
AEROSPACE REPORT NO.
ATR-92(2778)-7

A Proposal for the Verification in SDVS of a
Portion of the MSX Tracking Processor Software

30 September 1992

Prepared by
DEC1 4 1994K

T. K. MENAS LI.Computer Systems DivisionF

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

' ocument hcs been c1pproved

Engineering and Technology Group

19941207 114

0 PUBLIC RELEASE IS AUTHORIZED

Aerospace Report No.
ATR-92(2778)-7

A PROPOSAL FOR THE VERIFICATION IN SDVS OF A
PORTION OF THE MSX TRACKING PROCESSOR SOFTWARE

Prepared by

T. K. Menas
Computer Systems Division

30 September 1992

Engineering and Technology Group
THE AEROSPACE CORPORATION

El Segundo, CA 90245-4691

Prepared for

NATIONAL SECURITY AGENCY
Ft. George G. Meade, MD 20755-6000

PUBLIC RELEASE IS AUTHORIZED'

Report No.
ATR-92(2778)-7

A PROPOSAL FOR THE VERIFICATION IN SDVS OF A
PORTION OF THE MSX TRACKING PROCESSOR SOFTWARE

Prepared

ill I•o41 For

T. K. Menas -MC E-1

Approved

Aq-1
B. H.Levy, Manager- --

Computer Assurance Section

D. B. Baker, Director .X unshine, Princippirector
Trusted Computer Systems Department Computer Science and Technology

Subdivision

11ioo

Abstract

The Midcourse Space Experiment (MSX) is a Strategic Defense Initiative Organization pro-

gram whose primary purpose is to conduct tracking event experiments of targets/phenomena
in midcourse.

In this report we describe the portion of the MSX spacecraft tracking processor software
that we have selected for verification in SDVS. We then enumerate the Ada constructs
appearing in this part of the software that are not currently handled by the SDVS Ada
translator, but which we intend to implement. We also mention some of the problems that
we expect to encounter in the course of the project.

v

Contents

Abstract v

Acknowledgments viii

1 Introduction 1

2 A Functional Overview of the Code 3

2.1 Process Commands/Data from Command System 4

2.2 Ada Packages that Depend on the Tartan Compiler 6

2.3 Type Definitions 7

2.4 Output Telemetry 7

2.5 Tracking Parameters 7

2.6 Control Mode/State 8

2.7 Track Targets ... 8

2.8 Miscellaneous Packages 8

3 Possible SDVS Enhancements 9

4 Current and Future Work 13

References 15

vii

Acknowledgments

We are especially indebted to Richard Waddell and Shane Hutton of the Johns Hopkins
University Applied Physics Laboratory for their help in discussions of issues raised in this
report. We are also grateful for the help given to us by Mark Bouler, Ivan Filippenko, Beth
Levy, David Martin, and Leo Marcus of The Aerospace Corporation.

viii

1 Introduction

The purpose of this report is to document the first phase of a joint project between The
Aerospace Corporation (Aerospace) and the Johns Hopkins University Applied Physics
Laboratory (JHU/APL) to verify a portion of the Midcourse Space Experiment (MSX)
spacecraft tracking processor software. Primarily, the purpose of the project is to evaluate
the applicability of the State Delta Verification System (SDVS) to the verification of appli-
cation programs written in high-level languages. A byproduct will be the knowledge gained
by JHU/APL of the value of applying formal methods in DoD programs.

The first phase of the project consisted of

(i) selecting and analyzing a portion of the MSX Ada code to be verified,

(ii) examining the documentation pertaining to that portion, and

(iii) delineating the Ada constructs that appear in that portion but that the SDVS Ada
translator does not currently handle. (For a description of SDVS see [1], [2], and [3].)

