
f wSare Productivity Cons mm

AD-A286 834)

Software Engineering Using
Ada Course:

Lectures and Exercises

ELECTE
SAU(J~195

Ammnd k* ~t pdb isaaI

L..

V&sin 01.00 .0
'Virginia

CENTER 0

far &frWare ReuSe and Technology Tlrntvd-

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Pubilo reporting burden for thia oollg=tlot of Information Is eallmed o average 1 hour per response, Including the ti'ne Ic rev edng instruction*, searohing existing data sources,
gathering and nmintaining the data noded., and oorrnlsting aend reviewing the coleltion of Inforrnmtion. Send ,nornment regarding this burden estimate or any other aspect of thin
colaction of Ifornstion, Including suggestow lor reducing thi burden to WasnIngton Heedquarters Servioes, Dkbeotorte for Information Operations and Reports, 1215 Jeffwrson
Davis Highway, Suite 1204, Arlington, VA 22202-43M2, and to the Office of Managerment and Budget, Paperwork Reduction Pro eot (0704-0188), Washington, DC 20603.
1. AGENCY USE ONLY (Leave blank) 2, REFORT DATE , F OORT'YPEANDDATESOOVER

April 1995 Technical Report - Final
4. Tfl.E AND SUB1TllE 5. FUNDING NUMBERS

Software Engineering Using Ada Course: Lectures and Exercises

6. AUTHOR(S) R. Christopher, L. Finneran, S. Wartlik
Produced by Software Productivity Consortium under contract
to Virginia Center of Excellence G MDA972-92-J-1018
7. PEFWORMIIG OFRANIATION NAMES(S) AND ADURESS(ES) 8. PERFORMING ORGANIZATION

Virginia Center of Excellence REPORTNUMvER

SPC Building SPC-94094-CMC,
2214 Rock Hill Road Version 01.00.05
Herndon, VA 22070

9. SPNSORIG / MNITORING AGENCY NAME(S) AND ADDFESS(ES) 10. SPONSORING I MONITORING

ARPA/SISTO AGENCY R•=IORT NUMBER

Suite 400
801 N. Randolph Street
Arlington, VA 22203

11. SUPPLEMENTARY NOTES

N/A
12a. DISTRIBUT1ON /AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

APPMo~d Im pubA. I

No Restrictions 1
13. ABSTRACT (Maximum 200 womrs)

This is a short course that introduces novice programmers to software engineering concepts and
illustrates them using the Ada programming language. The course, which takes about two weeks to
teach, is aimed at advanced placement computer science high school classes. It stresses problems
that arise in programming in the large, particularly those caused by change, communication, and
complexity. It shows how software engineers employ abstraction, information hiding, and software
reuse to deal with these problems. The solutions shown are expressed in Ada. The students see and
appreciate how Ada can help them solve real problems.

The course material contains viewgraphs instructors can use as the basis of lectures. Each viewgraph
has accompanying notes that show how to present the viewgraph and suggest topics for discussion.
The course is divided into four units; following each unit are summaries, suggested group activities,
and homework assignments. A comprehensive examination and an evaluation form are also included.

14. SBUJCTTEFRMS 15. NU'MBER OF PAGES

Software engineering, software reuse, course, Ada, information hiding, 162
abstraction CO. PRC CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THISPAG OF ABSTRACT ULUnclassified Unclassified Unclassified

NSN 7G40-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. 230-18
298-102

Software Engineering Using
Ada Course:

Lectures and Exercises

SPC-94094-CMC

Version 01.00.05

April 1995

(0

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION -

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Hemdon, Virginia 22070

Copyright 0 1995, Software Productivity Consortium Services Corporation, Herndon, Virginia. Permission to use, copy, modify, and
distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and provided that the
above copyright notice appears in all copies and that both this copyright notice and this penpssion notice appear in supporting docu-
mentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under Grant
#MDA972-92-J-1018. The content does not t. w.ssarily reflect the position or the policy of the U. S. Government, and no official en-
dorsement should be inferred The name Software Productivity Consortium shall not be used in advertising or publicity pertaining to
this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE PRODUC-, TIVWTY CONSORTIUM, INC. AND SOFTWARE PRODUCTIVriY CONSORTIUM SERVICES CORPORATION MAKE
NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABIUTY OF THIS MATERIAL FOR ANY PURPOSEOR
ABOUTANY OTHER MATI'ER, AND THIS MATERIAL IS PROVIDED WITHO/FT EXPRESS OR IMPLIED WARRAN-
TY OF ANY KIND.

IBM is a registered trademark of International Business Machines Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.a

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Windows and Windows 95 are trademarks of Microsoft Corporation.

* CONTENTS

Tab

Unit 1: Software Engineering 1

Unit 1: Software Engineering, Workbook 2

Unit 2: Abstraction 3

Unit 2: Abstraction, Workbook 4

Unit 3: Information Hiding 5

Unit 3: Information Hiding, Workbook 6

U nit 4: Reuse 7

Unit 4: Reuse, Laboratory 8

Test and Survey 9

I 9TIC IT. t3 Q o

..
I

iii

Contents

7his page intentionally left blank

Iv

0Mw

1ý 01%

tK X

N.
A ~ R A'4

1,7,

w w i

A 0

as: • '' ' a)'- %" 0 O_

•"0 O - •J -- C "--

'V C co' Ca o _." 0- o '4

7• as 2" - C O.. 0-o q v2 ,o E .0.
2- t a? 0 E 'o MA E w

o o E

CL 0 (DC r .- 3 0 01

C.)' ;:co (3) > tV .

-- a ,_) -o' o

C 0 = C -- "'

0 O0• 1- '-- •'0 (3)
"• ,.- • , •,-o • C.)o 2. .(5 .g CA '-" 0) co

a cc$ 0 .E 0

,C. 0 3 . - 0 0, - . -

o •- " • '• ' • -- "o • (3)
E co r =-CU

C,. -- CC$ (-n 0o-

CL CD

ooco

C: C > c: fl 0 C: >.G5l0

W=o -0 a- . cr.o .- .0 Q>%-a

"E w E - : oI C C"lo o a ClVD
0 ~ t O 0 Cl U)'V%. n Dc

0 CD

E; 0 . .a) - .xG)o o
L_ co Qc)

co 0. C: t 1~fO0 = ~'' .
0 1) w~ c 0

(30 0
CL $. - (D N CCSC .) ~CS O C)

o r M~~c~, U = .. CC C E.
E- asa--00 cfl&_ 0 U)~C.)C'SCO

CO *-a) CD

U)o. 6 0 Co "

~~U 0a E .-. H

0~ a)a
U)

44)
V -

0i

(U

Cti wi

Ofl '- 0.

- : _ 0 ,, o)a 'a c

E c)

E20 co a) a
'-e•.,•> 'o _

,-- -o o -,-.0> ..0 0)

... Cj. . -,C
0 I0L..

0,- 0 CD o U) 2-,
i5 czU ,U*r_ 0

0.O CLE uE
0

0 > -) a) co4-
Z 0(s0 0Z3o -.5 = I_ ,o 5o .)o 0

o a) -o. ' E

o 0..=L• U)C .) _e *Io , U ,r_

.- E 0 6 0V 0D o

O-.•- (1) • _.. 0• OE_ o -0•-

.2_ -O >-U

o- 0
oo

= co- ,o

"c - " - , o o. °°. .

_ CD

0 (D Q_ a-) -- . 0• O -l a 0--

a; oE CO CD -- m)
" '0")" 0 - Co

-- (o o E. m CC EoE•-~~~c o":o=o' -a== .- .E •

ED -0 C)0)E coC 4)

,,-_0 o< o.wtox= 0- _

C._ .-- I/.- ..C • / 00•,

00 •
E

,.

CO (n4 Q)
EL 0)0j.

0 ~ -C IMaWa .C2 C.o*1 ~

.=u -o - •= ED- 4 ._ oE 00"0"
. -D a -.o•- -0•_.

o- a 0 0 0n

Ec* t Doo E X L CU)

'a .:,. = a) w " C)
!,--C)= - '<" j'v CD 0 (D _o

-"0, c o E o 1 '

.£C9 000 0 C

AO 0~ 0 7
4- 00 MCLa).

00*~. E CD n I CO

00

.L

°o o,

mcm

ii' m -m O C Ui-.

CA N= 0 .

CL 0 S

M LUo o M~ 0 co Cc.

0m Ak

0l >) 1
>00 f v)C

C Cd

CD 0 4--CD 0 CU

'0~ CD o~ D 0)0
0 c)0 c z .)~ ~ (D rC:

G) P :3 0) Loc >~ a.) 0z

0) - 0) OW 0 4-0)
0 c 0- "--. Cr

) 0) m c
C CL

Q r n ?-0 (n 1)

0 C) 4 -(E
0)0 a~-) D a

00

0 (a 00) 0c U0) 0)

V50) C&) =

4- ")~ CU. -W-

- -.-)

,a U) -- ca~ 0 0 C0 ca-

a) E3 co ~ ~
= V, 9 E I- mOO

i52- r C 0)

0 0) C
0~ W C ~m0 0) 0

F5 E E, 0 -.) 2

o) 3z-~ 05 ~
CO4)Q-0. 0 20G)>c

CT0)i (dW0 ý 5- 0() U.. 2
~~o(UC~ -,.ItC)

&))-o~U m,- E- 0 0
(D'~ 0 -~ 0 a 0 0 = -X

w' mC a)O (DC 03 C: 1
0 Q. - 4--- 0 E (

00) (a c

U-~) - 0-- Q) W: 0 .5E
0 -0 CO z)~U 2. 0) t7C -

co'~ '-. 4 CC 4) 00 -0

cU (D~,0 0 E) Co -0 (Z E

c o~ a 0 o~ 00 -0E-)D
cis c cD >C)))) -:; 5 a)~ 2, 0

caC 0)C~D(U 0c 0 *
a) M -

ca-

0)E

CE

"ccc 0)

CDo C

U. ui

E Q)U)) CD >%r- cm.0 -a

coý a) 10 C: r

_ f 70 u~ 0 .0w
0Ed a 0 1-

= N~U) OQ) a) 0 O
ECn1 0 0 10

C~CD

Cd C

> gcri C CL.
E)~0 >0 0'

Ž. E c: y c: o~u o~ c. c
Co 0r 0 Co 0 -1.- U) X

4ý~ C3. (D Ir U) CflC o
cnO =~E CDUC: w C: m ~

""a 0 0

co . cC C: D E

o)~ 09 CD:C 00) C -"
0 0 ca E0) XU)d (

CDO~ 0 *- 0)
0d C :a 0 D 0

~cza) U.) n cm>~ 0Z ca

03 C- CO 0) .6 c~U
C*- (1 cO 4-LCC U

OCO M CMU C 0 -Cp0)0 (l-q

Ca _ CDa 0
0rs a) .s 0~ as E E 0 5 CD .C

=C C> -0 '0- _:=

co= - ~ U Cn(
0j ý5 .m - c 0 - - -= r-.. ~a -.:

Cx... .)C (0r. 0 o 0 0..
0 0 r C) CF)Q) D c -. 0 CD

CL)~9 0) U) cn 03 co (n

U) I- a)CD.a)- (D C D , C3)L %-~~.C % 0 I V <.)

0 0)n(ngC
C.) CoU) cof OM IU

0j . 0)c0 a) O) I C-

D 0 c). 0CC c) OnHca C

EU

00

ow a,
IC tmC

Cc$ 0 L.0.
E) XM0 m C 0 1

a)U U .

... .F....

@0 CL

0rUB1 00GylU3

v -,. o 0 -C-- : C._ CD -, 0 "-.-a• €

0, 0 z 7Z :C

H> ((D 0 N-_UQ. .CoI- . . - o N- 0)
- n(1)) CUO (D a

O CU) (nC-. L • !-Z

2 .8E Ez ((- 0 C- ET

D . E o6 Eo do
E o o 0 . 0

00 c n

"o 0 - - CD ="
a_ D C CO 0) W 0QC a) 0

CD CD" -0 C-- CD• CD W m L

O~ a) O-0 CIJ: *. - r C'- _C
CD `3 *0- 4

"0 " 0 . CD

o•=-E o•o •oE = •
in -c) c 0 M 0°

CD E as E

r - .--C J_ "0)

"0, a 0-

0) (Dt CD 0 ct$ 0) nc cE c$
ca != 0 + - 00 I. M~() :(sU

o o:, E a o

- a) -t: C- 3 T.. "

• ~ 3 --.- 0r- r•••• i. _ CL • ,
(D•" 0 r,•• • " - - •• =">,i" C: a) 4-4 cc$•.,m .c~•o

Ed3 CDp
•~~~ C: CO C. CL, °0 oo o"

V ,E,._ = CC 0E0)5.-0 - a

S°- E 0- o.u .o.

0-)Eo 0"• o,.0 0-

(nja o -0 E a L-)Z oc =:w~
0l :0) .0) 0 0o o C: c r-

N C0~0 0, U) 0)D =)E-- - D ci
CL~ 0 -%4 o1m4 0

(I)CI E0 . 2- ~-

Sca,->0 o E •o .a CI.i-O

X 0II (DI "0 E A :

I-
CC

Cu-

CC

C> -

I1_.

0o =.i 2 -._
0 CLIOm

E " ">x 2
E1V

0 BE
-E Z, CI

S (0

E

0 E~,
00

010

ce)

00) E.J~~0

~ E .0 +.)2
E 0C co.

coc %r E x C

&- Er, 0- E c

E E Uo0 r
8) 0 co~o. U-

U) 06ýE ;r4-;- 00.
0 Eoo

i 2 C .6 -W

o0 L) X0 ýoc W0
n0)

0 h- 2 r- so E

aE 0 (j) r
0 L.0 0 E

0 5 co CL a
c~co

Lo ~0 0) a

co a M wU0o 00

.0 E) C 2 O -~

0 co (n

r- 0 tU)(

z L cn () () -
4J 0 C 0a)- 4) .C.

0 0) (D 0) -WW5 -
-4- Ci c a z 10~ co :3U

o) a c - C 0 a) U) E
0n0 - 0)

CLo0 0L 0-0H >0 ---- = W) O

0D 0 ow4 00.

COh)O

(Dw 0

IM 0 0j 0.

.E ccn

0.00 arm"

spow 0

00
Ii

a) 0 c -) Ow >,0,

00• -- - (• -0 =3 rco o~ ci-s 0, ,,:

""-a * 0 o ._ o =d a" E- ca

o.--- E Q • *ý m-- 2) -, - O d a) CLO"

0.--

CC0) U 0 00

OW C IL (

0 ' ~E, ,,_,- -. 0..
'•- .• • •.0 -, 0. a) C

o,,.D 0b_ W - o ' O

CD z - .. CM "

E ooooo '0-

m 0 r-0 0 (D CC0c L0 4

2C-. u) >O E

co a0 , V -4- 0-

0D cC0 CD

2 o&. _E c ..
0' > . .-) +.. .

0 "-- co .0 •:3 (., 0 r) • r-

0 cm.- -c 0

00 00 C c
0) 46C -C W~U E5 a)

(A oC 0 r or r-) x0 E-®oS.--.-.
. E E oom c U. a ,

) CM , l'I'

0D (D -~0
0 O Fa, 0)a 0 -E E 2(D

c:2a 1 (DQ)E 1- (0.0

o m 0)*C.- S- P a c ,

0 1 ()0 %-. 'r0 (nQ" U 2

0 0 0 r CD 'r-:3 C r-% xC c . 1~

0i 0'~ v , E 0 ,0= . 0 w 0 ,

0)0 L: - .L 0)

(DC00 0 cm 0 0)

cm I- =. .rc if
.0 (D 00CC a

w 0 r_ - 4 0 . E~ o ~ > -~ o a) 8l U C.

C 0 - CD EU 0 (3 - 0

Z C :- b. - - -0 CD coC 02 >0.c C4-EE U-a
0 o ol ,- ~ A _ DC

005'- CO 1z.U~ L ~-)+C.c o 0ECo)E
21 ~ (D0U

C/ 0) o EZ = oo '0 2) CU)d4' .9

~4 0D~ .0 *ýc 0L 0U&CU C E 04

:t m -EE3 cd D U)OVnc"0 D :3=* o) lýa

L=a c)c

z% cc

0 0)

16. wL E

E 0

CD

0 0
"000 !n(1) 0)m

4--O cm I-a0C

CD 0co '.-c 0)C OC

090) COW 80. 0 4'0
0) a. OkDa CD

L- CD' E))C :3) ~

~cn CO co3cf~) U) 0-
W. CO

Cu
E 5 * 0) CJ C0)

_ i0 (0o 0r nz O

2 OD-- -
01 Ccr 0*CT .- L V

Ico w -

L..h. .cO N 0 - "O.W .-. 0
5cnQ a).

oD CO -C a

'-Co 1 0) = CZO~ $
0 0 L d . "D~ r- -:: CO :

CD Cfon~ 0z o
C:I CDC () =

CZn COe Ci C: cm C -c
0 = oCU 0 0)r

_6 E~f0 0 DCL E 0 z" 0'
E (Dr

0sa> C

Z5 ~ CD

0 cCoc~ =3 0c a

0.- 0) >.

0)4 .l V.Cn COV 00 O E Sl ca.2,cz-
L-~0 &0a) =

CDr CD "D :316 C

:3 0 cd 0) :2:2 0

4) 0C~ U)L-ý:e Cd - pc
%,- Co 7.e- CL >.. (D)~5 oo 0

cn .0l) 0 c-o C;0)
=OCc o 4-- 0) COC

(1)C 00 -a cOs a E~ 0
_ Eoof OH c,9

0 U
4))

0 U0

CUCC

E) 0 0)o
N (0

mi 0 r. 0 0
u. 0N 0Lo

E2 E

E _ 0
(UO 0 0~ E0 OwU0

o -- L- .0 am WOO.

cc. 0. 0.

VG

* 0 'a

Software Engineering Using Ada: Software Engineering, workbook

* UNIT 1: SOFTWARE ENGINEERING

UNIT SUMMARY

Much industrial software development produces very large software systems, consisting 71 millions
of lines of code. Such a system takes years to develop. It's a team effort, not an individual activity. In
fact, a software system is typically a joint effort by several companies.

Your Computer Science courses have probably concentrated on writing code. To write code requires
many skills. These skills include mastering a programming language, using algorithms and data
structures, and using a compiler-all fundamental skills you need each time you create a program. Yet
despite the need for these skills, they are not the most important ones professional programmers
possess. Writing code is the smallest, easiest part of developing software. There are other activities
that consume far more time and require much greater s kill.

