Technical Note

No. 122

A SURVEY OF THE LITERATURE ON HEAT TRANSFER FROM SOLID SURFACES TO CRYOGENIC FLUIDS

BY

R. J. RICHARDS, W. G. STEWARD, R. B. JACOBS

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
A SURVEY OF THE LITERATURE ON HEAT TRANSFER FROM SOLID SURFACES TO CRYOGENIC FLUIDS

by

R. J. Richards, W. G. Steward, R. B. Jacobs

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature. They are for sale by the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.
A SURVEY OF THE LITERATURE ON HEAT TRANSFER FROM SOLID SURFACES TO CRYOGENIC FLUIDS

by

R. J. Richards, W. G. Steward, R. B. Jacobs
Cryogenic Engineering Laboratory
National Bureau of Standards
Boulder, Colorado

ABSTRACT

A bibliography of 156 references on heat transfer from solid surfaces to fluids and related phenomena is presented. Heat transfer data obtained from experimental work on cryogenic fluids are presented in graphical form. The theoretical and empirical formulations appearing in the references are presented. In those cases where sufficient information is available to make numerical computations, the formulations are presented graphically to permit comparison with the results of the experimental work.
III
CONTENTS

Abstract .. If

1. Introduction .. 1

2. Nomenclature .. 2

3. Graphical Presentations 4

Figures

1. Calculated Heat Transfer Rate for Liquid Helium 6

2. Experimental Heat Transfer Rate for Liquid Helium 7

3. Calculated Heat Transfer Rate for Liquid Hydrogen ... 8

4. Experimental Heat Transfer Rate for Liquid Hydrogen .. 9

5. Calculated Heat Transfer Rate for Liquid Oxygen 10

6. Experimental Heat Transfer Rate for Liquid Oxygen 11

7. Calculated Heat Transfer Rate for Liquid Nitrogen 12

8. Experimental Heat Transfer Rate for Liquid Nitrogen .. 13

4. Summary of Available Theoretical and Empirical Formulations ... 5

4.1 Natural Convection-Non-Boiling Liquid 14

4.2 Natural Convection-Nucleate Boiling 16

4.3 Natural Convection-Maximum Heat Flux-Nucleate Boiling ... 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Natural Convection-Minimum Heat Flux-Film Boiling</td>
<td>21</td>
</tr>
<tr>
<td>4.5</td>
<td>Natural Convection-Film Boiling</td>
<td>22</td>
</tr>
<tr>
<td>4.6</td>
<td>Natural Convection to Single Phase Gas</td>
<td>23</td>
</tr>
<tr>
<td>4.7</td>
<td>Forced Convection-Non-Boiling</td>
<td>23</td>
</tr>
<tr>
<td>4.8</td>
<td>Forced Convection-Nucleate Boiling</td>
<td>24</td>
</tr>
<tr>
<td>4.9</td>
<td>Forced Convection-Maximum Heat Flux-Nucleate Boiling</td>
<td>26</td>
</tr>
<tr>
<td>4.10</td>
<td>Forced Convection-Film Boiling</td>
<td>27</td>
</tr>
<tr>
<td>5.</td>
<td>Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>6.</td>
<td>Topics of Study Found in the Heat Transfer Literature</td>
<td>28</td>
</tr>
<tr>
<td>7.</td>
<td>Bibliography</td>
<td>31</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Heat transfer problems confront investigators in nearly every branch of engineering. For cryogenic applications, it is necessary to have some knowledge of the whole field of heat transfer and specifically those aspects that are obviously applicable to low temperature systems.

The purpose of this note is to: (1) present a compilation of the recent (from 1940 to May 1960) experimental work dealing with heat transfer from solid surfaces to cryogenic fluids, (2) present a compilation of theoretical and empirical formulations for heat transfer to fluids in general, (3) compare and discuss (1) and (2), and determine areas which need further study. (Information on more recent work will appear in Advances in Cryogenic Engineering, Volume 6.)

Cryogenic heat transfer problems involve conduction, radiation, and convection with and without phase change. A large part of the available heat transfer literature is not directly concerned with cryogenic fluids but may be used with cryogenic systems. Therefore references which do not deal with cryogenic fluids, but may be applicable, are included here.

A document which summarizes all of the heat transfer information that may be of value to the solution of cryogenic problems would include most of the useful heat transfer literature. In order to define a manageable task the present survey is confined to information applicable to situations in which a cryogenic fluid is involved in the heat transfer mechanism.

The experimental data are presented in graphical form for liquid helium, liquid hydrogen, liquid oxygen and liquid nitrogen, the data for each liquid being plotted on one sheet.

For those cases where meaningful computations and comparisons can be made the theoretical and empirical formulations are also presented in the form of graphs which are readily comparable with the experimental graphs. Some discussion of these comparisons and some limitations of the equations used are given in section 4.

