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PREFACE

On December 9-12, 1992 over 150 scientists from around the world gathered
in Columbia to celebrate the sixtieth birthday of Yakir Aharonov. The major portion
of this celebration was a three day conference on the Fundamental Aspects of
Quantum Theory. This volume is the proceedings of that conference and a brief
biographical sketch of Yakir Aharonov as presented by Alex Pines after the
barquet.

Among the topics discussed were the Aharonov-Bohm effect, geometric
phases, gauge fields, black holes, quantum gravity, non-locality and geometry, spin
and statistics, phenomenology, and quantum reality. These topics were chosen since
they are all areas in which Yakir Aharonov has made contributions and
suggestions.

Years ago developments in the fundamentals of quantum thecry were
primarily of interest only to theoreticians. Topics such as quantum gravity, non-
locality and geometry, and black holes are still with us today; however, as can be
seen from the table of contents, applications abound. Experiments have been
performed showing flux lines, quantum interferometers are in use, and condensed
matter applications and statistical applications exist. Recent satellite data provides
information on black holes. The Aharonov-Bohm effect is now a laboratory
phenomenon. Yakir Aharonov has recently demonstrated the reality of the
wavefunction for a single particle.

In the years since the Aharonov-Bohm effect was proposed, Yakir Aharonov
has made important suggestions and contributions to many areas related to
fundamcntal interpretation of quantum theory. He has always taken the viewpoint
that quantum theory must be studied to develop the necessary intuition to be able
to understand what the theory is really telling us. Without this intuition we will
often not ask the "right" question, and hence, misinterpret the basic nature of
reality. That is, if we ask classical questions, we will see only some aspects of
quantum theory. Intuition will enable ue to ask the proper quantum gquestion to
discover the full implication of the theory. We dedicate this volume to him.

We had planned to have David Bohm, FRS, as a speaker at these sessions
and to help honor his former student. We deeply regret his untimely death. He was
a great physicist with a deep understanding of quantum theory and a humanistic
person with a wide range of interests.

We express our appreciation to the aid provided by the members of the
Scientific Advisory Committee: Michael Berry (Bristol), David Bohm (London),
Roger Penrose (Oxford), Norman Ramsey (Harvard), Charles Townes (Berkeley),
dohn \Wneeler (Princeton) and Chen Ning Yang (Stony Brook). We also express out
sincere appreciation te the other members of the Local Organizing Committee: Chi-
Kwan Au, Frank Avignone, Richard Creswick, Horacio Farach, James Knight,
Pawel Mazur, and Carl Rosenfeld. Without the help of both of these groups, this
conference would not have been possible. We also pgratefully acknowledge the
generous suppaort for this conference provided by President Palms of the University
of South Carolina, the National Science Foundation, the Department of Energy, the
Office of Naval Research, and Hitachi Ltd.

University of South Carolina, Columbia Jeeva 8. Anandan
stember 1994 John L. Satko
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After-Banquet Talk in Honor of Aharonov’s 60th Birthday

Symposium on Fundamental Aspects of Quantum Theory
Columbia, South Carolina, December 10-12, 1992

A. Pines
University of California, Berkeley

Yakir Aharonov: From A to B

Following the dictates of David Mermin, I have prepared some spontaneous remarks:

Ladies and Gentiles,

You sec before you a most reluctant after-dinner speaker. Someone once said that if
you took all the after-dinner speakers and laid them head-to-toe at the equator, .....
that would be a very good thing. In fact, some years ago, my friend Anatole Abragam
warned me — Alex, when they start asking you Lo give after-dinner speeches, it might
be an indication that you are no longer on the way up. So when 1 was asked to talk
about Aharoncv tonight, the first two words that came to my mind were - oy vey.

But, ladies and gentlemen, this is no ordinary occasion - Yakir Aharonov is not
only a truly great scientist and one of the most brilliant and stimulating people
I have ever known, he is an extraordinary colleague and dear friend, and it is a
privilege and a pleasure for me to say a few words about him. You might well ask,
why me, a chemist, talking about a physi-
cist. Well, Aharonov himself once paid me
what he considers the greatest compliment
you guys can give a chemist - Come on,
Alex, you're not reaily a chemist, you're
too smart, ... you're a physicist. Yakir,
it’s your birthday, let me return the com-
pliment - you don’t look seventy.

Yakir Aharonov was born in 1932, in Haifa,
Israel, to Russian parents. He grew up, so
to speak, in Kiryat Haim, where, already




at age five, it was abundantly clear that
he was a mathematical prodigy. The res-
idents of Kiryat Haim soon became ac-
customed to the apparition of the boy
Aharonov accosting and threatening them
in the streets, challenging them to give him
a problem - a novel concept of mathemat-
ical mugging, your problem or your life.

Because his parents were unwilling to teach
him chess (a waste of Lime), Aharonov
traded some strawberries from his yard to
a neighbor, an older child, who taught him
the game. When not playing with his
friend, Aharonov would play by himseclf,
one hand against the other, one playing
white and the other black. It is not known
which hand was stronger, his left hand or
his other left hand. As many of you know,
Aharonov had a natural aptitude for the
game and became o very strong player, to-
day an Israeli candidate master. During
his period as Miller Professor at Berkeley,
Aharonov made an unforgettable impres-
sion not only on the scientists, but also
on the nationally renowned Berkeley chess
community. As a young man, Aharonov
had a gift not only for math and chess; he
was good at all sorts of games and puz-
zles. He discovered, to his joy, that his
prowess at backgammon made him almost
irresistible to middle-castern women.

The last time I played blitz chess against
Aharonov, he again asked if I wanted &
handicap. [ reclated to him the (perhaps
apocryphal) story told to me recently by
John Rowlinson about Max Euwe, the




former world chess champion. Fuwe was
on & train analyzing & game cn his pocket
chess set. A fellow traveler in the compart-
mett asked him if he played chess, to which
Euwe replied that yes, he did. Would you
like to play a game, asked the other fel-
low; sure, said Euwe, who proceeded to
set up the pieces and then removed cne
of his rooks. What are you doing, asked
his partner. 1'm giving you a rock, replied
Euwe. You're giving me a rook? You've
never played against me, you don't know
who 1 am, how can you give me a roo.? If
1 couldn't give you a rook, said Euwe, I'd
know who you are.

Well, Aharonov doesn’t give me a rook, but he does give me a differential time
handicap in order to imbue the game with some semblance of balance. in other words,
he heats the heil out of me. It is because of Aharonov that 1 have now resorted to
playing for money against small children. But Aharonov too is fallible - about twenty
five years ago, in New York, he played, and lost, three games against Bobby Fischer,
Aharonov maintaing that this is pretty good; he lost only three games, so he did
better than the famous Russian, Taimanov, and the great Dcne, Larsen, who cach
lost six games against Fischer.

At age eleven, Aharonov took up the violin, an instrument that he cherishes to this
very day. He soon discovered that the best acoustics for his instrument were in the
kitchen and bathroom. it was later, after he read how Einstein ha independently
made the same discovery, that Aharonov decided he would become a physicist.

After graduacdon from high school,
Aharonov was inducted into the army,
into the artillery division. Yes, the ar-
tillery division. He soon lost interest
in experimental artillery after he proved
that quantum corrections to the bal-
listic trajectories were insignificant and,
much to the relief of the command-
ing auihorities, hc volunteered for an
army research unit. The only legacy of




Aharonov’s army experience was his occa-
sional, misguided tendency to force himself
upon his friends as a bodyguard.

After his discharge from the army,
Aharonov studied at the Technion, the Is-
rael Institute of Technology, where he met
the late David Bohm. Here Aharonov is
shown at the Technion with a co-student
whom he identifies as Tsachi Gozani.
Gozani allegedly spent much of his time
begging Aharonov to stay away from the
epparatus.  After discussions with fac-
ulty members who feared for their lives,
Aharonov seriously contemplated becom-
ing a theorctician. He moved with Bohm
to Bristol to do his Ph.D. and it was
there that the famous Aharonov-Bohm ef-
fect was conceived, elucidated and pub-
lished.

One of the external examiners
for Aharonov’s Ph.D. was Rudolph Pcierls,
who claimed he did not believe some argu-
ment that Aharonov had formulated about
energy-time uncertainty, but Peierls could
not find an error. He invited Aharonov to
Birmingham, where they sat and argued
for days, after which Peierls was convineed
and said that he now believed. But Yakir
tells me that just two years ago, Peicrls was
in Israel for the Landau Symposium - he
ran into Aharonov and said hey, aren’t you
Aharonov? Yes, I am. Well, said Peierls,
now I don't believe you again.
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Tt was during his time in England that
Aharonov became concerned about his Is-
raeli accent, because he felt that it was
h'. \ering his chances with women. He
arranged for injensive tutoring sessions in
elocution, seeking to acquire not just any
old accent, but an Oxford accent, and de-
voting considerable time and effort to the
enterprise. On the day of the first ex-
periment with his nc - accent, an excited
Aharonov ventured into the streets of Bris-
tol and asked for directions to go some-
where; | imagine that we can all sympa-
thize with his frustration when the answer
came back in Hebrew.

Following his Ph.D., Aharonov spent sev-
eral years at Brandeis and Yeshiva Univer-
sitics in the United States. In 1962, he
created a sensation when he talked about
the Aharonov-Bohm effect at the Cincin-
nati Conference on quantum theory (the
other participants included Dirac, Furry,
Podolsky, Rosen and Wigner). The con-
ference made headlines despite the many
other exciting events in Cincinnati at the
time.

In 1966, Aharonov joined the faculty at
South Carolina and, in 1967, he became
Full Professor at Tel-Aviv University. He
was subsequently honored with chairs in
physics both at Tel-Aviv and here in South
Carolina, where, | understand, he is again
contemplating changing his accent. His
colleagues here know that, for Aharonov,
physics is not just a job - it is a passion,
lite chess. ™hat Tel Aviv University and
the University of South Carolina pay him
to indulge in his passion rcmains for him
unfathomable. Yakir, may it become yet
more unfathomable.




Over the years, Aharonov has further cultivated, carefully and successfully, his image
as a shlemiel, thereby shiclding him from anroying appeals to help around the lab,
the department or the house, and leaving him time to do what he loves and does
best - to think. And, as many of us know, Aharonov thinks best in an atmosphere
composed of ten percent oxygen, forty percent nitrogen and fifty percent cigar smoke.
What kind of cigar smoke? Well, let’s just say that many years ago, 1 gave him one
of my prized Montecristos from Havana, and he was able to exchange it for a year's
supply of his beloved White Owls. Aharonov continues with his tradition of visiting
Berkeley whenever he runs out of cigars, much to the delight of my children, by whom
he is much admired.

Yakir Aharonov is a giant of modern physics. From his Ph.D. with Bohm te his
work on geometric phases, he has made monumental contributions to quantum the-
ory, and he has profoundly advanced our understanding of electromagnetism and
other gauge theories of fundamental interactions. On two occusions, John Maddox,
the editor of Nature (the science magazine), suggested, justifiably, many of us be-
lieved, that Aharonov, Bohm and Berry should get the Nobel Prize for physics. In
his first editorial on the subject, in 1989, Maddox writes about Abrahamov and the
Abrahamov-Bohm effect; in his second editorial on the subject, this year, he mukes
& slightly better approximation, writing about Aharanov and the Aharanov-Bohm
effect. And listen to the perverse, yet quaint 1989 description of the eflect - Abra-
hamov and Bohm, independently of M. J. Berry, have shown that the supposedly
insignificant complex phase of Maxwell’s electromagnetic potential is measurable.

Weli, Yakir Aharonov is no stranger to
honor and to ceremony. He is a member
of the Israel and U.S. National Academies
of Sciences, and amongst his many awards
arc the prestigious Israel Prize in exact
scicnces and the Elliot Cresson Medal
of the Frankiin Institute in Philadelphia.
But Aharonov is particularly proud of the
knighthood bestowed upon him by his
friends on the occasion of his fiftieth birth-
day which, he calculates, was ten years ago.
1 guess the citation reads — why is this
knight different from all other knights?




A

Ladies and gentlemen, 1 was asked Lo make
my remarks either witty or brief - so 1 must
come to a close.

Yakir Aharcnov is a man with a legendary
hunger for science and for life. But be-
yond his genius and his accomplishments,
Aharonov has that rarest of human qual-
ities — he is a mensch. Dear Yakir, | am
sure that 1 speak on behalf of everyone
here when I say that you have earned our
respect. On the occasion of your sixti-
eth birthday, permit me to offer a toast to
you and your family - the Aharonovs, the
Abrahamovs and the Aharanovs - Yakir
and Nilli,......... to another sixty years.
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SECTION 2

AHARONQOV-BOHM EFFECT AND
GEOMETRIC PHASES




DYNAMIC OBSERVATION OF FLUX LINES
BASED ON THE AB EFFECT PRINCIPLE

A. TONOMURA
Advanced Research Laboratory, Hitachi, Ltd.
&
Tonomura Electron Wavefront Project, ERATO, JRDC
Hatoyama, Saitama 350-03, Japan

ABSTRACT

Flux lines penetrating superconducting films are directly observed with a "co-
herent” field-emission electron heam. These flux lines are detected as phase
shifts of an electron beam passing through the films due to the Aharonov-Bohm
cffect.

1. INTRODUCTION

The behavior of flux lines plays o decisive role in the fundamentals
and practical applications of superconductivity.

Although much effort has been expended on developing methods to
directly observe flux lines, until recently flux lines have evaded direct
observation becatse they are shaped like an extremely thin thread and
have a small flux value of h/2e(= 2 x 1075 Wb). In 1967, Essman and
Trauble!) used the Bitter technique to directly observe the flux-line

lattice predicted by Abrikosov.?) In this technique, fine ferromagnetic
particles are sprinkled over the superconductor surface and the loca-
tion of flux lines is observed as a replica with an electron microscope.
This technique has recently been used to elucidate the microscopic
characteristics of high-Tc superconductors.?) However, this technique
is essentially static, and it cannot determine the dynamic behavior
of flux lines. New techniques for observing flux-lines have also been
developed.*® For example, Hess, et al.*) used a scanning tunneling mi-
croscope to observe the flux-line lattice of NbSey;. H¢ wever, dynamic
observation is still not feasible with these techniques.

13
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The possibility of direct observation using a transmission electron
microscope has been theoretically investigated making use of the fact
that an electron beam is deflected®®, or phase-shifted by flux lines:
Despite trials, the deflection angle is too small—~less than 1 x 107"
rad——to observe flux lines as a Lorentz micrograph (a greatly defo-
cused electron micrograph). Or, in other words, the phase shift of the

electron beam is produced due to the Aharonov-Bohm effect?) when
tire beam passes through a flux line, which is, in this case, less than .
This phase shift was actually detected by electron interferometry.'%!)
Using this method, Boersch, et al.'?) observed the location of a single
flux line leaking from a superconducting tube as a shift of parallel
interfercnce fringes by half their spacing, followed by thermally acti-
vated jumps of flux lines from one pinning center to another with o
time resolution of around one second.

However, as a result of the development of a "coherent” field-
emission electron beam,'®'*) it has become possible to measurc the
phase distribution of an electron beam to a precision of 1/100 of the
wavelength'™ through electron holography. '8~ In addition, the two-
besu interference pattern has become directly observable on the flu-
orescent screen, permitting dynamic observation.

Such technical development has helped to open the way to direct
observation of flux lines. In this method, a single Qux line leaking from
a superconductor surface could he observed directly and even dynam-
ically as a contour fringe in an interference micrograph. Furthermore,
for the first time, flux lines were also observed in the transmission
mode.

ki

2. EXPERIMENTAL APPARATUS

Fixperiments were carried out using holography electron micro-
scopes. The holography electron microscopes used in the present ex-
periments are transmission electron microscopes equipped with field-
emission electron guns'®!4) for coherent specimen illuminatior, and
electron biprisms!®) for hologram formation.

A cut-away drawing of our 350-kV holography electron microscope®”)
is shown in Fig. 1. The main column below the objective lens is
almost the same as that of a Hitachi H-9000 transmission electron
microscope. The illumination system consists of a cold field-emission
clectron gun and double condenser lenses.

The specimen is illuminated by a collimated electron beam. The
small illumination angle 283, which is indispensable for forming elec-

tron holograms, or Lorentz micrographs, can be reduced to 5 x 1078
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rad by the double condenser lenses. A low-temperature specimen
stage is substituted when flux lines re observed. The temperaturce
of the specimen holder can be reduced to 4.5K. At the same time, a
magnetic field of up to 150 Gauss can be applied in the horizontal
direction.

Iilectron biprisms'®) are installed at two positions, one below the
objective lens and the other below the intermediate lens. The ap-
propriate biprism position can be selected after the optical conditions
such as magnification have been determined.

The specimen or hologram iinage can be enlarged by magnifying
lenses as in the electron microscupe, which is usually recorded on filin.
However, for dynamic observation, it is recorded or videotape through
a television system attached to the microscope.

3. EXPERIMENTAL METHOD

Two methods were employed in the present experiments, i.c., clec-
Lron holography and Lorentz microscopy. Magnetic lines of force leak-
ing from the superconductor surface were directly observed as contonr
fringes in an electron interference micrograph obtained through the
clectron holography process. In the Lorentz micrograph with an ap-
propriate defocusing, flux lines in the supercouductor were observed
as globules with black and white contrast pairs.

3.1 Eleetron Holography

Flectron holography 19 is a two-step imaging method using clee-
tron waves and light waves (see Fig. 2). An electron wave illuminates
an object and is scattered. A rveference wave that has been tilted by
a prism is then projected onto the scatiered wave to form an interfer-
ence pattern that is recorded on film. This film, called a hologram, is
subsequently illuminated by a collimated laser beam. The exact im-
age is then three-dimensionally reproduced. An additional conjugaice
image is also produced in holography.

Once clectron wavefronts have been reproduced as light wavefronts,
versatile optical techniques can be used to supplement clectron optics.

An interference micrograph, or contour map of the wavefront, can
be obtained by simply overlapping an optical plane wave with this
reconstructed wave (see Fig. 3(a)). If a conjugate wavefront instead
of a plane wave overlaps this wavefront, the phase difference becomes
twice as large, and is as if the phase distribution were amplified two
times, as shown in Fig. 3(b). By repeating this technique, a phase
shift can be detected even as small as 1/100 of a waveleagth.
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This phase-amplified interference electron microscopy provides infor-
mation about microscopic distribution of the electric?!) and magnetic
22) fields.

Flux lines can be directly observed in a twice phase-amplified in-
terference micrograph. The observation principle is illustrated in Fig.
4. When an electron beam is incident to a uniform magnetic field, the
beam is deflected to the left by the Lorentz force, which acts perpen-
dicularly to the direction of the magnetic field. Viewing electrons as
waves, the introduction of a " wavefront” perpendicular to the electron
trajectory will suffice. The incident electron heam is a plane wave,
but the outgoing beam becomes a plane wave with the left side tilted
up. In other words, the wavefront is viewed as rotating around a ro-
tating axis; the magnetic line of force. From a contour map of this
wavefront, it can be seen that the contour lines follow the magnetic
lines of force. This is because the height of the magnetic lin.: of force
is the same along it. Thus, a very simple conclusion can be reached:
when a magnetic field is observed in an interference electron micro-
graph, the contour fringes can be considered to represent magnetic
lines of force.

I[ Electrons

v

Fig.4. Principle behind magnetic flux observation.
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The interference fringes are also quantitative. A simple calculation
convinces us that a certain minute amount of magnetic flux, h/e, is
flowing between adjacent contour fringes. This is, in a sense, quite
natural. A superconductive flux meter, SQUID, can measure the flux
in units of h/2e by using Cooper pair interference. An electron inter-
ference micrograph is formed by the interference of electrons rather
than Cooper pairs. Therefore, the flux unit is h/e, since the electric
charge is e rather than 2e. However, the principle is the same.

It can be concluded then that a contour fringe in a twice phase-
amplified interference micrograph indicates a single flux line,

3.1.1 Lorentz microscopy

A Lorentz micrograph is a greatly defocused electron micrograph.
The principle behind it is shown in Fig. 5. When an electron beam
is incident to a ferromagnetic thin film, which has two magnetic do-
mains, the beam is deflected by the magnetization, and the deflection
directions are different for th~ two domains. Therefore, when the elec

Electron

Magnetic
film

Wavefront

Observation
plane

Fig.5. Lorentz microscopy.
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tron intensity distribution is observed in the lower plane, the domain
wall can be observed as a line of the weak intensity. Thus, Lorentz
microscopy is effective when the magnetic field changes suddenly, such
as at a domain boundary in a ferromagnetic film. However, it 1s not
easy to observe flux lines in free space by Lorentz microscopy, since
magnetic fields there are distributed smoothly in a harmonic form.

4. EXPERIMENTAL RESULTS

Individual flux lines were statically and drnamically observed using
holography electron microscopes.

4.1 Observation in the Profile Mode

Flux lines leaking out from a superconductor surface can be directly
observed as contour fring s in a twice phase-amplified interference
micrograph through electr a holography, as explained in the previous
section.

The experimental arrangement is shown in Fig. 6. A thin tungsten
wire 40um in diameter was used as the substrate for a superconduct-
ing specimen, Lead was evaporated onto one side of the wire. A
magnetic field of a few Gauss or less was applied to the evaporated
lead film. The specimen was cooled to 4.5K. In a weak magnetic
field, the magnetic lines are excluded from the superconductor by the
Meissner effect,

Electron Wave

1]

Magnetic
{ field
S

Superconductor

Fig.6. Experimental arrangement to observe flux lines
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but if the magnetic field is strong, the magnetic lines of force penetrate
the superconductor in the form of flux lines. By applying an electron
beam to the specimen from above, the magnetic lines of force of flux
lines were observed through the process of electron holography.

Figure 7(a) shows the single flux line observed when the supercon-
ducting film was 0.2um thick. In this figure, the phase difference is
amplified by a factor of two. Therefore, one interference fringe cor-
responds to one flux line. A single flux line is captured in the right
part of this photograph. The magnetic line of force is produced from
an extremely small area of the lead surface, and then spreads out into
free space.

In addition to observing isolated flux lines, another surprising re-
sult was found. A pair of flux lines were observed that were oriented
in opposite directions and connected by magnetic lines of force (Fig.
7 (a) left). The following explanation may be considered. When the
specimen is cooled below the critical temperature, the lead becomes
superconductive. During the cooling, however, the specimen experi-
ences a state where the flux-line pair appears and disappears repeat-
edly due to thermal excitation *¥ and is pinned by some imperfection
in the superconductor, eventually resulting in the flux being frozen.

What happens when the thickness of the superconducting thin film
is increased? Figure T(b) shows the state of the magnetic lines of force
when the thickness is lum. It can be seen that the state changes
completely. Magnetic flux penetrates the superconductor not as in-

“Ph

Fig.7. Interference micrograph of flux lines leaking from Pb film
(Phase ampiification: x2).

(a)Thickness = 0.2um. (b)Thickness = 1um.
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dividual flux lines but in a bundle. The figure does not show any
flux-line pairs.

Our explanation for this phenomenon is as follows. Becauce lead is
a type-1 superconductor, the strong magnetic field applied to it par-
tially destroys the superconductive state in some parts of the speci-
men (intermediate state). Figure 7(b) is a photograph showing that
the maguetic lines of force penetrate the parts of the specimen where
superconductivity has been destroyed. However, since the other sur-
rounding parts are still superconductive, the total amount of pen-
etrating magnetic flux is an integral multiple of the flux quantum,
h/2e. Thin superconducting films (Fig. 7(a)) were an exception. In
that case, however, lead behaved like a type-Il superconductor and
the flux penetrated the superconductor in the form of individual flux
lines.