MSX is a near-term Strategic Defense Initiative Organization program whose primary pur-
pose is to conduct tracking event experiments of targets/phenomena in midcourse. In a
tracking event, the main spacecraft systems are the command processor, the attitude pro-
cessor, the tracking processor, the sensors, and the data-handling system (telemetry). The
command processor receives, buffers, and relays commands for a network consisting of the
ground and the spacecraft subsystems. The attitude processor interfaces to the attitude
sensors and controllers. Its primary function is to determine and control the spacecraft
attitude. The fundamental function of the tracking processor is to generate sufficient infor-
mation for the attitude processor to point the spacecraft at the desired target, location, or
direction. The tracking processor is designed around a MIL-STD-1750A (1750A) micropro-
cessor with 2K of ROM, 512K of RAM, and 256K of EEPROM.

When the spacecraft is not involved in a tracking event, the tracking processor is turned
off to conserve power. During these periods, the direction of the spacecraft is controlled
autonomously by the attitude processor and is in "parked mode." Before a tracking event is
to take place, the tracking processor is turned on by a real-time or delayed command. Then
the ROM is used for power up, the software and data for the tracking event are loaded into
storage from EEPROM to RAM, and the event begins.

During the current event and for the preparation of the next tracking event, commands are
generally uplinked from the ground to the command processor and relayed to the tracking
processor via a serial port. These serial digital commands are combined by the tracking
processor to form application-level messages, which are then stored in RAM, EEPROM,
or both. There are eleven types of application-level messages. One of these, the data-
structure memory-load application message (data-structure message, for short), can modify
up to about 120 tracking parameters used in a tracking event. The number of commands
required to form a data-structure message is a function of the type of tracking parameter
the data-structure message modifies.

The target software we have selected for verification is that part of the tracking processor
software that processes serial digital commands from the command processor into data-
structure messages and then stores the messages into RAM, EEPROM, or into both. Our
knowledge of the MSX program in general, and of the specifications and the software for
the tracking processor in particular, was culled from discussions with Richard Waddell and
Shane Hutton of JHU/APL and from the following documents:

" R. L. Waddell, "MSX Tracking Processor Software Requirements Specification," S1A-
104-89 JHU/APL, 1989;

" R. L. Waddell and S. Hutton, "Midcourse Space Experiment (MSX) Tracking Proces-
sor Software Functional Design," S1A-031-90 JHU/APL, 1990;

"* S. F. Hutton, "Tracking Processor / Command Processor Interface Design Specifica-
tion (Version 2)," S1A-136-91 JHU/APL, 1991;

" G. Heyler, S. Hutton, and R. Waddell., "Midcourse Space Experiment (MSX) Tracking
Processor Software Detailed Design Document," S1A-084-91 JHU/APL, 1991;

" a portion of the MSX software.

The specification for the target software will be extracted primarily from the third of the
documents listed above: this document contains the specifications for all of the application
messages and data structures loaded from the command processor to the tracking processor.

In Section 2 of this report we give a brief outline and description of the target software;
some of the code will probably not be translated by the SDVS Ada translator, for reasons
we will make clear. We intend to characterize these parts of the code by either state deltas
or by a form of the SDVS Ada offline characterization facility [4].

Section 3 is an enumeration of the Ada constructs [5] in the target software that the SDVS
Ada translator does not currently handle. For each such construct, we will discuss our
proposed solution. The possible solutions are as follows:

"* implement the construct in SDVS

"* delete' it from the MSX example

"* replace it by functionally equivalent Ada code

"* replace it by nonequivalent Ada code (tasking)

"* encapsulate procedure and function bodies in which it occurs by means of the SDVS
offline characterization facility

Finally, in the last section, we discuss our current work on the project and our plans for its
near future.

'All deletions and replacements will be made in the software that will be translated by the SDVS Ada
translator and will not affect the actual software for the MSX program.

2

2 A Functional Overview of the Code

We focus in this section on that part of the tracking processor software that receives and
buffers up to 70 commands from the command processor, builds the appropriate application
messages from a list of commands, stores these messages in a circular message queue, and
then processes the messages according to their specifications. During the construction of the
messages, a number of tests are performed on the integrity of the commands and messages,
and the status of the tracking processor is reported to telemetry.