Programming in-the-large (that is, developing large software systems) is very hard. Most large
software systems are delivered later than planned and contain bugs. Many people even believe this
country faces a software crisis because programming in-the-large is so difficult.

Why is developing large software systems so hard? Much of the reason stems from two factors: change
and complexity. We will study change and complexity in this course.

Once software is written, it changes. This is a fact of life. When you write software, you seldom
* anticipate all the ways it will be used. (Consider that, as of this writing, Microsoft Corporation has

produced six versions of DOS, six versions of Word, and three versions of Windows.) Also, you seldom
discover all the bugs. New uses and bugs call for chiange. The problem with change is not that it occurs,
but that implementing a seemingly simple change often requires huge amounts of work. If you've ever
made a change that rippled throughout your program, you understand why. Theni too, think of how
much more work you would have if you also needed to change user's manuals, installation guides, and
other supporting material that accompanies large software systems.

Programs are complex because of the sheer number of details inherent in them. No doubt you realize
that the larger your program, the more things you need to keep track of. But really, complexity only
truly manifests itself in team settings. Though you may understand your own code well enougrA, you'll
experience troubles explaining its inner workings to someone else (you'll have a chance to try in
Unit 2). Therefore, when you write software in a team, you spend much of your time communicating
with other team members about the software. You also spend much of your time writing technical
documents that describe your work. Management briefings, user's manuals, and design reports are
examples of such documents. Therefore, complexity necessitates communication.

Change and communication make developing software potentially very problematic. For this reason,
this course shows software development to be an exercise in engineering. This is why Unit 1 introduces
software engineering as the preferred way to develop software. The dictionaiy defines engineering as
the disciplined application of science and mathematics in making systems that are useful to humanity.
Software engineering is applying science and mathematics to help you make useful software systems.

* When you practice software engineering, you follow a software development process, shown in
Figure 1. The process breaks software development into a set of coherent steps. In each step, you focus
on a particular aspect of developing software:

Software Engineering Using Ada: Software Engineering, Workbook

"* In the Requirements step, you focus on the problem you must solve.

"* In the Design step, you focus on organizing a solution to the problem you defined in the
Requirements step.

"* In the Code step, you write source code, implementing the plan you created in the Design step.

"* In the Test st.ýp, you test the software you created in the Code step to be certain it meets the
requirements you defined.

Focusing on specific areas in each step helps you deal with change and communication problems.

Requireraents

Define the Rroblemn.

Design

Plan how the software will be organized.

Code

Implement the plan by writing the code,

Utthe software to make sureitors

Figure 1. The Software Development Process

Programming languages can also help you deal with change and communication problems. In this
course, you will learn about the programming language Ada. You will see how a software developer,
through careful and correct use of Ada's features, can facilitate communication of necessary
information to other software developers in a team. You will also see how developers can use these
features to lessen the workload in response to change.

2

Software Engineering Using Ada: Software Enieeig Workbook

* UNIT 1: SOFTWARE ENGINEERING

GROUP ACTIVITY

COMM~UNICATION

Your Student Government Association has decided to purchase a vending machine and wants you to
build it from the following parts:

1. A money acceptor

2. A change dispenser

3. A set of food dispensers

4. An item selector

Split into groups. Allocate the parts among the people in your group. Working independently,
everyone must write down which other parts they think will interact with their own part. When
everyone is finished, get together and c nipare your results.

3

Software Engineerirg Using Ada: Software Engineering, Workbook

HOMEWORK

Look up the definition of engineering in a dictionary. What does it say? Based on this definition, what
do you think software engineering is?

I

4I

Software Engineering Using Ada: Software Engineering, Workbook

* UNIT 1: SOFTWARE ENGINEERING

TEACHER NOTES FOR EXERCISES

GROUP ACTIVITY

COMMUNICATION

Your Student Government Association has decided to purchase a vending machine and wants you to
build it from the following parts:

1. A money acceptor

2. A change dispenser

3. A set of food dispensers

4. An item selector

5. A coin return button

Each of these is visible to the person operating the machine. Behind the scenes, however, they work
together to provide people with vending services.

Split into groups. Allocate the parts among the people in your group. Working independently,."eryone must write down which other parts they think will interact with their own part. When
everyone is finished, get together and compare your results.

Figure 2 depicts one possible set of interactions.

Item _ Food

Selector Dispensers

Money
Acceptor . Coin Change

Return - Dispenser

Figure 2. Interaction Among Vending Machine Parts

7hat is, the money acceptor lets the item selector know how much money has been fed in to date. The itemsele.,c n, ,if.JeS u ^ste d. dispe.er-wh.en the •person...... 1. choice and arranges for change to be dispensed

if the person has fed in more money than the item costs. The money acceptor also notifies the coin return
how much has been fed in; if the person presses the coin return button, then the coin return has the change
dispenser provide change.

ThL is only one possible solution. When students do this activity, they will probably come up with conflicting
ideas of how the parts interact. Of course, if they had agreed or. how each part behaves beforehand, they
would not have had this difficulty.

This activity illustrates the need for communication in software. Too often, group members begin working
without a clear idea of what everyone else is doing. The result is akin to what the students will experience
in this activity.

Software Engineering Using Ada: Software Engineering, Workbook

HOMEWORK

Look up the definition of engineering in a dictionary. What does it say? Based on this definition, what
do you think software engineering is?

Dictionaries define engineering as the application of science and mathematics (some add arts) in order to
make properties of matter and nature useful to humanity in structures, machines, systems, or processes.

Software engineering, then, is the application of science, mathematics, and arts (to appreciate the artistic
component, look at some modem multimedia applications) in order to make properties of matter and
nature useful to humanity in creating sofiware systems. There are two types of properties:

1. Properties of matter and nature. These come from the problem you're solving. For example, if you
are writing a program that calculates the time a ball takes to fall when dropped from a certain height,
you use properties of gravity as determined by the laws of physics.

2. Properties of software. Software is not matter, and it does not occur in nature, so we must consider
its properties separately. Software properties include algorithm execution speed (the big 0 notation)
and memory use. These properties are what make up the discipline of computer science.

6

6 _

cmJ

U-ci

CLo CO
(1)

o 05

L- 0)-
<s.L

0~

oo Z C

00

a . 0 = E a)0 0
0) 0 ' ci 0) (

C.0) CU : c(Uo.0 U)).

El am) .
C)0 (i, 0 00

ED (n E 2
cn 2 co E E
2) COLE(D Cl) =) CM

I.. C * CD CL
a c 0 .TJ J CUZ o.

c1>i Cfl 0 C-1 c:

E) NU 0) CD 0
.a- cm

EC 0 0 =). 0 "0
Zn E~E~ cu M cngoOc

wC (U

w .. O M

.2.
C M.,

m ma cc

- duo

m-

L 0)

Too,

OiI

a,

0. L co "o (1)
p 0 0 +ý ýig 5 G L

0:. W -L= .5 cco 0 tm =

E 0 E
2 (0*0 4- r2o - 2cn CL

0CCR
* -0 a)C) -

ca cn CC C=

"0 C~ -se c >0>o- (:) l)"0 c cO c
ft) ýg 0)0CUO

4-0.0 00'
CD (D)C

t -00 C))

>('1. (D) CD Cd

o C06 C'
0) im 0)0 >0D 0..

O ~ CR C Cb C%. C1
0 CD >0

cn cio CD
SD CD 0 r -

m)0 0 (DE
E > a) 0 " 0 , EC

o :E0~~~ ~ _ -0

C M

(a 0 CD CC 0 %

E0 L) - - @ I D C ::0

co ~ ~ ' 0 cnCI; E
0 a). a

c 0
0 D a

a"a
C(0

cc0

Lo o2

(0Owmno 0 O00 0~

E 0 t ac*~ ~ 0)2

*0

CLU

0CL0
CL cc

0t) * to 0 0) (D 3 >1
0 a = 0o 0) o W,

-0 0

oo- E a '0" •0

a, 0) c 0 o

0 - Mt:, 0 I

2 2 D

=C)~ *.*:> (D N L0

.2 - .0) 0)00 "00 0 *k

0u) 0(U

.W 0 0

,, .,o S o .-- • " ..r , (

m0 CL • 0.

=0.o .- 0, N (- *

0 V co 0 0

- E-c E u) >" -'

E oE 6 0

e0) *Ln -) ao CD a

~~: : ... -t 0•
CL. 0 - -- " " • ()v

0

"--(-U • Eo 0 o ^, E 0- (-

00 03 S3-

',~C '- v m-z • _= •)•••"
a r- LLE c =j .9 . .. •o re u E.

