AL/HR-TP-1994-0029

ONTOLOGY CAPTURE METHOD (IDEF 5)

Benjamin Peraketh, PhD
Christopher Menzel, PhD
Richard J. Mayer, PhD
Florence Fillion
Michael T. Futrell
Paula S. DeWitte, PhD
Madhavi Lingineni

)

DEC 07,1934

-

Py
o

F

KNOWLEDGE BASED SYSTEMS, INCORPORATED
2726 LONGMIRE
COLLEGE STATION, TEXAS 77845

HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISION
2698 G Street
Wright-Patterson Air Force Base, Ohio 45433-7604

October 1994 LT O A 1

Y TR R R e e
SRR S L S N ST DT 5

19941129 123

Interim Technical Paper for the Period March 1992 to September 1994

<ITOH>P>TOW>»r OZ0IJTI-HNHZIT>

Approved for public release; distribution is unlimited

AIR FORCE MATERIEL COMMAND
~=—=WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6573=

——

NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication, or otherwise in any manner construed, as licensing the
holder, or any other person or corporation, or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

The Public Affairs Office has reviewed this paper and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

/o,
Ayt C« %%/ﬁ’n{&.a

/AJOANN M. SARTOR, Capt, USAF
J Contract Monitor

=G

BERTRAM W. CREAM, Chief
Logistics Research Division

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1994 Interim March 1992 to September 1994
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ontology Capture Method (IDEF5) C - F33615-90-C-0012

PE - 63106F
6. AUTt_lOR(_S) F_lorence Fillion .:?2) 5240
Benjamin Peraketh, PhD Michael T. Futreli WU - 08
Christopher P. Menzel, PhD Paula S. de Witte, PhD
Richard J. Mayer, PhD Madhavi Lingineni
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Knowledge Based Systems Incorporated REPORT NUMBER

1408 University Drive East
College Station, TX 77840

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Armstrong Laboratory AGENCY REPORT NUMBER
Hun_1ar_1 Resources Di.re'ct'orate AL/HR-TP-1994-0029
Logistics Research Division
2698 G Street
Wright-Patterson AFB, OH 45433-6573

11. SUPPLEMENTARY NOTES
Armstrong Laboratory Technical Monitor: Capt JoAnn M. Sartor, (b13) 2565-7775

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

In order to exploit relevant information about a specific domain, the domain vocabulary must be
captured. In addition, rigorous definitions of the basic terms in the vocabulary and the logical
connections between those terms must be identified. Ontologies are used to capture the concep*" and
objects in a specific domain, along with associated relationships and meanings. In addition, ontology
capture helps coordinate projects by standardizing terminology and creates opportunities for information
reuse. The IDEF5 Ontology Capture Method has been developed to reliably construct ontologies in a
way that closely reflects human understanding of the specific domain. IDEF5 relies on iterative
knowledge extraction through various steps: organizing/scoping; data collection; data analysis; initial
development; ontology refinement/validation. IDEF5 allows users to validate the vocabulary and axioms
of a given domain and store that knowledge in a usable representational medium.

14. SUBJECT TERMS] o i] 15. NUMBER OF PAGES
ontology Integration DEFinition systems engineering 200
IDEF knowledge acquisition information systems 16, PRICE CODE
information engineering method

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION }19. SECURITY CLASSIFICATION |[20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

. Prescribed by ANSI Std. Z39-18
1 298-102

Table of Contents

1

EXecutive SUMmaryccooviiiiiiiiiiiiiiii e 3
LT MOGIVALONS L.vvvvece oo e e e 4
1.1.1 Motivations for Ontologyuuuvueeeueneeeseeeeseeeeeeseeesse 7
1.1.2" Motivations for an Ontology Development Method................oovvnveevvenni . 8
1.2 Benefits of Ontology DEVEIOPIMENLvvveeeeeeeineeeeee e 9
1.3 Overview of the ReEPOIt......cccociiiiiiiiiiiiiiiiieeeeeeee e oo 9
1.4 The Connection Between IDEF5 and Other Methods...........oovvvoeoeoeooeoeoeoen 11
Conceptual Foundations of Ontologyeeeeeuueessseiee s 14
2.1 The Nature of Ontological INQUITYcvreeeeeriiiieeeeis 14
2.2 The Central Concepts of Ontology.................eveeeeureniieeeses 15
2.2.1 KindS...ooiiiiiiiiiii e 15
2.2.2 Kinds as Distinguished Propertiescoveeeevuuuueeeesssiieo 17
2.2.3 Contrasting Properties and Attributes..............oocovoeveveveeoeeoooo . 18
224 RElAtONSccoviiiiiii e 19
2.2.5 Second-order Properties and Relations...............ooevuvueeevniese 19
2.2.6 Two Ways to Introduce Kinds into an Ontology................oeeeeeeeeeeeenno 21
2.2.7 Parts, Wholes, and Complex Kindscouuveivueeeuisiiii 21
2.2.8 Processes, States, and Process Kinds 22

3.5

4 The
4.1

4.2

3.4.3 Identify Proto-CharacteristiCs.......ccocoviiiiinimmniiiiii 49

3.4.4 The Role of IDEF5 Schematics in Ontology Visualization.......................... 51
3.4.5 Using Classification Schematics for Ontology Development 51
3.4.6 Kinds Versus PrOPertiesc....ouviviiiiinnininiiiie e 52
3.4.7 CoiniNg TeIMS....cciiuuiiiiiiiiiaririe ettt 52
3.4.8 Other GUIAEINESovinririiieiiiiii i 53
3.4.9 Develop Proto-Relationscoerivininiieniiniiiiiieias 55
3.4.10 Role of Relation Schematics in Ontology Development................ccoeieinns 58
3.4.11 Role of Composition Schematics in Ontology Development 59
Refine and Validate ONtOlOZY.....c.coiiviiiiiiinimimiiiiineiii e 60
3.5.1 Kind Refinement Procedurecoviiviiiiiininiineniien 60
3.5.2 Relation Refinement Procedure.......cooooviiiiiiiiiniiiiii... 63
IDEFS5 Ontology Languages.......cccccceeiimiiiiiniiiiiiiiiiiiiiiiiiinnn s 66
The IDEF5 Schematic LANGUAZEc.vuvuininiiinieeiaretenieeeiiiiiiiitinaaeens 67
4.1.1 The Schematic Language LeXICOM......ooommiiiiimmimiiiiiiiiiiniiiiin 67
4.1.2 IDEFS5 Schematics and their Interpretation............ccoeeviviinniiiniiiiinnn. 70
The IDEF5 Elaboration Language............cooooiiiiiiiiiiniiiiieniinin . 114
4,21 OVEIVIEW ..t ittitit et e ettt ea ettt e e e e e e st eaean s e eaaaaet e eeenn 114
4.2.2 Description of the Languagec.coeeeiviiiiiniii 116

iv

List of Figures

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2

Figure 3-3
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.

Figure 4-1.

Defining/Nondefining vs. Essential/Accidental Properties..............c..ooeiiinen. 16
Levels of Ontologiescvuineiniiii i 24
IDEFS5 Description Summary Form.............ocooiiiiiii 33
Source Material Log......cooooviiiiiiiiiiiiiiiiii 37
Source Material Description Form........cc.ccoooviiiiiiiiiiiiniiiiiiniiiin 39
Source Statement PoOL.............ooiiiiiiiiiii 41
Source Statement Description Form.............ccccocvviviiiiin 42
Term PoOlo e 44
Term Description FOrm.........oooiiiiiiiiiiiiii e 45
Source Material AnalysiS........ccooviviiiiiiiniiiiiiinii, e 46
Proto-Kind Pool.........oiiiii 48
Proto-Kind Specification FOorm..........c.ccooiviiiiiiiiiiiiii i 49
Proto-Characteristic POOl............coooiiiiiiiii 50
Classification Schematic...............oooiiiii 52
Coining Terms........cooiiiiiiiiii i e 53
Developing Proto-Kinds.........coouviiiiiiiiiiiniiiiiiiiiiie e 54
Structure of a Proto-Association Chartcc.coiiiiiiiiiiiiiiiiiiiiii i, 57
Proto-Relation Pool ... 57
Proto-Relation Specification FOrmc.ooooviiiiiiiiiiiiiiiiiiicn e, 58
First-order SChematiCovuiiiinii i 59
Alternative Syntax for the Schematic in Figure 3-18.............ccooiiiiiinnne.. 59
Composition SchematiC........c.oveuiiiiiiiiiiiiiiiiiiiiii e, 60
Kind Specification Formooooiiiiiiiiiii e, 62
Relation Specification Form......c...ccoooieiiiiiiiiiiiiinnne e, 64
Basic IDEFS Schematic Language SymbolS.....oiviiiiiiii 68

Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.
Figure 4-23.
Figure 4-24.
Figure 4-25.
Figure 4-26.
Figure 4-27.
Figure 4-28.

General Form of a Basic First-Order SchematiC.........ocoevvviiiiiiiiiiiiinininienns 72

Example of a Basic First-Order Schematiccooovviinn., 72
Example Illustrating Alternative Syntax for Basic First-Order Schematics.......... 74
An Existential SChematiCo.vveeiiiiiiiiiii e 75
An Existential Schematic for a Relation.........c.ccoccceniienne N 75
Example of a Basic 3-Place First-Order SchematiC........cccooeeininininininn 76
Alternative Syntax for Figure 4-7oooiiiiiiiiiiniii 76
General Form of 4- and 5-Place First-Order Schematics...................ooooenis. 77
Example Illustrating the Use of an Individual Symbol..........ccoeciiniinnnn, 78
A Fully Particularized Example..........ccoooviiiiiiiiii 78
A Small Complex Schematic..........covuiviiiiiiiiiii 79
Complex Schematic Involving Multiple Relations..........cccoocveciininininnnn, 79
Peripheral Connections to a Personal Computer.............cooveniiiininnnnn 80
Basic Second-Order SChematiCo.vveiniiiiiiiiiiiiiiie e 81
Example of a Second-Order Schematic with Subkind-of....... e ———— 81
Example of a General Second-Order SChEMAtiCvveivvneeeeiieeeiiieeeriaeen 82
The General Form of a Basic Relation Schematic...................ooiinn, 82
Bill of Material Relation SchematiC...........ccvviiiiiiiiiiiiiiiiiiiiiiiiiien. 84
Relation Schematics Involving the Specialization-of Relation 85
A Partial Relation Taxonomy of the Part-of Relationn 86
Complex Second-Order Relation Schematicooveieiiiiiiii. 87
Composition SchematiC........ccooiiiiiiiiiiiiiniii 88
Composition Schematic for the Kind Ballpoint Pen........c.coccoviniiininniin. 89
Hiding Composition Information............ccccoiiiiiiiiiniiiiiiiiininnneriin. 90
Different Types of Classificationccoeeiiiiiiiiiiiiiiiiiiiie, 91
Classification 0f RESOUICESc.ovvvieiniiniiiiiiiiiiiiiiii i 92
Classification of Resources with Hidden Information.........................ooells 93

vi

Figure 4-29.
Figure 4-30.
Figure 4-31.
Figure 4-32.
Figure 4-33.
Figure 4-34.
Figure 4-35.°
Figure 4-36.
Figure 4-37.
Figure 4-38.
Figure 4-39.
Figure 4-40.
Figure 4-41.
Figure 4-42.
Figure 4-43.
Figure 4-44.
Figure 4-46.
Figure 4-47.
Figure 4-48.
Figure 4-49.
Figure 4-50.
Figure 4-51.
Figure 4-52.
Figure 4-53.
Figure 4-54.
Figure 4-55.
Figure 4-56.

Kinds and States........cooiiiiiiiiiiiiiiiiiiii e 94
Schematic Depicting States of Water.........c..coviiiiiiiiiiiiiiiiiiiiieenae, 94
Basic State Transition Schematic..............ccooiviiiiiiiiiiiiii i, 95
Schematic for Object State Transition within a Process.........ccooeeevrvvernnnne... 96
Schematic for Object State Transition between Processes...............oeeuvvvenenn.. 96
The General Semantics of Figure 4-32ccoviviiiiiiiiiiiiiii e, 96
The General Semantics of Figure 4-33ooiiiiiiiiiiiiiien, 97
Strong State Transition SchematiC.........cccooiiieiiiiiiiiieeiiiiiiiieiieeeae 98
An Example of Strong State Transition Schematicccovevninenen.n. 98
Instantaneous State Transition Schematic O 99
An Example of Instantaneous State Transition............c..ccceeevvvvevveennnnane, 99
Interval Diagram for Figure 4-39..........oiiiiiiiiie e, 99
A Precise Expression of Figure 4-40cooooiiiiiiiiiiiiiiiiin 100
Cutoff Switch Example for Figure 4-41........cc.coooviiiiiiiininiiniiinininnn, 100
A More Informative Object State Transition Schematic.................cceeenenen.. 101
Interval Diagram for Figure 4-43........cooiiiiiiiiiiiiiii e, 101
Default Semantics for Figure 4-45coiiiiiiiiiiiiii e 102
A Schematic Subsumed by Figure 4-45coviiiiiiiiiiiiiic e, 102
Schematic Depicting States of Water.........oovvviiuiiiiiiiiiiinniieeeenann, 103
Combined Schematic Displaying States and State Transitions...................... 104
State Composition SChematicocouiiiiiiiiiiiiie e, 104
The General Semantics of a State Composition Schematic.......................... 105
An Example of State Composition Schematic..........ccccoeevevvviuveeerennennnen. 106
Strict State Composition Schematiccoeoiviviiiiiiiiiii e, 106
Complex Strict State Composition Schematic for the Kind Ballpoint Pen......... 107
Strong State Transition in a Composition Schematic...........ccccevveervereennnnn. 108
Object State Decomposition Schematicc....vviviiiiiiiiiiniieeniinann.. 108

vii

Figure 4-57.
Figure 4-58.
Figure 4-59.
Figure 4-60.
Figure 4-61.
Figure 4-62.
Figure 4-63.
Figure 4-64.

Figure 4-65.
Figure 4-66.
Figure 4-67.
Figure 4-68.
Figure 4-69.
Figure 4-70.
Figure 4-71.
Figure 4-72.
Figure 4-73.
Figure 4-74.
Figure 4-75.

Disjunctive State Transition Schematicoviviiiiiii 109

Exclusive Disjunctive State Transition Schematiccoeviviiiininienn. 110
Conjunctive State Transition Schematiccooovvviiiiiiniiiinn . 110
Converse Logical State Transition Schematic.............oovvviiiiiiinninn. 111
An OS Illustrating Possible Complex State Transition Logic....................... 112
State Transitions in a Heating Process...........cooviviiiiiiiiiinnnn, 113
Hiding State Transition Informationccoooeiiiiiiiiiiininn, 113
IDEF5 Schematic Involving OS Constructs.........cccveeiiiiiiininnieniiiiiennen. 114
Examples of Terms in the IDEF5 Elaboration Language 120
Definitions in the IDEFS Elaboration Languageccoooiiiiiiiinn 121
Examples of Sentences in the IDEFS5 Elaboration Language........................ 123
Example of Ontology Constructs in the IDEF5 Elaboration Language 125
Examples of Kind Constructs in the IDEF5 Elaboration Language 127
Examples of Individual and Property Constructs..........ccocceeviiiiiinnnniennnne. 128
Examples of Relation Constructs............cooovviiiiiiiiiiiiiiiiiiiienen, 130
Examples of Function Constructsocoiviviiiiiiiiiiiiiiiiiineeanan, 131
Examples of Source Constructsoovvviuinininiiiiiniiiiieieieeieen, 132
Examples of Source-statement COnstructscooviiviiiiiiiiiiiiiiienn., 133
Examples of Ontology-Term Constructscoveviiiiiiiiiiiiiiiiniiiannn, 134

viii

Preface

This document provides a comprehensive description of the IDEFS
Ontology Description Capture Method. The IDEF5 method was
developed under the Information Integration for Concurrent
Engineering (IICE) project, F33615-90-C-0012, funded by Armstrong
Laboratory, Logistics Research Division, Wright-Patterson Air
Force Base, Ohio 45433, under the technical direction of Captain
JoAnn Sartor and Mr. James McManus. The prime contractor for IICE
is Knowledge Based Systems, Inc. (KBSI), College Station, Texas.
The authors wish to acknowledge and extend special thanks to the

following people who helped compose this document:

Julie Holden
James MacDougall

Richard McGuire

ix

1 Executive Summary

This document provides a comprehensive description of the IDEF5 Ontology Capture Method. Its
purpose is to guide a person in becoming proficient in applying IDEFS to develop and manage
domain ontologies effectively.

The IDEFS5 Method Report is designed for the following audience:

* Knowledge engineers and application domain experts interested in developing,

documenting, storing, and sharing domain knowledge;

* System analysts and designers interested in managing ontology knowledge effectively
for the purposes of both analysis and design; and

* Researchers in the application of knowledge representation methods to problems in

engineering and manufacturing.
The document is divided into the following four sections and two appendices:

1. An Executive Summary, which discusses the scope and content of the ontology
capture method report and provides an initial overview of the method (Section 1);

2. A section on the conceptual foundations of ontology (Section 2);

3. A section on the ontology representation languages: a graphical language for
expressing basic ontology information and a much richer, linear language (the

“elaboration language”) for expressing detailed ontology information (Section 4);

4. A section on the IDEF5 ontology development procedure, which discusses the
application of the method for capturing and maintaining ontology information
(Section 3);

5. An appendix containing the IDEF5 relation library, consisting of a collection of

detailed characterizations of common domain relations (Appendix A); and

6. An appendix containing the formal Backus-Naur Form (BNF) for the elaboration
language (Appendix B).

The authors anticipate the use of this document for a wide variety of purposes. Thus, the material
is presented in a manner that allows readers to obtain the needed knowledge without having to read
the entire document. The following guidelines are suggested for the use of this document.

e For an executive overview, read Sections 1 and 2.

« To become proficient in the development of accurate IDEFS ontology descriptions,

read the entire manual, with special emphasis on Sections 3 and 4.

 An IDEFS5 project leader should study Section 3 in detail, but must also have an
understanding of the method in its entirety. The introduction (Section 2) describes
the motivations and potential uses for the IDEF5 method. Section 3 describes a
procedure for developing IDEF5 ontology descriptions. Finally, Section 4 describes
the IDEFS ontology language.

1.1 Motivations

We characterize the meaning of the term “ontology” to include a catalog of terms used in a domain,
the rules governing how those terms can be combined to make valid statements about situations in
that domain, and the “sanctioned inferences” that can be made when such statements are used in
that domain. In every domain, there are phenomena that the humans in that domain discriminate as
(conceptual or physical) objects, associations, and situations. Through various language
mechanisms, we associate definite descriptors (e.g., names, noun phrases, etc.) to that
phenomena. In the context of “ontology,” we use the term “relation” to refer to a definite
descriptor that refers to an association in the real world. We use the term “term” to refer to a
definite descriptor that refers to an object or situation-like thing in the real world. In an ontology,
we try to catalog the descriptors (like a data dictionary) and create a model of the domain, if
described with those descriptors. Thus, in building an ontology, you must produce three
products. You have to catatog the terms, capture the constraints that govern how those terms can
be used to make descriptive statements about the domain, and then build a model that when
provided with a specific descriptive statement, can generate the “appropriate” additional descriptive
statements. By appropriate descriptive statements we mean (i) because there are generally a large
number of possible statements that could be generated, the model generates only that subset which
is “useful” in the context, and (ii) the descriptive statements that are generated represent facts or
beliefs that would be held by an intelligent agent in the domain who had received the same
information. The model is then said to embody the “sanctioned inferences” in the domain. It is
also said to “characterize” the behavior of objects and associations in the domain. Thus, an

ontology is similar to the now familiar data-dictionary, plus a grammar, plus a model of the
behavior of the domain.

Another characterization of the rheaning of “ontology” is given in the following excerpt from Tom
Gruber (see [Gruber 93] also): ' |

The word “ontology” seems to generate a lot of controversy in discussions about
Al It has a long history in philosophy, in which it refers to the subject of
existence. It is also often confused with epistemology, which is about knowledge
and knowing. ‘

In the context of knowledge sharing, I use the term ontology to mean a specification
of a conceptualization. That is, an ontology is a description (like a formal
specification of a program) of the concepts and relationships that can exist for an
agent or a community of agents. This definition is consistent with the usage of
ontology as set-of-concept-definitions, but more general. And it is certainly a

different sense of the word than its use in philosophy.

Ontologies are often equated With taxonomic hierarchies of classes, class definitions
and the subsumption relation,rbut ontologies need not be limited to these forms.
Ontologies are also not limited to conservative definitions, that is, definitions in the
traditional logic sense that only. introduce terminology and do not add any
knowledge about the world (Enderton, 1972). To specify a conceptualization, one
- needs to state axioms that do constrain the possible interpretations for the defined

terms.

Pragmatically, a common ontology defines the vocabulary with which queries and

“assertions are exchanged among agents. Ontological commitments are agreements
to use the shared vocabulary in a coherent and consistent manner. The agents
sharing a vocabulary need not share a knowledge base; each knows things the other
does not, and an agent that commits to an ontology is not required to answer all
queries that can be formulated in th‘e shared vocabulary.

Any domain with a determinate subject matter has its own terminology, a distinctive vocabulary
that is used to talk about the characteristic objects and processes that comprise the domain. A
library, for example, involves its own vocabulary having to do with books, reference items,
bibliographies, journals, and so forth. Similarly, semiconductor manufacturing has its own

language of chips, wafers, etchants, designs, and so on. The nature of a given domain is thus

revealed in the language used to talk about it. Clearly, however, the nature of a domain is not
revealed in its corresponding vocabulary alone; in addition, one must (i) provide rigorous
definitions of the grammar governing the way terms in the vocabulary can be combined to form
statements and (ii) clarify the logical connections between such statements. Only when this
additional information is available is it possible to understand both the natures of the individuals
that exist in the domain and the critical relations they bear to one another. An onfology is a
structured representation of this information. More exactly, an ontology is a domain vocabulary
together with a set of precise definitions, or axioms, that constrain the meanings of the terms in that
vocabulary sufficiently to enable consistent interpretation of statements that use that vocabulary.

Taken by itself, it may seem that there is not much difference between an ontology and a data
dictionary. However, a data dictionary is typically just a compendium of terms together with
definitions for the individual terms stated in natural language. By contrast, the grammar and
axioms of an ontology are stated in a precise formal language with a very precise syntax and a clear
formal semantics (see Section 4.2). Consequently, ontologies are, in general, far more rigorous
and precise in their content than a typical data dictionary (and, hence, more so than a typical data
“encyclopedia,” because an encyclopedia is just a collection of related data dictionaries).
Ontologies also tend to be more complete as well: relations between concepts and objects in a
domain, and constraints on and between domain objects, are made explicit rather than left implicit,
thus minimizing the chance of misunderstanding logical connections within the domain. A data
dictionary, by contrast, generally relies upon an intuitive understanding of the terms in question
and the logical connections between the concepts and objects they stand for. This works well
enough in small restricted domains. But when information systems span organizational,
geographic, and enterprise boundaries, problems arise. The traditional approach is problematic for
several reasons, not the least of which is that different persons in different domains might
_ understand the same term subtly different but important ways that are not uncovered in a natural
language definition (which can lead to inconsistent interpretations of the same term across different
contexts), and so forth. The regimentation of an ontology of the involved domains in a canonical
language helps to avoid this problem. Furthermore, the discipline of expressing the ontology
information in a formal language enhances the skills necessary for extracting the information, in
particular, the ability to abstract from particular objects to the kinds of which they are instances,
from particular connections to the relations such instances stand in generally, and from particular
behaviors to the constraints that bind instances of various kinds together logically within the

domain.

1.1.1 Motivations for Ontology

The ability to fix a domain vocabulary and its meaning in the context of use in this manner is
critical for true concurrent engineering. A large engineering or manufacturing project involves the
resources of many different clusters of cooperative agents (human or otherwise) in the given
endeavor. Each cluster makes its own contributions, and the overall success of the project depends
in large measure on the degree of integration between those different clusters throughout the
development process. A key to effective integration is the accessibility of rich ontologies
characterizing each of the domains addreséed by each cluster. For instance, access to a
manufacturing ontology that includes constraints on how a given part is manufactured can aid
designers in their design of a complex product by giving them insight into the manufacturing
implications of their design concepts. Similarly, access to an engineering ontology that includes
constraints on how a given part is to function given a particular shape or fit can aid process
planners in their development of the appropriate manufacturing processes. A commonly accessible
collection of relevant ontologies thus permits more efficient sharing of information arising from
various sources within the enterprise.

A related motivation for ontology capture is the standardization of terminology. An enormous
problem in the coordination of large projects is the diversity of backgrounds the various kinds of
engineers bring to their respective roles. As a consequence, many engineers use similar
terminology in many different ways with many different connotations. Because of such
differences, the information that one engineer intends to convey to another may in fact become
garbled; in the best case, such miscommunications can be responsible for a great deal of lost time
and resources; in the worst case, such miscommunications can result in the loss of life.
Consequently, it is often necessary in the course of a large project to standardize the relevant
vocabulary. The ontology capture method provides a principled method for carrying out this task
efficiently and effectively, and maintaining the results of the task in a robust, accessible form.

This suggests another, strong motivation for ontology: reusability. Among the most significant
problems in engineering and manufacturing in general is the redundant effort expended in capturing '
or recreating information that has already been recorded elsewhere. For example, in programming,
the same kinds of routines (e.g., in the design of user interfaces) are often used again and again in
different programs by (in general) different programmers. Consequently, enormous amounts of
time and effort have gone into reinventing the wheel time and again. Recognition of this problem
has led to the development of vast libraries that contain often used routines which programmers can
simply call straight into their programs, rather than having to duplicate the function of existing
code. Engineering and manufacturing face the same type of problem. Manufacturing domains, for

example, share many common features that are independent of the specific characteristics of a
given domain; and the more similar the domains, the more such features they share. Rather than
encoding this information all over again in every new setting, analogous of the concept of a
programming library, one can imagine collecting this common information into ontology libraries,
(i.e., large revisable ontology databases of structured, domain-specific information.) Information
in these ontologies can then be reused and modified to suit the needs of the moment. Moreover,
because ontologies provide a standardized terminology by their very nature, no special additional
effort need be eipended on fixing domain terminology. It must be emphasized, however, that,
despite the potential size of a given ontology, the concept itself is highly scaleable; that is,
ontologies are no less effective in smaller contexts than on very large ones.

1.1.2 Motivations for an Ontology Development Method

There is a global vision behind the idea of ontology development. Spearheaded by the Knowledge
Sharing Effort sponsored by the Advanced Research Projects Agency (ARPA), ontologies are
being constructed for a growing number of manufacturing, engineering, and scientific domains.
With such ontologies in place, the advantages noted above could be realized on a global scale:
standardized terminology with precise meanings that are fixed across industries and across
international borders, and the ability to access and reuse a huge number of existing ontologies in
the design and construction of new systems. Central products of this effort include the Knowledge
Interchange Format (KIF), a text-based logical language for the interchange of knowledge, and
Ontolingua, a mechanisms built on KIF for translating knowledge between different representation
languages. The IDEF5 method described in this report has been designed with the Knowledge
Sharing Effort and its vision closely in mind. Most notably, the IDEF5 elaboration language (see
Section 4.2) — the central medium for storing ontology information collected via the IDEF5
method (see Section 3) — uses KIF as its foundation, and is thus wholly compatible with the
central tools of the Knowledge Sharing Effort. This is particularly crucial as the concepts behind
the effort become even more widely accepted and implemented.

Another key motivation for an ontology development method is a pragmatic one. Previous
approaches to ontology have almost exclusively been academic in nature. Researchers from varied
fields such as Artificial Intelligence, Philosophy, Database Management, Mathematics, and
Cognitive Science have studied ontology from different perspectives. All previous approaches
have failed to produce a practical method for ontology acquisition. The IDEF5 method therefore
fulfills an important need by providing a cost-effective mechanism to acquire, store, and maintain
scaleable and re-usable ontologies. The intended contribution of IDEFS5 is a method to guide and

assist domain experts and knowledge engineers in the construction of both small and large reusable

ontologies. We have designed the IDEF5 technique to be usable by a personnel at varying skill
levels and from a variety of different kinds of organizations.

1.2 Benefits of Ontology Development

Ontology development provides several benefits to organized enterprises. The benefits of ontology
development can be grouped under two headings:

1) Benefits of developing the ontology: The process of ontological analysis is a
discovery process that leads to an enhanced understanding of a domain. The insights
of ontological analysis are useful for (i) identification of problems (diagnosis), (ii)
identification of the problem causes (causal analysis), (iii) identification of alternative
solutions (discovery and design), (iv) consensus and team building, and (v)

knowledge sharing and reuse.

2) Benefits derived from the products of ontology development: The ontologies that
result at the end of an ontology development effort can be used beneficially for (i)
information systems development: ontologies provide a blueprint for developing more
intelligent and integrated information systems, (ii) systems development: ontologies
can be used as reference models for planning, coordinating, and controlling complex
product/process development activities, (iii) business process re-engineering:
ontologies provide clues to identifying focus areas for organizational restructuring and
suggest potential high-impact transition paths for restructuring.

Ontological analysis and development have been shown to be useful for: (i) Consensus building,
(ii) Object-oriented design and programming, (iii) Component based programming, (iv) User
interface design, (v) Enterprise information modeling, (vi) Business process reengineering, and
(vii) Conceptual schema design.

1.3 Overview of the Report

The sections following this executive summary jointly constitute a comprehensive report on the
IDEF5 ontology capture method. Section 2 of the report provides a detailed discussion of the
conceptual foundations of IDEF5. It begins by tracing the roots of ontological inquiry, with
respect to engineering and manufacturing, to the classical philosophical tradition — also known as
“ontology” — of characterizing and classifying what ultimately exists. From this tradition springs
the central concepts of ontology: kinds (roughly, classes or types), properties, attributes,
relations, parts and wholes, and processes. Most of Section 2 is devoted to explicating and

relating these concepts. The section closes with a discussion of the need for a separate ontology
method distinct from existing methods. (The relation of the ontology capture method with existing
IDEF methods is discussed in Subsection 1.3.)

Section 3 provides a practical method for the construction of ontologies. Ontology development
requires extensive iterations, discussions, reviews, and introspection. Knowledge extraction is
usually a discovery process and requires considerable introspection. It requires a process that
incorporates both significant expert involvement as well as the dynamics of a group effort. Given
the open-ended nature of ontological analyses, it is not prudent to adopt a “cookbook” approach to
ontology development. We recommend the use of a general procedure along with a set of useful
guidelines. Section 3 describes the mechanics of such a process for potential IDEFS5 ontology

developers.
In brief, the IDEF5 ontology development process consists of the following five activities.

1. Organizing and Scoping This activity involves establishing the purpose, viewpoint,

and context for the ontology development project and assigning roles to the team members.

2. Data Collection This activity involves acquiring the raw data needed for ontology

development.
3. Data Analysis This activity involves analyzing the data to facilitate ontology extraction.

4. Initial Ontology Development This activity involves developing a preliminary

ontology from the acquired data.

5. Ontology Refinement and Validation This activity involves refining and validating

the ontology to complete the development process.

Although the above activities are listed sequentially, there is a significant amount of overlap and
iteration between the activities. These activities, and their interconnections, are described in detail

in Section 3.

Section 4 contains a description of the IDEF5 ontology languages. There are two such languages:
the IDEF5 schematic language and the IDEF5 elaboration language. The schematic language is a
graphical language that has been specially tailored to enable domain experts to express the most
common forms of ontological information, especially with the aid of an automated ontology
capture tool. This enables average users both to input the basic information needed for a first-cut

ontology and to augment or revise existing ontologies with new information.

There is a price for the relative ease of use of the schematic language, viz., that it lacks the full
expressive power needed to capture general ontology information. To capture such information is
the purpose of the IDEF elaboration language. The elaboration language is a structured text
language with the full expressive power of first-order logic and set theory. This enables a user to
express virtually any condition, or relation, or fact that one might need to express to characterize a
given kind of thing, or property, or relation, or process found in a domain. In addition to set
theoretic constructs, the language also includes specialized constructs for expressing ontology
information in the particular format of IDEF5. This makes for easy translation from the schematic
language into the elaboration language, and vice versa, insofar as that is possible.

Finally, the report concludes with two appendices. The first is the (current) IDEF5 relation library
of reusable ontology elements. This library is a rich repository of information consisting of a set
of characterizations of (i.e., definitions and axioms for) commonly used relations. It provides a
repository of formally defined and characterized relations that can be reused and customized in a
particular project. The relation library itself is a specialized ontology: an ontology of commonly
used relations. The motivation for this library grew out of the previously mentioned analogy with
software engineering. Often in software development, the same kinds of routines are used again
and again in different programs by (in general) different programmers. The development of
ontologies will face the same sort of problem. It is likely that the same or similar relations will
appear in a number of different ontologies. The role of a library of relations such as the one
presented in Appendix A will be to enable modelers to reuse and customize relations that have been
defined in previously captured ontologies. The library can also be used as a reference for the
different ways to define and characterize relations and illustrative examples of the use of the IDEF5
elaboration language. All definitions and characterizing axioms in the library have been written
using the IDEFS elaboration language. Thus, the library can also serve as a useful learning tool for
mastering the IDEFS elaboration language. Finally, the library is extensible in that any relation that
has been formally defined and characterized may be added to it.

The second appendix consists of the BNF specification of the IDEF5 elaboration language to
ensure that the language is well-defined. A glossary for the report follows this appendix.

14 The Connection Between IDEF5 and Other Methods

As Mr. John Zachman in his seminal work on information systems architecture observed, “...
there is not an architecture, but a set of architectural representations. One is not right and another
wrong. The architectures are different. They are additive, complementary. There are reasons for

electing to expend the resources for developing each architectural representation. And, there are

risks associated with not developing any one of the architectural representations.” [Zachman 87]
Consistent, reliable creation of correct architectural representations, whether artificial approxima-
tions of a system (models) or purely descriptive representations, requires the use of a guiding
method. These observations underscore the need for many “architectural representations,” and

correspondingly, many methods.

Typically, methods, and their associated architectural representations, focus on a limited set of
system characteristics and explicitly ignore those that are not directly pertinent to the task at hand.
Thus, IDEF@ provides a compact, yet surprisingly powerful, conceptual universe for modeling
business activities; for all its power, however, it would be highly inconvenient, if possible at all, to
use it to design a relational database; IDEF1X is the method that is optimized for that task.
Similarly, IDEF@ explicitly excludes temporal information, and limits what can be represented
about temporal relations that hold between business activities, as well as the objects involved in the
internal structure of those activities. These exclusions are what give IDEF@ its power in modeling
business activities. For in a method design as in a programming language design, what
distinguishes a well designed effective method is what is left out more so than what is left in.
IDEF3, on the other hand, includes explicit representations of processes, time intervals, and
temporal relations and, hence, is ideally suited for expressing information about timing and
sequencing; it also includes the capacity to express arbitrary information about the individuals
participating in those processes. It lacks, however, the specialized representations of IDEF@® and,
therefore, information that IDEF@ expresses with great ease and simplicity is, by comparison,

expressed only awkwardly in IDEF3.

The connection between these methods and IDEFS5 is rather straightforward. Of the methods just
mentioned, the IDEF5 schematic language is perhaps closest to IDEF1 and IDEF1X. However,
the connection between IDEF1/1X and IDEF5 is analogous to that between IDEF@ and IDEF3.
The information in an IDEF1 or IDEF1X model could in principle be expressed in the IDEF5
elaboration language. However, because it does not contain the well-designed, specialized
representations of IDEF1/1X, it would be exceedingly cumbersome in IDEFS to design a relational
database, for example. But the expressive power of IDEF1/1X soon reaches its limits and, hence,
could not possibly do all that is expected of a general ontology language. (For a more detailed
comparison of IDEF1/1X and IDEFS, see Subsection 24.)

In a sense, the designs of both IDEF3 and IDEFS break the traditional mold according to which
methods are purposely designed with limited expressive power. The elaboration languages of both
methods are full first-order languages (and more besides) and, hence, are capable of expressing
most any information that might need to be recorded in a given domain. This break with tradition

10

not only reflects the need for greater expressive power, but also reflects the development and
increased utilization of more intelligent tools and automated, model-driven systems in business and
engineering. Intelligent tools and model-driven systems generally must manipulate much richer
forms of information than can be expressed in a traditional method. This motivates the design of
richer methods that have the capacity to represent and organize such information, methods that are
not restricted to pencil and paper form and, hence, which truly augment the ability of human agents
to create, manage, and reuse a richer store of knowledge. For the reasons above, these newer
methods will not make the older, more restricted methods obsolete; the ability to filter and structure
information relative to certain well-defined tasks will still be very useful. At the same time, the

greater demands of intelligent tools and model-driven systems will require more.