Our intent is to verify that the data-structure messages are built according to their specifi-
cation. To illustrate the type of serial digital commands required to build a data-structure
message and to get an overview of its construction, consider the Beacon Alignment First
Object data-structure message. This message encodes a 3x3 real matrix that is required
to be stored in both EEPROM and RAM. The matrix has 9 real number entries, and each
real number requires 4 bytes. Therefore, the matrix requires a total of 36 bytes of data.

A byte is 8 bits long; a word is 16 bits long; and a command consists of two words. In
the Ada code, bytes and words are represented by integers constrained to specific ranges.
Although bytes (words) have an integer parent type, they encode sequences of 0's and l's
that are 8 (16) bits long. For example, if the byte B = 7, B encodes (i.e., contains) the bit
sequence < 00000111 >.

Fourteen commands are needed for the construction of the Beacon Alignment First Object
data structure (see Table 1). The first bit of the first byte of each command is the parity
bit for the entire command. The other bits serve the functions we outline below.

(i) Command 1:
"* The last seven bits of the first byte encode the op-code of the command. For a

command that begins a data structure load message, the op-code is 1.

"* The second byte encodes the storage information: EEPROM, RAM, or both.
For the Beacon Alignment First Object data structure, which according to the
specifications must be stored in both EEPROM and RAM, this byte must be
equal to 2.

"* The third byte contains the identification code, ID, of the data structure. For
the Beacon First Alignment Object, this code is 1.

"* The fourth byte is the first byte of data, dl, for the matrix.

(ii) Command n where 1 < n < 12:
* The last seven bits of the first byte encode the op-code, which is 8, for a data-

structure load continuation command.

* The other three bytes are the final bytes of data for the matrix: d3n- 4 , d 3,- 3 ,

and d 3 n_ 2 .

(iii) Command 13:
* The last seven bits of the first byte encode the continuation op-code 8.

* The next two bytes are the next bytes of data for the matrix: d35 and d36.

3

9 The fourth byte is the first byte of the 2-byte checksum.

(iv) Command 14:

"* The last seven bits of the first byte encode the continuation op-code 8.

"* The second byte is the second byte of the checksum.

"* The third and fourth bytes are spares.

Table 1: Beacon Alignment First Object

Byte 1 Byte 2 Byte 3 Byte 4
Command 1 P2 1 2 1 di
Command 2 P 8 d2 d3 d4

Command n P 8 d3n-4 d3n-3 d3n-2

Command 13 P 8 d35 d36 checksum
Command 14 P 8 checksum spare spare

2 P is the parity bit.

2.1 Process Commands/Data from Command System

We have examined eighteen library units that fall either in the area or in the periphery of
our target software. Below, we group these units according to their function, list some of
their more important subunits, and discuss their role, if any, in our target software. Units:
ARRAYOFBLOCKS, SERIAL-DIGCOMMANDS, and APPMSGS

(i) ARRAYOF..BLOCKS
ARRAY.OF2BLOCKS is used only for long-memory loads, which are not in the category
of application messages we have selected for verification; we will thus not consider this
package, but will describe the remaining two in some detail.

(ii) SERIAL-DIGCOMMANDS
This Ada package contains the procedures CMDIN..HANDLER and RET.CMD-BUF.AND.STATUS.

* CMDIN-HANDLER is a procedure that services interrupts that occur when the
command processor is ready to transmit a command to the tracking processor.
It obtains the command in the format of an array of 4 words (see Table 2),
processes the array as a packed record of 4 byte fields (see Table 2), and then
stores this command/record in a buffer that can buffer up to 70 commands (see
Table 3). It stores the status of each command in a separate status buffer and
also performs parity checks.

