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FOREWORD

The material presented herein contains the formal proceedings of the
Third Symposium on High Speed Aerodynamics and Structures, This Sym-
posium was jointly sponsored by the U.S, Air Force Air Research and
Development Command, Convair - A Division of General Dynamics Corpora-
tion, Ryan Aeronautical Company, and the University of California at I os
Angeles., As in previous Symposia, the meeting was arranged to stimulate
the exchange of ideas by engineers and scientists engaged in research on
both high speed flight within the atmosphere; and on the problems of manned
and unmanned vehicles entering the earth's atmosphere at near-satellite
velocities, All sessions were held in a classified (Secret) atmosphere to
permit a free and formal exchange of classified information. The formal
proceedings, however, in many instances are of lower classifi cation or in
some instances are unclassified, For this reason, these papers have been
published in three volumes; Unclassified, Confidential, and Secret, in order
to achieve the broadest dissemination of information possible in academic,

government, and industrial circles,

Charles W, Frick
Chairman
Program Committee
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GAS PHYSICS OF HIGH ALTITUDE-HIGH SPEED FLIGHT

- S. A. Schaaf

. The purpose of this paper is to give a brief review of the current

state of knowledge in the general field of rarefied gas dynamics and to pre-

sent some of the more recent experimental and theorectical results obtained

at the University of California pertaining to high altitude aerodynamics.

Free molecule flow, i.e. highly rarefied flow for which the molec-
ular mean free path is large compared to the model or vehicle dimension,

is now well-understood at least for moderate speeds. The general theory

is established, has been verified by experiment at both the Ames Laboratory
by Stalder and his co-workers and at Berkeley, and a great number of results
of aerodynamic interest are now available. Further work in this region will
involve experiments on high energy molecule-surface interaction and exten-
sions of the general theory to certain types of non-equilibrium for the incident
gas. Perhaps the result of most aerodynamic interest in free molecule flow is
the general one of very poor lift-drag ratios which, in fact, approach zero at

high speeds in all practical cases.

So-called slip flow, i.e. only moderately rarefied flow in which the
molecular mean free path is a few percent of the vehicles' characteristic
dimension, or of the boundary layer which forms on it, is considerably more
complex. However, the basic physical formulation seems to have been pretty
well established. Surprisingly enough, the standard Navier-Stokes equations,
together with slip velocity and temperature jump boundary conditions seem valid
for these densities. The main, if not only non-continium effect, seems to be a
straightforwardalterationin the boundary conditions. Knowledge in the inter-
mediate range of gas densities is still mostly empirical, and where available

serves to provide an interpolation between slip flow on the one hand and free

molecule flow on the other. 15

——————
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One of the most important general results of research in the slip flow
to date has been to show that completely continum boundary layer interaction
effects are in most cases much more important than the non-continum slip
and temperature jump effects. Even small siip effects (to be thought of mostly
as corrections to continum results) are generally associated with mouerate
Mach numbers and very small Reynolds numbers - of the order of 5 and 1000
respectively, for example. But for such values as these for these parameters,
the skin friction and induced pressures produced by the thick laminar boundary
layers can be many times their normal values, enough to greatly alter low alti-
tude aerodynamic characteristics. The relative importance of skin friction and
induced pressure varies with vehicle geometry and orientation. In general,
however, lift-drag ratios begin to deteriorate - usually because of the effect of

skin friction on drag.

The slides depict views of the University of California Low Density wind
tunnel, some of the experimenrtal set-ups, and various as yet unpublished data
on pressure distribution and aerodynamic coefficients in the slip and inter-
mediate ranges. The flat plate and sphere-nozed cone pressure distributions
were obtained by Drs. Hurlturt and Talbot and Mr. Aroesty: the sharp-tipped
cone pressure distributions were obtained by Drs. Talbot and Koga and Mrs.
Sherman; the cone-cylinder lift and drag coefficients were obtained by Mr. Nark.

A very considerable body of additional similar data has already been published.

It will be observed that these results apply, for vehicles of the order of
1-10 feet in diameter, to altitudes and speeds with very little overlap with the
"flight corridor," i. e. the corresponding atmospheric density is to low in most
cases to provide sufficient dynamic pressure to generate adequate aerodynamic
lift. It should also be noted that these are wind-tunnel experiments and corre-

spond to adiabatic models and moderate gas stagnation temperatures, whereas




the free flight conditions would be for cooled surfaces and very high gas
stagnation temperature. For blunt short bodies a tentative extrapolation

of the wind tunnel data, based on matching only the Reynolds number behind
the detached shock, has been suggested. Its validity has not yet been estab-
lished one way or the other. There is clearly a great need, however, to
extend slip flow research to higher velocities and gas temperatures at the

same general density level.

17
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ONE DIMENSIONAL UNSTEADY GAS DYNAMICS BY
HYDRAULIC ANALOGUE

Dr. W. H. T. Loa

SUMMARY

Hydraulic analogy comes from the mathematical similarities
of the basic equations. In two dimensional steady flow, the equa-
tions of continuity, momentum and energy were found to be iden-
tical in mathematical forms by many authors for an irrotational
1sentropic perfect gas flow with a specific heat ratio of 2 on one
hand and an incompressible frictionless water flow in an open
horizontal channel of a rectangular crossection on the other hand.
Pressure waves in the gas flow corresponds to gravity waves in
the water flow. The shock waves of gas dynamics corresponds
(although not rigidly) to hydraulic jump* of hydraulics. This is so
called ''water table'', which has been used frequently in the past to
study, in an analogical sense, the two dimensional steady subsonic

and supersonic flows.

The present paper, instead of using two dimensional steady
flow as done before, examined the problem of one dimensional un-
steady flow. It was found here that (1) the equations of continuity,
momentum and energy are identical in mathematical forms for an
isentropic perfect gas flow of a specific heat ratio of any value,

say K on one hand and an incompressible frictionless water flow

* NACA TM 934 and 935 ''Application of the Methods of Gas Dy -

namics to Water Flows With Free Surfaces'' by Ernest Preiswerk.
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in an open horizontal channel of a crossectional shape, described

2-K
.y K1

by the equation Z , on the other hand. Here Z is the local
width and Y is the local height of the crossection, and (2) the equa-
tions of waves and wave propagation are also identical in mathe-
matical forms for the two said flows. In the case of one dimen-
sional unsteady flow, it was further found that the case of specific
heat ratio of 2 in a rectangular channel is a special case of the

general case when n = 0 (n is defined in the text).

TWO DIMENSIONAL STEADY FLOW

Let us start with the well known two dimensional steady flow
case, This case was found and discussed by many many authors.
This case will deal with the following two analogous flows. A flow
of irrotational isentropic perfect gas of specific heat ratio equal to
2 and a flow of an incompossible frictionless water in an open hori-
zontal channel of a rectangular crossection (slide). The equations
of continuity, momentum and energy for the two flows are shown in
the following:

Gas Flow Water Flow

Continuity Equation:

1 ' f 4 ' 1 ' '
1 ﬂ. + ,D'?E‘ + Vv-aﬂ + p'Q_V_ = uv.?ll.. +hv.8l +vt§!l... +hv_a.y_ =
axv 8x1 8y| ay! 3x| axv 8y| 3yv

Momentum Equation

LAY L AP S 4 ou ov' _ _oh

ax' ' ox' k-1 ox' ax' | ax' | ax'
k-1

' av! 1 9 Kk du'  av'  dh!

u'—+ V'— = () — Ul + y'e— = ———

ay' dyf k 1 dy' ayi 3y1 8y'




Energy Equation

u2 T u2

L= = 1= () S 1= ()
Utax., Ts ur21r1ax. h,

Here the equations were shown in non-dimensional form, so iden-
tical terms in corresponding equations may be put equal numerically.

Comparison of the corresponding equations show the following anal-

ogous terms:

Gas Flow Water Flow

' _..p_. h' ¢ _-.h—-
Sy ho)

A o oD
- (=3

.kEL h,

Po
h

T
™ (=77 h' (=

)
)
u | = u' =
J Do, Vg h
Po

(%D 1

The last condition specifies that the flow of water is comparable

with the flow of a gas having a ratio of specific heats k = .gp_ =2.
Although no such gas with k = 2 was found in nature but the Kydraulic
analogue has been found useful in a qualitative manner for the studies

of two dimensional steady subsonic and supersonic flows.
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ONE DIMENSIONAL UNSTEADY FLOW

In a similar manner as done in the tw o dimensional steady
flow case. the one dimensional unsteady flow is hereby presented.

This case deals with the following two analogous flows (slide). A

flow «f isentropic perfect gas of any specific heat ratio, say k, and

a flow of an incompossible frictionless water in an open horizontal
channel of a crossectional shape, described by the equation Z-Y".
The equations of continuity, momentum and energy for the two

flows are derived in the following:

BASIC ASSUMPTIONS

1. The fluid is frictionless so that conservation of energy into
heat is excluded hoth in gas and in water.

2. The flow is one dimensional and is in a duct (for gas) or
channel (for water) of uniform crossection. This implies that

v and w components of fluid velocity are negligible compared
with u component of fluid velocity.

3. The vertical acceleration of the water is negligible compared
with the acceleration of the gravity. Under this assumption the
static pressure at a point of the field of flow depends linearily on
the vertical distance under the free surface at that position. In
otherwords, p = pg(h-y). It is further assumed that the velocity
is uniform and constant over any crossection in perpendicular to
the flow direction. The justification of this assumption for the
case of one dimensional unsteady flow is given in Appendix A.

4. In one dimensional unsteady gas flow, all parameters
(pressure, temperature, velocity) are assumed to be uniform
and constant across any section in perpendicular to the direction

of flow.




