.5244, -.25335, 0., .25335,
 + .5244, .84162, 1.28155, 1.64485, 2.32635/
DATA PCENT /'10%', '20%', '30%', '40%', '50%', '60%',
 + '70%', '80%', '90%', '95%', '99%'/
TCCOST = 0
TCMEAN = 0
TCVAR = 0
TCLMEAN = 0
TCLVAR = 0
I = 0
C Compute Deciles
WRITE (*,41)
PRINT 2
WRITE (*, '(1x,a)') 'Enter Filename: '
READ (*,'(A)') FLNM
C Read Cost Data File
OPEN (UNIT=4, FILE=FLNM(:LEN_TRIM(FLNM))/'.CST',
GOTO 110
100 CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 1
PRINT 2
PRINT 2
WRITE (*,48)
PRINT 1
PRINT 2
PRINT 99
READ (*,*)
CALL MENU
110 DO WHILE (.NOT. EOF(4))
I = I+1
READ (4,21) COUNT(I),NAME(I),MIN(I),COST(I),MAX(I),DISTR(I),
 CORR(I),STDEV(I)
 IF (DISTR(I) .EQ. 'U' .OR. DISTR(I) .EQ. 'u') THEN
C Uniform Distribution
 CMEAN=(MIN(I)+MAX(I))/2
 CVAR(I)=((MAX(I)-MIN(I))**2)/12
 ELSE IF (DISTR(I) .EQ. 'T' .OR. DISTR(I) .EQ. 't') THEN
C Triangular Distribution
 CMEAN=(MIN(I)+COST(I)+MAX(I))/3
 CVAR(I)=((MIN(I)*COST(I)-MIN(I)) +
 MAX(I)*(MAX(I)-MIN(I)) +
 COST(I)*(COST(I)-MAX(I)))/18
 ELSE IF (DISTR(I) .EQ. 'N' .OR. DISTR(I) .EQ. 'n') THEN
C Normal Distribution
 CMEAN=COST(I)
C Insure Symmetry endpoints
 IF (ABS(MAX(I)-COST(I)) .GT. ABS(COST(I)-MIN(I))) THEN
 MIN(I)=COST(I)-(MAX(I)-COST(I))
 ELSE
 MAX(I)=(COST(I)-MIN(I))+COST(I)
 END IF
 CVAR(I)=((MAX(I)-MIN(I))/6)**2
 ELSE IF (DISTR(I) .EQ. 'L' .OR. DISTR(I) .EQ. 'l') THEN
C Lognormal Distribution
 IF (STDEV(I),EQ.0) THEN
 LMAX=LOG(MAX(I))
 IF (MIN(I),LE.0) THEN
 LMIN=0
 ELSE
 LMIN=LOG(MIN(I))
 END IF
 LVAR=((LMAX-LMIN)/6)**2
 LMEAN=((LMAX-LMIN)/2)+LMIN
 ELSE
 LVAR=STDEV(I)**2
 LMAX=LOG(MAX(I))
 LMIN=LOG(MIN(I))
 LMEAN=LOG(COST(I))+LVAR
 END IF
 CMEAN=EXP(LMEAN+(.5*LVAR))
 CVAR(I)=EXP((2*LMEAN+LVAR)*(EXP(LVAR)-1))
 ELSE
C BETA Distribution.
 CMEAN=(MIN(I)+4*COST(I)+MAX(I))/6
 CVAR(I)=((MAX(I)-MIN(I))**2)/36
 END IF
 TCMEAN=TCMEAN+CMEAN
 TCVAR=TCVAR+CVAR(I)
END DO
C Read Correlation Matrix File
OPEN (UNIT=5, FILE=FLNM(:LEN_TRIM(FLNM))/''COR'',
 STATUS='OLD', ERR=100)
DO 120 L=1,I
 DO 130 M=1,I