4

Table 2: Command Formats

Command Obtained: Array of 4 Words

00000000 First Byte Command Processed: Packed Record

00000000 Second Byte First Byte Second Byte

00000000 Third Byte Third Byte Fourth Byte

00000000 Fourth Byte

Table 3: Cmd-Buf

Command 1 First Byte Second Byte
Third Byte Fourth Byte

Command 2 First Byte Second Byte
Third Byte Fourth Byte

Command 3 First Byte Second Byte
Third Byte Fourth Byte

Command N First Byte Second Byte
Third Byte Fourth Byte

e The procedure RET-CMD.BUFAND.STATUS is called within an infinite loop by a
task in APPMSGS to retrieve the command and command-status buffers created
by CMDJIN-HANDLER.

(iii) APP.MSGS
This Ada package contains the tasks BUILD, PROCESS-MSG, and MANAGEMSGRETRIEVAL,
and the two procedures INITIATE..BUILD and CONTINUE-BUILD.

e BUILD calls SERIALDIG.COMMANDS.RET.CMD-COUNT repeatedly to see if there
are any commands in the command buffer to be processed into messages. If
there are, it then calls SERIAL-DIGCOMMANDS.RETCMDBUF.AND.STATUS to
obtain the command buffer. If the op-code of the first command in the command
buffer indicates that this command is the beginning of an application message,
BUILD calls INITIATE-BUILD to start the build of the message. Otherwise, it
calls CONTINUE-BUILD to continue the build of the application message currently
being processed. CONTINUE-BUILD may be called repeatedly until the message is
complete (see Tables 4 and 5). Note that the message is constructed in stages; it
is quite possible BUILD will retrieve more than one command buffer to construct
a message. When a message has been successfully constructed, CONTINUE-BUILD
places the message in a circular message queue (see Table 5) that may hold up
to 30 messages and control returns to BUILD. If BUILD has constructed at least
one message from the most recently retrieved buffer of commands, it waits for a
rendezvous with the task MANAGE.-MSGRETRIEVAL.

5

"* If the message queue is not empty, PROCESS-MSG will rendezvous with the task
MANAGEMSGRETRIEVAL to retrieve the message at the head of the queue. If
the message is a data structure load, it writes it in EEPROM or RAM or in both
(depending on the information contained in the message).

" The task MANAGELMSGRETRIEVAL coordinates the execution of the other two
tasks by a guarded select statement. It shares a message-counter variable with
CONTINUE-BUILD; CONTINUE-BUILD increments this variable when it stores a
message in the message queue and MANAGEMSG..RETRIEVAL decrements it upon
its rendezvous with PROCESSMSG. This message-counter variable must be posi-
tive for a rendezvous to take place between MANAGEMSGRETRIEVAL and PRO-
CESS.MSG.

After Continue-Build 1st Time
After Initiate-Build 1 0 0

1 0 0 2 0 OP
2 0 OP 3 EEPROM/RAM ID
3 EEPROM/RAM ID 4 di d2

4 di To Be Continued 5 d3 d4
6 To Be Continued

After Continue-Build 3rd Time
After ContinueBuild 2nd Time 1 0 0

1 0 0 2 0 OP
2 0 OP 3 EEPROM/RAM ID
3 EEPROM/RAM ID 4 d_ d2
4 di d2 5 d3 d4
5 d3 d4 6 d5 d6

6 ds d6 7 d7 d8
7 d7 To Be Continued 8 d9 di0

9 To Be Continued

Table 4: Piecewise Building of Application Message

2.2 Ada Packages that Depend on the Tartan Compiler

Units: INTRINSICS, INTRINSIC-FUNCTIONS, and UNCHECKED-CONVERSION

The INTRINSICS package is a part of the Tartan 3 library of packages and contains generic
functions and procedures that are system dependent. They are generally used to do bit

3The MSX Tracking Processor Ada software will be compiled by a Tartan ([6]) compiler.

