LONG HAUL NETWORK

LORAL DEFENSE SYSTEMS-AKRON
1210 MASSILLON ROAD
AKRON, OHIO 44315

1 November 1992
Document No. ALO1192-001
CRDL A002

Prepared for:
Air Force Human Resources Laboratory
Williams Air Force Base, AZ 85224

LORAL
Defense Systems - Akron

ADST SUBCONTRACT # E-91-108
MULTIRAD NETWORK

19941128 011

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Automated Information System</td>
</tr>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
</tr>
<tr>
<td>AIT</td>
<td>Air Intercept Trainer</td>
</tr>
<tr>
<td>ATES</td>
<td>Automated Threat Engagement System</td>
</tr>
<tr>
<td>AWACS, AWCS</td>
<td>Airborne Wide Area Command System</td>
</tr>
<tr>
<td>CET</td>
<td>Combat Engagement Trainer</td>
</tr>
<tr>
<td>COMSEC</td>
<td>Communications Security</td>
</tr>
<tr>
<td>CSO</td>
<td>Cognizant Security Office</td>
</tr>
<tr>
<td>DIS</td>
<td>Distributed Interactive Simulation</td>
</tr>
<tr>
<td>DL</td>
<td>Data Logger</td>
</tr>
<tr>
<td>GCI</td>
<td>Ground Controlled Intercept</td>
</tr>
<tr>
<td>IFF</td>
<td>Identification Friend or Foe</td>
</tr>
<tr>
<td>ISS</td>
<td>Information Systems Security</td>
</tr>
<tr>
<td>LHN</td>
<td>Long Haul Network</td>
</tr>
<tr>
<td>MDRC</td>
<td>McDonnell Douglas Reconfigurable Cockpit</td>
</tr>
<tr>
<td>MULTIRAD</td>
<td>Multiship Training Research and Development</td>
</tr>
<tr>
<td>NIU</td>
<td>Network Interface Device</td>
</tr>
<tr>
<td>NSA</td>
<td>National Security Administration</td>
</tr>
<tr>
<td>PVD</td>
<td>Plan View Display</td>
</tr>
<tr>
<td>SIMNET</td>
<td>Simulation Network</td>
</tr>
<tr>
<td>TL</td>
<td>A specific telephone trunk line specification</td>
</tr>
<tr>
<td>TED</td>
<td>Trunk Encryption Device</td>
</tr>
<tr>
<td>TRUE</td>
<td>Training Utility Evaluation</td>
</tr>
<tr>
<td>WPAFB</td>
<td>Wright Patterson AFB, OH</td>
</tr>
</tbody>
</table>

Statement A per telecon Col. Lynn Carroll
A/L Williams AFB, AZ 85224

NWW 12/12/94
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSSARY OF TERMS</td>
<td>ii</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 OBJECTIVE</td>
<td>1</td>
</tr>
<tr>
<td>3.0 APPROACH</td>
<td>1</td>
</tr>
<tr>
<td>3.1 Description of Plan</td>
<td>1</td>
</tr>
<tr>
<td>3.2 Applicable Documents</td>
<td>2</td>
</tr>
<tr>
<td>4.0 ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>4.1 SECURITY RATIONALE</td>
<td>3</td>
</tr>
<tr>
<td>4.2 SECURITY REQUIREMENTS FOR THE LHN</td>
<td>5</td>
</tr>
<tr>
<td>5.0 CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>6.0 REFERENCED DOCUMENTS</td>
<td>6</td>
</tr>
<tr>
<td>FIGURE 1</td>
<td>7</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The MULTIRAD complex at Williams AFB, AZ houses a GCI trainer, on Air Intercept Trainer (AIT) several pilot training devices, an Automated Threat Engagement System (ATES) and an Instructional Support System (ISS) all within a TEMFEST facility. Thus, integrated training exercises can be performed, controlled and monitored in a dedicated security environment. The next two stages of MULTIRAD development are the interim and the advanced MULTIRAD. Interim MULTIRAD with long haul network (LHN) and extensions of SIMNET protocol will be used for the training utility evaluation (TRUE). An extension of distributed interactive simulation (DIS) protocol will be introduced for advanced MULTIRAD.