_m 0

0.+ (U v ~ 0 CL

c co o ,- *- oE0 " o

E~(0 CU E 50Ž.~ 0N. 0 2Q,0U ,~

~~~~ ...... c-111 I- d I - -(D

CwOwo)VXC) E E
CUE 0

-@ Lc U0 E -E



S0

cc'E

C "--

(I- ml.I,,

Ino

- C

L. C Cc
Elm

o o .UI-

n 0 0 N

CUr CL~

- "U- E00 CLU

to )wM

>(U mI CL

0 EO
w cn

Ic. 0' ,,,



co~ C.

cis~ a
.0 0

20 E c
'-Wcn 0

CDc~ 00
LE a0o

0cA -C 2E.
h- 00 0 W Y

0 o0
CL s., o..ccf

a) C (..fW0 a
00 0 0

00 a) 0c wQ co CD )
cn-=00 0 0  _ -, L

>.-JCC C0 r c

0.. 10 o w K 0 0
0 to

m 0 CD0 'D 0-

CA (cS 2  Cflo
00

CM c EO > -0

.CC

CL) 00. +- C 00 (1

C15 0).Vi C6 0)0.0 ~~a b > O&H+ý



0

cc CL1i

cr~

LL)

o.
Lu

00

Cui



O.2) 4- -z
If-a 0 0- --(

0 CIO
O.C( 0)* 0

C0) V) C
cis 00)4

C)~ 0~ -r-

0co 0

4-.-

E 03
O .0 o0 C0 :00

-0)0 40a) CL. 0I
C- co S 0 )

0. L. CD C 0

0) a)Cf 7aco;L

E 0)
a 0 .- 0- 0)

E90 me -0

a)0

A 0) CD 0 70 0

fl~ 0)tKJ -- LPCO CD) oE = ) 0 E (J

~ 0 0 ." -00-5 L) -C .0 E D

(1)0) i 0) :t: 0) 0

0CD CO.~ I- 0Cl 4

0~~v~c~jcC/ 01c-U ~ z ,
a* 0 E

oI a-) C 0 -

E 75 iE C) D)0**J COO ItZtCO CD

VOCU 0 tob_0t -~ 30 CU 0 -- iO
EO A) cl 0

cr 0.E =3 a ca )

___ ___ 0_E_0 0_E______



0)m

x C0

LU



a)i Zi E a

00 --0c >

Cl) co o - c

al) 5 C'.

a) (1 ci)

a) co

-4 0)E- =3 ~ o' -0 *

a)L~)ci 0 C
2 ~ ca bj E. E

L. 000

Eo W 0

0o -1.-

a .C' E o .2 -. =

a,~( ci) 0' 0 Eo I
E4- C- 0 *

C:
0 E E _t

SE 0 a
0 C(00 C0

0 a Gc E0(, E ,

c0 0
4)- E 0 Q.C C:

E C)

00
.r dE CZ CD 0

L.. U as (fl) V0 cc--z ~ -

W 0:

C' W 0~. 0. c 0 (I CO

E ~ ~ cS 0 C o0 ý:
m. -0. w3 - '' ; E 0 a'CoL

U)Cl E)CZ
C/)L a) 1 o C O a) _ E(E¶Q

E 5 cz m =C +. ca)* -- *

Cli C) 14- Vl NCoa a

%- W0. CoD. 0 W

a) 0d A
C/) Efa (1. 01 maa'~ Q

4_ _-DC

a)1 --~~I OH r



w 0 I-.

U- mm--

U) � C

0 C�)
a)

Ig� -

�

0 -

&

C �VJ

U- 0� E
� 0

uI� 0� (0U,
C

.0 - - - - - -

(0
o>
00.0

0 £2 ' 0 EC !� (OLfl�C�C�Jt-

4hd 0� Cl,

(I)
0� 0
I.- Lu - - - - - - -

� .� 4
.CC � 0

�L) �' �
WF a)
0L 0

00 w�0 -
mE�U�U,

ni
w

ilk 0 � C a)

w � 

CIL)

mJ(OLL��

0 0 0



0~I4. 0 a~ t 0 0

) 81a a 0) 0
00

"" M 0

r) C) U

_ L 0 0)C
a)(j 4- ~ - -%e E-

.C0 -4- 4- =0d' , r
0 0D "0 -a-o 3-i

0d 0 0D=

0Ea¼0 o e C .~ 0
0)

a. E 4-' 0

0~ m O Oa ) 0 0 a ""a 0 0 *- "0)m

0) VO U a)0'a

0,50 c 0 0 CD
~~CL 0 000)") 0 d

CZ w~O 4 r a a 4 - E0
16-- f 2% 00 0 U. a). - U)- -

.00 0) 0 0
cl O~: 00 r CZ

.S5 _ r_.. .2 T~ C: 0
'r-l4- 0O~ . 40 a) a)

r: 1. OCO Q 0
00 cd %-UL C a 0f 0 CL ~ 0)00 .I

t- 0 E RE U)2o (D 0 ~c
CL v;0-' 0 0 (1 5 L)I

O1)CO O C 01) L-E

aC 4- 0 L 4)0 - -d C 0
o ~ a) CC L 0 (1) )  )

< Im. M 0=0. I.- .-
0 r-o Eo0-L

COý CL 00. r-0 0 I- r.- 0 E ~
0020.04 ~-3 0) o. 0)

15 - 0 LBIl

(l CD g .0 0 =3,~

a)CO CL 0) 0

*'C1- .C 0m < 0..C C 0-C)0~



ccm
co)

00

C.))

0 -D

cm CL 0)0

0 EDa)
(U~~ CD COS -

0J ) NL
0 0

05 0 0.

* 0



0) ~ 4 co co xCA 0 r-c

0 *5 .
0 0' t: .g

CL co .0) -'

0) 00 C)

coi'I g) .0 W~

00 a- l 4

_0 
0':>a):-,j

o (dl( W.. :L"Z 3 0)

-a c_ .2 "t, 10a
"a 00 W -(

4)~ (3 :3~ 4))(04

Gi 'r- C 0c

o a - as3 CD.

0) a) "a
4  -o

0 0. 0
(a~ Et E U) 0

aj o CO m06c ( na

.~ 0 0. 45 U

_ r M; 0

oo C~ (D (2) Co ~
4)0z 9I *4a) *4, r

cc~ Q a 00 0(
cmO 00 0.)

o~ C-) <0 V) -T r

So CL M. __ _ E0 C

G5 00F C0 0 0) ) 0 . rd L 0L a

0 .0 a )0 o -JIV* ,

cd 0E
wa- 04w~

Io( l. a



00

mc

0 2 0 4-'E0t
-cl 0

C a.. CL

(0)

(El)) CL~)~

O~CO

oo _ _

%%--0' -': =

%W- 0~ U-(D -9

(00 a.a)NU

*L (D 00 00(

o0 co
J~-



(1) C4 C a0 _

. ~ 0 ~ (25E 0 ~ 0) CL

CI >- aso o-0
E cm* E~- _U S)

0 ) Cm ~ 'a ) 0c EJ 0

0 -o CD (D E 5 0
0 a)G E cl .-. e .-

r- ot 0

0 a 00 (1 CO 2

Eo U) CL 0

c ~~L~0 0 -.C Jt ) .9 C
0) CD0.00Z

E .0D -70 a) ~ c C-o

(d 0. <~ G-' 0i

tm- 0 ~ (D 00a

0 04. C 0

0 0 um ~ ( E o

CO " (n C C : 0 O CD
0 ZU > C 4. gl -0)

0 tt5E a)8 'a CIS

o ~ ~ C CII a).- . 2
0~~2 CmX O0

CL0 00 I=-- (n
0 - r -~E~ 0 E 0)g.~

0Cn ao -fJ CD 2 -L0

0 as > 10J>.L

CD. e% >~'- CnDC W

Ca "&'a >% (U C D. 00) ) 0 CD 3: E0

> Co CL~ -c~ r wO p
S0 0Q *~0 :g 5.2



00 0)2

uIo 2I U-

__00

M F.~

0)

E )

o C

a) a)

0)~0 2oa l

00

CL CD
o; - 0J 0. .0 (3) £1.

0-0 b3) V- 2C



(j~) (D()()C
M.- t:.r_ 0

cm2C
E~o .t~%aC*

00

00 E >c0c
co0 CLCOID - .

-.S 020 E

"0 (D :3 ,Cd0

(dQ ,L E. Ej
ca 0 0 0 0.

V CuLa, -
o, M 0 d

20. :3 .!=~ 03
(J~4 ~a Cd 'o - -cu ,a

0:D W- co 4 CO

0> a a, 0
-. 4L r- M a

-55g.'0 r- -00
.5; Xa C.D -0 0 -

0. CA c ):3a

E.a :3. M 00

Cd. (a2 00 5,o~ M

0 a0  0r CCD 0.

0 s 0 ~a Ca~ ` CD~
0 0-~u 0

0 C -e t CO I--0. C

(n go~0 CAf) a, 0~~~ 0

0 o
CD Cd aa *



*~0=

(I0
.4CL0 4-'~~OQ)Q7,0

:O3 0

0 1~ d 1 1 E:4-
CO J~O Q)(DDOVL-C0) aD. o .0 4) 4

Cl)CL m E(n (n-

o0cl) 5 0o

0/ 0uu a )c- C

C En -a: -- 00a! - a- m.>0

C)

CY 0) ZVl

CL 0 CD NO



a) d > CD)~ =
0 cis ) 0 -co i

cd) ( U) 0 o o 0

cd C L _

w .. 9 o ~ i0%i ?V

o2 0 -oo-c 0 2T) 0
CL - U.- > o >- o~

l- 0) 0 ja d)C
co >C.

Cd r- -0 E .0 0 a

'U,- CD Cs 0 C > C

0 *a c. a C.-o

E:S) 0~ CD

o..o) o (2 K o a)o
0c CDi 0 0

*~.E ~ c 1.. C .2 ( 0 C ) CD C ~
'a ~~~ 73m 0

C.) . 0DU) 0 ..->

5,cdC -0 U)) _ -0 o 0

.CD Co r- cd 0 -

w0 (UtD .- ~ "D oE(
(0>.. .g Cd 0

CP% --) ci)d

0 )
0 0 C C o

-0 cz >. aCt

CD 0..' 0 0 Lc-0 (3 >

(D~~ C00 Ooo -6 o 0 0 i
Qoci HU)C*flC0fl Cl 0 2?

.026cE o 0 w E (OD I



Clo

0 
,] 0

t(0

cd 0

0~
1CL

g0 n 0 0a

,.+ e- .

o) 
0

C" r-in 0

0 w.

CLl

-,,= 0

__ ..... _...

NO-N C"0 I



C: 0 0

00

C,,

0

C-

00
=. 0 >

E
E

E c

00.0 C:
CDQt -o 0)

0 CD

-o 0)a rc~u CZ0
CrE cca

0z 0
=CD

> 8 0 "'.C C O
0 )

0 ) lEE

0 00 .0 na

CL Il Co cd-- ~

(0 150 -0- .0 0 -

0)E'
in~ U))



E.0 a)0
01 Cc

cc C) 0 .
cc El.C

E (0) rO
1P00 a)

(00

CC r C Cc
Cc-~cE U.

CJ -W

00 OE.0~ 0



Software Engineering Using Ada: Abstraction, Workbook

*UNIT 2: ABSTRACTION

UNIT SUMMARY

ABSTRACTION

Abstraction is a technique employed during software design. It lets the developer temporarily
suppress irrelevant details so he or she can concentrate on essential information. Developing software
requires defining a great deal of detail, so any techniques that can be used to consider information
selectively are of great value. Abstraction is one such technique.

What is "essential information" and what are "irrelevant details"? Typically, essential information is
the data you need in your program and what you will do with it. The irrelevant details are how you will
represent that data. In general, you can use this division into what versus how to help you differentiate
between essential information and irrelevant details.

'For example, suppose a program is to create a file of integers whose content is that of another file of
integers, but in reverse order. You can design a program that does this as follows. The program will
read the integers from the input file, storing each one on a stack as it is read. When all integers have
been read, the program will pop each integer off the top of the stack and write it to the output file.
In this design, you have ,.reated four modules: one to read input, one to write output, one to hold the
stack, and one to contrul the others (see Figure 1).

input - Cntrol Output
Module Module Module

7

6

Stack 5
Module 4

3

2
1

Figure 1. Module Design for Reversing a File of Integers

When you're working in a team, it's important to create the module design. You can assign each person
one or more modules. This is a good way for team members to work together.

Recall that a stack is a linear list of values accessible only through a fixed set of operations: Push, Pop,
Top, Is Empty, and Size. This statement of a stack is an abstraction. It proclaims the essential

* information-namely, what five operations can be used to access a stack. It also defines what kind of
descriptive information other packages can see, for example, the stack's size. It suppresses irrelevant
details, such as how the stack will be represented.



Software Engineering Using Ada: Abstraction, Workbook

This essential information is the abstraction's specification. In Ada, you can package the essential
information to show its interrelatedness.*

package IntegerStack is
procedure Push(Element: in Integer);
procedure Pop;
function Is_Empty return Boolean;
function Top return Integer;
function Size return Integer;

end IntegerStack;

In Ada, the package construct groups together a set of procedures and functions. (You can also include
constants, variables, and data types, as will be shown later.) Everything between the first line and the
end line is declared to be part of the package specification. This package specification declares two
procedures and three functions. The first procedure, Push, has a single parameter, Element. This
parameter is declared in, which means that you must supply a value for it when you invoke it.
Furthermore, its value will be unchanged when Push finishes.

The specification gives you enough essential information to let you write most of the program.**

with Integer-Stack; with IntegerStack;
pxocedure Read-Input is procedure WriteOutput is

Element: Integer; Element: Integer;
begin begin

Open(InputFile, In_File, Open(Output_.File, Out_File,
FilePName); File_Name);

Set-Input (Input-File); SetOutput (OutputFile);
while aot EndOfFile loop while IntegerStack.Size > 0 loop

Get(Element); Element := IntegerStack.Top;
IntegerStack. Push (Element); Put (Element);

end loop; Integer_Stack. Pop;
Close(InputFile); end loop;

end ReadInput; Close (Output_.File);
end Write_Output;

These two procedures both begin with the line with IntegerStack, meaning that the information
in the package specification of IntegerStack is within their scope. They can, therefore, within
invoke Push, Pop, Top, and Size. Notice that references to these procedures and functions are
preceded by the package's name and a period; e.g., Integer-Stack. Pop. This is Ada's way to avoid
ambiguities, since other packages might have procedures and functions with the same names as those
found in Integer-Stack.

The package specification serves aq a contract with other modules in the program. When you write
it, you are suppressing the implementation as an irrelevant detail but promising that you will develop
an implementation that provides the functions stated in the specification. In Ada, you place this
implemeatation in a package body, which is separate from the package specification.

* In the code fragments, Ada reserved words are shown in boldface type. 4
For simplicity and clarity, the code examples omit details of file input and output.

2



Softwari Engineering Using Ada: Abstraction, Workbook

package body Integer-Stack in
Index: Integer := 1;
type Stack-Representation is array (1..100) of Integer;
Stack: Stack_Representation;

procedure Push(Elexm, Lt: in Integer) is
begin

Stack(Indox) := Element;
Index := Index + 1;

end Push;

procedure Pop is
begin

Index ;x Index - 1;
end Pop;

function Top return Integer is
begin

return Stack_Contents(Index-1);
end Top;

function Size return Integer ios
begin

return Index-I;
end Size;

end Integer-Stack;

Other modules, such as Read-Input and write-output, do not need to know any details of the
implementation. They only need the information in the specification. The Ada programming language
enforces this. Read_Input and Write_output can access the information in the package
specification, but cannot access the infonration in the package body. They can invoke Size but cannot
determine that Stack is an array or that Size works by accessing the variable index. The designer
of IntegerStack has hidden the irrelevant details. This shows how you can use abstraction to write
a module that shows to other modules only what you consider to be essential information.

Ada packages help teams design and implement programns using abstraction. A team will assign a
single developer the responsibility to develop a module such as a stack. The developer will design an
Ada package specification for the stack. He or she will then compile the stack's specification and place
it in a cenrll-L.PaL y ti-Lat alih o Lhle team memnber' c"-- ancss The other members who need a stack
can reference the abstraction as they develop their own programs. This gives them access to exactly
enough information to design and implement their own modules. Meanwhile, the stack developer will
implement the package body for the stack, then compile the package body and place it in the library.
Note that other team members can compile their modules without the stack package body, but they
can't execute them until the stack package body has been placed in the libraryl

0

I __ ____ __ _ ____



Software Engineering Using Ada: Abstraction, Workbook

This page intentionally left blank

I

= 4



Software Engincering Using Ada: Abstraction, Workbook

*UNIT 2: ABSTRACTION

GROUP ACTIVTY

Split the class into two-person teams. One member of the team should examine the following code:

type A in array (<>) of Integer;
procedure p(pl: in A;

p2: in Integer;
p 3 : out Integer) is

u, m, 1: Integer;
begin

1 a'lfirst;
u a'last;
while I < u loop

m := (l+u)/2;
if p1(m) = p2 then

p3 := n;
return;

elsif pl(m) > p2 then
U Mn-1;

else
1 M 4- 1;

end if;
end loop;
P3 := a'first-1;

end p;

Describe the irrelevant information in this code to your partner. In other words, do not discuss what
you believe is the purpose of this code. Instead, discuss only the algorithms and the data it uses.

Your partner is to guess the essential information from your description: what purpose the code
accomplishes. The essential information should be described in terms of two things:

* The value of p3 when the procedure finishes executing

0 The name of the procedure

0

5



Software Engineerinng Using Ada: Abstraction, Workbook

This page intentionally left blank

C



Software Engineering Using Ada: Abstraction, Workbook

* UNIT 2: ABSTRACTION

TEACHER NOTES FOR GROUP ACTIVITY

Split the class into two-person teams. One member of the team should examine the following code:

type A is array (<>) of Integer;
procedure p(pl: in A;

p2: in Integer;

p3: out Integer) is
u, m, 1: Integez;

begin
1 : a'first;
u : a'last;
while 1 < u loopM := (1+u)/2;

if pl(in) - p2 then
p3 : = ni;
return;

olhif pl(m) > p2 then
U :M n-1;

else

1 : in + 1;
end if;

end loop;
p3 :- a'first-1;

end p;

Afew words are in order to the teacher who knows Pascal but notAda. You may wish to rewrite this example
in Pascal for your students, since the purpose of the activity is to understand the algorithm rather than to
learn Ada, In any case, here is some explanation of the code.

" The notation < > in the top line is Ada's notation for unconstrained array bounds that are
determined when a procedure is called. Thus, any array of integers can be passed to p The notations
a I firsb and a 'Iast (read "a tic first" and "a tic last, "respectively) are the upper and lower
indixes of whatever array is passed to a.

"* Instead of.Pascal's

while condition do begin

statementl;

statementn
and

Ada uses

while condition loop
statementl;

7



Software Engineering Using Ada: Abstraction, Workbook

statementn;
end loop;

" Ada's raeturn statement causes control to return immediately from the procedure in which it's
executed.

" Instead of Pascal's

it conditionl then begin
statementl; ... ; statementn

end
else if condition2 then begin

staternenta; . statementz
end
alse begin

statementA; . ; ztatomentZ
end

Ada uses

it conditionl then
statementl; ... statementn;

elsit condition2 then
statementa; .. ; statementz;

also
statementA; ,..; statementZ;

and if;

Matching each i f with an end if eliminatcs the need for begin blocks. Note also the elsif,
which clearly shows that condi ti on2 logically matches condi tioni.

Describe the irrelevant information in this code to your partner. In other words, do not discuss what
you believe is the purpose of this code. Instead, discuss only the algorithms and the data it uses.

Your partner is to guess the essential information from your description: what purpose the code

accomplishes. The essential information should be described in terms of two things:

"* The value of p3 when the procedure finishes executing

"* The name of the procedure

The procedure p is a binary search algorithm. The identifier names are deliberateiy abbreviated to make
the activity more challenging. A better declaration would be:

proetdurc Perform_BinarySearch(Values: in A;
Element_To-SearchFor: in Integer;

LocationOfElement: out Integer);

This procedure specification succinctly captures that essential information which must be known to
developers that use this procedure. However, as they write their modules, they do not care about details of a
the inmplementations like the identifier names.



Software Engineering Using Ada: Abstraction, Workbook

. The student asked to listen to her or his partner should, in effect, come up with this declaration. In other
words, the procedure takes as input a sorted array of integers (p1) and an integer value (p2). It returns in
p3 the index of the value if the value exists in the array. If the value is not in the array, it returns in p3 the
integer value that is one less than the first valid index into pl. The student presenting the irrelevant details
might say something like:

"The procedure has two inputs. One is an array of integers. The second is an integer. It declares three integer
variables.

"It begins by assigning two of the variables the lower and upper bounds of the array. It then checks to see
if the second parameter equals the value midway between these two bounds. If it does, then the procedure
assigns the index of the middle value to the third parameter and exits.

"If the second parameter does not equal the value in the middle of the array, the procedure resets the bounds
it will check. If the second parameter is greater than the value in the middle of the array, the bounds are reset
to the first half of the array. Otherwise, they are reset to the second half of the array.

"This process repeats until a value matching the second parameter is found, or until the difference between
the bound is 0 or less. In the former case, the third parameter is set to the index of the matching value. In
the latter case, it is set to one less than the array's lower bound."

This activity will be very difficult if students do not know the algorithm. If your students have not learned
about binary searching you should substitute an algorithm you have previously taught them.

9



Software Engineering Using Ada: Abstraction, Workbook

This page intentionally left blank

10



'4
I..

:1111
� .�'�

* U -

0

C

.1

0)
'S

0)
C

.5
0)
Cw
4)

w



C t o3

=) .- M) E

U)) 0~
0 0 0)c

a *0) c -: E

U=VCDCD 0 Cbn- c U0 C .0
0fl ch "&" 0)"

a g. 0) =
0 CD cU)) 23 as 00- 00a

0)ý E, 4-) 3:. E2 0 =

DO 0C 0 D0 Co C) c0C
I._ 0 E~ =I cc$,~U 0 t0. L-U). = (D D) 0 Lo 0r 0

00 00 *-' %- = CL-0ci) WU OO 0  
0 . C%-U ED O = C:c D C

E0 E E 0,.
dz% _D S--0C u l c

.- QC W E) 24o #ý 0 ri r- 0. E).ca -  E E0 Ž~ C: Z0 ).

0 UK*0CD E - %E XU .coO *

ý, C CD.0 u -
CEU :E Ic~- <C t 6

CD E CD 54 C 2a
CD C :3 0 W"O ca CL 4-I 0C:0 -

O*CD -~ o :- t 0 o C a- ( 0l C5.V ca 0
0)0 CD a)W 0

5) (D 0)~L ,

*-ci, 0 0U)0 E a:0 ( E 8

UO#--st . ) 0c$F c -ý E c



A ..,., 0 1

o z
itI

uIuw

a')

"C C.I

ii'

.. I .. , , .. .. ,,, ,

I l

2.
*a xx

04 M at ~



LO CD

Cl ~Ucy Cl Wi) L- D
0 (3)0 (3 )f Ci 0

C 0) S (n 0:7 0E :

~ ~ 0
0O 0 tt

0 -0 0~

- : 0 CL >1 E ca 0

cm~,L CZC a a
00

>5 005  4-5).0L W- a)J 0

4- 0-)00c ý5C )0 00 = ý

OuL.A C0 5 =

-S.. 0 - In Q) 10 c 0

0-- .C 0 JCJ.>% 0 g? 750 C
0 W~c 4-~ C) 0bU)s

0) n- r'O 0 E -- a)I 0~

0.0 o,.~g (DC =) c

w) - r-I C

(Oa~ w0* 'U' 0 ýo- a)C 0 a4-.5

'?'L - Ae0 0~ 00 m~ 0o
't0CL )n

0 d 0 w 0~
(D Q) 0 ~ .. (Do 0E ~ .

_o 0 oo 0 :L-,
050)rR 02~ Eo~ aO - o
0 ~ a0)f L - C .co

E1 (n 0 c

ti0 ~0 ; m)
in C< 05 U) 00 ca L- 0 C

-~~(1 -0 L.c) c-0 o ~

- .. C fcu E X
0~~ 0 (



0

ca

V0)C
@00

1) (1

0) 0



O_~~~~ E "" ••" • - D. 0 0|
"0 0 -.

0- (n. 0.4 .,.a -.. . 0 0

E -O0 •D 0 . -4CD a)C0 ~ C~

4- _.") 0')- .,,. o

U) ~1 a0ZC EEV'4.o~j Ec
) OR -. d ) OEa) c,, I- 0 a),

0 C:V.0

CD a)• 0 0 -o o o, -0
•- "• O • • ~0 0 + ••0O" _'. --

-, E IC4.=_ a)oo •J, 0.o

" o o C-•C

-- n V-.o- 0D 4 0 M-~~0 -- =,. . $ o• - ,.,b..,= - = _ * .. ,"

._- .W 0 CL r"

CV cmC

U) 0- 0 a).- o 0

0 Z; 4- E D • O0 .
- o . - E - .- E 0 = , . E

E) cca) I-.- C)(nVia

u- o,, 'E 0E )_
0 f a) C 0 0 E CD" "a 4-1 .

1 -.-- r-0 .E a E n00

DL E 0 C C OCI . -- I-- - OD

(1)o °- (D 0 >.c Vx C. • = -_ .-. "- S

• -- W-0 C: r-0 &.. ". ( .

,CL)0 L ~0a

-- * * "3 E ,_ CZ o ' %->CDE 0 ,- u o

(D c )j.E) E 0En C) N-~
(n 2 E -@Q 'a 0) c 0 0 = Co

~~c >'E. a)a)> 0 0~ -~~)-- ~ ~~ ~~C = cis- - •.: • •'' .- r• O Z

CO a O • _ v •-• Z 0C I ()

"D _Z Eoo = 0 ,c E .co"

.__ ~ ~ ~ ~ ý *r U-. -•tO, .I L

CL C)) ,E o o o o £ o )...) a 2 -

1 C _ - o n 1 0 X- - o•E_
6 -E _- (n v (5 = ( 0 C") 0 , . ,



00
UL E oV Z 0

COL

a) l)
LE) E -3

SE cz
w~ z co

&"' a)L. .) -14~

0 :. CD 0

(1) LL 17 ,-G0

Ca _____'c

CD) WC

0. 0.c

CL 4

C _)

0 ~0

0~0

0 C0 LL

r)w - )-



0 FE0)0 r
= CO.)=

c'z> E~a %.0 l-,
co cc$ C:h '-O 0~ CD

00 0 0 n _

cn

OCD 0C 1 U . .CL:ýO
0 0CL § 0 cLL c

I- c a M 0 i

a) 00 ) Q

cz (DQ) M8. C )Nr
(O)' %E M.-).0L

.0 a.~ ) 4(J
CO- c )m~

b c0

E k- -oV U) =~ 0 " C

W- *:3 ~ F

An :3C ) o

r-(/ 0. 0 CD 0)
cc$~ .O a)a : n c

C:~= . a), c~ 0o~ :;, 0

E2 c 0) a))' 
U

Cl a)0 El p =. C c$

(D E~ ~: * 00 -0 0)4
E 0) C
- -= 0

_ c ccoo -

o dU)o 0 C Eo 2U O0.~~
0 ~ ~ ~ ~ : U)C~~0 ~U

.C~ )( =C .2J (DC (1) 0



0 IEE
U.- .0)

0.ý -j

C~sc:

44i C

0 o zCO 0
000

010

' 10 -() -0 4

I- 07L C)

C CL0)~~~ *4*) M ClC



CZ CoCU _ 43)(0 - 0
E ~ c >% c4-40

'a) 00 =j

-0 -- c -0 L- =$.

'E P a) -, 0U- A

(2)~0 CUEU (2D~ A"( !
<~ 0

a)O~ 0 E

E)  JX 0 C -La

0 r ocz CU

cn- 44j0 CD C
C~c 0~* CUU L '4

(o 0 C

2 ~ 0 r- >L- 4-

C C) =) 4 =ý. (D .c U)

V) E 0 1--16

cn WU g(0' 4
- C

U) c 4 o C.U0 " - 0 0 M4-

C/) C (/) (1
in C6 cjCU %o ;R: C) C.)C

C : .n =. h-V (f1) 0 C )C a

cD 0 ) U)UCU U
E14- 0~ a~ .)0 0

c>C- CD 0 0 a
0 M0 0~

*0 .0%-
0 (D( c -
c) ((,) 'co. M .0Q~ L. CC

*0 Q> U)O . 0)0C 0~. 0)

C . +- a w
0C 0 CU C 0  0CU 0 CDCCU 6

C: U4' U) 4- a
*, 0 c co)~ .-. 0) 0 70 E cuj

cUU mOC -0 0 E..- %- .C) 4-

.D 0> 0 C aA CD CD' a) E
5- . = CD O CL > .. 0)C (D >,,nE =

o - co *- DiLh r- "D4 0 o a cmO C
._ co a) ) 0zC~D " _

(fl C: r~C L ~~l -0 ) a .0 ..- 0
U)z ( 0U

a) CO c)OU 0  0 Z5CD0CDca co a)~ 0- a)t-
O0oA% - cn0



Co I-

0 4
00

-] .IIE 0-•

&2 R
•m

(0. C- 0..

0 00o0 0E
Nom 0

0) 0---
CoC

o 0•

0. -I 1'I•m11I..1+ F 0. . .

* CD



>~~ o~~~v ucO)a 0)

E Ev 0 >. Q cI.

E Ec' c cmo~ a -E
00) >% *sa) 0)o E

CD) 0 W t:!00)a

U) a c n " a >2  0)as-
1- 0 +- I-aC.

9av CD ~ CO- 0: 0 a)
p.a- 0)()

co~~l~ Endý 6wa
-0 *- = P:4

o0)C) 76 rg (lCD l (nC

r-O .4* - o Q)C
0 4 h 0

0~~~0 0 11ýC

a) cV0CCS U) 3 cnE"
CO~C c .- -0 a a

.0 u .- E)Oa ) CO aa

0) CL0 to0)COCDl

ooU %_ r--~ -w )

ElEoi a) C-0)C S

03 ~ ~ ~ ~ r 0): aOs

oN0 CL 0~~ 0-00
CD CC

.0 E 9 o b' 0
,5 

0  c -,-nV

ca.0
=O 000) 0)' -0VE n

Q(fl)C 0 E 6~ ~ a)C
1-2 La 0 %.-v2  o ,0~ (1) 0) 4-us

-f0,C -4'f W 0 0r

E~~ czt a .
C E . C al)aI~' >

015~ S U_ 0 A$.-
%I.- E %.- a)~a~ W a

+- " 0 1- 0 4-.

C: 0~. Cc~O .~ ~C

~ HO 0)0 0-l al "Clou l



EE m  0 C

0) 00f

*M
0W0OM

E ~ m E0
LLG 0

CLU

0



0 - C• CD CD- 0 0)o "

0~j
c E�CD E a)0_ ) ,.. ' 0 0

"C - 2E)"'-
a) , •o Co a w.r E- a= c.D a- CD ) a)

.I. ",_ . E,, , .: .. E,

C 0 )-C._ W •..-c ME : U)cm .,s ,_ ca• a.)_ : E
.u)s C CD 0

V. ." " 4 E •-o. aE
00 0 U) :: CL 0

EVI. O 0~
cm 0 CC c 0) C$

0O0

a E E
; • 0 --- L•- C0--, -- a) *•0- o 0-C-0 -:l

°0) on E'"•• .- -s_, , -,- om
Co C-(D __ 70 "" Q) '-o o 00

E GT ~ a, cD 04-c

V V~00 0 ~ *v.. 0 .a

a:- E- CL t "

E o0 >0 D 00a

0 0o0chC

0).. = 4 _. • :...DI Co= .•

-7 z 0 0 L

-o Eo c - _ ,0
in L- -. ; ,- . oi 0 )-' ....... r I : Q " '•

(.00 V - tC cCF 0 0
L. O L.a-.CD 0 :3. 0 :P O 0 N4o

CD 4- -~ Q+, 0 t * a
.6 0)vc 0 CD 0 CD C

(n S Cl; o (D Coc E~ ~ 0

nl >(~Cl CLo. Ec.> a

:3C1 ~o a (D E o. '. - :3 EC:~ u
a, (D~O4- 0 a , aC) 0I L- U

(D -- ,e a0 0LLCaJW" i)O



0 -

00

LIM-.

C (0
0 MR 0 -MO

co 0
U-6

o 0 c

00



CZ) C:

0 114 "4- =0)C 'a
a) U) *:C

E 0- o& E -C ooE

40) (1 /

0 (00 c CD X-.

0 C. 6 0)~- 0~4

t30 C.) 0) a0 '-B 00)lo 0l Co rEo ýo 0  (4 _E. -

c a . '0 ro a a-)- 2z .2 .a c
C 0)

ED() 0~ o~ E

Q) 0.
04- E) 0

*-' 
0)) 'a)

CD~ 'I'-.< ) D o co 0 co
co a)0) g- '0 cz 2i~~ 0)C m

o -if o E o 0) 'o 4

fll (1) Q 0 >

C:~4 M 0 6 cpa. ca,

(0k r cai oo C. a-'
CU V) -r =3~- (1) 0 (0 ) E0) ) .

(D E
0- > 0 > 0C 0):;O~ ) 2~.4> f

0)0 () ( zc~- "F 0 0)

o a)C~
CLI- +..

5) V (1) _

0(0 'C WLc)i f).D C) MC
0) (0L0 *L 2E c Oo

0U% 1



3 Ec,,E
,^ C ) . ,- CD

-o obloom

oSo. Im oW 0MM,

0 0 "'o' ,- .

) 0 C
(0 CDs

0 0 0a

So 0 ••- .O'

ola OW~ U

, ) 4) cc -oow

%.M)
o 0 CL

Zo aC 0%IM

0m 0 l

CLa 000
> 00

1In a)~u 0)o
DOMMI ch

0 0 CL
0)fo 0.W.

ROMI 0 0 "a i

C)) .-. 3 I.m "
0Lm



Wo) U) c ci)0 

00

-0. ] a0 c: 0)) CU))a) m

c5- 0 0 U)

CD -0 = C E ar)E can 00
_ 1 E1 _

U) a) CL 0 *r_ z m )

.C f Qi,~ T Z a) cz

.V 
4-Ca '

A n c o a s) >>c

'-.M coEu 2 *00

0~~ ~ ~ ~ ~ 0) l- :-,j -- " 3r

a.-W 00 0 ~ a U ) 5 o d -E 0

0 0C 
gQ 0.cn

0 cC E cm = U) 0 ) E0

*w~ zE 0 m~>~U (/) %_7

C.)~~0- :3: -- D . W W

coEWEC CLC..'

0. ~ ~ 0.U 0Csw C

0 ca~. 
*': ) 0 LEC

.0 0 -o C 1 aI )
,Eni EC 0 .0 >4)~~ C:< c

(0 U5. as c
0f~ c0 a)~ r " 0

u)E 0) E-a.~ L o o tm



a)C )

I 0

K-.' CD 0)0 0 c

EE m

*~~ ~ - C c

0 .)0C .0")u-

I. r. 0

6 m ~ am) 0 r 0

cn3m 00)

- 0 -

CLUU

MO c



0 m a) 0 C. -- co> 0

C.0)
V0 CD 0t >.0 0-

0 CO 0

C: 00) 0 -za)

CCS 0)-
.CZ U) r- ~ 0)

a) Cl V .00t. 0 E1-. 0) Oc
_ ~-~0 E .- 0

0~' co C C ECý a
R~~ cn4-o -U c Ca)0 CoO Q) >M,:

C: 0
Co.0 ~ 0 C

CD- CdC: ... c : -
co ~ ~ ~ 4 (n: .= -%-a

0)C. rn 0%coE C -C
0 0)04 U) C cz , 0 O .

"D0 (D 0. 0 00

0)0Q) 0c,2 C 0Co
o r0. >% cz 0 (

Ci)Ca ) a~ z Co C

-~ *= (n ( (D .CO z-' 0 .- U)-

L0) ~ a CO 20

0) D.E'0) 0- >-c '... a) ) > 0. a
0-- 0) =3 IE cn)

M> 0~ 0 a ~ 0) 0

EEj~ 0 _o r_ I-0)r_
'-0 0-- 0.

c -2: 0.

-0 E4 L. -  .C 8O K C =3t .

M CD E C0 0 0 =3 0 C
cn 2-~ 4- 0(n