6

Completed Message In App_Msg_Q
1 0 1 0 OP2 O 2EEPROM/1LAM ID
3 EEPROM/RAM ID 2 dM d2
4 d, d2 4 d3 d4

5 d,3 d4

n d 2 (n- 4)+l d 2(n- 4)+ 2 d2 {.-.)+ 1 d=__-__+2

21 d3 5 d36 20 d3 s d3 6

22 checksum checksum 21 checksum checksum

Table 5: Completion and Storage of Message

manipulations, such as the masking of bits. The INTRINSIC-FUNCTIONS package contains
instantiations of the generic functions and procedures in the INTRINSICS package. The
UNCHECKED-CONVERSION generic function is used to convert between different data types.
Since these packages are used extensively in the target software, and since their implemen-
tation is compiler-dependent, we will encapsulate the functions and procedures that they
contain by using the SDVS Ada offline characterization utility.

2.3 Type Definitions

Units: GLOBAL-TYPES and CMDSTYPES

As their names indicate, these two packages contain the type definitions (such as WORD
and BYTE, which are derived integer types) common to most of the code.

2.4 Output Telemetry

Units: TM, TM-DATA, and PRIMESCIENCEDATA

All three of these Ada packages appear only peripherally in our target software: calls
to subprograms or rendezvous with tasks of these packages are made only to report house-
keeping data for telemetry (such as system errors). For this reason, it should be relatively
easy to bypass them in the translation of the target software.

2.5 Tracking Parameters

Units: TRKINGDATA.STRUC and TRKING_PARAMS

7

The TRKINGDATASTRUC package in this group is only used in the target software to
determine the number of words needed to build each type of data-structure application
message; therefore, the package will be translated into SDVS (or at least the portions of the
package that are needed). The second package in this group, TRKINGPARAMS, is only used
by the task PROCESS..MSG of our target software to store a tracking-structure application
message by an extended rendezvous with the task MANAGE of TRKINGPARAMS for those
data structures to be stored in RAM (or in both RAM and EEPROM). The rendezvous
only passes the data structure to be stored and could be easily specified in SDVS by a form
of offline characterization.

2.6 Control Mode/State

Unit: MODE-STATE

The Ada package MODE-STATE is only used in our target software to obtain information
about the status of the mode state, e.g., power-up, initEEPROM-write, tracking. It should
be easy to translate the results of such calls by offline characterization.

2.7 Track Targets

Units: POINTING._NFOOUT and TRKTARGETSJISRPKG

TRKTARGETS.ISRPKG never appears in the target software, and POINTINGJINFO-OUT is
used by PROCESS-MSG to process a message that is not a data structure load.

2.8 Miscellaneous Packages

Units: EEPROM.DATA, ASMUTILITY, and MEMORY-MANAGER

All three Ada packages have package bodies written in 1750A assembly code. Portions
of our target software do in fact call procedures or functions that appear in these packages,
but the packages will not be translated by the SDVS Ada translator. When required, these
procedure/function calls will be encapsulated by a form of offline characterization.

8

3 Possible SDVS Enhancements

There are many Ada constructs in the target software that are not currently "compilable"
by the SDVS Ada translator. (For brevity we will henceforth refer to these as targeted
constructs). Of these, the most intractable are tasking and Ada features that pertain to it,
eg., delay statements and the priority pragma. Below, we list each targeted construct and
note our proposed solution to its presence in the target software.

(i) LONG-FLOAT and LONG-INTEGER types
These types are not part of standard Ada and are compiler dependent. We will declare
LONG..FLOAT (LONGJNTEGER) to be of type FLOAT (INTEGER).

(ii) WRITESTRING and WRITELN
These are not in the Language Reference Manual [5] and appear in the Ada code only
temporarily (for testing purposes). We will delete them from the target software.

(iii) With clause
Currently, SDVS allows this clause only for the standard INTEGERJO and TEXTJIO
packages. Furthermore, the only Ada unit that may be translated into the state delta
language by the use of adatr in SDVS is a main Ada procedure. We have already
started work on the adatr implementation, which will involve the addition of the
capability in SDVS to adatr packages.