THE EQUATION OF CONTINUITY

Gas Flow:
The well known equation of continuity for one dimensional

unsteady flow has the following form:

% , .2 o
3t Yk " Pax O

Putting into non-dimensional form by letting:

1
%

t'

it becomes:

1 1 '
uv.8L+ p'.al. +(_1.a...) ..a_p_ =0

ox!' ox'

Water Flow:

The continuity equations says that the net mass rate of flow
crossing the control surfaces must be equal to the net rate of
change of mass inside the control volume. At a given instant, the
mass rate of flow into the left boundary is pAu and the mass within
the control volume is pAdx. Hence we can write

_9 (pAu)

9
o dx = " (pAdx)

Expanding this, and noting that p is constant for water flow, we get

ua—A-+Aﬂ¢-§‘i:
ox ax ot
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n+l
Putting into non-dimensional form and noting that A = _/o'h yidy - <n+1 >

LR
h,
..A_. = hvnil
Ag
u
gho = u'
n+l
X _ X'
by
o
tw
it becomes
+1 n+l
u! a_ll'.l'l +hvn+1.a£'- + JLW—— ah' - 0
t 1] 1
ox ox ghg tw ot
n+l
THE EQUATION OF MOMENTUM
Gas Flow:

The well known equation of momentum for one dimensional

unsteady flow has the following form:

Putting into the same non-dimensional form and noting the isentropic

p - Po
relationship — Tk we get:
o oe

k-1

o K
-8—u:. +(.1Lta) u'ﬁ-u-,- = - (a°4tﬁ.) ( 1—) dp
Bt Iz X’ 1, | k-1 Tox'




Water Flow;
Newton's law. as it applies to the fluid volume as shown,
says that the net force to the right will be equal to the mass

times the acceleration.

A

|

The net force is the difference of pressure forces on a - a and

b - b, it is equal to:

h h *73% dx
Fa-a - Fy_p f og (h -y) zdy - pg(h-y) zdy
o) o
rg n+2 oh n2
The mass betweena - aandb - b is:
n +2 ch n+2
[h - (h - w X
[ - (derivation in Appendix B)

.—:xll- (n:1) (n:2)

The acceleration is:

Du ou du
— el | )] —

Dt ot ox

By Newton's law of motion, we get after simplification

ou du oh
—'-— 18 u —'-—. [P a— g —
ot 14).4 ox
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Putting into non-dimensional form as done before, we get:

ho ,_g_llo_
ou' n+l tw au’ n+1 w oh'
—_+ | —m—— ] = = (n+1)

at’ ly O L, ox'

EQUATION OF ENERGY

Gas Flow:
The well known one dimensional unsteady flow energy equation

has the following usual form:

1 1
(—) (—

9E 9E ' D '

— —— =

. Yox Pt TP T 0

Putting into non-dimensional form by letting

E Cy T T
E' = = A'4 - ( )
EO CV TO TO

in additional to the other non-dimensional quantities already shown

previously. it becomes:
) &

9E' aota, , OF' 9 'p' aot 3'p
— + - { - (]
7 ( Ty ) u = (k-1) p kD) (—3~)!la pu' ==

Water Flow;
The law of conservation of energy requires that the difference
in the rate of supply energy entering to a control volume V and the
rate at which energy leaves V must be equal to the net rate of increase
of energy in V.,
\ ab
\’\J\L’v\_\/‘
|
|
|

\Y

|
]
|
I
11 R
ab

Rate of energy entering at a - a
= [(-%—uz) pudA + /(gy) p u dA +fpudA

42
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Rate of energy leaving atb - b

:[ﬁ-—;-uz)nudA +/(gy) pudA+ pudA]
+ i[f(luz) pudA */‘(gy) pudA +/pudA] dx
ox 2

Rate of energy increase in volume V.

- L 2 _ f
® = [./‘(2 u¢)y pdAdx + (gY) pdAdx:]

Therefore, we may write the energy equation according to the law of

conservation of energy as stated above:

] 1

.8 2 42 ;

BX[./(Z u<) pudA 4/(gy}pudA + pudA] dx
1

=.5ta_[/(‘§u2) p dA +/(gy) pdA] dx

Expanding this relation by noting that dA = y?dy, p= pg (h-y) and
further simplifying it by using the known relations of continuity and

momentum equations already derived, we get:

LI S R A I A L. A
at ax n+l ot 1) ax )

Putting into non-dimensional form, we get:

gho 1
o’ o ' (n"*2 ) 3 (h"”)
+ u— +

at' Ly x' n+l at
,_‘ 1
gho ——
[ nd ‘W a(h""k1
—_— ' _
n4 Iy ! ax' T

EQUATIONS OF STANDING WAVES

In order to make the hydraulic analogy more clear for the

present case of one dimensional unsteady flow, it is best to check
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further the mathematical similarities of fundamental wave equations.
Only the simple equations of wave formation produced by some simple
causes are considered here for simplicity, because otherwise the
equations would be too complicated and difficult to operate. However,
it is believed that the analogy of waves, which exist in those simple
equations will also exist in complicated wave mechanisms. From
this point of view, the following equations were derived in Appendix C

and were given here for comparisons.

Gas Flow Water Flow
2 9 n-2
s 1 28 P, ¢ . .n EEQ__h_. -
7Tk % (o) U - -5 (B ol h) U
2 2
P _ 2 3¢ Pt _ ghy Pt
a2 o a2 2 ) R

szNIwN

P _ .2 az 2 _hone2 . 82 b ne
() U = e o2l -1 Glh "B ™

o n+

2 o 2 2 h .n*l gh 8 hoan4
oz L)1) =88 53l (1] w2l TGP a2l D
1 L
- dp 2 _ ’ p_ _ gA 2 _ &
a 'd—p; K-—p- KRT c ('b_) n1

Now we have derived the basic equations of continuity, momentum and
energy; and we have also derived the basic equations of simple waves
and wave propagation. Summarizing these equations and comparing
them term by term, we will have the analogous terms in the two flows.
These identical terms in corresponding equations may be put equal
numerically, because they are already in non-dimensional forms.

This was done in the following two pages.




SUMMARY OF ANALOGOUS EQUATIONS

Summarizing all the above equations, we have:

Gas Flow

1. Equation of Continuity

2. Equation of Momentum

ou _a , ou' apt 1 op
_Q_a. —_— o (=2a —
w0 e T T, T

3. Equation of Energy

1

Kiw)

OE' agt ok’ op'
g% dqla op
ot <ﬂa)ua,+(k1)p Y

(l')
apt a'p'
*(l\l)\oa‘pu p,

ly ox

=0

4. Equations of Standing Waves

2
il § 1 ) p
= o — 2 —— ———— -

ot Kk 20 ox { p0) 1)

2 2
2L - a2 2L

at2 0 yx2

2 o2

5]
o) [(-—-> 1 = 2l -]

Water Flow

()

oh' n-l ou Ly on"
ax' i '()x' g o t at'
n-1 W
gho t gho t
o Jn—l L v n-1 oh'
at' by | ox £, 5%
1
gho
ah' - n ;1 t“! uv .a_h‘ - ——L hv —2 ;)(h'“
at' fw ox  ‘na at’
1
gho
t .

1 na W\ ns2 o™
—\— " v =0
n-1 [w ax’

% n 1 gho @ b n2

at2 n-2'n-1 ax 'ﬂ;') }

2

078 ghy 825

at n—]_) ax2

: 2

22 h n-2 gh, 8 h n2
- e —1 = 4 s -~
) [(ho) ] ¥ ;);Q'I(h ) 1]
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Gas Flow

2
O Py 11 = a2 =2 1 2-
el U T ag gl

X

a = ’KR: KRT
)

ao:. ’ po = ’ KRTO
pO

&
oz

C=
Co=

Water Flow

h nh h
(6 -1 i

(0]

f.sﬁ'. j_gh__‘
b n+1

/ ng': , gho'
b0 n+l

)‘8_22_[(1'\ )n+
ix° "hy

1

-1)




SUMMARY OF ANALOGOUS QUANTITIES

Summarizing the analogous terms, we have:

. Local Speed of sound

. Local density ratio

P
(po)

. Local pressure ratio

p
(po)

. Local temperature ratio

L
()

. Flow similarity number

la
( aots )

. Function of gas specific
heat ratio

1
(_k—-T)

AU

|

J

|

|

——
—————————

. Local speed of wave

_ / gh
C n+l

. Local Mach number

A

. Local water depth ratio

( h )n 1
h,

. Local water depth ratio

n +2

h
%y

. Local water depth ratio

L
)

. Flow similarity number

—

, g,
n+l tw

. Function of channel

crossection exponent

(n+1)

The last condition is the one the water channel crossection must possess in order

to represent a gas flow of desired specific heat ratio K.
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The relationship (i—l? = (n+1) shows that change of the shape of

DISCUSSIONS

the crossection changes the values of K. For ordinary gas

problems, the following values of K are interesting:

Equation of Shape of
Flows K n Channel Channel Flows
Crossection Crossection
1 P = 0 -2 yzz =c hyperbolic isopiestic
2 V=c o« -1 yz = c hyperbolic isometric
3 T =c 1 o« indeterminate indeterminate isothermal
P _ 1.5
4. ok ~ ¢ 141 1.5 | z=cy parabolic isentropic
5 P e 1.5] 1.0 |z :=cy triangular approxima
» 1 5 . .
pl: isentropic
1 ical
6 pz =c 20) 0 z=c rectangular classica
o results

It is also interesting to see that if n = o, the shape of the crossection
is in rectangular form. and the present analogical results are exactly
reduced to those given in the two dimensional steady flow case (class-

ical results);
P

p h o p h T h a = JK— 1
= {—) . - =) . = ' 3 -1,
e A il R ol e )
¢ = ~Ngh

Because the velocity in a water channel can be made as small as one
thousandth or less of those occurring inagas stream, according to the

analogous relationship of

sound velocity = K—i— wave velocity = ;g—}ll-

the time scale can correspondingly be lengthened. This makes hydraulic
analogue a relatively easy way for observation and study of transient

effects in gas dynamics. The slow motion can even be seen by eye, This




feature is particularly useful for studies such as unsteady flow in
ducte, traveling shocks and unsteady flow such as occurring in

wave engines and might also be useful for study transient phencmena
such as occurring during the starting of a diffuser and the stability

of a diffuser during operation.