83
READ (5,5) CORMAT(L,M)
CONTINUE
CLOSE (UNIT=5,STATUS='KEEP')
C Compute Covariance between elements
DO 140 L=1,I
 DO 150 M=L+1,I
 TCVAR=TCVAR+2*CORMAT(L,M)*SQT(CVAR(L))*SQT(CVAR(M))
 CONTINUE
140 CONTINUE
C Log-Normal Computations
 TCLMEAN=.5*LOG(((TCMEAN**4)/((TCMEAN**2)+TCVAR))
 TCLVAR=LOG(((TCMEAN**2)+TCVAR)/((TCMEAN**2))
CALL CLEARSCREEN($GCLEARSCREEN)
DO 160 K=1,11
 PROB(K) = TCMEAN + ZSCORE(K) * SQRT(TCVAR)
 LPROB(K) = EXP(TCLMEAN+ZSCORE(K)*SQT(TCLVAR))
160 CONTINUE
CLOSE (UNIT=4,STATUS='KEEP')
CALL CLEARSCREEN($GCLEARSCREEN)
WRITE (*,24) FLNM(:LEN_TRIM(FLNM))
PRINT 1
WRITE (*,25) TCMEAN
WRITE (*,26) SQRT(TCVAR)
PRINT 1
WRITE (*,27)
WRITE (*,28)
 DO 210 K=1,11
 WRITE (*,29) PCENT(K), PROB(K), LPROB(K)
210 CONTINUE
PRINT 1
WRITE (*,40)
READ (*,*,ERR=200) SELECT
 IF (SELECT .EQ. 1) THEN
 PRINT 47
 READ (*,*,ERR=200) SELECT
 IF (SELECT .EQ. 3) THEN
 PRINT 42
 READ (*,*,ERR=200) SELECT
C Normal Query
 IF (SELECT .EQ. 5) THEN
 PRINT 43
 READ (*,*,ERR=200) EST
 X = (EST - TCMEAN)/SQRT(TCVAR)
 AREA = ALNORM(X) * 100
 PRINT 45,AREA,'%'
 READ (*,*)
 GOTO 200
 ELSE IF (SELECT .EQ. 6) THEN
 PRINT 44
 READ (*,*,ERR=200) P
 IF (P.GT.1) THEN
 P=P/100
 ELSE IF (P.LT..0001) THEN
 P=.0001
 END IF

84
ELSE IF (P.GT..9999) THEN
 P = .9999
END IF
Z = PPND16(P)
NEWCST = Z*SQR(TCVAR) + TCLMEAN
PRINT 46,NEWCST
READ (*,*)
GOTO 200
ELSE
GOTO 200
END IF
LOGNORMAL Query
ELSE IF (SELECT .EQ. 4) THEN
PRINT 42
READ (*,*,ERR=200) SELECT
IF (SELECT .EQ. 5) THEN
PRINT 43
READ (*,*,ERR=200) EST
LEST = LOG(EST)
X = (LEST - TCLMEAN) / SQR(TCVAR)
AREA = ALNORM(X) * 100
PRINT 45,AREA,'%'
READ (*,*)
GOTO 200
ELSE IF (SELECT .EQ. 6) THEN
PRINT 44
READ (*,*,ERR=200) P
IF (P.GE.1) THEN
 P = P/100
ELSE IF (P.LT..0001) THEN
 P = .0001
ELSE IF (P.GT..9999) THEN
 P = .9999
END IF
Z = PPND16(P)
NEWCST = EXP(Z*SQR(TCVAR) + TCLMEAN)
PRINT 46,NEWCST
READ (*,*)
GOTO 200
ELSE
GOTO 200
END IF
ELSE
GOTO 200
END IF
ELSE IF (SELECT .EQ. 2) THEN
CALL CLEARSCREEN($GCLEARSCREEN)
PRINT 2
PRINT 2
PRINT 2
PRINT 2
PRINT 2
PRINT 2
WRITE (*,50)
READ (*,'(A)') CHOICE
IF (CHOICE.EQ.'Y' .OR. CHOICE.EQ.'y') THEN
 OPEN (UNIT=2, FILE='LPT1')
 WRITE (2,1)
 WRITE (2,30) FLNM(:LEN_TRIM(FLNM))
 WRITE (2,31)
 WRITE (2,2)
 WRITE (2,2)
 WRITE (2,23)
 WRITE (2,1)
 WRITE (2,25) TCMEAN
 WRITE (2,26) SQRT(TCVAR)
 WRITE (2,1)
 WRITE (2,27)
 WRITE (2,28)
 DO 230 K=1,11
 WRITE (2,29) PCENT(K), PROB(K), LPROB(K)
 CONTINUE
 WRITE (2,3)
 CLOSE (UNIT=2)
ELSE
 CALL MENU
END IF
CALL MENU
ELSE
 GOTO 200
END IF
READ (*,*)
CALL CLEARSCREEN($GCLEARSCREEN)
CALL MENU
1 FORMAT (' ')
2 FORMAT ('0')
3 FORMAT ('1')
5 FORMAT ('F5.2')
21 FORMAT (I3,A10,3F15.4,A1,I1,F8.5)
22 FORMAT (' ',F12.1)
23 FORMAT ('0',31X,'PROBABILITIES')
24 FORMAT ('0',31X,'PROBABILITIES',10X,A8,'.CST')
25 FORMAT (' ',20X,'Mean',15X,': ',F12.1)
26 FORMAT (' ',20X,'Standard Deviation : ',F12.1)
27 FORMAT (' ',32X,'Normal',12X,'Log Normal')
28 FORMAT (' ',12X,'Percentile',2(8X,'Value (est)'))
29 FORMAT (' ',16X,A3,8X,F12.1,7X,F12.1)
30 FORMAT ('0',25X,'COST UNCERTAINTY ANALYSIS',10X,A8,'.CST')
31 FORMAT (' ',31X,'Output Report')
40 FORMAT (' ',19X,'1) Query 2) Return to Main Menu ',\)
41 FORMAT ('0',31X,'COST UNCERTAINTY')
42 FORMAT (' ',19X,5) Cost -> Prob 6) Prob -> Cost ',\)
43 FORMAT (' ',19X,'Enter Estimate ',\)
44 FORMAT (' ',19X,'Enter Estimate ',\)
45 FORMAT (' ',32X,F6.2,A2)
46 FORMAT (' ',32X,F12.1)
47 FORMAT (' ',19X,'3) Normal 4) Lognormal',\)