The references are listed alphabetically by author in the Bibliography (section 7). In section 6, the references are grouped according to those topics which (in our judgement) classify the material presented therein.

It is emphasized that this survey does not present the details of the work contained in the references, and the reader who is interested in these details (e.g., experimental techniques and theoretical derivations) must go to the original publication.

2. NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area of heating surface, cm²</td>
</tr>
<tr>
<td>a</td>
<td>Thermal diffusivity, cm²/sec</td>
</tr>
<tr>
<td>c</td>
<td>Specific heat, joules/gram °K</td>
</tr>
<tr>
<td>C</td>
<td>Constant</td>
</tr>
<tr>
<td>d</td>
<td>Tube diameter, cm</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity, cm/sec²</td>
</tr>
<tr>
<td>G</td>
<td>Mass velocity, grams/cm² sec</td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number, Gr = L³gρ²μ²ΔT/p²</td>
</tr>
<tr>
<td>h</td>
<td>Film coefficient of heat transfer, watts/cm² °K</td>
</tr>
<tr>
<td>J</td>
<td>Mechanical equivalent of heat, ergs/joule</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity, watts/cm °K</td>
</tr>
<tr>
<td>L</td>
<td>Length of heating surface, cm</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number, Nu = hL/k or Nu = hd/k</td>
</tr>
<tr>
<td>p</td>
<td>Pressure, dynes/cm²</td>
</tr>
<tr>
<td>p_a</td>
<td>Atmospheric pressure, dynes/cm²</td>
</tr>
</tbody>
</table>
\(\Delta p \) - Pressure difference corresponding to the temperature difference \(\Delta T \), dynes/cm\(^2\).

\(\text{Pr} \) - Prandtl number, \(\text{Pr} \equiv \frac{\mu}{k} \).

\(Q \) - Heat transfer rate, watts.

\(r \) - Radius, cm.

\(\dot{r} \) - Bubble velocity, cm/sec.

\(\text{Re} \) - Reynolds number, \(\text{Re} \equiv \frac{\rho u d}{\mu} \) or \(\text{Re} \equiv \frac{\rho u L}{\mu} \).

\(T \) - Temperature, °K.

\(\Delta T \) - Temperature difference, °K\(\Delta T \equiv T_w - T_{BL} \) for non-boiling liquid or surface boiling of subcooled liquids, \(\Delta T \equiv T_w - T_s \) for boiling saturated liquids, \(\Delta T \equiv T_w - T_v \) for heat transfer to vapor.

\(u \) - Velocity, cm/sec.

\(x \) - Mass fraction of vapor (quality).

\(\beta \) - Coefficient of thermal expansion, \((°\text{K})^{-1} \).

\(\lambda \) - Latent heat of vaporization, joules/gram.

\(\mu \) - Absolute viscosity, poise.

\(\nu \) - Kinematic viscosity, cm\(^2\)/sec.

\(\rho \) - Density, grams/cm\(^3\).

\(\sigma \) - Surface tension, dynes/cm.
3. GRAPHICAL PRESENTATIONS

The following graphs present the experimental data found in the literature and the curves calculated by means of the theoretical and empirical formulations taken from the literature. The calculated graphs are transparent overlays so that they can be easily compared with the experimental data. Due to limited data on the properties of cryogenic fluids some of the calculated curves do not cover the range of the experimental data. Also some of the formulations neglect factors such as diameter and conditions of the heating surface; the experimental data show that these factors do affect the heat transfer.
3.1 Experimental Data

The experimental data found during this survey and dealing with helium, hydrogen, oxygen, and nitrogen are plotted in figures 2, 4, 6, and 8 respectively; the coordinates are heat flux versus temperature difference between the heating surface and the bulk of the fluid. The data, notations, etc. are reproduced as found in the literature. For example, only those nucleate boiling heat fluxes which the original author indicated as maxima are so identified on the graphs. Pertinent information such as system pressure, heater geometry and orientation, etc. are given on the figures. Both forced and natural convection data are included.

3.2 Theoretical and Empirical Formulations

The results obtained by applying the various theoretical and empirical formulations to helium, hydrogen, oxygen, and nitrogen are shown in figures 1, 3, 5, and 7 respectively. The formulations are discussed in section 4. Computations were performed for most of the formulation; however, for reasons given in section 4 it was either not possible or not desirable to perform computations with some of the formulations.

3.3 Comparison of Data with Formulations

Figures 1 through 8 are plotted so that the various theoretical and empirical formulations can be easily compared with corresponding experimental curves. In cases where geometrical factors, pressure, or other parameters are required in order to make a computation, the values chosen for these parameters are noted next to the computed curves. These curves should be compared only with the experimental curves having nearly the same values for these factors. The computed results are compared with the experimental data in section 4.