It is the purpose of this presentation to brief the '"one dimen-
sional unsteady hydraulic analogue'' in addition to the classical
""two dimensional steady hydraulic analogue'’ as possible touls for

the study of gasdynamics by the ''water table method"'.
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APPENDIX A

Discussion on the Assumption that the

Velocity is constant over the whole crossection

Consider the surface s, which encloses a volume V, fixed in
space. The law of conservation of energy requires that the differ-
ence in the rate of supply of energy to the volume V and the rate at
which energy goes out through s must be the net rate of increase of
energy in the volume V. Let U be the total energy per unit mass,

then we have immediately:
fU i ni ds -~ 2 Up d
P uj nj ds - o f p dv
s v

By Green's theorem

fAn- ds = j‘% dv
J 0X;
S e }

to transform the surface integral into volume integral then

9 RPN B
f{'ax- (Upuj)-at(Up)j dv = 0
v ]

Since V is arbitrarily chosen the integrand itself must be zero,

Therefore.

a N 8 LA
&j- (Up uy) ~ m (Up) = 0

Expanding and substracting continuity equation, we have,

3 3 _ oU U
T (Up uy) -ét—(UP) = p [g‘ uj'gx—j'] =0

]

In the present case of one dimensional unsteady incompressible flow,

this becomes

o P 9 o P 2
_— = + - + - - |-
at[zu P pgyl uax[:z u” - p -pgyl -0




now if we assume that the vertical acceleration of the water is
negligible compared with the acceleration of gravity, and the
pressure at a point of the field of flow depends on the vertical

distance under the free surface at that point. In other words,

p=pg (h-y)
Substituting this into above equation

5 (22 e Lude (02, pa - y) < pgy) =0
% [P35+ P8 y) +08y] + P 02+pg( y) - pgyl =

Therefore,
5  u2 8 u2
-_—(— — (= =0
w7 r8h)+ u (5 =+gh)
Since the equation does not contain the coordinate ''y'', there-
fore the velocity (the particle to be considered is arbitrary ''y"’
distance above horizontal bottom) is constant over the entire depth

of y. In other words the velocity is constant over the entire cros-

section and is a function of h only.
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APPENDIX B

|

' Sh
h! 'h + — d&x

i | ox

L  and X
ab

Consider the volume between a - a and b - b which are dx apart.
In order to help the derivation of the volume integral between a - a
and b - b, an enlarged sketch is drawn on the next page. Now re-
ferring to the sketch, the volume is one which is generated by moving

the plane section of area A, perpendicular to 0x from x =0 to x = 1.
f!l
So vV = o Ay, dx

where A, is a function of x. Assuming the surface change between
section a - a and b - b is straight, because they are only dx apart in
this treatment. Then from the sketch

_h2-h

1 X+h1

ho -
dy=———-—2ﬂ by dx

\éﬁ y® dy dx

=f0“l“—f—1dx

n+l

<
It

~ yn+1 )
I n+2 n+2
(hy ~hp) (] mez) ("1 “he ]




Applying the result to the volume between a - a and b - b by using

notations shown in the instantaneous flow diagram; then we have

hlzh
oh
h2=h+axdx
¢ =dx
n+2 oh n+2
dx - +—
LSSl
oh

[h+—dx - h] (@+1) (n2)

n+2 oh nt2
(b " -t a9 7]

() (1) (+2)

therefore the mass betweena ~aandb - b is

n+2 oh n+2
(h - +gx'dX) ]

pv. = p
%xh-(nﬂ) (n+2)
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APPENDIX C

Derivation of Equations of Standing Waves

In order to make the hydraulic analogy more clear for one
dimensional unsteady flow, it is best to check further the mathe-
matical similarities of fundamental wave equations in this appendix.
The gas wave is considered to be set up in a pipe filled with gas. The
water wave is considered to be set up in an open horizontal channel
filled with water. In both cases, the pipe and the channel are in a
constant crossection, and the waves are set up in the fluid medium,
while the fluid are considered in no motion except the small oscil -
lations about their equilibrium positions. In the analysis, only the
simple equations of wave formation produced by some simple causes
are considered, since otherwise the equations would be too compli-
cated and difficult to operate. It is believed that the analogy of
waves, which exist in these simple equations will also exist in com-
plicated wave mechanisms. From this point of view, the following

simple equations were derived and compared.

1. Equation of continuity

(a) Air waves:
Consider the air in a straight pipe of uniform crossection

of area S as shown in figure.

55




When a sound wave {or any elastic wave) passes through the
pipe, the planes at different points along the pipe will be displaced
from their equilibrium positions back and forth along the pipe. This
displacement depends on both t and x, the gas ahead of one plane will
always be ahead of that plane, the gas between two planes will always
be between these two planes; that means gas particles already on the
same plane will remain on the same plane which the sound wave
penetrates. Now refer to figure (a) and examine two planes which
at equilibrium are at the distance x and x + dx, The gas between them
has a density pp , so the mass is py S dx. When the planes are dis-
placed to the dotted position, the mass between them will not be changed,
but the volume is changed due to the displacement of one plane being
¢ (X) and that of the other being ¢ (x +dx) = £(x) * %ﬁ-dx, and hence the
density changed to p in order to keep mass constant. Therefore the

equation of continuity is:
pS [dx rg (x + ) - £(0)] = p [Sdx +83dx ] - p,Sdx (1)

let the relative change in density be & (x,t)

where

6 <2 Po p=pg (1 +6) )
substituting (2) into (1), one obtains
8., _
po (1 +6)Sdx (1 +ax) =8 p, dx

% .
(L=8)(1+ax) =1 3)




Since the change of density and displacement is small, the product of

two small quantities 6 ?aé may be neglected.

0¢
1+6+=— =1
ax

o
: (4)

"‘1&(‘()""

| - (x +dx
L.-dx-ﬁla

)! x +dx

Consider two planes perpendicular to the length of the channel,

which move with the fluid, and therefore always contain the same

particles, and which before the fluid was disturbed were at a distance

dx apart; at time t, their distance apart will have become

dx + e+ dx) - £(x) = dx + £(3) o dx - () = dx +odx

but the quantity of fluid between them will be unaltered and there-

fore by equation of continuity, one obtains

n+l n+l
ho _ o¢ (ho + 1)
) dx —(dX'f'é;dX) —-——'——n+1

here h = water height at undisturbed condition

n = change of elevation due to disturbance with reference to

ho, it isequal to (h - h o) here h is the instantaneous water height

after disturbance.
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o n n+l

@+ (L) <1
o

Comparing (5) with (3), one obtains

g . n+l
1+6)-=(1 h)

(o}

2. Equation of thermodynamics and equation of hydraulics

(a) Air waves: - equation of thermodynamics

dp , dv _dr
P v

Now if V = constant dV =0 then dp = (,—I;—) dT

0 0

dq = (5—3-) dp = (5—3) £ ar
dQ 0Q, p

C, =65 =G7) ()

v dT v op T
Similarly

Q _c L
(ap ) =Cy (p )

29, o L
&) = Cp ()

for adiabatic change between volume and pressure dQ =0

R 9Q dv dp
=—d — = — ——— -:0
dQ (8v) v+(3p)dp T(Cp - +C, > )
dv __c dp
Cp 5 =~ €]

Now consider the gas in pipe contained between the planes originally

at x and X + dx, the volume of the gas is Sdx and the change in volume

o OF
1sSaxdx.

(9)

(6)




Since

o

0
' S x-S [dx + £ (x *dx) - £09] - S dx - S [dx - £@) r omdx - £(X)] - -Sodx

the pressure is P, the change in pressure is p (excess pressure over

P o) Applying the equation (6) of thermodynamics one obtains

o¢
S % n
S dx I P,
N 8¢
P = -KP, ) (7)

substituting (4) into (7), one obtains

p-=K Po 6
op . B0
ox K P ax (8)

(b) Water waves - equation of hydraulics

n+2
F jh Pg (h y) Zdy (n+1)(n ,2) - (n+1) (n 1"2) ( o )

(o]
aF , Pg n+1 99
"2 Sy ) i
g L. ap
(n+) (g +m) ax (9)

This is the hydraulics equation of the relation between change of

hydrostatic force on the volume and change of water height of the

volume.




3. Equation of motion:

(a) Air waves:

. colx rdx) = . 9p
Po T p(X) PO rp(x 'dX) - Po m(x)° ax dx

The equation of motion can be written immediately

2
o]
S[P, + P(x)] -8 [P +Pp(x) +','Z§' dx] - Po S dx-at—;-

where ¢ is the displacement of the plane along the pipe

9 9
pO#'—-ax (10a)
(o)
e 1 .2 8Py
ot2 K ©° ax

putting it in non-dimensional form as before

azgy _ --]__. ( aota ) ap'
at' 2 K ' Iy ox' (10)
(b) Water waves:
k+1 2
ho o7 oF
P ) & 52 ox X (11)

Ead
here o) is the acceleration of the small volume between two

F
sections dx apart in undisturbed state, and-Z;' dx is the differential

change of the hydrostatic force on the volume.
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Substituting (9) into (11) one obtains

825 n ntl 3n
a2 BUUR) A (12a)
. gh ] 1+ n n+2 1
ne2 ax L(Pig) !
o
gh nrl 9 n n2
Lo () (—m—) — b -
G G w (O g 1]
putting it into non-dimensional form as before
gho
82t nl W (n+1\ Dy .nn2 1] 12)
are { n2 ox L h, (
w
comparing (12) with (10) one obtains immediately
gh,
/——1— tw .
(agta) n+ K - n-l
E w Q W n ‘2
p n N2
- [(1++—) - 1)
Py o
4, Equation of waves
(a) Air waves:
Substituting (4) into (8) one obtains:
d
i = - KP ﬁ
ox 0 x2 (13)
Substituting (13) into (10a)
a2t 2¢
= a2
ot2 o ox2 (14)
1




Similarily

82
P

52

ox (15)
926

ox2 (16)

Equations (14), (15) and (16) are the fundamental wave equations.

