Novel Field Effect Transistors for Low Power Electronics

Progress Report #2

NAVY STTR Phase I
Contract Number: N00014-94-C-0260

November 28, 1994

Delivered To:
Dr. Alvin M. Goodman
Program Officer, Code 312
Office of Naval Research
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

From:
Advanced Device Technologies, Inc.
1590 Ravens Place
Charlottesville, VA 22901
TEL: (804) 974-1416

Approved for public release; distribution is unlimited.
November 29, 1994

Dr. Alvin M. Goodman
Program Officer, Code 312
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
TEL: (703) 696-4845

Dear Dr. Goodman:

Please find enclosed Project Report #2 entitled “Novel Field Effect Transistors for Low Power Electronics” summarizing the status of our research under ONR STTR Contract N00014-94-C-0260. Also enclosed is invoice #SA2-112894. If you should have any questions regarding either the report or the invoice, please don’t hesitate to call me at the number above.

Thank you for your interest and support of Advanced Device Technologies, Inc.

Sincerely,

William C.B. Peatman
President

Attachments:
Invoice #SA2-112894
Progress Report #2
Distribution List
MATERIAL INSPECTION AND RECEIVING REPORT

Public reporting burden for this collection of information is estimated to average 25 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Operations, and Reports, 1215 Jefferson Davis Highway, Suite 1200, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0248), Washington, DC 20503.

PLEASE DO NOT RETURN YOUR COMPLETED FORM TO EITHER OF THESE ADDRESSES.

1. PROCUREMENT NO. (CONTRACT) 2. INVOICE NO./DATE 3. PAGE OF 4. RECEPTION POINT
N00149-94-C-0260 SA2-112894 1 1 D

7. SHIPMENT NO. 8. DATE SHIPPED 9. BILL
ADT0002 94NOV29 TON

10. PRIME CONTRACTOR Code: 001K7
Advanced Device Technologies, Inc.
1590 Ravens Place
Charlottesville, VA 22901

11. SHIPPED FROM (If other than R) 12. PAYMENT WILL BE MADE BY

13. SHIPPED TO Code: N00014
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
Attn: Dr. Al Goodman Code: 312

14. MARKED FOR

15. ITEM NO. 16. STOCK/PART NO. (Indicate number of shipping containers - type of container - container number)
0001AB

17. DESCRIPTION
Progress Report - Due 30 Nov, 1994
(Shipped via Fed Ex)

18. QUANTITY SHIP/RECD
1

19. UNIT
EA

20. UNIT PRICE
$33,084.00

21. AMOUNT
$33,084.00

22. CONTRACT QUALITY ASSURANCE

A. ORIGIN

□ COA □ ACCEPTANCE of listed items has been made by me or under my supervision and they conform to contract, except as noted herein or on supporting documents.

□ COA □ ACCEPTANCE of listed items has been made by me and are acceptable as noted herein or on supporting documents.

B. DESTINATION

□ COA □ ACCEPTANCE of listed items has been received in apparent good condition except as noted.

DATE RECEIVED

SIGNATURE OF AUTH GOVT REP

TYPED NAME

AND TITLE

23. CONTRACTOR USE ONLY

ADT, Inc. Point of Contact
Dr. William C.B. Pearsman
TEL: 804/974-1496

Original Invoice
Novel Field Effect Transistors for
Low Power Electronics

Progress Report # 2

NAVY STTR Phase I
Contract Number: N00014-94-C-0260

November 28, 1994

Delivered To:

Dr. Alvin M. Goodman
Program Officer, Code 312
Office of Naval Research
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

From:

Advanced Device Technologies, Inc.
1590 Ravens Place
Charlottesville, VA 22901
TEL: (804) 974-1416

W.B. Peat 11/29/94
Dr. William C.B. Peatman, President

Approved for public release; distribution is unlimited.
Table of Contents

| I. | Phase I Technical Objectives | 3 |
| II. | Phase I Progress Report #2 | 4 |
I. Phase I Technical Objectives

The primary objective of this Phase I project is to determine the extent of the significant reduction in power consumption of integrated circuits which may be achieved by utilizing a novel sidegate FET technology. The new FET technology promises to eliminate the Narrow Channel Effect (NCE) which is one of the primary factors limiting the minimum power consumption of integrated circuits. By eliminating the NCE, we will be able to scale the device size dramatically and reduce the power consumption by an order of magnitude. The project will assess the power, speed, circuit design, processing, and manufacturability of the new FET technology for both digital and analog circuit applications. In particular, we will extract device parameters from the new ultra-low power FETs fabricated at UVa, develop device models, incorporate these models into a new SPICE package (AIM-Spice), simulate different logic families including DCFL and SCFL, and compare the predicted performance with the standard DCFL and SCFL logic. We will also analyze the gate current leakage and subthreshold slope as the primary factors limiting the noise margins at low power supplies, establish the minimum required bias voltage for reliable operation, and analyze the factors determining the threshold voltage changes from device to device as well as other factors which may limit the yield and integration scale.
II. Phase I Progress Report #2

As detailed in the Phase I proposal, the project has five major tasks. These are 1) 2-D MESFET (discrete) device fabrication, 2) detailed device evaluation and optimization for next iteration of device design and fabrication, 3) parameter extraction using AIM-SPICE to generate and refine AIM-SPICE 2-D MESFET models, 4) 2-D MESFET DCFL and SCFL logic circuit simulations using AIM-SPICE and comparison with conventional circuits, and 5) analysis of manufacturability and technology insertion issues. This report summarizes the progress in each task area since the first Progress Report of 10/28/94.