Since the flux itself can be observed using electron holography,

its dynamic behavior can be observed.?*) In this case, after electron
holograms were dynamically recorded on videotape, a twice phase-
amplified contour map of each frame was numerically reconstructed,
and again recorded on videotape. Although off line, flux dynamics
could be observed with a time resolution of 1/30 of a second.

The experiment was carried out as follows. Trapped fluxes in a Pb
thin filr. remained stationary at 5K. However, when the sample tem-
perature was raised, the flux line diameter gradually increased. Just
below the critical temperature, the flux lines began to move. Figure
8 shows a section from the videotape that recorded this movement.

Three flux lines in the upward direction are trapped in the super-
conductor and their magnetic lines of force can be seen in Fig. 8(a).
At 0.13 seconds, the flux lines moved suddenly to the left zfter only
the lapse of a single frame. Two upward flux lines ¢nd two downward

N AV

(a) (b) @

Fig.8. Dynamical observation of trapped flux line near Tc.

(a) 0 seconds. (b)0.13 seconds later. (c) 1.33 seconds later.
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flux lines are connected by magnetic lines. At 1.33 seconds, downward
flux lines moved to the right and only a broad single magnetic line
remained.

Although this flux movement due to thermal activation is random,
a similar experiment is now in progress where a current is applied to
the superconductor. In this case, flux lines receive a Lorentz force
determined by the current, but with opposite directions for upward
and downward flux lines. The pinning force at cach pinning site can
thus be measured.

4.2 Observation in the Transmission Mode

Flux lines heve recently been observed in the transmission mode.?%)
A two-dimensional distribution of flux lines was seen dynamically by
Lorentz microscopy with a 300-kV holography electron microscope.

The experimental arrangement is shown in Fig. 9. A Nb thin film
was prepared by chemically etching a roll film. The film, set on a
low-temperature stage, was tilted at 45° to the incident beam with
300 keV electrons falling vertically, so that the electrons could receive
the flux-line magnetic fields penetrating the sample perpendicularly
to its surface. An external magnetic field of up to 150 Gauss was
applied horizcntally.

The information about the flux lines is contained in the phase dis-
tribution, or in other words, the wavefront distortion of the trans-
mitted electron beam. This information cannot be read from a con-
ventional electron micrograph where only the intensity is recorded.
However, the distortion reveals itself in a defocused image, i.e.. a
Lorentz micrograph, in which a flux line can be seen as a tiny spot;
one half bright and the other half dark.

The sample was first cooled down to 4.5K and the applied mag-
netic field /7 was gradually increased. As B was increased, flux lines
suddenly began to penetrate the film at B = 32 Gauss, and their num-
ber increased with B. Their dynamic behavior was quite intercsting:
at first, only a few flux lines appeared here and there in the field of
view, 15 x 10um?, oscillating around their own pinning centers and
occasionally hopping from one center to another. These movements
continued as long as the flux lines were not closely packed (B < 100
Gauss).

An example of the equilibrium Lorentz micrographs at B = 100
Gauss is shown in Fig. 10. The film has a fairly uniform thickness in
the region shown, but is bent along the black curves, called bend con-
tours, which are due to Bragg reflections at the atomic plane brought
fo a favorable angle by bending. Each spot with a black and white
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contrast is the image of a single flux line. This cortrast reversed, as
expected, when the applied magnetic field was reversed. The tilt di-
rection of the sample can be read from the line dividing the black and
white part of the spots. Since the black part is on the same side for
all the spots, the polarities of all the dux lines as seen in the region
ale the same.

Flectron source
~

£,

Lorentz
micrograph

Fig.9. Schematic for flux-line lastice observation.
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Fig.10. A Lorentz micrograph of a two-dimensional array of flux
lines in superconducting Nb film.

At low B, i.e., up to 30 - 50 Gauss, the flux lines are too scarce
to form a lattice, even in equilibrium. At B = 100 Gauss where the
flux-line density is so high that it cannot be anything but a hexagonal
lattice, the flux-line configuration and movement arc influenced by
structure defects.

5. CONCLUSION

[llectron holography has opened up a new window fur direct and
real-time observation of the microscopic dynamics of individual super-
conducting flux lines such as in flux creep, pinning, etc, which up to
now has only been observed in macroscopic experiments. 'This tech-
nique will effectively be employed for elucidating fundamentals and

practical apphications of superconductivity, especially in the field of

high-Tc superconduclors,
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SIGNS AND MIRACLES OF THE AHARCNOV-BOHM EFFECT

Alfred S. Goldhaber
Institute for Theoretical Physics
State University of New York
Stony Brook, NY 11794-3840

ABSTRACY

Familiar aspects of electromagnetic influences on the quantum propagation
of charged particles — and some not so familiar ~ conspire to support a view of the
Aharonov-Bohm effect as the essential and primary manifestation of gauge inter-
actions. In particular, the perturbative renormalization group scaling for this form
of the coupling lends appeal to the notion that, on scales where the conventional
coupling o becomes strong, there should be a ‘universal pasta solution’ for the vac-
uum structure of any gauge theory: The Nielsen-Olesen proponsal of flux spaghetti
should apply not only for QCD at long distances as they argued, but just as well
for QED at short distances.

Signs of the AB effects

1 hope to weave into a single tapestry a number of threads which together
illustrate the beauty as well us the power of the Aharonov-Bohm effect! as an orga-
nizing principle for gauge theories. Some of these notions are explicit, some perhaps
implicit in the existing literature. Much of the analysis is contained in a recent paper
with Hsiang-Nan Li at Academia Sinica in Taiwan and Rajesh Parwani at Saclay,?
and I am most grateful to them for a stimulating, still progressing collaboration. Let
me begin by addressing a deceptively simple question, “What is the sign of the AB
effect? 1 failed to grasp the point properly in my spoken presentation, but Jeeva
Anandan and Raymond Chiao helped me afterwards to see that the AB effect really is
two complementary effects: There is the shift of interference fringes which Aharonov
and Bohm pointed out in their original work,’ and then there is the shift in angular
momentumn eigenvalue for a particle in a ring encircling some magnetic flux,

Let us start by determining the sign of the second effect, the shift in angu-
lar momenturn eigenvalue. This may be done by clagsical physics using Ehrenfest’s
theorem, which states that the change in expectation value of some observable is de-
termined by the classical equation of motion for that observable, with the appropriate
expectation value used to compute the classical force. Imagine that the magnetic flux
is turned on adiabatically, sa that the particle remains in a definite eigenstate through-
out. By Faraday’s law, if the flux is generaied by & current of particles with the same
sign of charge as the test particle, then the angular momentum of the test particle
must decrease as the angular motnentuin of the current particles increases. Thus, for
positive charge-flux product ¢®, with the flux coming out of the plane of motion as
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viewed from abowv, the shift in angular momentum is
OM = —qb/hec = -1, Y]

where F' is the flux expressed in units of an AB quantum, he/q. In terms of signs,
this means that the sign of the coherent-ring AB effect is negative,

Next we need to study the classic fringe-shift effect. To put the question
in terms of observables, let us ask: On which side of a flux, the right or the left,
should one introduce an attractive, velocity-increasing electrostatic potential in order
to compensate the AB phase? To answer this question by classical physics, consider
a charged particle traveling through a region of uniform magnetic field oriented up
with respect to the plane of motion. How could we arrange that the particle travels
in a straight line instead of being deflected to the right? We could compensate for
the Lorentz force by introducing an electric field in the plane, which by itself would
push the particle to the left. This menns that the electrostatic potential decreases
from right to left, and thus is more negative on the left than on the right.

Since & uniform magnetic ficld may be described as a collection of adjacent
regions of magnetic flux, it follows that to compensate for the AB phase one must
place a suitable negative potential on the left side of the flux. We can see this directly:?
The pure uniform magnetic ficld gives a deflection to the right. This is the same effect
which would result if the phase velocity were increased on the right, since that means
the number of wavelengths per unit distance increases, or the wavelength shortens,
which by standard refraction ideas gives deflection to the right. To compensate then
requires adding attraction on the left. Evidently this means that another observable,
the direction of shift in the interference pattern, also must be to the right, so that the
wave fringe motion of the AB effect is in the same direction as the classical deflection
by a uniform field. The conclusion is that with standard conventions the sipm of the
clussic AB effect is positive.

To sec¢ why these two opposite signs not only are compatible *.ui are intrinsi-
cally connected, let us go to a special gauge, in which outside the region of magnetic
field the vector potential vanishes almost everywhere, but between the azimuthal an-
gles ¢ = 21 — ¢ and ¢ = 0+ ¢ there i3 a sharp jump in the phase of the wave function.
Since the angular momentum is reduced by the flux, it follows that in this gauge the
phase must have s decreasing contribution proportional to the flux as ¢ increages
from 0 to 27. Hence, the phase jump as ¢ increases through 27 must be positive, to
restore the original value. What does this mean for interference shifts? If we imagine
the right and left parts of the diffracted wave arriving at a distant screen at an angle
¢ > 0, then the part of the wave which goes round on the right passes through the
matching angle and experiences a positive phase jump. On the other hand, if we
look on the screen at an angle ¢ < 27 then the wave which goes round on the left
experiences a negative phase jump. In either case, the effect of the flux is to produce
a positive relative phase shift of the right with respect to the left part, reproducing
the previous conclusion.
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Scattering on a thin flux string

Having learned the basic signs of the AB effect, we should look for miracles
beyond the miracle of the effect itself. The first such miracle is found already in
the original work.! Aharonov and Bohm observed that for a spinless charged particle
interacting with an infinitely thin string of noninteger flux the AB effect is self-
enforcing. In every partial wave, even the lowest, there is a centrifugal barrier which
assures that the wave function vanishes as a positive power of a/), where a is the
radius of the flux string, and A is the De Broglie wavelength of the particle. Thus
a low-energy particle effectively is excluded from the region of magnetic field, and
this constitutes the necessary requirement that the sole obser able consequence of
the field i the AB effect.

I cannot resist an aside about the special case of nonzero integer F'. For any
integer F', there exists a partial wave which outside the flux has vanishing kinetic
angular momentumn, and which approaches a constant at small radius. For nonzero F
this channel has a repulsive phase shift of order 1/In{)/a), implying that a/) must be
exponentially small if the phase shift is to be negligible. Thus at finite a there can bea
significant correction to the limiting form valid for o = 0, and that correction violates!
periodicity because it distinguishes between F = 0 and all other integer values. This’
is not the last time that logarithmic effects will emerge in our consideration of flux
strings.

The miracle of the thin string limit does not end with self-enforcement of
the AB effect. If the ratio a/X may be neglected ther it is possible to compute the
scattering amplitude analytically, and the result is remarkably simple. The amplitude
is

[ = sin(m F)e~/? /(2nik) 2 sin(¢/2) , (2)

where k is the wave number of the charged particle.™ 1 believe that for a suitable
choice of gauge convention the above expression can be used in the F' interval |0, 1],
with periodicity used to define the expression outside that interval, at the cost of a
discontinuous derivative df /dF at integer values. The resulting cross section in any
case is periodic in F' with period 1, as ull observables must be under these conditions.

Enter helicity

The situation changes in a signiticant way when the charged particle is an elec-
tron with the Dirac gyromagnetic ratio 2. Now the attractive interaction between tlic
flux and the electron for parallel orientation of its magnetic moment allows penetra-
tion into the flux, and hence a sensitivity to more than the AB phase or the fractional
part of F. What may be surprising is that in the long wavelength limit the sensitivity
to F is only slightly enhanced: 'The observables depend not only on the fractional
part F'~[F}, but also on the sign £/ F{.% Thus, a new sign has entered the discussion,
the sign of the magnetic flux. If electrons are confined to a cylinder centered on the
flux, then energy levels in the partial wave with smallest kinetic angular momentum
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are lower for magnetic moment parallel to the flux than antiparallel, 1t is hard to
decide which is more remarkable - the breakdown of periodicity in the dependence of
observables on the flux, or the extremely simple form of that breakdown, leading to
periodicity for nonnegative F', and separately for nonpositive F, but not, for integer
shifts which cross F' = 0.

The effect on the scattering amplitude f of the magnetic moment coupling
may be understood from a symmetry so powerful that it is fairly called miraculous,
the conservation of helicity for an ideal Dirac electron in the presence of a pure
magnetostatic field. The minimum modification required to bring the amplitude for
scattering of spinless particles to a suitable form is the inclusion of a factor which
rotates the spin in such a way that helicity eigenstates with respect to the initial beam
direction are converted to cigenstates with respect to the scattered beam direction.®
This factor is a spin rotation matrix £/3%/2, which however is not single-valued in ¢.
Since we are working in a gauge where the vector potential is nonsingular, the weve
function and hence the scattering amplitude must be single-valued, and therefore
we need to include a further factor ¢¥#/2, The choice of sign for the exponent in
this factor is directly related to observable quantities, the (opposite) signs of the
phase shifts in the two partial waves with magnitude of kinetic angular momentum
Jy = Lg + s3 smaller than 1/2. It turns out that the phase shift for Dirac mognetic
moment parallel to the flux F' is attractive, while for antiparallel it is repulsive. The
scattering amplitude indeed is sensitive to the sign of the flux, and there are observable
consequernices, such as the Zeeman splittings mentioned above, and the propertic: of
specially designed junctions.”?

The case of nonzero integer F is altered a bit from the situation described
earlier for spinless charged particles. The wave with orbital kinetic angular momen-
tum zero and Dirac moment antiparallel to F' again experiences a repulsive phase
shift vanishing us 1/In{A/a), but there is no appreciable phase shift for the wave with
Dirac moment parallel.

All the results of helicity conservation follow from the assumption that the
electron experiences only magnetic forces. In many laboratory examples, this is not a
good assumption, since the materials in conducting coils, and shields for those coils,
exert powerful nonmagnetic forces on any incident particle. This difficulty may be
overcone by making use of a purely magnetic ficld, as in the region just at the end
of a tube containing a superconductor quantum of flux, £ = he/2e,” Another way o
make the effective ficld purely magnetic is to deal only with propugation of cleetron
quasiparticles through a superconductive medinm, in which case the interaction is
purely magnetic (and even loeally a pure gauge effect) unless the quasiparticle actually
penetrates a vortex of magnetic flux. In the interior i the vortex there might be an
effective scalar potential influencing the motion. However, as long as the resulting
forces are weak on the scale determined by the vortex radius they have ucgligible
influence on long-wavelength scatlering, so that helicity conservation continues to bhe
a goad approximation in this regime, even though no longer exact.

Such is the situation expected {or cosmic strings. The ordinary vacuum plays
the role of a superconducting mediwn, and for light fermiuns with effective mass com-
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ing from a Higgs coupling the change of effective inass in the interior of the string has
negligible influence on the scattering. Thus, for cosinic strings one expects the helicity
conserving boundary conditions, only changing the si«n of one phase shift from that
for pure AB scaftering, to be the uniquely selected du :cription for the effect on light,
low-energy fermions of such strings.

Induction of vacuum currents

A further dynamical consequence of sensitivity to the sign of F' may be seen if
we examine (for spinor QED) vacuum electric currents induced by F. These currents
always work to generate a magnetic field opposed to F, but otherwise periodic for
nonnegative or nonpositive F.891%¢ In the cuse of scalar clectrodynamics, the induced
currents work to bring the flux to the nearest integer value, and so are insensitive
to the sign and comnletely periodic in F/.''%2 A case for which one may guess the
behavior, though it is not yet computed to my knowledge, is that of vector electro-
dynamics. Here perturbation theory, as well as studies of behavior of the vacuum in
the presence of a uniform magnetic field, lead to the expectation that the induced
currents will enhance rather than oppose the applied flux,'#!3' in other words, that
conventional screening will be replaced by antiscreening. In all cases, one expects the
induced flux to vanish when F is exactly an integer, since then the effective bound-
ary conditions on any charged-particle wave function at the location of the infinitely
thin flux are exactly the same as if no Hux were present.!® The antiscreening may be
understood qualitatively because the attractive magnetic moment interaction reduces
the effective mass of a spinor or vector particle. For spinors, the vacuum is described
wy o filled negative-energy sea, so that a reduction in effective mass actually raises the
vacuum energy, while for vectors the reduction in single-particle energies implies also
a reduction in the energies associated with the zero-point motion of the oscillutor for
each single-particle state ,1314? and hence o reduction in vacuum energy.

In the region close enough to the flux string that the radius r is negligible
compared to the Compton wavelength of the charged particle one may neglect the
particle mass, and then use dimensional analysis to see that the azimuthal current
density must be proportional to 72, This implies a magnetic field proportional to r-2,
contributing a magnetic flux between shells of rudii 7 and ' proportiona to In(!/r).
Thus, ay a test charge approaches the string, the spparent flux instead of remaining
constant exhibits an anomalous dimension, fmnilior from the renormalization group
treatment of clectric couplings., However, still within the perturbative context, there
is a big difference. The relevant beta function (to all orders in F', but lowest order in
the gauge coupling a) vanishes for integer F'. Since the AB coupling does not diverge,
even though it does get strong enough to make perturbation theory suspect, it may
be a more reliable indicator of the behavior in the large o regime than is the naively

divergent o itself,
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Dynamical strings of flux?

We may say with considerable assurance that in the strong coupling (large
a) domain there will be large (order unity) fluxes present as vacuum fluctuations.
Further, since at least in thig abelian gauge theory flux is conserved, these fluxes
in the vacuum plausibly could be excited to form observable moving strings of flux.
However, if the net flux in such a string were an AB quantum (Here ‘net flux’ includes
the accompanying vacuum-current induced flux), then low energy electrons would be
insensitive to its presence, since if the interior is not penetrated an AB quantum is
invisible, If net flux quanta other than zero were present in the vacuum fluctuations,
the vacuum would exhibit ‘spontaneous electric charge quantization’, in the sense that
a particle with a fraction of an electron charge would find its effective mass raised to
a vslue on the scale where the coupling becomes strong.

The picture of a vacuum containing magnetic flux strings with diameter char-
acterized by the strong coupling scale has been proposed before, by Nielsen and
Olesen,'® who used an intricate pattern of deduction to argue for the necessity of
such a flux spaghetti in the nonabelian theory QCD. From the renormalization group
point of view adopted here their argument seems quite natural. In QCD one may
characterize flux in a gauge invariant way by obtaining the Wilson loop function, the
trace of the gauge transformation associated with a particular loap in space. If that
gauge transformation is u multiple of the unit operator, then the suitably normalized
trace has possible valucs 1,e%™3, ¢=2™/3, Since gluons are insensitive to the presence
of any such flux quantum, one may wonder if the full bets function might vanish at
such values, leading to an enhanced likelihood of finding quantized fluxes, and there-
fore density enhancements in the complex plane near the above-mentioned values (for
which the group invariant density actually vanishes).

If we now introduce quarks, which lie in the fundamental representation of
SU(3), then the beta function will vanish for Wilson loop trace 1. However, for each
of the other two unit-matrix values, which would give a nontrivial Aharonov-Bohm
effect on the quarks, their weaker and nonvanishing beta function will oppose the
contribution from gluons, so that one expects the enhancements in concentration to
be near but not at these values. Nevertheless, such a pattern would imply strong,
locally correlated, color magnetic fields. These could well be a (or the!) critical factor
generating color electric confinement,

Consistency of QED?

At this point let us pause and take stock. We have been treading familiar
ground in the sense that it has long been known that couplings in perturbative field
theories generally have anomalous dimensions which give rise to increasingly strong
interactions as length scales get larger (QCD) or smaller (QED). If the coupling
studied is an Aharonov-Bohin coupling, then at least in perturbation theory it is
not divergent, but only approuaches unit strength, This invites us to consider the
AB coupling as a more reliable indicator of the true dynamics in the strong-coupling




33

regime than the perturbatively divergent ordinary electric coupling. However, all of
this assumes that QED, in particular, is a consistent theory. What is known about
that?

Two different approaches give different answers. On the one hand, we know
that a theory extrapolated to a new domain may fail either because it lacks essential
physics, as Newton’s mechanics fails for relativistic velocities, or because the theory is
not consistent, with the inconsistency becoming dramatic in the new domain. There
is strong circumstantial evidence that A@* theory is consistent only for A = 0. In
perturbation theory there is a divergence as distance scales grow smaller, just as in
QED. This suggests that QED may be viewed as a ‘cousin’ theory with the same
genetic disease. However, the pathology in Ag* is such a borderline effect that it
is easy to imagine a cure resulting from very slight changes. On the other side of
this question, we have even stronger circumstantial evidence that QCD ia consistent.
Thus it becomes a question of which cousin theory is closer in itg essence to QED,
Mgt or QCD. If we choose the latter, then we need ask only the more limited but
still quite challenging question, "What are the dynamics of QED on short distance
scales? For that, the well-behaved AB coupling is an appealing guide.

Let us explore the consequences of assuming that tubes of flux become dynam-
ical degrees of freedoin on the scale where the coupling is strong. Such a tube would
have transverse dimensions in its rest frame, and also string tension, determined by
the strong-coupling scale. A charged particle localized on this scale would receive ax-
bitrarily large contributions to its effective mass from virtual flux strings of arbitrary
velocity passing by. On the other hand, a spread-out particle wave function would be
insensitive to these strings with their quantized flux. Thus the effect of this assumed
vacuum structure would be to make sufficiently localized particles so massive that
there would be negligible contributions from large virtual masses in loop diagrams
for vacuum polarization.

Now we may consider whether there is a mechanism to generate the assumed
flux tubes. Suppose a localized pair of electron and positron appear. If they overlap
spatially, then they have negligible Coulomb energy. If further they have parallel
magnetic moments then the energy is much lower than for antiparallel moments,
so that the Huctuation should last longer. Furthermore, reinforcing fluctuations at
neighboring locations are favored for the same reason. Thus correlated flux fluctua-
tions corresponding to virtual flux strings seem inevitable. There is an extra subtlety
in this argument. The notion of a magnetic moment is only simple in a nonrelativis-
tic context, but that is immediately applicable here since it is being supposed that
the electron becomes massive at the strong interaction scale, Thus the hypothesis
that QED is consistent and that small diameter flux strings populate space leads to
a picture of the vacuum which indeed hangs together, with the flux strings giving
mas3 to the electrons and so halting the divergence of the ordinary electric coupling

flux strings.
Having speculated this far, let us go a little farther. For pure QED with one
species of electron the scale factor for going from the electron Compton wavelength
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A to the strong coupling region is ™ ¥/2% = 10-%%_ However, in the standard model,
g

with U(1) of QED replaced by U(1)g, and three gencrations of quarks and leptons
included, the number in the exponent is reduced by an order of magnitude, and comes
to the vicinity of the value appropriate for the ratio of the Planck length to A.. Thus
relatively minor modifications of the standard model could lead to flux strings ap-
pearing on the Planck scale. Such a circumstance would engender a temptation to
identify the flux strings with the strings of string theory, which then could be treated
as derived objects. If known light particles were derived from string theory, this could
become the ultimate bootstrap!

Coda

We have arrived in the land of pure fantasy, but the fact that such a fantasy
even could be conceived is a testament to the reach and scope of the AB effect, which
at least perhaps might be not only the essence of guuge interactions but also the root
of the whole structure of the Universe. This makes it quite fitting to close with a few
personal remarks about the discoverers of the effect.

I met Yakir Aharonov a while ago, and by now have had a number of chances
to experience his unigue, adrenalin-raising approach to science. As with Nizls Bohr's
lucky horseshoe, it is not necessary to believe Yakir’s ideas in order to benefit from
them. Many others here can attest that even when disagreeing with him one finds he
has exposed deep aspects of physics whose further study is bound to be fruitful. He
comes closer than anyone 1 know to making the Socratic method a workable tool for
learning about Nature. It is no surprise that this meeting in his honor should exhibit
the same quality of excitement and discovery which we have learned to associate with
Yakir.