(b) Water waves:

Between (5) and (12a) either n or & can be eliminated

out, the result in terms of ¢ is simpler, so partial differentiation of

(5) with respect to x gives;

substituting (17) into (12a), one obtains

. . n 1 on
AL T T (17)
02

.}
52. . (_g_h.Q.)(l-,._n_)i__

0t 2
° (1

substituting (5) into the above equation

2
i) _ gh
o =6

1 2n+3
n (1+%}§(—)—n—+—1—

From equation (5)

0¢

(1’-‘&-) “(l*r)

Therefore
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n  ntl

0
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3
Since 317— is a small quantity,-gi- is also small in comparison to 1.

o
2n +3
(1 +i£_) n+l ~ 1
ox -
L gy, ﬁé‘ (18)
2 m 1 ax
Similarly
2
9 n_, n#2 gh 92 7 n+2
[, i - . ___Q — - 1
at2[(1+ho) 1] (ml)'é;'z-[(lérho) ] (19)
_82_ (1 n )n+1 1 = gho) _12_ [((1- n n+l -1 20)
ot2 [ by (n+1 ax2 ( ho) ’

Equations (19) and (20) can be proven, since the differential equations
are satisfied by the functions of 7 found in those brackets of (19) and
(20). The proof is as follows:

substituting (5) into (19) one obtains

5 _ n+2 5 _ n+2
o7 N 0. n+l ~ gh i) o¢ n+l _
sz L1+ 5) U= 5P e g0 1l
92t gho 825
ot2 = ( n+l ) ox

The result is the same as equation (18) which has been proved already.
Since equation (18) is satisfied by £, equation (19) is satisfied by 7.
Similarly equation (20) may be proved. Comparing equations (18), (19),
and (20) with equations (14), (15) and (16) respectively after putting them

into nondimensional form, one obtains again,

p n . n+2

— [(14—— "1

- ) " -
6 = [(1+—y™_ g
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5. Equation of wave propagation velocity

(8) Air waves:
The wave propagation velocity in air is well known as the sound

velocity in air which can be expressed as

d
22 p_.P

dp p

so the wave propagation velocity in undisturbed stream is

ag - ko
Po

(b) Water waves:
The wave propagation velocity of water in an open channel of a
constant crossection of any shape with a straight horizontal bottom

was derived mathematically by J. McCowan. *

A
2 _84
¢ % (21)

where A = the area of the crossection

b = the breadth at the free surface

Applying equation (21) to the crossection Z = yn. Then

h

g (
2_.__;Yﬂ___.=( )
c” = hn n+l

so the wave propagation velocity in the undisturbed stream is

* J. McCowan: p. 258, Philosophical Magazine, Vol. 33, 1892.




In this appendix the following equations have been derived.

Equations of Gas

1. Equations of continuity:
1
1’-6 1 o — el 1
(1+9) ¢ o )

2. Equation of thermodynamics:

6
B yp 2

ox 0 ox
3. Equation of motion:

9%, 1 at; 2 9p
ox’

02 K L,

4. Equation of wave:

2 2 2Pt
ot2 0 ox2
2 82
p . .2 5
o2~ %o ax
2 2
80 _ 2 23

ot 0 ox2

5. Equation of wave propagation velocity:

a-= Kl
p
Equations of Water
1. Egquation of continuity:
n n+l o¢
] + == 1+=—=) =1
( ho) ( ax)

2. Equation of hydraulics:

oF p - n+l 3
=By e
ox (n-1) ox




6

3. Equation of motion:

2
ghg
s n-1 n-1 W 9 . n n+2
E Y 0 ol
i w o
4. Equation of wave:

9%t ghg 82
ot (n 1" ox
2 n n+2 gh 9% n n-2

SR _ N Q) —— ~1

2 2

0 n n-1 gll_q e} n n-1
— o — - = -_ 1+ — - 1
AR A Rl B B AR R ) }

5. Equation of wave propagation velocity:

gh

Cc= ———

n-1

Comparison of the corresponding equations in the two cases show
that these corresponding equations have the same forms respectively.
From these we may derive the conditions for the analogy that the

following analogous magnitudes hold valid for the two cases:

s on n-1
(1-6) = (L)
0
h
Lo
aDta ~ l‘l"l t“’
!Za ﬂw
1 - n-1
k n-2
p n n-2
— = 1 * c— _1 *
P, [( h0) ]
3 n n-l
6 = [(1 '}-1-()-) -1]

* Note here the symbol ''p'' is the excess pressure.




NOMENCLATURE

A = Crossectional area of channel
a = Local velocity of sound =\/_I_(§
. Cp = specific heat at constant pressure
Cy = specific heat at constant volume
C = local wave propagation velocity = %1-1—
h = local water depth of flow
k = ratio of specific heats =.(C_:B.
v
* ] = some characteristic length in flow
n = exponent in relation Z = y?, Z = width of channel, y = height
of channel
P = local pressure
ta = some characteristic time in gas flow
tw = some characteristic time in water flow
t = time
T = local temperature in gas flow
u = local velocity of flow in x direction

Greek letter

p = local density of fluid
6 = relative change in density = pp— Po
¢ = a function of x. which represenzs the displacement of the plane
- disturbed by the wave motion
n = change of elevation of water due to disturbance with reference to hO

Subscri pts

a = air flow
w = water flow
o = undisturbed condition or the initial equilibrium condition
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HIGH TEMPERATURE GAS DYNAMICS
PHENOMENA IN HYPERSONIC FLIGHT

W.H. Wurster and
C.E. Treanor

Cornell Aeronautical Lal:.
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HIGH-TEMPERATUR: Go3 DYIQA JICS JHLL 00Dl I HYP. 130712 FLIH

By: W. H. Wurster and 7. o. Treanor
y

Cornell ieronautical Laboratory

The acvent of hypersonics has broucht about a hosc of new problems
relating to the nature of the medium through which hiih-speed aircraft
fly. These nroblems arise not only from the direct effects of hich
velocities and low densities, but also from the influences of the chemical
orocesses induced by flight at these conditions. These reactions include
the dissociation of the normal molecules of the atmosphere and the formation
of appreciable concentrations of new radicals and riolecules. The effects
of such reactions on various aerodynamic »nroperties such as heat transier
and sound speeds are being extensively studied. I would like to emphasize
stil” another proolem, namely, the stuay of the interaction of electro-

cnetic radiation with high temperature air. Several examples can be
cited where such a study is of direct value. 'le have already heard, and
shall likely hear further at this symposium of the irmortance of radiative
heat transfer at high-speed flight conditions. Turther, in the case of
the increasingly popular conceot of high-sveed reconnaissance not only the
fidelity of visual records but the actual nossibility of obtainin; records
with such a vehicle depend strongly on the radiative pronerties of the
shock~heated air around the craft. A4 sheath of heated air can rodulate the
radiation from the ground to the detectors within the craft by absorntion,
and can further complicate data by emittingz radiation of its own. In both
cases it is important to know the identification of the optically active

constituents of this sheath and the dependence of their radiative properties
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on wave length, temperature and density.

This research was initially snonsored by the iir l'orce J»necial ''eapons
Center at Hirtland Air l‘orce 3ase, hew liexico. The ultraviolet absorptive
oroperties have been neasured and a preliminary renort of the results set
forth (C.i.L. Repte Noe QH=997-A=1). I would first Like to review briefly
the exverimental orocedure and the results of that work, and then nresent

the results of subsequent exneriments.

Slide 1l: The air to be studied was nlaced in the Llow pressure section of

a clean but otherwise conventional closed shock tube., The nrocessing of
this air by the nrimary and reflected shock wvaves vproduces for about 100
nicroseconds a small pocket ot compressed and heated air at the end of the
shock tube. This air is in thermodynamic equilibrium at high temperature
and density. During this interval, the continuum outout of a xenon flash
lamn is nassed through the gas, and the resultant absorption spectrum
vhotogravhed with a medium quartz snectrogravh. Impurity radiation from
the shock tube, which usually attends the termination of the equilibrium
interval is eliminated from the record by a hi/h speed shutter placed in
front of the snectrograph slit. .A photormltiplier tube nounted within the
spectrograph records the exact time at which the absorption spectrum is
taken, and nonitors the operation of the shutter., The state of the gas is
calculated using the initial conditions before the run, and the measured
shock wave speed. Ion gaps serve to detect the nrozress of the shock along
the tube.

Perhaps the most significant finding of this study was the strong

absorption of ultraviolet radiation by shock-heated air. The next slide

demonstrates this effect.

Slide 2: Here is a direct nhotogranh of one of the spectrosrarh nlates,




devicting the region frow 2550 to 3500 gngstroms. The spectrun labelled
"packeround!" renresents the unmodulated outnut of the :tenon flash lamp,

vhile that designated "absornilon" is the same flash throu h the air in

the shock tube which has in this case been brousht to a termerature of

thOo K at four times atmosvheric density. The remaining spectra were taken
through filters to calibrate the nhotogranhic plate, vhile the superirmosed
iron arc cnectra furnish accurate wave length references. .5s can bte seen, at
3000 R a structural absorption sets in, which gradually increases in strencth
until at 2600 £ the absorption is greater than 95%, Under these conditions a
layer of air only 1 1/2 inches thick has essentially become opnaque to this
radiation. drperiments in pure nitrosen revealed no absorption, while similar
runs in nure oxygen snow a structured absorption almost identical with that in
the shock-heated air. Comparison of the structure in Loth cases with published
oxvgen erdssion data have established unambijuously that excited rolecular
oxygen is by far the chief contributor to the absorntion of heated air. ss a
result of this -redominant role of oxgen in the determination of the optical
nronerties of air, the emvhasis of the research vas shifted to a basic study
of the absorvtive nroperties of the oxygen molecule. This study is being
snonsored by the Air Force Office of Scientitfic Research. Transition
nrobabilities for several vibrational bands in oxygen have been obtained

which enablc their contribution to the absorption and emission of air to

be calculated for any erbitrary conditions of temperature and density,
including those unattainable in the Laboratory.

oslide 3: It may oe emnhasized that this discussion relates only to transitions
of the Schumann~lunge system in molecular oxygen from high ( 8 - 10 )
vibrational levels of the ¢round electronic state to the0-2 levels of the

upner electronic state. The normal vacuum ultraviolet absorntion of cold
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oxygen, which takes nlace from the lowest vibrational level of the ground
electronic state has been studied by Jichtbum and Heddle (Proc. Roy. Soc.
A 226, 509, 1954).
Let us consider some of the factors involved in the neasurement of
transition probabilities.
Slide L: Given a layer of sas of thickness d uwnon which radiation of
intensity Io is incident, what can be said of the intensity of the trans-
mitted beam? I we consider two energy levels of the rolecules, 1, 2, betucen
which transitions can occur, one would, i jeneral, e:xpect cner;y to he
rermoved from the beam at the wavelen;;th which corresnonds to the energy
difference of the levels involved. In an absorntion spectrum, this would
give rise to a line of decreased intensity at the corresnonding wavelength,
The expression for the transmitted intensity is siven by the usual
Beer's Law, where we see it is proportional to the incident intensity IQ and
to the normal exponential attenuation factor. Here 4 revresents the »ath

length through the gas, N, the number density, particles mer cm3

1

in the lower state 1, and d is an absorvntion coefficient vhich is related

s which are

to the probability for the occurrence of an absorbing transition. It is
reoresented as a function of A since in general the absorntion lines are
of finite width. The line width and shane is, in fact, devendent on the
thermodynamic state of the jzas. In general, the lines broaden with an
increase in temperature and density in a knoim manner, It should be stressed,
however, that the integral of oc(A)dA over a given line is a fundamental
molecular constant for the narticular transition. It was in fact the measure-
ment of this quantity which constituted the research oroblem.