~~~~ 0 ot-MotO CDZCI
_ 0 A -

~,~E. Z4-) 0~ ~Z0+' U Co- 0 30'a ' _ C
En. 0 0 z "0 .- m o

CD Cl) =- _ i 00 cC
0 C'C CD CC: 0) f E J-) 4- c ~t 0 1= 0 0 Z 0)C

C CLC0Ct - a) o0.) rL.
a a- CL~2 0

o) Vz CT C/ DC - 0 Q Cf) r_ 0.

>' 0 Q)E 8 ~) < cu0E
CEo 0 c*>z4 (1)

cn0 C ,0)- :)I
o D M-J.E 0ýea)0

0aOV 0.0

f. 4-< C6= -C-0(J U1)n Ct t Z cf z a) 0 L 0 o

0)

m Jm

CUO))

--

a))
0)C

V)I CO CD

-j a))C
Q- Z

a) 49 f- U) ~ ~ I C
_a)

C UD

U) Q) N &L~

EE a) i
oo C O -ý Ck o 2

Cd 0 o i
a) Co ED 0 -

S E 4--

-oz 0) >,~

0) C-) 0 0)E
4- . 4 - U 0

o%6 coC0
E E0 o0I 0

0 0 ad CC 0 4E) >%C0U c CCD~ 0* 0
*~~a U. E~CC

(D 1CD ci o) toU)
0 E 0 D' ' 0 (
a. _- r- . 0zE a

0 U).. aU)a) Z, ?r

U) 0 D = m a DC0

CL- (D' 00..r
60-

2~~~~ ~ a.c : m0Eý

cz~~ ~ ~ ~ 0 -0oC 04

(0 cd 0) CU CL D
oc I)Clj\ C3 U) cn CL

20 co 0 DCD -0 () D
13. = -- U~ (U -a' c2

~ o-C f CM r_

-0~ Q-C tm U)U o- ~
.C" c Y) 0 : - o h :

a)) -0c - 00 c

,a~ C L CIS. r-
0 3: U)O 0 > cQ.§ .p 0 0) (U

to (U) -0 0 (nC as . CL 0C
CU '- CD U) -Q t ~ o 0 0- 0)

,,e4 v- 'r c

0) 0 U) 0 4 0 (b w , - 0

d cz -z: EE 3 C 0 C
cD cL 0 - .45~ C) L a) Q

0)Ug0 (u)~ D
0 U -l 0_ i?"0

to r- 9C W Cc 0 4

CD OC 0--~ ~ a

r 29Z0) w -o
0U 0 00 = rZ-U

CD) a 00 "a E~.U) Z *1 D 4

(1) C:o
C .~-4-I

U) I

0 <J Z E 0

A .4 GC

(D00

10) Q),

> N < CC C'4--0 Z a, >Jd5 _ C,

(M0~f -0 .M 0 0 En .0 c
a. 0 am D.0 4) .. 0

0.Q

000)0
00

C CD

2~ 1~~ C) 0

o0 .nc

.- C) ca) I1
0)0

E .a %
C >) 0 m~4

CC
U) 0-0 _ _ __ _

0 Q D -0C: L-() c(1) (a)
01.D

m - a
> o, cf
0 0Z :r, (1 cz

0) V) 0 a)- -:3 z L
0 Ca -0 z)d)(1 (

0) 0 ~ CZ C
C: C: ~0 a_ .

E) ."~ = C
CO r)- 0 -0C: C..

C.) - " -c a

E~~ -6 Ea~~= C.J
0 :3l. 0 , i

(D0)). 0 c C: 0 0~a
E D E-n- -- ICC=

> :3 c:3(0r > ca0 Q)

_L cn :3 = DE 0g cO :3a
E C/)c

CCa) a) 0 ca 00
.cn c - 0 CD (-) Cj =3 Cl D

a)c~~ 0 a)~ r- ~1ca 0 a> ~

o) *Ja _ 0

=3 CD (DC0~ EE..a)V:5 0E 00
zz 0Ch E . jE 05

CD -C,:- (1) >n Z
0 C : -1 %6- -j- D~ i

E0 ~~jc-o 0.0 ca 0 0 0

PE-o~ 10~o CL5 -0)O(

E > WO- 6 (D
0 -r 0 E ~ 1 (D ~ :C

0) ~ ~ ~ t a)2._a *

CD (0 a) 0 0 I
- (D.~ (D- >) CO

cu. 0
0.

a) CD

CI) 4) 0)
0I cao

aa)

0) a) o)
0~ 1) a a)

~D I-a) :n (

CD 4- a U 0 Ir
j cnj E C"

;(DCI)CD :3 L. c
co C:a~

C:o

oý 0 mi Z~

0 .. LL:~V~ M CD2

0 C) I_

CD o

s; o =3

4-1- U) co 1 l) QU)00

_ - ýE

0 0 ~J) Mt QZ 4V
107- 00..

a 0 c

0~0 40

"0 a)~ jf -'O
0. 08 Ua

E 4-E 0)-

(D (no4 - c

_ D _- -- 0
cc, .- E_- - 0D

CD- ECC W= ,), 0-
Z3 ca -le 'a C C -=

a) 4-a 0) -
ca gP 0 co CL a) :t:!~ (D E

.2 0
V)V

CO C
C:) Cj 1 % 0

-0-0C) E =

A5 0~'4 E 0

>, C 0 cs 7-0) () .14 D
"~C t (1) >. =4 a)E26 ,Lc

0n .- = gUo

o. .C "r C E
U) -0 0 E a

C04- a)~

C.) l) E CQe 0) r-V

U) -0.-' -alC)-
_n CL m to- C

0 0)
U-- 0 D C) a

r~~ 0 C: 0.
C:~ CL . E CtS E ~ EC).. U-

E) a) 0 0
-0 UC) J _'a

oi a~) a) 0 c. CD"* J
D : Z)' 0) 0cn ca C: 4----%- CD ca

00
0-0 4)

0 r

0 0

0~ 0~a

.Ecoo

0) %I-
0 0

(n -2 0 -

$LO :3 cn :
Lo 0 U 0

i6~ 0
C) 4- 0 4.,C

- ~ CL C: C: co C *

(1 u)() N
___ 4-. _jC

0 -N CL)~ ON QS._0(- -0~) II-
._4-4 0 4- 5-

vC C) CC U. C:(')7
O> aZ a)

Vl .j2> 0 c -J
0D 0) (a) CD) a .) V *

0 0CL. CC C7L.O 0 *C
cc..l .. LU

cio cri

Ca) ZL~.C-.

-~~ 0c

X-' c C)cz.C
%1.- - 0 -Cc

0 ~~ a)()ocz

a) as)
E >

;_c 0-0 cL M 0
na) C1. C)r

0~~ 0:0 r O

3,a. a)0A %4Q

CD 0" CO.
(n~ c (nI)

CO 0)0 wn E a)-

4- 65 L- Q
43~ Ua) a)~ a)0 0

.co > -0 0 C

ob.2 it >1 n)(

CD~. E0-i 0 t

0-r~' CX~jJ 0 0.C-
~~'F aV .~ 0) .0 z

E .2oE (PaD~

U-5w .0 cnto 0 .C .

0 00 Eo, Z: E CD
_) E~C~J Q)W -, 1. a

U)CE: u = C). QC

0 I0

00 C

L. 0 NNNE
Cu ~0 0ME

ob E o 0 CD

OZN0 MV

Q. C

00 onc0 u 0 E~

c L. NO cc -

MONO0- CO) 0I -a

* 0 0

o_ _ E w

Software Engineering Using Ada: Information Hiding, Workbook

* UNIT 3: INFORMATION HIDING

UNIT SUMMARY

The first step of developing software from requirements is to create a design. In design, you break a
problem into a set of modules and a structure. The modules, working together in accordance with this
structure, form a solution to the problem. Breaking a problem into modules is important for two
reasons. First, it helps you deal with the complexity of software because you can grasp the workings
of a small module more easily than you can grasp the workings of an entire program. Second, if you
are part of a team, it lets you allocate work assignments among the team members.

Stepwise refinement is a popular design method. In stepmise refinement, you break up a problem by
creating an algorithm to sohle that problem. At first, you keep each of the steps of the algorithm
abstract. If you cannot express a step as a single instruction in a programming language, you refine
it into another algorithm. You do this for each step and for each step of each algorithm you create.
You keep refining until you can express every step as a single computer instruction.

At each refinement, you are making a decision. Once you have made the decision, subsequent
decisions will depend on that decision. You can think of design as a chain of decisions.

As an example, let's consider the problem from Unit 2 of reading, reversing, and writing. In this unit,
* we shall change the example slightly:

"* The program will read and reverse a set of lines, not integers. The reason for this change will
become clear in Unit 4.

"* A stack is not used to solve the problem. The implementation chosen here more clearly
compares and contrasts stepwise refinement and information hiding.

You begin stepwise refinement by creating a main module. This module describes an algorithm that
will solve the problem and the data structures used in the algorithm. You do not state the algorithm
exactly, but rather use procedures and functions to describe large processing steps. For example, the
main module for the Reverser program is:

procedure Reverse_File is
type List_Of_iines is array(l..1000) of String(l..255);
Data: ListOfLines;
Input_File_Name: constant String : "input.txt";
Output_File_Name: constant String := loutput.txt ;
I: Integer;

begin
ReadFile(InputFileName, Data, I);
Reverse_Lines(Data, I);
Write_.File (OutputFileName, Data, I);

end ReverseFile;

* This describes a straightforward algorithm: read a file's contents into a variable named Data, reverse
the contents of Data, and write Data to another file.

Software Engineering Using Ada: Information Hiding, Workbook

You next decompose each procedure. You might decompose Read.File as follows:*

procedure ReadFile(Input.FileName:in String;
Data: out List_Of_Lines;

I: in out Integer) in

F: filetype;
Length: Integer;

begin
Open(F, In-File, Input_File_Name);

Set_.Input(F);
I := Data'first;
while not EndOfFile loop

GetLine(Data(I), Length);
I := I + 1;

end loop;
end ReadFile;

In Ada, a procedure may have parameters that are declared in, out, and in out. The Unit 2
Summary described in parameters. An out parameter is one whose value may be set but not accessed.
A procedure can both set and access an in out parameter.

The notation Data' first is the lower index bound of the array Data. This notation helps you write
code that does not need to change if, for some reason, you decide to change the index range of an array.