The broader vision that guides these newer methods is one in which all system definition
information is stored in a global (albeit perhaps virtual) repository of information, with modeling
methodologies providing different views that filter the information in various useful ways relative
to the task at hand. When the task at hand is the general nature of the domain in which the system
operates, the ontology capture method will provide the appropriate perspective. The next tier in the
vision is for all organizations — within the bounds of their proprietary interests — to have
ontologies of their various component systems available for sharing and reuse. IDEFS is being
developed in the belief that it can contribute in a vital way to the realization of this vision of global
knowledge sharing.

11

2 Conceptual Foundations of Ontology

The primary goal of the Ontology Description Capture method is to provide a structured technique,
supported by automated tools, by which a domain expert can effectively develop and maintain
usable, accurate, domain ontologies. In the IDEF5 method, an ontology is constructed by
capturing the content of certain assertions about real-world objects, their properties, and their
interrelationships and representing that content in an intuitive and natural form. This section
provides an overview of the nature and content of an ontology, followed by a discussion that

contrasts the ontology capture method presented in this report with other existing methods.
2.1 The Nature of Ontological Inquiry

Historically, ontologies arise out of the branch of philosophy known as metaphysics, which deals
with the nature of reality, of what exists. The traditional goal of ontological inquiry in particular is
to divide the world “at its joints,” to discover those fundamental categories, or kinds, into which
the world’s objects naturally fall. So viewed, natural science provides an excellent example of
ontological inquiry. For example, a goal of subatomic physics is to develop a taxonomy of the
most basic kinds of objects that exist within the physical world (e.g., protons, electrons, muons).
At the other end of the spectrum, astrophysics, among other goals, seeks to discover the range of
objects that populate its domain (e.g., quasars, black holes, gravity waves). Similarly, the
biological sciences seek to categorize and describe the various kinds of living organisms that
populate the planet. Further examples of ontological inquiry can be observed in the fields of
geology, psychology, chemistry, sociolinguistics, and, in general, any discipline that attempts to

understand the nature of some set of physical, psychological, or social phenomena.

However, this sort of inquiry is not limited to the natural and social sciences. Abstract sciences as
well — mathematics, in particular — attempt to discover and categorize the domain of abstract
objects such as prime numbers, polynomial algorithms, commutative groups, topological spaces,

and so forth.

The natural and abstract worlds of pure science do not exhaust the applicable domains of ontology.
There are vast, human-designed and engineered systems such as manufacturing plants, businesses,
military bases, and universities in which ontological inquiry is just as relevant and just as
important. In these human created systems, ontological inquiry is primarily motivated by the need
to understand, design, engineer, and manage such systems effectively. This being the case, it is
useful to adapt the traditional techniques of ontological inquiry in the natural sciences to these

domains as well.

12

2.2 The Central Concepts of Ontology
2.2.1 Kinds

The construction of ontologies for human engineered systems is the focus of this report. In the
context of such systems, the nature of ontological knowledge involves several modifications to the
more traditional conception. The first of these modifications has to do with the notion of a kind.
Historically, a kind is an objective category of objects that are bound together by a common nature,
a set of properties shared by all and only the members of the kind. More exactly, on the traditional
notion, for every kind K there is a set N consisting of properties that are individually necessary
and jointly sufficient for being a K; that is, x is a K if and only if x has every property in N.
Moreover, and significantly, these properties are traditionally held to be essential to their bearers;
that is to say, they are properties that their bearers could not possibly lack. For instance, it is
reasonable to say that the nature of gold is to have the particular atomic structure that it has:
everything that has this property is gold, and nothing that lacks it is gold. Furthermore, in contrast
to nonessential, or accidental, properties like shape, this property is essential to every instance of
gold: no instance of gold could possibly lack it; otherwise, it would not be gold. On the traditional
conception, then, to divide the world at its joints via an ontology is simply to identify the nature of

each relevant kind in a given domain.

While there is an attempt to divide the world at its joints in the construction of enterprise
ontologies, those divisions are not determined by the natures of things in the enterprise so much as
the roles those things are to play in the enterprise from some perspective or other. Because those
roles might be filled in any of a number of ways by objects that differ in various ways, and
because legitimate perspectives on a domain can vary widely, it is too restrictive to require that the
instances of each identifiable kind in an enterprise share a common nature, let alone that the
properties constituting that nature be essential to their bearers. Consequently, enterprise ontologies
require a more flexible notion of kind. Toward this end, the first modification to be made is
terminological. To avoid overloading the term “nature," call the set of properties associated with
membership in a given enterprise kind K its defining properties. (Note: as with natures, defining
properties are not properties exemplified by the kind K itself; they are properties exemplified by its
instances, the K’s.)

Second, unlike the properties that make up a kind’s nature in the traditional conception, the
defining properties of a kind need not be essential to its instances. Depending on the kind in
question, a defining property, this may or may not be so. Mathematical kinds provide the easiest
examples of the former. The property having four sides, for example, can be taken as a

13

defining property of the kind rectangle (not the only one, obviously), and is also an essential
property of all instances of the kind; no rectangle could possible fail to have four sides. On the
other hand, because of its role in a certain manufacturing cell, the property having a diamond
insert might be a defining property of the kind cutter in a certain enterprise, even though the
particular cutter chosen to fill that role could, if desired, be fitted with a carbide insert instead. In
this case, the defining property of the kind is accidental to (at least one of!) its instances. A
property’s status as a defining property, relative to a given kind, is thus independent of its being
essential or accidental to instances of the kind.

By the same token, a property’s status as essential to some or all instances of a kind is independent
of its status as a defining property. That is to say, the two classification dimensions of defining
and essential are orthogonal. For example, suppose the defining property of a circle is taken to be
being a closed planar figure all of whose points are equidistant from a given
point. Then, while not a defining property of the kind circle, the property having no interior
angles is nonetheless essential to all of its instances — no circle could possibly have an interior
angle. Finally, there may be properties of instances which are neither defining nor essential: for
example, the number of pages of a given requirements document. These different possibilities are

represented in tabular form in Figure 2-1.

Defining Nondefining
Essential Kind: Rectangle Kind: Circle
Property: having four sides Property: having no interior angles
Accidental Kind: Cutter Kind: Req’ts document
Property: having a diamond insert Property: being 10 pages in length

Figure 2-1. Defining/Nondefining vs. Essential/Accidental Properties

One final modification to the traditional notion of a kind remains. Instead of requiring that the -

defining properties of K are individually necessary and jointly sufficient for membership in K, it is

IThis is yet another possible subtlety; properties essential to some members of a given kind may be accidental to
other members of the kind.

14

required only that, for every instance x of a kind K, x have at least one of the defining properties
of K. The reason for this weaker condition is that it often happens that, although instances may be
easily recognizable, it may also be that there are no clear, exceptionless criteria for something’s
being an instance of a given kind; a domain expert might simply “know them when she sees
them.”? In such cases, one must rely upon the domain expert to stipulate when a given object is, in
fact, an instance of the kind in question.

In a particular case, of course, when the defining properties of a kind fit the more traditional
conception of a nature, the stronger conditions associated with natures can, and should, be added
to the definition of the kind. The point of the weaker conditions is to allow something to count as a
kind even without meeting the stronger conditions of the traditional conception. It is because of the
weaker conditions on instancehood in our conception that we have avoided familiar related terms
like “type” and “class” in favor of the less entrenched term “kind." In virtually all contexts, types
and classes are taken to have unambiguous, well defined, necessary, and sufficient membership
conditions; this is so, for example, for the notion }of a type in Pascal or C, the notion of an abstract
data type in the theory of programming languages, and the notion of class in the theory of sets.
Though entirely appropriate in those contexts, such rigorously defined membership conditions are
simply too inflexible to capture the subtleties of categorization and grouping in human engineered

systems.
2.2.2 Kinds as Distinguished Properties

What then, exactly, are kinds? For the reasons just noted, they should not be identified with types
or classes. Even if they are so identified, the question of what they are would not be settled until
the same question is answered with regard to types and classes. What is distinctive of all three
notions is the fact that they are what might be called categorial. Classes, types, and kinds all
indicate some grouping of individuals into categories. Thus, all three are (typically) multiply
instantiable; different individuals, that is, can be instances, or members, of the same type, class, or
kind. Furthermore, in the case of types (in general) and kinds at least, these entities are

intensional; that is to say, unlike sets (and perhaps classes, depending on the account), the identity

2The philosopher Wittgenstein illustrated this idea with the kind Game. Though games certainly appear to
constitute a distinct kind of activity, there is no specific set of properties that are individually necessary and jointly
sufficient for something to be a game. Some, but not all, games have rules; some involve scoring, while others do
not; some are competitive; some have a time-limit; and so forth. Instead of a set of properties that determine
whether something is an instance of the kind Game, there is a broad set of properties each of which is characteristic
of some but perhaps not all instances of the kind. In any case, the properties provide nothing like a set of necessary
and sufficient conditions for being a game.

15

of a type or kind — its being what it is — is not dependent upon its membership; the instances of a
type or kind K can change over time without any change in K itself. The employees of an
enterprise can grow, yet the kind employee — that in virtue of which a thing is rightfully
considered an employee — persists; an aging aircraft can be replaced by a newer one without any
effect on the kind aircraft, and so forth. These two characteristics — multiple instantiability and
intensionality — however, are distinguishing features of what are typically called properties.
Because properties are already a part of the basic metaphysics of IDEFS, it will, therefore, be both

intuitive and convenient simply to take kinds to be properties of a certain distinguished sort.
2.2.3 Contrasting Properties and Attributes

It is important for the purposes of ontology that the terms “property” and “attribute” be clarified.
An attribute is best thought of as a function, that is, a mapping that takes each member of a given
set of individuals to a single specific value. Thus, the attribute color-of maps each object (in a
given set) to its color; the attribute age-of maps each employee to his or her age. By contrast, a
property is intuitively not such a mapping. Rather, they are just characteristics of things, “ways
things are,” abstract, general characteristics that individuals share in common.

Things exhibit certain attribute values: the color-of that object is red, hence, it has the property of
being red; the age-(in-years-)of that employee is 40, hence, she has the property of being 40
years old. However, there is not always such a correlation between properties and attribute
values to be found. For example, neither the property having at least one interior angle nor
the property having a color, because of their indefiniteness, is obviously clearly correlated with
any sort of attribute value. The usefulness of both properties and attributes in IDEFS5 lies in
precisely this observation. It is often the case that the defining properties of a kind will be
indefinite with regard to any particular attribute value. For example, the property has-
identifiable-serial-number might be a defining property of the kind NC machine in a given
manufacturing domain. An NC machine’s having this property, however, says nothing about
what its actual serial number is. A modeler can, therefore, indicate that this is information that is to
be kept about instances of the kind by including the corresponding attribute serial-number-of

among the attributes associated with the kind in question.

Practice has confirmed that in the course of building an ontology it may initially be unclear whether
an identified notion is best thought of as a property or as an attribute. Consequently, in the IDEF5
methodology, the term “characteristic” is used as a neutral term encompassing both properties and

attributes (See Section 3).

16

2.2.4 Relations

So far, only properties and attributes of individuals have been considered. But, of course, there
are other sorts of general features that individuals exhibit, albeit jointly rather than individually,
namely, connections, or associations, or as they shall be referred to here, relations. The relation
works-in, for instance, is a general feature that holds between an individual and the department in
which he or she works. Like a property, then, it is both multiply instantiable — different pairs of
things can stand in the same relation — and intensional — a relation’s identity does not consist in

its instances.

The relations in an ontology are typically binary; that is to say, they hold between two entities, as
with the relation works-in. However, there is no theoretical bound on the “arity” (number of
arguments) of a relation; the relation between, for instance, holds between three objects. More
artificial but nonetheless useful relations can easily be defined with four or more arguments.
IDEFS thus places no restriction on the arity of the relations that can be introduced into an
ontology.

2.2.5 Second-order Properties and Relations

Intuitively, properties and individuals are of different logical types. Properties are the abstract,
general features that are shared by distinct individuals, the respects in virtue of which distinct
individuals are the same. Similarly, relations are the general associations which can be shared by
distinct pairs (triples, etc.) of individuals. Thus, propertieé and relations are identified by
abstracting away from the particular features of individuals and, hence, are often characterized as
being of a higher (i.e., roughly, more abstract) logical type than the individuals that exemplify
them. Individuals are thus frequently referred to as first-order objects, and properties and relations
of first-order objects as first-order properties and relations. However, properties and relations that
hold among individuals are identifiable (albeit abstract) objects themselves. But because they are
one level of abstraction above ordinary first-order objects, they are said to be of a higher logical
type and, hence, classified as second-order objects. As objects, first-order properties and relations
can themselves have properties that apply to them, but not to individuals: for example, the property
having at least one instance. Such properties are typically known as second-order properties,
because they apply to second-order objects. Furthermore, second-order objects can stand in
relations with one another. The relation has-more-instances-than: for example, is a relation
that holds between two kinds. Again, the subkind relation is a relation that holds between a given
kind and a more general kind that subsumes it, for example, the kinds human and mammal, or

NC machine and machine. Some second-order relations, however, include individuals among

17

their arguments. The instance-of relation, for example, holds between an individual a and a kind
K just in case a is an instance of K. Such “mixed-type” relations that hold between objects of
different logical types are nonetheless second-order. A second-order relation, therefore, is a

relation that always includes at least one first-order property or relation among its arguments.

As with properties and relations holding of individuals, IDEFS permits reference to any higher-
order property or relation. The subkind-of relation and the instance-of relation, however,
because of their prominence and importance, are included explicitly in the IDEFS5 language. Note
that both of the distinguished second-order relations — subkind-of and instance-of — are
often ambiguously expressed by the expression “is-a” in semantic nets and other graphical
languages. To avoid the possible confusions this practice might engender, they are explicitly
distinguished in IDEF5, and the expression “is-a” is not used in the IDEFS5 language.

2.2.5.1 More on the Subkind Relation

The subkind relation has an important consequence for individuals: if Kis a subkind of K, then
every instance of K is an instance of K’. It should be noted that the converse does not hold in
general: if every instance of a kind K is an instance of another K’, then it does not in general
follow that K is a subkind of K”. The reason for this is that the subkind relation is necessary: itis
not enough that, as a matter of fact, every K is a K”; it must also be impossible (in some
appropriate sense) for a K to fail to be a K’. For instance, every U.S.-president is 2 human-
male. But this is obviously a contingent relationship; there is nothing necessary about it, and
indeed quite likely in the future there will be a woman president. By contrast, in the current U.S.
government ontology (holding fixed certain basic laws about the presidency), U.S.-president is
a subkind of American-citizen. The previous examples are more obvious still; clearly, no
human being (as the notion is currently understood) could fail to be a mammal, just as no NC

machine could fail to be a machine.

It should be noted also that the subkind relation encompasses several widely-used notions. The
notion of kind subsumes those of type and class. A corollary to this is that the notion of subkind
subsumes those of subtype and subclass. More exactly, types and classes are just kinds with
definite necessary and sufficient membership conditions. A subtype T of a type T~ is a type
whose membership conditions entail those of T”. The same holds for classes. In such cases, it is
also said that T is a subkind of T", and such occurrences of the subkind relation are known as
description subsumption, because the membership conditions of T’, the description of what it is to

be a member of T~, subsume those of T.

18

By contrast, in those cases where a kind does not have rigorously specified necessary and
sufficient membership conditions, the subkind relation, in general, can only be stipulated, not
inferred. That is, in cases where it is only possible to declare that a given individual is a member
of a certain kind K, the information associated with K, in general, will not provide a means for
determining whether another kind K” is a subkind of K. The reason for this is that, if membership
is not neatly determined for a given kind K, there will be no guarantee that membership in another
kind K’, in particular, will be sufficient for membership in K (though it might be in specific

cases).

The notion of subkind also encompasses the notion of generalization/specialization, that is,
occurrences of the subkind relation in which the subkind is naturally thought of as a special case of
a more general concept. For instance, the kind hex-headed-bolt is naturally characterized as a

specialization of the concept fastener.
2.2.6 Two Ways to Introduce Kinds into an Ontology

Kinds are introduced into an ontology either by definition or stipulation. The former case is
applicable when it is possible to provide necessary and sufficient conditions for a thing’s being an
instance of a kind K in terms of objects, properties, and relations already assumed to exist in the
domain at hand. In the case of definition, then, the whole of K’s logical nature is given in terms of
antecedently given elements of the ontology. In the latter case, K is postulated to exist, but only a
partial definition of its nature is provided. To illustrate, the kind prime number can be totally
defined in terms of the kind number, the number one, and the relation divisible-by. By
contrast, a kind like book in a library ontology cannot be defined completely in terms of other
kinds, properties, and relations in the domain; it is not, for instance, just the collection of pages.
However, it can (let us suppose) be partially defined, or axiomatized, in terms of other kinds in the
domain, for instance, the kinds author and publisher. Properties and relations in general can be
introduced into an ontology by definition or stipulation as well.

2.2.7 Parts, Wholes, and Complex Kinds

The examples above might suggest that individuals are considered logically simple in IDEFS.
However, it is clear that individuals of most kinds (people, NC machines, etc.) can themselves be
viewed as complex objects comprising many other objects of various kinds. In general,
individuals are considered simple only insofar as their composite nature is irrelevant to the
particular perspective from which they are being viewed. By the same token, from some
perspectives, the composite nature of a certain kind of object may be highly rélevant; one might,
for example, wish to document not only the existence of the kind engine but also the fact that this

19

kind of object includes objects of other kinds (e.g., distributors, pistons, sparkplugs) as parts. -
One might then want to document the decomposition of those objects as well. IDEFS, therefore,
includes among its primitives a basic part-of relation that holds between an individual and the
more complex objects of which it is a part. It thus holds between, say, a given spark plug and the
engine in which it has been installed. When the members of a kind are viewed as having parts in a

given ontology, the kind is known as a complex kind.

The part-of relation is characterized in IDEF5 simply as a weak partial ordering on the domain of
individuals. That is to say, it is entirely characterized formally by the two (higher-order) properties
of reflexivity (every object is a part of itself) and transitivity (every part of a part of an object a is a
part of a). Thus, for instance, a spark plug that is a part of a car’s engine is also a part of the car.
It should be noted, though, that IDEFS does not assume the full theory of parts and wholes; in
particular, it is not assumed that the domain of individuals is closed under the formation of
complex objects. For example, it is not assumed that, for every two individuals a and b, there is a
third individual that is the “sum” of a and b (though, of course, one is free to postulate such a

principle as part of the ontology of a given domain).
2.2.8 Processes, States, and Process Kinds

An adequate characterization of the kinds that inhabit a given domain often cannot be divorced from
the processes in which their instances are involved. Typically, processes involve two sorts of
change: change in kind and change in state. In an incineration process, for example, there is a
transformation of some quantity of wood into ashes and gas; the wood is destroyed and quantities
of ash and gas result. By contrast, a process in which ice is melted simply involves a change in
state of a given quantity of water from frozen to liquid; the water itself is not destroyed, but only
altered in a nonessential way. This is in fact what generally distinguishes states from kinds: unlike
kinds, states are usually contingent groupings within a domain. That is, the distinguishing feature
of a state is usually a changeable, accidental feature of a thing: for example, a quantity of water’s

being frozen, or a car body being painted. Both sorts of change are accomodated in IDEFS.

Like individual objects, processes, too, cluster naturally into general categories. For instance,
temporally distinct events in which a manufacturing process plan is generated from a given design
are all instances of the general process of manufacturing process planning. Thus, general
processes, like the kinds discussed in the previous paragraph, are multiply instantiable; distinct,
individual events can be instances of the same general process. Furthermore, the identity of a
general process is independent of its instances; it remains the same regardless of whether or how it

is instantiated. Hence, also like kinds, a general process is intensional. Therefore, general

20

processes can be thought of as kinds no less than object kinds. Unlike the instances of individual
kinds, however, processes are things that happen. Thus, not only do they “contain” other objects
as parts, like the instances of complex kinds, they occur over an interval of time, and things are
true of the objects in the process over at least some parts of that interval. It is this fact that often

makes it relevant to refer to relevant processes in the characterization of a given kind.

Because of the importance process kinds can have in the definition of a domain ontology, IDEF5
permits one to refer to them no less than object kinds. However, there are two distinct contexts in
which such reference can occur, and the information that is kept about a process kind will differ
depending on the context. If a process kind P is referred to in the description of a transformation
or transition involving two kinds of objects, then the “internal” character of P is described in
accordance with the IDEF3 process description capture method. That is, P is described in terms of
the object kinds it involves, their properties, and the relevant relations that hold between instances
of those kinds when the process in question is instantiated. In particular, in such contexts, the
usual sort of information kept about an object kind — its defining properties and so forth — is not
kept about the process kind.

On the other hand, it may be important for understanding a domain not only to know how objects
are involved in the internal structure of a process, but also — as with object kinds generally —
how one kind of process relates logically to another kind of process, independent (in general) of
the details of its internal structure. For instance, manufacturing process planning is a
subkind of planning. In these cases, process kinds are characterized exactly like object kinds:
defining properties are identified, and so on. Two distinct constructs will be provided in the

IDEFS graphical language corresponding to these two possible characterizations of process kinds.

2.3 Levels of Ontologies

Roughly speaking, enterprise ontologies can be categorized in terms of three levels of generality,
as shown in Figure 2-2. These levels are useful when scoping an ontology-building effort as
discussed in Section 3. At the highest level of generality are domain ontologies. A domain
ontology classifies the most general information that characterizes an entire domain. For example,
a domain ontology for semiconductor manufacturing would include general information about
products, manufacturing techniques and tools, and so forth, applicable across the entire
semiconductor manufacturing domain. (The notion of a domain ontology is somewhat flexible in
the sense that it might be possible to abstract further across various specific domain ontologies to

derive an even more general domain ontology; for instance, one might abstract from semiconductor

21

manufacturing, the automobile industry, and so forth, to derive an ontology that encompasses

manufacturing generally.)

At a lesser level of generality are practice ontologies. A practice ontology is an extension of a
domain ontology that includes the common features of similar sites in that domain. For example, a
group of semiconductor manufacturing companies involved in the development of similar product
lines might develop an ontology that characterizes the semiconductor domain from the perspective

of the development of that product line.

Finally, at the lowest level of generality are site-specific ontologies. A site-specific ontology
extends a practice ontology (hence, also a domain ontology) to include information about all
relevant kinds of objects, properties, and relationships found within a specific site. Thus, for
example, beginning with a portable practice ontology developed independently on the basis of
similar sites, a specific semiconductor manufacturing plant in Silicon Valley might use IDEFS to
extend this ontology to create a site-specific ontology to describe its own facilities in detail.

Practice

Domain Ontologies
Ontology

Site Specific
Ontologies

Figure 2-2. Levels of Ontologies

A traditional problem with ontology development has been that many practice and site-specific
ontologies for the same sites may exist within a single domain [Hobbes 87] because what an
ontology captures is influenced by the viewpoint of the developers. Recognizing this problem,
IDEFS5 facilitates the capture of ontologies from multiple viewpoints and suggests guidelines for

resolving inconsistencies because of different frames of reference.

22

24 On the Need for a Separate Ontology Modeling Method

Ontology development has traditionally been a difficult and expensive task. Ontologies developed
to date, such as Tacitus [Hobbes 87] and CYC [Lenat 86], are the result of very expensive and
handcrafted efforts by highly skilled specialists. Many enterprises are unable to fund such
expensive efforts. A standard and cost-effective means of developing ontologies must be
developed if enterprises are to gain the benefits of ontology use. The development of a
theoretically and empirically well-grounded method specifically designed to assist in creating,
modifying, and maintaining ontologies will result in both standardized procedures and reduced
costs.

The goal of IDEFS is not to define yet another method to do something a little better or a little
different than an existing method. Rather, the IDEF5 method development is designed to fill a gap
in the existing set of methods. A type of information — ontological information — has not been
directly targeted by any existing method. The importance of this sort of information should be
clear. What is perhaps less clear is the need for a new method for capturing this information. This

issue is taken up in this section.

For those familiar with other IDEF methods, the idea of capturing information about kinds and
their associated properties will no doubt suggest both IDEF1 and IDEF1X. A kind has been
defined in Subsection 2.2.1 as a certain sort of class, which might then suggest that a kind is like
an IDEF1 entity class or an IDEF1X entity. Furthermore, associated with each entity class (entity)
is a list of associated attributes that assign values to the members of the entity class. So perhaps

the makings of an ontology modeling method are already available in one of these two methods.

However, this is not the case. The chief reason is that IDEF1 and IDEF1X are purposely designed
with certain intrinsic expressive limitations to constrain the structure of the information that they
represent. IDEF1X, for example, was designed explicitly for the design of relational database
models; hence, it can only express information of a rather low logical complexity. This makes for
very clear, uncluttered, and easily implemented data models, but it also limits the applicability of
IDEF1 and IDEF1X outside their intended domains. For example, neither method has the capacity
to express modal information. For instance, in the manufacturing cell example discussed earlier, it
could be desired for security reasons that it be impossible to swap out the diamond tool in the
cutter; that is, suppose it is specified that any instance of the kind Cutter must have a
nonremovable diamond tool. Without the capacity to express modal information, it is not possible
to represent this constraint. But as the example illustrates, it may be of singular importance to be
able to express such information.

23

Further examples abound. For instance, in both IDEF1 and IDEF1X, it is not possible to name
individual objects in an ontology and assert things specifically about them. Rather, one can only
say things that hold of every member of a given class of entities in general. This is a crucial
limitation in cases where there is a distinguished member of a given kind with special properties.
Again, the two methodologies can express only a limited variety of general propositions about the
structure of the entities within a given class. For instance, one might want to note that for every
member of class A with property P, there is another member with property Q. Thisis a
straightforward quantification statement, easily expressed in the language of predicate logic that
underlies IDEF5; once again, though, this proposition is beyond the expressive capabilities of
IDEF1 and IDEF1X. However, as with the previous examples, the capacity to express such
information might well be needed in giving a thorough characterization of the nature of the objects

within a system.

The main point here is that the existing IDEF methods were simply not designed to do ontology
modeling; they were designed with other goals in mind. Granted, the methods could perhaps be
extended to incorporate additional expressive power as the need arises, but there would be no
point. A method designed for one purpose should not be forced to perform another. Again, the
claim is not that there is something wrong with or inadequate about the existing IDEFs. They were

simply not designed as methods for ontology development.

24

3 The IDEFS Ontology Development Process

This section describes the IDEFS ontology description development process. As described in
Subsection 2.1, an ontology characterizes what exists: the kinds, their properties, and their
interrelationships in a given domain, as revealed in the terminology used by experts in the domain.
A complete ontology, then, reveals the fundamental nature of a given domain. In the context of
business re-engineering, concurrent engineering, and information system development, an

ontology is key for the design of effective scalable solutions.

Practically, an ontology is a documentation of the terminology used in a particular domain. It also
includes the rules for combining and using that terminology to form statements about the domain,
and sanctioned inferences that can be made from those statements in the domain. This use of
ontology is consistent with the traditional use because what “exists” in a given domain is largely
influenced by the ability of the agents to individuate or “carve up” the world. As humans differ
greatly in this ability, both because of differing capabilities and differing perspectives, ontologies
are rarely perspective-invariant. Ontology development is focused on understanding the concepts
of a domain from these varied perspectives. It is also focused on extracting the essential nature of

these concepts and representing this knowledge in a structured manner.

The construction of an ontology differs from traditional information capture activities in the depth
and breadth of the information captured. Thus, an ontology development exercise will go beyond
asserting the mere existence of relations in a domain; the relations are “axiomatized” within an
ontology (i.e., the behavior of the relation is explicitly documented). To illustrate, consider the
relation higher than. Typical information analysis activities (such as IDEF1X modeling) would
assert the existence of this relation and declare its cardinality, only if the organization “managed
information about” the kinds of objects in the domain that can participate in the relation. IDEF5
allows the characterization of the relation in greater detail. Thus, an IDEF5 model of the higher
than relation might declare that this relation has the property of being transitive. Moreover, IDEF5
provides mechanisms for characterizing the nature of transitivity by means of appropriate axioms
(i.e., rules and constraints governing the behavior of relations with that property). Axioms are
recorded using the IDEFS5 elaboration language (Section 4.2). These axioms may be used to make
inferences (i.e., derive new knowledge from existing knowledge). The property of transitivity, for
example, enables inferences of the following form: suppose it is given that A is higher than B and
that B is higher than C. Then, by the transitivity of the higher than relation, it can be inferred
that A is higher than C. Ontological analysis, therefore, facilitates the extraction of information
that is conveyed, but not displayed, in an ontology.

25

The ontology development process requires considerable skill and experience primarily because of

the following reasons:

« The knowledge about a domain is often very poorly documented, and exists primarily
in the minds of a few domain experts. This domain knowledge is of two kinds:
procedural and declarative [Musen 89]. Declarative knowledge is the type of
knowledge that human experts often find easy to make explicit (i.e., humans are
consciously aware of this type of knowledge). This knowledge can be inspected,
abstracted, and applied in a variety of different contexts. On the other hand, it has
been observed that domain experts find it difficult to make procedural knowledge
explicit [Musen 89]. Research reveals that experts’ awareness of what they know
progressively degrades after repeatedly applying their know-how to specific tasks.3
The nature of domain knowledge therefore makes the process of “extracting”

knowledge from domain experts intrinsically difficult.

« Researchers have found that a person’s prior knowledge of a domain area is critical for
properly assimilating new information and clarifying areas of ambiguous
interpretation. Therefore, knowledge engineers must make an effort to learn the
domain expert’s area to avoid the consequences of misunderstanding what the expert is

trying to convey.

« The knowledge analysis needed for ontology capture requires considerable
introspective thought. Typically, it requires the effort of a group working in close
concert, with ontology evolution occurring iteratively by a process of successive

refinement [Musen 89].

Ontology development requires extensive iterations, discussions, reviews, and introspection.
Knowledge extraction is usually a discovery process and requires considerable introspection. It
requires a process that incorporates both significant expert involvement as well as the dynamics of

a group effort. Given the open-ended nature of ontology analyses, it is not prudent to adopt a

3The problem for knowledge engineers is that experts do not introspect reliably. Although human beings may have
some declarative knowledge of the extent of their procedural memory, the two types of memory appear to be handled
quite separately by the nervous system. For example, Cohen investigated patients with neurologic amnesia to learn
more about the mechanisms of human memory. In one experiment, 12 such patients were taught how to solve the
Tower of Hanoi puzzle. The patients with amnesia became proficient at the task just as quickly as did control
subjects without amnesia and learned rapidly to perform the necessary sequences of moves “without thinking”.

However, despite their obvious acquired expertise at solving the Tower of Hanoi puzzle, not one of the amnesia
patients would ever state that he was familiar with the puzzle or knew its solution!

26

“cookbook” approach to ontology development. We recommend the use of a general procedure
along with a set of useful guidelines. This section describes the ontology development process for
potential users of the IDEFS method.

The IDEFS5 ontology development process consists of the following five activities.

* Organize and Define Project This activity involves establishing the purpose,
viewpoint, and context for the ontology development project and assigning roles to the

team members.

* Collect Data This activity involves acquiring the raw data needed for ontology

development.

* Analyze Data This activity involves analyzing the data to facilitate ontology

extraction.

* Develop Initial Ontology This activity involves developing a preliminary
ontology from the acquired data.

* Refine and Validate Ontology This activity involves refining and validating the
ontology to complete the development process.

Although these activities are listed sequentially, there is a significant amount of overlap and
iteration between the activities. Thus, the initial ontology development (Activity # 4) often requires
the capture of additional data (Activity # 2) and further analysis (Activity # 3). Each of the five
activities will involve other activities and tasks. The remainder of this section will describe the

ontology development process in greater detail.

3.1 Organize and Define the Project
3.1.1 Organize the Project

An important initial step in developing an IDEF5 ontology description is the formation of a
development team. Each member of the IDEF5 team will perform a particular role in the
development effort. Individuals who are involved in the modeling may each fulfill several roles,
but each role is dealt with distinctly and should be clearly separated in the minds of the participants.
The following are the roles assumed by IDEF5 development project personnel.

* Project Leader This administrative role is responsible for overseeing and guiding
the entire IDEF5 development effort. This person is ultimately responsible for the

27

outcome of the ontology development effort, team organization and leadership, and

schedule and budget management.

« Analyst/Knowledge Engineer This technical role is filled by a person with
IDEF5 expertise who will be the primary developer of the IDEF5 ontology
description. The person filling this role may be a regular employee of the organization
requiring the ontology development, or the person may be hired on contract for the
task. In the latter case, the organization requesting the ontology development 1s

referred to as the Client.

« Domain Expert This role is played by the primary source of knowledge from the
application domain of interest. Persons filling this role will provide insights about the
characteristics of the application domain that are needed for extracting the underlying
ontology knowledge. Often the knowledge of a domain expert is supplemented by a
variety of different documents from the organization. The supporting documents are

referred to as source material.
« Team Members All persons involved with the IDEF5 ontology description project.

« Reviewers Persons knowledgeable about the application domain and/or the IDEF5
method responsible for reviewing and commenting on draft descriptions and
documents. Reviewers authorized to make written critiques of IDEF5 descriptions are

commentors. The remaining reviewers are called readers. Team members and domain

experts can be reviewers.

3.1.2 Define the Project

The development team must establish the purpose and context of the description capture effort as
early as possible in the project. The context statement bounds or delimits the area of the domain
addressed by the development effort. The context is established by scope statements and the
identification of the initial boundaries for the ontology acquisition project. The scope defines the
boundaries of the description development effort and specifies parts of the systems that must be
included or must be excluded. The purpose statement provides a set of “completion criteria” for
the ontology description capture effort. The purpose is usually established by a list of 1)
statements of objectives for the effort, 2) statements of needs that the description must satisfy, and
3) questions that must be answered by the resulting ontology description. The purpose and context
can rarely be determined completely and accurately in advance. The list of needed findings or
questions (the purpose) should be periodically revised as the data starts being compiled. Similarly,

28

the context an analyst thinks will contain the data often turns up leads to other areas not originally
considered within the scope. Thus, the purpose and context generally evolve and are refined
throughout the duration of the project. The purpose, context, and viewpoint of an IDEF5 ontology
description are captured in an IDEF5 Description Summary Form, as shown in Figure 3-1. The
IDEFS5 Description Summary Form also references the document numbers of all the different
artifacts that comprise the IDEFS description.

3.1.2.1 Define Purpose

The statement of purpose clearly specifies the main objective(s) of the ontology development
effort. Defining the purpose is an important initial step in the development effort. Often, project
personnel take the purpose for granted only to find the results of their efforts ignored by or of little
use to the enterprise. Without a purpose statement, the only completion criteria is the budget and
time allocated to the effort. Conversely, with a clearly defined purpose, the project can often be
completed much more cost effectively. Defining the purpose can be separated into two parts: 1)
defining a statement of need (SON) and 2) defining objectives of acquiring and maintaining the
ontology.

The SON should identify the source of the request (person or project) and paraphrase the stated
motivations for the project. Identifying the objectives is simplified by answering the following
questions.

* What decisions must be supported by the ontology description?

How much detail is needed in the ontology to resolve an issue, make a decision, or answer a
question?

* What question(s) does the client or domain expert need answered?

Who will use the ontology once it is available?
3.1.2.2 Determine Scope and Level of Detail

Once the purpose of the effort has been characterized, it is possible to define the context of the
project in terms of 1) the scope of coverage and 2) the level of detail for the ontology development
effort. The scope defines the boundaries of the description development effort, and specifies parts
of the systems that must be included or excluded. A sample context statement from the
semiconductor domain might be: “This is a site-specific description of the concepts and

terminology associated with the shop floor level objects in the domain” (e.g., wafers, etchants,

29

wafer carriers, automated ground vehicles). This context statement indicates that the description
will not cover scheduling, manufacturing cells, bills of materials, or many other possible aspects of
the semiconductor manufacturing domain. The level of detail specification is normally documented
in the form of a set of examples. It should be noted, however, that the scope and level of detail
decisions are tentative at this stage of the project and should be updated as the ontology data
becomes available. An astute project leader will periodically assess the adequacy of the ontology

captured against the specified needs and information goals of the client.
3.1.2.3 Establish Viewpoints

Although ontology is the study of the « . . nature of being, reality, or ultimate substance,”
[Webster 88], ontologies are tinted, just as any other data/information/knowledge, through the eyes
of the individual responsible for recording the description. Different individuals perceive the world
around them in (often significantly) different ways because of differences in cognitive skills and
background knowledge. These differences in humans’ capacity to individuate are reflected in the
perspective or viewpoint that every individual brings to bear on everyday activities. Differing

viewpoints therefore have a significant impact on the outcome of an ontology capture effort.