The quantity N, is obtained by calculating the Boltzian distribution

1

of molecules for the energy levels involved, being given the equilibrium




conditions of the tempera.... and density of the gas. Two points may be
mentioned here. [Iirst, it is just this factor Nl which gives rise to
the fact that oxygen at room temperature is completely transparent to
ultraviolet radiation, while heated oxygen is strongly absorbing.

The transitions which correspond to these energies take nlace from
high-lying vibrational levels of the oxygen molecule)ﬁ-lB. At 1,500° K,
one molecule in every hundred is in the 8th vibrational level, while at
room temneratures the ratio is 1 in 1025. In ternms of path length, the
same absorntion by l% inches of gas at hSOOO iL would require at room
temperature a path length measured in light years. The overall absorption
is thus very sensitive to temperature through the strong temperature
denendence of Nl'

The second noint is that it is in the evaluation of Nl that the shock
tube comes into its own as a device for the thermal excitation of gases
for spectroscopic work. As mentioned earlier, these transitions are of
importance only in the heated gases, since only then does the population
factor become large enough to make the absorption measurable. The usual
arc and spark means of gaseous excitation, while producing a sufficient
temperature, are not as suitable for these studies. Such sources are
generally not in complete equilibrium, rendering the calculation of Nl
difficult, and also contain large temperature variations, so that an
estimate of the pathlength d is poor. In the shock tube, however, the
length d is accurately defined by the inside dimensions of the tube, and
the gas contained therein has been uniformly brought to a high equilibrium
temperature, One condition on shock tube applicability is the short dura-

tion (of about 100 microseconds) for these equilibrium conditions during

which the spectrum must be recorded., The intensity of the light source
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must be compatible with the ontical sweed of the instrumentation to
produce workable density levels on the ~hotographic plate.

The measurement of the absorntion was made usin.; the techniques
described earlier in the absorption work in heated air. Jeveral
nodifications were however required. 3ince it is the intepgral o the
area under the absorntion curve that constitutes the data, it is most
important that the snectral line shane be recorded with high fidelity.

It is clear, that the effective slit width or "window function” of the
instrumentation which essentially scans the line must be small compared
with the line width. A large Littrow quartz spectrograoh vwith high
disversion was therefore used to nhotosranh the svectra. .ind here again
the shock tube nroves itself useful, since the gas can be excited at

high densities. The collision broadening of snectral lines increases
directly with the density, and so the lines can be nurnosely broadened

to nroduce a more favorable ratio of line-to-slit width.

Slide 5: is a section of the nhotographed spectrum and depicts a

typical absorption band of the Schumann-iunge system in heated oxygen,
together with the corresponding densitometer trace. This particular

band consists of rotational transitions (between 3230 and 3370 gngstroms)
of the 0,13 vibrational levels. As was demonstrated in the nrevious slide,
these transitions take place from the thirteenth vibrational level of the
ground electronic state, to the zeroth level of the upner state. The
general nature of the band consists of the pairs of rotational lines which
comprise the P and R branches of the band. At the right of the photograph
is visible the head of the next (0,1l) band, while at the left are the
lines which comprise the tail of the 0,12 band. The small isolated lines

which sometimes appear between the pairs of the 0,13 band are due to




overlanping with the oreceding band,

It may be nointed out here that the envelope of the absor-tion
raxima actually nortrays the Zoltzmann distribution of the population of
molecules in the lower levels of each transition. This can, in »rinciple
be used to determine the rotational temperature of the gas. However, at
these temnmeratures the shape of the envelone is not a sensitive function
of the termerature, so that the intensity distribution of a single band
does not readily afford an accurate thermometer for the gas.

. The degree of resolution is evidenced by the separation betvecn the
pairs of lines. For P = 47 and R = 51 the separation is about one 2ngstrom.
If the density is increased to 8 or 10 atmospheres the lines broaden to the
extent that many of the line nairs coalesce. At this noint the Line width
is about 8 times the effective slit width, which results in a good determi-
nation of the iline shape.

lileasurements have been made of the (0,13) and (0,1L) bands of this
system under varying conditions of temperature and density. The last
slide presents the results,

Slide 6: Properly weighted areas under the lines were measured for various
transitions of each band and plotted as a function of their energy. 4 more
detailed description of this manner of data presentation is given in
Avnendix 1. In a graphical representation of this type, the points should
lie on a straight line. The intercent at E = O yields a constant from
which the transition probability can be extracted.

In the graoh shown here, both the (0,13) and 0-1!;) bands are presented.,
The difference in the intercepts corresnonds to the difference in the
resnective transition probabilities. The slope of the lines in this graph

g is =1/KT and hence is specified by the gas temperature. In the present case
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the scatter of the data limits the agreement with gasdynanically calculated
temneratures to 10%. This scatter is due in large nart to the fact that
all transitions were directly inclnded in the granh, vhere in fauct the
contribution of the hicher rotational levels of an overlanpin: adjacent
band should be subtracted from the lines affected. T eduction in the
scatter would nermit a senarate determination of the slope.

The snread in the value of the transition -robability, usin; the
calculated termerature is about 15! and renresents a “recision accentable
in this field of work. The f wvalues, a measurc of the transition
probabilities, are .096 for the (0,13) and .005 for the (0,lLi) bands.

These f values are defined as the ratio of the measured absorntion to
the absorption calculated for a classical electron oscillator. It is
these values which constitute the constants for these transitions of the
oxygen molecules, and from which both the absorption and emission by
oxyzen can be determined for any nathlength underany thermodynamic
conditions,

With the work we are doing at the nresent time, we hone to nrovide
transition nrobabilities for some 20 bands of the Schumann-iunge system of
oxygen. These bands lie between the vacuum ultraviolet limit and the
visible wavelength regions, and cormrise the chief absorbing system in
O2 therein., Plotted on a zrapvhi such as this the extension over many bands
will yield an accurate measurement of the rotational temperature, and serve
as an indenendent snectrogravhic check on tne temnerature ovtained by shock
wave calculation. And in sone cases where tiie temneratures are not readily
calculable, calibrated rzasurements can nou be made,

in conclusion I would like to »oint out the further a~plicability of
these findings in twro other research fields., One is in the area of chenical

kinetics, which is concerned with the dissociation and recombination times




of radicals and ro-ecules znd with the detcrnination of reaction
rniechanisms. onsider for examnle the absorption cwectrum of an otygen
reactin: mixture taken in 1 small interval of time, the order of ricro-
seconds. The strength of tne absorntion ic reasured fro. the ~hoto rarhic
nlate and since the transition nrobability is nou <nown, one then directly
obtains the nonulation of the various vibrational levels of the molecule.
Hot only can vibrational rclaxation times he verified, but the role of
oxvien in a flame or combustion reaction caii be established.
Jinally, the «bility to measure auantitativel; tiie nonulation ol the
molecules in vibrational levels suicests the use of flash absorntion
svectroscony for the determiration of the degrce of equilibrium in hymer-
sonic flows. In shock tuniels and uozzles the flovw fields and GSoundary
layers can be nrobed ontically and the state of the .as ranned throughout
the conliguration.

In the li ht of these considerations, it anvears that the rieasurement

of moiecular transition probabilities has dircct apwolication to the problems

of hypersonic aerodynamics,
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the »roduct '106(9) defined Ly the equation

- N, dlv) d
r=I,¢

There Io aixl L oare “he “neifdent and transemitied eam intensities tiroush

a larer o —as ol thickness d. ?l is the muaker of narticles ner cusic
&

cenbinmeter in the lover state of the transition involved and O€ ic an
shsorntion cosf’icicnt. Y is the 1eve rudzer ia recinrocal contizicters.,
Yesirnatin; the rotational and vibrationol guantuwu nunders of the

Tover state oy UM andv" resncctivel;r, and those o vho woper ciate by

K' .n¢ vv, the nmeasured irte rated absorntion coef icient or a single

rotalional Line can be vritten
JN‘ 7] &(V) . ! dv‘
K KK~
e snectral Lines are cornmall;s desi nated according to the value of .7,

The selectlion ™iles For (. 1indt whio values of oY to L'=iMel (2 Trareh)

2
[

Y

and '=lt+l (B branc ). Twe ad in: the contrivutiorns fro.. the 2 and .
hranches Tor o dven U arounts to swmdn, over all alues of X', Thise
swmation o the intograted absor»otion cocfiicient is then -ronortional
to the nwabecr “encity of rolecules in the lorer (Kiw") level of the
transition and to the -robability of the occurance of an absorbing
transition from the lover to he wimer vibration=l level. In terms of
the f value for the transition the emation is

— (Ev"*E“‘
we? )Cs.R (2K™+) S
Z JN B g ' dv= o
Py Kv’ K'v=> Kv

e
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vhere '3
re' . 9.95x%x10 om
mct

\A

2
(en'+1)
Q“,Q‘, = nartition functions for rotation, vibration, resrectively

y3
T

number of oxygen molecules per cubic centimeter

i

rotational degeneracy facior

Boltzmann constant.