Evaluates the tail area of the standardized normal curve from X to infinity if UPPER is .TRUE. or from minus infinity to X if UPPER is .FALSE.

REAL FUNCTION ALNORM(X)
DOUBLE PRECISION X
REAL LTONE, UTZERO, ZERO, HALF, ONE, CON, Y, Z
LOGICAL UPPER /.FALSE./, UP

C
DATA LTONE, UTZERO /7.0, 18.66/
DATA ZERO, HALF, ONE, CON /0.0, 0.5, 1.0, 1.28/
UP = UPPER
Z = X
IF (Z .GE. ZERO) GOTO 10
UP = .NOT.UP
Z = -Z
10 IF (Z.LE.LTONE .OR. UP .AND. Z.LE.UTZERO) GOTO 20
ALNORM = ZERO
GOTO 40
20 Y = HALF * Z * Z
IF (Z .GT. CON) GOTO 30
C
ALNORM = HALF - Z * (0.398942280385 - 0.399903438504 * Y) /
1 (Y + 5.75885480458 - 29.8213557808) /
2 (Y + 2.62433121679 + 48.6959930692) /
3 (Y + 5.92885724438))
GOTO 40
C
30 ALNORM = 0.398942280385 * EXP(-Y) /
1 (Z - 3.8052E-8 + 1.000000615302) /
2 (Z + 3.98064794E-4 + 1.98615381364) /
3 (Z - 0.151679116635 + 5.29330324926) /
4 (Z + 4.8385912808 - 15.1508972451) /
5 (Z + 0.742380924027 + 30.789933034 / (Z + 3.9901617011)))
C
40 IF (.NOT. UP) ALNORM = ONE - ALNORM
RETURN
END

Produces the normal deviate 'Z' corresponding to a given tail area of probability. 'Z' is accurate to approximately 1 part in 10^7.

REAL FUNCTION PPND16(P)
REAL ZERO, ONE, HALF, SPLIT1, SPLIT2, CONST1, CONST2,
+ A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7,
+ C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7,
+ E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7,
Coefficients for P close to $1/2$

$\text{PARAMETER (} A0 = 3.38713 \ 28727 \ 96366 \ 6080E0, \$
\begin{aligned}
+ & A1 = 1.33141 \ 66789 \ 17843 \ 7745E2, \\
+ & A2 = 1.97159 \ 95903 \ 06551 \ 4427E3, \\
+ & A3 = 1.37316 \ 93765 \ 50946 \ 1125E4, \\
+ & A4 = 4.59219 \ 53931 \ 54987 \ 1457E4, \\
+ & A5 = 6.72657 \ 70927 \ 00870 \ 0853E4, \\
+ & A6 = 3.34305 \ 75583 \ 58812 \ 8105E4, \\
+ & A7 = 2.50908 \ 09287 \ 30122 \ 6727E3, \\
+ & B1 = 4.23133 \ 30701 \ 60091 \ 1252E1, \\
+ & B2 = 6.87187 \ 00749 \ 20579 \ 0830E2, \\
+ & B3 = 5.39419 \ 60214 \ 24751 \ 1077E3, \\
+ & B4 = 2.12137 \ 94301 \ 58659 \ 5867E4, \\
+ & B5 = 3.93078 \ 95800 \ 09271 \ 0610E4, \\
+ & B6 = 2.87290 \ 85735 \ 72194 \ 2674E4, \\
+ & B7 = 5.22649 \ 52788 \ 52854 \ 5610E3).
\end{aligned}$