I looked forward to this conference as my first opportunity to meet David
Bohm, whom [ had admired since college. I took a course on quantum mechanics
in which the lecturing did not match my learning style very well, and his book was
my salvation. For reading by oneself the high ratio of words to equations proved
Juite congenial, leaving me at the end feeling that I had grown up knowing quantum
mechanics. That foundation has served me well ever since, and T am most grateful
for it. Its author, by showing much more courage than I in probing and questioning
the structure of quantum mechanics which he understood and explained so well, only
increased my admiration for him as a person perpetually restless in the search for
truth.

The paper of Aharonov and Bohm may have been the first scientific article I
read on my own rather than for a class assignment. I remember being impressed by the
striking simplicity of the argument but a little cautious because of the audacity of the
language. When Furry and Ramsey'” wrote a paper in response, the rumor I got from
fellow students was that they had put Aharonov and Bohun in their place, demolishing
the idea. Of course, when 1 read the paper it became clear that wasn’t so. Instead
they showed that the AB effect is necessary for the consistency of quantum mechanics,
in particular for the complementarity between observation of wave interference and
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detection of particle trajectories. The whole episode was a wonderful introduction to
science at the frontier. and shaped the work of many people. Not least significant is
the fact that the AR phase was contained in a paper published ten years before, by
Ehrenberg and Siday,'® who seemed to take the effect as a matter of course and thus
failed to focus on it the attention which it so richly deserves and has so richly repaid
since 1959.

This work was supported in part by the National Science Foundation under
Grant PHY 92-11367.
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AHARONOV EFFECTS FOR TWQ SLITS AND SEPARATED OSCILLATORY
FIELDS INTERFERENCLS

Norman F. Ramsey
Lyman Physics Laboratory
Harvard University
Cambridge, MA 02138, USA

ABSTRACT

The implications of complementarity on two path interferences
and separated oscillatory field resonances are discussed. furry
and Ramsey have shown that an apparatus to determine the
electron path introduces uncertainties in the scaler and vector
potentials that disturb the phase of the electron wave function so
much through the Aharonov-Bohm effects that the interference
fringes disappear. A similar result is derived for the neutron,
but with the phase uncertainties coming from the magnetic
moment's motion through an electric field discussed by
Anandar. Aharonov and Casher. The separated oscillatory field
resonance method can be interpreted as an interference between
two different paths in spin space. The same analysis as for the
neutron two path interferences shows that the separated
ereiliatory fiens resonance disappears when the orientation of
the neutron spin is observed between the two oscillatory field
regions. An interesting difference between the separated paths
and separated oscillatory fields experiments is that the latter may
be interpreted classically. An equal superposition of the two
orientation states along one axis corresponds to an eigenstate
relative to an orthogonal axis so the separated oscillatory field
resonances can be interpreted classically whereas this is not
possible with the two path interferences.

1. Introduction
It is a pleasure to speak at this conference honoring Y. Aharonov,

whose stimulating papers have added so much to our understanding of
quantum mechanics but I deeply miss David Bohm.
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I remember well the waves of surprise and disbelief that circulated
throughout much of the physics community on the 1959 publication of the
Aharonov-Bohm (AB) paper! that pointed out the possibility of observable
effects of electromagnetic potentials on charged particles unexposed to electric
or magnetic fields. Wendell Furry and I at that time were astonished but
willing to try to understand the effects from different points of view. As a
result we published one of the first papers supporting the' AB analysis2. We
pointed out that the (AB) effects for scalar and vector potentials were essential
to preserve the consistency of quantum mechanics and the principle of
complementarity. We showed that, without these effects of the scalar and
vector clectromagnetic potentials, it would be possible to observe two slit
interference patterns with charged particles while at the same time detecting
through which slit the particle went. Such an observation is inconsi-tent
with the principle of complementarity applied to a two slits interfercnce
experiment2. We showed that the AB effects would make the interference
pattern disappear if the path detection sensitivity were sufficient to determine
through which slit the charged particle went.

Since our early paper convinced many scientists of the validity of the
AB observations, the organizers of this conference urged me to review that
paper here. However, I was reluctant to repeat a 32 year old paper in a field in
which I have done no recent work. But, I then realized I could also analyze
two different problems from a similar point of view, so i agreed both to
review our old paper and to discuss the new subjects, even though the three
different reports produce a cumbersome collective title. The two new
analyses depend on the phase shifts of a neutral particle with a magnetic
moment moving through an electric field as discussed by Anandan3,
Aharonov4, and Cashert (AAC). The first of the three reports reviews our
old work under the title Comple nentarity and Two Paths Electron
Interfereages . The second is Complementarity and Two Paths Neutron
Interferences and the third is Complementarity and Separated Qscillatory

Fields Resonances.

2. Complementariiy and Two Paths Electron Interferences

The AB paper! considered the effects of both the scalar and the vector
electromagnetic potentials so Furry? and I did likewise. In the case of the
scalar potential we considered the idealized apparaius shown in Figurc 1 to
see if it could be used to detect through which slit the electron passed while
still observing the interference pattern. The detection of the slit traversed by
the electron is made by determining which way the test body of charge q is
accelerated before the electron emerges from the pipe. The test body is
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between two condenser plates separated by a distance / as in Figure 1. Itis
held fixed half way between them (x ={ / 2 ) until the waves are inside the
tube, and is brought back to this position before the waves emerge; thus it
produces no field between the pipes at any time when the field could act on

distant —e

il .
m E

Figure 1. Llectrostatic effects.

the particle. The test body is free to move during a time interval T when the
waves are certainly inside the pipes, and by determining the direction in
which the test body is accelerated during the time T we can find out which
tube contains the particle.

The potential difference produced by the presence of the electron in
one tube or the other is Vi=1¢e/ (2 C ), where C is the total capacity of the
condenser and attached pipes. The magnitude of the field strength is thus?

IEl =e/ Q@C). (1)
The force on the test body is q E. If its direction is to be determined, it must
produce a change of the momentum of the test body that is larger than the
uncertainty of that momentum Ap. To be relatively certain of the direction
we take the imparted momentum to

g |lEIT >2Ap. (2)
Displacement of a charge q from a central position at x = / 2 produces a
potential difference?

V=(g/C(x-1/2)/1 3
and the uncertainty of the potentinl difference is
AV = (g [ IC)Ax @

Substituting Eq. (1) into (2) and multiplying by Eq. (4), we have

geTAV /] (21C) >2(q/IC)ApAx - 2@/IC)h/ (@ n) (5)
Therefore,

eTAV>2h/ (2 ). {6)
By ABJ, if alternative electron paths involve the electron being in
electrostatically shielded regions with a poiential difference V for a time T the

wave functions will develop a difference of phaseof eV T / (h/ 2n).



Therefore the uncertainty in the phase differences between the lwo paths
caused the test body is
Ap=eTAV/(h/ 2m)>2 7

A phase shift uncertainty of 2 radians will obliterate the fringes, so the AB
effect of the electrostatic potential assures the consistency of quantum
mechanics by making it impossible to obtain interference fringes when the
electron path is known.

When 1 first reported on our work at scientific meetings in 1959, 1
introduced into the scientific literature a Charles Addams cartoon which has
since been used extensively. This cartoon shown in Figure 2 is a great
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Figure 2. Charles Addams cartoon.
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illustration of a fundamental difference between classical and quantum
mechanics. In a classical world the cartoon is a joke since a classical object can
not possibly pass through two separated regions at the same time. On the
other hand in a quantum world the wave function of an electron can
simultaneously experience the potentials at two separate regions of space.

With the AB vector potential effect, the analysis is similar but a coil
and an infinitely long infinitely permeable rod R are used for the path
defection as shown in Figure 3. The coils and plates are assumed to have no
resistance. With these assumptions there is no stray flux outside the rod and
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hence no field in the regions traversed by the electrons. Furthermore the
current induced in the search coil is then just that required to prevent any

change in the flux ®. Passage of the particle through either slit and on to the

]
disfant —»
screen

Figure 3. Magnetic effects.

screen is tantamount to flow of the charge e through one half turn since a trip
out and symunetrically back on the other side would be equivalent to a full
turn. Therefore, with N coil turns, the charge delivered to C is?

Q==2e/ 2N (8)

The characteristic time of the circuit?
T=(LCM?2/c 9)

is very long compared with the time of passage of the wave packet through
the apparatus. Thus we can have the advantage, as compared to the scalar
potential analysis, of ample time for the determination of the sign of Q.

The circuit has two canonically conjugate variables, the charge Q and
the flux linkage N @, which appear in the Hamiltonian for the equivalent
harmonic oscillator,

H=0Q2/2C+(N®)2/2L, (10)
and satisfy the uncertainty relation

AQN AP > hc [ 4 n. (1N

If we are to determine the sign of Q reliably, we mus! have

tQ1>24Q. (12)
From this and Eqs. {8) and (11) we obtain

eA® >2he/2r, (13)
AB point out thal there is a resultant phase difference

¢ = (2mefhc)@® (14)

between the waves that have passed R on one side or the other.
Consequently from Eq. (13) the spread in ¢ is given by
Adp=(2me/hc) AD >2 (15)
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3. Complementarity and Two Paths Neutron Interferences

The above AB analysis applies only to charged particles. However two
slit interference patterns for many years have been obtained with neutrons
and more recently with neutral atoms. One can attempt to to detect through
which slit a polarized ncutron went while observing the interference pattern.
Various methods can be chosen to detect the neutron path and for each there
is a corresponding uncertainty relation that destroys the interference pattern.
For example, an apparatus similar to that shown in Figure 3 could be used but
with neutrons polarized perpendicular to the paj or and with neutrons on
one possible path having to pass through the infinitely permeable rod. The
sign of the charge Q delivered could then be observed as in the vector
potential case discussed above. However, as in that discussion the
uncertainty in the magnetic field destroys the interference pattern when the
apparatus is sufficiently sensitive to determine the path.

A different method of path detection uses the fact that a magnetic
dipole of strength Jim moving with velocity v appears in a stationary
reference frame to have an electric dipole moment pg given by

pe=(v/c) xum, (16)

so the passage of the neutron through a condenser could be detected by
measuring the induced potential. The same Figure 1 with a different
interpretation can be used to describe the proposed experiment. Instead of the
four dark horizontal lines being interpreted as two pipes, they now represent
plates of two parallel plate condensers with the inner two plates connected
together. The neutrons are polarized perpendicular to the paper so the sign of
the potential induced by a passing neutron depends on which slit is traversed.
From Eq. (3) applied to each pole of an electric dipole, it can be seen that the
potential V1 induced during the passage of an electric dipole through one
condenser or the other is

Vi=tpug/(Cd) an
where d is the separation of the plates in the condenser. The magnitude of
the field E on the test charge is then

lEt=Vy [l =pg [(Cdl) =v upm/cCdl (18)
To be relatively certain of the direction q moves as in the AB electrostatic
discussion, we must have

24p <p=qV\ElT=qoupy T/ecCd!l = qum LicCdl (19)
wliere L = Tv is the length of the condenser.
But the detection mechanism in Figure 1, by Egs. (4) and {19) will have

an uncertainty in voltage of
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AV=gAx[IC >qh/4nlCAp >hdc/2r uy L (20)
But by AAC34 and Cimmino et al® the phase difference between the two sides
is

panc=(2x/k) [p -dr = dmpm Alc (hf2m)

=2upmLV/)dc(h]2n) (21)

where A s the lineal charge density which by the Gauss theorem is related to
the voltage across the condenser by

A=2VL/4mrd (22)
The uncertainty in the phase by Eq. (20) then is
Appac= 2umMLAV/ de(h/2x)>2. (23)

So the interference disappears just as the path of the neutron is detected.
4. Complementarity and Separated Oscillatory Fields Resonances

For the resonance melhods of separated or successive oscillatory
fields®7, the transition probabilities for a two level system can be exactly
calculated. Although the resulting formulae are useful in determining
spectral line shapes, they obscure the origins of the observed sharp peaks as
coming from an interference between two possible paths in spin space.
However, this origin can be clarified by deriving the transition formula in an
allernative, but equivalent form. For simplicity the same notation will be
used as in the original papers®? and consideration will will be restricted to the
special limiling case where the durations ¢ of the two pulses are negligibly
small except when mulliplying the transition inducing amplitude b, which is
assumed so large that bt is finite.

With these restrictions, the exact expressions®? for the probability
amplitudes after the interaclion of duraticn 7 in terms of those at times 4
just before the interaction simplify to

Cpcty+ 1 )=cos (bt )C,,(h) -isin (br) exp (iwt1)C(t1)  (24)
Cylty+ 1 )= -isin (br) exp Giwtr)Cultr) + cos( br ) Cy(tr)
However , following a finite period T with b = 0, the probability amplitudes
are related as follows:
Cp(ti+T)=[exp(-i2aWyT/h) ] Cp(ty) (25)
Cy(ti+T)=[exp(-iZ mW T [ID] Cy(t1 ).
By successively applying these relations it is casily seen for Cp(0) =1 and
Cy(0) = 0 that
Cy( T +27) =-isin (br) cos (bt ) lexp-i(w+ 27 Wy [1)T
rexp-iQ2a W, [h)T] (26)




The modulus squared of Equation (26) gives for the transition probability

| Co(T +27) 12=4sin2(bt) cos(bt) cos2(w —~wo)T/2 (27)
which is in agreement with the usual expression when the above
restrictions are applied.

In Eq. (26) the first term corresponds to the probability amplitude for
passing through the intermediate region in the original state p followed by a

transition in the second oscillatory field. The extra factor exp-i(w)T

arises from the phase of the oscillatory field at the time T when the transition
occurs. The second term corresponds to the probability amplitude of a
transition to state q in the first transition region with passage through the
intermediate region in state ¢. From the form of Eq. (26), it is apparent that

the factor cos 2 (0 —w p) comes from the cross terms between the probability
amplitudes for the two possible spin orientation paths between the two
oscillatory field regions.

In the case of the separated oscillatory field method, the analogue to
determining through which slit the particle passes is determining the spin
orientation state of the particle during the interval between the two coherent
pulses. In the case of neutrons this might be done by allowing the beam to
pass between two plates of a condenser and determining the orientation state
from the sign of the induced potential as in the previous discussion. The
analysis is the same as for the two slit case and the sharp resonances disappear
through the AAC effect just as the sensitivity becomes sufficient to detect the
orientation, as required by complementarity. Englert, Walther and Scully8
have recently and independently made analogous observations using a
micromaser with two field optical fringes.

Despite the similarities, there are fundamental differences between the
two slits and the separated oscillatory fields experiments with neutrons. The
orienlation state of the neutron is determined by a vector in three
dimensions and an equal superposition of them = +1/2 and -1/ states
corresponds to an orienlation eigenstate along an axis perpendicular to the
original axis. As a result the sharp resonance peaks can be interpreted
classically as the spin being flipped =/2 radians in the first oscillatory field and
being allowed (o precess before the next one. If the precession and oscillator
frequencies are the same, the second osciallating field will do the same thing
as the first, producing a maximum reorientation. If on the other hand the
frequencies are slightly different so that the neutron spin precesses an extra x
radians, the spin will be flipped back to its original position corresponding to
a minimum transition probability, thus providing narrow resonance even
with a classical interpretation. On the other hand, such a clas:ical
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interpretation of two slit interferences is not possible since there is no
reasonable classical interpretation for the probability amplitude
corresponding to the superposition of two different paths in space.
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ATOM INTERFEROMETERS

David E. Pritchard
Department of Physics and Research Laboratory of Electronics
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l. Introduction

It is a pleasure to speak at Yakir's birthday celebration, especinlly on the sub-
jeet of matter wave interferometers which his work has been intimately related to for
so many years. And the fact that we will be able to give the first report on expeni-
nients in which atoms are sent on both sides of a metal foil and then recombined adds
cven more enjoyment. But let me begin this talk from the atomic physics point of
View.

The ticld of atomic, molecular, and optical physics has been moving with in-
creasing velocity in recent years, and no subficld in this arca is currently developing
faster than atom optics and atom interferometers (both of which we have recently re-
viewed. %) About a dozen experiments that demonstrate atom wave interference or
atom interferometers have been performed during the last five years; ¥ ! results
which parallel demonstrations of optical devices that spanned most of the nincteenth
century, Even without further developments in atom optics, there now exist enough
useful elements to make a variety of atom interfercnce devices and interferometers.
The burst of activity in this area in 1991 was reported in most of the widely circulated
scientific maga -ines, '2 as well ns in recent review articles, 21314 Since these reviews,
two new groups have performed reluted demonstration experiments, 1% More im-
portantly, measurements are now being made using these devices. At this rate, we
anticipate that many applications of atom interferometers to probl-ms of scientific
and technical imporiance analogous to those of the last hundred years in optics will be
made in the remainder of the 1990°s. (This is not to say that we're smarter, just that
we have the theoretical understanding to chart a surer course, and much commerciatly
available technology with which to pursue it rapidly.) Since our judgement is that we
have now entered a period in which the most important advances involving atom in-
terferometers will be new applications rather than new interferometers, the remainder
of this presentation will concentrate on the four areas in which atom interferometess
appear likely to have signiticant scientific and technical applicaiions. Unfortunately
for those who have read our recent review, 2 there is little new to report in the couple
of months since that was written,

2. Atom Interferometer Applications

2.1 Atomic and Molecular Properties

We are pleased to report at this conference the fisst measurements made with a
scparated beam atom interferometer. The key point here is that separated beam atom
interferometers present the opportunity 1o subjeet part of the atom wave 1o an interac-
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tion which causes a phase shift and then to measure this phase shift by interference
with the unshifted part of the atom wave in the same state. An obvious application is
the precision measurement of the (ground state) polarizability of the atoms (or
molecules) in the interferometer, by subjecting one part of the atom wave to a
wniform electric ficld, We discuss such an experiment currently giving nice results in
our laboratory. We note that this is intrinsically a higher precision approach than
measuring the deflection in a ficld gradient, whether this is casured by
conventional ' or interference techniques. '’ We also note that polarizability
differences between two states of an atom have long been measurcd using optical
resonance techniques, and can also be measured in interferometers of the Chebotayev
type even though the two legs of the interferometer are not spatially resolved. 1518

Translation (\f] referenca
photudiods
signal
tiot wire
detector

Interacticn reglon

3 10.0tm '1 10 mkron coppe, for

L N

Ustall of ntersction replon

2mm gap on each skie

Figure 1: A schematic, not to scale, of our atom interferometer. ‘The 10 jim copper foil is between the
two arms of the interferometer (thick lines ure atom beams). The optical interferometer (thin lines are
laser beanis) measures the relative position of the 200 nm period atom gratings (which are indicated
by ventical dushed lines).

Our atom interferometer bas been deseribed in, * and is depicted in Fig. 1. 1t
uses thiec cqually spaced transmission gratings, @ standard interferometer design,
with about 2/3 of a meter spacing between the gratings. This configuration produces a
robust whitc fringe.!” We now use three 0.2 micron period nanofabricated 2
diffraction gratings which scparate the centers of the interfering beams by 55 p. We
collimated the sodium atom beam with 20 p slits so the edges of the two interfering
beams do not overlap. The atoms had a deBroglie wavelength of 16pm, The FWHM
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Figure 2: Interference pattern from 40 seconds of data ( — 1 second per point). The contrast is 25%
and the phase uncertainty is 17 milliradians, Detector noise background of 200 counts per second has
been subtracted.

of the velocity distribution of the beam was 11%, which determined the longitudinal
coherence length (1.0 R). The fringe amplitude was 820 cps, which would allow us to
determine the phase to 15 milliradians in 1 minute (Fig. 2).

An interaction region consisting of a stretched  metal  foil  positioned
symmetrically between two side clectrodes, each spaced 2 mim from this scptum, was
inserted in the interferometer so that the alom wave jn the two sides of the
interferometer passes on opposite sides of the foil. The septum was 10 cm long and
10 microns thick, but the shadow it cast on the detector was typically 30 p wide due
to slight deviations of the stretched foil from perfect flatness. Because we have a
conducting physical barricr between the scparated beams, we can npply different, but
uniform, electric and magnetic fields to the portions of the atom wave on cach side of
the interferometer.
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Figure 3; Stark phase shifts for voltages applied to the right (open circles) and the left (filled circles)
side of the interaction region. Phase shift per applied electric field squared in (volt/om) © is
l.22()(7))<10_5 for the left side and 1.224(7)% 1075 for the right side. This mcasurement
determines the dc polarizability of sodium with 0.4% statistical uncertainty.




If an electric field is put on one side of the interaction region the DC Stark shift
of the atom wave on that side will change the phase of the interfercnce pattern, The
Stark shift is

V=-ael2,

where o is the clectric polarizability and € is the applied electric field. The Stark shift
acts as a slight depression in the potential energy, V, as the atorn wave passes through
the electric field. This increases its spatial frequency (since the deBroglie wave
number is k = [ 2m(E - V)]%/n and E is conscrved), resulting in an increased phase
uccumulation relative to the wave that passes on the side of the septum with no field.
Since V is cight orders of magnitude smaller than E, the square root can be expanded
with the result that the differential phase shift is ¢=ol €¥/2v =V /i where [ is the
length of the interaction region, v is the velocity of the atoms, and t is the transit time,
We found that the measured phase shift was quadratic with the applied field within
crror, as expected, allowing us to detennine the polarizability of the ground state. We
found that putting the field on opposite sides of the septum gave the same absolute
value of the phase shift, giving a statistical error of 4% in — 20 minutes. We are
currently investigating several systemctic errors (the largest due to vardation of the
phase shift with septum position) which cumrently limit our determination of an
absolute value of the polarizability to ~ 1%. Figure 3 shows the phase shifts vs,
applied electric field.

Figure 4: Contrast revivals from constructive rephasing of the independent interference patterns of the
8 different magnetic sub-states of sodium, These patterns are dephased by a current flowing down the
septum which alicis the magnitude of the uniform magnetic ficld on the two sides.

We have also observed the periodic rephasing of the independent interference
patterns of the different Zeeman substates of the ground state as a differential
magnetic field is applied to opposite sides of the septum. To observe this, we first
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o applied a uniform magnetic field along the beam axis to determine the quantization
direction. By running a current down the metal septum, perpendicular to the plane of
the interferometer, we increased the field magnitude on one side of the interaction
region and decreased it n the other. This gave a differential Zeeman energy, and
therefore phase, for the two paths around the foil. The phase shift is proportional to
the current passing through the septum and the projection of the magnetic moment
along the quantization axis. Sirce our beam is unpolarized, the observed interference
pattern is a sum of interference patterns for each of the eight sodium ground states.
Since the g-factors of the F = 1 and F = 2 hyperfine levels Fave equal magnitude (but
opposite sign), there are only three different magnitudes of pivjected ma .ctic
moment. At low fields these are proportional to G, 1/2, and 1 tivaes a Bohr maguczton.
Consequently the independent interference patterns periodically rephase
constructively to produce a high contrast interference pattem with the same phase as
the pattern at zero fieid. This is shown in Figure 4. The first revival of conirast is the
point where the phase shifts are 47 for the | mgl = 2 states, 2x for the g1 = 1 siates,
and O for the my = O states. In this experimment, therefore, the informative variable is
the cortrast (not phase) vs. magnetic field.

The contrast versus differential magnetic field has the same shape as the
amplitude versus positior for a five slit diffraction grating whose central three slits
are twice as wide as the :xtremal slits. (To make this analogy more precise, we would
have to illuminat~ the grating with light of the appropriate spectral width.) Fig. 4 also
contains a fit to the data which correctly models the effects of our finite velocity
diribution and misalignment of the uniform magnetic field that determines the
quantization axis. Not only the relative positions of the contrast maxima, but also
their width and the degradation of contrast of subsequent rephasings due to the finite
coherence length is well accounted for by the model. The real significance of this
rephasing experiment is that (since the value of the Bohr magneton is accurately
known) one of the fit parameters is the average velocity of the atoms that successfully
tizke it through the interaction regin and contribute to the interference pattern. This
can be exploited to eliminate systematic effects arising from processes which cause
this final average velocity to differ from the average velocity of the atoms in the beam
upstream of the interferometer.