The differences in viewpoints, or frames of reference, are often reflected in different aspects of the
ontology such as the definition of the scope of the entire effort, the definition of boundaries
between subsystems, and the specification of the level of detail of the description capture. A
sample viewpoint statement for an automobile manufacturing ontology might be “described from
the viewpoint of the production engineering department.” Although the focus domain can be
studied from different viewpoints, each IDEFS description requires the selection of a specific

viewpoint.

An IDEFS5 description can have a set of different viewpoints associated with it. Resolving
differences in viewpoints is an important part of ontology analysis. The viewpoints must be
explicitly recorded in the IDEF5 Ontology Description Summary Form (Figure 3-1).

3.1.2.4 IDEF5 Description Summary Form

The IDEF5 Description Summary Form summarizes the evolving/completed ontology description.
It records the purpose, viewpoint, and context and also provides a summary of all the schematics
and documents used to record the ontology. The following are the fields of an IDEFS5 Description

Summary Form (see Figure 3-1).

30

IDEFS Description Summary Form

Project: Project Planning Ontology Analyst: P. Benjamin Reviewer: R. Mayer

Version: 1.0 | Review Starting Date: 5/10/94 | Review completion Date: 10/15/94

Purpose: To develop an ontology of the project planning domain.

Context: The information acquired must be sufficient to plan activities, specify precedence
relationships, and assign resources to activities.

Viewpoint: Project Manager

List of Documents

Source Material Log Kind Pool

Source Statement Pool Kind Specification Form
Source Statement Description Form Property Pool

Term Pool Attribute Pool

Term Description Form Relation Pool

Proto-Kind Pool Relation Specification Form
Proto-Kind Specification Form Classification Schematic
Proto-Relation Pool Composition Schematic
Proto-Relation Specification Form Relation Schematic

Proto-Characteristic Pool

Figure 3-1. IDEFS5 Description Summary Form

* Project Name The name of the ontology description development project is recorded
in this field. This purpose of this field is to identify the domain for the ontology
description capture effort.

* Version This field records the version number of the ontology description. The
version number is important because it provides a means to document and trace the
evolution process of the ontology development.

* Analyst This field records the signature of the IDEF5 expert who is the primary
developer of the IDEFS description. It is important to record the name of the analyst
responsible for the ontology development because the domain ontology reflects his/her
viewpoint, individuation schemes (ways of “carving up” domain), and analytical
skills.

* Review Start This field captures the date of dispatch of ontology for review.

31

« Reviewer The signature of the reviewer is recorded in this field. This information

is useful for future reference.

« Review Completion This field captures the date of review completion. The
difference between the review completion date and review starting date indicates how
much time a reviewer has taken to provide recommendations, insights, and comments

on the ontology development project.

+ Purpose The purpose of the ontology description development project is recorded in
this field. The purpose of the domain ontology development is important because it
provides a brief and concise description of what to expect from this ontology

document.

« Context The context of the ontology description development project is recorded in
this field. The context comprises the boundaries and the level of detail. The statement
of context is important because it indicates the scope and level of granularity of the

study.

« Viewpoint This field records the viewpoint of the ontology development project.
Knowledge of the viewpoint provides clues about the rationale for the schemes of

individuation used to carve up the domain.

« List of Documents The name(s) of the IDEF5 document(s) are recorded on an
IDEF5 Description Summary Form. This information is important in order to have a
basic idea of how anontology is developed and organized in each document, and

serves as an index for each document.
3.2 Collect Data

The definition of viewpoint, context, and purpose sets the stage for the data gathering phase of the
ontology capture effort. One problem with data collection is deterrriining the appropriate sources of
data. Experience indicates that the main data sources are the domain expert and documents relevant
to the circumscribed ontology. It may be also instructive to scrutinize existing and relevant IDEF

models in the organization. IDEF@ models and IDEF3 descriptions are likely to be sources of

data.

The knowledge engineer/analyst must work closely with the domain expert to effectively record all
the data relevant to the description development effort. The data collection process is both iterative

and interactive. The process is iterative because the result of compiling/organizing the data will

32

drive additional data acquisition efforts. The interactions are necessary to make clarification and
discover insights based on discussions with the domain expert. The data collection may occur in
different modes: 1) direct transcription of data from source documents, 2) interviews and protocol
analysis with d‘omain experts, or 3) introspected observation of particular organization

activities/phenomena.

Direct Questioning (Interview) and Protocol Analysis are the most commonly used knowledge-
elicitation methods for acquiring knowledge from domain experts. An expert’s response to a
question may depend on the type of questions asked by a knowledge engineer during an interview
[Musen 89]. The typical questions asked during an interview are described in Subsection 3.2.1.2.

3.2.1 Interview Guidelines
3.2.1.1 Interview Preparation

Data that needs to be acquired directly from a domain expert often will be obtained through
interviews. The following general guidelines are suggested to prepare for the interview.

* Obtain background information about each expert who will provide potentially useful
information including information about the responsibilities, current assignments, and
other areas within or related to the domain in which the expert has experience. The
name, location, telephone number, and e-mail address of the expert(s) should also be

recorded.

* Prepare a brief outline of: 1) the purpose of the interview with the expert, 2) the topics
to be covered, 3) the types of information being sought, 4) the authority for requesting
the interview, and 5) the relevant questions that can be used to motivate discussions.

* Schedule a date and time for the interview with the expert.
3.2.1.2 The Interview

The interview with the expert is critical. The knowledge engineer/analyst (interviewer) should
create a positive, friendly atmosphere during the interview. The interviewer should attempt to
convey to the domain expert the feeling that they are working together to create the required
ontology and solve some problem for the organization. Novice interviewers should constantly
remind themselves that the experts are the ones with the knowledge about the domain. Generally,
experts are interested in helping and often provide questions and lines of investigation that the
interviewers had not thought of pursuing. Well-prepared interviewers will find that experts

33

provide far more information than was expected, often covering topics the interviewer had not

anticipated. In an ontology description capture project, this is the bonus for good preparation.
The guidelines below should be considered when preparing questions for an interview.

« Questions should not interfere with the domain expert’s line of thought. Research has
shown that very detailed questions are often counter-productive. Examples of such
questions are, “What RPM should a machinist maintain while performing a drilling

operation?” or “Why didn’t you consider performing Operation X before Operation
Y?”

« Questions should prompt experts to express their thought processes during problem
solving. When domain experts remain silent for a considerable amount of time, it is
possible that they are solving the problem in their minds and not expressing all their
thoughts. Prompting questions are useful at this stage. Examples of prompting
questions are, “At this point of time, what are you thinking?,” “What are you

considering now?,” and “What are your reasons for doing this?”

« Questions should cover details regarding not only frequently occurring situations but

also rare situations in the domain.

3.2.2 Protocol Analysis

A protocol is an underlying pattern or structure of a discourse or behavioral process. The term
protocol implies that an expert is solving a problem using commonly used approaches and tools.
Protocol analysis is the process of analyzing a record of discourse or behavioral process. There
are two types of protocol analysis: verbal protocol analysis and movement protocol analysis
[Jackson 90]. In verbal protocol analysis, experts are asked to think aloud as they are solving
problems. Knowledge engineers record the entire discussion during the problem-solving process.
In movement protocol analysis, industrial engineers identify idle movements by studying motion

efficiency.
3.2.3 Data Collection Documents

Regardless of the data collection methods used, it is important to establish an action plan for
collecting data pertinent to the purpose and viewpoint of the model. Once collected, each piece of
collected data must be traceable back to its source. Traceability of source material is important
because it is the data that provides objective evidence for the basic ontology structures that are later

isolated from this data. We suggest the use of six important support documents to facilitate source

34

data traceability: 1) Source Material Log, 2) Source Material Description Form, 3) Source
Statement Pool, 4) Source Statement Description Form, 5) Term Pool, and 6) Term Description
Form. These documents are described in greater detail later in this section.

3.2.3.1 Source Material Log

The Source Material Log is a document that serves as the primary index to all source material
collected and utilized in the project. Each piece of source material is sequentially assigned a unique
identifying number as the log is filled out (Figure 3-2). A source material may be a text book, a
research article, an enterprise-specific document such as a policy manual or a procedure manual, a
set of an interview notes, or direct observation notes. A Source Material Description Form
(Figure 3-3) is filled out to describe each source material in greater detail. The following fields are

used in the Source Material Log (see Figure 3-2):

Source Material Log

Project: Project Planning Ontology Analyst: P. Benjamin
Source Source Material Name Collected Collected Date of
Material # From By Collection
SM #1 “Production and Operations -—-- Hari 5/20/93

Analysis”, by Nahmias, S.,
Richard D. Irwin Inc., 1989

SM #2 Interview Notes Phillips Hari 5/25/93

Figure 3-2 Source Material Log

* Source Material # The reference number assigned to each source material is
documented in this field. It is important to maintain source material numbers to
provide traceability to the source material from which statements, terms, kinds,

properties, etc. are individuated by member(s) of the ontology development team.

e Source Material Name The name of the source material is recorded in this field.
The name of the source material provides a basic idea of whether it is a textbook, a
research article(s), an enterprise-specific document such as a policy manual(s),

procedure manual(s) or so forth, interview notes, or direct observation notes.

35

« Collected From The name of the person from whom the source material was
collected is recorded in this field. If the source material is a set of interview notes, the
name of the interviewee will be recorded in this field. This information is important
for traceability, especially when many domain experts are interviewed during data
collection. On the other hand, if the source material is something like a text book, a

research article, etc., then this field is empty.

« Collected By The name of the individual(s) who collects the source material is
documented in this field. It is important to document information about who is

responsible for the collection of each source material for future reference.

« Date of Collection This field represents the date(s) on which the source material

was/were obtained.
3.2.3.2 Source Material Description Form

The Source Material Description Form provides a summary of the source material information.
For each source material item referenced in this log, there is a Source Material Description that is

used to record more detailed information. The following fields are used in a Source Material

Description Form (see Figure 3-3).

36

Source Material Description Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Source Material #: SM #1

Source Material Name: “Production and Operations Analysis,” by Nahmias, S.,
Richard D. Irwin Inc., 1989. Chapter # 8 (Project Scheduling)

Purpose: To record the relevant source statements that help individuate ontology
elements in the project planning domain.

Comments: This source material concerns production in the broadest sense of the word:
that is, production of goods and services.

Abstract: “Project Scheduling” chapter focused on: 1) the network representations of a
project, 2) the Critical Path Method (CPM), 3) project costing, 4) the program evaluation
review technique method (PERT).

1) Networks are a convenient means of representing a project. There are two ways of
using networks to represent projects: activity-on-arrow and activity-on-node. 2) The
critical path is the longest path or chain through the network. The length of the critical
path is the minimum project completion time, and the activities that lie along the critical
path are known as critical activities. Delay in critical activity delays the project. This
chapter presents a method, involving forward and backward passes through the network,
that specifies the earliest and latest starting and ending times for all activities. 3) The
goal of the project costing analysis is to determine the optimal time to perform the project
that minimizes the sum of indirect and direct costs. Direct costs include labor, material,
and equipment. Indirect costs include costs of rents, interest, and utilities. 4) PERT is
an extension of critical path analysis to incorporate uncertainty in the activity estimates.

Terms Supported: T #1, T #3, T #4, T #5, T #6, T #7, T #9, T #10

Statements Supported: SS #1, SS #3, SS #10, SS #12, SS #13, SS #15

Figure 3-3 Source Material Description Form

* Source Material # The source material number is recorded in this field. The
source material number is important because it provides traceability to the source
material from which statements, terms, kinds, and properties are individuated by
member(s) of the ontology development team.

* Source Material Name In this field, the name of the source material is

documented.

37

+ Purpose The reason(s) for acquiring the source material are recorded in this field
because future readers of the ontology document might be interested in knowing the

purpose of collecting source material in the first place.

« Comments Any additional relevant remarks that help describe or justify the
collection of source material are recorded in this field. This field is important because
it allows a team member(s) to record special features or comments that are worth

referencing at a later date.

« Abstract A summarized description of the source material is documented in this
field. The abstract is important because it provides a concise overview of the main

concepts discussed in the source material.

+ Terms Supported The list of term numbers supported by the source material is
documented in this field (see Subsection 3.2.3.5). The terms supported are important
because they provide traceability for all the terms that are identified based on this

specific source material.

o Statements Shpported This field represents a list of statement numbers
supported by the source material. It is an important field because it provides’

traceability to all statements that are identified based on a specific source material.

The Source Material Log, together with the Source Material Description, establishes important
links between the ontology and the source knowledge that the ontology embodies. The
information contained in the source material is the basis for much ontology discovery that occurs

during ontology development.
3.2.3.3 Source Statement Pool

The Source Statement Pool records meaningful statements made by different individuals, as well as
statements extracted from source documents during the ontology development effort. Each source
statement is given a unique identification number to improve traceability. The following fields are

used in a Source Statement Pool (see Figure 3-4).

38

Source Statement Pool

Project: Project Planning Ontology

Analyst: P. Benjamin

Source
Statement #

Source Statement

Supported by

activities to be performed, and specifies
precedence constraints to be maintained.

SS #1 Project definition is comprised of project Caraway,
statement, project goals, personnel, and resources Lingineni, &
required for the project. Hari
Resources may be classified as personnel,

SS #2 computer systems, and facilities. Caraway

SS #3 The project planner determines the sequence of Hari

Figure 3-4. Source Statement Pool

* Source Statement # The unique identifier assigned to a statement is recorded in

this field. It is very important to maintain this information because the source

statement numbers provide traceability to the evidence from which ontology elements

such as proto-kinds, proto-relations, proto-properties, etc. are individuated.

* Source Statement The source statement itself is recorded in this field. This field

will contain the latest version of the source statement. Older versions of the source

statement can be obtained from the source statement description form (Figure 3-5).

* Supported by The name(s) of the team member(s) responsible for the identification

of the source statement are recorded in this field.

The Source Statement Pool together with the Source Statement Description Form(s) allows
ontology development team member(s) to document the evolution process of source statement(s).

3.2.3.4 Source Statement Description Form

The following fields are used in a Source Statement Description Form (Figure 3-5).

39

Source Statement Description Form

Project: Project Planning Ontology Analyst: P. Benjamin

Status:
Source Statement #: SS #1 | Statement #S Evolved To: Active / Retired
Source Material #: SM #1 Statement #S Derived From: Original/Derived

Source Statement: Project definition is a clear statement of the project, the
goals of the project, and the resources and personnel that the project
requires.

Supported by:
Caraway, Hari

Version 1: Project definition comprises the project statement, project
goals, and resources (including personnel) required for the project.

Supported by:
Caraway, Hari,

Lingineni
Version 2: Supported by:
Version 3: Supported by:
Comments:

Figure 3-5. Source Statement Description Form

« Source Statement # The unique identifier assigned to a source statement is
recorded in this field. It is very important to maintain this information because the
statement number provides traceability to the evidence from which ontology elements
such as proto-kinds, proto-relations, proto-properties, etc. are individuated.

Source Material # This field represents the number(s) of the source material items
that support a source statement. When it is important to know the supporting source
material from which the source statement(s) is identified, the source material

number(s) provides a pointer to the source material.

Status The statement is categorized as either active or retired and as either original
or derived, and this categorization is recorded in this field. When a source statement is
(still) used for data analysis purposes, the status of the statement is active. If a source
statement is no longer used for data analysis purpose(s), the status of the source
statement is retired. When a statement is directly collected from a source material, the
status of that statement is original. On the other hand, if a statement is derived from a

40

set of statements, the status of that statement is derived. The status of a source
statement provides an indication of where the statement is located in its evolution
process.

* Statement # evolved to The source statement numbers that were generated using
this statement as the base will be recorded in this field.

» Statement #s derived from The source statement numbers that were used to
derive this source statement will be recorded in this field.

* Source Statement This field provides space to document the statement itself. It is
important to document the source statement because it provides the necessary evidence
based on which various ontology elements are individuated.

* Supported By This field represents the name of the team member(s) responsible
for the identification of the source statement from a source material.

* Version # A source statement might undergo many successive refinements during
the ontology development process. This field records the version number of the
statement, which is incremented in chronological order. The versions of the statement
are useful for recording the evolution of the thought processes that underlie the data
capture and for helping in the ontology extraction process.

* Comments This field documents any additional information about the statement for
future reference.

3.2.3.5 Term Pool

The meaningful terms relevant to the ontology development project effort are recorded
alphabetically in a Term Pool. Terms often evolve to proto-kinds, proto-characteristics, proto-
relations, kinds, characteristics, and relations (Figure 3-6). A term that is identified by a
member(s) of an ontology development effort may be promoted to a proto-kind, proto-relation, or
a proto-characteristic at a later stage. The following fields are used in a Term Pool (see
Figure 3-6).

41

L E
.

, Pool -
Project: Project Planning Ontology] Analyst: P. Benjamin
Sbufce Source .
Term # Term Statement Material Support List
; Wence Reference
T #11 Project | $8#I SM #1 PK #1
T #12 Project goal - 88 #1 7 SM #1 PK #2
T #13 Resource SS #1 SM #1 PK #3, PR #5

Figure 3-6. Term Pool

« Term # The unique identification number assigned to a term is documented in this
field.

o Term This field records the term itself.

. Source Statement Reference The source statement(s) based on which the term is

individuated by a team member is documented in this field.

« Source Material Reference The unique identification number of source material
that is used to individuate a term is recorded in this field. This information is very
useful for determining which statement is the basis for individuating a term and also

which source matérial is used for collecting that particular statement.

o Support List The list of proto-kinds, proto-characteristics, and proto-relations that

are supported by the term are documented in this field.

The Term Pool provides a list of the terms used to derive the ontology. Each term in the Term

Pool is described in greater detail using the Term Description Form (see Figure 3-7).

42

Term Description Form

Project: Project Planning Ontology

Analyst: P. Benjamin

Term # Term Description
T #3 Event An event is a characterized point in time that has

some significance to a real-world process.
A process is a collection of interrelated activities

T#10 Process that produces a set of outputs from a set of inputs.
Resources are objects/personnel that are

T#12 Resource consumed, used, or required to perform activities
and tasks. Resources play an enabling role in
processes.

Figure 3-7. Term Description Form

The following fields are used in the Term Description Form (see Figure 3-7):

* Term # Each term individuated by an analyst from a statement is given a unique

identifier for future traceability, and the unique number is recorded in this field.

* Term This field documents the term itself. This term may be promoted as a proto-

kind, proto-characteristic, or a proto-relation during data analysis.

* Description

A description of the term is recorded in this field. Often, it is useful

to document a concise description of the term during the ontology development

process.

3.3 Analyze Data

The objective of this task is to analyze the source material to construct an initial (“first pass™)

characterization of the ontology. This task is performed by a team consisting of knowledge

engineer(s)/analyst(s) and domain expert(s). This task will typically involve the following

activities.

* List the objects* of interest in the domain. Some objects will be fairly obvious from an

initial study of the source data (such objects are called phenomenological naive

“The term object is used in a generic sense to denote instances and kinds and also physical things and conceptual

things.

43

objects). For example, the different kinds of machines that are on the shop floor will
be obvious ontology candidates for a manufapturing system ontology. The level of
detail that needs to be employed to develop this list will be guided by the viewpoint

and context statements constructed earlier in the development process.

« Identify objects that are on the boundaries of the ontology. The initial boundaries
defined in the context statement may need to be re-drawn to facilitate better conceptual
structuring of the ontology. For example, recognizing that an Autonomous Guided
Vehicle (AGV) is on the (initial) boundary between the machine cell subsystem and the

stores subsystem may cause the boundaries to be re-drawn to include material handling

equipment, and, hence, the AGV.

« Look for and individuate internal systems within the boundary of the description.
Systems are defined as collections of p‘}_;ysical and/or conceptual objects that work
together to achieve common objective(é). Organizing ontologies by the system in the
domain provides a clear conceptual framework for subsequent analysis of ontology

knowledge.

The activities involved in the analysis of source material are summarized in Figure 3-8.

<Fastener Handbook, description
of common fasteners>

<SEMI standard V. 1, reference
for wafer standards>

<Webster's, Dictionary of Terms>

¢

machine threaded fasteners
reagents
wafers

Look for Boundary
Catalog Objects Objects

Look for Systems

Figure 3-8. Source Material Analysis

44

3.4 Develop Initial Ontology
3.4.1 Develop Proto-Concepts

The term proto-concepts, in the IDEF5 method, refers to the set of proto-kinds, proto-properties,
proto-attributes, and proto-relations. The prefix proto- suggests that the concepts are tentative and
subject to further inquiry before final change of status. During the process of ontology
development, proto-concepts often mature into concepts (i.e., kinds, properties, attributes, and
relations). The kind refinement procedure and relation refinement procedure are described in
Subsection 3.5.1 and Subsection 3.5.2, respectively.

3.4.2 Develop Proto-Kinds

The objective of this task is to convert one or more objects that result from the source data analysis
to proto-kinds (if this is appropriate). A proto-kind is the result of a preliminary attempt at
individuating a kind. This task essentially consists of associating the objects identified in Task 1
(Subsection 3.1) with the proto-properties identified in Subsection 3.4.3. It may be instructive to
perform this association process in two stages. First, the association is carried up to the point
where the proto-kind can be clearly distinguished from any other proto-kind; that is, the proto-
kinds have a basis for being uniquely individuated. These properties that contribute to the
uniqueness of a kind are candidate defining properties. Defining properties stipulate necessary
conditions for membership to a kind. Once the defining properties are identified, other (non-
defining) properties and attributes are used to characterize the kinds in greater detail. The proto-
kinds are tagged with supporting source material (for traceability) and catalogued in the Proto-Kind
Pool® (Figure 3-9).

SWhen a proto-kind matures into a kind during an ontology development process, the kind is recorded in a kind pool.
The design of a kind pool is same as that of the Proto-Kind Pool, as shown in Figure 3-10.

45

Proto-Kind Pool
Project: Ontology of Process Planning Analyst: P. Benjamin
Proto-Kind # Proto-Kind | Supported | Supported | Supports | Schematic
Name By By List List
PK #1 po- Activity Caraway SM #1’ PR #11 COS #1
PK #2 p- Resource Caraway SM #1 PR #12 CLS #2
PK #3 p- Projeét Plan | Caraway SM #1 PR #13 RLS #1

Figure 3-9. Proto-Kind Pool
The various fields in a Proto-Kind Pool Form are briefly described below.

e Proto-Kind # The unique identifier of a proto-kind is recorded in this field. This
proto-kind number is important because it provides traceability to the proto-kind.

« Proto-Kind Name The name of the proto-kind is recorded in this field. This proto-
kind may be promoted to a kind at a later stage by team members during the ontology

development process.

+ Supported By The source material items (terms, statements) that support the

process of individuating the proto-kind are documented in this field.

 Supports List The properties and relations that are identified based on the

individuation of this proto-kind are recorded in this field.

« Schematic List The schematics in which this proto-kind occurs are documented in
this field. Thus this field is important because it acts as a pointer to all the schematics

in which the proto-kind is an element.

Each proto-kind has a Proto-Kind Specification Form (Figure 3-10) in which a brief description of
the proto-kind, its synonyms, and other relevant comments can be documented.

6Prefix “p” denotes the notion of “proto” (i.e., proto-characteristic, or proto-kind, or proto-relation).

46

Proto-Kind Specification Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Proto-Kind #: PK #1

Proto-Kind Name: Resource

Description: Resources are individuals that are consumed, used, or required to perform
activities and tasks. Resources play an important role in processes.

Synonyms: Machines, Equipment, Personnel, etc.

Comments: Individuated by B. Caraway

Figure 3-10. Proto-Kind Specification Form
3.4.3 Identify Proto-Characteristics

The objective of this task is to catalog the characteristics (that is, the properties and/or attributes)
needed to identify and describe the objects in the domain. Properties and attributes are the
Characteristics that hold of objects in the real world. Examples of attributes are weight, color, age,
shape, and so forth. Examples of properties are has-color, has-depth, has-interior-angles, etc’.
The potential candidates for “properties/attributes” in the ontology are initially called “proto-
characteristics.” Proto-characteristic identification usually occurs concurrently with proto-kind
identification because kinds are usually individuated on the basis of (some of) the
properties/attributes that they exhibit. The listing of characteristics is a relatively straightforward
task because characteristics are readily observable and are often measurable. The proto-
characteristics are tagged with supporting source material (for traceability) and catalogued in the
Proto-Characteristic Pool (Figure 3-11). The distinction between attributes/properties and kinds is
not always clear, however, and guidelines to differentiate these concepts are given in Subsection
2.2.3. For illustration, a proto-kind project task can have five characteristics: 1) duration, 2)

"The difference between properties and attributes is described in Subsection 2.2.3.

47

earliest starting time, 3) latest starting time, 4) earliest finishing time, and 5) latest finish time.
These attributes are catalogued in a Proto-Characteristic Pool 8, as shown in Figure 3-11.

Proto-Characteristic_Pool

Project: Ontology of Project Planning Analyst : P. Benjamin
Proto-characteristic Proto-clg:l;:teristic Sup[;}o;ted Supg(;rted UIS;(;d;n
PC #1 p-earliest starting time SM #1 Hari PK #8
PK #9
PC #2 p-latest starting time SM #1 Hari PK #8
PK #9
PC #3 p-earliest finish time SM #2 Hari PK #8
PK #9
PC #4 p-latest finish time SM #2 Hari PK #8
PK #9

Figure 3-11. Proto-Characteristic Pool
The following fields are used to describe the Proto-Characteristic Pool:

« Characteristic # The unique identifying number assigned to each characteristic is
documented in this field. The characteristic number is important because it can be used

as a means of traceability to the characteristic in the future.
« Characteristic Name The name of the characteristic is recorded in this field.

o Supported By The names of the team members responsible for the identification

of the proto-characteristic are recorded in this field.

8When a proto-characteristic matures into an characteristic during ontology development process, the characteristic is
recorded in a Characteristic Pool. The design of a Characteristic Pool is the same as that of a Proto-Characteristic

Pool, as shown in Figure 4-9.

48

* Kinds Used In This field consists of the list of all kinds that possess this

characteristic.

3.4.4 The Role of IDEFS Schematics in Ontology Visualization

The IDEFS languages are used during the invocation of the IDEF5 procedure to assist with the
development and visualization of the ontology. The purpose of IDEF5 schematics is to serve as an
aid for the construction of ontologies; they are not the primary representational medium for storing
the ontologies (refer Subsection 4.1.2 for more details). The elements of the Schematic Language?
that are used to illustrate the IDEFS5 procedure in this section are as follows: 1) A kind is
represented by a circle containing a label, 2) A first-order relation is represented either by an arrow
with a label or by a rectangle with rounded corners containing a label, and 3) A second-order
relation is represented by an arrow with its arrowhead at its back end. The use of Classification
Schematics, Relation Schematics, and Composition Schematics are briefly illustrated in this
section.

3.4.5 Using Classification Schematics for Ontology Development

The following example demonstrates how a Classification Schematic feature helps visualize the
subkind-of relation between different kinds in a domain. A source statement “plans may be
broadly classified as project plans, process plans, and manpower plans,” can be considered.
Suppose that based on this source statement, team members individuated kinds as plan, project
plan, process plan, and manpower plan during data analysis. A Classification Schematic is
designed to explicitly display the subkind-of relation between various proto-kinds/kinds in a
domain, as shown in Figure 3-12.

9The IDEF5 Schematic Language is described in detail in Subsection 4.1.

49

Manpower
Plan

Process
Plan

Figure 3-12. Classification Schematic

3.4.6 Kinds Versus Properties

A common problem in ontology development is distinguishing between kinds and properties.
Properties, by definition, are characteristics that hold of kinds. An example of a property may be
(an object) being red. However, in some circumstances, it may be useful to objectify (make
objects of) the properties and treat them as kinds in their own right. To illustrate the nature of the
problem, the tolerance of a mechanical part used to make an assembled product can be considered.
For the manufacturing engineer performing the assembly, the tolerance is simply a property that
must hold for all parts supplied to him. If the tolerance does not hold, it is rejected; otherwise, it is
accepted. For the part designer, however, tolerances are of greater significance. Thus, the
designer finds it useful to classify different kinds of tolerances (dimensional tolerance, positional
tolerance, geometrical tolerance, etc.) and to study the characteristics of each kind of tolerance.
The designer will, thus, find it useful to model tolerance as a kind rather than as a property. In
general, the decisions between kinds and properties are a function of the granularity (detail) level of
the ontology development effort. The level of granularity is significantly influenced by the

purpose, viewpoint, and context of the project (see Subsection 3.1.2).
3.4.7 Coining Terms

Closely associated with the discovery of proto-kinds is the task of unambiguously identifying each
of these proto-kinds; in practical terms,this means that each individuated candidate kind must be
bestowed a name. Giving names in ontology development is not as trivial a task as it may first
appear. Names are used as referential pointers to the real world individuals being described. They
must, thus, connote a meaning that closely mirrors the individuals that are referenced. For many
real world individuals (especially the phenomenological naive ones), widely accepted names

50

already exist and will be used as such. For example, domains of certain engineered products, such
as automaking, have hardened and have fairly stable ontologies. (On the other hand, ontologies of
new technological fields, such as “virtual reality,” are in constant flux.) It may be necessary, at
this stage, to invent new names for certain individuals. This is often true for new conceptual
groupings of individuals, as illustrated in Figure 3-13. The strategy suggested in IDEFS is to coin
a term to describe the individual and record the fact that the individual’s name was coined rather

than discovered to avoid later confusion.

Conceptual objects are often discovered during interviews with domain experts. For example,
during development of a fastener selection expert system for an automobile manufacturer, a domain
expert had conceptualized a set of systems for fastener usage in various parts of a car body. These
systems were not recorded in the literature, and the expert had never given them names. Rather, he
carried the ideas with him internally and used them without names. The term world class

systems was coined to describe these conceptual ideas (see Figure 3-13).

“I have this idea for “Let's call them
a new set of fastening world class
systems.” systems.”

Concept name: world class system

Figure 3-13. Coining Terms

The Proto-Kind Pool is provided in IDEFS5 to record proto-kinds (see Figure 3-9). As seen in
Figure 3-9, each proto-kind is tagged to the supporting source document for traceability purposes.
As a further aid to identifying proto-kinds, the IDEF5 ontology library (see Appendix B) provides
a catalog of generic kinds that commonly occur in engineering and business domains. These kinds
may be used for effectively organizing the captured ontology knowledge about different kinds of
objects and phenomena.

3.4.8 Other Guidelines

Other useful guidelines for developing proto-kinds are as follows.

51

Identify and record special cases. Special cases are instances of objects that do not
seem to fit the pattern of other instances of the object. For example, a particular
fastener in a handbook may have a special heat resistant property not present in other

fasteners. All special cases are catalogued separately in the source material catalog.

Group objects together to form new kinds and categories, wherever appropriate. It
may be helpful to abstract away from a group of objects and form new proto-kinds by
extracting the properties from the object group. Such abstractions often serve to

enhance the conceptual clarity of the ontology.

Group the objects to isolate systems and subsystems. Systems are collections of
objects that fulfill a common purpose. Systems may not have any distinguishing
characteristics but often provide a useful framework for organizing knowledge about

relations.

Use the IDEFS classification and other relation schematics to aid the conceptual
analysis of kinds. The classification schematics and the composition schematics are

particularly useful in the development of kinds.

Figure 3-14 summarizes some of the key activities associated with developing proto-kinds.

Fastener M6,
OBJECTS Fastener Handbook, p7 Fastener Application
l has heat resistant property Wafer Fabrication Cell
Proposal Preparation Station
PROPERTIES .
— asteer , { J
|
Hanahook, p7 e
PROTO-KINDS P
E has heat
resistant
: property
Combine objects a
> 00) fs nd) Generate System
properties to form Record Special Cases Proto-Kinds

proto-kinds

Figure 3-14. Developing Proto-Kinds

52

3.4.9 Develop Proto-Relations

The objective of this task is to identify and characterize the proto-relations between the proto-kinds.
A proto-relation is the result of a preliminary attempt at individuating a relation, and it expresses
associations between the proto-kinds. The identification and characterization of relations is often
the most difficult part of knowledge acquisition. The identification of proto-relations refers to the
activity of recognizing the existence of, or becoming attuned to, a particular proto-relation in the
domain. Characterization follows identification and refers to the activity of identifying and
specifying the properties of a proto-relation in a manner that will allow the relational knowledge to
be used for making useful inferences at some time in the future. Thus, recognizing that a tool post
is On-top-of the lathe bed is the act of discovering and asserting its existence and giving it a name.

Characterizing it will involve making assertions such as the On-top-of relation is transitive.

Several mechanisms are provided in IDEFS to guide the relation knowledge acquisition process.
They are:

* The IDEFS5 Statement Pool is the richest source of information for relation discovery
and characterization. Source statements assert the existence of relations either

implicitly or explicitly.

* The IDEFS5 Relation Library provides a catalog of relations that commonly occur in
business and engineering domains. These libraries can be reused and tailored to the
requirements of particular ontology development efforts within a wide range of

domains.

» The IDEF5 Relation Schematics (including Composition Schematics) facilitate the
display of relations in a graphical form.

* The IDEFS Elaboration Language, which provides a structured text format for
capturing complex relation knowledge at any level of complexity, can express
everything that can be recorded using the Schematic Language; it can also express
knowledge that is beyond the scope of the Schematic Language. For example, the
expression z = a + b + ¢ + d, where z, a, b, ¢, and d are integers, can only be

expressed in the IDEF5 Elaboration Language!.

10The IDEFS5 Elaboration Language is described in Section 4.2.

53

The development of proto-relations will involve the following activities.

"+ Record meanirigful associations between proto-kinds. Such meaningful associations
often indicate the existence of proto-relations. A useful source for extracting such
associations is the Source Statement Pool (Subsection 3.2.3.3). A Proto-Association
Chart is a two-dimensional matrix with relevant proto-kinds listed on both axes. An X
is marked in cells where the existence of a possible proto-relation is indicated, as

shown in Figure 3-15.

s Categorize the proto-relations as being system-accidental or system-essential and recall
that system-essential relations have to necessarily hold, given the existence of

instances of the participating kinds.

« Identify the properties of the proto-relation. The IDEFS5 relation library and the IDEF5

elaboration language are used to facilitate this process.

« Examine the nature of the participating proto-kinds. Relations often have restrictions
on the types!! of arguments. For example, the assertion A Reports-to B implies
that both A and B refer to instances of people, or to instances of organizational roles,
or to a combination of an organization role instance and a person instance. Thus,
knowledge of the participating proto-kinds will focus attention on a more restricted set

of possible relations that may exist between instances of these proto-kinds.

UThe term “type” is used here in a general sense. See Subsection 2.1.2 for a discussion of kinds and types.

54

Kinds
K1 |{K2 (K3 [K4 ® & & Kn

Kinds

K1 X

K2

K3 X X

K4 X

Kn
Note: Proto-kinds are denoted K1, K2, ... , Kn.

Figure 3-15. Structure of a Proto-Association Chart

The proto-relations that are identified are recorded in the Proto-Relation Pool!2, as shown in
Figure 3-16.

Proto-Relation Pool
Project: Ontology of Project Planning Analyst: P. Benjamin
Proto-Relation | Proto-Relation Supported By Participating Comments
Name Kinds
PR #1 p- Determines SS #2 PK #7, PK #9
PR #2 p- Specifies SS #2 PK #7, PK #8

Figure 3-16. Proto-Relation Pool

* Proto-Relation # The unique identification number assigned to the proto-relation
is recorded in this field. This field is important to enhance traceability of the proto-
relation that is individuated by a member of the ontology development team.

12When a proto-relation matures into a relation during ontology development process, the relation is recorded in a
Relation Pool. The design of a relation pool is same as that of Proto-Relation Pool, as shown in Figure 3-17.