Hash sum AB 55.88319 28806 14901 4439

Coefficients for P neither close to $1/2$ nor 0 or 1

$\text{PARAMETER (} C0 = 1.42343 \ 71107 \ 49683 \ 5773E4, \$
\begin{aligned}
+ & C1 = 4.63033 \ 78461 \ 56545 \ 2959E0, \\
+ & C2 = 5.76949 \ 72214 \ 60691 \ 4055E0, \\
+ & C3 = 3.64784 \ 83247 \ 63204 \ 6050E0, \\
+ & C4 = 1.27045 \ 82524 \ 52368 \ 3825E0, \\
+ & C5 = 2.41780 \ 72517 \ 74506 \ 1177E-1, \\
+ & C6 = 2.27238 \ 44989 \ 26918 \ 4583E-2, \\
+ & C7 = 7.74545 \ 01427 \ 83414 \ 0764E-4, \\
+ & D1 = 2.05319 \ 16266 \ 37758 \ 8218E0, \\
+ & D2 = 1.67638 \ 48301 \ 83803 \ 8494E0, \\
+ & D3 = 6.89767 \ 33498 \ 51000 \ 0455E-1, \\
+ & D4 = 1.48103 \ 97642 \ 74800 \ 7459E-1, \\
+ & D5 = 1.51986 \ 66563 \ 61645 \ 7196E-2, \\
+ & D6 = 5.47593 \ 80849 \ 95344 \ 9460E-4, \\
+ & D7 = 1.05075 \ 00716 \ 44416 \ 8432E-9).
\end{aligned}$

Hash sum CD 49.33206 50330 16102 89036

Coefficients for P near 0 or 1

$\text{PARAMETER (} E0 = 6.65790 \ 46435 \ 01103 \ 7772E0, \$
\begin{aligned}
+ & E1 = 5.46378 \ 49111 \ 64114 \ 3699E0, \\
+ & E2 = 1.78482 \ 65399 \ 17291 \ 3358E0, \\
+ & E3 = 2.96560 \ 57182 \ 85048 \ 9123E-1, \\
+ & E4 = 2.65321 \ 89526 \ 57612 \ 3093E-2, \\
+ & E5 = 1.24266 \ 09473 \ 88078 \ 4386E-3, \\
+ & E6 = 2.71155 \ 55687 \ 43487 \ 5781E-5, \\
+ & E7 = 2.01033 \ 43992 \ 92288 \ 1326E-7, \\
+ & F1 = 5.99832 \ 20655 \ 58879 \ 3769E-1, \\
+ & F2 = 1.36929 \ 88092 \ 27358 \ 0531E-1, \\
+ & F3 = 1.48753 \ 61290 \ 85061 \ 4852E-2, \\
+ & F4 = 7.86869 \ 13114 \ 56132 \ 5910E-4, \\
+ & F5 = 1.84631 \ 83175 \ 10054 \ 6818E-5.
\end{aligned}$
IFAILT = 0
Q = P - HALF
IF (ABS(Q) .LE. SPLIT1) THEN
 R = CONST1 - Q * Q
 RETURN
ELSE
 IF (Q .LT. 0) THEN
 R = P
 ELSE
 R = ONE - P
 END IF
 IF (R .LE. ZERO) THEN
 IFAILT = 1
 PPND16 = ZERO
 RETURN
 END IF
 R = SQRT(-LOG(R))
 IF (R .LE. SPLIT2) THEN
 R = R - CONST2
 ELSE
 R = R - SPLIT2
 END IF
 IF (Q .LT. 0) PPND16 = -PPND16
 RETURN
END IF
END