A For large currents down the foil, the average over the velocity distribution of
N the atom beam reduces the contrast in the interference pattern of all atoms except
those in the two mg = O states, which experience no Zeeman phasc shift. ‘Vhis will
- result in a contrast one-fourth of that observed for no current. At this point, any small
phase shifts observed from additi~nal interactions wouid be those of only ihe -0
states. By applying a large St: hase shifi to all of the substates, the contrast of
these me=0 states could be reut 1 to nearly zero while another polarization state
was shifted back into coherence with itself. This would allow experiments to be
performend on a polarized beam without the difficulty of optical pumping, (but without
the gain in intensity which such optical pumpinyg should bring).

What happens if the atom wave on one side of the septum passes through a gas
not present on the other side? From the perspective of wave optics, the passage of a
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wave through a medium is described in terms of an index of refraction whose real
part is proportional to the phase shift of the wave and whose imaginary part is
proportional to the absorption of the wave. For an atom wave passing through a
gaseoas medium, absorption will be proportional to the well understood total
scattering cross section, which is determined by the imaginary part of the scattering
amplitude at zero angle. The phase shift will be proportional to the real part of the
scattering amplitude at zero angle. Taken together, the absorption and phase shift
therefore determine the phase and amplitude of the scattering amplitude. In low
energy collisions this means that both the magnitude and sign of the scattering length
can be determined, an important advance since knowledge of the sign, hitherto not
measurable, is critical to predicting low temperature collective behavior.

2.2 Inertial Effects

Atom interferometers are sensitive to inertial effects because the atoms travel
freely (if field gradients are sufficiently small), whatever the acceleration of the
apparatus. The difference in position of the interference pattern when observed in an
accelerating vs. an inertially stable apparatus can be observed interferometrically,
giving a precise measure of the non-inertial behavior of the apparatus. To make these
ideas quantitative, first imagine atoms with velocity v passing through a matter wave
lens with focal length L/2 as shown in Fig. S; if the apparatus accelerates upwards at
a. the central atom ray appears to follow the curved path shown, and the position of
the image of the source will have a vertical displacement,

¥i = VyoR0) = 1/2 a 1) = —at? = — a(Liv)?,

where t is the flight time for distance L and Vy, is the initial y velocity necessary to
pass through the center of the icns. If the lens is converted into a separated Fresnel
biprism by blocking off its central dashed portion, the Airy diffraction patteru of the
icns will be converted into an extended interference pattern and the shift in position of
vhe central fringe can be measured as a phase shift,

p=2ny/d=-2nat¥d,

where d is the fringe spacing. The above expression also applies to a three grating
interferometer with grating period (or lattice spacing) d.

The equivalence principle dictates that the responsc of an apparatus with
acceleration g upwards must be the same as a stationary apparatus in a downward
gravitational field with strength g. Thus the phase shift in a gravitational ficld should

b+
oo | L]
& d | v

This result (with appropriate trigonometric modifications for finite opening angle) has
been checked using neutrons; 2! a small discrepancy exists. The application of more
complex interferometer configurations to the determination of the gravitational
gradient has also been discussed, 22
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Figure 5: With no acceleration (i), the atom image (dashed axis) from the lens (dashed) and the
diffraction pattern (solid axis) from the Frzsnel biprism (solid lines at edges of lens) line up at y = 0.
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When the apparatus accelerates upward (i), image and diffraction pattern are both displaced by yg-

(see Eq, 3).

If the apparatus is rotatin% with angular velocity ?i the atoms experience a
Coriolis acceleration ac = - 2 XV, For the interferometer discussed above, the

phase shift due to this rotation may be calculated by substituting this acceleration into
Eq. 4 with the result,

472
- 0 .
bc= I

assuming small opening angles in the interferometer. 'Tiis result has been verified for
both neutron?? and atom interferometers.

Although this equation expresses the phase shift in terms of the experimentally
specified parameters, it is customary to express the phase shift due to rotation in terms
of the enclosed area, A, by the atoms. For grating type interfe ometers this is
determined by the diffraction angle, B = A g/d, yielding ¢ = 2m/B €1- A, the familiar
Sagnac phase for matter wave interferometers, **

Atom interferometers cannot measure any new inertial effects intrinsic to
atoms, so the real question is one of technical pertormance. For rotation sensing, the
greater phase shift of matter wave interferometers relative to light interferometers of
the same configuration (by the factor mc/fwyg, = 10'%) suggests that improved atom
optics technology (especially a non-diffractive beumsplitter) should cnable atorn
interferometers to attain better precision thaa laser gyros. For measurement of the
local gravitational constant (or for accelerometers) the demonstration of sensitivity of
3%10% in the first slow atom interferometer by the Stanford group?® is very

encouraging, especially if further experiments verify the projected freedom from
systematic error.



2.3 Fundamental Measurements

The inherent precision available with interferometry makes atom
interferometers ideal instruments with which to make fundamental ‘‘null’’ tests (e.g.
of the charge of a neutral atom), Sensi‘ivity to phase (as opposed to energy times
time) will allow atom interferometers to probe physical processes that generate phase
shifts such as Berry’s (and other) topological phases (cf. a recent related proposal, ¥/
also discussed at this conference), the passage of atoms through a waveguide, or the
phase shift which accompanies surface bounces. In general it has not previously been
possible to observe these phase-generating effects.

A recent proposal by Anandan 8 and Aharonuv and Casher?? combines two of
these ideas: it is a topological phase which tests a fundamental tenet of quantum
mechanics — that a phase shift can occur in the absence of any classical force. A
study of this effect using neutron interferometers is presenied in these proceedings, 3¢
so we need not dwell on its desirability here. The advantages of using atoms are the
greater magnetic moment (partially offset by the large Stark shift which limits the
practical size of the ficlds which can be applied) and the greater intensity. Together
these should greatly reduce the statistical error and should also allow us to study, for
the first time, the predicted dependence on the dipole orientation.

Another important measurement is the precise determination of the momcentum
of a photon; an experiment underway at Stanford has been described, 3!

Before getting too carried away with the possibilitics of new tundamental
measurements, we should note that many fundamental experiments in matter wave
optics and matter wave interferometry have already been carried out using neutron
interferometers. A recent review of this work 32 serves as .oth a source of inspiration
and a standard of comparison in this field.

2.4 Direct Write Atom Holography

Looked at from another perspective, ¢r three grating interferometer is a
holographic apparaius that produces a real image in the plane of the third grating. By
changing the geometry (c.g. using the two first order beams from the first grating and
the second order beams at the second), this image can be made to difter from the
gratings used upstream (in this example it would be a grating with half the period of
the others). If the middlc grating were replaced by a calculated hologram (this would
be easy since the electron beam writer which writes the grating? is computer
coniroiicd), the resulting image could be quite arbiteary. Recently it has been
shown 33 that an atom image like the one just described can be written on a substrate
with resolution better than 3000 &, so the possibility of writing patterns of a
particular type of atom on a surface already exists. If some way were found to
develop this image (if it were written in silver, regular photographic techniques might
be applicable) it would be a directly written atom structure.
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3. Summary

The future of atoms interferometers looks bright: atom beams are inexpensive
and intense relative to neutron beams from reactors, several techniques have now
been demonstrated to make interferometers for them, and the atoms which may be
used in them come with a wide range of parameters such as polarizability, mass, end
megnetic moment. One can even imagine applications for molecular interferometers.
This assures the applicability of these instruments to a wide range of measurements of
both fundamiental and practical interest, Hence atom interferometers may now be
regarded as devices to think up experiments for. Ultimately they should become
sufficiently robust and simple that they can be regarded as instruments, to be applied
technologically or used in other experiments.

Our recent work on atom interferometers and atom optics is supported by the
Army Rescarch Office contracts DAALO3-89-K-0082, and ASSERT 29970-PH-AAS,
the Office of Naval Research contract NOO014-89-J-1207, and the Joint Services
Electronics Program contract DAAL03-89-C-0001. 1 am very grateful for all of this
support, for the heroic work done by my many graduate students, for enjoyable and
helpful discussions on the subject of this paper with C. Ekstrom and J. Schmiedimeyer
and for help preparing this manuscript from M. Chapman and T. Hammond,
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FASTER THAN FOURIER

Michael Berry
H.H. Wills Physics Laboratory, Tyndull Avenue, Bristol BSS8 1TL, UK.

Written to celebrate the 60th Birthday of Yakir Aharonov: deep, quick, subtle.

ABSTRACT

Band-limited functions f{x) can oscillate for arbitrarily long intervals arbitrarily faster than
the highest frequency they contain. A class of integral representations exhibiting these
‘superoscillations' is described, and by asymptotic analysis the origin of the plicnomenon
is shown 1o be complex saddles in frequency space. Computations confirm the existence
of superoscillations, The price paid for superoscillations is that in the infinitely longer
range where f{x) oscillatcs couventionally its value is exponcntially larger, For example,
to reproduce Beethoveen's ninth symphony as superoscillations with a 1Hz bandwidth
requires a signal exp| 1019} times stronger than with conventional oscillations,

1. Model for supecroscillations

My purpose is to decribe somie mathematics inspired by Yakir Aharonov during a
visit to Bristol severa] years ago. He told me that it is possible for functions to oscillate
faster than any of their Fourier components. This seemed unbelievable, even paradoxical;
I had heard nothing like it before, and Icamned only recently of just one reluted paper! in
the literature on Fourier analysis (see §4). Nevertheless, Aharonov and his colleagues had
constructed such 'superoscillations’ using quantum-mechanical arguments?2. Here T will
exhibit a large class of them, and use asymptotics and numerics to study their strange
properties in detail.

Consider functions fix) whose spectrum of frequencies k is band-limited, say by
Ikl<1, so that on a conventional view f'should oscillate no faster than cos(x). But we wish
£ to be superoscillator /, that is to vary as cos(Kx), where K can be arbitrarily large, for an
arbitrarily long interval in x. A representation that achieves this is

f(x,A,0)= 3«71'27:' I du cxp{ixk(u)}cxp{——zé—i— (u- iA)z} 1N

—o0

where the wavenumber function k(i) is even, with k(0)=1 and IkI<1 for real i, A is real
and positive, and & is small, Examples are

1 N
ky(u) = m—ui . ky(u)=sechu, ky(u)= cxp{—%uz}, kq(u) =cosu (2)
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Aharonov's reasoning (he suggested Eq.(1) with k4) was that when 8is small the
second exponential would act like a 'complex delta-function' and so project out the value
of the first exponential at u=iA. Thus f should vary as

f~exp{ikx} wherec K =k(id) 3)

Under the conditions above Eq.(2), k increases from u=0 along the imaginary axis, so
that K>1, (and for the given examples can be arbitrarily large), and so corresponds to
superoscillutions, What follows is a study of the small-& asymptotics of the integral
representing f. As well as justifying Aharonov's argument, this will dissolve the paradox
posed by superosciliations, by showing that when x>0(1/82) they get replaced by the
expected cos(x), and f gets exponentially large.

2. Asymptotics

The aim is to get un asymptotic approximation for small & to the integral defining
S, Eq.(1), which is valid uniformly in x, To achieve this, it is convenient to define

E=x8? )

so that Eq.(1) can be written

1(E18%,4,8)= 5_:}27 [ du cxp{»-glfw(u,g,A)} where @ = $(u—id) - i& k() (5)

—eoy

For small §, f can now be approximated by the saddle-point method, that is by deforming
the path of integration through saddles uy of the exponent and replacing @ by its quadratic
approximation near ug. fis dominated by the saddle with smallest Red. Saddies, whose
focation depends on & (and also A) are defined by

dd

=0 ieu= &k () + A] ©

Application of the saddle-point method now yives the main result:
. 1 2
cxn{uk Uy~ —iA }
ofixk(i)~ Ll - )
Jl ~ix82 k"(u,)

To interpret this formula, it is necessary to understand the behaviour of the dominant
saddle as & varies,

f= M
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When £<<1, that is x<<§ -2, Eq.(6) gives us~iA, and (7) reduces to Eq.(3); this
iy the regime of superoscillations. When £>>1, that is x>>8 -2, the saddles are the zeros
of k'(u); assuming for simplicity that & has a single maximum at =0 (as in the first three
functions in Eq.(2)), this is the only real saddle, and (7) reduces to

2
= mcxp{ix—}n} °"p{5%2‘} %)

This is the behaviour te be expected conventionally, that is on the basis of the frequency
content of f; in the infinite range of validity of Eq.(8), f is O(exp{A2/282} and so
exponentially amplified relative to the superoscillation regime.

As x increases, the saddle moves from iA4 to 0 along a curved wack, illustrated in
figure 1. This is the dominant saddle uy; its track resembles figure 1 for all £(u) of this
type that I have studied. There are other solutions of Eq.(6), whose arrangement and
motion are complicated and depend on the details of k(i), but they are not dominant and
so0 do not compromise the validity of Eq.(7) as the leading-order approximution to the
integral defining f, Eq.(1).

0 0.2 04 0.6 08 I

Reu

Figure 1. Track of leading <addle u, as £ increases from 0 10 oo, for the wavenumber function ks{u) in
Eq.(10), for A=2 (the track is similar for any k{(u) with a singlc maximum)

In understanding the oscillations, it is helpful to study the local wavenumber,

defined as
)
aft) =i 2L ) ©

As illustrated in figure 2, ¢(&) decreases smoothly from k(iA) (which is real) to 1 as £
increases. Note that the decreasc is rapid (this is truc for all k() that I have studied). This
has the important implication that to observe superoscillations it is necessary to keep &
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much smaller than unity, and if we want to allow x to be lurge, in order to observe many
superoscillations, & must be comrespondingly smaller, Eq.(4), and the exponential
amplification in the regime of conventional oscillation, Eq.(8), will be correspondingly

larger.

3
25
2
(%)}
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Figure 2. Local wavenumber g(§), Eq.(9), for the ks(w) in Bq.(i0), for A=2

None of the wavenumber functions in Eq.(2) gives an f whose integral
representation can be evaluated exactly in terms of special functions, However, if we
choose the wavenumber function

ks(u) = 1 — 4 u? (10)

we can ensure that it is band-limited ( lki<1) by restricting the range of integration in
Eq.(1) to lul<2. The resulting truncated integral is

2
f(x,4,8)= ﬁ; jd.u cxp{ix(l - %uz)} cxp{—jz%i-(u - iA)Z} (11
2

which be expressed in terms of error functions:

.
exp
Witing® |
: ) - (52
y crf{umwzms }Mrf{z-mzua
V2 +2ix? 52 +2ix8?
It is instructive to examine this in detail. The superoscillation wavenumber,

Eq.(3), is

R 2 Y]
e AS)= in(2+ A% + 2008 )}X

2{!+L\:§2‘
\ J a2)
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K =ks(id) = 1+4 A (13)
There is a single saddle, at (figure 1)
iA
= 1
w(l)=1177 (14)

and the local wavenumber is (figure 2)

2y _ g2
q(f,)=l+f—E—£,) 15)
2(l+£,‘2)

For this case, the saddle-point approximation, Eq.(7) gives

f(x,A,8) = ! expdix] 1+ A? exp A2
X, A, 7—1 +s? 5i1+x28"i 2i1+ xzﬁ“j (16)

However, the asymptotics of (11) includes contributions from the end-points
u=12 as well as the saddle ug. This can be seen by realising that the steepest path between
-2 and +2 runs from -2 to infinity in the negative haif-plane, through ug to infinity in the
positive half-plane, and back to +2. The end-point contributions oscillate conventionally,
with the wavenumber -1, s0 we must be sure that they do not mask the superoscillations
that exist tor small & The condition for this is that the absolute value of the Gaussian in
(11) must not exceed unity at the end-points. Thus

A’ -4 .
CXp —E:s-i—' <1, 1.C. A<2 (17)

(we include the equality because the end-point contribution is smaller than that from the
saddle by a factor §). Eq.(13) now implics that the maximum rate of superoscillation
obtainable with this model is K=3. (It is worth remarking that x=0, A=2 lies on the anti-
Stokes line for the error funictions in Eq.(12), that is, where the cxponential coatribution
from the saddle exchanges dominance with those from the end-points.)

The representation Eq.(1) does not have the form of a Fourier transform, namely
(for a band-limited function)

f(x,A8)= _}1‘"" piixg}f(q) (18)

[P
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It is however easy to cast it into this form. The transform f(q) depends on the inverse
function of k(u); this is multivalued, and the path of integration can be deformed into a
loop around a cut extending along the real axis negatively from the branch point at g=1
(the ends of the loop are pinned to the cut, at g=-1 for k5 and at the essential singularity
q=0 for k1, k2, and k3). Again there is a dominant saddle, which for sinall £ lies at g=K,
and the loop can b expanded to pass through this. All previous results can be reproducexd
in this way.

3. Numerics

The aim here is twofold: to compare the saddle-point approximation Eq.(7) with
the exact integral (1), and to exhibit the superoscillations. 1 carried out computations of f
for the wavenumber functions k1, k2, and k3 (Eq.(2)), but will displuy results only for
Re f (Im £ is similar) for k5 (Eq.(10)), with the truncated integral of Eq.(11), for which
the results are very similar., The computations will be exhibit. .1 for the fastest
superoscillations, namely K=3, that is A=2 (Eq.(17)), choosing 8=0.2,

Figure 3 shows the results. The superoscillations for small x, with period 2a/3 ,
are shown on figure 3a, and figure 3b shows a range of x where there are conventional
oscillations, with period more than 3 times greater (actually about 8.4 - cf. figure 2,
where £ ~ 1.6 corresponds to x ~ 40). In both cases, the approximation (in this case
Eq.(16)) agrees well with the exact expression, Eq.(12). For exumple, the fractional error
is 0.18 for x=2, and 2.8x10-18 for x=42. Notc the enormous ratio of the sizes of f for
large and small x; from Eq.(16), this can be estimated as exp(36)~1016 (the asymptotic
ratio of Eq.(8) is not attained in figure 3b). The transition between the superoscillation
and conventional regimes is clearly shown in figure 3c.

In these computations, the value A=2 is the largest for which the saddle dominates
the end-points. The competition between contributions shows up most clearly at x=0, for
which (12) gives

1 A
0,A4,8)=Reerf{-| v2 +i~= 19
£(0.4.8) { 5 ﬁ)} (9)
For A<, f is well approxirnated by the saddie contribution of unity, for A>2, the end-
points dominate and f increases exponentially, Eq.(17), masking the superoscillations for
small x. This is illustrated in figure 4. Even at the critical value A=2, that is, on the anti-
Stokes line for the function (19), the exact vaiue f=0.945 is close to the saddle-point
value f~1.
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Figure 3. Computations of £x,2,0.2) for the truncated integral, Eq.(11), showing (1), superoscillations,
and (b) conventional oscillations, Circles: exact expression, Eq,(12); full lines: saddie-puint
approximation, Eq.(16). In (¢) the logarithms are basg 10
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Figure 4, Computations of log If(0, A, 0.2)l, Eq.{19), for the truncated integral Eq.(11); logarithms arc
base 10. Note the exponential growth after crossing the anti-Stokes linc at A=2

4. Beethoven at 1Hz

Professor 1. Daubechies hay informed me that superoscillations are known in
signal processing, in the context of oversampling, This is sampling a furiction faster than
the Nyquist rate, i.e. at points x=n7 where the function is band-limited by kI<1. If a
function is oversan  led in a finite range, extrapolation outside this range is exponentially
unstable?. She quotes B. Logan as saying that it is possible in principle to design a
bandlimited signal with a bandwidth of 1Hz that would reproduce: Beethoven's ninth
symphony exactly. With the superoscillatory functions described in this paper it is
possible to give an explicit recipe for constructing this signal, as I now explain,

We require superoscillationy for the duration T (~4000s) of the symphony.

Therefore the desired signal B(#) can be represented as periodic outside this interval,
namely

. 2mnt }

N
B(t)= ¥B, cxp{l S (20)
-N r

Here N is the order of the Fourier component corresponding to the highest frequency
Vmax = N/T (~20kHz) it is desired to reproduce,

‘To approximate this with a signal band-limited by frequency vy« 1Hz) we ke
the replacement

cxp{i-z—{%} @, Q@




where (cf.Eq.(1)) @, is the superoscillatory function

N 1 .
@, (1= g_slf_i—; I du exp{i2ztv(u)} cxp{—z—sf(u -iA, )2} (22)
n n

Here the frequency function v(u) never exceeds (for real ) its band-limited value
v(0)=vg, and A, and J, will now be determined by the requirement that &,
superoscillates with frequency »/T for time 7",

~he superoscillation frequency of @& 4(f) is v(id,) (cf. Eq.(3)). Thus from
Eq.(21) A, must satisfy

V(iAn) = )

z
T
We fix &, by requiring that the superoscillations are maintained for time T, in the seiw
that the replacement of Eq.(21) remains a good approximation. For this we require the
next correction to the superoscillatory exponential that @,(f) represents. Expanding the
saadie-point approximation tc Eq.(22) yanalogous to Eq.(7)) for small £, we find

@, (1)~ exp{i 2’;’" } exp{anaﬁ[—v'z(iA,,)}rz} 24)

The secund factor is an increasing exponential, because v’(iA,,) is imaginary, ana must
remain close to unity for 0<¢<T. Thus

-1
8 <<[2nfv(iA, )T 25)
Choosiug A, and &, as in Eqs.(23, and (25) guarantees that the signal B,,(£), with
its frequencies up to Vimax, will be imitated for time 7. When T the imitation will grow
rapidly in strength, and eventually, that is when it is oscillating at the frequency vy
corresponding to its Fourier content, it will acquire an amplification factor corresponding

to iis largest Fourier component n=N. An argument analogous to that feading to Eq.(8)
gives this factoi as

2
. ) q 2
F = cxp{gg% } >> exp{Aﬁn2T2|vN (IAN] } (26)

with .y determined by Eq.(23) with the right-hand side set equal to vipax.

et us calculate this amplification for the model frequency function

v(u) = vy cxp{-u2} @27
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(cf. k3(u) in Eq.(2)). We find
A% = 1og{3mal} 28)
Yo
and hence, from Eq.(26),
F> t:xp{47::2 logz(v_""ﬁl)v%axﬂ} 29
0

For Beethoven's ninth symphony this gives

F>>» cxp{lOlg} 30)

This amplification will not be achieved antil a time #7, which can be estimated by the
argument preceding Eq.(8) as

-1 2 T2
tr ~[vod%] ~ !m‘éL— ~ 108years 31)
0
Other choices for V(i) give similar expressions and numerical estimates.

The estimate of Eq.(30) indicates that to reproduce music as superoscillations
requires a signal with so much energy as to be hopelessly impractable, but more modest
bandwidth compression might be feasible.

5. Concluding remarks

Aharonov's discovery, elaborated here, could have applications in several
branches of physics. One possibility is the use of superoscillations for bandwidth
compression as discussed in 84, Another example, also in signal processing, concerns
the observation of oscillations faster than those expected on the basis of applied or
inferred filters. These would conventionally be interpreted as high frequencies leaking
through imperfect filters, but the arguments presented here show that the phenomenon
could have a quite different origin, namely superoscillations compatible with perfect
filtering.

Perhaps more interesting are the possible applications of superoscillatory
functions of two variables, representing images. One envisages new forms of
microscopy, in which structures much smaller than the wavelength A would be resolved
by representing them as superoscillations. (This is different from conventional
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superresolution, which is based on the fact that Fourier components larger than 2n/A can
be present in the field near the surface of an object, but decay exponentially away from
the object because the wavenumber in the perpendicular direction is imaginary, With
superoscillations, the larger Fourier components are not present.)