You follow this strategy until no procedure contains any procedures that need to be decomposed. Here
are Reverse and WriteFile:

procedure ReverseLines (Data: in out ListOf__Lines;
I: in integer) is

CopyOfData: ListOfLines;
begin

Copy_OfData := Data;
for J in Data'first .. I-i loop

Data(J) := CopyOfData(I-J);
end loop;

end Reverse-Lines;

procedure WriteFile(Output_FileName:in String;
Data: in ListOf_Lines;

I: in Integer) is
F: file-type;

begin
Create(F, Out-File, OutputFileName);
Set-Output(F);
for J in Data'first .. I-1 loop

PutLine ýData(J));
end loop;

end WriteFile;

You can see from the above discussion that Figure 1 is the decision chain followed to derive this
program using stepwise refinement.

* For simplicity and clarity, the code examples omit details of file input and output.

2 ____ ______

______________________________________Software Engincering Using Ada: Information R-iding, Workbook

Algorithm for
main module

Representation of
Data (array)

Algorithm for Algorithm for Algorithm for
reading file reversing writing file

Use a while loop Use a for loop Use a for loop

Figure 1. Decision Chain for Stepwise Refinement

Stepwise refinement has a hazard. The decisions made early are often crucial ones and, also, are often
subject to change. Because decisions made late in the design depend on decisions made early,
changing a decision made early often has global repercussions and necessitates many changes to the
software. Such a change is especially troublesome in a team because news of the change must be
communicated to all relevant team members. Think of how difficult this must be on a project involving
teams scattered across the nation at several companies. You can easily see why change is one of the
great contributors to faulty and costly software.

. Information hiding is a design method that helps you deal with change. When you perform
information hiding, you use the principles of abstraction covere6 at Unit 2. You describe each module
in terms of an interface and hidden information. The interfacL.. , es exactly what other modules
can know and use: the essential infonmation. The hidden information states things no other module
may assume: the irrelevant details (irrelevant insofar as other modules are concerned). This leads to
designs where changes are confined to a few modules.

In stepwise refinement, the early decisions focus on algorithms. In infiL:mation hidin g, they focus
more on modules. Figure 2 shows the decision chain for the Reverser program derived using
information hiding.

Decide to separate decision chains for:
- Modules that read, reverse, and write
* Modules that store data

Decide modules needed
to read, write, and reverse Dccide modules

needed to store data

Decide algorithm Decide algorithm 4
for reading input for writing output Decide data structure

for holding linies

Decide algorithm Decide algorithm Decide algorithm
for reversing for main module for. holding lilies

Figure 2. Decision Chain for Infortnationt Hiding

3

Software Engineering Using Ada: Information Hiding, Workbook

Infc, -nation hiding gives you criteria you can use to judge the quality of your design:

• A module is designed well if it does not know any of the hidden information of other modules.

a A module is designed badly if the decisions in it depend on decisions in other modules (e.g.,
if ReverseFile assumes stack is implemented using an array).

0 Your objective during design is to minimize the number of badly designed modules.

The ability to judge a design's quality is an important part of sound engineering practice.

Once you have created your design, you must implement it. The Ada programming language has
features that help you hide information as you write modules:

" You can use a package to implement a module defined by information hiding. You can use the
package specification to show the interface. You can use the package body to implement the
hidden information. The rules of Ada allow other packages to access any information in a
package specification, but do not allow other modules to access information in the package's
body.

"* You can use private types to ensure that data type representations are hidden information.
Pr-vate types declare a data type name that other packages may access, but they forbid other
packages from making any assumptions about the representation of the data.

Here is the Line Holder module implemented as an Ada package. First, the package specification:

package Line_Holder is
type List_OfLines is private;
subtype Line is String(l..255);

procedure Initialize (Lines: out List_OfLines);

procedure Add_LinejrToList(Line_To_Add:in Line;
Lines: in out List_Of_Lines);

function Line_Number(Lines: in ListOfLines; I: in Integer)
return Line;

function Number_Of_Lines(Lines: in ListOf_Lines) return ;nteger;

private
Max_Lines: constant Integer := 10000;
type Lines is array(l..Max.Lines) of Line;
type ListOfLines is record

Number: Integer range 0..MaxLines;
Values: Lines;

end record;
end LineHolder;

The type Lis t_Of_Lines is declared private. This means other packages may reference its name and
declare variables of the type, but they cannot reference its representation. This forces them to I
manipulate variables of type ListOf_Lines through the procedures and functions provided in the

4

Software Engineering Using Ada: Information Hiding, Workbook

* package specification, the only ones permitted to access the representation. In this way, the designer
of the Line_Holder package controls what is essential information and what is hiddep.

The package's private part contains the representation of List_Of_Lines. The private part is that
part following the reserved word private up to the end of the package specification. The private part
declares a list of lines to be a record containing an array of lines and an integer variable that can store
how much of the array is in use.

Next, the package body:

package body LineHolder is
procedure Initialize(Lines: out List_OfLines) is
begin

Lines.Number := 0;
end Initialize;

procedure Add_Line_To_ListZ(LineToAdd:in Line;
Lines: in out List_Of_Lines) is

begin
Lines.Number := Lines.Number + 1;
Lines .Values (Lines .Number) := Line_ToAdd;

end AddLineToList;

function Line_Number(Lines: in ListOf Lines; I: in integer)
return Line is

begin
return Lines.Values(I);

end Line-Number;

function Number_Of_Lines(Lines: in List_OfLines) retutrn Integer is
begin

return Lines.Number;
e:,d Number_OfLines;

end Line_Holder;

The interface to the Line_Holder package gives you enough information and functionality to write
the other modules in the program. The main mcdule uses it only to declare variables of type
Lis -_Of_Lines. Unlike the stepwise refinement version, it has no knowledge of how a list of lines
is represented, so changes to the representation won't affect the main module-or any other module.
Here is the main module:

writh LineHold-r, ReadFile, Write. File, Reverse_Lines;
procedure Revea•_File is

InputFile_Name: constant String := "input.txt";
OutputFile_Name: constant String z= "output.txt";
inputLines, Output-Lines: Liiie_Holder,List- Of_Lines;

begin
ReadFile(Input_FileName, Input_Lines);
ReverseLines (InputLines, OutputLines);
WriteFile(OutputFile-Name, OutputLines);

end Reverse_File;

Software Engineering Using Ada: Information Hiding, Workbook

Notice the use of the witb clause, explained in Unit 2, to allow this procedure to reference the
interfaces of the LineHolder package interface and the procedures it calls. 4
The other modules can also be implemented as Ada procedures. For example, the Reverse module
can be implemented as follows:

with Line-Holder;
procedure ReverseLines(OriginalLines:in Line_Holder.ListOfLines;

Reversed-Lines: in out LineHolder.ListOf_-Lines)
in
begin

LineHolder. Initialize (ReversedLines);
for I i-a reverse I..Line_Holder.Number_Of_Lines(OriginalLines) loop

Line_Holder.Add_Line_To_List(
Line_Holder.Line_Number(OriginalLines, I), ReversedLines);

end loop;
end Reverse-Lines;

Compare this to the stepwise refinement version. Notice how it uses the same algorithm but does not
depend on how a list of lines is represented. This is especially valuable in a team, where developers
need freedom to experiment with different implementation strategies and cannot risk disturbing other
developers. Since other developers have made decisions based only on the interface, and since
implementation strategies are hidden information, the information hiding method grants developers
this freedom.

Information hiding is a good design method for individuals too. You may have already encountered
a situation where a change you thought would affect only one part of your program required much
more work than you thought. Information hiding helps you avoid this.

6

Software Engineering Using Ada: Information Hiding, Workbook

* UNIT 3: INFORMATION HIDING

GROUP ACTIVITY

HIDING INFORMATION

The implementation of the vending machine software was developed using information hiding and
includes a module Change Calculation. The purpose of this module is to calculate the change required
from the purchase of some item in the machine. The interface of this module is as follows:

package Change__Calculation in

type CoinValue_And_Number in record
Value: Positive;
Number: Positive;

end record;

NumberOfCoinsUsed_In_.DispensingChange: constant Integer 3;

type Coin-Money is array(l..Number_OfCoinsUsedInDispensingChange)
of CoinValueAndNuinber;

procedure CalculateChange (Price: in Positive;
MoneyReceived: in positive;

Change: in out CoinMoney);
end ChangeSalculation;

Procedure CalculateChange, given a price for an item in the vending machine and an amount of
money received (both in cents), returns in Change coinage that makes up the difference. For example,
if the price is 60 cents and the money received is 75 cents, the contents of the array Change will be:

Value Number

Change(l) 25 0

Change (2) 10 1

Change(3) 5 1

That is, the change is 0 quarters, 1 dime, and 1 nickel.

The information hidden in this module is the algorithm used to calculate how many coins of each type
to dispense.

Here is the implementation of the module's hidden information, that is, the package's body:

package body ChangeCalculation in

procedure Calculate_Change (Price: in Positive;
MoneyReceived: in positive;

Change: in out Coin_Money) is
ChangeToDispense: Natural;

begin

7

Software Engineering Using Ada: Information Hiding, Workbook

Change(l).Value 25;
Change(2),Value 10;
Change(3).Value 5;

Change_To_Dispense := Money-Received - Price;
Change (1) .Number := ChangeToDispense/Change (1) .Value;
ChangeToDispense := ChangeTo_Dispense mod Change(l) .Value;
Change (2) .Number := ChangeToDispense/Change (2) .Value;
ChangeTo_.Dispense := Change_.ToDispense mod Change(2) .Value;
Change (3) .Nunuber := ChangeToDispense/Change (3) .Value;

and Calculate_Change;
ond Change_Calculation;

Consider the following problems:

1. Identify the hidden information in the ChangeS.Calculation module.

2. Can you think of another algorithm to implement CalculateChange?

3. You are to build a new version of the vending machine. This version will be sold in Germany.
The German m, ietary system differs from that of the United States. It is based on the
Deutsche Mark (DM). There are 100 pfennigs in a DM. Germany has 1 pfennig, 5 pfennig,
10 pfennig, 50 pfennig, 1 DM, 2 DM, and 5 DM coins. German vending machines don't
dispense as change paper money or coins less than 10 pfennigs.

German vending machines dispense drinks, but dispensing food hasn't caught on in Gmrnany
or most other European countries. Drinks cost anywhere from 50 pfennigs to 1.2 DM.

Create a new version of the Change-Calculation module that calculates change for a
machine that receives and dispenses German money. Make as few changes to the interface as
you can.

4. Why is it important that you change the interface as little as possible?

HOMEWORK

1. Adapt the change calculation module of the vending machine for use in another country.

2. A rational number is a number that can be expressed as the ratio of two integers. Use
information hiding to design and implement a program that reads two rtio... numbers, adds
them, and prints the result:

a. Decompose the problem into a set of modules. For each module, state its interface and
its hidden information. Describe the interface as an Ada package specification;
describe the hidden information in English.

b. Implement each module. Represent a rational number as a pair of integers.

c. Change the implementation of rational numbers to a single floating-point value. What
are each implementation's relative advantages and disadvantages? In what programs

would you use one or the other?

Software Engineering Using Ada: Information Hiding, Teacher Notes

* TEACHER NOTES FOR GROUP ACTIVITY

The package Change_..Calculation presented here illustrates how you can u;e the programming
language Ada to implement modules desiSned using the information hiding design method. The package
specification is the module's interface. It provides a single procedure that another module may use to
determine what coins, and how many of them, must be dispensed to provide a person with change for their
purchase. The package also has several data and type definitions. This is usual in information hiding:
developers will accompany the procedures and functions with data types that support their use.

1. Identify the hidden information in the Change_Calculation module.

The algorithm is the hidden information, so it's the implementation of calculatechange.

2. Can you think of another algorithm to implement CalculateChange?

Here's one. Though slightly more complex than the first algorithm, it's actually easier to change
when you do activity 3. The reason is that the original algorithm made a design assumption that
change was always dispensed using three coins.

procedure Calculate_Change (Price: in Positive;
Money-Received: in positive;

Change: in out Coin-Money) is
ChangeTo-Dispense: Natural;

begin
Change(l) .Value := 25;
Change(2).Value := 10;
Change(3) .Value := 5;

ChangeTo_Dispense := MoneyReceived - Price;
for C in Change'range loop

Change(C) .number := ChangerTo-Dispense / Change (C) .Value;
ChangeTo_Dispense := ChangeToDispense mod Change(C).Value;

end loop;
end CalculateChange;

InAda, you use the notation Change Irange in aforloop to indexeach value in the array Change.
In this case, the loop index variable c assumes the values 1, Z and 3, in that order.

3. You are to build a new version of the vending machine. This version will be sold in Germany.
The German monetary system differs from the United States'. It is based on the Deutsche
Mark (DM). There are 100 pfennigs in a DM. Germany has 1 pfennig, 5 pfennig, J 0 pfennig,
50 pfennig, 1 DM, 2 DM, and 5 DM coins. German vending machines don't dispense as change
paper money or coins less than 10 pfennigs.

German vending machines dispense drinks, but dispensing food hasn't caught on in Germany
or most other European countries. Drinks cost anywhere from 50 pfennigs to 1.2 DM.

0 Create a new algorithm that calculates change for a machine that receives and dispenses
German money. Make as few changes to the interface as you can.

9

Software Engineering Using Ada: Information Hiding, Teacher Notes

Here is one answer. The lines in italics are the lines that differ from the original. The algorithm now
calculates change for a machine that dispenses coins from l Opfennigs to 2 DM. The interface had
to be changedslightly to support this, since the U.S. version assumed that 3 ýTpes of coins (quarters,
dimes, and nickels) were dispensed, whereas the German version dispenses 4 types (1 Opfennig, 50
pfennig I DM, and 2 DM).

package Change_Calculation in
type Coin_Value_AndNumber is record

Value: Positive;
Number: Positive;

end record;

Number_Of_CoinsUsed_In_DispensingChange: constant Integer 4;

type Coin-Money is
array(l. .Number_.Of_Coins_Usedln_DispensingChange)

of CoinValuejAndNunmber;

procedure Calculate_Change (Price: in. Positive;
MoneyReceived: in positive;

Change: in out CoinMoney);
end ChangeCalculation;

package body Change_Calculation is

procedure CalculateChange (Price: in Positive;
Money-Received: in positive;

Change: in out Coin-money) is
ChangeTroDispense: Natural;

begin.
Change(1).Val ue 200;
Change(2).Value 100;
Change(3).Value 50;
Change(4).Value 10;

ChangeTroDispense := Money-Received - Price;
Change (1) .Number : = Change-ToDispense/Change (1) .Value;
ChangeToDispense := ChangeToDispense mod Change(l) .Value;
Change (2) .Number := ChangeTo_Dispense/Change (2) .Value;
ChangeToDispense := ChangeTo_.Dispense mod Change(2) .Val.ue;
Change (3) .Number : = ChangeToDispense/Change (3) .Value;
ChangeToDispense := ChangeToDispense mod Change(3).Value;
Change (4) .Number := ChangeTo_Dispense/Change (4) . Value;

end Calculate_Change;
eni Change_.alculation;

Why is it important that you change the interface as little as possible?

Suppose you are part of a team and are writing a module that uses this module. You will have made
some design decisions based on the interface you expect. If that interfacc changes, you may have I
to rethink your decisions.

10

Software Engineering Using Ada: Information Hiding, Teacher Notes

You will often find you cannot avoid making any changes to a module's interface. HIowever, you
can plan ahead when you design a module~ by thinking of the things that are likely to change. This
is part of what information hiding is all about. The things you think are most likely to change are
the things you hide behind an interface. You may have to make certain parts of the interface
susceptible to change. Here, the number of coins in the monetary system had to change. However,
by making that value a constant, you can let other modules rely on the constant rather than an a
literal. In this way you can lower the likelihood of inadvertent effects.

Software Engineering Using Ada: Information Hiding, Teacher Notes

This page intentionally left blank

12I

12

Software Engineering Using Ada: Information Hiding, Teacher Notes

* TEACHER NOTES FOR HOMEWORK

Students may do the homework problems in any programming language, although usingAda will help them
separate interface from implementation. If they use Pascal, encourage them to use units (if your compiler
supports, them.)

1. Adapt the change calculaton module of the vending machine for use in anothe.r country.

In France, the monetary system is based on the French Franc. The coins are 1, 5, 10, 20, and 50
centimes, and 1, 2, and 5 Francs; 100 centimes equals I Franc. French vending machines dispense
coins from 20 centimes to 2 Francs, inclusive. Products cost between 1.2 and 8 Francs.

package Change_Calcultion is

Number_OfCoins_ToDispense: constant Integer := 4;

end ChangeCalculation;

package body Change_Calculation is

procedure Calculate-Change (Price: in Positive;
Money.Received: in positive;

Change: in out Coin_Money) is
ChangeToDispense: Natural;

begin
Change(l).Value := 200;
Change(2).Value := 100;
Change(3).Value : 50;
Change(4).Value := 20;

Change ToDispense := MoneyReceived - Price;
Change (l) .Number := ChangeToDispense/Change (1) .Value;
ChangeToDispense := ChangeToDispense mod Change(l).Value;
Change (2) .Number := ChangeTo_Dispense/Change (2) .Value;
ChangeToDispense := ChangeTo_Dispense mod Change(2).Value;
Change (3) .Number := ChangeToDispense/Change (3) .Value;
Change ToDispense := ChangFTo__Dispense mod Change(3).Value;
Change(4) .Number := ChangeTqo_Dispense/Change(4) .Value;

end Calculate-Change;
end Change-Calculation;

2. A rational number is a number that can be expressed as the ratio of two integers. Use
information hiding to design and implement a program that reads two rational numbers, adds
them, and prints the result:

a. Decompose the problem into a set of modules. For each module, state its interface and
its hidden information. Describe the interface as an Ada package specification;
describe the hidden information in English.

It's important that the students try to design the modules before plunging into the
implementation. They should try to come up with the answer to this question before

13

Software Engineering Using Ada: Inironation Hiding, Teacher Notes

tackling Part b. However, it's also okay if they don't get the correct answer on the first try.
Engineering design is an iterative activ;ty.

There are two modules, Rational-Number and Main. RationalNumber has the following
interface:

package Rational_Number is
type Rational in private;
function RationalNumber(Numerator:in Integer;

Denominator: in Integer)
return Rational;

function Add(rl, r2: Rational) return Rational;
function Numerator(r: Rational) return Integer;
function Denominator(r; Rational) return Integer;

private
type Rational is record

Numerator: Integer;
Denominator: Integer;

end record;
end Rational]_Number;

The hidden information of thl module is the representation of rational numbers and the
algorithms used by the functions that manipulate them.

The main module has the following interface:

procedure ReadSum_Arid_PrintRational_Numbers;

The hidden informadon of this module is the algorithm it uses.

b. Implement each module. Represent a rational number as a pair of integers.