Jacobi Subroutine

SUBROUTINE jacobi(a,n,np,d,v,nrot)
 a = Name of Matrix
 n = Logical array dimension
 np = Size of Matrix (largest value)
 d = Eigenvalues
 v = Eigenvectors
 nrot = Number of rotations
 INTEGER n,np,nrot,NMAX
 REAL a(np,np),d(np),v(np,np)
 PARAMETER (NMAX=500)
 INTEGER i,ip,iq,j
REAL c, g, h, s, sm, t, tau, theta, thresh, b(NMAX), z(NMAX)
do 12 ip=1, n
 do 11 iq=1, n
 v(ip, iq)=0.
 11 continue
 v(ip, ip)=1.
 continue
do 13 ip=1, n
 b(ip)=a(ip, ip)
 d(ip)=b(ip)
 z(ip)=0.
13 continue
nrot=0
do 24 i=1, 50
 sm=0.
 do 15 ip=1, n-1
 iq=ip+1, n
 sm=sm+abs(a(ip, iq))
 15 continue
 continue
 if(sm.eq.0.) return
 if(i.lt.4) then
 thresh=0.2*sm/n**2
 else
 thresh=0.
 endif
 do 22 ip=1, n-1
 iq=ip+1, n
 g=100.*abs(a(ip, iq))
 if(i.gt.4) .and. (abs(d(ip)) + *g.eq.abs(d(ip))) .and. (abs(d(ip)) + g.eq.abs(d(ip))) then
 a(ip, iq)=0.
 else if(abs(a(ip, iq)).gt.threshold) then
 h=d(ip)-d(ip)
 if(abs(h)+g.eq.abs(h)) then
 t=a(ip, iq)/h
 else
 theta=0.5*h/a(ip, iq)
 t=1./(abs(theta)+sqrt(1.+theta**2))
 endif
 c=1./sqrt(1+t**2)
 s=t*c
 h=t*a(ip, iq)
 z(ip)=z(ip)-h
 z(iq)=z(iq)+h
 d(ip)=d(ip)-h
 d(iq)=d(iq)+h
 a(ip, iq)=0.
 endif
 endif
 g=a(j, ip)
 h=a(j, iq)
 a(j, ip)=g-s*(h+g*tau)
 a(j, iq)=h+s*(g-h*tau)
do 16 j=1, ip-1
 16 continue
continue
do 17 j=ip+1,iq-1
 g=a(ip,j)
 h=a(j,iq)
 a(ip,j)=g-s*(h+g*tau)
 a(j,iq)=h+s*(g-h*tau)
continue
do 18 j=iq+1,n
 g=a(ip,j)
 h=a(iq,j)
 a(ip,j)=g-s*(h+g*tau)
 a(iq,j)=h+s*(g-h*tau)
continue
do 19 j=1,n
 g=v(j,ip)
 h=v(j,iq)
 v(j,ip)=g-s*(h+g*tau)
 v(j,iq)=h+s*(g-h*tau)
continue
 nrot=nrot+1.endif
continue
continue
do 23 ip=1,n
 b(ip)=b(ip)+z(ip)
 d(ip)=b(ip)
 z(ip)=0.
continue
pause 'too many iterations in jacobi'
return
END

C (C) Copr. 1986-92 Numerical Recipes Software]*7KD[0p-031..
C
C Program Termination
C
SUBROUTINE TERM
WRITE (*,1)
WRITE (*,1)
WRITE (*,1)
WRITE (*,1)
WRITE (*,1)
WRITE (*,1)
1 FORMAT ('0')
STOP
END
Appendix C: Test Cases

The Automated Cost Uncertainty Program

TEST CASES

by

Dale N. Fletcher
ASA(RD&A)
The Automated Cost Uncertainty Program is a computer based analytical technique which can be used to perform cost uncertainty analysis. This program, in contrast to other simulated approaches such as Monte Carlo simulation, offers analysts the advantage of a quick response. Instead of waiting for the required number of iterations to be run on a computer, this program returns results instantaneously.

As recent graduates of the Airforce’s Cost Analysis Program your expertise in the fields of risk and uncertainty analysis would be invaluable in ascertaining the useability, accurateness and usefulness of this program. It would therefore be of immeasurable benefit if you would take a few minutes and participate in this evaluation.

The testing procedure is as follows: two test cases have been devised which will examine various aspects of the program. You are asked to enter the data from the test cases into the program and obtain the results. Upon completion of the test, fill out the accompanying evaluation form. This form will be used to implement suggested improvements and rectify any shortcomings. Included in the package are the test cases (including correct answers), evaluation form, user’s guide and a short participative demonstration of the program’s editing functions.

Thank you for your participation.

Dale N. Fletcher
TEST CASE 1

Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>ML</th>
<th>Max</th>
<th>Mean</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>40</td>
<td>55</td>
<td>100</td>
<td>65.0</td>
<td>Triangular</td>
</tr>
<tr>
<td>ICS</td>
<td>20</td>
<td>30</td>
<td>65</td>
<td>38.3</td>
<td>Triangular</td>
</tr>
<tr>
<td>SIU</td>
<td>35</td>
<td>45</td>
<td>70</td>
<td>50.0</td>
<td>Triangular</td>
</tr>
<tr>
<td>SPM</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>40.0</td>
<td>Triangular</td>
</tr>
<tr>
<td>Data</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>15.0</td>
<td>Triangular</td>
</tr>
<tr>
<td>ST&E</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>13.3</td>
<td>Triangular</td>
</tr>
</tbody>
</table>

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>PAR</th>
<th>ICS</th>
<th>SIU</th>
<th>SPM</th>
<th>Data</th>
<th>ST&E</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS</td>
<td>0.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIU</td>
<td>0.7</td>
<td>0.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPM</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td>0.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>1</td>
</tr>
</tbody>
</table>