55

« Proto-Relation Name The name of the proto-relation is documented in this
field.

» Supported By This field involves source data items (terms, statements) that
support the individuation process of the relation during the ontology development

process.

« Participating Kinds The set of all kinds between which this relation holds is
documented in this field, which is important because it helps in characterizing the

relation itself.

« Comments Any additional descriptive remarks about the proto-relation important for

future reference should be recorded in this field.

Each proto-relation has a Proto-Relation Specification Form (Figure 3-17), in which a brief
description of the proto-relation, examples of use, and other relevant comments can be

documented.

Proto-Relation Specification Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Proto-Relation #: PR #1

Proto-Relation Name: Determines

Description: To fix conclusively or authoritatively.

Examples of Use: A project planner determines all the precedence constraints that must
be maintained in the system.

Comments: Individuated by B. Caraway

Figure 3-17. Proto-Relation Specification Form
3.4.10 Role of Relation Schematics in Ontology Development

The IDEF5 Relation Schematics allows ontology developers to visualize and understand relations
between relevant proto-kinds or kinds in a domain. Consider the source statement: a manpower

planner develops a manpower plan in which resources are allocated to perform the

56

required activities. Based on this source statement, suppose that the ontology development
team individuated the following kinds: manpower planner, manpower plan, resource, and
activity . The relations between these kinds are visualized using the relation schematic shown in

Figures 3-18 or, alternatively, Figure 3-19.

anpower Develops
Planner

Devel
evelops Performs

Resource

Allocates
Figure 3-19. Alternative Syntax for the Schematic in Figure 3-18
3.4.11 Role of Composition Schematics in Ontology Development

The IDEF5 Composition Schematics allows ontology team member(s) to visualize part-of
relations between relevant proto-kinds or kinds in a domain. Consider the following source
statements: A project plan is comprised of project goals, an activity list, and the
manpower allocation plan and The activity list includes a major activity list and a
minor activity list. Based on these source statements, team members individuate the following
kinds: project plan, project goal, activity list, manpower allocation plan, major
activity list, and minor activity list. Figure 3-20 illustrates the use of a composition
schematic to display part-of relations in this (project planning) domain.

57

Project
Plan

Non-
Critical
Activity

Manpower
Allocation
Plan

Figure 3-20. Composition Schematic
3.5 Refine and Validate Ontology

The objective of this phase of ontology development is to refine the proto-characteristics, kinds,
and relations, and to affirm their authenticity by converting them to properties/attributes, kinds, and
relations, respectively. The refinement process is essentially a deductive validation procedure.
The ontology structures are “instantiated” (tested) with actual data, and the result of the
instantiation is compared with the ontology structure. If the comparison produces any mismatch,
every such mismatch must be adequately resolved. Refinements (if any) to the initial ontology are

incorporated to obtain a validated ontology.
3.5.1 Kind Refinement Procedure

The kind refinement procedure is summarized in the following (roughly, but not necessarily,

sequential) steps:

+ Make instances of the proto-kinds. The examples may be constructed from the
available source data (source data log); otherwise, new data must be gathered for the
purpose of constructing these examples. The examples must be reasonably
representative, with at least one exception case included, if possible. Each of the
proto-kind instances created is populated with properties and/or attributes (this may
involve converting proto-characteristics to properties/attributes). Classification
schematics and kind characterization forms are used to support the kind instantiation

process.

58

* Record information that cannot be recorded in the kind instances, determining whether
this additional information is really necessary, and, if so, refining the structure of the
kind to include the information.

* Check whether two instances of the same kind have different defining properties, and
in such cases, check whether the vieWpoints are different. If not, the inconsistencies
will have to be resolved by refining the ontology.

* Convert the proto-kinds (along with their proto-properties) to kinds after all the kind
instances have been validated using Steps 1 through 3. The validated kinds are listed
in the Kind Pool.

A Kind Specification Form (Figure 3-21) is designed to document all relevant features of a kind
after it is promoted from a proto-kind.

59

Kind Specification Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Kind #: K #1

Kind Name: Resource

Description:

Attributes:
1. Has status : active/idle (Defining)
2. Has a unique identification number (Non-defining)

3. Has a unique label (Non-defining)

Defining Properties:
1. Is necessary for performing task/activity efficiently

Properties:

1. Identification number is R #3857 (Accidental)
2. Label is “Capstan Lathe #4” (Accidental)

Relation the Kind Participates in:

Comments:

Elaboration Language Specification:

Figure 3-21. Kind Specification Form
The various fields in a Kind Specification Form are briefly described as follows.

« Kind # The unique identifier of a kind is recorded in this field. The kind number is

important because it provides traceability to the kind.

« Kind Name The name of the kind is recorded in this field. This kind may have
been promoted from a proto-kind status by team members during the ontology

development process.

60

* Description A brief description of the kind is documented in this field.
* Attributes All the attributes of the kind are documented in this field.
* Defining Properties All the properties of the kind are recorded in this field. -

* Properties All non-defining properties are recorded in this field. Each non-defining
property may be categorized as an essential or accidental property and tagged to the
stated property. ,

* Relations the Kind Participates In All the relations in which the kind
participates are documented in this field.

* Comments Any additional descriptive remarks about the kind important for future
reference should be recorded in this field.

* Elaboration Language Specification The IDEF5 Elaboration Language
specification of the kind should be documented in this field. (The IDEF5 Elaboration
Language is described in Subsection 4.2.)

3.5.2 Relation Refinement Procedure

The relation refinement procedure is summarized in the following (roughly, but not necessarily,
sequential) steps:

* Make instances of the proto-relations. The examples may be constructed from the
available source data (source data catalog); otherwise, new data must be gathered for
this purpose. The IDEF5 Relation Schematics and the IDEFS Relation
Characterization forms are used to aid the instantiation and validation procedure.

» Compare the properties of each of the relation instances with the properties identified
in the IDEF5 description, thus resolving any mismatches. Moreover, missing relation
properties should be checked for and added, if needed.

* Sample instances of selected system essential relations and examine whether two or
more instances of such relations are incompatible. For example, one system-essential
relation may say that a fastener must have a sealant, and another may say that it cannot
have a sealant. Such inconsistencies may be either due to hidden viewpoint
differences not recorded in the ontology or to differing viewpoints. Incompatibilities
that occur because of differing viewpoints Inay be resolved by splitting the focus

61

relation into different relations, one for each viewpoint. Otherwise, a consensus must
be reached to resolve the incompatibility through discussions with the domain expert.

* Detect new relations discovered by example that were not captured in the ontology and

add such relations to the ontology.

» Make instances of inference sequences using the relation properties, if appropriate.
For example, if it is recorded that relation R is transitive, instances X, y, and z of
kinds A, B, and C respectively such that xRy and yRz are both true must be found.
The transitivity of R must be validated by checking whether xRz is true.

 Convert the proto-relations to relations, after all the relation instances have been
validated using Steps 1 through 5, and record the validated relations in a Relation
Pool.

The Relation Specification Form (Figure 3-22) is designed to facilitate the characterization of

relations. Notice that the Elaboration Language statements are also recorded on this form.

Relation Specification Form

Relation #: R #1

Relation Name: Determines

Description: To fix conclusively or authoritatively.

Arguments: Project Planner, precedence constraints

Examples of Use: A project planner determines all the precedence constraints

that must be maintained in the system.

Comments: This relation is individuated by B. Caraway.

Elaboration Language Specification:

Figure 3-22. Relation Specification Form

62

Relation # The unique identification number assigned to the relation is recorded in
this field. This field is important to enhance traceability of the relation that is
individuated by a member of the ontology development team.

Relation Name The name of the relation is documented in this field.
Description This field records a brief explanation of the relation.

Arguments The set of all kinds between which this relation holds is documented in
this field, which is important because it helps in characterizing the relation itself.

Examples of Use A set of sentences, that provides a basic idea of how the
relation holds between kinds, can be recorded in this field.

Comments Any additional descriptive remarks about the relation important for

future reference should be recorded in this field.

Elaboration Language Specification The IDEF5 Elaboration Language
specification of the relation should be documented in this field. (The IDEF5
Elaboration Language is described in Subsection 4.2.)

63

4 The IDEF5 Ontology Languages

A domain ontology is a detailed characterization of “what there is” in a given application domain.
Such characterizations must, of course, be given in some language; hence, languages play an
important role in the ontology capture process. More specifically, languages for ontology capture

are important for two reasons.
e They provide a medium for capturing and storing knowledge.
« They provide a format for displaying the acquired knowledge.

Representational structures that are rich in expressive power are important for ontology because
previously acquired knowledge is often used to guide the process of acquiring additional

knowledge.

Because it cannot generally be determined a priori what sorts of representational structures will be
needed to capture the ontology of a given domain, languages for ontology need to be expressively
very rich. However, if the method of ontology capture is to be usable, its representational
structures must be intelligible to ontology developers. The ease of use of a language is determined
by its “look and feel” and by how well it supports the cognitive activities of the ontology
development process. The ontology languages must have a synergistic relationship with the
ontology development procedure (Section 3). That is, the languages must support the use of the
procedure and the procedure must support the use of the languages.

The purpose of this section is to describe the ontology capture languages. IDEFS5 has two

languages.

« The IDEF5 Schematic Language This language is the graphical component of
the IDEF5 languages. It provides visual assistance in the ontology capture process

and facilitates communication.!3

13The IDEFS Schematic Language is supplemented by two important forms: 1) the Kind Specification Form and 2)
the Relation Specification Form. These forms allow the ontology developer to record the ontology in a textual
form. It permits ontology characterization at a greater level of detail than what is possible in a graphical form. The
IDEES5 forms are also designed to facilitate the recording of IDEFS Elaboration Language statements. The IDEFS
forms are described in Subection 3.1.4. The IDEF5 Elaboration Language is presented in Section 4.2.

64

* The IDEFS Elaboration Language This language is a structured textual
language and has the full power of first-order logic.

The two IDEFS5 languages complement and supplement each other. The Schematic Language is
somewhat restricted in expressive power. However, the graphical structures of this language make
it intuitive and easy to use. The IDEF5 Elaboration Language, on the other hand, is an
expressively rich textual language. In particular, it can express everything that can be expressed in
classical first-order logic. However, the structured text syntax requires a higher level of
proficiency for its effective use.

4.1 The IDEFS Schematic Language

Essentially, an ontology identifies and organizes the relevant kinds and individuals, their
properties, and the network of relations between them within a specific application domain. The
IDEF5 Schematic Language provides a variety of graphical constructs to assist in the construction
of ontologies. In the following subsections, a summary of the IDEF5 Schematic Language lexicon
is first presented. The use of these representational “building blocks” to develop diagrams, or
schematics, is then described with the help of illustrative examples.

4.1.1 The Schematic Language Lexicon

The central primitive symbols of the IDEF5 Schematic Language are shown in Figure 4-1.

65

Kind symbols; Relation symbols; Process symbols;

Individual symbols; State transition symbols Connecting symbols;
Referents Junctions
Kind Symbols »n -Place First-order Relation Symbols Process symbols
P
Relation Label Irj;cl:;sls

Kind Label

Alternative 2-place First-order
Relation Symbols

Relation Label -

Individual Symbols Connecting symbols

2_Place Second-order Relation Symbols

Individual Relation Label —

Label
o

State Transition Symbols V

Weak Transition Arrow
—0) —
Referents . Junctions
Strong Transition Arrow
[1D [Method Name —_— O
Referenced _ , ® @
Concept Label Instantaneous Transition Marker
A

Figure 4-1. Basic IDEFS Schematic Language Symbols
The basic lexicon of the IDEF5 Schematic Language (see Figure 4-1) consists of the following:

« Kind Symbols A kind is represented by a circle containing a label. The label in a
kind symbol should be either identical with the name of the kind given in the
associated specification form for the kind (Subsection 4.1.4), or in shorthand form of

the name.

o Individual Symbols Labeled circles that also include a small, filled-circle (as
shown in Figure 4-1) represent specific individuals identified in an ontology. The

label should be unique within the ontology.

66

* Referents An IDEFS5 Referent is an artifact used to make reference to a concept in
any other IDEF method. Referent rectangles have the following information items.

1) Referenced Concept Label This is the label of the concept (within an
IDEF model) that is being referenced. For example, an activity kind may
reference an activity label in an IDEF@ model.

2) ID This is the identification label for the Referent.

3) Method Name This is the name of the IDEF method that is being

referenced.

* Relation Symbols Rectangles with rounded corners signify first-order n-place
relations (i.e., relations that hold between first-order individuals). In the case of 2-
place relations, a labeled arrow can be used instead of a rectangle. Arrows with their
arrowheads at the back represent second-order relations (i.e., relations that hold, not
between individuals, but between kinds or between individuals and kinds). There are
no symbols in the IDEF5 Schematic Language for n-place higher-order relations, as
experience has shown their presence in ontologies to be rare. If necessary, however,
such relations can always be added to an ontology via the IDEFS Elaboration
Language (see Subsection 4.2). Because of the importance of the first-order part-of
relation in ontology, the distinguished label part-of is included in the IDEF5 Schematic
Language.

Every relation symbol includes a label connoting the relation represented. As with
kind symbols, the label should be either identical with the name of the relation given in
the associated specification form for the relation or in shorthand form of the name.
Like part-of, the distinguished labels instance-of and subkind-of are provided for the
second-order relations instance-of and subkind-of.

* State Transition Symbols There are two types of state transition links provided
by IDEF5 schematic languages: 1) an arrow with an open circle at the center of the
arrow that represents weak transition and 2) a double headed arrow with an open
circle at the center of the arrow that represents strong transition.

An instantaneous transition marker “A” is provided by the IDEF5 Schematic Language
to represent the state transition that occurs over a period smaller than the smallest time
unit recognized in the context being modeled.

67

« Process Symbols Rectangles with square corners and a line near the bottom
indicate process kinds (i.e., general, repeatable states of affairs, as discussed in
Section 2). Their syntax and informal semantics are provided in Subsection 4.15.

« Connecting Symbols Connecting symbols are a type of arrow used to connect
kinds to first-order relations. Their syntax is discussed in Subsection 4.1.5.

« Junctions Junctions are simply symbols that represent boolean operators. Their

syntax and semantics are discussed in Subsection 4.1.5.
4.1.2 IDEF5 Schematics and their Interpretation

In this subsection, the various diagram types, or schematics, that can be constructed in the IDEF5
Schematic Language are presented. The purpose of these schematics, like any representations, is
to carry information. Thus, semantic rules must be provided for interpreting every possible
schematic. Following the usual approach, these rules will be provided by providing rules for
interpreting the most basic constructs of the language, which can then be applied recursively to
more complex constructs. However, the character of the semantics for the Schematic Language
differs from the character of the semantics for other graphical languages. More specifically, each
basic schematic is provided only with a default semantics that can be overridden in the Elaboration
Language (see Subsection 4.2). The reason for this is that the chief purpose of the Schematic
Language is to serve as an aid for the construction of ontologies; they are not the primary
representational medium for storing them. That task falls to the Elaboration Language. The
Schematic Language particularly useful for the construction of first-cut ontologies in which the
central concern is to record in a rough way the basic kinds of things that exist in a domain, their
characteristic properties, and the salient relations that can be obtained between objects of those
kinds and between the kinds themselves. Consequently, the basic constructs of the Schematic
Language are designed specifically to capture this type of information. However, the default
semantics may not accurately capture the desired information. In such a case, a user can explicitly

override the default semantics in the Elaboration Language.

However, the precise character of the properties of, and relations between, objects of various kinds
is often quite different from one case to another: Does the relation hold between every pair of
instances? Some instances? Must it hold between two instances if it holds between them at all?
Therefore, to assign a semantics that enforces just one of these semantic possibilities with respect
to a given construct rules out other legitimate possibilities and, hence, limits the flexibility and
usefulness of the language in the construction of an ontology, because any of the possibilities
might be present in the domain under consideration. The idea behind the default semantics, for

68

each construct, is to express what experience has shown to be the most useful meaning as a default
but also to allow revision or further specification of this meaning in the Elaboration Language,

should the need arise.

This issue raises an obvious question: Why not simply endow the Schematic Language with the
power to express these subtle semantic distinctions directly? Why not simply adopt a graphical
representation language like Semantic Nets (SNs — in its more sophisticated guises) or
Conceptual Graphs (CGs) that have the full expressive power of a first-order language?1¢ Why not
adopt a graphical language that is intended to be complete in itself, without need of any further
supplementation by a nongraphical language, instead of one that falls far short of the full
expressive power of a first-order language?'S The central answer is again rooted in the fact that the
Schematic Language is designed only for the construction of first-cut ontologies and the easy
browsing and rapid addition of new information to existing ontologies. It was designed to
streamline the process of ontology construction and evolution, not to be the central representational
medium for ontology. Among the central considerations behind its design, then, was to give
domain experts largely unfamiliar with full first-order languages and the subtleties of modality and
quantification an intuitive interface for entering basic ontology information. For this purpose, a
graphical language is ideal. However, beyond relatively simple pieces of information about kinds
and their characteristic properties and relations, graphical languages have no advantage over
standard linear languages in either learnability or usability; indeed, in the eyes of many experts,
graphical representations of more complex information are substantially more cumbersome than
their standard linear counterparts. There is, thus, no reason not to carry out refinements of an
ontology in the Elaboration Language directly. That is at any rate much more efficient with respect
to the development of an automated ontology support tool: a graphical language is not in itself
computer processable. Hence, if the information expressed in such a language is to be
manipulated, queried, updated, and so forth, it needs to be compiled into a more standard computer
processable form. The Elaboration Language, however, is processable as it stands, and hence,

14That is, loosely, for any given SN or CG language L, there is a mapping that takes any SN or CG A of L into a
set of sentences in a first-order language with the same meaning. That is, A and the set will be true of the same
models and vice versa (for finite sets of sentences). For SN, see S. Shapiro, “The SNePS semantic network
processing system,” in N. Findler, Associative Networks: Representation and Use of Knowledge by Computers,
New York, Academic Press, 1979. For CGs, see J. Sowa, Conceptual Graphs: Information Processing in Mind and
Machine, Menlo Park, CA, Addison-Wesley Publishing Co., 1984.

15More exactly, with regard to its default semantics, it is, very roughly, equivalent to a first-order language that
permits only strings of existential quantifiers.

69

once again, there is no advantage in using an expressively equivalent graphical language for

i‘ontology refinement.s
4.1.2.1 Basic First-Order Schematics

This subsection presents the syntax and default semantics for the basic first-order schematics of the

language. The simplest of these are schematics involving 2-place, first-order relations.

4.1.2.1.1 2-Place Relation Schematics

IDEFS schematics are constructed by putting together the basic IDEF5 graphical symbols in
different ways. The basic IDEFS schematics are the smallest diagrams that can be so constructed.
The syntax of the basic schematics is quite simple: they are obtained by connecting circles with

relation and proto-relation symbols.

The most common construct of this sort involves connecting two kind symbols with a first-order
relation symbol, as in Figure 4-2.

Kind label Relation Label Kind label

Figure 4-2. General Form of a Basic First-Order Schematic

Such diagrams need a default semantics (i.e., an accepted meaning that can be assumed in the
absence of any further clarification in the Elaboration Language). For this purpose, we considered

the concrete example in Figure 4-3.

Sparkplug

Figure 4-3. Example of a Basic First-Order Schematic

What, exactly, should the default meaning of this construct be? It is very important to note that it
does not mean that the kind sparkplug is a part of the kind engine, for part-of in IDEF5 is a
first-order relation that holds between first-order physical objects, and, in particular not between
abstract, higher-order objects like kinds. Thus, Figure 4-3 must be about instances of the kinds in

70

question—the individuals that exemplify those kinds. Given that there are a variety of possible
meanings that might be assigned to Figure 4-3, the following specifications are made.

(1) Every sparkplug (in the domain in question) is a part of every engine (in the domain in
question).

Clearly that is not even physically possible, in general: sparkplug can only be a part of one engine.

A weaker reading is the following.
(2) Every sparkplug is a part of some engine.

This is a much more plausible reading, but as a default, it is still too strong. There may be loose

sparkplugs in inventory or on the shop floor.
(3) Every engine has some sparkplugs among its parts.

This reading takes account of the possibility of loose sparkplugs, but now the problem is that there
may well be engines lying about with the plugs removed, so this, too, is too strong.

(4) Some sparkplugs are parts of some engines.

This reading now accounts for both counterexamples, but again, as a default, it still might say too
much. That is, Figure 4-3 might only be recording the way the domain in question ordinarily is,
but not at all any way that it is at all times. For instance, the domain in question might be an
ontology for an automobile factory that has temporarily shut down its engine fabrication division
and is making only car bodies and, hence, which, for the time being, contains no engines at all.
To accommodate such cases, a reading weaker than (4) is needed for the default semantics of
Figure 4-3; specifically, the default semantics for schematics like the one in Figure 4-3 will be
taken to indicate only what is possible, or permissible, in a certain domain vis-a-vis sparkplugs and
engines relative to the part-of relation. Thus, more exactly, it will be taken as a default to mean
only that, in the current ontology.

(5) Sparkplugs can be parts of engines.

That is, it is possible, or permissible, that a sparkplug (i.e., an instance of the kind sparkplug) be
a part of an engine (i.e., an instance of the kind engine).!6 Therefore, the default semantics of

16Figure 4-3 is equivalent to the elaboration language statement (possibly (exists (?x ?y) (and (Sparkplug 7x)
(Engine ?y) (Part-of ?x ?y)))).

71

schematics like Figure 4-3 should be viewed as analogous to type declarations in a program that
gives the permissible arguments to certain functions without declaring precisely how those
functions are instanced in a run of the program. In the same way, Figure 4-3 is essentially

specifying permissible arguments for the part-of relation.

Note that the sense of possibility in question here is stronger than mere logical possibility. In the
purely abstract sense, it is logically possible for almost anything to bear a given relation to anything
else. It is logically possible, for example, that a sparkplug be part of an oddly designed computer.
The sense of possibility in question here, though, is intended to reflect the actual nature of a given
domain; it is intended to capture the way things can be in the domain, other things being equal, not
how things could be, under any imagined circumstances. Indeed, generally speaking, in the
evolution of an ontology, basic assertions will more generally reflect actual observations in the
domain (i.e., generalizations of what has actually been observed in the domain: Specific
sparkplugs have been observed to be parts of specific engines. These observations are then
generalized in the form of Figure 4-3 and, for the reasons noted, given the semantics of (5). It
should again be noted, though, that this is only a default semantics; stronger meanings for such

diagrams (3), for instance can be imposed via the Elaboration Language.

As an alternative syntax for 2-place first-order schematics, it is permissible (and often preferable)
to replace the two connecting symbols and the relation symbol with a single arrow labeled by the

same relation label, as illustrated in Figure 4-4.

Part-of

Sparkplug
Figure 4-4. Example Illustrating Alternative Syntax for Basic First-Order
Schematics

The direction of the arrow, as with the direction indicated by connecting symbols, corresponds to
the natural English reading of sentences involving the kind labels and the relation label:

Sparkplug can be Part-of an Engine.

4.1.2.1.2 Existential Schematics

The semantics of basic schematics like Figure 4-3 suggests a natural understanding of a kind

symbol standing alone as in Figure 4-5:

72

Sparkplug

Figure 4-5. An Existential Schematic

Specifically, this should be understood simply as the assertion that Sparkplug is a kind that can
be instantiated in the domain, or more colloquially, that sparkplugs are among the things that one
can expect to find in the domain. Again, this is a rather weak reading; it does not imply that there
are, in fact, any sparkplugs in the domain, only that there could be, in the sense that the domain in
question is appropriate for such things.1” Stronger readings can, once again, be enforced in the

Elaboration Language.

Free standing (first-order) relation symbols are also allowed, as in Figure 4-6.

Option-of

Figure 4-6. An Existential Schematic for a Relation

Analogous to Figure 4-6, Figure 4-5 asserts that the Option-of relation is one that can hold in the
domain in question, or again, more colloquially, that one thing’s being an option of another is
something one can expect to find in the domain.

Because they assert the possible existence of objects of a certain kind in a domain, free-standing
kind symbols like Figure 4-5 and its ilk will be known as existential schematics. Such schematics
are useful insofar as they enable one to record that certain kinds have been observed in a given
domain without requiring any further information about the relations such objects stand in with
other objects.

17Thus, the sense of possibility in question, the sense of “could be” here, is somewhat stronger than mere logical
possibility. It is logically possible that virtually any kind be instantiated in any domain. However, in most cases
this will require extraordinary or unusual means outside the nature and function of the agents and mechanisms in the
domain. For example, it is, of course, logically possible for an employee to bring a baseball into a semiconductor
fabrication domain, thus instantiating the kind baseball. But it would, presumably, not be part of that agent’s role
in the domain to do so. Hence, in the sense in question, the kind baseball is not a kind that could be instantiated
in the domain.

73

4.1.2.1.3 n-Place First-Order Schematics

The semantics for first-order schematics involving 2-place (first-order) relation symbols
generalizes to schematics involving n-place relation symbols. So, for example, Figure 4-7
indicates only that an instance of the conveys-to relation can involve a conveyer, a car body,

and a paint primer vat.

Paint
primer vat

Figure 4-7. Example of a Basic 3-Place First-Order Schematic

The numbers (optionally) attached to the spokes here generalize the arrows on connecting symbols
in the 2-place case. Specifically, they indicate that conveyer, car body, and paint primer vat
are to be associated with the first, second, and third argument places of the conveys-to relation,
as they occur in the natural English reading of the label: conveyer conveys a car body to a

paint primer vat.

As in the 2-place case, the relation symbol can be omitted and labeled links can simply be used, as

in Figure 4-8.

Car body
2
3 Paint
Conveyer rimer vat
Conveys-to P

Figure 4-8. Alternative Syntax for Figure 4-7

In this document, this notation will generally be preferred.

74

Though they are somewhat uncommon, relations of arity four and greater can be expressed in a
similar fashion. To illustrate, the general form of 4- and 5-place relation schematics are shown in
Figure 4-9 (though the placement of the relation label and the numbering of the kind symbols can
vary); if desired, of course, a rectangular relation symbol containing the relation label can
alternatively be placed near the middle of the diagram.

Kind 2

Relation
1 label 3

Kind 1 Kind 3

Kind 4

Fig
ure 4-9. General Form of 4- and 5-Place First-Order Schematics

4.1.2.1.4 Using Individual Symbols

The use of individual symbols eliminates some of the indefiniteness of the schematics in Figure 4-
8. For instance, the situation depicted by Figure 4-8 permits multiple paint primer vats. However,
it might be desirable in some situations to focus on, say, one particular vat, and hence to represent
it explicitly by an individual symbol as in Figure 4-10.

75

Car body

Conveyer PPV-1
Conveys-to
o

Figure 4-10. Example Illustrating the Use of an Individual Symbol

This schematic now expresses that a conveyer can convey a car body to the particular primer vat
PPV-1, indicated by the individual symbol, a more definite proposition than the one expressed in

Figure 4-8.

Indefiniteness is eliminated completely if only individual symbols are used. Thus, the schematic in
Figure 4-11 is taken to express that the particular car body CB-J27-S121 is (as opposed to only

can be) at some time conveyed by conveyer Conv-2 to the paint primer vat PPV-1.18

Conv-2 PPV-1
1 Conveys-to 3

Figure 4-11. A Fully Particularized Example
4.1.2.2 Complex First-Order Schematics

Multiple circles can be connected to the same circle by different arrows to create complex
schematics. In general, complex schematics that do not involve process symbols are essentially
just conveniences; they simply enable one to reuse graphical elements and enable one to make

18That is, in terms of the elaboration language, Figure 4-11 translates to (conveys-to Conv-2 CB-J27-S121 PPV-1°

76

several assertions in the language by means of a single complex schematic. Thus, for instance, if
one wished to express both that sparkplugs can be parts of engines and that engines can be parts of

cars, there is no need for two circles representing the kind engine. Rather, the two facts in

question can be expressed more succinctly, as in Figure 4-12.

Sparkplug

Figure 4-12. A Small Complex Schematic

Similarly, one might want to add the information that, in the given domain, cars can be made in
Detroit and from there shipped to dealers, conveniently expressed as in Figure 4-13.

Shipped-to

Dealer 5 from Detroit

Figure 4-13. Complex Schematic Involving Multiple Relations

Complex schematics that do involve process symbols are discussed in Subsection 4.1.5.

4.1.2.2.1 Single Relation Complex Schematic Cdnvention

At the same time, it will commonly be the case that an IDEF5 schematic may involve only one type
of relation. In such cases, to prevent needless clutter, the modeler can omit labels and simply note
the (single) meaning of the relation symbols at the bottom of the diagram, as illustrated in Figure 4-
14:

77

Surge
protector

Keyboard

- Connected-to

Figure 4-14. Peripheral Connections to a Personal Computer

Note also that the connected-to relation is included in the IDEFS relation library (see

Appendix A).
4.1.2.3 Second-Order Schematics

As noted, second-order relations are relations that hold between second-order objects (i.e., kinds
and first-order relations) or between first-order and second-order objects. A paradigm of the
former is the subkind-of relation between kinds, while a paradigm of the latter is the
instance-of relation. A distinct type of arrow is needed to represent second-order relations
because both types of arrows connect circles representing kinds. Because the associated semantics
in the two cases are quite different, to avoid ambiguity, separate constructs must be used.

The basic form of a second-order schematic looks just like that of a first-order schematic, except

for the presence of a second-order relation arrow instead of a first-order relation arrow.

78

Relation Label
Kind label Kind label

Figure 4-15. Basic Second-Order Schematic

The semantics for second-order schematics is much more definite than the semantics for first-order
schematics. Specifically, these schematics are about the indicated kinds directly, rather than about
their instances: Figure 4-15 means that the kind represented by the left-hand circle stands in the
(second-order) relation, indicated by the arrow with the kind represented by the right-hand circle.
Furthermore, note that the default semantics is not qualified; unlike first-order schematics, the
semantics is not merely about how things can be in the domain but about how two kinds are in fact
related. The reason for this is that such second-order assertions generally concern the natures of
the kinds in question, and, thus, are not usually dependent on the contingencies of the domain
though this is certainly not always so. Figure 4-16 illustrates a schematic involving the
distinguished second-order relation subkind-of, which is provided as an IDEFS5 primitive:

Subkind-of

Hex-headed

bolt Fastener

Figure 4-16. Example of a Second-Order Schematic with Subkind-of

By the semantics just given, the kind hex-headed bolt is a subkind of the kind fastener.!9
Similarly, the schematic in Figure 4-17 expresses that there are more U.S. citizens than Canadian
(i.e., more literally, that the kind U.S. Citizen has more instances than the kind Canadian
Citizen)

191n terms of the elaboration language again, we have simply (subkind-of hex-headed-bolt fastener).

79

Has-more-
instances-than

Canadian
Citizen

Figure 4-17. Example of a General Second-Order Schematic

Because the subkind relation is so common within ontologies, the default meaning of the second-
order relation arrow with no associated label represents the subkind relation, thus permitting users

to avoid having to attach the label subkind-of repeatedly throughout a schematic.

4.1.2.4 Relation Schematics

This section describes the use of IDEF5 schematics to capture and display relations between first-
order relations. The main motivation for using schematics to capture and display such second-
order relations is derived from the observation that people often describe and discover new
concepts in terms of existing concepts. This is consistent with Ausubel’s theory of learning,
wherein learning often occurs by subsuming new information under more general, more inclusive
concepts [Novak and Gowin 84, Sarris 92]. Using this hypothesis, a natural way to describe a
new (or poorly understood) relation is to connect it to a relation that is already well understood
and, more generally, to categorize its place in a “conceptual space” of other relations. The IDEF5
relation library (Appendix A) provides a baseline reference for users of IDEFS5 to aid the discovery

and characterization of relations using relation schematics.

The basic syntax of relation schematics is illustrated in Figure 4-18.

(Second-order)
relation label

(First-order)

(First-order)
relation label

relation label

Figure 4-18. The General Form of a Basic Relation Schematic

Tt should be noted that the syntax of Figure 4-18 is identical to that of second-order schematics,
except that first-order relation symbols are substituted for kind symbols. The use in this context of
a second-order relation symbol is not mere notational parsimony, because kinds and first-order
relations are of the same logical type. As noted in Section 2, kinds are properties of individuals,
and first-order relations are associations between individuals, that is, properties of n-tuples. Thus,
relations between first-order relations are of the same logical type as relations between kinds: both

80

relate entities that hold (or not) with respect to individuals and, hence, are second-order relations

(as indicated explicitly in Figure 4-18 to avoid confusion).

4.1.2.4.1 Using Relation Schematics for Relation Analysis

The use of relation schematics to facilitate conceptual analysis involving relations (both relations
between kinds and relations between relations) will now be illustrated. Consider the ontology for
an engineering Bill Of Materials (BOM) of an automobile manufacturing company. The Part-of
relation plays an important structural role in the BOM. The data acquired in the data collection
process might contain the following statements about the BOM:

* An automatic transmission is a variant of the transmission.
* A manual transmission is a variant of the transmission.

* A radio is an option of the car.

A Variant of a product is an essential characteristic of the product that is often determined by
customer choice [Anupindi 92]. The customer picks one of several possible variants. In this
example, automobile customers choose between automatic and manual transmissions. Notice that
having a transmission system is an essential property of the car (for most contemporary auto
makers). The choice of a particular variety of transmission is a choice exercised by the customer.

An Option is a feature of a product that the customer chooses. Options are different from variants
in that options can be completely eliminated from a product, whereas variants are required
characteristics. In this example, the radio is not essential to the function of the car and can be

optionally excluded.

Based on an analysis of the source statements, the IDEF5 developer hypothesizes the existence of
two relations, and selects the relation names Variant-of and Option-of. These relations are
mapped graphically on a relation schematic in the manner shown in Figure 4-19.

81

Manual
‘Transmission

Automatic
‘Transmission

Figure 4-19. Bill of Material Relation Schematic

At this stage, an IDEF5 developer would browse the IDEF5 Relation Library. He or she may
notice that the Variant-of and the Option-of relations are conceptually similar to some of the
library relations. Specifically, he or she may realize that the Option-of relation is a specialization

of the Part-of relation.

Suppose that these insights are now represented by the second-order relation Specialization-of

in the relation schematics shown in Figure 4-20.

82

Part-Of

Specialization-Of

Option-of

Figure 4-20. Relation Schematics Involving the Specialization-of Relation

The higher-order Specialization-of relation is used to assert the generalization-specialization
relation between the indicated first-order relations. Further reflection leads the IDEF5 developers
to draw a more detailed relation schematic that places the Option-of relation in a relation
taxonomy diagram (i.e., a special type of relation schematic that shows a hierarchy of relations that
are associated by generalization-specialization relationships). The taxonomy in question is
exhibited in Figure 4-21.20 ‘

20A more complete taxonomy diagram of the meronymic (part-of) relations is given in the IDEF5 Relation Library
(Appendix A).

83

Conceptua
1

Physical
Part-of

Stuff-of

Portion-of

Component-of

Option-Of Specialization-of

[

Figure 4-21. A Partial Relation Taxonomy of the Part-of Relation

It is to be noted that the single relation complex schematic convention is operative with respect to
second-order relations in Figure 4-21, and also that complex second-order schematics can be
constructed in the same manner as first-order schematics. That is, one can “reuse” kind and (first-
order) relation symbols within a single schematic. For instance, the information contained in
Figure 4-19 and Figure 4-20 could be expressed in the single schematic in Figure 4-22. |

84

Automatic

Figure 4-22. Complex Second-Order Relation Schematic
4.1.2.5 Referents

An IDEFS referent is a modeling artifact used to indicate a concept in any another IDEF method.

Referent rectangles have the following information items.

* Referenced Concept Label This is the label of the concept (within an IDEF
model) that is being referenced. For example, an activity kind may reference an
activity label in an IDEF@ model.

* ID This is the identification label for the Referent.
* Method Name This is the name of the IDEF method that is being referenced.

IDEF5 Referents provide a mechanism to link IDEF5 with other IDEF methods. For example, a
kind in IDEF5 may be represented as an Entity in IDEF1, and the IDEF5 developer can make this
reference explicit within the IDEFS model.

85

4.1.3 Composition Schematics

Because the part-of relation is so common in design, engineering, and manufacturing ontologies,
the “part-of” label, and associated axioms, are included in the IDEF5 languages. In particular, this
capability enables users to express facts about the composition of a given kind of object. In
general, this is achieved by means of schematics of the form illustrated in Figure 4-23.