(iv) Integer subtypes
Although there is only one instance of an integer subtype definition in the target
software, we think that integer subtype definitions are so prevalent in Ada programs
in general that it behooves us to implement them.

(v) Integer definition derived types
These type definitions appear in several important parts of the target software (WORD
and BYTE are defined in this manner). We will implement integer derived type defi-
nitions.

(vi) Type conversions
We will implement them.

(vii) Array initialization using (others =>)
We will implement it.

(viii) Two-dimensional arrays
SDVS currently handles only one-dimensional arrays. At this point, we intend to
"Curry" the two-dimensional arrays, that is, to rewrite the code in such a way so that
a two-dimensional array is represented as a one-dimensional array of arrays. This
solution is simple enough; if time permits, we will consider the implementation of
multidimensional arrays.

9

(ix) Named parameters
We will change instances of named parameter notation to their positional parameter
equivalent in the target software.

(x) Hexadecimal notation
There are many instances of this in the target software; since they are all easy to
convert to base 10 notation, we will do so (rewrite the instances).

(xi) UNCHECKED-CONVERSION

This generic function is instantiated many times in the target software and its instan-
tiations are used repeatedly and in situations that are compiler dependent, e.g., to

convert from one object to another of smaller size. We are still undecided on its exact
implementation. It appears that we will not handle all situations uniformly. Certain
cases are obvious, but others are not.

(xii) Size representation attribute
Here is an important instance in the code:

type WORD is range 0..65535; for WORD'size use 16;

In fact, all instances in the Ada code are precisely of this form: integer derived

types whose size attribute matches their range. We propose to implement the size

attribute so as to allow precisely these cases. It should be noted that if an object has

a constrained integer type declaration, then SDVS will ensure that any assignment to

that object obeys the restriction.

(xiii) Address representation attribute

This attribute is used either to assign to or store values of an Ada object by means

of Ada procedures that have 1750A assembly code bodies. For example, in the proce-

dure CMDJN..HANDLER, the array of four words, Cmd-Unpacked, is assigned a value

by means of the following call to the procedure READ-FIFO of the package MEM-

ORY2.MANAGER (the body of READ-FIFO is in 1750A assembly):

MEMORY.MANAGER.READ..FIFO(Cmd..InFIFO.Addr, Cmd-Unpacked'address,

Cmd-Size);

In one instance, the size attribute is used not only to assign a value to an Ada object,

but to do a type conversion as well. All such instances in the target software will be

replaced by simple Ada procedures that will mimic the result of calls to the original

procedures.

(xiv) Pragmas elaborate, priority, pack, Foreign.-Body, and Linkage-Name

Ada pragmas are instructions to the compiler and are generally not meant to change

the semantics of an Ada program. The last two pragmas in the above list are peculiar

to the Tartan compiler and are used primarily for the interfaces to the assembly code,
which is not a part of the target software we will translate into SDVS; we therefore

think that we may safely delete these pragmas from the target software.

10

The first pragma, elaborate, may be deleted if we compile the relevant units in the
correct order in SDVS. In this case, any proof of correctness would be a proof under
the assumption that the packages are compiled in the correct order. Since this is not
entirely satisfactory, we will implement elaborate if time permits.

The second pragma, priority, may guide the way we handle the tasking in the SDVS
translation of the code, but we will not implement it, since we will not implement
tasking for this project.

The third pragma, pack, is used for a particular format in the representation of data
in the target software, but we do not think its use has any import for the part of
the code we will consider. We think its importance lies in that part of the Ada code
that interfaces with parts written in the 1750A assembly language and therefore have
decided to delete it from the target software. The reader will note that none of the
pragmas, with the possible exception of elaborate, will be directly implemented in
SDVS.