4. SUMMARY OF AVAILABLE THEORETICAL AND EMPIRICAL FORMULATIONS

This summary is not intended to replace original publications. The reader who is interested in detailed derivations, assumptions, experimental and analytical techniques, etc., must refer to the original papers.
CALCULATED HEAT TRANSFER RATE FOR LIQUID HELIUM.

- Equation of Mc ADAMS[91]: Non-boiling
- Equation of TOULOUIAN, et al.[94]: Nucleate boiling
- Equation of FORSTER & GRIEF: Film boiling, $p = 1$ atm
- Equation of CHANG[99]: Film boiling, $p = 1$ atm
- Equation of ZUBER & TRIBUS[93]: Minimum film boiling and maximum nucleate boiling
- Equation of ROHSENOW & GRIFFITH[98]: Maximum nucleate boiling heat flux predicted

Equations do not predict ΔT at which maximum or minimum film boiling occurs.

HELIUM - CALCULATED

Q/A (HEAT FLUX) watts/cm2

ΔT (TEMPERATURE DIFFERENCE), °K

FIGURE 1
CALCULATED HEAT TRANSFER RATE FOR LIQUID HYDROGEN

- Equation of TOUOUKIAN et al.
- Equation of Mc ADAMS
- Equation of FORSTER & GREIFF
- Equation of FORSTER & ZUBER (assumed saturated liquid so \(T_w - T_L = \Delta T \))
- Equation of McNELLY
- Equation of ROHSENOW & GRIFFITH
- Equation of ZUBER & TRIBUS
- Equation of ZUBER & TRIBUS
- Equation of CHANG
- Equation of BROMLEY
- Equation of COLBURN
- Equation of DITTUS & BOETLER

(See McAdams)

\[\text{\textit{O/A (HEAT FLUX), \text{watt/cm}^2}} \]

\[\text{\textit{\(\Delta T \) (TEMPERATURE DIFFERENCE), } \text{\textit{\({ }^\circ\text{K}\)}} \]

FIGURE 3

HYDROGEN - CALCULATED
EXPERIMENTAL HEAT TRANSFER RATE FOR LIQUID HYDROGEN

- WEIL - Vertical wire, 0.4 mm dia x 4 mm long p = 760 mm Hg (data from paper by KARAGOUNIS)
- MULFORD - Outside horizontal copper tube, 12 mm dia x 50 mm long p = 590 mm Hg
- HOGE & BRICKWEDDE - Outside horizontal tube, 0.410" dia x 3.375" long p = 1 atm (Unpublished)
- WEIL & LACAZE - Vertical wire, 0.4 mm dia x 4 mm long p = 1 atm.
- CLASS et al - Average of 4 orientations vertical, horizontal, 45° up, 45° down, flat plate (Pressure shown)
- CORE et al - Inside vertical tube, 0.462" D x 2.5" long, 25 to 55 ft/sec flow velocity (Input)
- SYDORIAK & ROBERTS - Inside narrow vertical channels (Pressure shown)
- RICHARDS et al - Max heat flux

\[Q/A \text{ (HEAT FLUX), watts/cm}^2 \]

\[\Delta T \text{ (TEMPERATURE DIFFERENCE),}^\circ K \]

FIGURE 4

- Indicates maximum Q/A for particular experiment (nuclear boiling)
- Indicates a roughened surface
- p = 1 Atm unless otherwise indicated
EXPERIMENTAL HEAT TRANSFER RATE FOR LIQUID OXYGEN

- WEIL: Vertical wire, 0.4 mm dia x 4 mm long, p = 760 mm Hg (data from paper by KARAGOUNIS)
- HASelden & Peters: Outside horizontal tube, 0.625" OD x 3" long
- Hoge & Brickwedde: Outside horizontal tube, 0.410" OD x 3.375" long (Unpublished)
- HASelden & Prosad: Inside vertical tube, \(\frac{3}{8} \) ID x 15" long.
- Mikhail: Horizontal tube
- Haselden & Prosad: Outside vertical tube, \(\frac{3}{8} \) OD x 15" long, (condensing)
- Blanchero, Barker, Ball: Outside stainless steel tube, \(\frac{3}{8} \) OD x 2" long — Nucleate B transition
- Monroe et al: Inside vertical tubes (low pressure), Inside horizontal tubes, high pressure, 92" long, 0.240", 0.404", and 0.670" ID —

\(p = 1 \) Atm unless otherwise indicated

- indicates maximum Q/A for particular experiment, (nucleate boiling).

\[Q/A \] (HEAT FLUX, watts/cm²)

\[\Delta T \] (TEMPERATURE DIFFERENCE, °K)

FIGURE 6
CALCULATED HEAT TRANSFER RATE FOR LIQUID NITROGEN.