94
PROBABILITIES

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Normal Value (est)</th>
<th>Log Normal Value (est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>181.9</td>
<td>183.6</td>
</tr>
<tr>
<td>20%</td>
<td>195.5</td>
<td>195.2</td>
</tr>
<tr>
<td>30%</td>
<td>205.4</td>
<td>204.0</td>
</tr>
<tr>
<td>40%</td>
<td>213.8</td>
<td>211.9</td>
</tr>
<tr>
<td>50%</td>
<td>221.7</td>
<td>219.5</td>
</tr>
<tr>
<td>60%</td>
<td>229.5</td>
<td>227.4</td>
</tr>
<tr>
<td>70%</td>
<td>238.0</td>
<td>236.2</td>
</tr>
<tr>
<td>80%</td>
<td>247.8</td>
<td>246.9</td>
</tr>
<tr>
<td>90%</td>
<td>261.5</td>
<td>262.5</td>
</tr>
<tr>
<td>95%</td>
<td>272.7</td>
<td>276.1</td>
</tr>
<tr>
<td>99%</td>
<td>293.9</td>
<td>303.6</td>
</tr>
</tbody>
</table>
TEST CASE 2

COST DATA

<table>
<thead>
<tr>
<th>Cost Cell</th>
<th>Min</th>
<th>ML</th>
<th>Max</th>
<th>Std Dev</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Devel Eng</td>
<td>11,800</td>
<td>12,000</td>
<td>14,400</td>
<td>NA</td>
<td>Uniform</td>
</tr>
<tr>
<td>2 Prod, Eng, & Plan</td>
<td>3,800</td>
<td>4,200</td>
<td>5,500</td>
<td>NA</td>
<td>Triang</td>
</tr>
<tr>
<td>3 Tooling</td>
<td>NA</td>
<td>590</td>
<td>NA</td>
<td>0.159</td>
<td>Lognormal</td>
</tr>
<tr>
<td>4 Prototype Mfg</td>
<td>900</td>
<td>1,100</td>
<td>1,300</td>
<td>NA</td>
<td>Uniform</td>
</tr>
<tr>
<td>5 Data</td>
<td>340</td>
<td>400</td>
<td>460</td>
<td>NA</td>
<td>Beta</td>
</tr>
<tr>
<td>6 Sys Test & Eval</td>
<td>540</td>
<td>600</td>
<td>720</td>
<td>NA</td>
<td>Triang</td>
</tr>
<tr>
<td>7 Sys/Project Mgt</td>
<td>1,300</td>
<td>1,500</td>
<td>1,700</td>
<td>NA</td>
<td>Beta</td>
</tr>
<tr>
<td>8 Training</td>
<td>130</td>
<td>150</td>
<td>170</td>
<td>NA</td>
<td>Beta</td>
</tr>
<tr>
<td>9 Other</td>
<td>3,200</td>
<td>3,700</td>
<td>4,200</td>
<td>NA</td>
<td>Normal</td>
</tr>
</tbody>
</table>

CORRELATION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.44</td>
<td>0.18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.44</td>
<td>0.18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.44</td>
<td>0.18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROBABILITIES

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Normal Value (est)</th>
<th>Log Normal Value (est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>24498.0</td>
<td>24509.4</td>
</tr>
<tr>
<td>20%</td>
<td>24904.7</td>
<td>24900.5</td>
</tr>
<tr>
<td>30%</td>
<td>25198.0</td>
<td>25186.4</td>
</tr>
<tr>
<td>40%</td>
<td>25448.6</td>
<td>25433.3</td>
</tr>
<tr>
<td>50%</td>
<td>25682.8</td>
<td>25666.2</td>
</tr>
<tr>
<td>60%</td>
<td>25917.0</td>
<td>25901.2</td>
</tr>
<tr>
<td>70%</td>
<td>26167.6</td>
<td>26155.1</td>
</tr>
<tr>
<td>80%</td>
<td>26460.9</td>
<td>26455.4</td>
</tr>
<tr>
<td>90%</td>
<td>26867.6</td>
<td>26877.5</td>
</tr>
<tr>
<td>95%</td>
<td>27203.4</td>
<td>27231.2</td>
</tr>
<tr>
<td>99%</td>
<td>27833.5</td>
<td>27907.2</td>
</tr>
<tr>
<td>NAME</td>
<td>MIN</td>
<td>MODE</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1 Dev Eng</td>
<td>11800.0</td>
<td>11999.9</td>
</tr>
<tr>
<td>2 PEP</td>
<td>3800.0</td>
<td>4200.0</td>
</tr>
<tr>
<td>3 Tooling</td>
<td>675.0</td>
<td>750.0</td>
</tr>
<tr>
<td>4 Prot Mfg</td>
<td>900.0</td>
<td>1100.0</td>
</tr>
<tr>
<td>5 Data</td>
<td>340.0</td>
<td>400.0</td>
</tr>
<tr>
<td>6 SPM</td>
<td>1300.0</td>
<td>1500.0</td>
</tr>
<tr>
<td>7 Init Trng</td>
<td>130.0</td>
<td>150.0</td>
</tr>
<tr>
<td>8 Facilities</td>
<td>720.0</td>
<td>900.0</td>
</tr>
<tr>
<td>9 Other</td>
<td>3200.0</td>
<td>3500.0</td>
</tr>
<tr>
<td>10 Investment</td>
<td>10700.0</td>
<td>11900.0</td>
</tr>
<tr>
<td>11 Production</td>
<td>50500.0</td>
<td>56100.0</td>
</tr>
<tr>
<td>12 ECO</td>
<td>1450.0</td>
<td>1450.0</td>
</tr>
<tr>
<td>13 Sys T&E</td>
<td>480.0</td>
<td>600.0</td>
</tr>
<tr>
<td>14 QATA</td>
<td>990.0</td>
<td>1100.0</td>
</tr>
<tr>
<td>15 Software</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>16 Training</td>
<td>72.0</td>
<td>80.0</td>
</tr>
<tr>
<td>17 Init Sps</td>
<td>3100.0</td>
<td>3400.0</td>
</tr>
<tr>
<td>18 Transp</td>
<td>3000.0</td>
<td>3300.0</td>
</tr>
<tr>
<td>19 MPA</td>
<td>309191.0</td>
<td>309300.0</td>
</tr>
<tr>
<td>20 Repln Sps</td>
<td>27500.0</td>
<td>32400.0</td>
</tr>
<tr>
<td>21 Dpt Mnt</td>
<td>28100.0</td>
<td>31200.0</td>
</tr>
<tr>
<td>22 Mods</td>
<td>4000.0</td>
<td>4400.0</td>
</tr>
<tr>
<td>23 Ind Supt</td>
<td>79000.0</td>
<td>92900.0</td>
</tr>
</tbody>
</table>
Introduction