(x) Tasks
As we have already indicated, the most important and extensive part of the target
software we intend to verify, the part of APP..MSGS that builds and processes the appli-
cation messages from the buffered serial-digital commands, contains three tasks that
basically do all of the work. Tasking is perhaps the most difficult of the Ada features
for an operational verification system such as SDVS to handle efficiently. The reason
for this is that, in SDVS, the correctness of an Ada program is proved by symbolically
executing the SDVS translation of the program. Because of this feature of SDVS, a
branch in a program may necessitate the execution to completion of all the branches.
If a program consists of several tasks that are executed concurrently, then every step
in the execution of the program may, in effect, be a branch: the next statement to be
executed may be any of the next statements in the tasks. These possibilities lead to
an exponential growth in the number of possible program executions.

Currently, our solution to the tasking problem is to translate the tasks as procedures
and to treat rendezvous as procedure calls. A main procedure will stipulate the order
of execution of the tasks in question. In effect, we will consider the correctness of only
one of the myriad possible program executions. The layout of the main procedure
will be influenced, but not solely determined, by the priority pragma and the delay
statement in APPMSGS as well as by the rendezvous that must take place to complete
a linear execution of the construction and processing of an application message.

11

4 Current and Future Work

We are now defining the semantics of the with clause and will proceed with its implementa-
tion and with the implementation of the other targeted constructs that we have decided to
add to the SDVS Ada translator. Also, we have started to work on the SDVS specifications
of the targeted Ada software.

Since the implementation of the targeted constructs will require a great deal of time to
complete, we propose, as a first attempt, to rewrite4 the portions of the code in which
they appear and to translate and execute the revised code in the current SDVS 12 ver-
sion. This endeavor should at least indicate problems that may arise in the next phases of
the verification project. For example, the abstract-syntax Ada trees created by the SDVS
translator may be inordinately large for the system to handle: over 1,000 lines of undocu-
mented Ada code must be translated by the SDVS translator, and there are scores of object
and object-type declarations in these lines that may mire the system during the symbolic
execution.

The most serious problem we will encounter is certain to be the formulation of a workable
specification that accounts for the many possibilities that may arise in the execution of the
Ada software. These possiblities are a result of the Ada tasking used in the software. As
we pointed out in the last section, SDVS does not currently handle Ada tasking and will
probably not do so in the near future given that the verification of concurrent programs
presents serious difficulties.

4We will restore the targeted constructs in the modified code to their original version, after we implement
them in the SDVS Ada translator. But many of the modifications we will make to the original target software
will remain in the final version of the program whose correctness we hope to prove (procedures for tasks,
for example). Some of these modifications will not alter the functionality of the original code, but others
will. In the final analysis, we will not prove the correctness of the original code. However, we think that any
errors discovered in the modified code will be a result of errors in the original code.

13

References

[1] J. V. Cook, I. V. Filippenko, B. H. Levy, L. G. Marcus, and T. K. Menas, "Formal
Computer Verification in the State Delta Verification System (SDVS)," in Proceedings
of the AIAA Computing in Aerospace Conference, (Baltimore, Maryland), pp. 77-87,
American Institute of Aeronautics and Astronautics, October 1991.

[2] L. G. Marcus, "SDVS 11 Users' Manual," Technical Report ATR-92(2778)-8, The
Aerospace Corporation, September 1992.

[3] T. K. Menas, J. V. Cook, I. V. Filippenko, B. H. Levy, and L. G. Marcus, "SDVS 10
Tutorial," Technical Report ATR-91(6778)-11, The Aerospace Corporation, September
1991.

[4] J. E. Doner and J. V. Cook, "Offihne Characterization of Procedures in the State Delta
Verification System (SDVS)," Technical Report ATR-90(8590)-5, The Aerospace Cor-
poration, September 1990.

[5] U. S. Department of Defense, Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A), 22 January 1983.

[6] Tartan Laboratories Inc., Tartan Ada VMS 1750A Compilation System Version 3.1,
December 1990.

15