Superoscillauons can probably exist in random functions f{x): arbitrarily long
intervals, in which f'is exponentially small relative to elscwhere, could superoscillate.
Consider how this might be achieved. If f is Gauss-distributed, its statistics are
completely described by its autocarrelation function, which by the Wiener-Khinchin
theorem is the Fourier transform of the power spectrum S(g) of f. Even if f is band-
limited, it ought to be possible to choose S(g) with analytic structure (saddles with
Re g >1, etc,) such that the autocorrelation superoscillates as it falls from its initial value.
This idea is worth pursuing,

On the purely mathematical side, it is clear that superoscillations carry a price: the
function is exponentially smaller than in the regime of conventional osciliations, with the
exponent increasing with the size of the interval of superoscillations. We have seen
examples of this, but there ought to be a general theorem (perhaps based on a version of
the uncertainty principle).
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BERRY'S PHASE, MESOSCOPIC CONDUCTIVITY AND LOCAL FORCES
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ABSTRACT

A ring in a magnetic field whosee direction varies in space is considered. It is shown
that the Berry phase accumulated by the spins of clectrons encircling the ring affects
the conductance of the ring in a way similar to the Aharonov-Bohm effect. A time-
dependent Berry phase is shown to induce a classical motive force in the ring. The
condition for adiabaticity is studied, as well as devialions from that condition, The
relation to spin-orbit coupling is discussed.

1. Introduction

This paper studies an effect of the geometric (Berry’s) phase()(®)on electronic
transport in mesoscopic and macroscopic systems.®The reader might be somewhat
surprized by the order in which the subject is presented below. To some extent, that
order resembles a prescntation of the theory of electromagnetism, but in reversed
order. A study of electromagnetisin usually starts with a description of Coulomb’s
and Lorenz’ forces. Then, the concept of potentials is presented, as a tool for calcu-
lating forces and fields. And finally, the special rolc given by Quantum Mechanics
to vector potentials, as geometric " phase shifters”, is introduced, and the non-local
nature of Quantum Mechanics is revealed. This paper, however, like many other
studies of Berry's phase, starts with an investigation of a quantum mechanical geo-
metric phase. In the case discussed below, the phase is accumulated by un electron’s
spin moving in a space-dependent magnetic field. Then, this effect is put in terms
of a vector potential. And finally, the effect of this vector potential on the classical
dynamics is revealed.

2. A conducting ring in a space—dependent magnetic fleld

The simplest example that illustrates the concept of Berry’s phase is that of
a spin-§ that follows adiabatically a magnetic field whose direction varies in time.
When the maguetic field returns to its initial direction, the spin wave function
is found to have acquired a geometric phase factor, given by half the solid angle
subtended by the magnetic field during its variation. This phase can be regarded

6"
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as induced by a geometric flux, similar to the phase shift induced by an electro-
magnetic flux in the Aharonov-Bohm effect.(*)(

Motivated by this similarity between the fluxes, we tum to investigate Berry's
phase analogies to two physical effects involving an electromagretic flux: the in-
duction of current in a conducting ring by a time dependent electro-magnetic flux
(through Faraday’s law), and the effect of time-independent flux on the conductiv-
ity of a mesoscopic ring (through the Aharonov-Bohm effect).(9(®)n these analogies,
the electron’s spin plays the role played by the electric charge in the electromag-
netic effects. Another analogy, introducing persistent currents induced by Berry’s
phase in ballistic rings, was recently discovered in an instructive work of Loss, Gold-
bart and Balatsky(®). In the following paragraph we define a thought experiment
in which electrons in a mesoscopic conducting ring follow adiabatically a magnetic
field whose direction varies spatially, abd thus accumulate Berry’s phase. By map-
ping that phase onto an effective vector potential, we show that when the phase is
time-independent, it affects the ring’s conductance. When the phase varies in time,
it induces a current in the ring. By discussing the analogies to the electromagentic
phenomensa, we point out that the effect of a time-independent geometric flux is
observable only in mesoscopic rings, while the effect of a time-dependent geomet-
ric flux should be observed also in macroscopic rings, i.e., it does not depend on
phase coherence. Since the adiabatic approximation is crucial for this discussion,
we «xamine the conditions for its validity, and its dependence on the disorder in
the -ing. We also comment on the remnants of the geometric phase in the non—
adial atic limit, and on the relations of these effects to spin—orbit coupling. While
for p-actical reasons our discussion i concentrated on the electric properties of the
ring, we nevertheless stress that the eleciric charye of the electron plays no role in
our analysis. Our resulls stem from the Zeeman interaction, and are therefore valid
for all spin-{ particles, irrespective of their charge.

We consider a quasi-one dimensional ring, whose radius is a. The ring lies
in the z ® y plane, and its center is in the origin. A non-uniform magnctic field is
applied on the ring in the following way: first, a magnetic field B, tangent to the
ring is induced by a current carrying wire lying along the z~axis. Second, a uniform
field, B,, is applied on the system, parallel to the z-axiz. Adopting a cylindrical
coordinate system, the total magnetic field has a component By created by the wire
at the ¢ direction, and a component B, at the i direction. Along the ring, the
magnitude of the field is constant, but the direction varies. In fact, it follows a
cone shaped path, where the angle between the cone and the z-axis, denoted by a,
sutisfies tana = ¢ (See Fig. 1). The spin of an electron that slowly encircles the ring
is then expected to follow the direction of the magnetic field and thus accumulate
a reometrical phase of

ﬂ;(” = (1 £ cosa) 1)

i.e., half the solid angle subtended by the the magnetic field it goes through (The 1, +
and |, — refer to the spin being parsllel and anti-parallel to the field, respectively).
The angle o is determined by the current through the wire and by the uniform field
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along the z direction, both of which we regard as the controlled variables in the

experiment.
2
* /8
¢
By

A

Figure 1: The physical problem considered. A ring is put in a uniform external magnetic field B,,
and a tangential magnetic field By created by the current carrying wire. The ratio between the two
fields define the angle a.

3. The adiabatic approximation

Our discussion of the above described thought experiment involves several
parts. In this section we use the Born—-Oppenheimer approach in order to separate
the Hamiltonian of the system into two parts, one (the adiabatic part) in which
the spin follows adiabatically the direction of the magnetic field, and one (the non-
adiabatic part) which is purely non-diagonal with respect to the eigenstates of the
adiabatic part. We show that the adisbatic part includes a geometric vector poten-
tial that couples to the electron’s spin. Assuming that the ring is one dimensionai,
its Hamiltonian is 2

H=gr+ V)~ uB(9) @

where Il = — i f— <Bu¥e iy the generalized momentum (a system of units where % =1 is
utilized), V(4) 1s the impurity potential along the ring, 4 is the magnetic moment, M
is the mass of an electron, and & is the Pauli mutrices vector. Attempting to discuss
the adiabatic limit, we diagonalize the spin dependent part of the Hamiltonian,
treating the angle ¢ as a parameter. Denoting the two eigenstates by [1(#)) (|1(#)),
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corresponding to the spin being parallel (anti-parallel) to the magnetic field, we

get )
on= (g ) e e = (g ®)

—En ¥y co8 %
The corresponding eigenvalues are ¥uB where B = ,/B} + B2. Defining now |¢) as
the cigenstate of the operator ¢, the two scts of states {|1(¢)) @l 0 d< 21}

and { ) @ 16) 10 < ¢ < 2:} coustitute together a basis of the Hilbert space of
the Hamiltonian (2) . Bach one of these sets span a subspace in which the spin is
either paralle]l or anti-parallel to the magnetic field. The impurity potential in spin
independent, and hence, it is diagonal in that baris. However, the kinetic part of the
Hamiltonian has matrix elements that connect states within the subspaces defined
above, as well as matrix elements that connect states of different subspaces, i.e.,
induce spin—flips. A simple calculation shows that the matrix elements connecting
states within the first sub-space are,

(16 @) o 1 = o LB @

The corresponding matrix element in the second subspace has Q! rather than .

These matrix elements demonstrate that within the adiabatic approxima-
tion, the spatial variation of the magnetic ficld induces & vector potentialPwhose
magnitude is independent of the electron's charge, but is rather determined by
the directicn of the spin being parallel or anti-parallel to the field. Following the
method outlined recently by Aharonov et.al.,(® we construct an operator A, in such
5. way that the operator gj{il - 4,]? has diagonal matrix elements given by Eq. (4),
and does not have any clements connecting states with opposite spin direction. A
simpl= calculation shows that

Ay = 51~ gin afcos @ - § — sinac,] (5)

Note that A2 = Jysina is a c—numb(‘r, and A, has non-zero matnx elements only
between states of opposite spin directions. Consequently, the separation of the
Hamiltonian to an adiabatic part, Hy, and a purely non-adiabatic part, H,, is given
by

2
Hy = %‘Jl_ +V($) — pub(d) -5 + sin? o (6)

1
8Ma?
and (

Hy= g0 (0 - A+ A(TL = 4,)] @)

By comstruction, Hp has a sei of eigenstates |n, 1) = |1(¢)) ® ¢} (¢) in which the

spin is paralle] to the field, and a 1 of eigenstates |n,]) = |[($)) ® ¥4(¢) in which
the spin is anti-parallel to the fiel. ‘he wave functions ¢}(¢) and vi($) satisfy
the Schroedinger equations HJWylY - EIM¢I) | where the Hamiltonians H]® are

given by,
710 - 1 I 1 Qi) ! F V() F ubl 1 ‘2
o {2M[ 2xa ! (@) F b+ AMal ™ } ®

i
|
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Each of these Hamiltonians is u projection of the full Hamiltonian onto one of the
subspaces defined above. The meaning of the induced vector potential becomes
clearer when one considers space translation transformations. The momentum op-
erator, p,, i8, of course, the generator of such a transformation, i.e., for any state
¥, (¢|e"";‘—"|w) = (¢ + ¢ol¥). In such a transformation, the electron is translaied
spatially, but the direction of the spin is kept constant. On the contrary, the gen-
eralized momentum appearing in the adiabatic Hamiltonian, I - A is the generator
of a different translation transformation, a transformation in which the electron is
translated spatinlly, snd the direction of the spin follows the direction of the field.

We conclude this section by emphasizing its main conclusion: Under condi-
tions in which the adiabatic approximation is valid, namely, H; can be disregarded,
the ring can be viewed as composed of two uncoupled electron gases. Those gases are
subject to the effect of different geometric vector potentials and opposite constant
potential energy, ariginating from the Zeemsn interaction. They are also subject to
the effect of identical electromagnetic flux B,74? und identical itnpurity potential.
Each of the two gases obviously does not huve a spin degeneracy.

4. Non-local and local effects of the geometric flux on electronic trans-
port

In the next part of the discussion we assuine that the magnetic field is strong
enough for the adiabatic limit to be applicable. The discussion of the precise mean-
ing of "strong enough” is postponed to the next section. Assuming that the Zeeman
encrgy pB is smaller thun the Fermi energy, ¢, our ring cousists of the two uncoupled
clectron gases described above. The electric conductance of the ring is then the sum
of the conductances of the two gases. As discussed extensively in recent years (O(®
the conductance of a mesoscopic ring depends on a magnetic flux threading the
ring, through the Aharonov-Bohm effect. For rings in the diffusive regime, the
flux dependence of the conductance is manifested in two differcut contexts, namely,
the average conductance of an ensemble of macroscopically identical rings and the
sample-specific fluctuations, The flux-dependent part of the average conductance
wasg calculated by Al'tshuler, Aronov and Spivak®*), and shown to be,

_e'a sinh(I')

b = _Tcosh(l‘) - cm(%’t) ®
where ¢ is the flux threading the ring, T'= %2 and Jy s the phase breaking length.
Adjusted for our purposes, this expression is written for one spin direction. In the
configuration we discuss, the flux threading the sample is a sum of an electromag-
netic flux ¢, = Bywa?, and the geometric flux ¢, = $8(1+ cos a), where the + refers to
electrons whose spin is parallel (anti-parallel} to the ficld. It should be noted here
that the sun of the two geometric fluxes corresponding to the two gases equals n
flux quantum. This stems from the fact that the sum of the geometric phases accu-
mulated by the two spin directions is 2». Since all propertics of tle ring arc periodic
with respect to one flux quantum, one can view the two electron gases ns subject to
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the influence of geometric fluxes of equal magnitude and opposite directions. The
total quantum correction to the conductivity is given by

o =

_ta sinh(T") + sinh(I') ]
I leosh(F) — cos(2ismteal) * cogh(T) — cos(2Hlenztl)

This quantumn correction to the classical Drude conductance results from interfer-
ence of pairs of time-reversed paths.(19The flux dependence stems from the phases
accumulated by those paths that en. “-cle the ring. When I > 1, the interference of
long paths that encircle the ring mo: than once is exponentinlly suppressed, and
the flux dependent correction to the conductivity can be approximated by

(10)

6o = — g‘: ) cm:(4———r;(:m ) cm(%) (11)

Then, the % periodicity of the Aharonov-Bohm oscillations of the conductance is
multiplied here by » geometrical factor, cuo(%a:-l). Note that the difference between
the Fermi wavelengths of the two spin directions is not reflected in the expressions
above, since the quantum correction to the conductivity is independent of kply.

The effect of the geometric flux on the wnmple-specific fluctuations of the
conductance is best understood when the periodicity of those oscillations with re-
spect to B, is considered. In the absence of geometric flux (By = 0), the ¢p flux
periodicity yields a field periodicity of AB, = 2%, irrespective of the spin direction.
In the presence f geometric flux, a veriation of H, varies both the electromagnetic
and the geom "ixes, Thus the periodicity with respect to B, is changed, and is
no more indepeu « 1t of the spin direction. Specifically, when B, € 8, (i.e., a — §),
the geometrical flux is approximately -‘,"ﬁ';t, and the B, period becomes,

éa

AB, = m (12)

where the +(—) sign refers to the spin being parallel (anti- parallel) to the field. The
magnitude of the sample—specific fluctuations is not affected by the geowetric flux,
1.e., it is of the order of f,:-

Egs. (10) - (12) suminarize our predictions for the effect of Berry’s phase on
the conductivity of a mesoscopic ring. We now turn to discuss the case of a time-
dependent geometric flux, and, in particular, the currents it induces in the ring. We
consider the case in which the tangential masgnetic ficld is By = B§coswt. In order
to avoid, at this stage, the complications involved in the analysis of the adiabatic
condition for that case, we limit ourselves to the case in which the eleciion gas is
completerly spin-polarized. This is realized when ep + w € uB,, i.e., the electron
gas is spin—polarized, and an absorbtion of an energy quantum hw still does not
allow electrons to flip their spins. For semi-conducting rings, this condition may be
fulfilled at fields of the order of 1 Tesls. By passing, we note that another way to
realize a completely spin polarized electron gas is by an injection of spin polarized
electrons through a ferromagnetic-met.lic interface.(!"Under the assumption of
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complete spin polarization, the electron gas in the ring is subject to the cffect of a
time-dependent geometrical flux

$o do 1
@ =——(1+c0la(t))=—-{l+ }
't 2 ;;1+(-Ef-coawl)7

Consequently, this gas is subject to a motive force ¢, given by ¢ = —%4fx, and this
motive force induces a current in tue ring, according to Ohm'’s law. Assuming that
B} < B,, the motive force induced by the time dependence of ¢, is
0 2

= —lﬁu(—ﬂg—/—lﬂ sin 2wt (13)
The frequency of the induced current is twice as large as that of By, so that it
can experimentally be distinguished from currents induced due to the wire being
not exactly perpendicular to the ring. For 4, = 1 Tesla, By = 0.2 Tesla und w = 1
GHz, this motive force has an amplitude of 10-7 Volts. Similarly to the electro-
motive force, the geometric motive force can be amplified if the ring is replaced by
a solenoid.

There arc a fcw poiuty that should be stressed regarding the case of a time
dependent geo~etrical flux. Firstly, contrary to the effect of a time independent
flux, the time dependent geometric flux exerts a force on the electron, (**similar to
the electric force exerted by s time—dependent clectromagnetic flux. Thus, similar
to the obseravtion of currents induced due to Faruday’s law, the observation of
currents induced by the geometric flux does not depend on the electron phase being
coherert along the ring. Those currents should be observed in macroscopic ringg,
as well as in mesoscopic ones, In fact, the force accelerating the electrons in the
case of a time depedent geometric flux is classical.(1¥Secondly, the motive force
induced in the ring is not electric, since if the clectrons were replaced by neutrons,
the picture would not have changed. The ficld, given by the derivative of the vector
potential with respect to the time, does not couple to the electric charge, but rather
to the direction of the spin. Thirdly, the origin of the motive force exerted on the
electron can be understood by noting that in our symmetrical structure the sum
of the orbital and spinor angular momenta in the z direction is time-independent
even when the angle o is time «dependent. Thus, a change in « transfers angular
momentum from the spin to the orbital motion of the electron. A more general
analysis of this force, from the point of view of classical equations of motion is
given in Ref. (13).

So far we have discussed the currents induced by the geometric  -otive force
only in the case of complete spin~polarization of the clectrons. Howev.r, the flux,
motive force and current ali depend on the direction of the spin. Therefore, if the
ring includes two electron gases with opposite spin directions, the currents induced
in the two gases are opposite in direction, and the net current is proportional to the
difference between the conductances of the two electron gases in the ring. Such a
difference arises from the 248 difference between the kinetic energy of electrons in
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the Fermi levels of the two electron gases.

5. Conditions for the validity of the adiabatic approximation

In this section we aualyze the conditions under which the non-adiabatic
purt of the Hamiltonian, H,, can be disregarded. Our discussion concentrates on
the time-independent magnetic field and on the non-local effects it induces in the
electronic transport of the ring. We start the discussion by considering the ballistic
case, where V(¢) = 0, a case for which the full Hamiltonian can be exactly diagonal-
ized. For a ballistic ring the eigenstates of both HIY are given by y1V(¢) = et
The matrix elements of i, connect only states of opposite spin direction and iden-
tical spatinl wave function. They are given by (m, | [Hi{n, 1) = —%E,l)-sinuﬁ,,'m, where
n' =n— e’ Consequently, the ezact eigenstates of the full Hamiltonian (2) are
given by

i@y = (0F) aa e (PRI g

where 7 is implicitly given by

W@ -1
coty =cotar + ?AT:E’;TE—si—n)_L; (15)
The correspouding eigenvalues for |n, ) nud i, |) are
b ] 2 [
By = s - B0 4 cony) 5 pbicos(— a) (16)

IMa? T T 4Mal

The adiabatic approximation taken in the previous sections amounts to ap-
proximating v = a for eigenstates for which the spin direction is parallel to the
magnetic field and v = o + » for eigenstates for which the spin direction is anti-
parallel to the field. As seen from Eq. (15) , the adiabatic approximation is valid,
for a ballistic ring, when uB % . The physical meaning of this result is better
understood when noting that #$- is the time it takes an electron whose momentum
is L to encircle the ring. The adiabatic approximation is then valid when this time
is much longer than the precession time of the spin. Since our main interest is in
the validity of the adinbatic approximation for electrons at the Fermi level, where
4= = vp is the Fermi velocity, the condition for the adiabatic approximation to hold
lB’ pBa

kTS
The exact solubility of the ballistic case allows for & detailed analysis of deviations
from the adiabatic imit. This analysis is given in the next section.

In the presence of impurity potential, the eigenstates of H]!¥ are not eigen-
states of the momentum operator 1, and therefore i, couples each eigenstate |n, 1)
to a continuum of states {m, [} {(and vice versa). Due to that coupling, each adiabatic
cigenstate acquires a finite lifetime, r. We now calculate this lifetime perturbatively

»1 (17)

-
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using the diagrammatic impurity technique.(® According to Fermi’s golden rule, the
scattering time from a state |n, T) due to the perturbation H, is

-(ln Lt )= 2 — =3 lim, tlHm, 1)26(EL - EL) (18)
B

(Note that H; is purely non—diagonal in spin statesy. While this lifetime is ~ mean-
ingful quantity for a given ring with a given impurity configuration, it is no  uitable
for impurity averaging — one cannot identify a state |n,1) in two rings of different
impurity configurations. Therefore, we define the average lifetime for a state with
cnergy k, X(E), as the average of L{|n,1)) over all states |n,1) with energy E:
tm=2 T 1750 — ED . 11l PS(E — ) (19)
[m,1)

where v! is the deusity of states with the spin parallel parallel to the field. The
corresponding expression for the lifetime of a state {m,[) has »! rather than o1
Next, we examine the perturbation H,. This perturbation ir a product of two
operators. The first, A,, flips the spin state from being parallel to the field to being
antiparallel, but does not affect the spatial wavefunction ¢}. The second, (11~ 4,),
is the projection of the velocity operator onto the spin—diagonal subspace. Thus,
the average lifetime for a state with energy £ is

LB = rslny B Dy Sy 88 — EDBCE - EL) | [ deul (@), o)
= KA TET HaF Ziya) (UnloB(E — H])08(E —~ H{) ) (20)

where ¥ = (i gy - %2x2). Note that the second line of Eq. (20) is all expressed
in terms of single particle spinless operators and wave functions. There are two
differences betwecn the two spinless Hamiltonians H}, H}. First, they differ in the
vign of the Zeeman energy. Second, they differ in the value of the geometric flux.
If the second difference is disregarded for the moment, then the Zeeman energy
difference can be absorbed in the energy arguments of the s-functions. When this
is done the two Hamiltonians become identical, but the cnergy arguments in the
two §-functions differ in 2sB. Then, Eq. (20) strongly resembles Kubo's formula
for the ac conductivity,
2
Tac(w) = 4’;: 3 (Walb(er + o~ Ho)o8(ep — Ho)oltn) (21)
¥n

Thus, one might expect that under conditions in which the flux sensitivity of 71, 5}
can be neglected, the average life-time L(E) is proportional to the ac Kubo conduc-
tivity, at frequency 2uB. This neglect can be expected to be valid up to a leading
order in L, an order in which the conductivity is given by the flux-independent
Drude formula. The diagrammatic calculation presented below shows that this
expectation is indeed correct.
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The diagrammatic calculation of Eq. (20) starts by writing

with ¢ being an infinitesimal real number, and G*(E), GA(E) being the advanced and
retartded Green’s functions. Note that H, is the adiabatic Hamiltonian, sncluding
the impurity scattering. Employing the conventional impurity technique, we first
calculate the contribution of the "classical”, Drude-type diagrams (see Fig. 2).
Those diagrams are calculated by approximating the Green’s function as diagonal
in momentum space, with an imaginary part ;1 added to the energy (7. being
the elastic mean free time), namely, GEl(p,¢) = —E—-_‘-%',‘-_f;)x_- and correspondingly for

GAY,GRL (A4, The energy EXY is given here by Ep = yip(p — Bp2e + £0,)? + ub.
Substituting these Green's functions in Eqs. (20) and (22), and taking only terms
of order ¢pry, we indeed find that the inverse lifetime is proportional to the Drude
expression for the ac conductivity.

1 D sin’ o D x* .4 0.(2uB)
T (2xa) 2 (2pBrep +1  (2xa)? 2 T (23)

where D is the diffusion constant, and e,., 04 are the Drude expressions for the ac
and de real conductivities. Eq. (23) is our first approximation for the impurity
averaged lifetime. Before proceeding to improve it, we first use it to get a first
approximation for the condition for adiabaticity.

Figure 2! The Drude—type disgrams sumined in the expression for the average lifetime, Eq. (23).