The program disk contains two files, WORKFILE.CST and WORKFILE.COR. These files will be used as temporary files for a demonstration of the program's editing functions. These files may be discarded at the conclusion of the demonstration.

Begin Demonstration

From the MAIN MENU select FILE MANAGEMENT
From the FILE MANAGEMENT MENU select EDIT EXISTING FILE
Enter the name of the temporary file (WORKFILE)
Select EDIT DATA FILE

The screen will display the data for the file to be edited. This demonstration will guide the user through the process of editing data files.

Cost Data File

The cost mode for Development Engineering (#1 Dev Eng) is incorrect. The cost mode should be 12000.

2) Facilities (#8) is no longer being included, this element should be deleted.

3) A new cost element Testing, needs to be added following element #5 Data. Testing has a triangular distribution with a minimum value of 540, a cost estimate of 600, and a maximum value of 720. This element is uncorrelated (independent).

4) The distribution for Software (#15) is thought to be lognormal with a mode of 87.874 and a standard deviation (σ) of .2936. This element is uncorrelated.

5) Change Replenishment Spare Parts (#20 Repln Sps) to lognormal with a cost mode of 7.86, a minimum value of .905, and a maximum value of 1211.97. This element is uncorrelated.

6) Change the distribution for Initial Spare Parts (# 17 Init Sps) to normal with minimum value of 55, maximum value of 100, and cost mode of 145. This element is uncorrelated.

7) The mode of #17 should be 100 and the maximum 145.

8) Other Modifications (#22 Mods) is also normally distributed with a mode of 40 and a standard deviation of 1.5. This element is also uncorrelated.
The editing of the data file has been completed. Select RETURN to exit the editing screen. To save the changes just made, save the now modified file under its previous filename. DO NOT overwrite the old file. Save the file under NEWFILE.

Return to the FILE MANAGEMENT MENU. The data can be printed using the print option. Select PRINT FILE and enter the name of the modified file (NEWFILE).

Return to the MAIN MENU and select COST UNCERTAINTY. An analysis can now be performed on the modified file, enter NEWFILE). Your answer should coincide with the supplied output report, ANSWER1.

All of the cost elements were thought be independent, in fact some are indeed correlated (dependent).

Correlation Data File

Return to the MAIN MENU (an output report may be obtained by answering 'y' at the prompt). Select FILE MANAGEMENT and EDIT COST DATA using the file NEWFILE.

Element #6 Testing, is correlated with element #1 Dev Eng. To change this relationship, MODIFY element #6. Enter 'n' to all prompts except change correlation. Here, enter 'y'. The EDIT CORRELATION MATRIX screen will be displayed.

Add the following correlations:

1) Element #6 correlated with #1, rho = .9
Completed editing element #6

2) Element #11 correlated with #12, rho = .8
3) Element #11 correlated with #17, rho = .7
4) Element #11 correlated with #21, rho = .5
5) Element #11 correlated with #22, rho = .5
Completed editing element #11

6) Element #12 correlated with #17, rho = .8
7) Element #12 correlated with #21, rho = -.6
8) Element #12 correlated with #22, rho = .8
Completed editing element #12

9) Element #17 correlated with #21, rho = .7
10) Element #17 correlated with #22, rho = .4
Completed editing element #17

11) Element #21 correlated with #22, rho = .6
Completed editing element #21 Select RETURN to save the file.