Task 1: Device Fabrication

The critical dimensions of the 2-D MESFET include the channel width, \(W_0 \) and length, \(L_g \) and the drain-source spacing \(L_{DS} \). Presently, there are two batches of 2-D MESFETs in progress having channel dimensions ranging from 0.5 - 1.0 micron (width) and 0.5 - 1.0 micron (length). These devices will provide new data for parameter extraction and device modeling.

One significant change in the fabrication will be tested in these new batches. Although earlier batches had a leakage (OFF) current of only 1 nA, even lower leakage currents may be possible using a lower damage gate etch process. Thus, a new SiCl4:BCl3 dry etch process is being evaluated as an alternative to the Cl2 chemically-assisted ion beam etch (CAIBE) which is suspected to cause excess damage (due to the 500 V Ar ion beam).

Task 2: Evaluation, Optimization, Design

The dc I-V characteristics of 2-D MESFET devices are being measured and cataloged in library files according to device dimensions and material parameters. Such cataloging is useful in developing a new 2-D MESFET device model. To date, both enhancement and depletion mode devices have been obtained. Recently, we measured a depletion mode device having the highest unit width current density and transconductance yet achieved in a 1.0 micron wide FET. The peak current density was 367 mA/mm and the peak transconductance was 295 mS/mm, both measured at \(V_{DS} = 1.0 \text{V} \). Parameter extraction of this data is now underway using AIMSPICE universal HFET model.

We have also begun evaluating the inverter operation using 2-D MESFETs for both the switching (input) transistor and the load, as illustrated in Fig. 1 (left). Both devices had nominal threshold voltages of 0V. The inverter transfer characteristic is shown in Fig. 1 (right). This characteristic is notable for the sharp transition between ON and OFF states. The voltage gain for this single inverter is \(\Delta V_{\text{out}} / \Delta V_{\text{in}} = 9 \). The inverter threshold voltage is comparable to that of the input FET. Higher threshold voltages will be obtained using enhancement mode FETs with higher \(V_T \).

1. AIM-SPICE was developed by Ytterdal, Fjeldly, Shur, and Lee and is available on INTERNET through anonymous FTP.
Task 3: 2-D MESFET AIM-SPICE Modeling

The measured transistor and inverter characteristics are accurately fitted using the universal HFET model of AIM-SPICE. So far, the HFET model yields a good agreement to the measured data, indicating that the so-called narrow channel effect is essentially eliminated in the 2-D MESFET.

Task 4: 2-D MESFET DCFL and SCFL Circuit Simulation

The device models for the 2-D MESFETs used in the inverter measurement were used to simulate the transfer characteristic shown in Fig. 1 (right). An excellent agreement between the inverter simulation and measurement were obtained. We are presently simulating loaded inverters (i.e. inverter chains, inverter driving multiple inverters, etc.) in order to better understand the 2-D MESFET circuit operation.

A major goal of this Phase I research is to evaluate the power-delay product of the 2-D MESFET. The power delay-product will be evaluated using AIMSPICE models which include capacitance of the 2-D MESFET. Such simulations will be useful to determine the application/market niche of the 2-D MESFET technology.

Task 5: Manufacturability and Technology Insertion Issues

A comprehensive technology analysis of 2-D MESFET circuits will be performed toward the end of Phase I project. It will serve to summarize the main advantages of the 2-D MESFET over existing technologies and to address any potential barriers to insertion of the 2-D MESFET technology into the large scale IC manufacturing environment.

![Diagram of 2-D MESFET (DCFL) inverter (left) and transfer characteristics (right). The values of V_{DD} (above right) ranged from 0.9 V to 0.0V in -0.1V steps.](image)
Distribution List

1-4 Office of Naval Research
Ballston Tower One
800 North Quincy Street
Arlington, VA 22217-5660

ATTN: Dr. Alvin M. Goodman
Code 312
(703) 696-4845

5 Administrative Contracting Officer
DCMAO Baltimore
ATTN: Chesapeake
200 Towsontown Blvd. West
Towson, MD 21204-5299

6 Naval Research Laboratory
Washington, DC 20375-5326
ATTN: Dr. G.M. Borsuk, Code 6800

7-8 Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22304-6145

9 Defense Contracts Office
U.S. Federal Court House, Rm 222
255 W. Main Street
Charlottesville, VA 22902
ATTN: Mr. Wade Payne

10 University of Virginia
Office of Sponsored Programs
P.O. Box 9003
Charlottesville, VA 22906
ATTN: Mr. Gerald Kane