Figure 4-23. Composition Schematic

As noted in Section 4.1.2, Figure 4-23 is simply a convenient way to draw multiple instances of
the basic first-order relation schematic illustrated in Figure 4-4, and hence, the default semantics of
Figure 4-23, means that Ay’s (i.e., instances of A1) can be parts of B’s, Ay’s can be parts of
B’s, ..., and A;’s can be parts of B’s. However, in the context of part-of, it is frequently the
case that a stronger reading is desired. For instance, in a bill of materials, one wishes to say not
simply that A1’s can be parts of B’s, and so on, but that every B does in fact consist of an Aj, an

A,, and so forth. For example, one might wish to represent the component structure for a certain

kind of ballpoint pen, as in Figure 4-24.

86

Ballpoint
pen

Part-oi_‘ >

Figure 4-24. Composition Schematic for the Kind Ballpoint Pen

To capture this stronger meaning one must resort to the Elaboration Language (Subsection 4.2)
and, for each instance of Figure 4-23, add the statement that every B does in fact have an Ay, and
Aj,...,andan A, as parts.2! On this stronger semantics, then, the schematic in Figure 4-24
expresses that a ballpoint pen in the domain in question has both an upper body and a lower body,
that the former consists of a button, a retraction mechanism, and an upper barrel, while the latter
consists of a lower barrel and a cartridge, which in turn consists of a spring and an ink supply.

21Speciﬁcally, in the case of a kind B whose instances have three parts of kinds A1, A2, and A3, one would add the
elaboration language statement (forall ?x (-> (B 7x) (exists (?y1 ?y2 ?y3)(and (Al 7y1) (A2 y2) (A3 7y3)
(part-of ?y1 x) (part-of ?y2 x) (part-of ?y3 x)))).

87

4.1.3.1 Hiding Composition Information

As Figure 4-24 illustrates, composition schematics can be quite detailed. Such detail can cause a
great deal of clutter in an IDEF5 diagram. For instance, in addition to describing the component
structure of the kind ballpoint pen, one might also want to talk about many of the other relations
it and its instances are involved in, for example, that the pens can be made in Sequim, Washington,
that fountain pens generally cost more than ballpoint pens, that ballpoint pen is a subkind of
pen, and so on. Hence, in many contexts, the component structure of the kind might well be
irrelevant, and in such cases it would be useful to be able to hide that information. That such
information is being hidden is indicated on a diagram by using a double circle to represent the kind
(instead of a standard single circle), along with an upper case ‘P’ (for part-of) in the top of the
circle to distinguish the kind of information that is being hidden, as illustrated in Figure 4-25.

Made-in

Subkind-of

Ballpoint

Subkind-of

Fountain
pen

Figure 4-25. Hiding Composition Information

Note that this example illustrates the use of first- and second-order relation symbols in the same

diagram.
4.1.4 Classification Schematics

Among the more commonly used structuring mechanisms used by humans to organize knowledge
are taxonomy diagrams [Brachman 84]. Domain experts engaged in knowledge acquisition often
make statements such as A is a B, A is a type of B,or A is a kind of B. The cognitive
activity involved in organizing knowledge in this fashion is called classification. There are several
identifiable varieties of classification. Two particularly prominent types of classification are
description subsumption and natural kind classification. In description subsumption, (i) the
defining properties of the “top-level” kind K in the classification, as well as those of all its

88

subkinds, constitute rigorous necessary and sufficient conditions for membership in those kinds,
and (ii) the defining properties of all the subkinds are “subsumed” by the defining properties of K
in the sense that the defining properties of each kind entail the defining properties of K; the
defining properties of K constitute a more general concept.

In natural kind classification, by contrast, it is not assumed that there are rigorously identifiable
necessary and sufficient conditions for membership in the top-level kind K, but that, nonetheless,
there are some underlying structural properties of its instances that, when specialized in various
ways, yield the subkinds of K. The best examples of such classification schemes are, of course,
genuine natural kinds such as metal, feline, and so forth, but the idea can be extended to
artifactual kinds like automobile and NC machine. These two types of classification are
illustrated in Figure 4-26.

Description Natural Kind
Subsumption Classification

Figure 4-26. Different Types of Classification

Triangle

Clearly, with its central notion of a kind, a natural application for the IDEF5 schematic language is
the development of taxonomy diagrams, or as we shall call them, classification schematics.

Classification is typically much more detailed than the examples suggest. Most classification
schemes will involve several levels of more specialized subkinds “below” more general kinds in
the scheme. (Such schemes are often called ‘is-a hierarchies,” but for the reasons adduced in
Subsection 2.2.5, the use of ‘is-a’ is strongly discouraged in IDEFS5; either the subkind-of relation
or the instance-of relation should be used instead, depending on the intended meaning.) To
illustrate, it is essential in project planning that one categorize the kinds of resources that will be
needed for the project’s success. Informally, a resource can be defined as an object that is

consumed, used, or required to perform activities and tasks. Resources, therefore, play an

89

enabling role in processes. Classification diagrams provide a natural way of categorizing
necessary resources, as, for example, in Figure 4-27. (Second-order relation symbols with no

attached label, default to the subkind relation):

Programmer Resource Q

Tech

support '
specialist
Computer Quadra
Personnel System

@ f
A dministrator

486 .
. Pentium
Machine Machine

Figure 4-27. Classification of Resources

IBM
RISC 6000

Sun
Sparcstation
Older

model

4.1.4.1 Hiding Classification Information

As with complex composition schematics, however, it often proves very useful to hide some detail
in a classification schematic. Thus, in some contexts (e.g., those in which facilities and personnel
need to be highlighted), information about computer systems might not need to be explicit. As
with composition schematics, hidden information will be indicated by a double circle, annotated in

this case with an upper case ‘C’ (for ‘classification’) at the top of the circle as shown in

90

Figure 4-28. Thus, one might hide that information and add information about facilities to obtain
the following schematic.

Programmer
£ Resource
Tech
support
specialist C
Computer
Personnel System
Administrator
Remote
)
{4
5 %, \&\&c
o“‘cvo %b
Qﬁ\ o
El Paso Office
Office °
Main St. First St. o
Office Office
® o

Figure 4-28. Classification of Resources with Hidden Information

4.1.5 Object State Schematics

As noted in Subsection 2.2.8, there is no clean division to be made between information about
kinds and states and information about processes. This subsection describes how the IDEF5
schematic language enables modelers to express fairly detailed object-centered process information,
that is, information about kinds of objects and the various states they can be in relative to certain
processes. Diagrams built from these constructs are known as object-state schematics (OS's); the
integration of OS's with the various kind schematics introduced above is discussed below.

91

In Section 2.2.8 two types of changes that can be observed in the objects undergoing processes
were noted: change in kind and change in state. There is in fact no formal difference between
these two types of change: objects of a given kind K that are in a certain state can simply be
regarded as a constituting a subkind of K. For formal purposes, for example, warm water can
just be regarded as a subkind of water. However, it is very useful to distinguish the two in the
schematic language to indicate explicitly the kind of thing that is in a certain state. This is done by
means of a colon notation, that is, kind:state. For example, warm water will be indicated by the
label water:warm, frozen water by water:frozen, and so on. The notation is illustrated in

Figure 4-29.
Water: Water:
Frozen Cold

Figure 4-29. Kinds and States

In this context, the subkind-of relation is best thought of as a state-of relation, as illustrated in the

classification diagram in Figure 4-30.

Water:
Frozen

» State-of

Figure 4-30. Schematic Depicting States of Water

To indicate how objects change either kind or state within processes requires an entirely new class
of construct. The remainder of this section will be devoted to introducing the syntax and

information semantics of these constructs.

92

4.1.5.1 Basic Object State Transition Schematics

The first and most basic construct is the simple fransition link shown in Figure 4-31. Note that the
presence of the open circle distinguishes an object state transition link from a general relation

arrow.

A O

Figure 4-31. Basic State Transition Schematic

The circles labeled A and B in these links still indicate two kinds, and everything said about kinds
and kind symbols in the previous subsection still applies. However, in characterizing in a general
fashion the way objects are transformed through a process, it is natural to classify those objects in
terms of the szates they are in at various stages of the process. Hence, typically, the kind symbols
in a state transition schematic will indicate a kind in a particular state, for example, dry wood,
warm water, unreworked part, and so forth. To emphasize this role of the kind symbols,
their meanings will often simply be referred to as object states or, simply, states.

Intuitively, an object state transition link indicates that there is an allowable transition such that an
object in a given state A may be modified, transformed, or consumed so as to yield an object
(possibly the same object) in a different state. Figure 4-31 depicts the situation where a certain
type of transition from A to B is observed, but there is either no knowledge or desire to specify the
process(es) involved in the transition.

It is important to note the distinction between the characterization of an object in a given state and
the conditions or rules that govern how the object transitions to and from that state. In the IDEF3
process description capture method, conditions for entering and leaving a state are called entry and
exit conditions, respectively. The IDEFS Elaboration Language (Section 4.2) can be used to

specify relevant entry and exit conditions for a given state.

Additional information about the process(es) involved in a state transition may be displayed in
IDEFS, as shown in Figures 4-32 and 4-33.

93

Figure 4-32. Schematic for Object State Tramsition within a Process

P Q
[[

Figure 4-33. Schematic for Object State Transition between Processes

More precisely, the semantics of the state transition schematic displayed in Figure 4-32 is this:
during some initial segment t;p;; Of any occurrence p of the process P, there is an object a in state
A (indicated by the atomic formula ‘Aa’ in the “interval diagram” in Figure 4-34), and during
some final segment tg, (possibly the very last moment) of p, a possibly different object b is in

state B.

Instance of the process P

Aa Bb

Figure 4-34. The General Semantics of Figure 4-32

It may happen, however, that an identified transition occurs not within a process, but between the
end of a given process P and the start of some process Q (See Figure 4-33). A special case of this
situation is discussed in section 4.1.5.3 wherein two contiguous processes P and Q meet. The

transition arrow in such a schematic does not represent a single unspecified process but rather

94

marks the division in time between an object’s being in state A at the end of some process P and
the transformation to an object’s being in state B at the start of another process Q, as displayed in
the interval diagram in Figure 4-35. (The dashed line between the instances of P and Q indicates
that they need not be temporally contiguous).

.......... Instance of P_j | Instance of Q

|¢+ i_l

Figure 4-35. The General Semantics of Figure 4-33

4.1.5.2 Strong State Transition Schematics

The semantics of an object state transition link is open on the question of whether the object in state
A at the beginning of a transition is identical?? to the object in state B after the transition, as when
an unpainted object becomes a painted object, or distinct, as when a piece of wood is transformed
into a pile of ashes by a furnace. The basic state transition schematic should be used in any of the
following three cases: (i) the objects at the beginning and end of the process are in fact distinct;
(ii) it is not known whether or not they are distinct; or (iii) it does not matter one way or the other.
On the other hand, if a modeler desires to represent explicitly that the object at the beginning of an
instance of a state transition is identical with the object at the end, a strong state transition link
should be used. This involves simply affixing a double tip on the arrow in a state transition link,
as shown in Figure 3-36.

22Identity may be in terms of chemical structure, mass, physical form, function, etc. For example, grape juice
becomes wine after undergoing a fermentation process. One might argue that the “stuff of” the kind grape juice is
the same as that of the resulting kind wine. Other people having different attunements may perceive the two kinds
as being entirely different based on, for example, chemical composition of the two kinds. It is therefore
recommended that the assumed criteria for identity be established or characterized when there is possible ambiguity.

95

Figure 4-36. Strong State Transition Schematic

In order to allow for noninstantaneous state change within an instance p of a process, it is not
generally required that p’s initial segraent tipi, during which an object is in state A, and its final
segment tg,, during which an object is in state B, be contiguous or overlap. In such cases, the
intervening period will, therefore, typically be thought of as a period during the process during
which an object in state A is in the course of being transformed into something in state B, but
during which there is actually nothing in either state, as in the period of time during which a
quantity of water is heated from 5°C (state A) to 100° (state B). This indeterminacy in the
semantics between instantaneous and noninstantaneous transitions is reflected graphically in the

dashed line connecting the two states of the object a in Figure 4-37.

Vaporize
Water

Figure 4-37. An Example of Strong State Transition Schematic

4.1.5.3 Instantaneous State Transition Schematics

As with the identity of objects in a transition, it is often useful to allow for the explicit
representation of instantaneous state transitions within a process (relative to a certain temporal
granularity). Accordingly, the OS syntax allows a modeler to tag the small circle in an object state
transition link with a A, as in Figure 4-38, indicating thereby that the transition occurs over a
period smaller than the smallest time unit A recognized in the context being modeled.

96

A O

Figure 4-38. Instantaneous State Transition Schematic

A double arrow tip, of course, may be added if a strong transition is desired. For instance, when

liquid oxygen is exposed to atmosphere, it transforms to gaseous state instantaneously (as shown
in Figure 4-39).

Expose to
atmospher

Oxygen:
Gaseous

Figure 4-39. An Example of Instantaneous State Transition

One may be more interested in the processes which immediately precede and/or follow the

transition rather than the instantaneous process which occurs upon transition. This situation is
illustrated by the interval diagram in Figure 4-40.

| __Aa Ab |
| i

Point of state transition
Figure 4-40. Interval Diagram for Figure 4-39

To express the content of Figure 4-40 precisely, the construct in Figure 4-41 is used. The
transition arrow in such a schematic marks the division in time between an object’s being in state A

at the end of some process P and the transformation to an object’s being in state B at the start of
another process Q.

97

P Q
P |

Figure 4-41. A Precise Expression of Figure 4-40

For example, one could imagine a cutting tool that is driven forward across a workpiece until it
activates a limit switch whereupon the cutter is switched off and retracted to its starting position

(Figure 4-42).

Q)

Move cutter Shut down
forward - and retract
cutter

Figure 4-42. Cutoff Switch Example for Figure 4-41

4.1.5.4 Complex Object-State Schematics

As with the schematics introduced thus far, the simple object schematics introduced in the previous
section can be combined to form more complex object-state schematics. Unlike complex
schematics introduced to this point, however, complex object-state schematics are not simply
notational conveniences; they carry additional meaning. For instance, Figure 4-43 expresses more
than is pictured in Figure 4-41; the latter indicates nothing about the state of object a prior to its
being in state A (in particular, nothing about state D), and nothing about the state of object b after
its being in state B (in particular, nothing about state C).

98

.096.

Figure 4-43. A More Informative Object State Transition Schematic

At times, one may only wish to record the bare transition itself, without providing any further
detail about what happens on “either side” of the transition. In such a case, Figure 4-41 suffices.
Otherwise, a diagram such as that in Figure 4-43 can be used. Th interval diagram for Figure 4-43
is shown in Figure 4-44. Hence, Figure 4-43 is appropriate, for example, in those cases in which
one knows about, or wishes to express, the details of the process by which an object comes to be
in state A and the details of what happens after that object is in state B.

Instantaneous transition

\

Instance of P Instance of Q

Da Aa | Ba Ca

Figure 4-44. Interval Diagram for Figure 4-43

Another example of how complex schematics can provide additional information is as follows.

P Q
I |

Figure 4-45. A Complex Object-state Schematic

99

Figure 4-45 means, first, that there is a transformation from something’s being in state A to
something’s being in state B in instances of process P and, subsequently, a transformation
involving that same thing in state B to something’s being in state C in instances of process Q.
That is, the fact that the symbols for object states A and C are linked to the symbol for B in Figure
4-45 indicates, first, that P and Q can be thought of as parts of a more complex process R that
encompasses them both and, second, that the instances of P and Q within an instance of the
overarching R share an object in state B. This general semantics is depicted in the interval diagram

in Figure 4-46.23

Instance of R

Instance of P Instance of Q

AL eeees SR N -1 E —tc |

Figure 4-46. Default Semantics for Figure 4-45

(The semantics, of course, generalizes to more complex OS schematics involving more than two
process symbols.) Figure 4-45 is to be contrasted with Figure 4-47 in which the symbols for

states A and C are each linked to separate symbols for B.

>
C
o
C

Figure 4-47. A Schematic Subsumed by Figure 4-45

23The second condition of the default semantics here might be too strong for some situations. For instance, a
domain expert might want to represent a situation in which multiple parts may be produced through a given process
P and inspected at random through some process Q. In general, then, in this case, although there is an overarching
process R, there is no assumption that the object in state B at the end of (an instance of) P is identical with the
object in state B at the beginning of Q. Such a situation can be represented, for example, by connecting the two
symbols for B in Figure 4-47 with a weak transition arrow or, of course, can be expressed in the elaboration
language directly.

100

Because the two schematics are not connected as in Figure 4-45, there is no implication that there is
any overarching process R that subsumes both P and Q, nor is it implied that any instances of the
two transitions share an object in state B. Figure 4-45 thus implies what is expressed by the two
separate diagrams of Figure 4-47 but, in addition, implies more information.

4.1.5.5 State Classification Schematics

An important corollary of the inclusion of object states as possible meanings of kind symbols in
transition schematics is that the subkind-of relation can, in these contexts, be thought of as the

state-of relation, as illustrated in Figure 4-48.

Water:
Boiling

- State-of
Figure 4-48. Schematic Depicting States of Water

Here, instead of various subkinds of the kind water, various possible szates of water that can
occur in the given domain are represented. Such schematics can be combined with standard OS
schematics as in Figure 4-49.

101

Melt ice Heat to Heat to

40° C 100° C
Water:
Frozen

Water:
Boiling

> State-of

Figure 4-49. Combined Schematic Displaying States and State Transitions

4.1.5.6 State Composition Schematics

A particularly important point of contact between OS's and the basic IDEF5 schematics concerns

compositions. The general OS composition schematic is illustrated in Figure 4-50.

Figure 4-50. State Composition Schematic

The semantics for state composition schematics is a generalization of the semantics for state
transition schematics. Intuitively, once again, the OS in Figure 4-49 represents a process type Pin

102

which objects ay, . . ., a, in states Ay, . . ., A,, respectively, are involved in some process that
yields an object b in state B. As with state transition schematics, each of the a; should be in state
A, during some initial segment of p. It is not required that every a; be in state A; throughout some
initial segment, as their coming into these states may be staggered throughout the course of p. It is
required that every a; be in state A; prior to b’s being in B (or else, contrary to the intuitive
meaning of the schematic, it would not be the case that the a;’s in the corresponding states are
combined into b). This general semantics for Figure 4-50 is indicated graphically in Figure 4-51.

B Instance of P I
[|
}----_Aﬁ_---- ..—Bb|
}---&.

|'"' Aa,

Figure 4-51. The General Semantics of a State Composition Schematic

The process represented in Figure 4-52 initially involves wood in a dry state and air that is oxygen
rich. Objects in these states are then involved in the incineration process, which results in ashes.
(Note that this example also illustrates that kind labels that don’t involve reference to an object state
can be used in OS schematics; the label ‘Ashes’, in particular, is not qualified in this manner. Such
a usage arises in those situations in which the state of the object in a certain process is irrelevant

from the perspective being modeled.)

103

Incinerate
Wood

Air:
oxygen-
rich

Figure 4-52. An Example of State Composition Schematic

Combining this semantics with the composition schematics of Figure 4-23 generates the notion of a
strict state composition schematic, whose form is the same as a composition schematic, but with

the label ‘Part-of® attached to the arrow, as shown in Figure 4-53.

Figure 4-53. Strict State Composition Schematic
The semantics of a strict composition schematic is that, not only are instances ay, ..., 8, of Ay, .
A, respectively, involved in a process that yields an instance b of B, but also that those

o vy

104

objects are all parts of b. This idea is illustrated in Figure 4-54 by explicitly adding process
information to the complex composition schematic of Figure 4-23 depicting the component
structure of a kind of ballpoint pen. [It should be emphasized that this schematic is not intended to
represent the structure of all possible ballpoint pens (some ballpoint pens don’t have a retraction
mechanism, for example), but rather the particular kind of pen found in some hypothesized

domain.]

Assembly
Process #1

]
@ Assembl

Process #2

]
@ .
Assembly

Process #4
|
Lower
@ O Body
Ball-
Assembly @ O point
Process #3 , pen

Upper

Upper

Figure 4-54. Complex Strict State Composition Schematic for the Kind Ballpoint
Pen

In the usual case, the object b resulting from a composition process will be distinct from the
objects ay, . . ., a, of which it is composed. However, the conception of objects here is flexible
enough that this is not always so; a car body without a side-view mirror is intuitively the same as
the car-body that results from affixing such a mirror. Hence, the representation of strong transition

in composition schematics is permitted as well, indicated once again by means of double-tip

105

arrows, as
appropriate placement of the A symbol.

in Figure 4-55. Note also that instantaneous transitions can also be represented by

Attach
Mirror

Figure 4-55. Strong State Transition in a Composition Schematic

In the context of OS's, where there is an explicit temporal component, the notion of object state
decomposition makes sense. It is, furthermore, easy to specify, as it is just the inverse of state

composition; its representation, shown in Figure 4-56, reflects this:

P

Figure 4-56. Object State Decomposition Schematic

106

The semantics of a state decomposition schematic as well is just the inverse of the semantics for
composition schematics. And once again, double-tip arrows are permitted for indicating strong
transitions. State transition schematics can be taken to be limiting cases of composition and

decomposition schematics for the case n = 1.

The next OS construct to be introduced - a disjunctive state transition schematic — is a logical
schematic that indicates that an object state may transition alternatively to one of a number of other
states, as shown in Figure 4-57.

Figure 4-57. Disjunctive State Transition Schematic

The type of disjunction here is inclusive, in that it permits a transition from B to any of the
subsequent states, possibly more than one. To indicate exclusive disjunction, which permits

transition to no more than one of the subsequent states, the construct in Figure 4-58 is used:

107

Figure 4-58. Exclusive Disjunctive State Transition Schematic

By the same token, a conjunctive schematic is introduced to indicate a transition from a given state

to all of several subsequent states, as illustrated in Figure 4-59.

P

Figure 4-59. Conjunctive State Transition Schematic

In each case, the modeler is permitted to attach a process symbol to the junction or to each arrow
extending from the junction (but not both). In the case of disjunctions, attaching a process symbol
to the junction means that the indicated process can bring about any of the subsequent states. In
the case of conjunctions, attaching a process symbol to the junction means that the indicated
process brings about all of the subsequent transitions. (Decomposition, therefore, is just a special
case of a conjunctive state transition schematic when the lines leading out from the junction indicate
the part-of relation.) Judicious use of the A operator once again can be used to indicate which, if

108

any, of the transitions in an (inclusive or exclusive) disjunctive or conjunctive schematic are

instantaneous.

As with composition, these logical schematics have “converses.” Specifically, where the symbol
“**is O, X, or &, the diagram in Figure 4-60 is also a schematic:

Figure 4-60. Converse Logical State Transition Schematic

The semantics in each case will be exactly the converse of the corresponding schematic above.
(Hence, in particular, composition schematics will be special cases of the converse conjunction
schematic.) It is conceivable that one object state might transition alternatively in many different

ways, as illustrated in Figure 4-61:

109

Figure 4-61. An OS Illustrating Possible Complex State Transition Logic

4.1.5.7 Hiding Object State Information

As with composition and classification schematics, it is possible to hide information in object state
schematics. That is, for certain purposes, it may often prove useful to collapse complex state
transition information about a given object into a single object state. For example, a series of state
transitions involved in the process of heating water from freezing to boiling is depicted in Figure
4-62:

110

Melt ice Heat to Heat to
40° C 100° C

Figure 4-62. State Transitions in a Heating Process

If, from a certain perspective, the intermediate transitions from ice to boiling water are irrelevant,
then these transitions can be hidden in a single state in which the only relevant state is the coarse-
grained Water being heated as depicted in Figure 4-63; again a double circle is used, only in

 this case an‘S’ indicates that the type of information that is hidden is state transition information:

Melt ice Heat water

Boiling
water

Figure 4-63. Hiding State Transition Information

The procedure for generating a coarse-grained schematic from a finer-grained schematic is not quite
algorithmic. In the example, the kind symbol for Water being heated can be thought of as
directly replacing the “schematic” of Figure 4-62, consisting of the middle three kind symbols and
their connecting links. However, the instantaneous transition schematic in Figure 4-62 had to be
replaced by an ordinary state transition schematic, and an appropriate label had to be found for the
attached process box. The exact nature of this alteration had to be determined by the nature of the
represented process and, hence, is, in general, a nonalgorithmic modeling decision.

4.1.5.8 Integrating Transition Schematics and Relation Schematics

OS's integrate naturally into ordinary IDEF5 schematics as the OS constructs are simple extensions

of the schematic language presented above; one can supplement any schematic built from the

111

original constructs with OS constructs as desired. An example of this was seen in Figure 4-53, in
which composition information and process information are integrated in a single generalized state
composition schematic. Another simple example of a schematic that integrates both the original

constructs and the OS constructs is seen in Figure 4-64.
\\

»
£
g
<
g
e
)
L

Figure 4-64. IDEF5 Schematic Involving OS Constructs

In this example, in addition to indicating the transition of a wet paint object to a dry paint object via
a drying process, relation symbols are used to indicate that the states Wet Paint and Dry Paint
are also related to other kinds, as indicated by the labels on the arrows. Again, despite the fact that
relation symbols are similar to the arrows used in transition schematics and point-of-transition
schematics, there is no danger of ambiguity, as the arrows in transition schematics always include

an open circle.

4.2 The IDEFS5 Elaboration Language

4.2.1 Overview

The IDEF5 Elaboration Language is a structured textual language that facilitates the direct capture
of ontologies. The power of the language derives from its theoretically sound foundation and its
expressively rich structure. The design of the IDEFS5 Elaboration Language was motivated by the
need to capture and represent complex ontology knowledge from a wide range of application

112

domains. While a graphical medium can help to visualize relatively simple ontology knowledge,
its expressive limitation does not allow complex information to be easily expressed (if at all).

Hence, the necessity for a more expressive medium was evident.

The perceived users of the IDEF5 Elaboration Language are knowledge engineers and systems
analysts in collaboration with domain experts. The language is intended to be used along with the
IDEF5 Schematic Language. The two languages will complement each other in a variety of

different usage scenarios.

* The system analyst and domain expert record an initial ontology with the IDEF5
Schematic Language. This initial knowledge is analyzed, then recast into the (more
structured) Elaboration Language format.24

* The ontology capture is done concurrently with the Elaboration Language and the
Schematic Language, with one language complementing the other throughout the
knowledge capture phase.

* The knowledge capture is done entirely with the Elaboration Language. The
Schematic Language is used mainly for communication and post-acquisition visual
analysis purposes.

As stated previously, the Elaboration Language can be used to capture the entire ontology.
Therefore, some of its constructs duplicate the functions of the Schematic Language and the
specification forms associated with the kinds, relations, properties, source material, source-
statements, and ontology-terms. In general, the capture of ontology information using Elaboration
Language constructs will be more difficult than using the Schematic Language and will require
good knowledge and understanding of the language.

Subsection 4.2.2 describes the valid sentences of the languages and gives examples of use for each
construct. For a detailed description of the language, refer to Appendix A, which contains the
grammar for the language. "

247f IDEFS is used with an automated tool, some of the recast could be done automatically using the information
represented in the schematic language.

113

4.2.2 Description of the Language

The syntax of the language uses a prefix notation and parentheses to delimit expressions. The
alphabet for the language consists of the standard alphanumeric and punctuation characters. The
core of the IDEF5 Elaboration Language, which enables the expression of axioms, is based on the
Knowledge Interchange Format (KIF) [Genesereth 92]. In this subsection, the term string will
refer to any finite sequence of characters and white spaces enclosed in double quotes. In the
following subsections, the words that are reserved words in the language (i.e., that have a specific

meaning in the language) will in appear in Courier font.
4.2.2.1 Constants, Variables, and Operators

The notion of a word is taken as a primitive of the IDEF5 Elaboration Language. A sentence in the
Janguage is composed of operators, constants, and, possibly, variables.
4.2.2.1.1 Constants

A constant is a word that is neither an operator nor a variable. Constants can be viewed as words
denoting objects in the world. In the IDEF5 Elaboration Language, constants are divided into the

following categories:
« Ontology Constants An ontology constant is a word denoting an ontology.
+ Logical Constants A logical cbnstant is a word denoting a truth value.
« Individual Constants An individual constant is a word denoting an individual.
« Kind Constants A kind constant is a word denoting a kind.

« First-Order-Relation Constants A first-order relation constant is a word
denoting a first order predicate (i.e., a relation that holds between individuals).

« Second-Order Relation Constants A second-order relation constant is a word
denoting a second-order predicate (i.e., a relation that holds between first order

relations).

« Relation Constants A relation constant is either a first-order predicate constant or

a second-order predicate constant.

« Function Constants A function constant is a word denoting a function.

114

* Attribute Constants An attribute constant is a word denoting an attribute.

* Property Constants A property constant is a word denoting a property.25

* Object-State Constant An object-state constant is a construct of the form
kind:property, where kind is a kind constant and property is a property constant.

* Source-Statement Constants A source-statement constant is a word denoting a
source-statement.

* Ontology-Term Constants An ontology-term constant is a word denoting a term
in the ontology.

* Source Constants A source constant is a word denoting a source.

Note Constants A note constant is a word denoting a note.

Examples of constants are Mary (an individual constant), Car (a kind constant), and Transitive
(a property constant). In the description of terms, definitions, and sentences (see Subsections
4.2.2.2-4.2.2.4), the term IDEF5-constant will be used to refer to any constant that is neither an
ontology-constant nor a logical constant. Constant may be prefixed by the name of an ontology
when necessary to disambiguate a term (e.g., manufacturing: :technology where
manufacturing is the name of an ontology and technology is the name of a kind that is part of
the manufacturing ontology).

4.2.2.1.2 Variables

A variable can be viewed as a one-place holder for a constant. In the IDEF5 Elaboration
Language, a variable is a word whose first character is either ? or #. A word whose first character
is ? is an individual variable (i.e., a one-place holder for an individual constant). A word whose
first character is # is an predicate variable (i.e., a one-place holder for a predicate constant).
Individual variables are used in quantifying over individual constants while predicate variables are
used in quantifying over predicate constants. Examples of variables are ?x, ?ind, #p, and
#pred. |

25Properties are treated separately from relations in the IDEFS5 elaboration language because of their roles as primary
concepts of the method. A property can be a first-order predicate if it applies to individuals, or a second-order
predicate if it applies to relations between individuals.

115

4.2.2.1.3 Operators

Operators are reserved words and characters that can be used to form complex expressions. The
operators that are part of the IDEF5 Elaboration Language are presented in this Subsection. For a
- better understanding of the use of these operators, refer to Subsections 4.2.2.2 and 4.2.2.3.

« Definition Operators These operators are used in forming definitions. There are
five definition operators in the Language: the def ine-relation operator is used
in forming definitions of second and third-order predicates; the define-function
operator is used in forming definitions of functions; the define-individual
operator is used in forming definitions of individuals; finally, the operators : = and
:arg-types are operators that are used in definitions (for more on these operators,
see Subsections 4.2.2.2 and 4.2.2.3).

 Term Operators These operators are used to form complex terms. There are six
such operators: listof, setof, if, cond, the, and setofall.

« Sentence Operators These operators are used to form complex sentences. The
IDEF5 Elaboration Language includes common logical operators (=, /=, not, and,
or, implies, equiv, forall, and exists), two modal operators (nec for
necessary and pos for possibly), and a number of IDEF5-Specific operators. For a

complete list of IDEF5-Specific operators, refer to Appendix A.
4.2.2.2 Terms

The IDEF5 Elaboration Language supports three types of expressions: terms, definitions, and
sentences. Terms are used to denote objects. Examples of some terms are shown in Figure 4-65.

Terms are divided into the following categories.

« IDEF5-Constants and Ontology Constants All constants except logical
constants are terms because they denote objects in the domain of discourse.

« Variables A variable is a term because it is a one-place holder for a constant.

« Attribute Term An attribute term is an expression of the form
(attribute-constant individual-constant). It denotes the object corresponding to
the value of the attribute denoted by attribute-constant when applied to individual-

constant. An example of an attribute term is the expression (age-of Mary) as in

116

Figure 4-65, in which age-of is an attribute constant and Mary is an individual
constant. If Mary is 25 years of age, then the term denoted by the form
(attribute-constant individual-constant) is the number 25.

Function Term A function term is an expression that contains a function constant
followed by one or more terms. It denotes the object corresponding to the value of the
function denoted by function-constant when applied to the argument term. For
example, the functional term (square 2) denotes the object 4.

List Term A list term consists of the 1istof operator and one or more terms.
The object denoted by a list term is the list of objects denoted by the given terms. The
list term example presented in Figure 4-65 denotes the list containing the objects
blue, red, and white.

Set Term A set term consists of the setof operator followed by one or more
terms. The object denoted by a set term is the set of objects denoted by the
corresponding terms. For example, the set term (setof employee manager)
denotes the set containing the objects employee and manager.

Logical Term A logical term can denote one of several objects based on some given
condition. It consists of either the i f operator followed by a sentence and one or two
terms, or the cond operator and a finite list of sentence-term pairs. In both cases, the
sentence preceding a term denoting an object O represents the condition that must be
met for the logical term to denote O. Two examples of logical terms are given in
Figure 4-65. The terms might be used to denote the child sizes for a pafticular line of
clothing. The first term denotes the constant medium if the attribute weight applied
to a child is strictly less than 120 pounds, and the constant large otherwise. In this
form of a logical term, the second term can be omitted. In such case, no default term
is specified if the condition is not met. The second term allows for a finer grain
characterization. It denotes the constant small if the attribute weight applied to some
child is strictly less than 80 pounds, medium if the attribute value is strictly less than
120 pounds, and large otherwise.

Quantified Term A quantified term is used to d=note an object (or a set of
objects) by specifying a condition that allows the identification of the object(s). It
involves either the the operator or the setofall operator. A quantified term using
the the operator denotes an object that satisfies the given condition, such as the first
example shown in Figure 4-65, which denotes the object that Paul married. A

117

quantified term using the setofall operator denotes the set of objects that satisfy the
given condition. An example of a quantified term using the setofall operator is the
second example shown in Figure 4-65, which denotes the set of all objects that are

married and are thirty years of age.

4)
Attribute Term (age-of Mary)

Functional Brm (square 2)
List Term (listof blue red white)
Set Term (setof employee manager)

Logical Term 1. (@(f (< (weight 7x)120) medium large)
2. (cond ((< (weight ?x) 80) small)
((< (weight 7x) 20) medium)
((>= (weight 7x) 120) large))

Quantified Term 1. (the (?x) (married Paul ?x))
2. (setofall (?x) (and (married 7x) (= (age ?x) 30))

Figure 4-65. Examples of Terms in the IDEFS Elaboration Language

4.2.2.3 Definitions

A definition is a type of expression used to define an individual, relation, or function constant. A
definition can be complete or partial. A complete definition is used when a constant can be defined
completely, while a partial definition is used when only limited information is available regarding a
constant. For example, the expression (define-individual origin := (listof 0 0)) defines the
constant origin to be the list (0,0), while the expression (define-function F (?x ?y))
specifies only that the function F takes two arguments. A constant may have only one complete

definition but several partial definitions.

There are three types of definitions illustrated in Figure 4-66. An individual definition is used to
define an individual. In a complete individual definition, the name of the individual and a term
defining the individual must be specified. In a partial definition, only the name of the individual
must be specified. Optionally, a sentence can be included in a partial definition to restrict the

definition of the individual.

118

A function definition is used to define a function. In a complete function definition, the name of
the function, a list of variables (the number of variables in the list specifies the arity of the
function), and a term that defines the function must be given. The types of the arguments expected
by the function and the type of argument the function returns can also be specified. They are
specified as a list whose elements are lists of kinds or object-states. Each list represents a legal set
of argument types for the function. The last element in a list specifies the type of argument
returned by the function. In a partial function definition, only the name of the function and a list of
variables must be specified. Optionally, the types of the arguments expected by the function and a
sentence restricting the definition of the function can be added.