The following implementation takes the trouble to normalize rational numbers after each
operation-that is, it divides the numerator and denominator by their greatest common
divisor, If your students have not yet encountered this algorithm, you may want to provide
it for them.

I1

14

Software Engineering Using Ada: Infomialion Hiding, Teacher Notes

package body RationalNumber is

-- This package implements rational numbers as pairs of integers.
-- The advantage to this scheme is that rational numbers are
-- represented exactly. The disadvantage is that numbers must
-- be normalized after creation and each arithmetic operation,
-- requiring some extra time.

procedure Normalize(r: in out Rational) is
Numerator, Denominator: Natural;
Remainder: Natural;

begin
Numerator := abs(r.Numerator); -- Find the greatest common
Denominator := abs(r.Denominator); -- divisor of the numerator
while Denominator /= 0 loop -- and denominator using

Remainder := Numerator rem Denominator; -- Euclid's
Numerator := Denominator; -- algorithm. The algorithm
Denominator := Remainder; -- ends with numerator

end loop; -- holding the GCD.

r.Numerator := r.Numerator / Numerator;
r.Denominator := r.Denominator / Numerator;

end Normalize;

function RationalNumber (Numerator: in Integer;
Denominator: in Integer)

return Rational is
r: Rational;

begin
r.Numerator := Numerator;
r.Denominator := Denominator;
Normalize(r);
return r;

end Rational-number;

function Add(rl, r2: Rational) return Rational is
r: Rational;

begin
r.Numerator := rl.Numerator*r2.Denominator

+ r2.Numerator*rl.Denominator;
r.Denominator := rl.Denominator * r2.Denominator;
Normalize(r);
return r;

end Add;

function Numerator(r: Rational) return Integer is
begin

return r.Numerator;
end Numerator;

function Denominator(r: Rational) return Integer is
begin

return r.Denominator;
end Denominator;

end Rational_Number;

15

Software Engineering Using Ada: Information Hiding, Teacher Notes

This implementation of the main module goes through the rigamarole necessary to instantiate the
generic packages needed for intejer input and output. That's not important for the purposes of this
assignment. Rather, have the students concentrate on the algorithm.

with Rational_Number, TextIO;
procedure ReadSumAndPrintRationalNumbers is

package Integer_.0 is now Text_IO.Integer 1O(Integer);
rl, r2, Sum: RationalNumber.Rational;
Numerator, Denominator: Integer;

begin
Text_IO.put("Enter the first number: ");
IntegerI0.get (Numerator); Integer_10.get(Denominator);
rl := Rational_Nunmber.Rational_Number(Numerator, Denominator);

Text_IO.put("Enter the second number: ");
Integer_IO.get(Numerator); Integer_1O.get(Denominator);
r2 Rational_number.Rational_number(Nunerator, Denominator);
Sum Rational_Nwuber.Add(rl, r2);
Text_IO.put("The sLm is 1);
IntegerIO .put (Rational_Number.Numerator (Sum));
TextIO.put('/');
IntegerIO.put (Rational_Number.Denominator (Sum));

end ReadSum._And_Print_Rational_Numbers;

c. Change the implementation of rational numbers to a single floating-point value. What
are each implementatioil's relative advantages and disadvantages? In what programs
would you use one or the other?

The package specification is identical, except that the representation of Rational changes.
Replace the lines:

type Rational is record
Numerator: Integer;
Denominator: Integer;

en6 record;

with:

type Rational is new float;

HT,,.re is the pckage body:

package body RationalNumber is

-- This package implements Rational numbers as floating-point
-- quantities. The advantage to this scheme is that it is
-- very fast for performing arithmetic operations. The
-- disadvantage is that the numerator and denominator must be
-- approximated rather than computed exactly.

Numnber_Of_Denominators: constant := 10;

Denominators: constant array(l..Numuber_Of_Denominators) of Integer
(1, 2, 3, 5, 7, 11, 13, 17, 19, 23);

16

- -- •- :, ,lnu n • I:•~lli • Ull ' •'1 1"I '•| I- I i Il " 'il I t ll nn I *AM¥1

Software Enýineering Using Ada: Information Hiding, Teacher Notes

function Rational_Number(Numerator: in Integer;

Denominator: in Integer)
return Rational is

begin
return Rational(Numerator)/Rational(Denominator);

end Rational_Number;

function Add(rl, r2: Rational) return Rational is
begin

return rl+r2;
end Add;

-- Compute the numerator and denominator of r. The algorithm
-- is to choose for denominator the value in the denominators
-- array such that numerator = floor(r*denominator) and
-- numerator/denominator is closer to r than for any other
-- value of denominator in the array.

procedure ComputeNumerator_And_Denominator_Of_Rational(
r: in Rational;
Numerator, Denominator: out Integer) is
d, n: Integer;
dprime, nprime: Integer;

begin
d := Denominators(Denominators'first);
n Integer(r*Rational(d));
for i in Denominators'first+l .. Denominators'last loop

dprime z= Denominators(i);
nprime z= 1*iteger(r*Rational(dprime));
if abs(Rational(nprime)/Rational(dprime) - r)

< abs(Rational(n)/Rational(d) - r) theo
d : dprime;
n := nprime;

end if;
end loop;
Numerator := n;
Denominator := d;

end ComputeNumeratorAnd_DenominatorOfRational;

function Numerator(r: Rational) return Integer is
d, n: Integer;

begin
ComputeNumerator_And_DenominatorOf_Rational(r, n, d);
return n;

end Numerator;

function Denominator(r: Rational) return Integer is
d, n: Integer;

begin
Compute_NumeratorAnd_Denominator_OfRational(r, n, d);
return d;

end Denominator;

end RationalNumber;

17

Software Engineering Using Ada: Information Hiding, Teacher Notes

The differences between the two implementations may be summarized as follows:

- The first implementation is slower It must execute the normalization operation after
creation and every arithmetic operation. Moreover, adding two rational numbeirs using the
first implementation requires three multiplications and one addition, whereas adding them
using the second implementation requires only a single addition.

- The second implementation is less exact. The first always represents a rational number as
the ratio of two integer quantities, which is the definition of a rational number The second,
which uses a floating-point value, represents a fixed number of significant digits.
Furthermore, its algorithm for determining the numerator and denominator is accurate
only to two significant digits.

You would use the first implementation inprograns where accurac y is of more concern than speed.
You would use the second implementation when speed is of more concern than accuracy. You must
also assess what operations you will use most frequently. The first implementation will be both faster
and more accurate if you invoke the numerator and denominator functionz more often than the
addition and creation functions.

i

18

'�

�

I-
* U -

0
b1

0

0)

0)
C

.5)
C

ILl
6)

0

'0 (c c)c
g>% co

002(

CU.0 M- C:

0o =

4) _d

(DD

0~ 4D

UU) W

((D
D ~ C 0)

oA' EL Cr '

con -oD

x 0
ou 'D (- Z a

%n coI~L

ýO co

a co Cl)

-a ,U O~CU a).- 3vo >C-' C c co

2 --

U) .0L Cu 4- Q 9 co _) .

o : ICD4- U)~ > S) cc$

M-6.

NINO,

0)0
a)E

CD So oz 0o 0~..I..

+cc- M Cl CV 0

CDC c0 ZCD

75
ca -a

c0 0 w 0

0 Z 0) E0 (0 c
Cu.S.

%6-.~ 0 Cw .

(D P~ E uD 0

E _: (D C (0 _ C

(1) 3 CC~i. A

0 a) C.

>o.E 0) 0)>na ZC -~ a2D *(~.r-) -0 CD
co (D cd

CL M o
:) E 2- c CD (C .CDc a)

(.0) 'C C .c%
U~)) 0) a) (30) 4-,

a) 75 :L'- L a) 28 0 U)

(0O)2E a) 0

W~ ~ ~ Cu) Cu

05 g * 0() a a' W Q)EC, o Cu 0 D -=C
0 ~2~~(a~ 0 Dl) 2

E JOL0L).>- C u~oeu) 22

0) CO r- U) Cu) cm
~co~cu Cc2)O 0) w =~I20 a

0o CD CLco l 0 U) CL

E C

00

U)
0

0

0 L
Lu. (D

Lu. U-

as

0) LEr
LL

L) C) =1 >% 0 O(
0)0 ((0 00-0

0)))>-

FS0 0)- 5 0 a)E0 0)

0 00) E > > 0 E)0 CO a)

M -tO CD co f
=) G *0 co CD

0m E 0 0 0)
- ($ 2 ~ >

0. 0M 0 E* 0 _ . cc a)
E) >) co 0 0

04 - c .0 r-

(8o D) -CL) Co 0

> cD E COO
(00

4- . r 0a0d &_ 3! 0)) CL
0~~~ 0 - ' I

.n 0) A 0. C C

CM 0 ~ 0) 0 0 CO CO 4

9: 0C 0 c

0 6 =" 0 00 (a~*) .0 0)

v w b- o n 0 (d20
4- >%- 4- - O 0

0)) O(U 0w C
0 m, a 0: D

(0 t .00 -mv
x 2IV.- E I-GD

L4 0)C)0ECd

CD-0 450 . '; In U)w0 0)0)a
:9 0 0 0 I'l4) r

CL o CzO 0 *.2 .- r 0m
4.0 00 ~ f0) CO" 0 Cd 0 =)-.

=3'- C O0 U.- 0 *-0 -t

a) 0O'ý 06 CL)z-
b.)~0 >~,~ 0Ž 0 -w0

C')' 0 ~~ ~~ E %). ~-C .

~ ~~30 .0))0 0 - 0 .2 3:0~

0 ~ o E CD cu~ r 03 -0 - 0
0 CD - 0 c V 0 0CO

E

0m 0,- :•••

0. I

C-

(a

co

E 0
0 0

> -o > -- x

LU W .

O • •U

CO 0 C3 a)
aU > CD>

oA~ OOO: (t4- -C

1~0 00o.

0) .- m .C 0 0 C c :3 00 CU)
CL ~ E . 1 -co 0 a

0 0-0 ot, (n 4-0
0 3 ci, .0fl) a) >

o 1, 4 .C= t ~1~ 0- ý

-15 ci(D0V- =O
0(-)a 0.-M

(U ~ 0 ~.cnU
V)0) o 0 0 wO0cU

.C w0 = x.0)Cd(0

a) (D m O,) CO Q0O)

> + CC .0) ,0 0) 0) r ~

co IJ 0 C c0
=C Fn"- " -; C .64 1

o m ~~ > e)U) mo0 (b0)0-
CO ca a coŽC0 0

0 0 a) ciX - c

0U .CCI Zý E2.-
(DD4 -c `C (. 0 0 0

E n cm 0 0- c0 . C

Cf DO~ 0 r V0 0 c 4-

2 >~)(U~4~2 %:3: .
E o -02 r- COa C. A)

(I)~~~ 0n a)~f)"~U E8 4> f

2 :9 0) ;p

(.) ~ 0: 0 -~ j Cc$.23
(D=- .f~ C CCCCi ~ 0 C~i CD Cf 0 C/

E______ 0_____0_

7, L 7. U0Z0 0-0

Sz U

0 "ou

a) Io (~a o

L..

a) >OO Wea to310

EV Q LO j>

(nCr ()U) (1 -) -
0.o aC) -aE5c :5c

CZ 0 > E M c -0

CD ca 1.

00 E V 2 _.

0~7 0.u)~o4
Cc0 CcU a 0 nU 0~C

00 ~UC ca, ED o- 0
ir 4-a), > : a

a) 0 > ~ CU

0C0 1-. 4- oC
a) coU 0

0)~U a)csc %)C

C~U) o 0)C= U0 c- r-E

3: Jz 0 C) >0=

CO CD 0 U): a0(U) 4

..CDj. EUU <.U -N a) 0E -t
0 I-> 0. a)U 03 c

L. (QC>~ 0 D 00 0
.C (D C U) C

-n CC$>I) CC .
CD (D~ECU a) 8)U

L7J)U0 CD, co4 ý - 0 U

a~C-O)) Eco CD nŽ 0:

C ZJ L:' L (n C (DA a 0 2co
0 co5. 'a

-. 0 D oE

cm 0I aU -aa) .
as) c 0CD :a 0 0 CC m. 1 - 2

= _- - fiEco'd0

-00.

4 -4 Q mC I-i. (D*
CL0 cm

_O 0
- 0 I low

0 0)
lo loIo

1Los

CA

jC

cis) 4iu .C E 15 T) 4

"0u 00 -I
CO 2~o0 .Cm 0)

0) CL 0)i E a
(D0 c a0)0) 00 0)

0 V CZ CD-0CSCr C -D ..2-1
C0 .. o C 0c Q. C
C0- COVu ~ 4

co~ 2 0)~ 4) Qv
C: 75 W~ 0~ w

E 0) a))

u' -5E7E. r Sc0) ;r-u) a) 0u ~
C~~~~~ 0)(- v~ ..

Q)u CD)

z- oi c~ a)- C:3
0 aC ' -c 0 0 c :

4- % - C6 1) Oca
:3 -D 4--1

"cc o0-E0
Z >-

CD Ci 4' a).
a)),- 0 CuoCdO

750 4=0 0 w -

0 ouC CO VV)
E c)C. -0 c)%G -CD~ CoO

>~. 0-. 1..
(MS50. CD E. 0~ 0, W

D.. %-a)u)4 wb -C

cr (D(D0
co E 0 0a.0 CD c- CC wu 0 0C

ch V OhD C0.. 0 "a~
Cu.- co E. - 'CD

CD 0-04- 4d4W
CZ -0

z 4 cz E 51 CD',0 O0 co

0 C: u P~ (0C0: 0 co0

a0 ct 0aZ Z ~0 ~ (I) CDH 0

0 0 E)

(D 0 4 O-d -
at... 4-) CL C

"a 0 OC
ova C.)

cc -CA
Cc 0~ CDc
uJIm E c-5 m ~ 0

0
L..

=3 0)

Omm
> ~ AE

a) ~x0

CD 0 0
-C;: :2

0U LO~

cocq

~-Q co 00

.0 -o 0 ca0.
a) CD 0 C.)pU)7

01) Lb a 0. a

(D IQ)

-0 CD
02) (0)o =3 G

00 C.0. 0)
00) 0ai

CDL 20c -0. 0)(g0 ~ a) CD 0
CIO -'4
-~ 0 0 - C03o) Co

0 - 0 0 CU CD I

cz cc CL %
C0) 0) a

_ a, ~ ~ CD ~

(O- C 0D 10)))C
*00 =3 CD0 a. cm C

tm 0. 0.cj =3 -aI-*
a)0) . .0)

as) > >00C40 CD
co wco. CD' ;r_0*~0

00 0 CD (D
0f CIO 0.- a)"CU =C

I... %I. CU E~ .CUC -jcn a CT0 C
co ' 0 co cn ~ '' 00. Cltn ~ ~ ~ . 13 00 *

CU* CD C0IO~a) w ~ - CD C
C13co ý. D -d c C IO o .

CUI~. 1C(0 0)OCU
co 00a *ClD 0C.~ CO "C* 2 I*-C0. 0) EL CD.C*

co~~ EC 4) 00cd0

a)O CCD O 0>% CDW CL CDO 0)

____ ___ ___(1__ __ - 4___ ___&__.

L

II

I iii-

u •.•C Cu .
ccu

0
C0 Cc E,Cc cc

•) 0.

0 4D C

IT)

a))

a)%& C3 W = 4

a E cD .2C r -

0 E C 00)
0 0 a) u)~.

Oa). ~ cu 04 *

E 00>

LO E-e % - 0.D
r_-0

CL L > (D "Dr- C
:) .. o l.)O

E C -0 a)2=0 o

DCDO 0 u 0 M- 01 CU

cccn
0

o vv >o3V.Qf
- r EE S a c

MO . Cu f cu
n 0 DCJ -

0 cn
0)

a) c %-a) 10 w 6cj cD3.0) I Cu 0

r- C :) C = .c a a C D)
0) 0 W -5 0 C D C 0 0(.) a C

I-. 0 C oc- DC

'OD. :) C E .0acu C~ E- w-2~

_c
_3

0 0

uE -Au -AEE~

CD-o> 00 coo0
r- A0 11 A

0 .2~ >A

0 c)

0 E D CD) -6

a) CD-a
cm CD CD CoL a

L) _ CD C.- -.
a) *D

W 2D

0.>.n c om U 0 9

__ _ _ _ _ _

0) 0
ci) .2 4-.Ec,

0 0)00 1-
CD ~U CDC z 0 : I 00<

a) a)) >% "ao C6
Cd 0 >-. Lt .2 > %~

0l -r-.~J C) 0).)

cm >-~ a) CC v..o
*0 CO ~ F=1 0

~)o0 c CD Z8 % C
5_ In "a o :3 co =

CD~~U 3Co ld (DO 0n

-o d 00 0c 0i CDX :

o~~U acnU 0.
0)--o t y 0D

0 t a Dmc0 (D
>,a 0 0 r_ IA4o~j 0h.. V5 0

c ~ ~ ~ U U D ~ (/

>* U) 0) 0 CD

ci)>% CD:I))3
6 0.c -010 i

co r
0),a F t

4-U 0 CD0 U)40L
co0 0 0 6U0 4)

o~M >UU~C C~*

70 0)0- = O I0.c0

,Z c M () U)C: C
(1 0

0) C: 0 o(j0) -L -Cn (0
U)c .0 0 > (1) a)

o- co _Il 0 0 1

00.
0 0)0 00

U)~~ ~ ~ ~ o :31 oa O:
a- r-0 _ _

a- 8f 00 E C

o ~ ~ q- 0LU) 0-cn
H% ~ ~ ~ ~ ~ 4 #>O 4 -0U H-OL a> 0 C

___ __ __ __ ___ __

00

AA

AA
CDoc

CD.. >. A- '

V CCD
*0 cm 0

--o 000

U) dC\I1-
La-) a) .