For an electron to be non-locally affected by the geometric flux, its spin
has to follow the direction of the magnetic field a time long enough such that the
geometric phase it accumulates is significant. Hence, when the angle o is of order
unity, the lifetime of the adiabatic states, given in Eq. (21), has to be longer than the
typical time it takes a diffusing electron to encircle the ring, m’,,‘-ﬁ This condition
is fulfilled when

2uBrg ® 1 (24)
Therefore, in the diffusive regime, the adiabatic approximation is valid when the
spin precession time is much shorter thin the time between elastic scattering events.
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In terms of the ac conductivity, the adiabatic assumption is valid when the Zeeman
energy is large enough so that the ac conductivity at the corresponding frequency
is much smaller thun the de conductivity, Eq. (24) is the condition for adiabaticity
also when o « 1. In that case, the lifetime of an electron has to be long enough
for the electron to encircle the ring a~! times — until it accumulates a significant
geometric phase. Thus, the condition for adiabaticity becomes L » 22 which
reduces to Eq. (24).

The inverse life-time 1 was calculated above only to the leading order ¢pra.
The next order contribution, independent of ¢y, should be calculated by summing
the maximally crossed diagrams, the Diffuson and the Cooperon. Agpin, these
diagrams are pr -rtional to those appearing in the calculation of the quantun
correction to the conductivity at frequency 248, with a difference in the flux sffecting
each of two Green's functions. However, as long as the Diffuson and the Cooperon
are expected to be a small correction to the classical Drude result (that is, as long
as kpl > 1), Eq. (24) can be accepted as a first approximation o the adiabaticity
condition. Then, the Zeeman frequency 2u# should be of the o ler of the inverse
elastic mcan free time. For such a high frequency, the quantum correction to the
conductivity is vanishingly small.®}® Therefore, for rings in the metallic regime,
where kpl > 1, Eq. (24) is the condition for adiabaticity.

Wo conclude this section by making n few comments regardiug the adi-
abatic condition (24) . Fimt, we interpret its physical origin. As argued by
Thouless,'contrary to the planc waves eigenstutes of free electrons, the single
electron eigenstates in a disordered system are superposition of plane waves, with
typical spread of 3, where ! is the clastic mean free path. In kinetic energy terms,
this width is translated into 2. Therefore, the matrix clements of the generalized
momentum operator, I, between states whose kinetic energy differ by nore than
2 are negligible. On the other haund, flips of the spin due to H, occur only at the
Fermi level, i.c., between states whose kinetic encergy differ by 2u8. Hence, when
the condition (24) is valid, the non adiabatic matrix elements between states at the
Fermi level are negligible, and the life--time becomes long. In fact, the condition
(24) can be understood ulso when one considers sn electron moving along a typical
one dimensional diffusive path ¢(f) (¢ is agnin the azimuthal angle describing the
clectron’s position). In the limit of a strong magnetic field, the amplitude of a
non--adiabatic spin-flip of the electron is given by(1908)

()= [ I0pear (25)

The states [1},]]) depend on time only through the time dependence of the path
#(t). Thus, the time derivative makes the scalar product {(j(t)i§;|i(#)} proportional
to the electron’s velocity. The amplitude a() becomes exponentially small when
the phase of e2##t oscillates many times during the characteristic period in which
the scalar prduct (1(1){4;11(1)) significantlly varies. This time is the characteristic
time during which the velocity varies significantlly, namely, the elastic mean free
time. Therefore, when the Zeeman frequency 2uB is much larger than the inverse
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elastic menan free time Eq. (25) yields an e:ponentia''y small amplitude. Second,
we comumeat that under the strong magnetic fields rev, dred to satisfy the condition
(24) , one should distinguish between the diffusive limit w.ry < 1 (where w, is the
cyclotron frequency) and the Landau levels imit w.r,; » 1. The relevant limit is
determined by the value of the electron’s g-factor, Here we assume that the diffusive
limit applies. Third, we - omment on the relevance of ¢ to interference effects. As
discussed above, the geometric phase accumulated by the electron depends on the
direction of its spin. If that direction is flipped at various points along the path,
this phase is randou ized. Heuce, non—adiabatic spin-lips dephase the interference.
In the present work we negglect all other mechanisms of dephasing, and thorfore r
i8 to be identified with the phase breaking time 7r4. It is then useful to calculate
tl-e ratio of the circumierences of the ring to the phase breaking length Ly = /D1y,
denoted 57 T

= e _ VIxsing (26)
=Ly = Vi

TVe emy hasize that vs long a8 no  “her dephasing mechanisms are present, this
ratio depends neither on the radiv 42, nor on the temperature 7. And finally,
we rote that for an elastic wan {ree time of 10-!! yec and a g-factor of 10, the
adiabat'city condition {24) ix satisfind for fields larger thau 0.1 Tesla. The ring can
be approximated as one dimemnsional as long as ils cross sectional ares s satisfies
Bys € ¢o (where ¢o is the flux quantum). i.e., as long as it is almost not threaded
by magnetic flux cveated by By, For B, = 0.1 Tesla, the cross sectional area has to
be smaller than (20004)3.

1

6. Kemunants of the geometric flux in the non-adisbatic case

Our analysis of the effect of the geometric flux on transport properties of
tle ring has so far concentrated on the adiabatic limit. We now turn to discuss the
non-adiabatic limit. Again, we distinguish between balli:tic and diffusive rings.

The exact solution of the balisiic case was given above, in Eqs. (14)-(16) of
gection (5). For the convenience of the reader we rewrite the solutions here,

In, 1)) = ™% ( cos }c—ié) and n, 1(6)) = ™™ (iain "'-e—-'i) 7)

—sin cos T
The angle 4 is implicitly given by
W@ -1)
4Ma?uBeino

so that for any finite value of ¥ it is smaller than o. The corresponding eigenvalues
are

coty = cota + (28)

a2 Ao - 1)
B = garas ~ —abgaT
The significance of the angle v is understood via the calculation of the expoctation
velues of the projection of the spin onto several axes, We calculate these expec-
tation values fo. the [n, 1) atate. The generalization for the In, |) states is obvious.

(1 £cosy) ¥ pBeos(y~ a) (29)
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First, we note that the expectation value of ¢, is cosy, i.e., v is the angle to which
the spin bends relative to the z—axis. It ia then pot surprising to find that the
expectation value of the spin projection onto the direction of the magnetic field is
cos(y—a). Two other spin projections of interest are the projection onto two di-
rections perpendicular to the magnetic field, the direction of %—f—, which is here the
radial direction, and that of 5 x %%. 1t is a matier of simple algebra to find that the
former is zero, while the latter is sin(y - a). The significance of the last two results
and their rel vance for the understanding of the forces acting on the electron are
discussed in Ref. (%,

As seen from the exact solutions Egs. (27)—(29), when the magnetic field is
not strong enough to force the spin to bend in an angle «, the spin bends to a smaller
angle v < a. The Zeeman enecgy is then proportional to the projection of the spin
onto the magnetic field, and the induced vector potential is still of the form found
in the adiabatic case, but with the angle o replaced by . However, in the adiabatic
. limit the vector potential was determined only by a and the direction of the spin.
Thus, it deserved the name "geometric”. In the non-adiabatic case the vector
potential depends, through the angle 7, on the magnitude of the magnetic field aud
the valocity of the electron. Eigenstates of different velocities are then subject ¢+
different vector potentials. The vector potential is no more purely geometric.

The observations discussed above in the context of the ballistic czse allow
for & qualitative understanding of the non-adiabatic limit of the diffusive case.
Diffusive eigenstates are built out of superposition of many momentum {or velocity)
components. If the magnetic field is too weak to force adiabaticity, each of these
components is subject to a different vector potential, and thus also to a different
flux. If the range of fluxes induced in the different momentum components is of the
order of a flux quantum, the =nergy of the diffusive eigenstate loses its sensitivity
to the direction of the magnetic field, and the geometric effects are lost.

. ———— e -

7. How is the geometric flux related to spin—orbit coupling?

Some of the phenomena discussed in this paper, and in particular the mul-
tiplicative factor in Eq. (11) are similar to the phenomena that has been shown
by Meir, Gefen and Entin-Wohlman(!”to result from a one-dimensional ring of
spin-orbit scatterers. It is instructive, then, to devote this section to the relation
between the geometric phase and the spin-orbit coupling. This relation bhecomes
clear when the spin—orbit coupling is expressed as a vector potentiai. The origin of
the spin—orbit coupling lies in the coupling of & moving magnetic moment ji= f&
to an electric field £. In the frame of reference i which the magnetic moment is ut
resi the electric field is Lorenz-trensformed to a magnetic field. If the velocity of
the nagnetic moment is slow compared to the speed of light, the magnetic field in
the res* frame is given by ¢ x E. The magnetic moment couples to that magnetic
field ' .2 the Zuwman interaction, thus yielding an interaction term ji- ¢ x E = ¢. 2 x E.
Havirg in mind the interaction term of an electron with an electromagnetic vector
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potential 7. A, we find that £x E = ;£4,#x E can be identified as the spin-orbit vector
potential. When the magnetic moment arises from the internal spin of a charged
particle, as in the case of an electron, the acceleration of the particle due to the
interaction of the charge with the electric field has to be taken into account, and
this leads to a correction factor of § to the above expressions. This factor of } is
known as the Thomas precession factor.(!®Similar to the geometric vector potential
discussed in this paper, the spin—orbit vector potential is, in principle, space and
spin—dependent, and its values at different pointa in space do not necessarily com-
mute. It is important, however, to note the differences between the vector potential
resulting .rom the spin—orbit coupling and the one resulting from the Zeemai: in-
teraction with a space dependent magnetic field. The first difference has to do with
the symmetry with respect to time reversal. While the spin—orbit interaction gives
rise to a vector potential, it does not break time-re -sal symmetry -- it does not
induce a ¥uB term. Thus, for each eigenstate for which the effective spin—orbit
flux is @, there is another state, degenerate in energy, for which the effective flux is
~&. This is Kramers' degeneracy. O the contrary, the effective flux induccd by the
space-dependent magnetic field is accompanied by the Zeeman energy, that removes
the degeneracy. The second difference is a differcnce in magnitudes. Being inversly
proportional to me?, the spin—orbit interaction term is very small, unless it invloves
very strong electric fields. In the coutext of condensed matter physics such fields are
not "man-made”, but rather result from microscopic molecular charge distributions.
The microscopic molecular fields are strong enough to make the spin—orbit coupling
significant. Towever, they also vary strongly over microscopic length scales. Thus,
when the spin-orbit vector potential results from such microscopic fields, it is a
random quantity with a microscopic correlation length. As such, it is uncontrol-
lable, and usually its effect has to be everaged. This averaging gives rise to the
weak anti-localization effect.('®)The geometric flux resulting from Berry's phase, on
the other hand, is determined by the externally controlable magnetic field. It is
also worth noting that while both effects are geometric, i.e., can be expressed as
resulting from a vector potential, the origin of their geom~tric nature is completely
different.

Finally, we note that the understand' 1g of the spin—orbit coupling as emerg-
ing from a vector potential is useful for a simple analysis of the subject of "hidden
momentum” that has attracted some attention in the context of the theory of elec-
tromagnetism. (3%
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LANDAU-ZENER TRANSITIONS
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ABSTRACT

Adisabatic theory predicts the conservation of quantum numbers in processes with a
slow time-dependence, or in systems with slow and fast degrees of freedom. When
time scales are not infinitely separated, that is, when there is a breakdown of adi-
abaticity, then there is some transfer of probability from one slow quantum state
to another. This transition probability is given by the famous furmula of Lan-
dau, Zener, and Stiickelberg in the case of coupled, one-dimensional Schrodinger
equations. This paper presents a generalization of this formula to general coupled
Hermitian systems in one dimension. It is shown that the generalization is al-
most uniquely determined by the necessary invariance of the transition probability
under three groups of transformations, namely, scaling tran formations, canonical
transformations, and Lorentz transformations. The final formula for the transition
probability is a simple function of the simplest quantity one can construct which is
invariant under all three of these groups.

The topic of this paper grows out of the theory of adiabatic procesres and

geometric phases in quantumn mechanics, so 1 will begin by recalling some principal
results in this ar:a.

Consider a Hamiltonian which is parameterized by certain parameters R

which are slow functions of time:

H = H(q,p, R()).

1ue usual adiabatic {1 -orem of quantum mechanics asgserts that the state,

J(1)) = O u(t))

is an approximate solution of the time-dependent Schrédinger equation,

ihg“tw'(t)) = H(R)) (1)),

where [n(t)) ir an instantancous eigenstate of the Homiltonian,

HRM®)In(®)) = B (R(1)In(2)),

and where the phase 4(t) is given by

7(t):——;:/‘ Ea(R(1")) dt’+/ A(RY) - dR.

path

m

(2)

(8)
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Here the first term is the so called dynamical phase and the second term is Berry's
phase.! The differential form in the second term is a 1-form in parameter space,
given by

A=A .dR = i{n|dn). (6)

Thus Berry's phase is the line integral of the 1-form A along the path or history
of the system R(1) through parameter space, and the accumulated Berry’s phase
around a closed loop is given by Stokes' theorem in terms of the closed 2-form
B =dA.

The 2-form B has singularities in parameter space, similar to the singularity
in the magnetic field of & monopole at r = 0. If the Hamiltcnian in Eq. (1) has
no particular symmetry (as we will assume), then these singularities occur on a
manifold of codimension 3 in parameter spuce. This is because the singular manifold
is surface on which the energy level E,(R) is degenerate with another level, E,(R) =
Em(R). These singularities serve as sources for Berry’s curvature form B.

However, the condition which must be satisfied for the adiabatic theoremn
to be valid is that energy levels must be well separated. More quantitatively, the
condition is P B

n — Lm

A T @
which is a way of saying that the transition frequency between the lev.1 B, of interest
and the closest other level E,, must be large in comparison to the typical frequency
component of the Hamiltonian H. Therefore if the history of the system R(t) should
pass close to the sources of Berry's 2-form on the singularity manifold, then the
adiabatic theorem and tlie results quoted in Egs. (2)~(6) will break down, Let us
therefore introduce & perturbation parameter,

KA
= WE. = Fn)’ (8)

€

so that adiabatic theory can be systematically developed as an expansion in powers
of ¢. (More precisely, € is a typical value of the right hand side of Eq. (8), or a
scaling parameter for a family of systems,) Then we find that the results quoted
in Eqs. (2)-(6) above are the leading terms in an expansion in ¢, aud that there
are higher order terms which can be worked out. For example, Berry’s phase is a
correction which is of order ¢ in comparison to the dynamicul phasc.

Now let us generalize the situation, and allow the parameters to become
dynamical variables themselves. That is, let us replace R by (Q,P), which are slow
degrees of freedom, so that the (now time-independent) Hamiltonian reads,

H = l{q,p;'},P), 19)

wheie (q,p) are the fast degrees of freedom as beforc ‘The best known example of a
Hlamiltonian of this type is the Born-Oppenheimer linmniltonian which is so useful in
molecular physics. We may allow the slow degrees of freedomn to be cither classical
or quantum mechanical, but, even in the case in which they are quantum mechanical
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variables, it is often useful to ireat them by semiclassical methods. This is because
the separation of tite scales often implies that the slow quantum numbers are large
(as when slow and fast energies are comparable).

Therefore in either case it is appropriate to think of a classical phase space
for the slow degrees of freedom, which becomes identified with the parameter space
discussed above. This classical (Q,P) phase space naturally supports the symplectic
i-form §s = P - dQ as do all classical phase spaces, but it also supports the 1-form
for Berry’s phase, 85 = i{n|dn). It is gcometrically reasonable that these two 1-forms
should be linked somehow, and, indeed, as shown first by Kuratsuji and lida,? there
is an effective symplectic 1-form which is the sum of the two,

fure = P - dQ + ihi{n|dn), (10)

which governs the semiclassical quantization of the slow degrees of freedom. That
is, when the slow degrees of freedom are viewed on a semiclassical level, the average
effect of the fast degrees of freedom appear as a modification of the classical sym-
plectic form. Greg Flynu and [ have developed these issues in the context of WKB
theory, and explored some examples.?

We now introduce some fixed basis |a} for the fast degrees of freedom. By
“fixed” we mean that these basis vectors do not depend on the slow variables (Q, P);
fce example, in the Hamiltonian for a molecule, we could introduce a harmonic
oscillator basis for the electronic wave functions. Then the Hamiltonian of Eq. (9)
becomes a matrix in the fast indices,

H{q,p; Q. P) — Hup(Q,P), (11)

and the 5:hrédinger equation becomes a system of coupled wave equations in the
slow variatles:

|Hap(Q. P) ~ £ ap | ¥p(Q) = 0. (12)
For example, She moleculur Haniltonian has the Born-Oppenheimer form,
P .
(G5 ~ &) un 4 Vari@)] (@) =0, (13)

where Vop is & ma'rix of potential energies. There are no gange terms in Eq. (13)
Lscanse we bave ueed o fixed basis. More generally, we have a system of coupled
wave equations which we write in the form,

Dap(Q,P)¥p(Q) =10, (14)

where D is a matrix of operators in the slow variables, It is By. 114" which we wish
to treat by semiclassic:] methods, making as few assumptions ns possible about the
operators which appea: as the componeuts of D.

As s well known., scmicla..ical wave functions are represeated in the classical
phase space by means of so-called Lagraugian mavifclds,* whicl are N-dimensional
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surfaces in the 2N-dimensional phase space upon which the symplectic 2-form van-
ishes. Here N is identified with the number of slow degrees of freedom. As long as
adiabatic conditions are satisfied, the WKB solutions of Eq. (14) can be developed
in mam.aer which is much like standard semiclassical theory, except for interesting
issues regarding the gange form 05 and its role in quantization. I will not go into
this here, but rather I will devote the rest of this paper to another question, namely,
what happens if the Lagrangian manifold of dimensionality N should pass close to
the singularity manifold of codimension 3?7 This latter manifold can be scen ss the
manifold upon which the matrix D, regarded as a function of classical variables
(Q,P), has a double vanishing eigenvalue, i.e., it has a corank of 2 or more.

The answer, roughly speaking, is that there will be nonadiabatic transitions
between the fast cigenstates [n) and jm). These are the so-called Landau-Zener-
Stickelberg transitions, and the process is sometimes called “mode conversion.”
The original treatment of Landau,® Zener,® and Stiickelberg” was applied to the
case of coupled Schrédinger equations of the form of Eq. (13) in one slow degrec of
freedom, They derived the transition probability,®

2xA? ) ' (15)

T=ow (~ huafVyy — Vg,
where A, Vi1, and Vi; are parameters of the potential energy matrix at the mode
conversion point, where the prime indicates an X = Q derivative, and wheve v 15 the
velocity at which the particle moves through the mode conversion region. This case
has been subject to sixty years of investigation, and is now quile well understood.
For our purposes, the important thing to notice about this result is that it scules
as e/ in the adiabatic perturbation parameter introduced in Eq. (8). Thv:, we
see that these nonadiabatic transition probabilities are beyond all orders in ¢ and
cannot be obtained by straightforwacd perturbation methods,

Coupled Schridinger equations in higher numbers of slow degrees of freedom
are nnportant in molecular scattering theory, and are still an active area of research.
For more general wave equations of the type shown in Eq. (14), special cases have
been studied in one slow degree of freedom, but almost nothing is known about the
case of higher degrees of freedom. For the rest of this paper I will concentrate on
the case of mode conversion in one slow degree of freedom, treating the general case
indicated in Eq. (14). T will henceforth write (Q, P) for the slow variables (in italic
type), since there is only one degree of freedom.,

Thus we consider coupled wave cquations of the form,

Dap(Q, PYap = 0. (16)

The matrix I of slow operators can be of any size, but withoul essential loss of
generality it can be restricted to a 2 x 2 matrix. This is because the breakdown of
adiabaticity, when it occurs, generically only involves two different levels E, and
Em. Of course it is possible that more could be involved, and there is the very
interesting possibility of slobal degeneracies, but here for simplicity we will take
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the most generic case which is that of two interacting levels. Then onc can show
that adiabatic transformations can be used to reduce the original system to a 2x 2
system, essentially by block diagonalizing the original /7 matiix and leaving a 2x 2
block on the diagonal.

Accepting this, we can write the coupled wave cquations in the form,

(pu@m pam) (B)=o

Since we sometimes think of the slow variables (Q, P) in a semiclassical sense, we will
sometimes treat the matrix D as a matrix of classical functions of (@, P) (not opera-
tors). Thus, D becomes a Hermitian matrix ficld over the slow phase space. There
will be a breakdown of adiabaticity and subsequent Lundau-Zener-Stiickelberg tran-
sitions between fast every, 'cvels when both eigenvalues of this muitrix are small in
some region of phase space. Our goal will be to compute the transition probability 7
in such a case, and thereby generalize the Landau-Zener-Stiickelberg formula given
in Eq. (15).

We will base this computation on symmetry arguments. We argue that the
transition probability 7' inust be o function of Dy and its derivatives with respect
to @ and P which is invariant under three classes of symmetry operations. These
transformatious are scaling transformations, symplectic or canonical transforma-
tions, and Lorentz transformations. We will now explain these transformations in
greater detail.

The scaling transtormations involve simply multiplying Fi. (17) through by
some constant a, so that D — af. Such a transformation of course changes nothing
essential about the wave equation itself, and the transmissiou probability 7 must
therefore be invaniant, T -+ 7. This implies that 7" must be a homogencous function
of degree 0 of Dap and its derivatives,

Next we invoke canonical or symplectic inviriance. It is now well understood
that when quantuin mechunical quantities which are independent of representa
tion, suteh as energy levels cr transition probabilities, are computed by seniclussical
means, then the semiclassical expression must be a canonical invariant. A nice ox-
ample of this is the Bohr-Sounnerfeld or EBK formnla for cuergy lovels; the energy
levels are given in terms of elassical netions, which are nviniant vuder canonical
transformations. In the present ease, we expect T to be invariaut under canoniceal
transfornations, which means that all @ ana P derivatives of 1,5 which occnr in
the expression for 7 must be expressible in terms of Poisson hrackets.

The third class of traustormations involves Lorentz invariance, If we repliace
the 2-component ¢-ficld shown in Eq. (17) by @ constant lineir transformation of
iself,

amn

f

B Q9 (18)

where Q is any invertible 2 x 2 matrix (possibly complex), then the Hermiticivy of
the equations is preserved if we write

n-=Qthq. (19)
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Obviously the transition probability cannot change under such s transformation,
s0 we expect the formula for 7" in terms of Dys to be invariant when D is replaced
by D' as in Eq. (19). All we require of the matrix @ is that it te invertible, but,
without Joss of generality, Q can be restricted to have unit determinant, since if the
determinant is not unity, it can be made so by a scaling transfo,mation such as
those we have already considered. Thus, Q can be restricted to the group SL(2, ©),
the spinor representation of the Lorentz group.

One might have thought that unitary transformations would be sufficient
to solve the problem at hand, but this turns out not to be the caue; in order to
obtain the necessary normal forms which underlie this generalized Laindau-Zener-
Stiickelberg theory, it is necessary to invoke nonunitary transformations.