- Equation of FORSTER & GREIF \cite{41}
- Equation of FORSTER & ZUBER \cite{42}
- Equation of MC NELLY \cite{54}
- Equation of ROHSENOW & GRIFFITH \cite{55}
- Equation of ZUBER & TRIBUS \cite{56}
- Equation of ZUBER & TRIBUS \cite{57} (Minimum film boiling heat flux predicted).
- Equation of BROMLEY \cite{58}
- Equation of CHANG \cite{59}
- Equation of LEVY \cite{60} (Forced convection nucleate boiling. One point only)
- Equation of COLBURN \cite{61}
- Equation of DITTUS & BOELTER \cite{62} (See Mc Adams \cite{63})

ΔT (TEMPERATURE DIFFERENCE), $^\circ K$

\begin{align*}
\dot{Q}/A \text{ (HEAT FLUX), } \text{watt/cm}^2 \\
\Delta T \text{ (TEMPERATURE DIFFERENCE), } ^\circ K
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7}
\caption{NITROGEN - CALCULATED}
\end{figure}

- Flow velocity = 40 ft/sec
- Quality = 0
- $p = 20.4$ Atm (15,500 mm Hg)
- $p = 304$ mm Hg

\text{(Equations do not predict ΔT at which max and min heat flux occur)}
It is beyond the scope of this survey to analyze in detail the formulations for correctness, completeness, or importance. Neither has there been any attempt to appraise the experiments with which the formulations have been compared.

Differences in heating surface shape, orientation, composition, roughness, cleanliness, duration of test, liquid subcooling, quality, agitation, etc. may cause large differences in test results which are not taken into account by the formulations. Therefore the results of the various experiments cannot, in general, be expected to agree quantitatively with each other or with the formulations.

The formulations are numbered consecutively with Roman numerals.

4.1 Natural Convection Non-Boiling Liquid

The first two formulations (I and II) of this group were used for calculations on figures 1 and 3. Formulations III, IV, V, VI, and VII were not used because comparable experimental data were not found.

a. McAdams(89)*, for laminar flow past vertical planes and cylinders, \((Pr \cdot Gr) = 10^4 \text{ to } 10^7\).

\[
\frac{Q}{A} = 0.590 \frac{k \Delta T}{L} \left[\left(\frac{L \rho g \beta \Delta T}{\mu^2} \right) \left(\frac{c \mu}{k} \right) \right]^{1/4} L^{1/4} \tag{1}
\]

Results calculated from this formulation are plotted on figure 1 for helium at pressures of 45 and 390 mm. Hg and on figure 3 for hydrogen at 760 mm. Hg. These results may be compared with the non-boiling helium experiments of Karagounis(75), figure 2; and with the hydrogen experiments of Weil (143), figure 4. The helium calculations agree with the experiments only at 45 mm. Hg pressure. At 390 mm. Hg the calculated \(Q/A\) is approximately 1/16 of the experimental. Values of \((Pr \cdot Gr)\) for the He experiments were of the order of \(10^6\).

* Numbers in parentheses refer to the references in section 7.
The hydrogen calculations, figure 3, fall within the range of the non-boiling experiments of Weil and Lacaze\(^{(144)}\), figure 4; however, only the 760 mm Hg pressure was available for comparison. Due to the very small heater used the products \((Pr \cdot Gr)\) for these experiments were of the order of 10.

b. Touloukian et al.\(^{(140)}\), for laminar flow past vertical cylindrical surfaces, \((Pr \cdot Gr) = 2 \times 10^8 \text{ to } 4 \times 10^{10}\).

\[
\frac{Q}{A} = 0.726 \frac{k\Delta T}{L} \left[\left(\frac{L^3 \rho g \beta \Delta T}{2 \mu} \right) \left(\frac{c_p}{K} \right) \right]^{1/4}
\]

II

The remarks in section 4.1.1 also apply to this formulation. The \(\frac{Q}{A}\) calculated by II is higher than that calculated by I by a factor of 1.23 (\(= \frac{0.726}{0.590}\)).

c. Chang\(^{(18)}\), for upward facing horizontal plane heating surfaces. Chang's simplified equation is

\[
Nu = 0.146 (Pr \cdot Gr)^{1/3}
\]

III

This formulation, derived from considerations of wave motion, compares well with the empirical equation in McAdams\(^{(89)}\) (IV) for the turbulent range. The coefficient 0.146 is an average of a quantity which varies slightly from one fluid to another. No natural convection experimental data for horizontal heaters were found for cryogenic liquids; therefore, calculations were not performed with this formulation.

d. McAdams\(^{(89)}\), for upward facing horizontal plane heating surfaces, \((Pr \cdot Gr) 2 \times 10^7 \text{ to } 3 \times 10^{10}\), the turbulent range.

\[
Nu = 0.14 (Pr \cdot Gr)^{1/3}
\]

IV

No natural convection experimental data for horizontal heaters were found for cryogenic liquids; therefore, no calculations were performed with this formulation.

e. McAdams\(^{(89)}\), for upward facing horizontal plane heating surfaces, \((Pr \cdot Gr) 10^5 \text{ to } 2 \times 10^7\), the laminar range.

\[
Nu = 0.54 (Pr \cdot Gr)^{1/4}
\]

V
No natural convection experimental data for horizontal heaters were found for cryogenic liquids; therefore, no calculations were performed with this formulation.