: o
absolute temmerature, K
$R.
iv‘V'J = £ value for the Schumann-.un:e transiton from v" to vi.
?
This transition nrobability is indewnendent of Li,

Rearranging the equation, and taking the logarithm of both sides

TR 2 €N B
o [ L ] S
. ~

Ko K'Y AT

The usual method of handlinz these data is to »lot the left-hand side of
the equation vs Ek"' It can e seen that this should yield a straight
line with slope equal to - Z‘ZT ancd the intercept of the line at
EK.. =0 gives the f wvalue for the transition. In the granh of
figure 6, all energies were measured relative to the 1i"=0 level of the
(0,13) band, so that the data frorm toth the (0,13) and (0,1l) bands are

shown on the same graph.
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Generation of Pressure Wave Forms
Through the Detonation of Explosive Charges
D. C. Anderson
CHAPTER 1
INTRODUCTION

This study investigates the general behavior of shock waves generated
through the detonation of high explosive charges. The analysis in particular
is concerned with one dimensional flow, that is shock waves propagating
down a unit cross-sectional area channel. It is also limited to shock waves
with shock front overpressures (i.e., pressures immediately behind the shock
front) of ten atmospheres or below. With these limits and restrictions it is
seen that this study confines itself to shock waves which may feasibly be gen-
erated in a shock tube.

The analysis is similar to that previously made for calculating total
energy yields for atomic bombs.l’z* However, in this case, because of the
limits and restrictions placed on the study the end result is different and
vields far more information. The analysis leads to shock strength-scaled
distance and shock strength-scaled time decay curves, where shock strength
is defined as the shock front overpressure to ambient pressure ratio. It also
yields, under the assumptions made considerable insight into the behavior of
the gas flow variables behind an explosive generated shock.

The laws of conservation of mass, momentum, energy governing the flow
are all employed and satisfied in carrying out and completing the analysis.

With these results an approximate method is developed for generating

various desired pressure pulses.

*For all numbered references see bibliography.
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CHAPTER II
DISCUSSION OF THE PROBLEM
A sketch of a typical distance-time curve for a shock wave propagating
from a zero origin is presented in Figure 1. The figure shows the shock front
distance R as a function of t, time, and also a typical particle position r; as
a function of time. This figure will be referred to periodically throughout the
analysis for a better understanding of the presentation.

The Space Density Distribution

The study begins with the assumption of a density distribution, namely

t
p(r) =p [flﬂ] ()

where p is the gas density behind the shock at a distance r; from the origin,
P is the gas density at the shock front distance R, andq is a function of
shock front conditions to be determined by considering conservation of mass.
At a fixed time, t, Eq. 1 depicts the spacial density distribution behind the
shock.

Justifications for such an assumption on the density distribution are: (1)
it is known that the density is some monotonically decreasing function with
the distance behind the shock front, (2) the observed density distribution is
closely approximated by this power law, and (3) it yields, as will be shown,
results which are in agreement with experimentally gathered data. The fact
this assumption requires that the density go to zero at the origin is in all
probability its main error. However, in reality the density very nearly goes

to zero at this point for shock front overpressures of two atmospheres or above.
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The difference is negligible. For weaker shocks the assumption is still good
but not as accurate.
The value of q will now be determined by considering the conservation
of mass law from the origin out to the shock front distance R. This states
R
f pdr =p R
o

for a constant time, where pg is the ambient gas density. Substituting the

value of p from Eq. 1 into the above integral and integrating results in

PSR
gq+1 "0 R
Solving this equation for q gives
Ps
Q—-B—o—-l—ﬂs-l (2)

where 7 is the ratio of densities across the shock front.

Space Particle Velocity Distribution

Conservation of mass is again employed, but this time the mass from the
origin to a particular particle path is considered (see particle path rl(t) in
Figure 1). This gives the integral equation

o |
f pdr =p o R1
()
where R; is the particle distance before the shock engulfs it. Using Eq. 1

and integrating gives

rq
pS(ﬁ) 1T Py
= =pR
q+1 q+1 01

where Eq. 1 is again used after integration.
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Next the substantial derivative,

D _ 3 a9
pt at " Yar

d
where u is the particle velocity and is equal to cTtl:’ of the above integration

result is formed. This gives after simplification

Do,pu_ _p_dlarl _g
Dt r q+1 dt

The one dimensional conservation of mass equation

Do, p2u _
Dt par—o

is combined with the above equation to give

Q

1 d(q + 1)
T q+1 dt

u

ar

u
r

The solution is readily obtained with the substitution u = ry and integrating
with respect to r at a fixed time. The solution is

1 d(q + 1)
Tq+1 dt

u
i inr + A(t)

where A(t) is the constant of integration which may be function of time. At

the shock front the solution becomes

1 d(q + 1)

“q+1 dt

Us
"= InR + A(t)

where ug is the particle velocity at the shock front. From this equation the
value of A(t) is evaluated, and the final particle velocity distribution may be

expressed as
u = ug (lR) l:l - a(t) In <-§):| (3)

R _1 d(g+1)
u,. q + 1 dt

whare

o=
S

This value of a may be simplified considerably as follows:

115




Tug g+l dt u, ng dR dt
_U R Y R I
ug nS dR ns-l g dR
" dlmR
where
U=3¢ (shock propagation velocity)
and

from the Rankine-Hugoniot relation® obtained from the conservation of mass

across the shock front.

Space Pressure Wave Form

The conservation of momentum equation states

P _ _ _Du
or th

where P is the absolute pressure.
The space pressure wave form may now be found by considering the fol-

lowing integral at a fixed time.

_ (3P 4.. _ (.Du
P—fardr prtdr

The quantities in the integrand on the right may be found either directly or
derived from Eqgs. 1 and 3.

In forming the substantial derivative % all of the quantities appearing
in the expression for particle velocity, Eq. 3, are functions of time. The

derivative is thus formed and combined with the density expression to give
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. dr s dr
the above integrand. The integrand contains such expressions as at’ Tt dt’

d
and -d% which are all rewritten as follows

e () 1o (5]

dR

a =Y

duS dug ugU dlnug
dt " dR R dInR
da _ c_lg_=aU dln«o

dt dR R dInR

With the integrand expressed as a function of r the integration is per-
formed and the constant of integration is evaluated at the shock front. The

resulting pressure wave is

P(r) - po r USH r M r 2
P B c K¢ (—ﬁ) K + Lln (ﬁ) + {m(ﬁ)} (4)
where P, is the absolute ambient pressure, and Py is the absolute pressure

immediately behind the shock front. The quantities K, L, and M are

parameters dependent on shock front conditions only. Their values are

2
X 1 a a ”s'la
T g+ 1 1- 1"'773+1 USB+US+1(1-775¢-2775)+ g + 1
2
-1
L=_O© ns(3+¢)+f,"i__La+ns-2
ng + 1 ng +1
-1
M=-,ls———ot2
ns+1
where
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dlnus
6:.——_
din R
and
dlna
®=3InR

The Total Shock Energy Yield
The total shock energy yield, W, manifests itself in two forms: (1) the
kinetic energy, Ex, given by
R
Eg = f (1/2) p u2dr
o

and (2) the internal energy increment, Ej, given by
R
E; = f e Pdr - €,P, f dr

(] o
For ideal gases the internal energy is known to be a function of state only,
and hence the internal energy per unit volume can be written as ¢ PV, where
€ is at most a function of state, and not of process. Here V represents
specific volume. For a stream tube of unit cross section, the specific vol-
ume is numerically equal to the length of the tube enclosing a unit mass of
fluid. Hence, the above expression represents the change in total internal
energy of the fluid from the origin to the shock front. It canbe shown from ther-
modynamic considerations that ¢ = ;—5—1, whether or not v, the ratio of
specific heats of the fluid, is a constant.

Over the range of pressures considered in the present analysis,y is

known to be substantially constant at the value 1.4; then € = ¢ = 5/2.
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Using the values of p and u given by Eqgs. 1 and 3 respectively, the inte-

gral for kinetic energy may be evaluated readily. It gives

1 2 R 2a o
Ex =2Ps% 7,43 [1 t g + 2 (1 t g ¥ 2 2”
Likewise, employing Eq. 4 the integral for the internal energy increment is

found to be

_5 ) ) K L 2M
E[ =35 (Ps Po)R[l K+'7s+2 ("s+2)2+(”s+2)3}

adding the two expressions and using the conservation of momentum across

the shock front to simplify the equation results in
W=E +E=1(P - P,)R P—S—: 1+ 2a <1+——9—-—
K I=2\s 0 Ng + 2 ng + 2 ng + 2

(5)
K L 2M
+5{1-K+ns+2_(ns+2)2+Gs+_m3}:|

Equation 5, as will be shown, is a second-order differential equation. It

must be revised in form in order to be solved. First the following are defined

P
§ (shock strength) = =2
PO

PoR

A (scaled distance) = Tov—

and

X6 ® - S

Using the first and last definitions, and employing the Rankine-Hugoniot rela-

tions between P, u, and P at the shock front, it is found that

a=dln(ns‘1)_ 7x
dln R T E+ 6
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___dlnus= 36+ 4 4
dlnR 6f£+1

and

¢=d1noz___ diln X _é-lx
dlnR diIn(&-1) t+ 6

Now with the help of the Rankine-Hugoniot relations again, and the above

values for o, 8, and ¢, Eq. 5 becomes

1.
L=

5(£ - 1) 2462 4 169¢ + 52 , _ 7(2482 - 125& - 46)
28§ + 13)|:(8€+6)+ 8€ + 13 X (8¢ + 13) x2

+

(6§ + 1)x2 din X j‘
8¢+ 13 din(¢- 1)

which is of second order and may now be broken up into two first-order equa-
tions as follows.

A

X(§-1)

sle

and

2
- 1 3%%__113)? - (85 + 6)(8E + 13) - (2482 + 169¢ + 52) X
dé 766+ 1)(§- 1) X

7(24t2 - 125¢ - 46)
8 + 13
766+ 1)(6- 1) X

These two differential equations were integrated numerically on the IBM
650 computer using the Bell Telephone Laboratory L1 interpretive routine
and the R.C.A. Laboratory routine for the solution of differential equations.:i’4
The R.C.A. differential equation routine integrates a set of differential equa-
tions numerically using the Milne method. The initial equation must first be

written as a system of first order ordinary differential equations, The system

is then solved by use of the '"predictor' and ''corrector' equations of Milne.
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The integration is initiated by computing the first three points by the Runge-
Kutta-Gill method. Both of these methods yield fourth order precision, that
is truncation errors of order h5, where h is the increment interval.