Constant Complete | Partial
/Definitions
Individual (define-individual origin (define-individual sun
:= (listof 0 0)) (rotates-around earth sun))
Function (define-function integral-part (?x) (define-function duration (?x)
:argument-type ((real integer)) :argument-type ((process time-
:= (the (?y) (and (integer ?y) interval))
(=< 7y %) (number (duration ?x)))
CRVACHSY)))
Relation (define-relation below (?x ?y) (define-relation daughter-of (7x ?y)
:= (above 7y 7x)) :argument-type ((female parent))
(=> (daughter-of ?x ?y)
(child-of 7x ?y)))

Figure 4-66. Definitions in the IDEF5 Elaboration Language

A relation definition is used to define a relation. A complete relation definition contains the namc
of the relation, a list of variables (the number of variables in the list specifies the arity of the
relation), and a sentence defining the relation completely. Optionally, the kinds of instances that
can stand in the relation are specified (in the form of a list whose elements are lists of kinds or
object-states). In a partial relation definition, only the name of the relation and a list of variables
must be specified. Optionally, the kinds of instances that can stand in the relation (in the form of a
list of kinds or object-states) and a sentence restricting the definition of the relation can be added.

119

4.2.2.4 Sentences

A sentence in the IDEFS5 Elaboration Language expresses some fact about the constants in the
ontology. There are seven types of sentences in the language, some of which are illustrated in

Figure 4-67.
« Logical Constants A logical constant is a word denoting a truth value.
« Equation An equation is an expression consisting of the operator = and two terms.

+ Inequality An inequality is an expression consisting of the symbol /= and two

terms.

« Relation Sentence A relation sentence is an expression consisting of a relation

constant or a function constant followed by one or more terms.

 Logical Sentence A logical sentence consists of a logical operator followed by the
appropriate number of sentences. A logical sentence with the not, pos, or nec
operator contains only one sentence for argument, while any other logical sentence has

two sentences for argument.

« Quantified Sentence There are two types of quantified sentences: universally
quantified sentences and existentially quantified sentences. A universally quantified
sentence consists of the operator forall followed by one or more variables enclosed
in parentheses and a sentence. Such a sentence is used to make a general statement
about some class of objects. The universally quantified sentence in Figure 4-67, for
example, states that all humans that are at least twenty-one years of age are adults. An
existentially quantified sentence consists of the operator exists followed by one or
more variables enclosed in parentheses and a sentence. An existentially quantified
sentence allows the declaration of the existence of an object that possesses certain

properties.

« IDEF5-Specific Sentence An IDEF5-specific sentence is a sentence that enables
the introduction of constants according to the concept structure of the IDEFS5 method.

This type of sentence is described in detail in Subsection 4.2.2.5.

120

(Equation (= (age-of Paul) 30))
Inequality (/= (gas-inileage truck) (gas-mileage car))

Relational sentences (married-to Suzy James)
Logical sentence (and (= (age Paul) 30) (not (married-to Paul Suzy)))

Quantified sentences (forall (7x) (=> (and (human 7x) (> (age 7x) 21))

(adult ?x))) J

-

Figure 4-67. Examples of Sentences in the IDEF5 Elaboration Language
4.2.2.5 IDEFS5-Specific Sentences

There are eleven categories of IDEF5-specific sentences, each category corresponding to a concept
in the IDEF5 method.

4.2.2.5.1 Ontology Constructs

There are eight ontology constructs, each of which provides a construct to express some
information about an ontology. The nine constructs are explained in this Subsection and examples
of some of the constructs are shown in Figure 4-68.

* Ontology Sentence This type of sentence is used to declare an ontology. An
ontology declaration consists of the operator I5-ontology followed by an ontology
constant or an individual variable.

* Context Sentence This type of sentence is used to declare the context in which an
ontology is captured. A context declaration consists of the operator
I5-ontology-context followed by an ontology constant or an individual
variable and a string,

* Viewpoint Sentence This type of sentence is used to declare the viewpoint
adopted to describe an ontology. A viewpoint declaration consists of the operator
I5-ontology-viewpoint followed by an ontology constant or an individual
variable and a string.

121

Purpose Sentence This type of sentence is used to declare the purpose in capturing .
an ontology. A purpose declaration consists of the operator
I5-ontology-purpose followed by an ontology constant or an individual

variable and a string.

Project Sentence This type of sentence is used to declare the project of which the
ontology capture effort is a part. A project declaration consists of the operator

I5-ontology-project followed by an ontology constant or an individual

variable and a string.

Analyst Sentence This type of sentence is used to declare the analyst responsible
for the capture of the ontology. An analyst declaration consists of the operator
I5-ontology-analyst followed by an ontology constant or an individual

variable and a string.

Reviewer Sentence This type of sentence is used to declare the person
responsible for reviewing the ontology. A reviewer declaration consists of the
operator I5-ontology-reviewer followed by an ontology constant or an

individual variable and a string.

In Ontology Sentence This type of sentence is used to declare that a constant is
part of an ontology. It consists of the operator I5-in-ontology followed by an
IDEF5 constant or variable and an ontology constant or an individual variable.

122

(I5-ontology shop_floor_control_system)

(I5-ontology-context shop_floor_control_system “This ontology is focused
on understanding what knowledge is used to manage jobs and
manufacturing resources in a job shop environment. The ontology will
also describe key resource constraints that the shop floor control system
must take into account.”)

(I5-ontology-purpose shop_floor_control_system “The purpose of this
ontology is to establish what information is actually required in a shop
floor control system in a job shop environment. It will enable future
analysts to determine what information and knowledge is critical to the
success of controlling resources and jobs on a shop floor.”)

(I5-ontology-viewpoint shop_floor_control_system “This ontology is
described from the viewpoint of the cost center schedulers working in
different cost centers throughout a company’s precision gear

L manufacturing facility.”)

_/

Figure 4-68. Example of Ontology Constructs in the IDEF5 Elaboration
Language

4.2.2.5.2 Kind Constructs

There are nine kind constructs, each of which provides a construct to express some information
about a kind. The seven constructs are described in this Subsection and examples of some of the
constructs are shown in Figure 4-69.

* Kind Sentence This type of sentence is used to declare a kind and consists of the
operator I5-kind followed by a kind constant or a predicate variable. The example
in Figure 4-69 shows a kind sentence which declares that drilling is a kind in a
particular ontology.

* Kind-Property Sentence This type of sentence is used to associate a property
with a kind. A property sentence consists of the operator I5-kind-property
followed by a kind constant or predicate variable, a property constant or predicate
variable, and, optionally, the reserved words def ining and essential. The
example shown in Figure 4-69 shows that the property uses_drill_bit (presumably
declared beforehand) is a defining property of the kind drilling.

123

Kind-Attribute Sentence This type of sentence is used to associate an attribute
with a kind. An attribute sentence consists of the operator I5-kind-at tribute
followed by a kind constant or predicate variable and an attribute constant or predicate
variable. The kind-attribute sentence shown in Figure 4-69 declares that
drill_bit_type is an attribute of the kind drilling. It is assumed that
drill_bit_type was previously declared to be an attribute.

Kind-Description Sentence This type of sentence is used to associate a
description string with a kind. A kind description sentence consists of the operator

I5-kind-description followed by a kind constant or predicate variable and a

string.

Kind-Synonyms Sentence This type of sentence is used to declare the ontology-
terms that are synonyms to a kind constant. A kind synonyms declaration consists of
the operator I5-kind-synonyms followed by a kind constant or predicate variable

and one or more ontology-term constants or individual variables enclosed in

parentheses.

Referenced-Relations Sentence This type of sentence is used to declare the
relations in which a kind is involved. A referenced-relations declaration consists of the
operator I5-referenced-relations followed by a kind-constant or predicate
variable and one or more relation constants or predicate variables enclosed in

parentheses.

Subkind Sentence This type of sentence is used to declare a kind as a subkind of
another. A subkind sentence consists of the operator I5-subkind-of followed by

a kind-constant or predicate variable and a kind-constant or predicate variable.

Object-State Sentence This type of sentence is used to declare an object state and
consists of the operator I5-object-state followed by an object-state constant or

a predicate variable.

Process Sentence This type of sentence is used to declare a process and consists

of the operator I5-process followed by a process constant or a predicate variable.

124

((IS-kind drilling)

(I5-kind-description drilling “Drilling is a type of cutting
operation.”)

(I5-kind-property drilling uses_drill_bit defining)

(I5-kind-attribute drilling drill_bit_type)

_ J

Figure 4-69. Examples of Kind Constructs in the IDEF5 Elaboration Language

4.2.2.5.3 Property Constructs

Property constructs are used to provide information about properties. There are three types of
property constructs. Some examples of property constructs are given in Figure 4-70.

* Property Sentence A property sentence is used to declare a property. It consists of
the operator I5-property followed by a property constant or a predicate variable.
The property sentence shown in Figure 4-70 declares the property
made_in_Detroit.

* Property-Description Sentence This sentence can be used to describe a property.
It consists of the operator I5-property-description followed by a property
constant or a predicate variable and a string.

* Has-Property Sentence This sentence is used to declare that an individual
possesses a given property. It consists of the operator I5-has-property
followed by an individual constant or variable and a property constant or predicate
variable. The has-property sentence shown in Figure 4-70 declares the property
made_in_Detroit to be a property of the individual CB-J27-S121.

4.2.2.5.4 Individual Constructs

Individual constructs are used to declare information about individuals. There are three individual
constructs in the IDEF5 Elaboration Language. Examples of individual constructs are given in
Figure 4-70.

* Individual Sentence this sentence is used to declare individuals. It consists of the
operator I5-individual followed by an individual constant or variable. The

125

individual sentence shown in Figure 4-70 declares CB-J27-S121 to be an

individual.

« Individual-Description Sentence This sentence is used to associate a
description string with an individual. It consists of the operator
15-individual-description followed by an individual constant or variable

and a string.

« Is-of-kind Sentence This sentence is used to declare that an individual is of a
given kind. It consists of the operator I5- is-of-kind followed by an individual
constant or variable and a kind constant or a predicate variable. The is-of-kind
displayed in Figure 4-70 declares the individual CB-J27-S121 to be of kind car-

body.

qb'-individual CB-127-S121) w
(I5-property made_in_Detroit)

(I5-has-property CB-J27-S121 made_in_Detroit)

k(IS—is-of—kind CB-J27-S121 car-body))

Figure 4-70. Examples of Individual and Property Constructs

4.2.2.5.5 Attribute Constructs

Attribute constructs are used to provide information about attributes. There are three types of

attribute constructs.

« Attribute Sentence This sentence is used to declare attributes. It consists of the
operator I5-attribute followed by an attribute constant or a predicate variable and
an attribute type. An attribute type may be one of the following: a list term, a set term,
or a kind constant. An example of an attribute sentence is the sentence (I5-attribute
dimensions (listof real)) which declares dimensions to be an attribute of type a

list of real numbers.

« Attribute-Description Sentence This sentence is used to describe an attribute. It
consists of the operator I5-attribute-description followed by an attribute

constant or a predicate variable and a string.

126

* Attribute-Applies-to Sentence This sentence is used to declare that an attribute
applies to a given individual. It consists of the operator
I5-attribute-applies-to followed by an attribute constant or a predicate
variable and an individual constant or variable. An example of an attribute-applies-to
sentence is the sentence (IS-attribute-applies-to dimensions CB-J27-S121)
which declares dimensions to be an attribute of the individual CB-J27-S121.

4.2.2.5.6 Relation Constructs

Relation constructs are used to provide information about relations. There are four relation
constructs, some of which are illustrated in Figure 4-71.

* Relation Sentence This sentence is used to declare relations. It consists of the
operator I5-relation followed by a relation constant or predicate variable. The
relation sentence shown in Figure 4-71 declares part-of to be a relation.

* Relation Arity Sentence This sentence is used to declare the arity of a relation.
It consists of the operator I5-relation-arity followed by a relation constant or
predicate variable and a positive integer or individual variable. The relation sentence
shown in Figure 4-71 declares part-of to be a relation of arity 2.

* Relation-argument-type Sentence This sentence is used to declare the kind of
individuals that can stand in a relation. It consists of the operator
I5-rel-arg-type followed by a relation constant or predicate variable and a list
whose elements are lists of kinds and/or predicate variables. Each list of kinds
represents a set of legal argument kinds for the relation. For example, the
relation-argument-type sentence given in Figure 4-71 declares that instances of the
kind spark-plug can stand in the part-of relation with instances of the kind engine, and
that instances of the kind engine can stand in the part-of relation with instances of the
kind car.

* Relation Description Sentence This sentence is used to describe a relation. It
consists of the operator I5-relation-description followed by a relation

constant or a predicate variable and a string.

127

(I5-relation part-ot)
(I5-relation-arity part-of 2)
(I5-rel-arg-type part-of ((spark-plug engine) (engine car)))

Figure 4-71. Examples of Relation Constructs

4.2.2.5.7 Function Constructs

Function constructs are used to provide information about functions. There are four function

constructs, some of which are illustrated in Figure 4-72.

« Function Sentence This sentence is used to declare functions. It consists of the
operator I5-function followed by a function constant or predicate variable. The
example in Figure 4-72 declares warranty-exp to be a function.

« Function-Arity Sentence This sentence is used to declare the arity of a function
(i.e., the number of arguments that the function can take). It consists of the operator
I5-function-arity followed by a function constant or predicate variable and a
positive integer or individual variable. The example in Figure 4-72 declares that the

function warranty-exp takes one argument (i.e., is of arity 1).

« Function-Argument-Type Sentence This sentence is used to declare the
argument types for a function. It consists of the operator I5-fct-arg-type
followed by a function constant or predicate variable and a list of kinds and/or
predicate variables. The example in Figure 4-72 declares that the function warranty-

exp takes an instance of date for argument and returns an instance of date.

« Function-Description This sentence is used to describe a function. It consists
of the operator I5-function-description followed by a function constant or a

predicate variable and a string.

128

(.)

(I5-function warranty-exp)
(I5-function-arity warranty-exp 1)

(I5-function-description warranty-exp “This function
returns the expiration date of the warranty on a car battery
given the date shown on the battery.”)

(I5-fet-arg-type warranty-exp ((date date))
N Y,

Figure 4-72. Examples of Function Constructs

4.2.2.5.8 Source Constructs

Source constructs are used to provide information about source materials. There are nine source
constructs, some of which are illustrated in Figure 4-73.

* Source Sentence A source sentence is used to declare a source material. It
consists of the operator I5-source followed by a source constant or an individual
variable. An example of a source sentence is given in Figure 4-73. The sentence
declares Chang_TC as a source material.

* Source-Description Sentence A source description sentence is used to describe
a source material. It consists of the operator I5-source-description followed
by a source constant or an individual variable and a string.

* Collected-from Sentence This sentence is used to declare who the source
material was collected from. It consists of the operator I5~-collected-from
followed by a source constant or an individual variable and a string.

* Collected-by Sentence This sentence is used to declare by whom the source
material was collected. It consists of the operator I5-collected-by followed by a
source constant or an individual variable and a string.

* Source-Abstract Sentence This sentence is used to give an abstract of the source
material. It consists of the operator I5-source-abstract followed by a source
constant or an individual variable and a string. An example of a source-abstract
sentence is given in Figure 4-73. The sentence specifies the source-abstract for the
source material Chang_TC.

129

o Source-Purpose Sentence This sentence is used to declare the purpose of a
source material. It consists of the operator I5-source-purpose followed by a
source constant or an individual variable and a string. An example of a source-

purpose sentence is given in Figure 4-73. The sentence specifies the purpose of using

the source material Chang_TC.

+ Support-Ontology-Terms Sentence This sentence is used to declare the
ontology-terms that are supported by a source material. It consists of the operator
I5-support-ontology-term followed by a source constant or an individual

variable and one or more ontology-terms or individual variables enclosed in

parentheses.

+ Support-Statement Sentence This sentence is used to declare the source-
statements in the ontology that are supported by a source material. It consists of the
operator I5-support-statement followed by a source constant or an individual
variable and one or more source-statements or individual variables enclosed in
parentheses. An example of a support-statement sentence is given in Figure 4-73.
The sentence declares the statements S1, S2, and S3 to be supported by the source
material Chang_TC.

« Has-Supporting-Sources Sentence This sentence is used to declare that an
IDEFS5 constant is supported by one or more source materials. It consists of the
operator 15-has-supporting-sources followed by an IDEFS5 constant or a

variable and one or more source constants or an individual variable enclosed in

parentheses.

r(IS—source Chang_TC))

(15-source-purpose Chang_TC “Description of general terms in
manufacturing domains.”)

(I5-source-abstract Chang_TC “Role of computers in the
planning, control and scheduling of manufacturing
processes; computer controlled manufacturing systems with
emphasis on the design and integration of hardware and
software systems.”)

(15-support-statement Chang_TC (S1 S2 S3)

\- _/

Figure 4-73. Examples of Source Constructs

130

4.2.2.5.9 Source-Statement Constructs

Source-statement constructs are used to provide information about source-statements. There are
four such constructs, some of which are illustrated in Figure 4-74.

* Source-Statement Sentence This sentence is used to declare a source-statement.

constant or an individual variable. An example of a source-statement sentence is given
in Figure 4-74. The sentence declares design_questions as a source-statement.

* Source-Statement-Description This sentence provides the text associated with a
source-statement and/or provides a description of the source-statement. It consists of
the operator I5-source-statement-description followed by a source-
statement constant or an individual variable and a string. An example of a source-
statement-description sentence is given in Figure 4-74. The sentence provides the text
associated with the design_questions source-statement.

* Status Sentence This sentence is used to declare the status of a source-statement. It
consists of the operator I5-status followed by a source-statement constant or an
individual variable and one of the following operators: active-original, active-derived,
retired-original, or retired-derived. An example of a status sentence is given in
Figure 4-74. The sentence declares the status of the design_questions source-

statement as active and original.

:

* Has-Original-Statement Sentence This sentence is used to declare the original
source-statement of a derived source-statement. It consists of the operator
I5-has-original-statement followed by a source-statement constant or an
individual variable and a source-statement constant or individual variable.

\

(I5-source-statement design_questions)

(I5-source-statement-description design_questions “Design
questions should consider the most appropriate material
removal process which depends on volume, batch size,
accuracy, finish, materials, and cost constraints.”)

(I5-status design_questions active/orginal)

\ _J

Figure 4-74. Examples of Source-statement Constructs

It consists of the operator I5-source-statement followed by a source-statement
131

4.2.2.5.10 Ontology-Term Constructs

Ontology-term constructs are used to provide information about ontology-terms. There are three

such constructs, some of which are illustrated in Figure 4-75.

 Ontology-Term Sentence This sentence is used to declare an ontology-term. It
consists of the operator I5-ontology-term followed by an ontology-term
constant or an individual variable. An example of a ontology-term sentence is given in

Figure 4-75. The sentence declares Perishable_Tooling as an ontology-term.

» Ontology-Term description Sentence This senterice is used to describe an
ontology-term and consists of the operator I5-ontology-term-description
followed by an ontology-term constant or an individual variable and a string. An
example of an ontology-term sentence is given in Figure 4-75. The sentence

describes the ontology-term Perishable_Tooling.

« Used-in-Statements Sentence This sentence is used to declare the statements
used by an ontology-term. It consists of the operator I5-used-in-statements
followed by an ontology-term constant or an individual variable and one or more
source-statement constant or individual variables enclosed in parentheses. An example
of an ontology-term sentence is given in Figure 4-75. The sentence declares that the

ontology-term Perishable_Tooling is used in the source-statement SS39.

~

(I5-ontology-term Perishable_Tooling)

(15-ontology-term-description Perishable_Tooling “Tools
with a limited usable life due to wear.”) :

(I5-used-in-statements Perishable_Tooling (SS39))
. J

Figure 4-75. Examples of Ontology-Term Constructs

4.2.2.5.11 Note Constructs

Note constructs are used to provide information about notes. There are three such constructs and

they are described as follows.

« Note Sentence This sentence is used to declare a note. It consists of the operator

I5-note followed by a note constant or an individual variable.

132

e Note-Description Sentence This sentence is used to describe a note. It consists
of the operator I5-note-description followed by a note constant or an
individual variable and a string.

* Has-Note Sentence This sentence is used to “attach” a note to an IDEFS
constant. It consists of the operator I5-has-note followed by an IDEF5 constant

or a variable and a note constant or an individual variable.
4.2.2.6 Predefined Relations

The relation constants listed in this Subsection are predefined in the language and, hence, can be
used in sentences.

* part-of This relation constant denotes the “part of” relation. It is partially defined
as a first-order relation of arity 2 and takes two instances of kinds as arguments.

* transitions-to This relation constant denotes the “transitions to” relation that can be
found in a Basic State Transition Schematic where it is represented as an object-state
transition link without a process symbol attached to it. It is partially defined as a first-
order relation of arity 2 and takes two instances of kinds as arguments.

* transitions-during This relation constant denotes the “transitions during” relation
that can be found in the Basic State Transition Schematics where it is represented as a
state transition link without a process symbol attached to it. It is partially defined as a
first-order relation of arity 3 and takes two instances of kinds and an instance of a
process as arguments.

* inst-transitions-to This relation constant denotes the “transitions instantaneously
to” relation that can be found in the Basic State Transition Schematics where it is
represented as an instantaneous state transition link without a process symbol attached
toit. It is partially defined as a first-order relation of arity 2.

* inst-transitions-during This relation constant denotes the “transitions
instantaneously during” relation that can be found in the Basic State Transition
Schematics where it is represented as an instantaneous state transition link with a
process symbol attached to it. It is partially defined as a first-order relation of arity 3
and takes two instances of kinds and an instance of a process as arguments.

133

s-transitions-to This relation constant denotes the “strongly transitions to” relation
that can be found in the Strong Transition Schematics where it is represented as a
strong transition link without a process symbol attached to it. It is partially defined as
a first-order relation of arity 2 and takes two instances of kinds as arguments.

s-transitions-during This relation constant denotes the “strongly transitions
during” relation that can be found in the Basic State Transition Schematics where it is
represented as a strong state transition link with a process symbol attached to it. It is
partially defined as a first-order relation of arity 3 and takes two instances of kinds

and an instance of a process as arguments.

inst-s-transitions-to This relation constant denotes the instantaneous
s-transitions-to relation. It is partially defined as a first-order relation of arity 2

and takes two instances of kinds as arguments.

inst-s-transitions-during This relation constant denotes the instantaneous
s-transitions-to relation. It is partially defined as a first-order relation of arity 3
and takes two instances of kinds and an instance of a process as arguments.

in-state-throughout This relation constant is used to specify that an individual
stays in a given state throughout a process. It is partially defined as a first-order
relation of arity 2 and takes an instance of a kind and an instance of a process as

arguments.

134

Appendices, Bibliography, Glossary

135

Appendix A: IDEFS Relation Library

This appendix describes the IDEFS relation library. The library is a knowledge-rich repository
made of a set of definitions and characterizations of commonly used relations. It provides a
repository of formally defined and characterized relations that can be reused and customized.
The motivation for this library developed from an analogy with software engineering. Often in
software development, the same kinds of routines are used again and again in different programs
by (in general) different programmers. In earlier times, great amounts of time and effort were
lost for lack of the ability to reuse work. Recognition of this problem over time has led to the
development of extensive libraries that contain frequently used routines which programmers can
simply call straight into their programs. Such libraries have eliminated the need to duplicate the
functionality of existing code. The development of ontologies will face the same sort of problem
(and solution). The same or similar relations will likely appear in a number of different
ontologies. A library of relations such as the one presented here will enable modelers to reuse
and customize relations that have been defined in previously captured ontologies. The library
can also be used as a reference for the different ways to define and characterize relations and
illustrative examples of the use of the IDEF5 elaboration language. All definitions and
characterizing axioms in the library are written using the IDEF5 elaboration language. Finally,
the library is extensible in that any relation that has been formally defined and characterized may
be added to it.

The IDEFS library relations are grouped into the following seven categories.

Classification Relations (including class inclusion relations).
Meronymic Relations.

Temporal Relations.

Spatial Relations.

Influence Relations.

Dependency Relations.

Nk W=

Case Relations.
Figure A-1 illustrates the IDEFS relations categorization.

This appendix is organized in the following manner. For each type of relation shown in
Figure A-1, an overview describing the relation type is given, the formal definitions of the
relations that are members of that type are provided, and the relations are formally characterized.

Most axioms that are part of the characterizations are followed by a brief explanation. The

136

formal definitions are numbered using the letter “D” followed by a numeral, while axioms are
numbered using the letters “Ax” followed by a numeral.

IDEFS Relation :
Classification / i Dependency

Relation Relation
Case Influence
Relation Relation
Meronymic Spatial
Relation Relation
Temporal
Relation
member-of

Figure A-1. Overview of the IDEFS5 Library Relations

A.1 Classification Relations

A.1.1 Overview

The classification relations are targeted at capturing the intuitive semantics of the is-a relation
and include the categorization relations kind and type and the class inclusion relations. A
categorization relation allows the specification that an object belongs to a certain kind or type.
At the most general level, a class inclusion relation relates two types (or kinds) when one type
subsumes the other (relations subkind and subtype). At a more detailed level, the meaning of .
class inclusion relation can be determined from knowledge of the basic nature of related objects
and the context of use of the relation. Five specialized class inclusion relations, which were
chosen for their prominence in Al research results, are provided [Winston, et. al. 8-7]. The
distinction between the five more specific class inclusion relations is based on the basic nature of
the related kinds or types as follows.

* Functional-Inclusion This relation is used to relate kinds whose relationship
is functional in nature. A chair is-a piece of furniture and A hammer is a tool
are examples of functional-inclusion relations.

137

State-Inclusion This relation is used to relate kinds whose relationship involves
a state or condition. Polio is a disease and Hate is an emotion are examples of

state-inclusion relations.

Activity-Inclusion This relation is used to relate kinds whose relationship
involves an activity. Tennis is a sport and Murder is a crime are examples of

activity-inclusion relations.

Action-Inclusion This relation is used to relate kinds whose relationship involves
an action. Lecturing is a form of talking and Frying is a form of cooking are

examples of functional-inclusion relations.

Perceptual-Inclusion This relation is used to relate kinds whose relationship
is perceptual in nature. A catisa mammal and An apple is a fruit are examples

of perceptual-inclusion relations.

A.1.2 Relation Definition

As explained in Section 2, a kind contains instances that are similar in some, possibly arbitrary,
way. It is required only that an object possess at least one defining property of the kind for it to
be an instance of that kind. A type, on the other hand, regroups objects that share the same
properties. An object is an instance of a type if and only if it has all the properties of the type.
This section contains the formal definitions of the classification relations. The five more specific

class inclusion relations can take either two kinds or two types as arguments.

D.1

D.2

D.3

D4

D.5

(defrelation type (#t)

(defrelation subkind-of (#x #y)
:argument-type ((I5-kind I5-kind)))

(defrelation subtype-of (#x #y)
:argument-type ((type type)))

(defrelation functional-inclusion (?x ?y)
-argument-type ((I5-kind I5-kind) (type type)))

(defrelation state-inclusion (?x ?y)
:argument-type ((I5-kind I5-kind) (type type)))

138

D.6 (defrelation activity-inclusion (?x ?y)
:argument-type ((I5-kind I5-kind) (type type)))

D.7 (defrelation action-inclusion (?x ?y)
:argument-type ((I5-kind I5-kind) (type type)))

D.8 (defrelation perceptual-inclusion (?x 7y)
:argument-type ((I5-kind IS-kind) (type type)))

A.1.3 Relation Characterization

In this section, the relations defined in Subsection A.1.2 are characterized. Axioms Ax.1 to Ax.5
are general statements about the classifications relations. Axioms Ax.6 to Ax.8 state some of the
properties of the classification relations. Properties that are common to all classification relations
need only be stated for the kind and subkind relations because all other relations are
specializations of these two relations.

A.1.3.1 General axioms

Ax.1 (forall (?x #y)
(=> (and (I5-kind #y) (instance-of ?x #y))
(exists (#p) (and (I5-kind-property #y #p defining)
(I5-has-property ?x #p)))))

Ax.2 (forall (?x #y)
(<=> (and (type ?y) (I5-is-of-kind ?x #y))
(forall (?p) (= > (I5-kind-property #y #p defining) (I5-has-property ?x #p))))

Ax.3 (forall (#x) (=> (type #x) (kind #x)))
- “Type” is a specialization of “kind,” hence every type is also a kind.

Ax.4 (forall (#x #y #p)

(=> (and (subtype #x #y) (I5-kind-property #y #p defining))
(I5-kind-property #x #p defining)))

- If atype T1 is a subtype of a type T2 and P is a defining property for T2, then P is also a
defining property for T1.

139

Ax.5 (forall (#x #y #p) (=> (and (subkind #x #y) (I5-kind-property #y #p essential))
(I5-kind-property #x #p essential)))

- If a kind K1 is a subkind of a kind K2 and P is an essential property of K2, then P is also an
essential property of K1.

Ax.6 (forall (#x #y) (=> (subkind #x #y)
(forall (72) (=> (is-of-kind 7z #x) (is-of-kind ?z #y)))))

- If a kind K1 is a subkind of a kind K2, then all instances of K1 are also instances of K2. Note
that from this axiom and Axiom Ax.1, it can deduced that the same axiom holds for subtypes.

Ax.7 (forall (#x #y)
(=> (or (functional-inclusion #x #y) (activity-inclusion #x #y)
(state-inclusion #x #y) (action-inclusion #x #y)
(perceptual-inclusion #x #y) (subtype #x #y))
(subkind #x #y)))

- The subtype, functional-inclusion, activity-inclusion, state-inclusion, action-inclusion, and

perceptual-inclusion relations are all specializations of the subkind relation.

A.1.3.2 Reflexivity

A relation has the property of reflexivity if evéry object stands in the relation with itself. For
example, the relation knows, which takes humans as arguments, is reflexive because each human

knows himself/herself. The following axiom states that the subkind relation is reflexive.
Ax.8 (forall (#x) (subkind #x #x))

A.1.3.3 Antisymmetry?

A relation R is antisymmetric if the fact that an object A is related to an object B through R and
B is also related to A through R implies that A and B denote the same object. An example of an
antisymmetric relation is the relation 2 (greater than or equal to). If x is greater than or equal to

26A relation R is symmetric if for every objects A and B, such that A is related to B through R, B is also related to A
through R.

140

y and y is greater than or equal to x, then x is equal to y. The following axiom states that the
subkind relation is antisymmetric.

Ax.7 (forall (#x #y)
=> (and (subkind #x #y) (subkind #y #x)) (= #x #y)))

A.1.3.4 Transitivity

A relation R is transitive if for all objects A, B, and C, such that A is related to B through R and
B is related to C through R, A is related to C through R. An example of a transitive relation is
the 2 relation. If A>B and B2C, then A>C. The following axiom states that the subkind

relation is transitive.

Ax.9 (forall (#x #y #z) (=> (and (subkind #x #y) (subkind #y #z)) (subkind #x #z)))

A.2 Meronymic Relations

A.2.1 Overview

Meronymic relations are used to describe part-of relationships and are introduced in Section 4.
Figure A-2 shows a partial taxonomy of meronymic relations. Physical and conceptual part of
relationships are first distinguished. There are four physical part of relations. The place-within
relation is used to relate geographical objects. It relates a geographical object and the area where
the object is located. Examples of the use of this relation are The Everglades are part of
Florida and The Alps are part of Europe. The component-of relation is used to relate an
object and one of its components. The object is considered an integral whole that is divided into
its components. Examples of the use of this relation are A chapter is a part of a book and A
wheel is a part of a bicyclé. The stuff-of relation is used to describe that an object is partly
made of some material. Examples of the stuff-of relation are A bike is partly steel and A chair
is partly wood. The portion-of relation describes the relationships between two similar objects,
one being included in the other. Examples of portion-of relations are A slice is part of a pie and
A yard is part of a mile.

There are two conceptual part-of relations. The member-of relation describes the fact that an
object is a member of some collection. It is important to note that this relation differs from the
classification relations described in Section 4. The member-of relation does not require any
similarity between the members of a collection of objects except their membership to that

141

collection. Examples of the use of the member-of relation are Cards are part of a deck and A
tree is part of a forest. The activity-within relation describes the features or phases of
activities. Examples of the use of that relation are Paying is part of shopping and Dating is

part of adolescence.

A.2.2 Relation Definition

In this subsection, the meronymic relations described in Subsection A.2.1 are formally defined.
Most definitions consist simply of the declaration of the relation. The inverse relations of the

relations shown in Figure A-2 are also defined.

Included-By
Included-Spatially Included-Meronymically Included-Descriptively
Physical C tual
Part-Of Part-Of

Place-Within /
Comp()nent_Of Portion-Of
Stutf-Of

Member-Of Activity-Within

Specialization-Of
—

Figure A-2. A Partial Taxonomy of Meronymic Relations
D.9 (defrelation member-of (?x 7y))
D.10 (defrelation has-member (?x ?y) := (member-of ?y 7x))
- The relation has-member is defined as the inverse relation of the relation member-of.
D.11 (defrelation activity-within (?x 7y))
D.12 (defrelation contains-activity (?x ?y) := (activity-within ?y 7x))

- The relation contains-activity is defined as the inverse relation of the relation activity-within.

142

D.13 (defrelation rnade-qf (?x ?y) :=> (material ?y))

D;14 (defrelation makes-up (?x ?y) := (made-of 7y X))

- The relation makes-up is defined as the inverse.relation of the relation made-of.
D.15 (defrelation stuff-of (7x ?y) :=> (material ?y))

D.i6 (defrelation makes-in-part (?x 7y) := (stuff-of 7y %))

- The relation makes-in-part is defined as the inverse relation of the relation stuff-of.

D.17 (defrelation portion-of (?7x ?y)
(forall (?x ?y ?z) (exists (?z) (and (not (equal ?x ?z) (portion-of 7z N

- If x is a portion of y, then there exists some other material z of which x is composed.

D.18 (defrelation has-portion (?x ?y) := (portion-of 7y %))

- - The relation ﬁas-portion is defined as the inverse relation of the relation portion-of.

D.19 (défrelatién component-of (?x ?7y))

D.20 | (defrelation has-component (?x ?y) = (component-of ?y 7))

- The relation has-component is defined as the inverse relation of the relation component-of.
D.21 (defrelation place-within (?x ?y))

D.22 (defrelation contaiﬂs—place (?x ?y) := (place-within 7y X))

- The relation contains-place is defined as the inverse relation of the relation place-within.

D.23 (defrelation physical-part-of (?x ?y)
:=(or (component-of 7x ?y) (stuff-of ?x ?y) (portion-of ?x ?y) (place-within ?x 1A%));

- The relations component-of, stuff-of, portion-of, and place-within are all physical-part-of
relations and there exists no other physical-part-of relation.

D.24 (defrelation conceptual-part-of (?x ?y)
:= (or (member-of 7x ?y) (feature-of ?x)

143

- The relations member-of and feature-of are all conceptual-part-of relations and there exists no

other conceptual-part-of relation.

D.25 (defrelation part-of (?x 7y)
:= (or (physical-part-of 7x 7y) (conceptual-part-of 7x 7y)))

- The part-of relations consist of the physical-part-of relations and the conceptual part-of

relations.

A.2.3 Relation Characterization

In this subsection, the relations defined in Subsection A.2.2 are characterized. The
characterization is organized according to common properties of relations.

A.2.3.1 Mutual Exclusivity

A set of n-ary relations (i.e., relations with n arguments) has the property of mutually exclusivity
if, given n objects, either the objects stand in none of the relations or they stand in exactly one
relation. The axioms below formally state that all meronymic relations are mutually exclusive.

Ax.10 (forall (7x ?y) (=> (component-of 7x 7y)
(and (not (conceptual-part-of 7x 7y)) (not (stuff-of 7x 7y))
(not (pbrtion-of 7% 7y)) (not (place-within ?x YN)

Ax.11 (forall (7x ?y) (=> (stuff-of ?x)
(and (not (conceptual-part-of ?x ?y)) (not (component-of 7x 7y))
(not (portion-of ?x ?y)) (not (place-within 7x 7¥)))))

Ax.12 (forall (7x 7y) (=> (portion-of 7x ?y)
(and (not (conceptual-part-of 7x ?7y)) (not (component-of 7x)
(not (stuff-of ?x ?y)) (not (place-within 7x 7¥)))))

Ax.13 (forall (?x ?7y) (=> (place-within ?x ?y)
(and (not (conceptual-part-of ?x 7y)) (not (portion-of ?x ?y)
(not (component-of 7x ?y)) (not (stuff-of 7x 7y)))))

Ax.14 (forall (?x 7y) (=> (member-of ?x ?y)
(and (not (physical-part-of 7x ?y)) (not (activity-within ?x 7y)))))

144

Ax.15 (forall (?x 7y) (=> (activity-within ?x)
- (and (not (physical-part-of ?x ?y)) (not (member-of ?x ?¥)))))

A.2.3.2 Irreflexivity

An irreflexivity axiom for a relation states that no object can stand in the relation with itself. The
following axiom formally states that all meronymic relations are irreflexive.