McAdams (89), for turbulent flow past vertical planes and cylinders $(Pr \cdot Gr) = 10^9$ to 10^{12}.

$$Nu = 0.13 (Pr \cdot Gr)^{1/3} L.$$

As experimental natural convection data for cryogenic liquids with turbulent values of $(Pr \cdot Gr)$ are not available, calculations were not performed with this formulation.

g. Touloukian (140), for turbulent flow past vertical cylindrical surfaces, $(Pr \cdot Gr) = 4 \times 10^{10}$ to 9×10^{11}.

$$Nu = 0.0674 (Pr^{1.29} Gr)^{1/3} L.$$

As experimental natural convection data for cryogenic liquids with turbulent values of $Pr \cdot Gr$, are not available, calculations were not performed with this formulation.

4.2 Natural Convection-Nucleate Boiling

The first three formulations of this group (VIII, IX, and X) were used for the heat transfer calculations presented in figures 1, 3, 5, and 7. Calculations were not performed with formulations XI, XII, XIII, and XIV for the reasons given in the following paragraphs.

a. Forster and Grief (46),

$$Q/A = 1.2 (10)^{-3} \left(\frac{A_L c_L \rho_L T_s}{\sqrt{\sigma}} \right) \left(\frac{c_L T_s \sqrt{a_L}}{J \lambda \rho_v} \right)^{1/4} \left(\frac{\rho}{\mu} L \right)^{5/8} \left(\frac{\rho c}{k} \right)^{1/3} \Delta P^2.$$

The values of Q/A for helium calculated according to this formulation (figure 1) are larger than the experimental data of Karagounis (figure 2) by a factor of four to ten.

Hydrogen and nitrogen properties data needed for this formulation are not available over the full range of the experimental pressures. Because of this limitation and large differences between
experimental data only an approximate comparison between the formulations and the experimental results is possible.

The hydrogen and nitrogen calculations (figures 3 and 7) are bracketed by the roughly-corresponding experimental data (figures 4 and 8). The oxygen calculations (figure 5) agree with the experimental average (figure 6) at \(\Delta T = 1^\circ K \); however at \(7^\circ K \) the calculated \(Q/A \) is two to ten times larger than the experimental values.

\[Q/A = 1.5(10)^{-3} \frac{(T_o - T_s)k_L \lambda v \Delta p}{\Delta T c_L \rho_L \sqrt{\pi a_L}} \left\{ \frac{\rho_L}{c_L \rho_L \sqrt{\pi a_L}} \right\} \left(\frac{\mu L}{k L} \right)^{0.75} \left(\frac{(T_o - T_s) c_L \rho_L \sqrt{\pi a_L}}{\rho_L \rho_v} \right)^{0.62} \left(\frac{\mu L}{k_L} \right)^{0.35} \]

\[\text{where } T_s \text{ is the superheat temperature. In order to compare this formulation with available cryogenic data it is necessary to assume } (T_o - T_s) = \Delta T = (T_w - T_{BL}). \]

The calculations for helium performed with this formulation (figure 1) agree with the experimental data of Karagounis (figure 2) at 384-390 mm. Hg; however, at 40-45 mm. Hg the calculated \(Q/A \) is approximately ten times larger than the experimental.

The statements concerning the hydrogen and nitrogen calculations of the preceding section (4.2.1) also apply here.

c. McNelly (94).

\[\text{Nu} = 0.225 \Pr_{L}^{0.69} \Re_{L}^{0.69} \left(\frac{pd}{\sigma} \right)^{0.31} \left(\frac{\rho_L}{\rho_v} \right)^{0.33} \]

or \[\frac{\dot{Q}}{A} = 0.0082 \left(\frac{c}{L} \right)^{2.22} \frac{k_L \rho}{\sigma} \left(\frac{\rho_L}{\rho_v} - 1 \right)^{1.06} \Delta T \]

The experiments indicate that the increase in \(\dot{Q}/A \) due to a given pressure increase is considerably greater than that which is calculated by this formulation. For example, the calculated helium \(\dot{Q}/A \)
18

(figure 1) is roughly six times as great as the experimental results of Karagounis (figure 2) at 45 mm. Hg pressure, and one sixth as great at 390 mm. Hg.