The routine provides a criterion whereby the increment size is altered
until the absolute value of the difference between the "predictor' and "cor-
rector' values of the solution do not exceed a certain pre-specified amount.
In the solution obtained this amount was specified as 29 x 10'4.

The coding process for the machine, when using the differential equation
routine, involved simply coding the functions determining the differential
equations. The initial conditions as well as certain constants required by this
routine had to be specified. The solution was continued until ¢ - (1.01 + h)
became less than zero. Initial conditions were taken from experimental data
gathered at the Air Force's shock tube facility at Gary, Indiana, several runs
were made using different initial conditions for each. Two of these runs are
plotted in Fig. 2, ¢ versus A . They are represented by the broken lines; the
solid line represents experimental data.5

The solutions given by the computer for the differential equation indicated
that the problem in some way may be overdetermined. This was so indicated
when the computer, regardless of starting initial conditions, tended to seek
out new initial conditions which would yield a smooth solution procedure,

Whether or not the problem is overdetermined is as yet unknown, but the

solution obtained is considered in good agreement with experiment.
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Typical Single Charge Wave Forms

In addition, the problem was set up on the computer to yield values of X
and g—}—g from which values of a, 8, ¢, K, L, and M are easily computed.
Table I lists these values for the range of shock strengths considered in this
study.

It is now possible to plot typical density, particle velocity, and pressure
wave forms using Table I and Egs. 1, 3 and 4 respectively. Figures 3 through

8 present these wave forms for shock strengths of two and three.

Development of a Time-of-Arrival Curve

Until now the analysis has been independent of time, which has thus far
appeared only as a parameter. Now, by further considerations, a shock
strength-scaled time curve will be constructed.

The Rankine- Hugoniot expression for shock velocity

U=c¢c [6—6-7*'-—1]1/2

is used to plot U/c versus ¢ (see Fig. 9), where c is the sound speed in the
region immediately in front of the shock. This curve is used to determine an
average value of U, say U, between two shock strengths. From the curve

of A versus ¢, Fig. 2, values of R are extracted corresponding to various &,

for example at £ = 10, R = 0.066 -W—. In this manner a AR is found between

P
o
two shock strengths. This corresponds to a U, and so yields a At, At = Q_B.
, , Poc(t-t;) U
The time corresponding to § = 10 is assumed tobe t = t. —w _ is

now plotted versus X\, shown in Fig. 10. This curve is extrapolated back to

where A = 0 to find a value for tl .
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w
The addition of this time-of-arrival curve makes it possible to find, if given

With this value of t;, ¢ versus is plotted and is shown in Fig. 11.

values for any two of the following, ¢t , R, t, or W, the remaining two.

Table 1. Single Charge Parameters

¢ a 8 ¢ K L M
1.3 | -0.854 | -0.800 0.099 | 0.992 0.631 | - 0.066
15 | -0.801 | -0.729 0.120 | 0.976 0.496 | - 0.091
1.7 | -0.762 | -0.681 0.130 | 0.959 0.400 | - 0.107
2.0 | -0.715 | -0.624 0.168 | 0.937 0.275 | - 0.122
2.6 | -0.648 | - 0.566 0.199 | 0.891 0.130 | - 0.133
3.0 [ -0.614 | -0.540 0.218 | 0.865 0.064 | -0.134
4.0 | -0.540 | -0.494 0.289 | 0.808 | -0.052 | - 0.125
5.0 | -0.477T | - 0.459 0.393 | 0.760 | - 0.131 | - 0.108
7.0 | -0.358 | - 0.387 0.578 | 0.665 | - 0.266 | - 0.069

10.0 | -0.437 | -0.557 | -4.243 | 0.442 1.431 | -0.112
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CHAPTER II1
SINGLE CHARGE RESULTS APPLIED TO MULTIPLE CHARGE
SYSTEM FOR GENERATING DESIRED PRESSURE PULSES
In retrospect the results obtained in this study specifically are; (1) a
shock strength-scaled distance decay curve, (2) a shock strength-scaled time
decay curve, and (3) a complete description as to the behavior of the gas flow
variables behind an explosive generated shock front, that is, under the power

law density assumption.

Shock Strength-Scaled Distance Curve

The first of these results as shown in Fig. 2 is considered in good agree-
ment with experimentally gathered data. That the theoretical and the experi-
mental curves do tend to separate for the lower range of shock strengths is
more than likely due to the fact that the assumed density distribution is less
accurate for low values of shock strength. These two curves do agree quite
well, however, for shock strengths above two. This result enables one to
calculate the conditions necessary to generate a desired shock wave. For
example, if the distance and shock strength of a desired wave are given, the
size of the charge necessary to generate the wave may be easily calculated.

Shock Strength-Scaled Time Curve

This curve, as shown in Fig. 11, shows the time decay history of an explo-
sive generated shock wave. It serves somewhat the same purpose as the shock
strength-scaled distance curve. With the addition of this curve it is now pos-
sible to calculate the time of arrival of any given shock. This time decay his-
tory also makes it possible to calculate numerically the density, particle
velocity, and pressure time distributions behind an explosive generated shock
wave. With timedistributions adirect comparison may be made with experi-
mentally gathered data.
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Behavior of the Gas Flow Variables Behind the Shock Front

Although this study makes the calculation of the various gas flow variable
distributions behind the shock front possible, both space wise and time wise,
it must be remembered that this is only under the density power law assump-
tion, Eq. 1. However, the distributions, some of which are shown in Figs. 3-8,
do give some indication as to the expected behavior of these gas flow variables
behind the shock front. This behavior is also supported by what is experimen-
tally observed.

Probably the most significant result this study brings forward concern-
ing the behavior of the gas flow variables, is that concerning the existence of
a positive pressure phase duration (that is, time measured from-the shock
front back to the point where the pressure drops below ambient). Previously
the existence of such a duration has been taken for granted, the reason being
that it has been clearly observed in the case of a spherical shock wave. How-
ever, in that case spherical divergence tends to emphasize the peakedness of
the explosive-generated wave, and therefore explains the existence of the
positive phase duration. In the one-dimensional case no such divergence
exists and therefore such a duration need not exist. This is precisely what
is indicated in this study. For very weak shocks, that is ¢ ~ 1, the analysis
does indicate that such a duration is present, which is to be expected as the
overpressure never differs greatly from ambient pressure.

The analysis is supported by experiment in that a positive pressure phase
duration is not clearly defined on pressure-time records taken in the shock

tube. Records taken at the Air Force's Gary, Indiana Shock Tube Laboratory
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indicate that the pressures merely approach ambient pressure asymptotically,
and do not drop below.

With such experimental support it is felt that this analysis does give an
insight not only as to the over-all behavior of an explosive generated shock
wave, but alsc the behavior of the flow variables behind the shock front.
It is with this foundation then that the following sections derive an approxi-
mate solution for generating various desired pressure pulses.

Approximate Method Employed for Multiple Charge Problem

In order that a solution for a second charge may be found, the conditions
set up by the first charge must be considered. It is therefore assumed that

the first shock sets up a new set of average ambient conditions given by the

expressions
R
f P dr
<« Jo
P =
R s
f dr
0o
and
R
f 4 dr
- _ Y0
R
f dr
0

These are easily computed using the pressure and particle velocity wave

form solutions from the single charge. The results are
K L 2M
{(e- 1)[1 -K+"sﬁ-("s+2)2+(’—7s_+7)3} +1}1>O

- ()

P

el
i
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- 1/2
A new average sound speed ¢ is defined by ¢ = ¢ (%—5—-) .
o

The two charge problems may now be solved. Suppose a El is desired

at a distance R1 , and is to be followed by a 52 at a distance R,; the charge

weights v, W, and the time delay between the detonation of the two charges

may be found as follows:
rWI (from X versus & plot, Fig. 2)

Pyct
w

51’ I’t1 imply < t (from versus ¢ plot, Fig. 11)

_ P and u, (from above equations)

*
R,
W (from A versus £ plot)

2
§; implies 3

* _t_z_ (from E%? versus & plot)

V2

* some distance R corresponding to a shock of strength §9 moving into a

still gas, but not equal to Ry as the gas in front of second shock is in
motion.
Using the above information and noting that

Ry

Rc+ut2

R t

c - 2

= | W_ +u (== W
(W2> 2 <w2> 2

Solving for W, the second charge weight gives
2

= (6)
') ()
Wy Wy
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from which

ty
tg = Wy W,

This gives the time delay between detonations
At =ty - tg (7)
These are the necessary parameters for generating the desired wave form.
It will now be shown that this method may be expanded into a solution for
an arbitrary number of charges. The assumption is made as before that each
successive shock sets up a new set of ambient conditions. For the nth shock

these conditions are:

P ={(t-1|1-K K ___1L 2M 1P ., (8
n { l: fh 2 (ns+2)2+(ns+2)3 * ST

En = (a ;2) (us)n +U g, (9)
and

_ .P.n 1/2

C = <P—°> cye (10)
where the parameters § , 7., K, L, M, and ¢ are all determined by the
nth shock.

The procedure consists of treating §;, Ry and &, R, as described
above, thus obtaining the complete solution for generating waves one and two.

Next wave two and wave three are considered. The procedure is the same
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with the exception of the computation of P, u, and ¢c. They are computed

using Eqs. 8, 9, and 10. Likewise any number of charges may be treated in
this manner. In the following chapter the three desired wave forms are con-
structed using this procedure. The form of the solution will be more explicitly
defined as these individual cases are treated.

Figures 12, 13 and 14 present P, ¢, and u respectively as a function of
shock strength. These curves eliminate many of the computations involved

in the multiple charge solution procedure.

Reliability of the Approximate Solution

There are several errors introduced by the use of this approximation
solution, however, each error is in itself compensating or has a correspond-
ing compensating error. The errors are:

(1) An average u is used instead of its actual value at a particular point.

(2) An average P is used instead of its actual value at a particular point.

(3) The above are computed by assuming the shock, which sets up the

new ambient conditions, is at its desired strength and position.

(a) This results in a lower P than is actually seen by the shock
wave following, and thus giving the new shock wave a higher
shock velocity than it actually has.