0o -2 2j a n)

c/) 0
c a, 6S coI c(D 0
*-, ~ CI) L 0

m~~ oZ.-0 2 l

(1) L cy 0.t .) E:

-r ci) CL C C) C

OcC) c U) L5 -

(1 LCD c CL)

CLC

.>% L-" CD 0 o

0 V0 o 0) ~ 0
0D (30 a) C

m 0 -c) 0

0 c

0) a).4- 0a 0

r- - ca.4
16- C: Ea 0 -a0ac CDl SO0)

ot o Co zA a)

00 CLM6C
1-1 0 (n> ~C
CL 75 ;,, G -0 -. ~ CI

0. aC CI)

oD .. "a(D0

> AQ C (: 0)D=
.. r =) 4-' C

"F) 0
-w0* +C) -0 1 C5t

CE~ 0 0= 2=
Si0 :5al.d

c

E .~0>b2 8 0a)da).
0-- CLV.

a E CL 0

(d0 0) =

0 Cd=

0 r 0)0 Ccii 0
CL CO,- 4 Eo 0 CD)U

Z -0
CD 0c Ec0O O

o o~-o~ E >

4)l

CDE E C

4))

(U c w- E0)0

O< E U
Vx

a)~~C a)~IZ) LO

.0-

U)1. . E

a) 0. 0. E =

0)

0 .(U

co c
~0.

Xlo (r) (D

o -0 (
c) 0co

tn E

ai) tm 0C

a 00-

-- CD

0)y~ 3 ~5COiC
C,.x CDc)

_L' C

0-

Cio

0 1062c 1

-0 a) C)0)

IU

00

CL

0 m~m ~ 0 0)U

co~ 0m 0)o

4J4-

~IS

I CD-
CD E

oD
A 0 11A =3%

CD 0)V w ;r 0

a) C: co u
C 0

X 0 0

(D~ 0 c

~~a -al L)

C: 0- .

no no 0C * 0 C

CD 0)

a) C'a 0 "-
.o o'0 oa "- 0=

CD 0 0 : E._ "Do-

an~ (D E

o .=.=jt ,_• -" -,g U,

O 0 .(!--

.- 0_ a)

_ (- •-(U

0••. z.x o2-o- (D• =•C .=1 ,-.- 0 co >

,-- 0 "d -, E o0 C
o "' . 0- E

:z ct a)~.Ca

,- = e-, A?-

I U>, AR', a) C5 J - :3 o 0.-
E a E-2 0~(CD

o 0h 0.••. 0 C. :%
o E)

0C =CU Q C L

ov. o .,,_ . ,,,-o= . oc .. Ci E o

41) 0 05 co 0

~ E ~0 .0 4)~c,

• :3 Co Uo m (•,'. - - "
E. a) ., . 0 .C

,.0_ _=.-
~4 a -- .,._ ,, _-,

1) 0
IV)O E U)

cr c 0 . o(ca)> (z a)

a' .- z W U) .

C: cc ,..' (nl = , -- 0- (n" •l a).- 0•0 V •0>
E E 0 .- C A?

>% (DDa () C "

0 0 o
.S (T 'Ch 1 >..~ filOC

f- 4' f 0 C-ZcoV

0 ") co C CO.' ""O= 0
C.-E2' Eo , 0 0 C-.

E~CL C. o I9 - -- ý

(D c > , ,., 0 o cis > .

C (o -Lo -- 4 (n

E 0 ý 0 C.C 0) CU) Ca
0) CU00C(UVC 0 00

CLU 4 9 010.0
Co co a)C,>~I *a)

CI CD CO Q co)U 0 .0-CU> (D ' -o -o

ca 75 .C0 (au) 70 ~ * :S E0c C:!c

Co CL

13 4) Iu)
-~ C WOMEN(I

cc 0

o% 0)M
ZV.>

CUL '0

*0 o
0)

MC0
ME

* (0) 00 0E
D0.0) 0.C X.O

00

CU
0)MM

75 . 0 04-Z
a 0 >"*1='

r-C =C .C) 0

U) 4 a(
co0 0 o*Z

0) 0)

Cll)

0 a a
CD .0 : cn -
W 0 C 0 r_

15 0)

(D)
.. o -S CO

a) 0 M a

0c V 0 cC 00

a) u E 0) ca
0 0 0)

2C CO 0 2
CL cm =C 00

-0~ _co 0

(DX-a) -Co ~
CDE CIS

Z _,l CDL a) a

0 ~ -0 OVU
Ca) U~Ž.CC) 0C :3)

70 .4 :3~ O

0 Da) 00 42
S0. 01

0) 0 U) % L- >%

C) ~(C-o c0.<_

OL. L.. CD, 010*a 0 ' coW
0 CD (D

00 >C 0)C 0-.0 20 CD

Cl) Z oZ : 0 CCO 0~
CO ~20 >. C2 z E -_n40V

u L-
'000

a) 0 m 0 ,Wo
0 -C c (D=cn o&5

_____U)______D_______________________0_______t___ 0___

CL

02

cc-I

0
0 >@0))

O MOM

.5--

0) ca

0) I

4) to U) 1

a)l
tR

4) U9

CD a) - 0) WO

co >

- 0)) a) cz 0) C

- . * 00 Zý0E-0

-. 0 C. U) u-

0 a 0 _ _U)-0 0u

w0 2 c Cu CL a) _ c)

0l 'm UY Da) 0c E 0)

0 C E2) a)) A V0. cm
CM 0C 0-0 r 0 CL cau~ .- CuD

E " % "4-

cd oE E 0 =.-U) 0 L

0 00 cU - -W
>- 0- .0 as a)

C)~ a) C 0 ClD a)
.a ~ C lz E cz -5 S

CI;F El c: Cc,) 4.G cnL
=-6s- - = 00 00

0) CD C2) W- *-)u~ E 04 - o0)
0~ Cu 6'5 Cu w) ECUaD~~U)

0 ~co 0 CfL- CD L4- CL
0d :&0 0 006 a. CO~

Cla C.- Cu 00 O:. CNe
U).)CD a) < lE 0 - 1- (D0

Eo n- id 0 5UU)u EjU, 01 E
0) 0 0. '0 75 w

= -OCL EIw a) -a a a

.' "u

.~ca

00o

E >2 q..r

E 0 CD

LM

glo

JCC

E *

0 0

Softwarc Engineering Using Ada: Reuse, Workbook

*UNIT 4: REUSE

UNIT SUMMARY

As you develop software, you will often find that you need a module that offers functions and data
types similar to, but not exactly matching, one you have developed in the past. The more experience
you gain with software, the more you will find this to be true. You will also find that other people have
developed software you might be able to use. In other words, no program is totally unique. It solves'
a problem related to problems that have already been solved, and its modules and structure resemble,
in part, modules and structures of existing programs.

You should try to reuse existing software whenever you can. Studies have shown that in many
programs, especially larger ones, 50% of the lines of code can easily come from existing programs.
Reuse of 70% of the code is not uncommon. Since a software developer produces an average of 40
lines of code per day over the cuurse of a project, it's easy to calculate just how quickly the savings will
add up.

Unfortunately, reuse is harder than it might seem. You'll find the primary reason is that you developed
your modules for use in a specific program. When you try to use them in another program, you often
realize you need something slightly different: a function must operate on a string rather than an
integer, for instance. You may find that writing a new module from scratch is easier than modifying

O an existing module.

There are several things you can do to improve the chances that a module will be reusable. One is to
use generic packages. When you write a generic package, you declare generic parameters that specify
the different ways you expect you might want to use the package. You can then instantiate the generic
package by providing values for the parameters that meet the needs of specific programs. For example,
you can use Ada generic packages to rewrite the Line-Holder package so it can hold integers, strings,
or any object that is a valid Ada data type:

generic
type Item ia private;

package Holder in
type List is private;

procedure Iriitialize(Items: out List);
private

Max_Values: conutaut Integer := 10000;
type Items iA array(Integer range I..Max_Values) of Item;
type List is record

Number: Integer range 0..MaxValues;
Values: Items;

end record;
end Holder;

* If you then declare a data type representing a line:

subtype Line is String(l..255);

Software Engineering Using Ada: Reuse, Workbook

you can create a Line_Holder package that behaves identically to the one in Unit 3 using the following
generic instantiation:

package Line_Holder is now Holder(Item => Line);

Because Holder is a generic package, you can use it to hold objects of any type. For example, you can
use the following generic instantiation to hold a list of integers:

package Integerjolder in new Holder(Item => Integer);

The Ada compiler cranks out a new package based on the parameters to the generic instantiation. It's
as if you took the Holder package and substituted Line or Integer everywhere Item appears. See
Figures 1 and 2, drawn from the Ada code on Slide 4-6. In each figure, the generic Holder package
on the left side, with its generic parameter Item, is instantiated to yield the package on the right.

Strlng(1l.255

typo list;
Item procedure Initialize;

type List; 51 I-n

procedure Inlttalizm; ... '

i/st: I~ nrc9,9991 [Line

1 1o,0o0 00 U0
< =

Figure 1. Generic Instantiation of the Holder Package With Item - >Une

Data types and numeric values are examples of parameters you often use to make a module more
reusable.

Ada has many kinds of generic parameters. Figures 1 and 2 illustrate a generic type parameter. You
can also write generic packages with generic formal object parameters. A generic formal object is a
parameter that's a constant value, such as an integer or a character. For example, you could add a
parameter Max...Values that controls the maximum number of values a holder can store. See
Figures 3,4, and 5, drawn from the Ada code on Slide 4-8. A second generic parameter, MaxValues,

has been added to the Holder package. This parameter lets you specify the maximum number of
values an instantiation of the Holder package can store. You can now control both the type and size.
Figure 3 creates a package that stores 1,000 lines. Figure 4 creates a package that stores 30 integers.
Figure 5 creates a package that stores 50,000 integers.

A generic type parameter can be any valid Ada data type, even one declared from a generi..
instantiation. Figure 7, drawn from the Ada code on Slide 4-9, illustrates this point. Here, the item
used in the lower generic instantiation is of type List from the package Students, which was
instantiated from Holder.

2

Software Engineering Using Ada: Reuse, Workbook

I type List;

Item , procedure Initialize;

List: 1 Integer

9 Integer
Item 3 Integer

t List; 2t Integer

Vroeedura Initialize; ...
List: Gnrc,

UýMInstantiation 10:0 ae

1 1 lO000 n

Figure 2. Generic Instantiation of the Holder Package With Item-> Integer

Sring(1.,255)1,0• Pa-,'

type list,
Anothr Max Values kprocedure Initializspcal

SM _List: 1 Line

Item ,41 Line

typo List; 5 -Line -1

List: Generic , 9991 Ln I
[Tem ."'Um Ins tantiation /1,O00 in

I Max-Values

Figure 3. Generic Instantiation of the Holder Package to Hold 1,000 lines

Another useful kind of generic parameter is the generic range parameter. It is a special case of the

generic type parameter, where the type you provide is a subtype of integers. Using subtypes helps you
overcome the situation in Figure 7, where to index calendar years you must create a new data type to
AA SU. ^ A 11-0 ... YearIndox subtype, in th• lower generi

instantiation to create a holder module whose indexes range from 1980 to 2029.

You can also improve the chances that a module will be reusable by spending some extra time thinking
about reuse as you develop the module. Ponder the functions that the module offers. Think about what
is essential to the module and what is incidental to the program for which you are developing it. This
will help you realize what generic parameters are appropriate.

0

3

Software Engineering Using Ada: Reuse, Workbook

If you follow this advice, over time you will build up a "library" of reusable modules. You will find that
your software development process automatically incorporates reuse. As you design your software,
you will consider what modules are in your library and base your design on what you can reuse,
realizing that reuse will save you considerable amounts of time.