The hydrogen Q/A calculations give results that are significantly smaller than the experimental results (see figures 3 and 4), whereas the oxygen calculations were higher than the experiments by a factor of 15 to 100.

d. Chang \(^{(18)}\), for horizontal plane surfaces.

\[
\text{Nu}_L = 0.146 \left[1 + \text{Pr}_L \left(C_1 \text{Br}^n - 1 \right) \right]^{2/3} \left(\frac{\text{Pr}_L \text{Gr}_L}{0.146} \right)^{1/3}, \quad \text{XI}
\]

where

\[
\text{Br} = \frac{Q/A}{\frac{\nu L}{\sigma \lambda}} \frac{1}{\frac{\rho_L}{\rho_v} \phi_2} \]

is the "boiling number"; ϕ is the contact angle (in degrees) of liquid with solid surface; C_1 and n are experimentally determined constants which depend upon the fluid. All the physical properties are to be evaluated at the arithmetic mean film temperature.

The experimental constants have not been determined for cryogenic fluids.

e. Gilmour \(^{(53)}\).

\[
\frac{h}{cG} \left(\frac{c\mu}{k} \right)^{0.6} \frac{\rho_L \sigma g}{2 \rho_v} 0.425 = 0.001 \left(\frac{DG}{\mu} \right)^{-0.3}, \quad \text{XII}
\]

where $G = \frac{V}{A \rho_v}$ is the mass velocity (in gm. sec. \(^{-1}\) cm. \(^{-2}\)) of liquid which replaces the boil off vapor. V is the vaporization rate (gm. /sec.). The factor g in the third group of this formulation was not present in reference 53 but was needed with the units of the present survey.

The formulation was not compared with experimental cryogenic data because the vapor (boil off) rate in the experiments is not known.
f. Nishikawa(105).

\[
\text{Nu}_L = C \left[\frac{\zeta}{\zeta_s} \right]^{1/2} \frac{p}{p_a} \left(\frac{1}{M} \right)^{1/2} \frac{\rho_L \rho_v^2}{\kappa L \sigma \rho_v \lambda} \frac{L}{A} \cdot \quad \text{XI} \text{I}
\]

\(\zeta, \zeta_s\), "coefficients of foaming ability", are given in Table II of reference 105 for several non-cryogenic liquids. \(M\) is a constant which depends on the condition of the heating surface and is independent of the physical properties of the liquid. \(M\) has the dimension 1/length. \(N\) (reference 105 uses the symbol \(P\)) is a constant dependent upon properties of distilled water and has dimensions energy/time. The experimental constants have not been determined for cryogenic fluids.

g. Piret and Isbin(109), for boiling inside vertical tubes.

\[
\frac{h_{av}}{k_L} = 0.0086 \left(\frac{\mu_m}{\mu_L} \right)^{0.8} \left(\frac{\mu_L}{\mu_m} \right)^{0.6} \frac{\sigma_w}{\sigma} \cdot \quad \text{XIV}
\]

where \(\mu_m\) is the mean liquid-vapor velocity.

The authors (109) correlate the data for six non-cryogenic fluids with a mean deviation of only 4 percent.

As the experimental investigations with cryogenic fluids do not give the velocity of circulation, it is not possible to compare this formulation with cryogenic experiments.

h. Rohsenow(123).

\[
\frac{c_L (T_w - T_s)}{\lambda} = C_{sF} \left(\frac{Q}{A \mu_L \lambda} \right)^{0.33} \frac{\sigma}{\rho_v} \cdot \quad \text{XV}
\]

where \(C_{sF}\) is a coefficient which depends on the nature of both the fluid and the heating surface; it has not been determined for cryogenic fluids.
4.3 Natural Convection-Maximum Heat Flux-Nucleate Boiling

No computations were made with the first formulation (XVI) because the required experimental data for cryogenic fluids are not available. The other formulations (XVII and XVIII) were used and are plotted on figures 1, 3, 5, and 7.

a. Ellion (41).

\[\frac{\dot{Q}}{A_{\text{max}}} = \frac{k}{\rho \left(\frac{r_b}{c_{\text{mu}}} \right)_{\text{max}}} \left[\frac{\rho \left(\frac{r_b}{c_{\text{mu}}} \right)_{\text{max}}}{\mu} \right] \frac{1.0}{k} \left(T_w - T_L \right). \]

The values for the exponents in this equation are taken from experimental data on water and carbon tetrachloride. No computations were made with this equation because there are no experimental data on bubble radius and bubble velocity for cryogenic liquids.

b. Zuber and Tribus (153).