To bring out the Lorentz invariance more clearly, we write

D(Q,P) = B¥(Q, P) oy, (20)

where o, = (I,04,0y,0,) is the usual d-vector of Pauli matrices, so that 5* is a 4-
vector field defined over the slow phase space. Then under the transiormation of
Eq. (19), the 4-vector B* transforms according to

BY — AR, B, (21)

where A%, is @ 4 x 4 Lorentz transformation. Therefore the transition probability 7'
must be a Lorentz scalar when expressed in terms of the 4-vector 5#,

Altogether, we require a quantity which is a simultaneous Lorentz scalar and
a symplectic scalar, and a hornogeneous functiou of B* of degree 0. We begin by
listing the simplest simultaneous Lorentz and symplectic scalars we can write down.
We use Poisson brackets (denoted by curly brackets) to guaruntee that we have a
symplectic scalar. The simplest four such scalars are the following:

BB, = det D, (22a)
{B*,B,} =0, (22b)
B*B{B,,B,} =0, (22¢)
(1%, B*}{B,,B,} 0. (22d)

Of these, the middle two vauish identicully because of the antisymmetry of the
Poisson bracket and the symmetry of the Lorentz contraction. The first and the
fourth are the simplest nonvenishing scalars with the required invariance properties,
of these, the first is a homogeneous function of B* of degrece 2, and the fourth is a
homogeneous function of degree 4. Therefore the simplest homogeneous function
of degree 0 we can create with the required invariance propegties is obtained by
dividing the first scalar by the square root of the fourth scalar. Wo expect that the
Landau-Zener transition probakility T must be a function of this quantity.
Indeed, a more dctailed calculation gives the result in the form,

2 B¥ By, :
R \/-z(izu.w}w,,.m)‘ )

T = cxp(~
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This is the required generalizat.on of the Landau-Zener formula, and is our principal
result for this papei.

One might find this “der viation” somewhat unsatisfying, in that the invari-
ance principles alone do noi allow us to determiine the final functional form of the
transition probability, as displared in Eq. (23). But the more detailed calculution
just alluded to involves using the three transformation groups we have discussed to
transform the original coupled wave equation in Eq. {17) into a standard or normal
form, which is then solved by stai:dard analytic methods. The invariance properties
of these transformation groups me an important aspect of the normal form trans-
formations. Thus it is not mislending to emphasize the importance of symmetry
principles in discussing the derivation of Eq. (23).

The transtormation groups ‘ve have discussed here are also important in the
trecatment of Lendau-Zener transitions in many dimensions, including the case of
multidimensional Born-Oppeaheimer problems. We will report on such calculations
in the future.

Acknowledgements

This work was supported by the U. S. Department of Energy under con-
tract Nos. DE-ACO03-765F09098 and W-7405-Eng-48, and by the Plasma Physics
Research Institute of Lawrence Livermor: National Laboratory,

Refereaces

1. Alfred Shapere and Frank Wilczek, Geomeiric Phases in Physics (World
Scientific, Singapo: =, 1989).

2. H. Kuratsuji and S. lida, Prog. Theor. Phys. T4 (1983) 439; Phys. Leti.
A111 (1985) 220; Phys. Lett. B184 (1987) 242; Phys. Rev. D37 (1988)
441,

3. R. G. Littlcjohn and William G. Flynn, Phys. Pev. A4d4 (1991) 5239; Chaos
2 (1992) 149; Phys. Rev. A 45 (1992) 1697; “General linear mode conversion
coefficient in one dimension,” in press, Phys. Rev. Lett., 1993.

. V. L Amold, Mathematical Methods of Clussical Mechanics (Springer, New
York, 1978).

. L. D. Landau, Phys. Z. Sowietunion 1 (1932) 88.

. Clarence Zener, Proc. Roy. Soc. A137 (1932) 696.

E. C. G. Stiickelberg, Helv. Phys. Acta 5 (1932) 369.

. E. E. Nikitin and 5. Ya. Umanskii, Theory of Slow Atomic Collisions (Spring-
er-Verlag, New York, 1984).

-

i B2



QUANTUM MECHANICS OF THE ELECTRIC CHARGE
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ABSTRACT

A siraple argument against the existence of magnetic monopoles is given. The ar-
gument is an important part of the quantum theory of the clectric charge developed
by the author.

“The same modification of the (Maxwell - Lorentz) throry which contains
¢ us o consequence, will also have the guantum structure of radiation as a eonse-
Albert Ewmstein
(Phys. Zert. 10 (14909) 192)

quens ¢

1. Introduction

‘i1 s paper is dedieated to Professor Yakir Ahawronov ou the oceasion of Lis
60 birtr ©y. The subject f the paper, quantumn mechanies of the clectric charge,
iv based «  the notion of phase, this clusive concept which has slways fascinated
Professor Aharonav,

The electrie charge (! and the phase S(r) of a (second quantized) charged
syste:  re canonically conjupated variables:

{50 oy (k=1 )

~ being the clementary < harge. Proof of this thecrem s givenin ', Here T will make
aly two rather obvious cotnments.
1) does explain quantization of the electric charge @ o nnits cqual to
the constant ¢
() - ne, on O, b k2

11 does nob, however explai ihe universality of the electrie charge e the fact
that c.p. the electie charge of the dlectron seene G he mathenatically equal to
the cleetrie charge of the proton, Indeed| sinee the - onstant ¢ in Eq.(1) is arbiteery,
we cannot exclude theoretically o situaiien e whohi o ey for one charged system
and ¢ 2 # 1 for another ystem.

2. The ph: ie S(r) c.on be uniquely do rimmed at the spatial infinity

o Eqg 1) s s arbiteaey cpatio ferapor. ot Lot ns imagine that o

N
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tends to the spatial infinity:
zz = (2°)? — (') - (22)? - (2%)? = — .

Mathematically-minded readers will object that we are not aliowed to fix, even in
the form of a limit, the argument of an operator-valued distribution. True. The
argument which follows is physical rather than mathematical, it constitutes a piece
of theoretical rather than mathematical physics.

At the spatial infinity there is caly one function which can possibly play the
role of phase. This function must be equal to

S(z) = —ez*Au(a), (2)

where e is a constant proportionality factor and A,(z) is the eclectromagnetic po-
tential. To see this one has to note that at the spatial infinity the electromagnetic
ficld is free,

*rF, =4nj, =0

and homogeneous of degree —2, Fl,(Ae) = A"2F,,(z) for cach A > 0 2. The field
is free because the electric current j,, being carried by massive particles, must be
confined to the future and past light cone. It must be homogeneous of degree
—2 because, as sceu e.g. in the static case, the charge generated monopole term
dominates dipole and higher terms.

Consider a classical electromagnetic field which is free and homogeneous of
degree —2; assumne that its potential is homogeneous of degree —1, which is natural.
Let us form two vectors,

1
]‘LU(I)IV and 56HUDUIUFPU(I)s

where r is the radius vector in the Lorentzian reference frame in which the homo-
geneity condition holds.

The two vectors given above determine the tensor F,, in a purely algebraic
way. Both these vectors are gradients of homogeneous of degree zero functions:

Fo(z)z¥ = 0.e(z), é(“"””;c,,Fw(r) = d*m(z).

e(z) and m(x) denote “electric” and “magnetic” parts respectively. e(z) can be
easily calculated:

Ful@)a® = [0,A,(x) - DA, (x)] 2" =
B [Au(@) 2] ~ 8L A () — 20, Au(z) = B, [ Au ()]

because

I, Au(r) = —Au{x)

from the Euler theorem on homogeneous functions,
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I maintain that m(z) must be a constant. This is an argument against the
existence of magnetic monopoles which, to the best of my knowledge, has never
been put forward before. (The argument given by Dr. Herdegen ? is different.)

To see this let us calculate the Lagrangian density

dz’dz'dz*dz®F,, F* (3)
for 8 homogeneous of degree —2 field F,,, using the spherical coordinates
z® = £%sinh ¢l
! = ¢%cosh¢! sin¢? cos €2,
z? = ¢%cosh ¢! sin €7 sin €2,
® = ¢%cosh ¢! cosE?,

0<&<o0, —o0<f <400, 0<E<r, 0 <2m

These coordinates cover in an obvious way the spatial infinity we are interested in.
Note that £° is a space-like coordinate while ¢! is a time-like coordinate. A simple
calculatior. gives

0
dzldzldz?dz®F,, F* = 2%\/§d51d62d€3 (—g"‘('?.e ke + ¢*0im Bkm) .

Here
dz# Jz¥
N A— 0y-2 L rm— ] =
Gik (E ) gl“ a{. a{kv ‘1k 1|2131

is the metric on the spatial infinity.

The Lagrangian density (3) is secn to be a difference of two identics' La-
grangian densities. Thus only one of them can have the correct sign i.e. the sign
which, upon quantization, would give a positive definite inner praduct. The part
with the right sign is called electric, the part with the wrong sign is called magnetic
and must be put equal to zero.

Now, the Gauss theorem says that the total charge Q is determined by the
electromagnetic field at the snatial infinity. In the quantum theory thie charge
operator () must have its canonically conjugated vartable S(z). Thns S(z) must
have a “tail” which does not vanish even at the spatial infinity. We have scen,
however, that there is exactly one function, namely z#A,(z), which can play the
role of the “tail”. Hence, there must exist a constant e such that at the spatial
infinity

S(z) = —ext A, (). (2)
The constant e in this equation is identical with the constant e in Eq.(1). Tuis iz a
hypothesis substantiated in the next section.

3. The proportionality factor in the phase

The two cquations
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[Q, S(:C)] = ie,

S(z) = —ex*Au(z),

constitute together a closed theory, the quantum mechanics of the electric charge.
It is important to understand correctly the epistemological staius of both equations.
The first eqquation is simply a theorem in the Q.E.D. which, bv continuity, is assumed
to hold also at the spatial infinity. The second equation is a hypothesis; one can
give several argumen’s supporting Eq.(2) but all those arguments do not amount
to a proof. Here are two simple arguments, to be added to those which I have given
elsewhere *,
Take the Coulomb field of the charge @ at rest:

Ap ==, Al=A;=A3=0.

Its phase, according to Eq.(2), is
Q

14
S(z) = —e=t = —eQ}-.
T T
During the eternity of time available at the spatial infinity,
—r<t<r,

the phase S(x) changes from Q) to —e). Take now the hydrogen atom with the
nuclear charge ¢ and the clectron charge e and assume that the radius of its circular
orbit tends to infinity. During the eternity of time available,

-r<t<r,
the electromagnetic phase of the electron wave function,
—e [Aua)ds
will change by the same amount:
—e/j %dt - 2eQ.
Thus the phase given by Ea.(2) changes as the true phase of the electron wave

function in an infinitely large hydrogen atom.

The phase of the Coulomb field ,
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may be compared with the phasc of the wave function of a stationary state, —FEt,
E being the encrgy of the stationary state. Thus §(z) looks like the phase of a
stationary state driven by the Coulomb energy eQ)/r. Again, this is not a proof but
a heuristic argument supporting Eq.(2).

Equations (1) and (2) together do allow to explain the universality of the
clectric charge. To be more precise, they allow to prove the foltywing theorem: the
total charge of the universe is always a multiple of a single conpstant. To apply this
to the electron or to the proton one must be able to cstimate the accuracy with
which, under specific observational circumstances, they can be considered as isolated
universes. The experitnental equality of clectron’s and proton’s charge shows that
this accuracy is indeed extremely high.
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Magnetic charges and local duality symmetry
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Abstract

The notion of magnetic charge is intimately linked with the global duality symmetry
exhibited by the extended Maxwell equations. It is easy to show that duality symretry
is meaningful only in 341 dimensional space-times, implying thereby that maguetic
monopoles as fundamental particles can be postulated only in 3+1 dimensions. It is
interesting to study the consequences of clevating the status of duality symmetry to »
local symmetry. This is achieved by intreducing a complex scalar field in a theory that
treats electric and magnetic charge on equal footing. The new theory is a generalization
of the extended Maxwell theory, which reduces to the usual Maxwell electrodynamics in
the low energy. The electric charge arises due to a spontancous symmetry breaking in the

scalar ficld scctor. A suitable choice of gauge makes the magnetic charge vanish.

95
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1. Introduction

Magnetic charge as a concept is very interesting because of several reasons. Firstly, they
make the structure of classical electrodynamics more symmetric. The second reason is that
existence of a single magnetic monopole in the universe can explain charge quantization (1],
Furthermore, 't Hooft [2] and Polyakov (3] showed that magnetic monopoles are generic in
grand unified theories. In section 2, we show that the duality symmetry is meaningful
only in 3+1 dimensional space-times, implying that the notion of magnetic charge is
linked with the dimensionality of space-time. Then, we gauge the duality symmetry by
invoking a complex scalar field. Finally, in section 3, we show that the ~esulting theory is a
generalization of standard electrodynamics, which reduces to the usual Maxwell equations
when there is a spontancous symmetry breaking in the scalar field sector. In our model,
although we start off with a theory in which electric and magnetic charge have the same
rank, we get the interesting result that magnetic charge can be gauged away.

2. Local duality symmetry

In 3 + 1 dimensional flat space-time, when magnetic monopoles are present,

electromaguetic theory is described in terms of extended Maxwell-Lorentz equations [4],

ouF = 12, )
o =Lt @

and,
B L aer e anbe] 22, ®

where F#¥ = %e“‘;ﬂF’"ﬂ is the dual of the electromagnetic field tensor F*¥  while j¥ and

j& are the 4d-current densities corresponding to eleciric and magnetic charges, respectively.
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It can be easily verified that under the following transformation,

Fuy — F,, = cos§F,, —sin6F,,, (4)

and,
ge — ¢. = cos 0g, — sinfq,, (5)
gm — @b, = 8infq, + cos O¢y,, (6)

extended Maxwell cquations (1) - (3) are invariant.

Is the duality rotation (4) - (6) meaningful for electrodynamics in space-times of arbitrary
dimensions ? To answer this, we consider elecirodynamics without magnetic charges in
D+1 dimensional flat space-time. The action corresponding to a particle of charge ¢

interacting with electromagnetic fields is given by,

A= —mc/\/q”,dzl‘dz” —%/A,.d::“ - -1—;; /F,...F""dn“x, (M

where u,v =0,1,2,....... ,D.

The equations of motion that follow from (7) are,

E',i = 4np, (8)
i 19E"  d4r .,
i3] e |
FY coE " (9
F“\uz ----- PD~I’.ul =0, (10)
where Ef = —F% and Fh#zbp-1 = LebisakosboboniF, o with i,j = 1,2,...,D

and p,v =0,1,2,..,D. In order to extend eqs (8) - (10) by adding magnetic monopoles,

one needs to modify eq (10) sothe  "#tka-mpr gy = 48 83ke£D-1 By thiy immediately
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brings an asymmetry between electric and magnetic charges, because the electric charge
current density is only a (1 + 1)-vector. There is symmetry only when EF#ika-pn-1
and FP1#2 are of same rank, implying D = 3. Therefore, we conclude that duality
transformation is a meaningful symmetry only when the dimensionality of space-time is
3 + 1, implying that only in such space-times electric and magnetic charges have similar

status.

Duality symmetry (4) - (6) is a U(1) symmetry. To see this, we dJdefine complex

electromagnetic field tensor, complex charge and current density, respectively, as

Guv =Fyv+iﬁpus (11)
Q =qe + i‘Inu (12)

and,
T =5k +ign, (13)

we can re-write the extended Maxwell equations (1) and (2) as,

4
8,G"" = T"J", (14)

and the generalized Lorentz force equation (3) as,

dpt 1 oups AT
TR ey (19)

Because of (4) - (6), the duality rotution now reads as,
G‘w -G, = CioGpuq (16)

[4

Q- Q =c"Q, (n




and,

J# o I = e gk, (18)

It is obvious that the equations (14) and (15) are invariant under the transformation
(16) - (18). So far we had been assuming that the transformation parameter ¢ is constant
in space-time, implying that the duality transformation is global. We wish, now, to extend
the hitherto global symmetry to & local one, by making # depend on space-time coordinutes.
This clearly requires modification of the field equations. More significantly, local duality
transformation makes the electromagnetic charge @ space-time dependent! This is an
unusual feature suggesting a different way of looking, at the concept of electromagnetic

charge. In the next paragraph we elaborate on this.

To begin with, we introduce a complex scalar fleld ¢(z) which under local duality

transformation changes as follows,

#(z) = ¢'(z) = ) p(z) . (19)

In this ncw picture, the electromagnetic charge ariscs due to the interaction between

the charged particle and the scalar field ¢ so that,

Q(x(r)) = ad(z(r)) , (20)

where w# (7} i3 the world line of the particle and a is a coupling constant that solely depends
on the particle, Thit way of viewing at the electromagnetic charge is reminiscent of the
origin of mass in clectroweak theories through Higgs field. In fact, in the next section we

will incorporate most of the features associated with the Higgs sector in the dynamies of

é.
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We now make use of the scalar field ¢ to define a gauge covariant derivative,

Dy =8y --vY, 21
where,
_ Oud(z)
= 4@ @)

From (21) and (22), it is easy to see that,
Dpcaﬂ — eil(t)-D“G .-ﬂ_ (23)

In (21) ¢ acts apparently like a gauge field, but (22) makes it obvious that this is a

pure gauge. And, hence, the definition (21) does not introduce any new gauge interaction.

Modifying (14) to,

D,G* = {11". (24)

we find that the equations of motion given by (15) and (24) are invariant under the local
duality transformation, and these form the generalized version of the extended Maxwell
equations. In the following section, we will derive these equations as well as the equations

of motion for the scalar field from an action.
3. Lagrangian formulation

In this section, we derive t! - equations of motion for fields and particles from an action.
We begin with few definitions. Let ap(z) be a complex 4-vector field that under duality

transformation behaves in the following way :

au(z) = d' () = *®ay(z). (25)
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The complex electromagnetic field tensor G, is related to a, in the following way,
Gy = (0, + \b;)av -G +¥y)a, (26)

where 1, is related to ¢ according te (22). However, not all the components of a, are
independent. This is because of the definition (11) for G, that requires the following
constraint to be satisfied,

i
Gu = ie,:ﬁcu,. (27)

The action for the electromagnetic field is given by,
1 »
A = —E/G",G‘“’d‘z . (28)

For particles, we label the world-lines y*(r) with latin indices ij,.. = 1,2,..., and
denote the world-line and the 4-velocity of the j™ particle as y#(r;) = y} and %’rg =
y;' . The portion of the total action relevant for the equations of motion corresponding to

particles is given by,

- 1 : .
A== me [ fanifigan = 5 Vo [# )+ colivdn L (29)
J i

where c.c. denotes the complex conjugate, and o is the coupling constant (sec (20))
rresponding to the j-th particle.

We now come to the scalar field ¢. Because of (19), the scalar field scctor has to be

invariant under local U(1) group suggesting the existence of a abelian gauge field x, that

interacts with ¢. The corresponding gauge covariant derivative then can be written as,

Vu=8u~igxu (30)
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where ¢ 1s the gauge conpling constant.

Under loea] duality transformation, the abelian gange field transfocms as,
/ 1 ]
\,.—0\“=\,.+;6,.0 . (31}

The action for the sealar field sector is taken to be,

. 1 v .
A, = /:I‘:[L, - mS,.u\:" B {32)
where,
1 * A . i aye
Lo= J(0,:0)(0"9) - et (33)
and,

Euu;"ap\u‘ v\ p ' (34)

It is well known that the ground state of this sector is deseribed by the following, solutious.

¢|-ur(-r) = 7]""“') \ (35)

and,

(\u)\lcr =0 . (36)

It iy evident from (28), (29) and (32) that Ay, A; and A4, are invariant under local
duality transformation respectively,  Variation of the total action with respeet to the

particle trajectory ¥} and the complex 4-vector field a* leads to the following equations of

Xll()ti()ll :
d”.’; "J » ny G.”y ‘I!Iv; -
dTl = '2(‘ [d’ (y] )G (yj) t ¢(y1) (yj )] 7(IT)_. (3‘)
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a[l(l,
I#G (‘E) 5 « ¢(1) 2 $ (1 y (t))v (38)
7 ” J

respectively.
In the low energy limit, (37) and (38) are equivalent to the usual Lorentz force equation
and ordinary Maxwell equations, respectively. This is because, in the vacuum configuration

(85), the gauge covariant derivative D, takes the form,
Dy =08, —ibp . (39)
By virtue of (19}, under a local duality transformation the phase ¥ transforms as,
$(x) - W(2) = (@) +0(z) (40)

Since the entire theory is invariant under local duality transformation, we are frec to choose
a gauge 8(z) = - ¥(z) so that ¥'(z) = 0 becaun - of (40). This immediately makes the

gauge covariant derivative (in the new gauge) reduce to ordinary partial d~rivative (see

(39),
D=0, . (40)

Furthermore, in this gauge the electromagnetic charge of the j-th particle is giver. by,
Q; =a;¢'(z) =a;n (41)

implying that the charges for all particles are constant and are real (corresponding to
electric charge alone). It is easy to see making use of (40) and (41) that (37) and (38)

reduce to,

doP 1 dr
ap; 1 L £
L RV PR L paul iR ’
ar, () ar, (42)

f
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i

B = f*clj:, (43) '

and, l
3, F* =0, (44)

st |

(g¢); = 5, (45) ;

and, '
=Yy B 52z - gy00). (46)

Equations (42) - (44) are the usual Maxwell-Lorentz equations in the absence of magnetic
monopoles. Thus, in the low energy region the electromagnetic sector of this theory is
identical to the conventional classical electrodynamics.

Before ending this section, we wish to draw attention to an additional local symmetry

of the theory. Consider the following transformation,

ay — a, = a, + 3, 0(¢"), (47)

where § is any complex differentiable function of ¢*. It can be easily shown that (47) le. ves
G,y invariant, and causes the action (29) pick up just boundary terms. Thus, equations

of motion are left invariant under the transformation (47).
4. Swmmary and discassion

Most symmetries in nature are local symmetries e.g. gauge symm ries in

ciecirodynamics and eleciro-weak theories, general covariance in Einstein's theory of

gravitation, etc. It is therefore interesting to study the consequences of a local duality
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symmetry. Gauging this symmetry requires invoking & complex scalar field ¢(z), that
exhibits spontaneous breaking of duality symmetry. In the low energy limit, there is a
gauge in which this theory automatically leads to conventional electrodynamics without
magnetic ch. - zes. However, in the high energy domain, one expects new predictions that

may be used to distinguish between the Maxwell electrodynamics and our model.
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We are gathered here to pay homage to the quantum phase. Out of classical
nothingness something quantum emerges.

One of the deepest mysteries in physics is the existence of two kinds of particles,
bosons and fermions. We now know that in 2 + 1 dimensional spacetime there are
also anyons, such that when two anyons are exchanged, the wave function acquires a
phase. In particular, when two semions are exchanged, the wave function changes by
a factor of i. 2+1 dimensional spacetime is not just less of a good thing compared to
3 + 1 dimensional spacetime. It is homotopically different: a new physical concept,
that of “going around”, appears. It niakes sense to say that a particle has gone
around another. This basic fact is what makes the notion of anyons and fractional
statistics possible.

Shortly after Wilczek, ande '»r, Leinaas and Myrheim, proposed the existence
of anyons, the question natural.  rose as to whether these hypothetical particles
can be incorporated into quantu.. ield theory. The answer is yes, and the concept
of gauge potential enters naturally. One simply couples a gauge potential to a
conserved current of interest, and have the dynamics of the gauge potential governed
by the Chern-Simons term.! In Maxwell dynamics, the spactime derivatives of the
gauge field are related to the current. In Chern-Simons dynamics, the gauge field is
directly related to the current. Life is simpler because one doesn’t have to solve any
partial differential equations. This is possible in 2+ 1 spactime. In any dimensions,
the current is of course a vector, the gauge field an antisymmetric tensor, but in
2+ 1 dimensions, an antisymmetric tensor is also a vector, thanks to the Levi-Civita
antisymmetric symbol.

This means that a charged particle would have a magnetic flux attached to it.
Here the terms electric charge and magnetic flux refer of course to the quantities
asgociated with the gauge potential we have introduced and not to the quantities
studied by Coulomb, Faraday, Oersted and their friends. Long ago, Aharonov and
Bohm told us that when a charged particle goes around a flux tube, the wave
function acquires a phase. Thus if we have particles carrying both charge and flux,
then when one such particle goes around another, the wave function acquires a
phase. Fractional statistics is just a slice of the Aharonov-Bohm effect. Thus, two
of the greatest names in physics meet two of the greatest names in mathematics.