Ax.16 (forall (?x) (not (part-of 7x ?x))
A23.3 Asymmetry

A relation R is asymmetric if the fact that an object A is related to an object B through R implies
that B does not stand in that relation with A. The axiom below formally states that all
meronymic relations are asymmetric.

Ax.17 (forall (?x ?y) (=> (part-of 7x ?7y) (not (part-of ?y 7x))))
A.2.3.4 Transitivity
The axiom below formally states that all physical-part-of relations are transitive.

Ax.18 (forall (?x ?y 7z) (=> (and (physical-part-of 7x ?y) (physical-part-of 7y ?z))
(physical-part-of ?x 7z)))

A.2.3.5 Miscellaneous

The meronymic relations may be characterized further with three properties: separability,
functionality, and homeomerosity [Winston, et. al. 87]. These properties enable further-grained
differentiation of meronymic relations. The separability property applies to part-of relations in
which objects can be physically separated, at least in principle, from the whole to which they are
connected. Objects that participate in a functional relation have a functional role with respect to
the whole. Objects participating in a homeomerous relation are similar to each other and to the
whole to which they belong. These three properties are formally defined below. Figure A-3
summarizes the properties for each meronymic relation. In the table, the symbol “-” indicates
that the corresponding relation does not have the property, while the symbol “+” indicates that
the corresponding relation has the property. The formal IDEFS elaboration language statements
for the three properties of separability, functionality, and homeomerosity are provided.

145

Meronymic Relations Separable Functional Homeomerous

place-within - - -

component-of + + -
stuff-of - - -
portion-of + - +
member-of + - -
activity-within - + -

Figure A-3. Special Properties of Meronymic Relations
Ax.19 (property separable)
Ax.20 (property homeomerous)
Ax.21 (property functional)
Ax.22 (has-property member-of separable)
Ax.23 (has-property portion-of separable)
Ax.24 (has-property component-of separable)
Ax.25 (not (has-property activity-within separable))
Ax.26 (not (has-property stuff-of separable))
Ax.27 (not (has-property place-within separable))
Ax.28 (not (has-i)roperty member-of functional))
Ax.29 (not (has-property portion-of functional))
Ax.30 (has-property component-of functional)
Ax.31 (has-property activity-within functional)
Ax.32 (has-property stuff-of functional)

Ax.33 (not (has-property place-within functional))

146

Ax.34 (not (has-property member-of homeomerous))

Ax.35 (has-property portion-of homeomerous)

Ax.36 (not (relation-property component-of homeomerous))
Ax.37 (not (relation-property activity-within homeomerous))
Ax.38 (relation-property stuff-of homeomerous)

Ax.39 (not (relation-property place-within homeomerous))

A.3 Temporal Relations

A.3.1 Overview

This subsection contains the definitions and characterizations of a set of commonly occurring
temporal relations. These relations should be viewed as part of a time ontology that contains two
kinds called “time-interval” and “time-point.” The time-interval kind corresponds to the intuitive
notion of an interval of time, while the time-point kind corresponds to the notion of a point in
time. The time-interval kind has three attributes: beginning, which returns the beginning point
of an interval; end, which returns the end point of an interval; and duration, which returns the
length of an interval. Time points are ordered using a primitive relation, denoted <<, that
corresponds to the before relation. The relations between time intervals are all defined in terms
of the << relation between time points. The semantics of the time-interval relations presented
here are the ones found in Allen [85]. These relations, whose intuitive semantics are illustrated
in Figure A-3, are all binary relations.

A.3.2 Relation Definition

In this subsection, temporal relations are formally defined.

D.26 (defrelation << (?x ?y)
:argument-type ((time-point time-point)))

D.27 (defrelation before (?x ?y)

:argument-type ((time-interval time-interval))
(forall (?x ?y) (<=> (before 7x ?y) (<< (end ?x) (beginning ?y))))

- 147

D.28

D.29

D.30

D.31

D.32

D.33

—
XequasY XX)
YYY
X before Y
Y after X XXX YYY
X during Y XXX
Ycontains X YYYYYY
X overlaps Y XXX
Y overlapped-by X YYYY
X meets Y '
Y met-by X XXXYYY
Xstarts Y XXX
Y started-by X YYYYYY
X finishes Y XXX
Y finished-by X YYYYY
o _J

Figure A-4. Binary Temporal Relations
(defrelation after (?x ?y) := (before 7y 7x))

(defrelation during (?x 7y)
:argument-type ((time-interval time-interval))
(forall (?x ?y)
(<=> (during ?x ?y)
(and (<< (beginning ?x) (beginning ?y)) (<< (end ?y) (end ?x)))))

(defrelation contains (7x ?y) := (during 7y 7x))

(defrelation overlaps (7x 7y)
:argument-type ((time-interval time-interval))
(forall (?x 7y)
(<=> (overlaps 7x ?y)
(and (<< (beginning ?x) (beginning ?y)) (<< (end ?x) (end ?y)
(<< (beginning ?y) (end 7x)))))

(defrelation overlapped-by (?x ?y) := overlaps (?y X))

(defrelation meets (?x 7y)

148

:argument-type ((time-interval time-interval))
(forall (?x ?y) (<=> (meets 7x ?y) (= (end 7x) (beginning ?y))))

D.34 (defrelation met-by (7x ?y) := meets (?y 7X))

D.35 (defrelation starts (7x ?y)
:argument-type ((time-interval time-interval))
(forall (7x ?y)
(<=> (starts 7x ?y)
(and (= (beginning ?x) (beginning ?y)) (<< (end ?x) (end ?y)))))

D.36 (defrelation started-by (?x ?y) := starts (?y 7x))

D.37 (defrelation finishes (7x ?7y)
:argument-type ((time-interval time-interval))
(forall (7x ?y)
(<=> (finishes 7x ?y)
(and (<< (beginning ?y) (beginning ?x)) (= (end ?x) (end ?y)))))

D.38 (defrelation finished-by (7x ?y) := finishes (?y 7x))

The equals relation is the common identity relation between objects.

A.3.3 Relation Characterization

The temporal relations defined in Subsection A.3.2 are characterized in this subsection. First, the
axioms that characterizes the << relation completely are presented. The properties of the
temporal relations are also given. (All these properties can be deduced from the relation
definitions). In the following discussion, the identity relation will not be considered a temporal
relation per se. The properties of temporal relations presented here are stated for only six
relations: before, during, overlaps, meets, starts, and finishes. Properties for their inverse
relation can be deduced easily.

Ax.40 (forall (?x) (not (<< ?x ?x)))
Ax.41 (forall (?x 7y 7z) (=> (and (<< 7x ?y) (<< ?y 7z))

Ax.42 (forall (?7x ?y) (or (<< 7x ?y) (<< 7y 72)))

149

The following axioms state that all the temporal relations (excluding the identity relation) are

irreflexive.

Ax.43 (forall (7x) (and (not (before ?x ?x) (not (during ?x 7X) (not (overlaps 7x 7x)
(not (meets 7x ?x)(not (starts ?x ?x) (not (finishes 7x 7x)))

The following axioms state that all the temporal relations are asymmetric. Formally stated:
Ax.44 (forall (?x ?y) (=> (equals ?x ?y) (equals ?y 7x)))

Ax.45 (forall (7x Y?y) (=> (before 7x ?y) (not (before 7x ?y))))

Ax.46 (forall (7x 7y) (=> (during ?x ?y) (not (during ?x 7y))))

Ax.47 (forall (7% 7y) (=> (overlaps ?x ?y) (not (overlaps ?x ?y))))

Ax.48 (forall (7x ?y) (=> (meets ?x ?y) (not (meets ?7X ?y)))

Ax.49 (forall (7x ?y) (=> (starts ?x ?y) (not (started-by 7x ?y)))

Ax.50 (forall (?x ?7y) (=> (finishes ?x ?y) (not (finished-by ?x ?y)))

The following axioms state that the before, during, starts, and finishes relations are transitive.
Ax.51 (forall (7x ?y ?z) (=> (and (before ?x ?y) (before ?y 72)) (before 7x ?z)))

Ax.52 (forall (?x ?y 7z) (=> (and (during 7x 7y) (during ?y ?z)) (during ?x ?z)))

Ax.53 (forall (7x 7y 7z) (=> (and (starts 7x ?y) (starts ?y 7z)) (starts X ?72)))

Ax.54 (forall (?x 7y ?z) (=> (and (finishes ?x ?y) (finishes ?y ?z)) (finishes 7x 72)))

A.4 Spatial Relations

A.4.1 Overview

Spatial relations can be used to describe pictures (i.e., to specify the spatial relationships between
objects in a picture). The IDEFS library contains the commonly occurring spatial relations listed
in Figure A-4.

150

left-of far
right-of near
above touching
below beside

behind adjacent
in-front-of disjoint

inside intersect
outside coincident
between)

Figure A-5. List of Spatial Relations

All listed relations are binary relations except the between relation, which is a ternary relation.

Seventeen relations are shown in Figure A-5. The relations right-of, below, and in-front-of are

the respective inverse relations of the relations left-of, above, and behind.

A.4.2 Relation Definition

In this subsection, the spatial relations listed in Figure A-5 are formally defined.

D.39

D.40

D41

D.42

D.43

D.44

D.45

D.46

D.47

D.48

(defrelation left-of (?x ?y))

(defrelation right-of (?x ?y) := (left-of ?y 7x))
(defrelation above (?x ?y))

(defrelation below (?x ?y) := (above 7y X))
(defrelation behind (?x ?y))

(defrelation in-front-of (?x ?y) := (behind 7y X))
(defrelation near (7x ?y))

(defrelation far (?x ?y) := (near ?y 7x))
(defrelation between (?x ?y 7z))

(defrelation touching (?x ?y))

151

D.49 (defrelation beside (7x ?y))
D.50 (defrelation adjacent (?x ?y))
D.51 (defrelation disjoint (?x ?y))
D.52 (defrelation intersect (7x 7y))

D.53 (defrelation coincident (?x ?y))

A.4.3 Relation Characterization

In this Subsection, the spatial relations are characterized using the common relation properties of
reflexivity, symmetry, antisymmetry and transitivity, as well as the relationship they bear to one

another.

A.4.3.1 Reflexivity and Irreflexivity

The following axioms state that the coincident relation is reflexive. All other relations are

irreflexive.

Ax.55 (forall (?x) (coincident 7x 7x))
Ax.56 (forall (7x) (not (right-of 7x 7X)))
Ax.57 (forall (?x) (not (above ?x 7x)))
Ax.58 (forall (?x) (not (behind ?x 7x)))
Ax.59 (forall (7x) (not (inside 7x ?x)))
Ax.60 (forall (7x) (not (below 7x ?x)))
Ax.61 (forall (?x) (not (in-front-of 7x 7x)))
Ax.62 (forall (7x) (not (outside 7x ?x)))
Ax.63 (forall (7x) (not (far 7x 7x)))
Ax.64 (forall (?x) (not (near ?x 7X)))

Ax.65 (forall (?x) (not (touching 7x 7x)))

152

Ax.66 (forall (?x) (not (beside ?x ?x)))
Ax.67 (forall (?x) (not (adjacent ?7x 7x)))
Ax.68 (forall (?x) (not (disjoint ?x ?7x)))
Ax.69 (forall (7x) (not (intersect ?x 7x)))
A.43.2 Symmetry and Antisymmetry

The following axioms state that the near, far, across, faces, and beside relations are symmetric,
while the relations left-of, above, behind, and inside are antisymmetric.

Ax.70 (forall (7x ?y) (=> (near ?x 7y) (near 7y 7x)))

Ax.71 (forall (?x %y) (=> (far ?x %y) (far 7y 7x)))

Ax.72 (forall (?x %y) (=> (beside ?x ?y) (beside 7y 7x)))

Ax.73 (forall (7 ?y) (=> (and (left-of 7x %y) (left-of 7y 7)) (= 7x 2y)))
Ax.74 (forall (?x ?y) (=> (and (above 7x ?y) (above 7y 7)) (= 7x 7¥)))
Ax.75 (forall (?x ?y) (=> (and (behind ?x %y) (behind 7y 7)) (= 7x 2y)))
Ax.76 (forall (?x ?y) (=> (and (inside ?x ?y) (inside 7y 7)) (= 7x 7y)))
A.4.3.3 Transitivity

The following axioms state that the relations left-of, right-of, above, behind, and their inverse
relations, as well as the relation inside are transitive.

Ax.77 (forall (?x ?y ?2) (=> (and (left-of ?x ?y) (left-of 7y 7z)) (left-of ?x 72)))
Ax.78 (forall (?x ?y ?z) (=> (and (right-of ?7x ?y) (right-of ?y ?z)) (right-of 7x 7z)))
Ax.79 (forall (?x 7y ?z) (=> (and (above 7x ?y) (above ?y ?z)) (above 7x 7z)))
Ax.80 (forall (?x ?y ?z) (=> (and (below 7x ?y) (above ?y ?z)) (below ?x ?z)))

Ax.81 (forall (?x ?y ?z) (=> (and (behind ?x 7y) (behind 7y ?z)) (behind ?x ?z)))

153

Ax.82 (forall (?x ?y 7z) (=> (and (in-front-of ?x ?y) (in-front-of 7y 72)) (in-front-of 7x 7z)))
Ax.83 (forall (?x ?y ?z) (=> (and (inside 7% ?7y) (inside ?y ?z)) (inside ?x 1))
A.4.3.4 Mutual Exclusivity

The following are sets of mutually exclusive relations: {left-of, coincident, inside}, {right-of,
coincident, inside}, {above, coincident, inside}, {below, coincident, inside}, {behind,
coincident, inside}, {in-front-of, coincident, inside}, {near, coincident, inside, far},
{coincident, outside}, {beside, inside, coincident}, {touching, far}, {adjacent, far,
coincident, intersect, inside}, and {coincident, disjoint, intersect, inside}. The formal
statements corresponding to these sets of mutually exclusive relations are organized in the
following way. For each relation R, the relations that are incompatible with it (i.e., the relations
in which a pair (a,b) cannot stand if (a,b) already stand in the relation R) are given.

A.84 (forall (7x 7y)
(= (left-of 7x 7y)
(and (not (right-of 7x ?7y)) (not (coincident ?x ?y)) (not (inside ?x¥yNN)

A.85 (forall (7x ?y)
(=> (right-of 7x ?y)
(and (not (left-of ?x ?y)) (not (coincident ?x ?y)) (not (inside (?x L))

A.86 (forall (7x 7y)
(=> (above 7x ?y)
(and (not (coincident 7x ?y)) (not (below 7x ?y)) (not (inside (7x M)

A.87 (forall (?x ?y)
(=> (below 7x 7y)
(and (not (above ?x ?y)) (not (coincident ?7x ?y)) (not (inside @ ¥)))

A.88 (forall (7x 7y)
(=> (behind ?x ?y)
(and (not (in-front-of 7x ?y)) (not (coincident 7x ?y)) (not (inside (?x YN

A.89 (forall (7x ?y)
(=> (in-front-of 7x ?7y)
(and (not (behind ?x ?y)) (not (coincident 7% 7y)) (not (inside (?x ?y)))))

154

A.90

A91

A.92

A.93

A.94

A.95

A.96

AT

A.98

(forall (7x ?y)
(=> (near 7x ?y)
(and (not (coincident ?x ?y)) (not (far ?x ?y)) (not (inside (?x M)

(forall (7x ?y)
(=> (far %x ?y)
(and (not (adjacent ?x ?y)) (not (coincident ?x ?y)) (not (intersect 7x W)
(not (inside 7x ?y)) (not (touching ?x ?y)) (not (near ?x ?y)))))

(forall (?x ?y) (=> (outside ?x ?y)
(and (not (inside ?x ?y)) (not (coincident ?x ?y)))))

(forall (7x ?y) (=> (beside ?x ?y)
(and (not (inside ?x ?y)) (not (coincident ?x ?y)))))

(_foraﬂ (?x ?y) (=> (touching ?x ?y) (not (far 7x ?y))))

(forall (?x ?y)
(=> (adjacent ?x ?y)
~ (and (not (far ?x ?y)) (not (coincident ?x ?y)) (not (intersect ?7x)
(not (inside 7x ?y)))))

(forall (7x ?y)
(=> (intersect 7x ?y)
(and (not (far 7x ?y)) (not (coincident ?x ?y)) (not (adjacent ?x)
(not (disjoint ?x ?y)) (not (inside ?x ?y)))))

(forall (?x ?y)
(= (disjoint ?x ?y)
(and (not (coincident ?x ?y)) (not (intersect 7x ?y)) (not (inside ?x ?y)))))

(forall (?x ?y)
(=> (inside 7x ?y)
(and (not (far 7x ?y)) (not (coincident ?x ?y)) (not (intersect 7x)
(not (above ?x ?y)) (not (below ?x ?y)) (not (behind ?x)
(not (right-of 7x ?y)) (not (near ?x ?y)) (not (beside ?x ?y))
(not (left-of ?x ?y)) (not (adjacent 7x ?y)))))

155

A.99 (forall (?x 7y)
(=> (coincident ?x ?7y)
(and (not (left-of 7x 7y)) (not (right-of 7x 7y)) (not (above 7x)
(not (below ?7x ?y)) (not (behind ?x 7)) (not (in-front-of 7x 7y))
(not (beside 7x ?y)) (not (adjacent 7% ?y)) (not (disjoint ?x 7y)))
(not (intersect 7x ?y)) (not (far 7x 7y)) (not (inside 7x 7y))
(not (outside 7x 7y)))))

A.5 Influence Relations

A.5.1 Overview

Influence relations can be used to express that an object has some effect or impact on another
object. There are five influence relations, influences being the most general. It can be used
when the type of influence or the implication of the influence between two objects is unclear or
unknown. The four remaining influence relations are specializations of the general one and can
be used to relate objects in some quantitative way. They are particularly appropriate in
describing the influence of some measure on another. The endings in the name of the relations
indicate the directional influence of one measure on another. For example, a statement of the
form (influences-pp x y) expresses that if the measure x augments, so will the measure y.
Similarly, a statement of the form (influences-pm x y) expresses that if the measure x augments,
the measure y will decrease. A statement of the form (influences-mp x y) expresses that if the
measure x decreases, the measure y will augment. Finally, a statement of the form
(influences-mm X y) exprésses that if the measure x decreases, so will the measure y. Figure
A-6 illustrates the directional influence expressed by each relation. In the table, the first arrow
indicates the behavior of the first argument and the second arrow indicates the behavior of the
second argument. An arrow pointing upward indicates an increase in the value of the
corresponding argument, while an arrow pointing downward indicates a decrease in the value of

the corresponding argument.

Finally, an inhibits relation is also included. This relation can be used to express the fact that
some object inhibits some other object in some undetermined way. This relation could be further.

specialized to describe special cases of inhibition.

156

Relation Directional
Influence
influences -
influences-pp TT
influences-pm Tl
influences-mp LT
influences-mm 1l

Figure A-6. The Five “Influences” Relations and Their Directional Influence

A.5.2 Relation Definition

In this subsection, the influence relations are formally defined.
D.54 (defrelation influences (7x ?y))

D.55 (defrelation influences-pp (?x ?y))

D.56 (defrelation influences-pm (?x ?y))

D.57 (defrelation influences-mp (?x ?y))

D.58 (defrelation influences-mm (7x ?y))

D.59 (defrelation inhibits (?x ?y))
A.5.3 Relation Characterization
In this subsection, the influence relations are characterized by identifying their properties.

A.5.3.1 Specialization

The following axioms state that the relations influences-pp, influences-pm, influences-mp, and
influences-mm are specializations of the influences relation.

157

Ax.100

(forall (7x ?y)

(=> (or (influences-pp 7x ?y) (influences-pm ?x ?y) (influences-mp %)

(influences-mm ?x 7y))

(influences ?x 7y))

A.5.3.2 Reflexivity and Irreflexivity

The following axioms state that the relations influences, influences-pp, and influences-pm are

reflexive. The relations influences-pm and influences-mp are irreflexive.

Ax.101
Ax.102
Ax.103
.Ax.104
Ax.105

Ax.106

(forall (?x ?y) (influences 7x 7x))

(forall (7x ?y) (inﬂuenées-pp X X))
(forall (?x ?y) (influences-mm ?xX 7x))
(forall (?x ?y) (inhibits 7x 7x))

(forall (?x ?y) (not (influences-pm 7x 7X)))

(forall (?x ?y) (not (influences-mp ?x 7X)))

A.5.3.3 Transitivity

The following axioms state that the influence relations are transitive.

Ax.107

Ax.108

Ax.109

Ax.110

(forall (7x ?y 7z) (=> (and (influences ?x ?y) (influences ?y 7z))
(influences ?x 7z))

(forall (?x 7y 7z) (=> (and (influences-pp ?x ?y) (influences-pp 7y ?7z))
(influences-pp 7x 7z))

(forall (7x ?y ?7z)
(=> (and (influences-pm ?x ?y) (influences-pm ?y ?z))
(influences-pm 7x ?z))

(forall (?x ?y 7z)
(=> (and (influences-mp ?x ?y) (influences-mp ?y 7))

(influences-mp 7x ?z))

158

Ax.1 11 (forall (?x ?y 7z)
(=> (and (influences-mm ?x ?y) (influences-mm my 72))
(influences-mm ?x ?z))

Ax.112 (forall (% 7y 72) (=> (‘and (inhibits 7 ?y) (inhibits ?y ?z)) (inhibits 7x 22))
A.5.3.4 Mutual exclusivity

The following axioms state that the specialized influence relations are mutually exclusive.

Ax.113 (forall (?%x 7y) |
(=> (influences-pp ?x ?y)
(and (not (influences-pm ?x ?y)) (not (influences-mp ?x ?y))
(not (influences-mm ?7x)]

Ax.114 (forall (7x 7y)
(=> (influences-pm ?x %y)
(and (not (influences-pp ?7x ?y)) (not (influences-mp ?x 7y))
(not (influences-mm ?x 152)))

Ax.115 (forall (?x ?y)
(=> (influences-mp 7x)
(and (not (influences-pm ?x 7y)) (not (influences-pp ?x ¥))
(not (influences-mm ?x 157)),

Ax.116 (forall (?x 7y)
(= (inﬂuences-mm x 7y)
(and (not (influences-pm ?x ?y)) (not (influences-mp 7x ?y))
(not (influences-pp ?x ?y)))

A.6 Dependency Relations

A.6.1 Overview

The dependency relations can be used to express the fact that an object depends on another. The
dependency can be general (in which case the “depends-on” relation is used) or may be more
specific. In particular, the dependency may be existential (in which case the “depends-on-
existentially” relation is used) or causal (in which case the “depends-on-causally” relation can

159

be used). An object A is existentially dependent on an object B if the existence of A depends on
the existence of B. In such a case, if B ceases to exist, then A will also cease to exist. An object
A is causally dependent on an object B if A is the result or effect of the existence of B. In other
words, B is the cause or one of the causes for the existence of A. The existentially-dependent
and causally-dependent relations differ in that, with the latter relation, B’s destruction may not

cause A to cease to exist.

A.6.2 Relation Definition

In this subsection, the dependency relations are formally defined. To enable a detailed definition
of the depends-on-existentially relation, an exists relation that takes one argument is also
defined. A statement of the form (exists A) denotes the fact that A exists.

D.60 (defrelation exists (7x)
D.61 (defrelation depends-on (?x ?y))

D.62 (defrelation depends-on-existentially (?x ?y)
(forall (7x ?y)
(=> (and (depends-on-existentially ?x ?y) (not (exists ?y))) (not (exists 7x)))))

D.63 (defrelation depends-on-causally (?x ?y))

A.6.3 Relation Characterization

In this subsection, the dependency relations are charcterized by identification of their properties.

A.6.3.1 Specialization

The following axioms state that the relations depends-on-existentially and depends-on-causally

are specializations of the relation depends-on.

Ax.117 (forall (7x 7y)
(=> (or (depends-on-existentially ?x 7y)
(depends-on-causally 7x ?y))
(depends-on 7x ?y))

160

A.6.3.2 Transitivity
The following axioms state that the three dependency relations are transitive.

Ax.118 (forall (?x ?y 7z)
=> (and (depends-on ?x ?y) (depends-on 7y 72))
(depends-on 7x 7z))

Ax.119 (forall (7x ?y ?2)
(= (and (depends-on-existentially ?x ?y)
(depends-on-existentially ?y 7z))
 (depends-on-existentially ?7x 7z))

Ax.120 (forall (7x ?y 7z)
(= (and (depends-on-causally ?x 7y) (depends-on-causally 7y ?z))
(depends-on-causally 7x ?z))

A.7 Case Relations

A.7.1 Overview

The case relations differ from other families of relations introduced so far in that they do not
depend solely on the nature or the meaning of the terms they relate [Winston, et. al. 87]. Each
case relation provides a knowledge structure without which the relation cannot exist. Five case
relations that are common in that they all can be used to describe parts of an event are defined
and characterized. An event typically involves an agent, an action, an instrument or an object,
and a recipient. The five case relations presented here involved two such components of an
event. The five relations are as follows.

* Agent-Action This relation relates an agent of an event to the corresponding
action. The arguments to this relation should be a kind and a verb, Examples of
terms related through this relation are dog and bark, and artist and paint.

* Agent-Instrument This relation relates an agent of an event to the
corresponding instrument. Examples of the use of this relation are A skier uses
skis and A soldier uses a gun.

161

« Agent-Object This relation relates an agent of an event to the object that takes
part in the event. This relation is used in case the object is neither the recipient
nor the instrument. Examples of terms related through such relations are writer

and paper and baker and flour.

« Action-Recipient This relation relates the recipient of an event to the
corresponding action. Examples of terms related through this relation are lay

down and bed and type and keyboard.

o Action-Instrument This relation relates the instrument in an event to the
corresponding action. Examples of terms related through this relation are paint

and brush and strum and guitar.

A.7.2 Relation Definition

In this subsection, the case relations are formally defined.
D.64 (defrelation agent-action (?x ?y))

D.65 (defrelation agent-instrument (?x 7y))

D.66 (defrelation agent-object (?x 7y))

D.67 (defrelation agent—recipient‘(?x)

D.68 _ (defrelation action-instrument (7x 7y))

A.7.3 Relation Characterization

In this subsection, the case relations are charaterized

A.7.3.1 Irreflexivity

The following axioms state that the five case relations are irreflexive.
Ax.121 (forall (?x) (not (agent-action ?x ?x))

Ax.122 (forall (?x) (not (agent-instrument 7x ?7x))

Ax.123 (forall (?x) (not (agent-object 7x 7x))

162

Ax.124 (forall (?x) (not (agent-recipient 7x 7x))

Ax.125 (forall. (?x) (not (action-instrument ?x ?7x))

A.7.3.2 Asymmetry

The following axioms state that the five case relations are asymmetric.

Ax.126 (forall (?x ?) (=> (agent-action ?x ?y) (not (agent-action 7y 7x))))

Ax.127 (forall (?x ?) (=> (agent-instrument ?x ?y) (not (agent-instrument 7y 7x))))
Ax.128 (forall (?x 7) (=> (agent-object ?x ?y) (not (agent-object 7y 7x))))

Ax.129 | (fofall (‘7x ?) = (agent-récipient ?x ?y) (not (agent-recipient 7y 7x))))

Ax.130 (forall (?x ?) (=> (action-instrument ?x ?y) (not (action-instrument ?y 7x))))

163

Appendix B. Grammar for the IDEFS Elaboration
Language

B.1 Constant and variables

<word> ::= a primitive syntactic object
<expression> ::= <word> | (<expression>*)

<indvar> ::= a word beginning with the character ?
<predvar> ::= a word beginning with the character #
<variable> ::= <indvar> | <predvar>

<I5-ontology-constant>::= a word denoting an ontology
<logical-constant> ::= a word denoting a truth value | <ontology-constant>::<logical-constant>
<I5-individual-constant> == a word denoting an individual
| <ontology-constant>::<I5-individual-constant>

<I5-kind-constant> ::= - a word denoting a kind | <ontology-constant>::<I5-kind-constant>
<I5-SO-pred-constant> ::= a word denoting a second order predicate

| <ontology-constant>::<I5-SO-pred-constant>
<I5-TO-pred-constant> ::= a word denoting a third order predicate

| <ontology-constant>::<I5-TO-pred-constant>
<relation-constant> ::= <I5-SO-pred-constant> | <I5-TO-pred-constant>
<I5-function-constant> ::= a word denoting a function

| <ontology-constant>::<I5-function-constant>
a word denoting an attribute

| <ontology-constant>::<I5--attribute-constant>
a word denoting a property

| <ontology-constant>::<I5-property-constant>

]

<J5-attribute-constant> ::

<I5-property-constant> ::

<I5-source-statement-constant> ::= a word denoting a statement
| <ontology-constant>::<I5-source-statement-constant>
<I5-ontology-term-constant> ::= a word denoting a term
| <ontology-constant>::<I5-ontology-term-constant>
<I5-source-constant> ::= a word denoting a source
| <ontology-constant>::<I5-source-constant>
<I5-note-constant> ::= a word denoting a note
| <ontology-constant>::<I5-note-constant>
<I5-object-state-constant> ::= <I5-kind-constant>:<I5-property-constant> |

<ontology-constant>::<I5-kind-constant>:<I5-property-constant>

<I5-constant> := <I5-property-constant> | <I5-SO-pred-constant> | <I5-TO-pred-constant> |
<I5-function-constant> | <I5-kind-constant> | <I5-ontology-term-constant>
| <I5-source-constant> | <I5-note-constant> | <IS-source-statement-constant>
| <I5-attribute-constant> | <I5-individual-constant>

<constant> ::= <I5-constant> | <I5-ontology-constant> | <logical-constant>

164

B.2 Operators

<definition-operator> ::= define-relation | define-function | define-individual | := |
:argument-type

<term-operator>::= listof | setof | if | cond | the | setofall

<sentence-operator>::i= =|/=Inot|and | or | implies | equiv | forall | exists | nec | poss |
<I5-sentence-operator>

<I5-sentence-operator> := <I5-kind-operator> | <I5-ontology-operator> | <I5-note-operator> |
<I5-relation-operator> | <I5-function-operator> |
<I5-individual-operator> | <I5-property-operator> |
<I5-attribute-operator> | <I5-statement-operator> |
<I5-ontology-term-operator> | <I5-source-operator> | I5-process

<I5-kind-operator>::= I5-kind | I5-kind-property | I5-kind-attribute | I5-has-synonyms |
I5-kind-description | I5-referenced-relations | defining | essential |
subkind-of | I5-object-state

<I5-ontology-operator> ::= I5-ontology | I5-ontology-context | I5-ontology-viewpoint |
I5-ontology-purpose | I5-ontology-project | I5-ontology-analyst |
I5-ontology-reviewer | I5-ontology-description

<I5-individual-operator> ::= I5-individual | I5-individual-description | I5-instance-of

<I5-relation-operator> ::= I5-relation | I5-relation-description | I5-relation-arity |
I5-rel-arg-type

<I5-function-operator> ::= I5-function | I5-function-description | I5-function-arity |

I5-fct-arg-type
<I5-property-operator> ::= I5-property | I5-property-description | has-property

<IS-attribute-operator> ::= IS-attribute | I5-attribute-description | I5-attribute-type |
I5-attribute-applies-to

<I5-source-statement-operator> ::= IS-source-statement | I5-source-statement-description |
I5-source-statement | I5-has-original-statement |
I5-status-type | active_original | active_derived |
retired_original | retired_derived

<I5-ontology-term-operator> ::= I5-ontology-term | I5-use-statements | I5-sources-used |
I5-ontology-term-description | I5-ontology-term-description

<I5-note-operator> ::= I5-note | I5-note-description | I5-has-note

<I5-source-operator> ::= I5-source | I5-source-description | I5-collected-from | I5-collected-by |
I5-source-abstract | I5-source-purpose | I5-support-ontology-terms |
I5-support-statement | I5-has-supporting-sources

<operator>::= <definition-operator> | <term-operator> | <sentence-operator>

165

B.3 Terms

<term> = <indvar> | <I5-constant> | <I5-ontology-constant> | <funterm> | <listterm> |
<setterm> | <logterm> | quanterm> | <I5-attribute-term>
<funterm> ::= (<I5-function-constant> <term>)
<I5-attribute-term> ::= (<I5-attribute-constant> <individual-constant> | <indvar>) |
<setterm> ::= (setof <term>*)
<listterm> ::= (listof <term>*)
<logterm> ::= (if <sentence> <term> [<term>]) |
(cond (<sentence> <term>) (<sentence> <term>)1)
<quanterm> ::= (the <term> <sentence>) |

(setofall <term> <sentence>)

B.4 Definitions

<definition> ::= <partial-definition> | <complete-definition>

<complete-definition> ::= (define-individual <individual-constant> := <term>) |
(define-function <function-constant> ({<indvar> | <predvar>}t)
[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}))]
= <term>) |
(define-relation <relation-constant> ({<indvar> | <predvar>}+)
[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}) 1)]
= <sentence>)

<partial-definition> ::= (define-individual <individual-constant> [<sentence>]) |
(define-function <function-constant> ({<indvar> | <predvar>}t)
[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}))]
[<sentence>])) |

(define-relation <relation-constant> ({<indvar> | <predvar>}t)
[:argument-type (({<I5-kind-constant> |

<I5-object-state-term>} T)*)]

[<sentence>]))
B.5 Sentences
B.5.1 General Sentences
<sentence> := <logical-constant> | <equation> | <inequality> | <relsent> | <logsent>

<quantsent> | <I5-sentence>
<equation> ::= (= <term> <term>)
<inequality> ::= (/= <term> <term>)

<relsent> ::= (<relation-constant> <term>¥) | (<function-constant> <term> <term>*)

166

<logsent> ::= (not <sentence>) | (and <sentence> <sentence>%) | (poss <sentence>) |
(implies <sentence> <sentence>) | (equiv <sentence> <sentence>) |
(nec <sentence>)

<quantsent> ::= (forall ([<indvar> | <predvar>]+)‘<sentencc>) I
(exists ([<indvar> | <predvar>]*) <sentence>)

B.5.2 IDEFS5 Specific Sentences

<I5-sentence> ::= <I5-kind-sentence> | <I5-ontology-sentence> | <I5-individual-sentence> |
<I5-property-sentence> | <I5-attribute-sentence> | <I5-statement-sentence> |
<I5-ontology-term-sentence> | <I5-source-sentence> | <I5-note-sentence> |
<I5-relation-sentence> | <I5-function-sentence> | <I5-process-decl>

B.5.2.1 IDEFS5 Ontology Sentences

<I5-ontology-sentence>::= <I5-ontology-decl> | <I5-ontology-context-decl> |
<I5-ontology-viewpoint-decl> | <I5-ontology-purpose-decl> |
<I5-ontology-project-decl> | <I5-ontology-analyst-decl> |
<I5-ontology-reviewer-decl> | <I5-ontology-description-decl>

<I5-ontology-decl> ::= (I5-ontology <I5S-ontology-constant> | <indvar>)
<I5-ontology-context-decl>::= (I5-ontology-context <I5-ontology-constant> | <indvar>
string)
<I5-ontology-viewpoint-decl> ::= (I5-ontology-viewpoint <I5-ontology-constant> | <indvar>
string)
<I5-ontology-purpose-decl> ::= (I5-ontology-purpose <I5-ontology-constant> | <indvar>
string)

<I5-ontology-project-decl> ::
<I5-ontology-analyst-decl> ::

(I5-ontology-project <I5-ontology-constant> | <indvar> string)
(I5-ontology-analyst <I5-ontology-constant> | <indvar> string)

<I5-ontology-reviewer-decl> ::= (I5-ontology-rewiever <I5-ontology-constant> | <indvar>
string)
<I5-ontology-description-decl> ::= (I5-ontology-description <I5-ontology-constant> |
<indvar> string)
<I5-in-ontology-decl> ::= (in-ontology <I5-constant>|<predvar>

<I5-ontology-constant> | <indvar>)