(b) It also results in a lower u than is actually the case.
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It is apparent that (1) and (2), being averages, are nearly self-compensating,
but they are not entirely self-compensating because they are average values
over the entire shock wave where as the new shock travels only a fraction of
this distance.

This implies the P and u computed are too high, giving the new shock
wave a lower computed velocity than it actually has, but the correspondingly
high u compensates. Similarly (3a) and (3b) compensate for each other.
Although the errors introduced by this approximation method compensate for

each other, there is no guarantee that the balance is perfect.

140




6.0

/
/

o-v‘ ol

/

2.0 ////,
1.05{////y/////

1 2 3 4 5 6 7 8 9 10
£, Shock Strength

Fig. 12. Average Pressure Behind Shock Front, P, Versus
Shock Strength, &
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Fig. 13. Average Sound Speed Behind Shock Front, €, Versus
Shock Strength, &
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Fig. 14. Average Particle Velocity Behind Shock Front, u,
Versus Shock Strength, &
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CHAPTER IV
SOLUTIONS TO THE THREE DESIRED WAVE FORMS

It is now possible to find the charge weights and their times of detonation
in order to produce a series of desired shock waves at a corresponding series
of desired distances. However, in the three cases to be solved, shock strengths
and time durations are given, as opposed to shock strengths and distances.
This makes it necessary to determine the relationship between £ , R, and ty,
duration.

As shown in Figs. 7 and 8 there is no apparent duration occurring for
one-dimensional shock waves; however, for very weak shocks ( £ ~ 1) a nega-
tive phase does occur in this theory. The theory itself is supported by actual
experiment. Pressure-time records taken at the Air Force's Gary, Indiana
Shock Tube Laboratory indicate that a duration, or, in other words, a positive
and negative phase, does not occur. In most cases, however, the record
approaches ambient pressure rapidly but asymptotically.

In the case of a spherical shock wave originating from a point source in
a homogeneous atmosphere, spherical divergence tends to emphasize the
peakedness of the explosive-generated wave. Decays of pressure in both
space and time are thus more rapid in this ""three-dimensional" case, and
phases of negative pressure are clearly evident over a wide range of shock
strengths. The conventional form taken for pressure-time variations in

work with high explosives has been

-t/t,
P(t) - P, = (Pg - Po) e O (1 - thy),
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in which t, is the duration of the positive pressure phase. It is seen that this
wave form decays in overpressure to one-half of the peak overpressure in
about one-third of the positive phase duration. The conventional "duration"
for a wave propagating in a constant area channel (shock tube) is thus calcu-
lated in the present report as three times the decay time to half the peak
overpressure.

*
Now using Eq. 4, it is possible to find a value of (rﬁ)’ say (%) , which

corresponds to .2 = 0.5, for any given shock strength. These values,

s - Po
x
(%) , have been computed and are presented as a function of shock strength

r r

in Fig. 15, Values of particle velocity, where (ﬁ) = (ﬁ >* are now com-
puted from Eq. 3 for a range of shock strengths. For the same range of shock
strengths the sound velocity say c*, is computed at the half overpressure
point relative to still air. With this information the following equation relates

the previously defined duration to distance:

(5 = [t~ (5)7] =

or solving for R gives

_ (u* + c¥*) to
3[1 - (£)]

The ratio of the coefficient of t, to ¢, sound speed, is plotted as a func-

(11)

tion of shock strength in Fig. 16. This curve may now be used in computing

a distance, given a shock strength, a duration, and the ambient conditions.
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Solution for the Double Peaked Wave Form

The simplest of the three wave forms to be constructed is the double

peaked wave form. It will therefore be treated first. The particular pressure

time form desired is shown in Fig. 17.

P, Pressure

P # A

’im msec[* "{10 msec [¥

[—— 40 msec P o

t, time

Fig. 17. Double Peaked Wave Form

Wave one is first considered. It is noted that a shock strength, & , of 2
with a duration of 10 milliseconds is desired. Figure 16 gives

* *
uw+ct _l_ = 2.21

] ¢
r o
sl-(#)]
for £ = 2, which gives

R

2.21 co t,

(2.21)(1117 ft/sec)(0.01 sec)

25 ft
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Figure 2, £ versus A, gives
A= 1.25/ft2
for &= 2, and taking the value of R from above gives

A 3

—_— = _9. =

== 2 = 0.05/tt

w. - (147 1/in)” (144 in.2/1e%)
1 0.05/£t5

= 42,336 ft-lbs

Figure 11 gives a time of arrival for the first shock wave. For &= 2

Pet
o 1 _ 2
W s 0.7/ft
0 7/ft2 (0 7/ft2) 103 msec/sec
tl = .P = A% 5 = 12.5 msec
0%  (0.05/£t°)(1117 ft/sec)

w

With the time of arrival known, the position of shock wave one may be
found at the time the second wave is at the 25-foot distance (40 milliseconds

later).

Poc (tl + 40)
Wy

= 2.94/1t2

which corresponds to a § = 1.2 and a distance R = 156.

The problem is now in the form in which the approximate method may be

applied. The charge weight for the first shock has already been found, which
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leaves only the second charge weight and the time differential between deto-
nations to be found.

The values of P, u, and ¢ for £ = 1.2 are, from Figs. 12, 13 and 14

P = 1.05 P,
u=004c
T = 1.025 ¢,

This implies that the second wave with a 62 = 2 relative to P, has for

purposes of computation a £ = % = 1.90. From Figs. 2 and 11, § = 1.90
implies
R 2
oo = LA 6.43 x 10741
2 P
and
ty _ 0.9/82
W= == =363 x 107 sec/ft-1b
2 Pec

Putting these values into Eq. 6 gives

Wy = 3.79 x 10% ft-Ibs

and therefore

ty
tz =W <—W—2—> = 13.75 msec

By Eq. 7

At =t -ty = (12.5 + 40) - 13.75 = 38.75 msec

To summarize then, the desired wave form in Fig. 17 may be generated

at a distance of 25 feet using

Wy = 4.23 x 10* ft-1bs
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and

Wy = 3.79 x 10% ft-1bs

With a time spacing of detonation equal to 38.75 milliseconds. These are

the parameters for a unit cross-sectional area channel.

The 50-Millisecond Buildup, Finite Rise Time Wave Form

The next shock wave to be considered is the finite rise time wave form
which builds up slowing to peak in about 50 milliseconds, and then decays to
zero in another 50 milliseconds. This wave will be approximated by a series

of six smaller shock waves, as shown in Fig. 18.

o

[+]

P, Pressure

e—— 50 msec —»te—— 50 msec —|

t, time

Fig. 18. The 50-Millisecond Buildup,
Finite Rise Time Wave Form

The first step in determining the parameters which will generate this
finite rise time wave is to determine the distance at which a duration of 50
milliseconds occurs for a shock strength of two. Using Fig. 18

R = (2.205)(1117)(0.05) = 123 ft
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For wave one §;, = 1.167, which gives

Xy = lo/ft2
From Fig. 1,
At R = 123
A P
1 _"o _ 3
R = 1 = 0.0813/1ft

and at atmospheric conditions .

W, = 2.61 x 10% ft-1bs

Figure 11 gives

1:‘o ¢ t1

0 o1 2
W, - 6.2/1t

from which .

t1 = 68.3 msec

When wave two arrives at the 123-foot distance, wave one has traveled
another ten milliseconds. It has therefore decayed to the following derived
shock strength.

P, cg (t; + 10)
Wy

= 7.11/1t? which implies &, = 1.145

This new 61 gives the new ambient conditions for the second wave.

They are, from Figs. 12, 13 and 14

P=104P,
@y = 0.029 c,
T = 1.02¢,
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Relative to the new ambient pressure the shock strength of wave number

two is

w

_ L

3 _
3= Tog - 128

9

Now for {5, Figs. 2 and 11 give respectively

—

B, R
170 _ 5.5/42
Wy
Py Tty 2
——Wz-— = 3.7/ft

Using the values of P and © in the above yields

R -
e - 2.5 x 1073 /1b
W2

tO -6
- = 1,48 x 107" sec/ft-1b
W
Equation 6 now gives
W, = 4.82 x 10% ft-1bs
and

t
- 2\ _
t2 = W2 (W2> = 70.3, xo by Eq. 7

Aty (t1 + 10) - t, = 8 msec

Next, wave three is considered, with wave two setting up the new ambient
conditions. Wave two travels for an additional 10 milliseconds before wave
three is at the 123-foot distance so that it decays in shock strength. Its new

shock strength is, from Fig. 11,
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—Fl cy (tz + 10)
Wa

= 4.22/1t%

Which implies €2 = 1.245. Again from Fig. 11 the new set of ambient con-

ditions is
Py = 1.06 P, = 1.10 P,
62 = 0.048 T, + U, = 0.078 ¢
€y = 1.048 c

Relative to the new conditions, the shock strength of wave three is

_ 1.50 _
53 =110 - 1,365
For {3, Figs. 2 and 11 yield
Py R, 2
W3 = 4,1/ft
and
PyTyt
2723 2
W3 2.75/ft
from which
R
—€ - 1.76 x 10°3/1b
W3
and
t3 -6
= = 1.000 x 107" sec/ft-1b
W3

Equation 6 gives

W, = 6.66 x 104 ft-1p
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and it follows that

t
ty = W3 <Vv%> = 66.6 msec

so by Eq. 7

Aty = (tg + 10) - tg = 13.7 msec
By repeating this procedure, the remaining charge weights may be found,

and also their times of detonation. The results are:

Wy = 7.52 x 10% 1t-1bs Atg = 15.8 msec
) W = 8.43 x 104 ft-Ibs Aty = 13.4 msec
Wg = 8.83 x 104 ft-1bs Ats = 14.2 msec

This completes the analysis for the 50-millisecond buildup, finite rise

time wave form.

The 5-Millisecond Buildup, Finite Rise Time Wave Form

The final wave considered is another finite rise time type. However, in
this case the buildup time to the peak overpressure is much more rapid, 5
milliseconds to peak overpressure and then 45 milliseconds for decay to zero
overpressure. The wave is generated by a series of three smaller waves as

shown in Fig. 19.

P, ’Ll
[e——— 45 msec ————p }‘5 msec

t, time

Fig. 19. The 5-Millisecond Buildup,
Finite Rise Time Wave Form

P, Pressure
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