In hindsight, this connection between Aharonov-Bohm and Chern-Simons ap-
pears so natural and so obvious that some workers in this field now think that it
was known since the beginning of time. In fact, this connection only became clear
in the fall and winter of 1983,

Over the last ten years, there have been many interesting applications using
this formalism. Herc I would like to talk about a recent discussion of tunnelling
effect in double layered Hall systems.?

In this formalism, in the quantum Hall effect electrons are coupled to gauge
poter “‘als obeying Chern-Simons dynamics. As explained above, the clectrons then
t. — magnetic flux. In a special state in the double-layered quantum Hall system
(techi.ically this corresponds to a certain mairix having a sero eigenvalue so that one
of the gauge potential is liberated from being governed by Chern-Simons dynamics),
the electrons in layer 2 act like flux tubes carrying flux — 27 to the clectrons in layer
1. Thus, an electron in layer 1 does not see the magnetic field imposed by the
experimentalist, but an effective magnetic field equal to the magnetic field imposed
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by the experime~talsit minus 27 times the local density of electrons in layer 2. Now
consider a long wavelength density wave such that as the density of electrons in layer
1 goes up the density of electrons in layer 2 goes down correspondingly. But then the
effective magnetic field seen by thr electrons in layer 1 also goes up. Thus, things can
be arranged to work out very ne tly. Even as the density of electrons in layer 1 goes
up and down, those electrons can be made to believe that they are still just filling
the first Landau level, not one too many, not one too few, Similarly, the electrons
in layer 2 are also living under the illusion that they are filling just the first Landau
level. Thus, as the wavelength of the density fluctuation goes to infinity, the energy
cost of the fluctuation goes to zero. This is the physics behind the appearance
of a gapless mode: the gaplessness is a consequence of an exquisitely balanced
cooperation between the electrons in layer 1 and layer 2. The same physics is in
fact responsible for anyon superfluidity. Technically, the gauge field liberated from
being governed by Chern-Simons dynamics is now happily massless and governed
by Maxwell dynamics.

The appearance of a gapless mode is consistent with symmetry considerations.
In the absence of tunnelling, there are two separate U(1) symmetries, corresponding
to the conservation of the sum and difference " the electron numbers in the layers.
In the special state described above, the U(1) .orresponding to the conservation of
the difference of the electron numbers in the two layers is spontancously broken and
thus we expect a Nambu-Goldstone gapless mode.

Tunnelling, that is, interlayer hopping, corresponds to the explicit breaking
of this U(1) symmetry and thus according to gencral considerations, the Nambu-
Goldstone boson becomes pseudo and acquires mass.

In the present formalism, the current describing the difference of the currents
in the two layers is written as a curl of a gauge potential. When an electron
tunnels from one layer to the otler, this current is no longer conserved. When ilie
divergence of the curl of a gauge potential does not vanish, we know that there is a
magnetic monopole lurking in the vicinity. The spacetime integral of the magnetic
flux coming out of the monopole is thec spacetime integral of the divergence of the
current, and hence the change in the difference of numbers of electrons in {he two
layers, equal to £2 in the tunnelling event. Thus, the monopole in our formalism
is quantized a la Dirac because electrons are discrete.

Dirac quantization of magnetic monopoles represents of course another mani-
festation of the Aharonov-Bohm effect. Dirac obtained magnetic quantization by
requiring that the Aharono-Bohm phase acquired by a particle going around his
string vanishes. Indeed, Coleman explains Dirac quantization by arguing in re-
verse, He describes a prankster trying to trick an experimentalist into believing
that he or she has found the fabled magnetic monopole. The prankster introduces
an arbitarily thin flux tube into the lab. The experimentalist can detect the flux
tube by letting a charged particle move around and measure the resulting Aharonov-
Bohm phase. It is precisely when the flux going through the tube is such that the
monopole has the Dirac magnetic charge that the flux tube becomes undetectable.
The experimentalist can then beenme very excited and proclaim the discovery of
the magnetic monopole.

Thus, we have a Euclidean 3-space filled with a plasma of ma; retic monopoles
and anti-monopoles. Wherever there is a monopole, an electron tunnels from layer




112

1 to layer 2 at the corresponding point in spacetime. Whereever there is an anti-
monopole, an electron tunnels back from layer 2 to layer 1. Now we get to re-live
the golden days of quantum field theories. One of the most celebrated results of
the 1970’s was the realization by Polyakov that in the presence of a dilute plasma
of magnetic monopoles the photon acquires a mass.

This is completely consistent with our expectation from sysmmetry considera-
tions. To summarize, we have the following “life story” of a gauge quantum. When
it was governed by Chern-Simons dynamics, it was massive. After being liberated
into a life of Maxwell dynamics, it becomes massless. But then non-perturbative
tunnelling effects made it massive again, Technically, the plasma of monopoles is
a Coulomb gas, and a Coulomb gas can be represented by a sine-Gordon theory.
Expanding the cosine in the Lagrangian to quadratic order, one sees immediately
that the sirie-Gordon field is massive,

For his purposes Polyakov did not have to exploit the fact that the sine-Gordon
fleld is in fact an angular order parameter. But we know that there is very interesting
physics associated with angular order parameters! Incidentally, the order parameter
is angular precisely because the magnetic monopole is quantized by Dirac. Wen
and I are thus led to make the perhaps a priori rather surprising prediction that
when a DC voltage V is applied across a double-layered Hall system, for certain
special filling factors, there is an oscillating tunnelling current. In a word, there is
a superfluid lurking in the system and hence there is Josephson-like current. Note
however that the frequency is only half of the Josephson frequency because we don’t
have pairing here. We may entertain the hope that this effect will be experimentally
detectable in the near future.

I hop: to have conveyed the impression that the circle of theoretical ideas ap-
pearing in this subject are among the deepest in theoretical physics.

We encounter here quantum statistics, homotopic property of space, gauge po-
tential, Chern-Simons and Maxwell dynamics, Aharonov-Bohm phase, Dirac quan-
tization of magnetic monopole, quantum tunnelling, Natnbu-Goldstone bosons, co-
operative density and flux fluctuation and anyon superconductivity, discreteness of
the electron, Coulomb gas, angular order parameter, and Josephson ocsillation. In
the end, we can attribute all these strikingly beautiful notions to the fact that when
we move from classical physics te quantum physics the complex number mysteri-
ously appears on the scene.

With your indulgence, I will end by entertaining a speculation, in fact the same
speculation® I made here in South Carolina a few years ago at another conference
celebrating the Aharonov-Bohm effect. The appearance of statistics in quantum
physics is one of the deepest mysteries in physics and in some ways is responsible for
the current difficultics in particle theory. As Weisskopf discovered ages ago, fermions
are nice and bosons are nasty. The self energy cf a boson diverges quadratically.
It is partly to cure this problem that supersymmetry was invented, to solve the so-
called naturalness problem. We all know down what glorious paths supersymmetry
has taken particle physics: from supersymmetry to supergravity to superstrings
to supermathematics to superphysicists. Might it not be possible that quantum
statistics is a composite notion? In the end, there are only fermions {(or perhaps,
only bosons.) After all, we know that a bound state of a boson and a magnetic
monopole is a fermica (and vice versa.) There is an additional phase when two such
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bound states are interchanged. Indeed, it is possible to obtain reasonable quantum
numbers for the observed quarks and leptons.4 Some of the theoretical ideas I listed
above are so deep that they cught to have further consequences for particle physics
as well as for condensed matter physics.
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LIBERATING EXOTIC SLAVES

FRANK wirczex !
School of Natural Sciences, Institele for Advanced Study. Olden Lane
Princeton, New Jersey 08540, USA

ABSTRACT

The introduction of confined, “slave” field« is frequently useful as a formal device in
models of condensad matter physics; it becmes a conceptual necessity for describing
possible phases of inatter where the slaves are liberated. Here I discuss some aspects
of the fractional quantum {{all effect from this point of view, emphasizing analogicy
with phenomena in other areas of physics, particularly to the Meissner and Higgs
mechanisms, and to confinement-deconfinement trensitions, In this application, and
in some recent attempts to model the normal state of copper axide superconductors,
it is important to cmploy slave anyon fi=lds.

1 have long admirved Yakir Aharonov’s style in physics: to continue to puzzle
over that which is intrinsically strange, cven in domains where more jaded spirits
have lost, from mere familiarity, their sense of wonder. Thig child-like quality has led
him to make fundamental discoverics where few would anticipate that fundamental
discoveries could still be made, and- -as we all must acknowledge on this oceasion- it
ohwiously has kept him young!

In that spirit, I hope, [ would like to discuss with you today a personal per-
spective on the fascinating complex of new states of matler forming the “quantum
Hall complex,” which I have developed in response to some simple puzeles that have
bothered me for a long time. One of the puzales, as [ shall describe momentarily,
has to do with gauge invariance. The other is broader: is the fractional quantized
Hall effect as special and isolated as it seems at first sight, or can its vccurrence he
related to other decp ideas in theoretical physics? I have found my perspective quite
comforting and informative, and [ thiuk it is different at least in emphasis and some
significant details from what has appeared in the literature (including iy own waork.)
However, 1 must quickly add that it in no way allers with Laughlin’s hasic physical
picture of an incompressible quanium liquid, nor will it bhe used here to derive new
results that could not be found otherwise,'?

1. Critique of Laughlin’s Quantization Argument

1.1. The Argument
Shortly after the experimental discovery of the integer quantized Hall effect,

tResearch supported in part by DOE grant DE-FG02-90ER40542
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Laughlin* proposed un argument, based on gauge invariance, that explains why the
conductance is quintized. The argument proceeds from the physical hypothesis that
in the conditions where the quantized Hall effect is observed the electrons form an
incompressible fluid in the bulk, to show that the conductivity of the fluid (to be
defined, in a precise geometry, momentarily) must be an integer multiple of a certain
combination of fundamental constants, nz e?/h. With some important refinements
due to Halperin,® this argument remains the foundation of the theory of the effect.
I would like briefly to recall its essence,

Imagine an snnulus - - = ¢ ining electrons held at low temperature and subject
to a large perpendicular m: - fields, and such that the inner and outer edges are
connected by an ordinary wi.. .uid held at a voltage difference V. Suppose that we
have the conditions of the quantized Hall effect, that is, by hypothesis, that within
the bulk of the annulus there is a incompressible electron fluid. This means that
there is, for each value of the current circulating around the annulus, a unique bulk
state of minimum energy. It ¢:  bhe constructed, locally, from the unique, isolated
ground state by a Galilean trai..ormation.

Now let us supposc that there is a current I circulating around the annulus,
and consider the effect of switching on one quantum 4/e of flux in the void within
the annulus. At the end of this operation we have produced e gauge field, that
(for clectrons within the annulus) is gauge equivalent to zero, Thus the bulk state,
assumed unique, must return to its original form. The only change that can have
occurred, is that some electrons from oue edge might have been transferred to the
other edge, through the wire,

We can calculate the work done during this operation in two different ways.
On the one hand, we have transferred some charge ne through a voltage V; thuy
the work is neV. On the other hand while the flux is being increased there is an
azimuthal electric field, which does work on the circulating current. One easily
computes in this way that the work done is (h/c)/. Upon equating these, one finds
for the condnctance:

Vil = né*/h . (1)

Thus, this transverse conductance is quantized in terms of fundamental physical
cunstants.

A slight variant of this argument corresponds less well to a practical exper-
imental set-up, but is perhaps simpler conceptually and will be useful for my later
purposes. Consider the saume geometry and the same process of cranking on flux,
but now with uo transverse current and no voltage. As the flux is turned on, agaiu
some integer £ nuinber of electrons is transported. There was an azimuthal cleetric
field as the Hux was turned on, and thus, for a determinate transverse conductiv-
ity, a radinl current. The clectric field is proportional to the time rate of change of
the flux, so over the course of turning on one quantum of flux there is a definite
integrated radial cuxrent, or in other words a definite charge transfer, Equating this
charge transfer to ke, one finds the same quantization c ndition on the transverse
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conductivity as before,

1.2. Too Good to be Truef

The Laughlin quantization argument is so simple and beautiful, and so di-
rectly addresses the central phenomenon, that one cannot seriously doubt its es-
sential correctness. Unfortunately, it is too good. Shortly after it was proposed and
digested, experimentalists discovered states where the conductance is quantized,
but now as a definite fraction of e?/h rather than as an integer multiple. These
states occur when the density is close to (the sane) definite fraction of the density
corresponding to & full Landau level. The jargon here is that there is a plateau in
the resistivity around filling fraction v = p/(eB/hc); meaning that when the ratio
of density to magnetic field is close to this value the conductivity remains at the
quantized value ve?/h. The first discovered and most robust such state (as reflected
in the width of the associated plateau and the allowed range of impurities and tem-
peratures) occurs at v = 1/3. For simplicity and concreteness I shall mainly focus
the discussion on that state, although by now quantized Hall states at many other
fractions have beeu observed and there is a beautiful, extensive theory of them—in
fact several such theories.

Now we seem to be in the embarrassing position, with the preceding gauge
invariance arguments, of having proved too much. The conductance is not quantized
in integera times e?/k for incompressible bulk states, after all. What has happened?

1.8. The Miscroscopic Perspective

There is & successful microscopic theory of the fractional quantized Hall
effect. So before I get carried away with grandiose rhetoric about breaking and
amending gauge invariance, it behooves me to demonstrate how one understands
at a “mechanical” level how the general gauge invariance argument, which seems
80 clear-cut in leading to integer quantized conductance, develops the necessary
subtleties in the microscopic theory.

1.4. Lightning Review of Incompressible Hall States

As we have already seen in our discussion of the intcger effect, the quantized
conductance is a fairly direct manifestation of the existence of an incompressible
quantum fluid. That is, the electron fluid has a preferred density pinned to the value
of the external magnetic field. There must be an energy gap to deviations from this
preferred density: such deviations must be accommodated by localized inhomo-
geneities, rather than in arbitrarily long wavelength “sound waves” which—if they
existed--could have arbitrarily small energy. In the case of the integer quantized
Hall effect the preferred density simply corresponds to filling an integer number
of Laudau levels, and the gap is quite easy to understand. Indeed, to raise the
density here and lower it there we must excite a particle to the next Landau level
here, which costs a finite minimum amount of energy equal to the splitting between

Landau levels, that is not compensated by allowing a hole theret.

tThe lowest energy density fluctuations actually occur at a finite wavevector. These excitations,
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Laughlin himself® was quick not only to recognize the physical meaning of
the new observations, but also to prcpose a rationale for why specific special (non-
integer) filling fractions should be preferred. Let me very briefly recall the main
points, since I shall want to build on them.

First I need to remind you of some basic results about electrons in a strong
magnetic field (here, as throughout, I am assuming that the motion of the electrons
is confined to a plane.) The energy levels are highly degenerate Landau levels,
with & density of states 2x/I? per unit area per Landau level, where the magnetic
length [ is defined thiough 1? = eB/kc. The splitting between levels is i times the
cyclotron frequency, viz. AE = k(eB/mc). At low temperatures and for densities
small compared 271% it ought to be a good approximation to restrict attention
to states formed from single-particle states confined taken from the lowest Landau
level, unless there is some very special energetic advantage to admixing higher levels
(so as to minimize the interaction energy.) Within the lowest Landau level, the single
particle wave functions take a particularly attractive form if one employs the so-
called symmetric gauge, defined by the vector potentials A, = By/2, A, = —Bz/2.
With this gauge choice, the wave functions in the lowest Landau level take the form

¥ = f(z)e ibF (2)

where f(z) is an arbitrary analytic function of z = z + iy, subject to a reasonable
growth condition so that the wave function is normalizable, and aistances are mea-
sured in units of the magnetic length. A basis of orthogonal vectors in this Hilbert
space is provided by the functions with fi(z) = 2. I is the canonical angular mo-
mentum around the origin, which here is intrinsically non-negative, For reasonably
large {, the corresponding wave function is concentrated in a circular ring of radius
\ﬁ% and width v27 around the origin. It follows, by comparing the size of the region
where the wavefunction is large to the inverse density, or by direct calculation, that
the supports of these wave functions are highly overlapping.

Now let us consider an assembly of (non-interacting) electrons. Let us sup-
pose that they subject to a very small potential that draws them toward the origin,
but does not appreciably change the form of the wave functions (that is a second
order effect). Then the ground state will be composed out of the wave functions
with the smallest values of [, consistent with Fermi statistics. It will be the Slater
determinant

$h = det{zr'}eTt LIl 3)

where the row varizble r, the column variable ¢, and & all run from 1 to N, the
number of electrons. Given the spatial character of the wavefinctions as discussed

the so-called magnetorotons” can be regarded, intuitively, as bound states of quasiparticles and
quasiholes. They therefore bear a family resemblance excitons in semiconductors; however unlike
most excitons they do not easily cascade down and annihilate, because semiclassically the Coulomb
attraction between them—in the presence of the strong ambient magnetic field —causes a drift in
the perpendicuiar direction, and thus induces orbitai moiion. Of course the magnetorotons, unlike
the quasiholes and quasiparticles discussed below, carry no net charge.
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above, one easily realizes that ¥, for large values of N, represents a droplet of
uniform density 27 and radius V2N, with some fuzziness in an annulus of width
unity near the edge. For later reference let me also record the Vandermonde identity

N

det{z{™'} = n (zk — 21) (4)

k<lk =1

Now Laughlin's inspiration was to notice that the eube of this wave funetion
has remarkable qualities, that make it a particularly attractive trial wave function
for an assembly of interacting clectrons, The Gaussian factor is then not appropriate
for the lowest Landau level, but this can be compensated by a trivial redefinition
of the length unit, which we suppose done. Then clearly one has a wavefuncetion
again describing o uniform droplet centered at the origin, now with radius (/J2N/3,
density 27 /3 (that is, filling factor 1/3) and fuzziness in an anaulus of width 1/y/3
after the rescaling, The Laughlin wave function is particularly advantageous if the
cleetrons have repulsive short-range interactions, because it enforees a triple zero us
omne cleetron approaches another. A large number of mumnerieal studies have shown
that it is a very good representation of the grouad state wave function, for a variety
of repulsive iuteractions.

From a physical point of view, the . st remarkable thing about the Laughlin
wave functiou (and its varions generalizations - see below) s its rigidity, Tt picks out
a particular filling factor in the bulk. Deviations from this average density will have
to be accommodated by localized disturbances. As we shall make much more precise
below, the situation is analogous to what one has for type 11 superconductors, where
magnetic fields are not allowed in the bulk, but can penetrate only i loealized
vortices. Laughlin proposed a form for these disturbances, that compares very well
with numerical and experimental data, Tt is that a minimal quasibole localized
around zg is represented by maltiplying the wave function with a factor that pushes
clectrons away from z by adding one unit of angular momentui arovnd that point,

N
quasihole factor = [](zk -~ 20) . (h)
1

This gives a density deficit; theve is an analogous but slightly more complicated
construction for an enhancement, the quasiparticle. There is an important gedanken
production process for the quasibole: it is what you get by adiabatically switching
on one unit of magnetic Hux at zy. The quasiholes are rather exotie: they carry
fractional charge and frictional statistics. These propertics can be shown diveetly
from the microscopic theory.” I will forego that pleasure here, however the result
will be central to our later considerations,

1.5, The Gauge Argumnent, Reconsidered

With this background, let us return to the gauge invariance argument. The

rot R : . Y
second form of the arguwent is a little cosier to diseusy) so let’s consider it,
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There appears to be a technical awkwardness at the outset, in that we would
like to work in an annular geometry for the fluid and to include some mechanism for
taking electrons in one side and out the other, whereas the simple wave functions are
for a droplet geometry. Fortunately there is a way around this that is quite simple
arnd instructive for our purposes. We huve already mentioned that wave functions
with a high power z! times the usual exponential e~ arc concentrated in a small
ring of radius /2 and width +/27 around the origin Thus to put a hole in the droplet
of radius R, and produce an annulus of quantized Hall fluid, we shiould multiply the
wave function by a factor

Annulizing factor = Hz,(‘mm . (6)
k

Now you will not fail to notice that the annulizing factor is nothing but K?/2
quasiholes at the origin. A large number of quasiholes do literally make a (classical,
spatial) hole in the fluid! Also, since the quasiholes are the end result of adiabatic
insertion of a unit of magnetic lux—that’s how we (following, of course, Laughlin)
constructed them—we conclude that adiabatic insertion of flux drills a hole in the
droplet.

Although it is somewhat off the point for this talk, it is qmto interesting and
appropriate to the occasion to note that by redistributing fluz that lies entirely in the
empty void within the fluid annulus, one changes the shape of the annulus. Thus some
of the factors of [] z in the annulizing factor could be changed to [[(z — a). This.
is a truly remarkable example of an Aharonov-Bohm type effect, in my opinion.
That is, although one has “pure gauge” outside the flux tube, by moving the tube
around one produces definite physical cffects. (There is a pedestrian explanation
for this --the moving flux tube produces an electric field at distant points.) The
dynamics of motion within this manifold of quasi-degenerate states, produced by
moving flux in the void, is governed by the theory of edge cxcitations, Perhaps it
is even a practical proposition 1o produce these excitations by manipulating flux in
this way. (End of digression.)

So now we should be able to see, in lhe microscopic theory, how it can be
that the gauge invaciance argument becomes subtle, in such a way that inserting
a siugle unit k/e of flux docs not transport an integral rumber of clectrons—-vhile
iuserting three units docs.

It is really quite simple and beautiful. The point is that when the power in
the annulizing factor is a multiple o three, we can again write the wavefunction in
Vandermonde-Laughlin form. That is (stripoing away the Gaussian factors):

N N

H ZZL H (zk _ zl):i —

k=1 (k<i)k =1

N

H zf”(dct{zﬁ_l })3 =

k=1
(det{zsti1})? )
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where one has N x N determinants with row index r and column index ¢. Thus
to change L by one unit, to L + 1, we need only to change the wavefunction of
one electron, changing a z* to a z**N. In physical terms, this means removing an
electron from the inner edge and transporting it to the outer edge. (Note that the
minimum occupied level has been emptied, and the minimum available unoccupied
level has been filled.) That is the sort of operation an ordinary wire is happy to do.
The remainiug electrous in the annular drop can be entirely passive, and nced not
re-arrange their correlated wavefunctions.

It is quite a different story if you change the flux by one unit. That does
not correspond to transport of an electron from the inner edge to the outer cdge,
leaving the bulk intact. Indeed, as we have just seen, the latter operation in its
minimal form unambiguously corresponds to changing the flux by threc units. The
physical operation that corresponds to one flux unit, is creation of a quasihole-
quasiparticle pair at the inner edge, followed by transport of the quasiparticle to
the outer edge. This is not an opcration an ordinary wir. will do for you. There is
an amplitude for it to occur by the quasiparticle tunneling across the sample, but
since it requires a simultancous rearrangement of all the electrons this amplitude
will be exponentially small. In the thermodynamic limit of an infinite number of
clectrons, at zero temperature, it will not oceur at all. Then we are justified in saying
that gauge invariance has been spontaneously violated, in the only sense it ever is;
while the gauge transformation with three flux units connects one accessible state
to another, and represents a legitimate symmetry; but the transformation with a
single flux unit, although formally valid, is useless because it relates amplitudes for
processes in our world only to amplitudes for processes in another, inaccessible one.

2. Introducing, and Liberating, Confined Slaves

2.1. Analogies of'iQHE§ and Superconductivity

One cannot long reflect on the properties of the incompressible Hall states
without noticing mauy analogics between their properties and those of ordinary
superconductors. Let me mention a few of the most striking oncs:

¢ In the