30 --

Fgure4.Gneric Inte n o talues

Max Values to it

Item • rocedure Inittialize,.

~~~type Ust; 1t

procedureednitializeu,

ist I [!n. Generic 4 9 g

S MaxValues tantato 0 Integer

Figure 4. Generic Instantiations of the Holder Package to Hold 30 Integers

type Li1st;

Raima hidingd esi rocedure Initial3ze-, . c

Yo Man doathis by hidingho th senilfctoswrbthw Ing ntheginerfae h xc
was nwhc thue a dapaini psil.Tissprto ofntefac a .ndthidenifrmtocme

Ie4 Integer

procedure Initializ ding.

Fist: 7eeercI .. ;c-n49,9991 IntegerI

Figure 5, Generic Instantiation of the Holder Package to Hold 50,000 Integers

Reuse goes hand in hand with the information hiding design method covered in Unit 3. 7To create
reusable software, you must make it adaptable to a range of situations in which it will likely be used.
You can do this by hiding how the essential functions work, but showing, on the interface, the exact

ways in which the adaptation is possible. This separation of interface and hidden information comes
directly from information hiding.

4



Software Engineering Using Ada: Reuse, Workbook

SName .q•d••

Math Grade Student Index ,,_________
I CSý..ade- type List;

istory _LGrade procedure Initialize;

Item Index List:S~1 Student:

Math Grade
Index .104S- CSOrade

Item AHistoryGrade

Yerqdxtpe List; 0Suet

procedure Initialize; Name

I.,i.•t:U M ath:rd

Lis1 Generic Nat e Grade

EE Instantiatonso Ne Grade
1Max-Values ityre

Year Index typo List;
procedure Initialize;
List:

Item Index 1980 Stude~nt H-older:

Inde~x~tm • • 50 [ae.. eag

type__________ 2029 Student Holder:procedure Initialize; I Niunc, Gradesl

G1 Name, Grades

'" Instantlatlon
1Max-Values

Figure 6. Instantiating Student Grades and School History Using Generic Range Parameters

0



Software Engineering Using, Ada: Reuse, Workbook

Item Max-Values List:

Stu1cStudent:

1NNamerae

M ame, Grades

typo___List;__ 50 Student.Hldr

poedureIntaie IC'IntnlalnName,

Fiur 7.m I..R 7 Instantiating Stuen GradesadShoHity

Its su6
6 a-ausHitr-rd

____________________________



Software Engineering Using Ada: Reuse, Laboratory

LAB UNIT 4: REUSE
LABORATORY SPECIFICATION

NOTE: This laboratory is not being produced for the pilot offerings. The laboratory will appear in a
later version of the course, based on comments received from the teachers of the pilot
offerings. Ibis specification provides a definition of the current vision for such a laboratory.
Because the laboratory has not been built, not all issues have been resolved. Unresolved issues
are shown in italic text.

PART 1: BACKGROUND

In this laboratory, you will assemble vending machine software. You will not write this software
yourself; you will use the reuse techniques you learned in your lecture to create it. You will work in
groups, jointly reusing and developing the software.

Suppose you are an employee of the Press 'n Gobble Vending Machines Company. One day, your sales
department informs you that it has located two potential markcts fui the vending machines your
company builds. However, none of Press 'n Gobble's current machines quite fits either market.
Management has decided to develop new ones and assigns you to develop the software the machines
will need.

Here is a description of each machine:

1. The first machine is to be sold in the United States. It will dispense a variety of food products.
It will look as shown in Figure 8, Items in the second row cost 65o. All other items cost 55¢.

11 12 13 14 15

21 22 23 U

I Selection

31 32 33 34 35 r'FI~i i~i~ I Dollar _JL!

41 42 43 44 45 1

Figure 8. A Food-Dispersing Vending Machine

__ 
7_. 

. .._I



Software Engineering Using Ada: Reuse, Laboratory

2. The second machine is to be sold in Germany. It is shown in Figure 9. This machine is to
dispense hot beverages: coffee, decaffeinated coffee, tea, and espresso. Because it dispenses
only a few items, it does not have a numeric keypad for selection. Instead, each item has a
button; you push that button to get the item. Of course, German labels will be substituted for
the English ones when the machine is placed in final production. You can insert 10 pfennig,
50 pfennig, 1 DM, 2 DM, or 5 DM coins. The machine dispenses change using 1 DM, 50
pfennig, and 10 pfennig coins.

Hot,,Drinks,.....
Coffee Decaffeinatud Espresso Tea

Coffee
50 pf 50 pf 1.2 DM 80 pf

'., j: Pu.sh,

Push Push Push

. . .. ~ , 1 ..
Coin
Return

Figure 9. A Drink-Dispensing Vending Machine

Your assignment for this laboratory is to generate the software for bot'- vending machnes. You will
do so by choosing the necessary software modules, as explained in the exercises below. You must
compile and link these modules. You can then run the software.

THE SoFTwARE DESIGN

Press 'n Gobble's software developers maintain an extensive, well-organized reuse library of the
modules they have developed over the years. Furthermore, they have developed a general design for
vending machine software. When presented with the requirements for a new vending machine, theyl
can quickly determine the modules they need. Every program they develop always has the modules
listed in Thble 1.

8



Software Engineering Using Ada: Rems, Laboratory

Table 1. Software Moduleos Used In All Press 'n Gobble Vending Machines

Module Name Module Description

Change Return Button Signal that the money the person has entered so far is all to be returned. The
hidden information of this module is how it is determined that the button
has been pressed.

Coin Return Dispense a selected amount of money, in coins. The hidden inf.rmation of
this module is how the hardware that dispenses coins is activated.

Coin Acceptor Accept coins and provide to the software the value of the coin. The hidden
information is the means by which it is determined what coin was entered.

Item Dispenser Dispense a product to the person. The hidden information of this module
is how the hardware dispenses products.

Money Accumulator Maintain a -record of how much money the person has entered so far. The'
hidden information is the means to calculate and represent this
information.

Item Selector Signal a selection. The hidden information of this module is how it is
determined that the person has pressed the buttons to make a selection.

Input Event Handler Collect and respond to the signals issued by other modules. The hidden
information of this module is the algorithm for collecting and responding
to signals.

Change Calculator Determine the amount of change needed for a purchase. The hidden
Information of this module is the algorithm for calculating change.,Price Information Maintain the price for items dispensed by the machine, and allow
determination of whether a specified amount of money is sufficient to
purchase a specified item. The hidden information is the representation of
!he prices and the algorithm for determining whether the purchase price is
enough.

Holder Maintain a list of items. The hidden information is the representation of
the list and the algorithms for accessing it.

The details of some of these modules may vary between machines, but a form of each module exists
in the software of any vending machine Press 'n Gobble sells. This list of modules is not. ntended to be
complete, just illustrative. They ivere derived using information hiding. Moreover, many of them are used
in both vending machines. This module sharing is the primary requirement for any design.

Press 'n Gobble's software library has other parts too. These parts are only needed in certain vending
machines, as described in 'lhble 2.

'Thble 2. Software Modules in Specific Press 'n Gobble Vending Machines

Module Name Module Description Iiiclude If...

Bill Acceptor Accept bills, and provide to the software the The vending machine is to accept
value of the bills. The hidden information is the both coins and bills.
means to determine what bill was entered.

Money Display Display an amount of money. The hidden The vending machine is to display
information is the algorithms used to activate the amount of money the person has
the display. entered so far,

9



Software Engineering Using Ada: Reuse, Laboratory

PART 2: LABORATORY EXERCISES

EXERCISE 1: UNITED STATES VENDING MACHINE

You are to create the software needed for the vending machine to be sold in the United States. You
must perform the following steps:

1. Read the description of the food-dispensing vending machine on Page 7.

2. Determine the modules you will need for the vending machine's software.

3. Assign a set of modules to each member of your group. 'You should bear in mind that some
modules are larger than others and partition them equally across your group so everyonie has
approximately the same workload. Use the figures in the last column of Tables 1 and 2 as a
rough guide to the relative time each person will need for each module. This column isn 't in
place yet and can't be until the software is written. We shall need to time each module's compilation
and prepare the figures based on that information. Note that Steps 1 through 3 would make an
e~xcellent prelaboratory homework assignment.

4. Each person must perform the following steps. See the accompanying write-up on using the
laboratory for instructions on how to do so.

a. Create a directory in which to work with her or his assigned set of modules.

b. Copy the modules assigned to her or him from Press 'n Gobble's library of reusable
modules to the directory created in Step a.

c. Write generic instantiations for the following modules: ... We shall ask the students to
write a few generic instantiations, just so they get the feel of adapting reusable modules to
fit a specific need. We shall provide them with templates, and we shall provide the teacher
with the answers.

d. Create an Ada library. Thiis is assuming that the Ada compiler does not support
concurrent compilation using a single libraj.

e. Link her or his library with the library of everyone else in their group.

f. Use an Ada compiler to compile her or his modules.

There is on-. complication to Step 4.f The modules are represented as Ada packages.
As Unit 1 mentioned, Ada packages must be compiled in a particular order. You and
your fellow group members must observe the rules in Table 3 as you compile your
modules.

Table 3. Compilation Dependencies Among Press 'n Gobble Software Modules

Module Name Compilation Dependencies

This column lists a module that's This column lists all dependencies.

dependent on at least one other module.

10



Software Engineering Using Ada: Reuse, Laboratory

5. Your group is now ready to create an executable program. The person who compiled module
main program must invoke the Ada linker.

You may now execute your program, using the following input data: ....

After you have finished executing your program, answer the following questions:

1. What communication difficulties did you encounter and how did you overcome them?

2. How would you compare this to your experience with software development?

EXERCISE 2: GERMAN VENDING MACHINE

Repeat Steps I. through 5, this time creating software for the vending machine Press 'n Gobble will
sell in Germany.

When you have built the software, execute your program, using the following input data:...

Now answer the following questions:

1. How many modules from the first assignment did you reuse without any additional work?

2. How many modules from the first assignment did you reuse by performing different generic
instantiations?0

0

11



Software Engineering Using Ada: Reuse, Laboratory (Instructions)

PART 3; INSTRUCTIONS FOR LABORATORY

NotE: This laboratory will ultimately be available for a variety of platforms (IBM PC, Macintosh,
etc.). This write-up, which describes how to use the laboratory, is specific not only to each
platfonn but to the institution in which it is used. A separate version of this write-up is
therefore needed for each platform, and instructors must tailor it to their own institutions. In
all cases, students must:

- Have an Ada compiler

- Be able to create files

- Be able to read files created by other students

- Be able to read a set of files created by the instructor

For simplicity's sake, this write-up is written as if the laboratory were being run in the following
environment:

- Each student has access to an IBM PC (or compatible) computer with a 286 or

compatible processor.

- Each PC is conneLced to a file server on drive S.

- Each student has permission to create files in a subdirectory of drive S.

- Each student can create and edit text files (Microsoft's edit application or most Pascal
compilers would do).

- Each student has access to an Ada compiler.

As in the laboratory descriptions, unresolved issues appear in italic text

This write-up describes how to use your computer to perform the vending machine laboratory
exercises. The emphasis is on Steps 4 and 5, since these are the steps that involve using the computer.

1. To perform this step, you must log on to your computer. Then perform each of the following
steps:

So ., your assigned set of modules. For this
a. C r c a ty e a director.y In which .. e - o -odu.

laboratory, you will work in the directory s: \ adalab. Create a directory whose name
is your last name:

C: \>S:
•: \>mkdir \ adalab\yourname
S: \>chdir \adalab\yourname

b. Copy the modules assigned to you modules from Press 'n' Gobble's library of reusable
modules to the directory you created in Step L.a. You will find these modules in the
directory S: \adalab\pressgobble_modules. The modules are in the following1
files:

12



Software Engineering Usintg Ada: Reuse, Lboratory (Instructions)

Here we include a table listing all the modules shown in
the tables in the laboratory. For each module, we state

the file or files holding its code.

S \adalab\yourname>copy \adalab\ filel .ada

Perform a copy command for each module assigned to you.

c. If you have been assigned moduleX, you must write a generic instantiation of package
Y named Z. A generic instantiation of Y has the form:

package Z is new Y(PI => V1, P2 => V2);

Use text editing application to create a file named z. aria that contains the above line.
Use valuel for Vl and value2 for V2.

d. Create, Ada library, using the following command:

S: \&ada ab\yourname>mklib

e. Link your library to that of other members of your group. For example, ifyoux' partners
are hername and hisname, issue the following two commands:

S \a&da1ab\youraam*, l.nklib s: \adalib\hernane\ada. jib
S:\adalab\yourname>linklib s :\adalib\hisname\ada. lib

f. Compile your assigned set of modules. For instance, if you are assigned modules
stored in files x. ada, y. ada, and z. ada, issue the following commands:

S \adalab\yournams>ada x. ada
S : \ada&1b\youzrams>ada y. ada
S : \a&dalaab\yourname>ada z.ada

Be sure to observe the dependency rules! If you do not, you will get an error message

from the compiler:

The error message when a package can't be found.

2. Whoever in your group was assigned to compile the file main. ada must now link together all
the modules:

S: \adalib\yourname>.link main

This will produce a file called main. exe. You can execute this file by typing the command:

S :\adalib\yourzame>main

13



Softwaic Eagineering Using Ada: Reuse, Laboratory (Instructions)

This page intentionally left blank-

14



Software Enginc, Uiing Ada: Reuse, Laboratory (Teacher Notes)

UNIT 4: REUSE0 LABORATORY SPECIFICATION

TEACHER NOTES FOR LABORATORY

This section must describe to the instructor how to conduct the laboratory. Topics include:

0 Suggestions on how to make the example seem more realistic by inventing a background tailored
to the school in which the course is being taught

e Answers to the laboratory exercises

a Additional questions the teacher may want to ask students

0

15



Software Engineering Using Ada: Reuse, Laboratory (Teacher Notes)

This page intentionally left blank.

16



Software Engineering Using Ada: Test

TEST FOR
*SOFTWARE ENGINEERING USING ADA COURSE

1. True/False Software developers spend the majority of their time writing code.

2. 'lrue/False The majority of software changes result from the need to enhance the
software.

3. True/False A programming language can help developers manage change and
communication.

4. True/False The only information in a package that is visible to other packages is that
contained in the package specification, outside the private part.

5. Abstraction helps developers separate the from
the

6. True/False A developer who builds an Ada package must write both the specification and
the body before it is useful to other developers.

7. True/False The stepwise refinement design method results in designs that are easy to
change.

* 8. True/False The first decisions you make when following the information hiding design
method concern the modules in your program.

9. True/False Software developers usually find similarities between the programs they are
developing and programs they have developed previously.

10. Ada help software developers build packages that other software
developers can reuse.

11. Describe the purpose of software design.



Software Engineering Using Ada: Test

12. Using the principles of abstraction and information hiding, design the interface for a module
that implements a counter-that is, something another module might use to maintain a count
of the number of times some event or situation occurs.

13. Consider the following specification of a package for searching an array of integers:

package IntegerArraySearch is
subtype Array-Index is Integer range 1..1000;
type Integer-Array is array (Array-Index) of Integer;

procedure SearchArray(
ArrayToSearch: in Integer_Array;

Nuwiber_OfElements: in ArrayIndex;
Element_To_Search_For: in Integer;

ElementFound: out boolean;
Index_If_Found: out ArrayIndex

end IntegerArraySearch;

Use generics to rewrite this package to be more reusable.

2



Software Engineering Using Ada: Test

TEST FOR
* SOFTWARE ENGINEERING USING ADA COURSE

TEACHER ANSWERS

1. Tiueae Software developers spend the majority of their time writing code.

2. [ alse The majority of software changes result from the need to enhance the
software.

3. [ualse A programming language can help developers manage change and
communication.

4. u alse The only information in a package that is visible to other packages is that
contained in the package specification, outside the private portion.

5. Abstraction helps developers separate the essential information from
the irrelevant details

6. True/e A developer who builds an Ada package must write both the specification and
the body before it is useful to other developers.

7. Truc IM The stepwise refinement design method results in designs that are easy to
change.

8. ualse The first decisions you make when following the information hiding design
method concern the modules in your program.

9. lu/alse Software developers usually find similarities between the programs they are
developing and programs they have developed previously.

10. Ada generics help software developers build packages that other software
developers can reuse.

11. Describe the purpose of software design.

Software design lets software developers decompose a problem into a set of modules. Each of these
modules is simpler than the whole. This is necessary to reduce the complexity of the overall system,
making it easy for individuals to understand portions of a system.

Another reason for software design is to break a problem into parts that can be assigned to a set of
individuals. In other words, software design is necessary for large programs to ensure that each
person on a team has a coherent development assignment.

-0



Software Engineering Using Ada: Test

12. Using the principles of abstraction and information hiding, design the interface for a module
that implements a counter-that is, something another module might use to maintain a count
of the number of times some event or situation occurs.

The following package specification provides other packages the ability to initialize the count
to 0, to increment the count, and to determine its current value. Thisis the essence of counting.

package Counter in
procedure Set_ToZero;
procedure Increment;
function Current_Value return Integer;

and Counter;

13. Consider the following specification of a package for searching an array of integers:

package IntegerArraySearch is
subtype Array.Index is Integer range 1..1000;
type Integer_-Array is array (ArrayIndex) oe Integer;

procedure Search-Array(
Array...To_Search: in IntegerArray;

Number_Of_Elements: in ArrayIndex;
Element_To_SearchFor: in Integer;

Element-pound: out boolean;
Index_If_Found: out ArrayIndex

end IntegerArraySearch;

Use generics to rewrite this package to be more reusable.
You can make the array's base data type and index generic. Note the name change for the
second parameter. The old name was based on an ordinal counting system. In the generic
version, the array's lower bound might not be 1.

grenerjL .
type Item in private;
type ArrayIndex is range <>;

package Array-Search is
type Generic_Array is array (Array-index) of Item;

procedure SearchArray(
ArrayTo_Search: in Generic_Array;

LastElement: in Array_Index;
ElementToSearch_For: in Item;

Element-Found: out boolean;
Index_If_1ound: out ArrayIndex

end ArraySearch;

4



SOF7,W 
SURVEY 

FOR 
Software 

Engincering 
Using Ada: Survey

,4RE ENGINEERING USING ADA COURSE

Please answer the following questions. The organization that developed the course material will use
this information to improve the course.

1. Do you feel that you understand basic software engineering principles (abstraction,
information hiding, and reuse) after taking this course?

2. Do you see value in these principles? Why or why not?

3. Do you see value in using a programming language such as Ada that helps you express these
principles? Why or why not?

4. Would you like to learn more?



Software Engineering Using Ada: Survey

5. What activity(ies) or example(s) was most helpful to you in understanding the basic software
engineering principles?

6. Do you have any other suggestions for how the course can be improved?

I
2€



Software Engineering Using Ada: Survey

SURVEY FOR
* SOFTWARE ENGINEERING USING ADA COURSE

TEACHER ANSWERS

There are no right or wrong answers on this section. A suggestion for this survey would be to hand it
to the students after they have completed the test and give them extra credit if they fill it out and hand.
it in the next day.

3



Software Engineering Using Ada: Survey

This page intentionally left blank

44
4



Software Engineering Using
Ada Course: Laboratory

For Unit 3

SPC-95013-CMC

* Version 01.00.02

April 1995

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

t.L dcr contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rork Ifill Road

Herndon, Virginia 22070

Copvright © 199k, Software 1 roductivity Consortium Services Corporation, Herndon, Virginia. Permission to tr, copy, modify, and
distribute this material for any purpose and without fec is hereby granted consistent with 48 CFR 227 and 252, and provided that
the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting
documentation. This material is based in part upon work :ponsored by the Advanced Research Projects Agency under Grant
#MDAL972-92-J-1018. The content does not necessarily reflect the position or the policy of the U. S. Goverrnent, and no official
endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity pertaining
to this material or otherwise without the prior written permission of Software Productivity Consortium, inc. SOFTWVARE
PRODUCIVITY CONSORTIUM, INC. AND SOFJTWARE PRODUCTIVITY CONSORTIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARARANTIES ABOUT THE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.



PRIEFACE

This laboratory and teacher notes are part of the Software Engineering Using Ada Course
(SPC-94094 0MG, version 01.00.05) produced by the Virginia Center of Excellence for Software Re -
use and Technology Transfer. The course, which is a short course aimed at high school students, con-
sists of four units: software engineering, abstraction, information hiding, and software reuse. The
laboratory described in this write-up should be performed at the end of the information hiding unit
(Unit 3), preferably after the students have completed Homework Assignment 2 of Unit 3. Assign-
ment 2 deals with concepts of the software that students will use in the laboratory and, therefore,
serves as a good introduction to the laboratory material.



Preface

This page intentionally left blank.

iv



Softwarc Engineering Using Ada: Unit 3, Information Hiding, Laboratory

* UNIT 3: INFORMATION HiDING

LABORATORY

In this laboratory, you will compile and execute an implementation of the rational number package
from Homework Assignment 2 in Unit 3.

The software you will use is in three files:

" RATNUM. ADA, which contains the package specification for rational numbers.

"* RATNUM_B. ADA, which contains the package body for rational numbers.

"• READ_SUM.ADA, which contains the procedure ReadSumAndPrintRationalNumbers.
This procedure uses the rational number package to read, sum, and print two rational
numbers.

You must first compile the software. Perform the following steps:

1. Create a directory called RATNUM on your C drive:

C:> md ratnum. 2. Change your directory to RATNUM:

C:> cd ratnum

3. Copy the software to your current directory. Your teacher will provide you with the location
of the software. For example, if it is located in S:\ADA\RATNUM, you would execute the
following command:

C:\RATNUM> copy s:\ada\ratnum\*.ada

4. Compile the software. You must first compile the rational number package specification, then
the rational number package body, then the Read_SumAndPrintRationalNumbers
procedure:

C:\RATNUM> janus ratnum.ada
C:\\RATNUM> janus ratnum_b.ada
C:\RATNUM> janus readsum.ada

You must type the .ADA file name suffix.

The Ada compiler will print diagnostic information as it compiles each file. This information,
not shown here, should indicate that compilation is progressing without errors. If you see any
eiror messages, contact your teacher,

. 5. Link the software:

C:\RATNUM> jlink readsum



Software Engineering Using Ada: Unit 3, Information Hiding, Laboratory

Do not type a file name suffix.

After you successfully complete these steps, there will be an executable file called READSUM.COM
in your directory.

You may now execute the software:

C:\RATNUM> readsum

You will be prompted to enter two rational numbers. You will be asked for the first number's
numerator, then its denominator, then the second number's numerator, and finally the second
number's denominator. Enter each number as an integer. For instance, the following shows how to
instruct the program to compute 1/7 + 3/5:

C:\RATNUM> readsum
Enter the numerator for the first number: 1
Enter the denominator for the first number: 7
Enter the numerator for the second number: 3
Enter the denominator for the second number: 5
The sum is 26/35

EXERCISES

1. Use the software to compute 3/18 - 10/7.

2. Try using the software to compute 1/1000 + 1000/1.

a. Why do you think the software fails? (Hint: Examine the Add function to discover how
two rational numbers are added.)

b. The lectures on abstraction and information hiding covered the need to express a
module's functionality in a package specification. Based on this laboratory, what else
do you think must be in a package specification?

2



Software Engineering Using Ada: Unit 3, Information Hiding, Teacher Notes for Laboratory

* UNIT 3: INFORMATION HIDING

TEACHER NOTES FOR LABORATORY

NoTE: This course contains a simplified version of a planned software laboratory. A more elaborate
version may be available at a later date.

You should have received, along with these instructions, a floppy diskette containing the software
solving Homework Assignment 2 in Unit 3. This software is almost identical to that shown in the
Unit 3 Teacher Notes, with the following exceptions:

"* The software on the floppy diskette includes some error-handling code that lets the compiled

program terminate gracefully under abnormal conditions.

"* The software on the floppy diskette uses a friendlier input paradigm.

The floppy diskette includes the three files of Ada source code discussed in the laboratory write-up:
RATNUM. ADA, RATNUM_B. ADA, and READ-SUM. ADA. You must provide each student with a copy of
these files. If your computers are linked together on a network and have access to a central file server,
you can place them on that server. Each student can then copy the files directly froi-a that server to
her or his own computer, as shown in the laboratory write-up. You can also provide each student with
a floppy diskette containing the source files and ask them to copy the files from that diskette to their. hard drive.

Each student must be able to use an Ada compiler. The instructions in the laboratory write-up use the
Janus/Ada compiler from R&R Software, Inc. See the file README.TXT on the floppy diskette
for more information on using this compiler.

EXERCISES

1. Use the software to compute 3/18 - 10/7.

This simple exercise en.'ures that students know how to use the program they have just compiled.
Be sure they enter the input values correctly: only integers are accepted. Entering anything else will
cause the program to stop prematurely.

2. Try using the software to compute 1/1000 + 1000/1.

a. Why do you think the software fails? (Hint: Examine the Add function to discover how
two rational numbers are added.)

The Add function uses the following formula to add two rational numbers R1 and R2:

R.Numerator := R1.Numerator * R2.Denominator
+ R2.Numerator * Ri.Denominator;

R.Denominator := Rl.denorninator * R2.denominator;

Evaluating the first assignment statement using 1/1000 and 1000/1 yields:

3



Software Engincering Using Ada: Unit 3, Information Hiding, Teacher Noics for Laboratory

I x 1 + 1000 x 1000
1 I + 1000000

An examination of the representation of a rational number in the package specification
reveals that Numerator and Denominator are values of type Integer. An Integer value can
range from -32,768 to 32,767. Since 1,000,000 is greater than 32,767, evaluating the
expression causes an overflow. The Ada language requires that a compiler generate code
to detect these conditions. This is an instance of language standardization, discussed in
Unit 1.

b. The lectures on abstraction and information hiding covered the need to express a
module's functionality in a package specification. Based on this laboratory, what else
do you think must be in a package specification?

The package specifications shown include informution on the procedures and functions,
and how to use them. The specifications should also show the ways in which the procedures
and ftnctions can fail!

4