2.0 OBJECTIVE

This plan provides security rationale and requirements for extension of the MULTIRAD development program into multi-site exercises over a LHN using DIS protocol.

3.0 APPROACH

3.1 Description of Plan

The plan is the result of a review of the documents listed in paragraph 3.2 as well as discussions and analysis of the security of data within an automated information system and AIS networks as they apply to the MULTIRAD program. This work was performed in October and November of 1991 at Loral Defense Systems - Akron, Ohio.
3.2 Applicable Documents

Draft 19 Sep 91 Lot I MULTIRAD Network Research and Development, Section C with Appendices A and B

NCSC-TG-005, Version 1 Trusted Network Interpretation. 31 July 1987

DoD 5200.28-STD Department of Defense Trusted System Computer System Evaluation Criteria December 1985

4.0 ANALYSIS

4.1 SECURITY RATIONALE

4.1.1. Classification of LHN data

Simulations within the MULTIRAD environment are simulations of real world classified systems. Emission parameters, missile parameters, stealth characteristics, and IFF doctrines, combined with position and event data, can yield overall weapon system effectiveness. The classification of overall weapon system effectiveness has always been the bottom line when determining security levels for Air Force weapon systems. Individual subsystem characteristics alone may be considered UNCLASSIFIED or CONFIDENTIAL but the overall system weapon effectiveness usually requires a classification of SECRET.

If positional data is transferred without the accompanying appearance and event data, an exercise may still be considered SECRET. Since any of the weapon systems in a MULTIRAD exercise may be operated using operational doctrine and tactical expertise, it is likely that the compilation of positional data being passed between the systems on the MULTIRAD network will be rendered SECRET unless tactical maneuvers are forbidden and prevented. A mission rehearsal exercise, which uses specific locations, could upgrade the positions of weapon systems themselves to TOP SECRET.

In order to provide an effective weapon system, any LHN must be capable of transmitting TOP SECRET data between multiple sites. In order to do that, some type of encryption must be introduced.

4.1.2. The interim and advanced MULTIRAD network exercises must operate in a dedicated security environment.

Paragraph 8-206 of the Industrial Security Manual, DoD 5220.22-M, January 1991 states, ". . . On January 1, 1992, all AIS's [automated information systems] approved to process classified information in other than the dedicated mode will be required to meet the C2, or higher, level of trust criteria specified in DoD 5200.28-STD. . . . In the dedicated security mode trusted systems are not required. . . .".[1] "Dedicated" means that all users that have access to the data on a system must have a need-to-know and a security clearance at least as high as the highest level of the data available through that access route.
4.1 SECURITY RATIONALE (cont')

4.1.2 (Cont'd)

If a lower clearance individual or multiple need-to-know are given access to any of the data within the MULTIRAD system, the system is no longer considered dedicated. After January, 1992 the requirement to assure the integrity of classified portions of the system mandates that a C2 or higher trusted system approval must be obtained for each and every AIS device in the MULTIRAD system and for each and every AIS device at the remote sites as well. The approval process is an unknown but for the MULTIRAD operating requirements it does not appear to be a viable approach for the interim MULTIRAD development. In the future this option may provide a workable solution using the advanced MULTIRAD DIS protocol and should be examined again.

To alleviate security risks the interim MULTIRAD network environment must satisfy the dedicated system criteria. The sites in a MULTIRAD exercise must all operate at the same clearance level with the same need-to-know when the LHN links are activated. Also, data that flows between sites must be encrypted before it leaves controlled security boundaries at each site. If this approach is taken now, MULTIRAD can prove to be useful to those sites which have compatible security levels. Future development, when the proper C2 approvals have been obtained, can then attempt to upgrade the dedicated security environment to a system high security environment for the network to allow multiple need-to-know exercises limited access to the network. The sites must remain locally dedicated, however, because of their local networks.