\[\frac{\dot{Q}}{A_{\text{max}}} = \frac{\pi}{24} \lambda \rho_v \left(\frac{\sigma_g}{\rho_L - \rho_v} \right)^{1/4} \left(\frac{\rho_L}{\rho_v} \right)^{1/2} \left(\frac{\rho_L + \rho_v}{\rho_L} \right)^{-1/2}. \]

Refer to discussion in section c.

c. Rohsenow and Griffith (128).

\[\frac{\dot{Q}}{A_{\text{max}}} = 0.155(fD_b) \rho_v \lambda \left(\frac{\rho_L - \rho_v}{\rho_v} \right)^{0.6}. \]

where \((fD_b)\) is the bubble velocity and is approximately the same for several fluids. The value used here for \((fD_b)\), taken from experimental data on water, ethanal, benzene, etc., was 7.8 cm/s.

The results calculated from these formulations (XVII and XVIII) are plotted on figures 1, 3, 5, and 7. They compare reasonably well with some of the experimental data which are identified (in the original publications) as maximum nucleate boiling heat fluxes. The experiments with liquid helium may have been carried to these maxima; however, this was not stated. The equation of Rohsenow and Griffith (XVIII) predicts a maximum heat flux close to the
experimental helium curves. The equation of Zuber and Tribus (XVII) predicts a maximum heat flux for helium which is about 2 to 5 times higher than the experimental curves. For liquid hydrogen both equations predict a maximum heat flux which is close to the experimental data.

Both equations predict larger maximum heat fluxes with oxygen and nitrogen (2 to 3 times higher with oxygen and 2 to 4 times higher with nitrogen) than have been observed.

d. Sydoriak and Roberts

\[\frac{Q}{A} = \frac{A_{\text{channel}}}{A} \lambda \rho_L \times \left(\frac{2gL}{2R + 1} \left(1 - \frac{\ln(1 + xR)}{xR} \right) \right)^{1/2} \]

where \(A \) is the area of the heated wall of a vertical cylindrical channel whose horizontal cross section area is \(A_{\text{channel}} \) and where \(R = (\rho_L - \rho_v)/\rho_v \).

Computations were not made using equation XIX because values of quality were not given by other experimenters. However, in reference 139, the equation is compared with experimental results; the agreement is good.

4.4 Natural Convection-Minimum Heat Flux-Film Boiling

a. Zuber and Tribus

\[\left(\frac{Q}{A} \right)_{\text{min.}} = \frac{\pi}{24} \lambda \rho_v \left[\frac{\sigma g \rho_L - \rho_v}{(\rho_v + \rho_v)^2} \right]^{1/4} \]

Results calculated by this equation are plotted on figures 1, 3, 5, and 7. None of the experimental cryogenic papers state that minimum film-boiling heat fluxes were measured. The equation predicts a heat flux which is smaller (by a factor of 1/1000) than the experimental curves for helium. However, it predicts minimum heat fluxes for film boiling which compare very closely with some of the experimental data for liquid hydrogen and liquid nitrogen. No experimental data in the film boiling range were found for liquid oxygen.
4.5 Natural Convection-Film Boiling

Computations were made with two of the following formulations (XXI and XXII) and the results were plotted on figures 1, 3, and 7; formulation XXIII was not used because its use requires experimental constants which are not known for cryogenic fluids.

a. Bromley\(^{(13)}\), for horizontal cylindrical surfaces and viscous flow.

\[
\dot{Q}/A \text{ (neglecting radiation)} = 0.62 k^{3/4} \left[\frac{\rho_v \rho_L - \rho_v \rho_L^g}{d_0^4} \right]^{1/4} \Delta T^{3/4} \quad \text{XXI}
\]

The results of calculations with this equation are plotted on figures 1, 3, and 7. The values used for \(d_0\) in the computations were the same as those used in the experimental investigations. As there are no experimental data with liquid oxygen, no calculations were made for figure 5.

The calculations for helium predict a smaller diameter effect than the actual experimental data show; the calculated curves are higher than the experimental by factors of about 1.2 to 1.7 for the 5.5(10)\(^{-3}\) mm. diameter wire and by factors of 3 to 5 for the 51(10)\(^{-3}\) mm. diameter wire. The hydrogen calculations predict heat fluxes that are smaller than the experimental results by a factor of 2/3 to 1/2, and the nitrogen calculations predict heat fluxes that are smaller than the experimental results by a factor of 3/4 to 1/4.

b. Chang\(^{(19)}\).

\[
\dot{Q}/A \text{ (neglecting radiation)} = k_v \frac{\left[g(\rho_L - \rho_v)2\lambda \rho_v \right]^{1/3}}{8\pi^2 \mu_v k_v} \Delta T \quad \text{XXII}
\]

This formulation predicts heat fluxes for helium that are considerably smaller than the experimental results. For hydrogen the calculated results are approximately 100 times larger than the experimental values, while for nitrogen the calculated results are about 10 times larger than the corresponding experimental values.
c. Bromley(13), for vertical cylindrical surfaces with viscous flow, neglects radiation.

\[
\dot{Q}/A = C_k \left(\frac{\rho_v (\rho_L - \rho_v)^{\frac{1}{2}}}{L \mu} \right)^{1/4} \Delta T^{3/4}
\]

The constant, needed for each fluid, is not known for the cryogenic fluids.