B.5.2.2 IDEFS5 Kind Sentences

<I5-kind-sentence> := <I5-kind-decl> | <I5-kind-property-decl> | <I5-kind-attribute-decl> |
<I5-kind-description-decl> | <I5-has-synonyms-decl> |
<I5-referenced-relations-decl> | <I5-object-state-decl>
<I5-kind-decl> ::= (I5-kind <I5-kind-constant> | <predvar>)
<I5-kind-property-decl> ::= (I5-kind-property <I5-kind-constant> | <predvar>
<I5-property-constant> | <predvar> [defining] [essential])
<I5-kind-attribute-decl> ::= (I5-kind-attribute <I5-kind-constant>| <predvar> |
<I5-attribute-constant> | <predvar>)

<I5-kind-description-decl> ::= = (I5-kind-description <I5-kind-constant> | <predvar> string)
<I5-kind-synonyms-decl> ::= (I5-kind-synonyms <I5-kind-constant> | <predvar>

' ({<I5-ontology-term> | <indvar>}+))
<I5-referenced-relations-decl> ::= (I5-referenced-relations <I5-kind-constant> | <predvar>

({<I5-relation-constant> | <predvar>}+))

167

<I5-subkind-of-decl> = (I5-subkind-of <I5-kind-constant> | <predvar>
<I5-kind-constant> | <predvar>)
<I5-object-state-decl> ::= (I5-object-state <I5-object-state-constant> | <predvar>)

B.5.2.3 IDEFS5 Individual Sentences

<I5-individual-sentence> ::= <I5-individual-decl> | <I5-individual-description-decl> |
<I5-instance-of-decl>
<I5-individual-decl> ::= (I5-individual <I5-individual-constant> | <indvar>)

<I5-individual-description-decl> ::= (I5-individual-description <I5-individual-constant> |
<indvar> string)
<I5-is-of-kind-decl> ::= (I5-is-of-kind <I5-individual-constant> | <indvar>
<I5-kind-constant> | <predvar>)

B.5.2.4 IDEFS5 Property Sentences

<I5-property-sentence> ::= <I5-property-decl> | <I5-property-description-decl> |
<has-property-decl>

<I5-property-decl>::= (I5-property <I5-property-constant> | <predvar>)

<I5-property-description-decl> ::= (I5-property-description <I5-attribute-constant> |
<predvar> string)

<I5-has-property-decl> ::= (I5-has-property <I5-individual-constant> | <predvar>

<I5-property-constant> | <predvar>)

B.5.2.5 IDEFS5 Attribute Sentences

<I5-attribute-sentence> ::= <I5-attribute-decl> | <I5-attribute-description-decl> |
<I5-attribute-type-decl> I<I5-attribute-applies-to-decl>
<I5-attribute-decl> := (I5-attribute <I5-attribute-constant> | <predvar> <I5-attribute-type>)
<I5-attribute-type-decl> ::= <list-type> | <I5-kind-constant> | <set-type>
<list-type> ::= (listof <I5-kind-constant> | (or <I5-kind-constant> <I5-kind-constant>1)) |
(list-of <list-type>) | (listof <type>)
<I5-attribute-description-decl> ::= (I5-attribute-description <I5-attribute-constant> |
<predvar> string)
<I5-attribute-applies-to -decl> ::= (I5-attribute-applies-to <I5-attribute-constant> | <predvar>
<I5-individual-constant> | <indvar>)

B.5.2.6 IDEFS5 Relation Sentences

<I5-relation-sentence> ::= <I5-relation-decl> | <I5-relation-description-decl> |
<I5-rel-arg-type-decl> | <IS-relation-arity-decl>

<I5-relation-decl> ::= (I5-relation <predvar> | <I5-relation-constant>)

<I5-relation-arity-decl> ::= (I5-relation-arity <relation-constant> | <predvar>

pos-int | <indvar>)
<I5-rel-arg-type-decl> ::= (I5-rel-arg-type <relation-constant> | <predvar>
(({<I5-kind-constant> | <predvar> | <I5-object-state-term>}+)*))
<I5-relation-description-decl> ::= (I5-relation-description <I5-relation-constant> | <predvar>
string)

168

B.5.2.7 IDEFS5 Function Sentences

<I5-function-sentence> ::= <I5-function-decl> | <I5-function-description-decl> |
<I5-function-arity-decl> | <I5-fct-arg-type-decl>
<I5-function-decl> ::= (I5-function <I5-function-constant> | <predvar>)
<I5-function-arity-decl> ::= (I5-function-arity <I5-function-constant> | <predvar>
pos-int | <indvar>)
<I5-fct-arg-type-decl> ::= (I5-fct-arg-type <I5-function-constant> | <predvar>
(({<I5-kind-constant> | <predvar> | <I5-object-state-term>} 1) +))
<I5-function-description-decl> ::= (I5-function-description <I5-function-constant> |

<predvar> string)

B.5.2.8 IDEFS5 Source Sentences

<I5-source-sentence> ::= <I5-source-decl> | <I5-source-description-decl> |
<I5-collected-from-decl> | <I5-collected-by-decl> |
<I5-source-abstract-decl> | <I5-source-purpose-decl> |
<I5-support-ontology-terms-decl> | <I5-support-statement-decl> |
<I5-has-supporting-sources-decl>

<I5-source-decl>::= (I5-source <source-constant> | <indvar>)
<I5-source-description-decl> ::= (I5-source-description <I5-source-constant> | <indvar> string)
<I5-collected-from-decl> ::= (I5-collected-from <I5-source-constant> | <indvar> string)
<I5-collected-by-decl> ::= (I5-collected-by <I5-source-constant> | <indvar>string)
<I5-source-abstract-decl> ::= (I5-source-abstract <I5-source-constant> | <indvars string)
<I5-source-purpose-decl> ::= (I5-source-purpose <I5-source-constant> | <indvar> string)
<I5-support-ontology-terms-decl> ::= (IS-support-ontology-terms <I5-source-constant> |
<indvar> ({<I5-term-constant> | <indvar>}+))
<I5-support-statement-decl> ::= (I5-support-statements <IS-source-constant> | <indvar>
({<I5-source-statement-constant> | <indvar>}t1))
<I5-has-supporting-sources-decl> ::= (I5-has-supporting-sources <I5-constant> |

<indvar> | <predvar>
({<I5-source-constant> | <indvar>}+))

B.5.2.9 IDEFS5 Source-Statement Sentences

<I5-source-statement-sentence> ::= <I5-source-statement-decl> | <I5-status-decl> |
<I5-source-statement-description-decl> |
<I5-source-statement-decl> |
<I5-has-original-statement-decl> |
<I5-has-supporting-sources-decl>

<I5-source-statement-decl> ::= (I5-source-statement <I5-source-statement-constant> | <indvar>)

<I5-source-statement-description-decl> ::= (I5-source-statement-description
<I5-source-statement-constant> | <indvar> string)
<I5-status-decl>::= (I5-status <I5-source-statement-constant>| <indvar>

<I5-status-type-decl>
<I5-status-type-decl> ::= active_original | active_derived | retired_original | retired_derived
<I5-has-original-statement-decl> ::= (I5-has-original-statement
<I5-source-statement-constant> | <indvar>
<I5-source-statement-constant> | <indvar>)

169

B.5.2.10 IDEFS5 Ontology-Term Sentences

<I5-ontology-term-sentence> ::= <I5-ontology-term-decl> | <I5-use-statements-decl> |
<I5-ontology-term-description-decl> |
<I5-ontology-term-description-decl>

<I5-ontology-term-decl> ::= (I5-ontology-term <I5-term-constant> | <indvar>)

<I5-ontology-term-description-decl> ::= (I5-ontology-term-description <I5-term-constant> |
<indvar> string)

<I5-uses-statements-decl>::= (use-statements <I5-ontology-term-constant> | <indvar>

({<I5-source-statement-constant> | <indvar> 1))

B.5.2.11 IDEFS5 Note Sentences

<I5-note-sentence> ::= <I5-note-decl> | <I5-note-description-decl> | <I5-has-note-decl>

<I5-note-decl> ::= (I5-note <I5-note-constant> | <indvar>)

<I5-note-description-decl> ::= (I5-note-description <I5-note-constant> | <indvar> string)

<I5-has-note-decl> ::= (I5-has-note <I5-constant> | <indvar> | <predvar> <I5-note-constant>
| <indvar>)

B.5.2.12 Object State Related Constructs and Relations
<I5-process-decl> ::= (I5-process <I5-process-constant> | <predvar>)
The following relations are predefined and chracterized as follows:

(define-relation part-of (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type part-of (#x #y))
(and (I5-kind #x) (I5-kind #y))))

(define-relation transitions-to (?x 7y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y))
(and (or (I5-kind #x) (I5-object-state #Xx))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation inst-transitions-to (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y)) .
(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation transitions-during (?x 7y 7z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))
(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

(define-relation inst-transitions-during (7x ?y 7z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))
(and (or (I5-kind #x) (I5-object-state #Xx))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

170

(define-relation s-transitions-to (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y))
(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation inst-s-transitions-to (?x ?y))
(forall (#x #y) (=> (IS-rel-arg-type transitions-to (#x #y))
o (and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation s-transitions-during (?x 7y 7z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))
(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

(define-relation inst-s-transitions-during (7x ?y 7z))

(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))

‘ (and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

171

Bibliography

Allen, J. F. (1984). “Towards A General Theory Of Action And Time.” Artificial
Intelligence 23: 123-154.

Anupindi, S. R. (1992). Semantic Requirements for an Integrated Bill of Materials

System. M.S. Thesis. Dept. of Industrial Engineering, Texas A&M University,
College Station, TX.

Aczel, P., Israel, D., Katagiri, Y., and Peters, S. (Eds.) (1993). Situation Theory and its
Applications, Volume 3. CSLI Lecture Notes 37.

Barwise, J., Gawron, M., Plotkin, G., and Tutiya, S. (Eds.) (1991). Situation Theory and
its Applications, Volume 2. CSLI Lecture Notes 26.

Bealer, G. (1980). Quality and Concept. Oxford: Oxford University Press.
Barwise, J. and Perry, J. (1983). Situations and Attitudes. Cambrid’gef" MIT Press.

Benjamin, P. C., Menzel, C., and Mayer, R. J. (forthcofning). “Towards a Method for
Acquiring CIM Ontologies.” To appear in International Journal of CIM. (Expected
1994).

Brachman, R. J. (1983). “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Networks.” IEEE Computer. October.

Burkhart, R., et al. (1991). IRDS Conceptual Schema Working Paper. ISO/AEC
JTC1/SC21/WG3 N. ANSI X3H3 Working Committee.

Chaffin, R. and Herrmann, D. J., (1987). “Relation Element Theory: A New Account of
the Representation and Processing of Semantic Relations.” In Memory and I earning:

The Ebbinghaus Centennial Conference. Gorfein, D. S. (Ed.). Hillsdale, NJ:

Erlbaum.

Chen, P. (1976). “The Entity-Relationship Model: Toward a Unified View of Data.”
ACM Transactions on Database Systems 1(1): 9-36.

Cohen, N. J. (1987). “Preserved Learning Capacity in Amnesia: Evidence for Multiple
Memory Systems.” Neuropsychology of Memory. New York: Guilford Press, 1987:
83-103.

Coleman, D. S. (1989). A _Framework for Characterizing thebMethod§ and Tools of an
Integrated System Engineering Methodology ISEM). Draft 2 Rev. 0. Santa Momca

CA: Pacific Information Management, Inc.
Devlin, K. (1991). Logic and Information. Cambridge: Cambridge University Press.

Enderton, H. (1972). A_Mathematical Introduction to Logic. New York, Academic
Press.

172

Fulton J, et al. (1991). “The Semantic Unification Meta-model: Technical Approach.”

Draft Report of the Dictionary/Methodology Committee of IGES/PDES. Version 0,

Release 6, Draft 3.

Futrell, M. T. (1991). The IDEF5 Application Procedure. Master’s Project Report.
Department of Industrial Engineering, Texas A&M University, College Station, TX.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge Interchange Format Version 3.0 -
Reference Manual. Report Logic-92-1. Logic Group, Stanford University, CA.

Gruber, T. R. (1992). ntolingua: A Mechanism to Support Portable Ontologies
Knowledge Systems Laboratory Technical Report KSI. 91-66, Final Version.
Stanford University.

Gruber, T. R. (1993). “A translation approach to portable ontologies.” Knowledge
Acquisition, 5(2):199-220, 1993,

Guha, R. V. and Lenat, D. V. (1990). “CYC: A Mid-Term Report.” Al Magazine 11(3):
32-59.

Hobbs, J. R., et al. (1987). “Commonsense Metaphysics and Lexical Semantics.”
Computational Linguistics 13(3-4): 241-250.

Hobbs, J., Croft, W., Davies, T., Edwards, D., and Laws, K. (1987). The TACITUS
Commonsense Knowledge Base. Artificial Intelligence Research Center, SRI
International.

Information Processin tems: Concepts and Terminol for the Conceptual Schema
and the Information Base. (ISO/TR 9007). (1987). International Standards
Organization.

Integrated Computer-Aided Manufacturing (ICAM) Architecture. Pt. II Vol. IV:

Function Modeling Manual IDEF@) (DTIC-B062457). (1981). SofTech, Inc.

Integrated Computer-Aided Manufacturing (ICAM) Architecture. Pt. IL. Vol. V:

Information Modeling Manual (IDEF1) (DTIC-B062457). (1981). SofTech, Inc.

Integrated Computer-Aided Manufacturing (ICAM) Architecture. Pt. II. Vol. VI:
Dynamics Modeling Manual (IDEF2) (DTIC-B062457). (1981). SofTech, Inc.

Integrated Information Support System (IISS), Volume 5: Common Data Model

Subsystem: Part 4: Information Modeling Manual. (DTIC-A181952). (1985).

General Electric,

International Standards Organization (1987). ncepts and Terminology for the
Conceptual Schema. ISO Technical Report TR9007.

Jackson, P. (1990). Introduction to Expert Systems. Addison-Wesley, 1990.

Knowledge Based Systems, Inc. (KBSI) (1991). Formal Foundations for an Ontology
Description Method. Technical Report, KBSI-SBONT-91-TR-01-1291-02.

Knowledge Based Systems, Inc. (KBSI) (1992). Situation Based Ontology: Phase I
Report. DARPA SBIR Contract No. DAAH01-91-C-R236.

173

Knowledge Based Systems, Inc. (KBSI) (1993). Ontology-Driven Information
Integration: Phase I Final Report. NASA SBIR Project, Contract No. NAS-9-18829.

Kripke, S. (1963). “Semantical Considerations on Modal Logic.” Acta Philosophica
Fennica 16: 39-48.

Lenat, D., Prakash, M., and Shepherd, M. (1986). “CYC: Using Common Sense
Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks.: The
Al Magazine. Summer.

Link, G. (1983). “The Logical Analysis of Plurals and Mass Terms: A Lattice Theoretic
Approach.” In R. Bauerle (Ed.), Meaning, Use. and Interpretation. Berlin: De

Gruyter.

Loiselle, C. L. and Cohen, P. L. (1989). “Explorations in the Contributors to
Plausibility.” COINS Technical Report 89-29. University of Massachusetts,
Ambherst, MA.

Mayer, R. J., et al. (1987). Knowledge-based Integrated Information Systems
Development Methodologies Plan, Volume 2. (DTIC-A195851).

Mayer, R. J. (Ed.). (1990). IDEF® Function Modeling: A Reconstruction of the Original
Air Force Report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J. (Ed.). (1990). IDEF1 Information Modeling: A Reconstruction of the
Qriginal Air Force Report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J. (Ed.). (1990). IDEF1X Data Modeling: A Reconstruction of the Original
Air Force Report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J., Menzel, C. P., and deWitte, P. S (1991). IDEF3 Technical Report.
WPAFB, OH: AL/HRGA.

Mayer, R. J., Menzel, C. P, and Mayer, P. S. D. (1991). IDEF3: A Methodology for
Process Description. WPAFB, OH: AL/HRGA.

Mayer, R. J., Edwards, D. A., Decker, L. P, and Ackley, K. A. (1991). IDEF4 Technical
Report. WPAFB, OH: AI/HRGA.

Mayer, R. J., deWitte, P., Griffith, P., and Menzel, C. P. (1991). IDEF6 Concept Report.
WPAFB, OH: AL/HRGA.

Mayer, R. J. and deWitte, P. (1991). Framework Research Report. WPAFB, OH:
AL/HRGA.

Mayer, R. J., Menzel, C., Painter, M., and Benjamin, P. C. (1993). “The Role of
Ontology in Enterprise Integration.” In Proceedings of the May 1993 IDEF Users
Group Conference. College Park, MD.

Mayer, R. J., Benjamin, P. C., Caraway, B. E., and Painter, M. K. (forthcoming). “A
Framework and a Suite of Methods for Business Process Reengineering.” In

Business Process Reengineering: A Managerial Perspective. Kettinger, B. and
Grover, V. (Eds.) (Expected 1994).

174

McGraw, K. and Briggs, K. (1989). Knowledge Acqusition Principles and Guidelines.
Prentice Hall. ,

Menzel, C. (1990). “Actualism, Ontological Commitment, and Possible World
Semantics” Synthese 85: 355-389.

Menzel, C. (1991). “The True Modal Logic.” Journal of Philosbphical Logic 20: 331-
374.

Menzel, C. and Mayer, R. I. (1991). “Theoretical Foundations for Information
Representation and Constraint Specification.” Technical Paper #AL-TP-1991-0044.
Human Resources Directorate, Logistics Research Division, WPAFB, OH.

Menzel, C., Mayer, R., and Sanders, L. (1992). “Representation, Information Flow, and
Model Integration.” In [Petrie 92], 131-141.

Menzel, C., Mayer, R., and Edwards, D. (1994). “IDEF3 Process Descriptions and Their
Semantics.” In Kuziak, A., and Dagli, C. [ntelligent Systems in Desien and
Manufacturing. ASME Press.

The Merriam-Webster Dictionary. (1986) New York: Simon and Schuster.

Musen, M. A. (1989). “Conceptual Models of Interactive Knowledge-Acquisition
Tools.” Knowledge Acquisition 1. 73-88.

Neches, R., et al. (1991). “Enabling Technology for Knowledge Sharing.” Al Magazine
12(3): 36-56.

Painter, M. K. (1990). “Modeling with an IDEF Perspective: Some Practical Insights.”
Proceedings. SME Autofact 90. Dearborn, MI: Society of Manufacturing Engineers.

Painter, M. K. (1991). “Information Integration for Concurrent Engineering (IICE):
Program Foundations and Philosophy.” IDEF Users Group Conference Proceedings.
May.

Petrie, C. (1992). Enterprise Integration Modeling. Proceedings of the First International
Conference. Cambridge: MIT Press.

Ross, D. T. (1985). “SADT Today: A Retrospective on an Idea.” IEEE Computer
Magazine (special issue on Requirements Engineering).

Sarris, A. K. (1992). “Needs Analysis and Requirements Document: Integration Toolkit
and Methods, Corporate Data Integration Tools.” MANTECH Report WL-TR-92-
8027. WPAFB, OH.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine.
Reading, MA: Addison Wesley.

Tarski, A. (1983). “The Concept of Truth in Formalized Languages.” In Logic,

Semantics, and Metamathematics. Oxford: Oxford University Press.

Touretzky, D. S. (1984). “Implicit Ordering of Defaults in Inheritance Systems.”
Proceedings of the 5th National Conference on Artificial Intelligence. Austin, TX.
322-325.

175

Winston, M.E., Chaffin, R., and Herrmann, D. (1987). “A Taxonomy of Part-whole
Relations.” Cognitive Science 11: 417-444.

Wittgenstein, L. (1953). Philosophical Investigations. Oxford: Basil Blackwell.

Zachman, J. (1987). “A Framework for Information Systems Architecture.” [BM
Systems Journal 26(3): 276-292.

176

Glossary

Analyst

Antisymmetry

Arity

Asymmetry

Attribute

Axiom

Characteristic

Classification

Client

Commentor

Constant

A primary developer of an ontology, in the context of an IDEFS
project. The central method for acquiring such information
consists of interviewing domain experts and analyzing relevant
domain documents.

A property that holds of a given relation R when, for any objects
x and y (of the appropriate kinds), if x bears R to y and y bears R
to X, it follows that x is identical to y.

The number of arguments of a relation, that is, the number of
things that are involved in the relation in a given instance. For
example, the relation larger-than has arity two, the relation
berween has arity three, and so forth.

A property that holds of a given relation R when, for any objects
x and y (of the appropriate kinds), if x bears R to y, then y
cannot bear R to x.

A function, or mapping, that takes each member of a given set of
individuals to a single specific value. So, for example, the
attribute color-of maps each object in a given set to its color; the
attribute age-of maps each employee to his or her age.

A precise characterization of the logic of a term or set of related
terms stated in the IDEF5 elaboration language. An axiom
typically expresses a constraint on the objects denoted by the
terms in axiom.

A distinguishable feature. This term encompasses both
attributes and properties. See attributes and properties.

When applied to relations, categorizing objects in the domain of
discourse according to how individuals relate to kinds and how
kinds relate to one another in terms of subsumption and
inclusion.

An individual or organization acting as a contracting agent for
IDEFS5 project services with an external source of IDEF3
expertise.

Member of an IDEF5 project team responsible for reviewing
draft IDEFS descriptions and making written critiques.

A word in the IDEFS5 elaboration language that is neither an

operator nor a variable. Semantically, constants are words that
denote objects in the domain.

177

Constraint

Context

Declarative Knowledge
Definition

Domain

Domain Expert

Elaboration Language

Extensional

Form, Description
Summary

Form, Kind Specification

Form, Proto-kind
Specification

Most generally, a statement which must (or equivalently, must
not) hold in a system. Most often, constraints express logical
properties of, or connections between, domain objects that must
be maintained if the system is to function as intended.

A statement that identifies the boundaries of the IDEFS5 project
and the level of detail. The statement of context is important
because it indicates the scope and level of granularity of the
study.

The type of knowledge that human beings (domain experts) are
aware of.

An expression that formally identifies an individual, relation, or
function.

A sphere of interest, such as the semiconductor domain or the
domain of abstract algebra. A domain has its own distinctive
vocabulary for talking about the characteristic kinds of objects
and processes typically found in the domain.

An individual considered knowledgeable of, and conversant in,
most of the distinguishing characteristics of a certain aspect of a
domain. A role played by the primary sources of knowledge
from the application domain of interest. Persons filling this role
provide insights about the characteristics of the application
domain that are needed for extracting the underlying ontological
knowledge.

A structured textual language designed specifically to express
ontology information. The IDEF5 elaboration language has the
full power of first-order modal logic plus set theory.

Criteria that specifies the identity of an abstract object be
determined by its members or instances. Sets and, in some
theories, classes, are the paradigmatic extensional entities: the
principle of extensionality in set theory is that two purported sets
are identical if and only if they have exactly the same members.

A form that summarizes the evolving/completed ontology
description. It records the purpose, viewpoint, and context and
also provides a summary of ail the schematics and documents
used to record the domain ontology.

A form that records the information associated with a kind in a
domain, in particular, the defining properties of the kind,
relevant non-defining properties, relations the kind participates
in, and other information.

A form that records information associated with a proto-kind in
a domain.

178

Form, Proto-relation
Specification

Form, Relation
Specification

Form, Source Material
Description

Form, Source Statement
Description
Form, Term Description

IDEF

IDEFQ
IDEF1
IDEF1X

IDEF2
IDEF3

IDEF4

Individual

Initial Scope

A form that records information associated with a proto-relation
in a domain.

A form that records information associated with a relation in‘a
domain.

A form that records information associated with a source
material.

A form that records information associated with a source
description.

A form that records list of the terms used to derive the ontology
and a brief description of each term.

Acronym for Integration Definition. Also used to refer to a
family of mutually-supportive methods for enterprise integration
including in particular IDEF@, IDEF1, IDEF1X, IDEF3, IDEF4,
and IDEFS5.

Integration Definition (IDEF) method for Function Modeling
Integration Definition (IDEF) method for Information Modeling

Integration Definition (IDEF) method for Semantic Data
Modeling

Integration Definition (IDEF) method for Simulation Modeling

Integration Definition (IDEF) method for Process Description
Capture

Integration Definition (IDEF) method for Object-Oriented
Design

The most logically basic kind of real world object. Prominent
examples include human persons, concrete physical objects, and
certain abstract objects such as programs. Unlike objects of
higher logical orders such as properties and relations, individuals
essentially are not multiply instantiable. Individuals are also
known as first-order objects.

A specification of the boundaries of the ontology development
effort, in particularly, the parts of the systems that need to be
included and those which are to be excluded from the
ontological development effort.

179

Intensionality

Interview

Irreflexivity

Keyword

Kind

Kind Refinement
Procedure

Knowledge Engineer

Lexicon

Meronymic Relations

Metaphysics

Method

Movement Protocol
Analysis

In the context of IDEFS, the characteristic possessed by an
abstract object when its identity is not determined by its
members or instances. Properties are the paradigmatic
intensional entities. Two distinct properties can have precisely
the same instances without, intuitively, being identical. The
property being a living former U.S. president from California
and the property of being the most famous actor-turned-
politician are intuitively distinct properties, yet have precisely
the same instances, viz., Ronald Reagan.

A face-to-face meeting with domain experts for the purpose of
pursuing some line of investigation.

The property that holds for a relation R if and only if no object
stands in the relation R with itself.

A word that has special meaning and usage in the IDEF5
elaboration language and cannot be used to denote objects in the
domain of discourse.

Informally, a group of individuals that share some set of
distinguished characteristics. More formally, kinds are
properties typically expressed by common nouns such as
‘employee’, ‘machine’, and ‘lathe’.

The activity of eliminating unvalidated proto-kinds from an
ontology and promoting validated proto-kinds to kinds.

A technical role filled by personnel with IDEF5 expertise who
are the primary developers of an IDEFS5 ontology. Also known
as an analyst.

The set of basic symbols of a language.

Part-whole relations of various sorts, as, for instance, between
an engine and the automobile that contains it, an acre of real
estate and a larger piece of land containing it, the hydrogen in a
cup of water and the water itself, and so forth.

The branch of philosophy that systematically investigates first
principles and, in particular, what ultimately exists.

An organized, single-purpose discipline or practice for accom-
plishing some set of tasks. The IDEF methods are specifically
designed to accelerate the learning process and help novice
practitioners emulate the performance of highly experienced
individuals engaged in a particular analysis or design activity.
IDEF methods guide users through a disciplined approach,

consistent with good-practice experience, to achieve consistently
high levels of performance (quality and productivity).

A type of analysis in which idle movements are identified by
studying motion efficiency.

180

Multiply Instantiable
Mutually Exclusive
Object

Object, First-Order

Ontology

Ontology, Domain

Ontology, Practice

Ontology, Site-specific

Operator

Pool, Kind

Pool, Property
Pool, Proto-kind
Pool, Proto-characteristic

Pool, Proto-relation

Ability to have more than one instance or member. Sets, proper-
ties, relations, classes, types, and kinds are all examples of
multiply instantiable objects.

A condition that exists, given M objects and N relations, when
either the objects stand in none of the N relations or they stand
in exactly one relation.

In general, anything that can be referred to within a domain,
including concrete and abstract things, as well as kinds,
properties, and relations.

See individual.

A domain vocabulary together with a set of precise definitions,
or axioms, that constrain the meanings of the terms in that
vocabulary sufficiently to enable consistent interpretation of data
that use the vocabulary.

The highest level of three distinguished levels of ontologies,
when categorized in terms of generality. A domain ontology
classifies the most general information that characterizes an
entire domain. See practice ontology and site-specific
ontology .

An extension of a domain ontology that includes the common
features of similar sites in that domain.

An extension of a practice ontology (hence also a domain
ontology) to include information about all of the relevant kinds
of objects, properties, and relationships found within a specific
site.

A lexical item in the IDEFS elaboration language that attaches to
terms to form other terms, or to statements to form other

statements. The boolean operator “not” is a one-place sentence
operator.

The collection of kinds that have been identified in an ontology.

The collection of properties that have been identified in an
ontology.

The collection of proto-kinds that have been identified in an
ontology.

The collection of proto-characteristics that have been identified
in an ontology.

The collection of proto-relations that have been identified in an
ontology.

181

Pool, Relation

Pool, Source Statement

Pool, Term

Procedural Knowledge

Process

Process Kind

Project

-Project Leader

Prompting Questions

Property

Property, Accidental
Property, Defining

Property, Essential

The collection of relations that have been identified in a.ﬁ
ontology.

The collection of meaningful statements made by different
individuals, as well as statements extracted from source
documents during the ontology development effort. Each source
statement is given a unique identification number to improve
traceability.

The collection of meaningful terms used in an ontology.
Typically these are the terms referring to proto-kinds, proto-
properties, proto-relations, kinds, properties, and relations in the
ontology.

Knowledge concerning the manner in which a certain task is
carried out.

A real world event or state of affairs involving one or more
individuals over some (possibly instantaneous) interval of time.
Typically, a process involves some sort of change in the
properties of one or more of the individuals within the process.
Because of the ambiguity in the term “process”, sometimes
referred to as process instance.

The abstract general character that is shared by similar
processes. Such processes are said to be instances of the process
kind. For example, the process kind manufacture part found in
a certain enterprise is the general behavior exhibited by each
particular instance in which a part is manufactured.

A plan for conducting an IDEFS5 ontology description capture
effort with a clearly defined statement of purpose, context
(scope and level of detail), and viewpoint.

An administrative role that carries the responsibilities for
overseeing and guiding an ontology development effort. In
particular, the project leader is ultimately responsible for the

outcome of the ontology development effort, team organization
and leadership, and schedule and budget management.

A question intended to prompt a domain expert to verbalize
thoughts and/or to help guide a discussion.

An abstract, general feature or characteristic that is multiply
instantiable; that is, it can be shared by distinct objects.

A property that an individual has, but could have lacked.

An element of the set of properties associated with membership
in a given kind K.

A property that an individual could not have failed to exemplify.

182

Property, First-Order

Property, Non-defining

Property, Second-Order

Protocol

Protocol Analysis

Proto-association Chart

Proto-characteristic

Proto-kind

Proto-relation

Reader

Referent

Reflexivity

Relation

Relation, First-Order

A property that holds only of individuals.

A property which is important for characterizing a given kind,
but which is not used in defining the kind, and is therefore not
counted among the defining properties of the kind.

A property that holds only of kinds and other first-order
properties and first-order relations.

An underlying pattern or structure of a discourse or behavioral
process. The term protocol implies that an expert is solving a
problem using commonly used approaches and tools.

The process of analyzing a record of discourse or behavioral
process. There are two types of protocol analysis: verbal
protocol analysis and movement protocol analysis [Jackson, 90].

A two dimensional matrix with relevant proto-kinds listed on
both the axes. An X is marked in cells to indicate the possible
existence of a proto-relation.

A characteristic tentatively identified for inclusion in an
ontology. A proto-characteristic at a later point is either
eliminated from the developing ontology or elevated to the
status of a full fledged property or attribute. Tentatively
identified relations are known as proto-relations, and have the
same status as proto-characteristics.

A group in a domain tentatively identified as a kind. A proto-
kind at a later point is either eliminated from the developing
ontology or elevated to the status of a full fledged kind.

See proto-characteristic.

A member of an IDEF5 project team responsible for reviewing
draft IDEFS descriptions but who is not responsible for
providing written comments.

A construct in the IDEF5 elaboration language used to refer to a
kind, object, property, relation, or process kind in another
ontology or an IDEF model.

A property that holds of a given relation R if, for any object x
(of the appropriate kind), x bears the relation R to itself. An
example of a reflexive relation is weighs-as-much-as.

An abstract, general association or connection that holds
between two or more objects. Like properties, relations are
multiply instantiable. The objects among which a relation holds
in a particular instance are known as its arguments.

A relation that can hold only between individuals.

183

Relation, Second-Order
Relation, Spatial
Relation, Temporal
Relation Library
Relation Refinement

Procedure

Reviewer

Sanctioned Inference

- Schematic

Schematic, Basic First-
Order

Schematic, Basic Second -

Order

Schematic, Classification

Schematic, Complex First-

Order

Schematic, Composition

Schematics, Existential

Schematic, First-Order

A relation, one of whose arguments is a kind, property, or first-
order relation.

A relation between spatial locations such as to the left of, above,
contiguous with and so forth.

A relation between temporal points or intervals such as before,
during, overlaps and so forth.

A collection of common, predefined, axiomatized relations that
are available to IDEFS5 users. The library is extensible.

The activity of eliminating unvalidated proto-relations from an
ontology and promoting validated proto-relations to relations.

A member of an IDEF5 project team who is knowledgeable
about the application domain and/or the IDEF5 method and is
responsible for reviewing and commenting on draft descriptions
and documents. Team members and domain experts can be
reviewers. See also reader and commentor.

See constraint.

A connected diagram constructed from the lexicon of the IDEF5
schematic language, in accordance with the syntactic guidelines
of the language.

Either an existential schematic, or an n-place first-order
schematic.

A schematic consisting of two kind symbols, or two relation
symbols, or a kind symbol and a relation symbol connected by a
single second-order relation symbol.

A schematic representing how the subkind-of relation holds
between different kinds in a domain.

Any first-order schematic other than a basic first-order
schematic.

A schematic representing how the part-of relation holds between
the instances of different kinds in a domain.

A schematic consisting of a single individual, kind, or relation
symbol. Such schematics enable a domain expert to record the
mere fact that certain indiviuduals, kinds, or relations have been
observed in a given domain without requiring any further
information about the relations such objects stand in with other
objects in the domain.

Either a basic first-order schematic, or the result of connecting a

kind symbol in a given first-order schematic to another kind
symbol by a first-order relation symbol.

184

Schematic, Object-State

Schematic, Relation
Schematic, Second-Order

Schematic, State
Composition

Schematic, n-place

Schematic Language,
IDEF5

Sentence

Source Material

Source Material Log

State

Statement of Need (SON)

Statement of Purpose

Subkind-of

Symmetry

The basic construct for describing process kinds in the IDEFS
schematic language.

A schematic consisting only of first-order relation symbols
connected by second-order relation symbols.

A schematic involving at least one second-order relation symbol.

A complex first-order schematic used to represent how objects
of certain kinds are transformed to yield an object of some kind.

For n2>1, a schematic consisting of n kind and individual
symbols connected by a single n-place first-order relation
symbol.

The graphical component of the IDEFS languages.

A sentence in the IDEFS elaboration language is an expression
of some fact that is observed or believed to be true in a domain.

A textbook, a research article, an enterprise-specific document
such as a policy manual or a procedure manual, a set of an
interview notes, or direct observation notes that has relevant
information to the ontology development project.

A document which serves as the primary index to all source
material collected and used in an IDEFS5 project.

A property, generally indicated by an adjective rather than a
common noun, that is characteristic of objects of a certain kind
at a certain point within a process. For example, water can be in
frozen, liquid, or gaseous states.

A statement that records the source of the request (person or
project) and paraphrases the stated objectives of the project.

A statement that clearly specifies the main objective(s) that the
ontology development team intends to achieve. Defining the
purpose can be separated into two parts, 1) defining a statement
of need (SON) and 2) defining the information goals in terms of
how the ontology will be used.

The characteristic relation that holds between a given kind and
its subkinds. For example, the kinds capstan lathe and turret
lathe bear the subkind-of relation to lathe.

A property that holds of a given relation R if, for any objects x
and y (of the appropriate kinds), if x bears the relation R to vy,
then y bears R to x. An example of a symmetric relation is
contiguous-with.

185

System

Team Member
Term Coining

Transitivity

Verbal Protocol Analysis

Variable

Variable, Individual

Variable, Second-Order

Variable, Sequence

A collection of physical and/or conceptual objects that work
together to achieve common objective.

A person involved with the IDEF5 ontology description project.
The strategy of coining a term for new a new domain object.

A property that holds of a given relation R if, for any objects x,
y, and z (of the appropriate kinds), if x bears the relation Rto y,
and y bears R to z, then x bears R to z. An example of a
transitive relation is larger-than.

A method of acquiring domain knowledge in which experts are
asked to think aloud during a problem solving activity. The data
derived from this exercise are then analyzed, and domain
knowledge extracted.

A term in the IDEFS5 elaboration language that ranges over, i.e.,
can take arbitrary semantic values in, some given domain of ob-
jects.

A variable that ranges over the individuals in a domain.

A variable that ranges over kinds and first-order relations in a
domain.

A variable that ranges over finite sequences of individuals in a
domain.

186