4.1.3. The security for the MULTIRAD LHN should be administered and controlled from a centralized facility.

The MULTIRAD facility at Williams AFB, AZ contains the monitoring, auditing, logging and control equipment needed to administer security on the MULTIRAD LHN. It has been designed to be the hub of the MULTIRAD system. Using a central network security controller and star topology [2] (MULTIRAD facility at the center, remote sites at the points of the star) will simplify the network security process by reducing the number of security interfaces on the network to three. The central controller can then directly distribute the keying parameters to the remote sites and establish common procedures for access, identification and authentication. This also makes the security auditing process more manageable.

It should be noted that this means that the remote sites will have to include the central site administrator if they are to network with each other. Since over 80% of the entities in the proposed MULTIRAD network are located at Williams, this should be a workable solution.

Whether one exercise or multiple exercises are accessing the network, the central network security controller at Williams will still be authenticating, auditing and monitoring every exercise.
4.2 SECURITY REQUIREMENTS FOR THE LHN

A star network topology was chosen for its security advantages. The central network security manager has access to, and positive control of, all the interfaces and all the data transferred across the network. Data which is to be transmitted between sites must be encrypted to the B1 level before it leaves the protection of the security environment at each site. This data must be treated as SECRET or in some cases TOP SECRET. In all, 6 encryption devices will be required: Three at Williams and one at each of the remote sites. (See Figure 1 MULTIRAD NETWORK)

With multiple voice channels and assignment of a 2 Hz update rate to the 3K to 10K bit DIS entity packets the 69 entity network must be able to pass at least 1.5 Mbits per second. There are approved devices which satisfy such a bandwidth. Encryption devices and the three encrypted trunk lines must be able to handle the volume of data required to support the eventual DIS protocol for the 69 entities proposed. For example, the capabilities of TSEC/KG-194, -194A encryption devices interfacing with T1 trunk lines are specified to operate 1.544 Mbits per second.[3] The KG-194, -194A can protect ". . . all classifications of digital traffic."[3] If other bandwidths are desired other approved encryption devices are available. [3]

The central network security manager will establish network policy and control mechanisms. He must verify or approve:

1. The security level at each site. All three sites must have a security level at least as high as the highest level of the data in the system.

2. The trunk line penetration of the security shield at each site.

3. The protection mechanisms at each site for securing the encryption devices which contain valid keys. The devices are unclassified when the keys are cleared out.

4. The LHN start up, authentication and access procedures.

5. The LHN sign-off and shut down procedures.

6. The audit techniques which are selected to monitor the access to, and use of, the LHN.
5.0 CONCLUSIONS

1. To meet the requirements for security of TRUE, three encrypted duplex channels must be established, one from Williams to each of the three remote sites. (See Figure 1 MULTIRAD NETWORK)

2. Extended MULTIRAD exercises must be conducted in a dedicated security environment (i.e. all sites must be cleared to the same security level in order to obtain access to the data on the network).

3. The advanced MULTIRAD LHN exercises will still require that all devices at a given site be operated within a locally dedicated security environment.

4. The security for the MULTIRAD LHN should be administered and controlled from the MULTIRAD facility at Williams AFB, AZ.

6.0 REFERENCED DOCUMENTS

MULTIRAD NETWORK

Williams AFB

MDRC

MDRC

NIU

NIU

AIT

NIU

NIU

CET

NIU

NIU

SIMNET PROTOCOL

Long Haul
Link

Luke AFB

NIU

AIU

NIU

AIU

PVD

DL

NIU

ATES

NIU

GCI

WPAFB

NIU

AIU

NIU

AIU

Long Haul
Link

Brooks AFB

AWCS

NIU

* Bridge / Encryptor