The correlation matrix is inconsistent because of an incorrect value entered. The rho
value of -.6 for element 12 should be +.6. Therefore we should MODIFY element #12. Enter 'n' to all prompts on the REPLACE screen since the only change will be to the correlation file. From the EDIT CORRELATION MATRIX screen, enter 'y' to change the value for #21 from =-.6 to .6. No more changes are necessary therefore the file can be saved.

This file will replace the previous file so we may overwrite the oldfile. Return to the MAIN MENU and select COST UNCERTAINTY. The modified NEWFILE is re-computed and although the total cost mean has not changed, the total cost standard deviation has increased. This is due to our taking into account the dependencies between elements. The output report ANSWER2, displays these new values.

This demonstration was designed to familiarize the user with the flexibility of the editing functions.
THE AUTOMATED COST UNCERTAINTY PROGRAM
Evaluation Form

EASE OF USE:
Circle one

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Friendly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Clarity</td>
<td>Easy to follow</td>
<td>Difficult to follow</td>
</tr>
<tr>
<td>Speed of program</td>
<td>Speed OK</td>
<td>Too Slow</td>
</tr>
<tr>
<td>Information</td>
<td>Adequate</td>
<td>Require More</td>
</tr>
</tbody>
</table>

ERRORS
If program crashed what led up to error?

COMMENTS
Suggested Improvements:

Criticisms:
BIBLIOGRAPHY

1. Abramson, Robert L. and Philip H. Young. FRISKE M -
 Formal Risk Evaluation Methodology. Los Angeles CA:

2. Adams, A.G. "Areas Under the Normal Curve (Algorithm

3. Ageloff, Roy and Richard Mojena. Applied FORTRAN 77
 Featuring Structured Programming. Belmont CA:

4. Boguslavsky, Boris W. Elementary Computer Programming
 in Fortran IV (Second Edition). Reston VA: Reston

6. Cooper, B.E. "The Normal Integral (Algorithm AS2),"

7. Devore, Jay L. Probability and Statistics for
 Engineering and the Sciences (Third Edition). Pacific

8. Dienemann, Paul F. Estimating Cost Uncertainty Using
 Monte Carlo Techniques. Santa Monica CA: RM-4854PR,
 The RAND Corporation, January 1966.

9. Dunnett, Charles W. "The Normal Integral (Algorithm
 AS251)," Applied Statistics, Journal of the Royal

10. Dwight, Herbert Bristol. Tables of Integrals and Other

11. Fisher, G.H. A Discussion of Uncertainty in Cost
 Analysis, The Rand Corporation, Report RM-3071-PR,
 April 1962.

12. Fisher, G.H. The Nature of Uncertainty, The Rand

Vita

Mr. Dale N. Fletcher was born 19 March 1957 in Chicago, Illinois. He graduated from St. Francis de Sales High School in 1975. After completing his commitment with the United States Navy, he attended Chicago State University graduating with a Bachelor of Science degree with a major in Mathematics and a minor in Physics. Upon graduation, he worked for the Illinois Institute of Technology Research Institute. In October 1985 he entered Government service as an operations research systems analyst under first the Comptroller of the Army and then the Assistant Secretary of the Army (Financial Management) at the U.S. Army Cost and Economic Analysis Center. Prior to entering the School of Logistics and Acquisition Management in May 1993, he became a program analyst with the Assistant Secretary of the Army (Research, Development and Acquisition). He is married to the former Henrietta Denise Welters.

Permanent address: 9725 South Prairie Avenue
Chicago, Illinois 60628
An Automated Cost Uncertainty Program

Dale N. Fletcher

Air Force Institute of Technology, WPAFB
OH 45433

Approved for public release; distribution unlimited

The purpose of this research was to develop a menu driven, computer program that implemented heuristic methodologies for cost uncertainty analysis. This research resulted in the development of an automated heuristic cost uncertainty program which alleviates the limitations of current computer programs. The program enables the analyst to compute probabilities associated with independent or dependent cost elements exhibiting either normal or lognormal total cost distributions. It consists of three modules. The first module contains a file editor which allows the user to create, modify and view existing cost and correlation data files. The second is a cost uncertainty module which is used for computing decile level total system cost probabilities. The last module contains a query function which enables the analyst to compute probabilities associated with different costs and the costs associated with different uncertainty levels. The program also performs a consistency check of the correlation matrix. The FORTRAN computer program is completely menu driven for ease of use.