4.6 Natural Convection to Single Phase Gas

No experimental data for natural convection to a single phase gas at cryogenic temperatures were found. Various formulations are available for various heater geometries. Refer to McAdams(89) for examples.

4.7 Forced Convection-Non-Boiling

Forced convection non-boiling experimental data were found for liquid hydrogen and liquid nitrogen only.

a. Colburn(25), for turbulent flow in pipes.

\[
\dot{Q}/A = C_G \Delta T \left(\frac{k}{c \mu} \right)^{2/3} \left[0.0007 + 0.065 \left(\frac{dG}{\mu} \right)^{0.8} \right]^{0.32}
\]

Refer to discussion in section b.

b. Dittus and Boelter, see McAdams(89), for turbulent flow in pipes.

\[
\dot{Q}/A = 0.023 \Delta T \frac{k}{d} \left(\frac{dG}{\mu} \right)^{0.8} \left(\frac{c \mu}{k} \right)^{0.4}
\]

In order to avoid plotting a curve for each of the many flow rates, pressures, etc., given in the experimental references, average values of the parameters (based upon the information in references) were used in the computations with these formulations. In some cases the properties of the liquids are not available at the high pressures used in the experimental work. The results calculated for hydrogen predict heat transfers at least 10 times larger than the experimental data.
The results calculated for nitrogen are smaller (by a factor of 2/3 to 1/4) than the experimental curve.

4.8 Forced Convection-Nucleate Boiling

Only the first formulation (XXVI) of this group was used for the heat transfer calculations plotted on figure 7. Calculations were not performed with the other four formulations for the reasons given in the following paragraphs.

a. Levy\(^{(84)}\).

\[
\dot{Q}/A = \frac{k_{L}c_{L} \rho_{L}}{\sigma T_{s}(\rho_{L} - \rho_{V})} \frac{1 - x}{b_{L}} \left(T_{w} - T_{s}\right)^{3}, \tag{XXVI}
\]

where \(b_{L}\) is obtained from a curve of \(1/b_{L}\) versus \(\rho_{V}\) in reference 84.

None of the experimental papers gives the average quality which is needed in this formulation. In order to compare this formulation with the experimental data of Dean and Thompson\(^{(32)}\) (figure 8) it was assumed that the quality was zero at the point where their data indicate that nucleate boiling begins. The result of this one calculation plotted on figure 7 compares very closely with the experimental point.

b. Dengler and Addoms\(^{(34)}\).

\[
\frac{h}{h_{L}} = F \frac{3.5}{(x)^{0.5}} \tag{XXVII}
\]

where \(F = 0.67\left[(\Delta T - \Delta T_{i})(\frac{d_{i}}{\delta_{T_{sat}}} \frac{d_{i}}{T_{w}})\right]^{0.1}\)

(F is used only when it exceeds unity), \(\frac{d_{i}}{\delta_{T_{sat}}}\) is the slope of the vapor-pressure versus temperature curve, \(\Delta T_{i}\) is the temperature difference \((T_{w} - T_{BL})\) for the initiation of nucleate boiling in tubes,

\[
\frac{1}{(x)}^{0.9} (\frac{\rho_{L}}{\rho_{g}})^{0.5} (\frac{\mu}{\mu_{L}})^{0.1}, \text{ and}
\]

\[
\frac{1}{(1 - x)}^{0.9} (\frac{\rho_{L}}{\rho_{g}})^{0.5} (\frac{\mu}{\mu_{L}})^{0.1},
\]

and
h, is the heat transfer film coefficient for liquid alone as obtained from the Dittus and Boelter equation (XXV). This formulation is to be used only for a range of \(\frac{1}{(x)_{tt}} \) from 0.25 to 70.

As experimental data for cryogenic fluids, in which the average quality of the boiling mixture is known, are not available, no computations were performed with this information.

c. Mumm \(^{(100)}\), for boiling inside of horizontal tubes for values of quality from 0 to 0.40.

\[
\frac{\dot{Q}}{A(T_w - T_s)} \frac{d_e}{k_L} = \left[4.3 + 5 \times 10^{-4} \left(\frac{\rho_L}{\rho_v} - 1 \right) \right] 0.64 - \left[\frac{\dot{Q}}{AG\lambda} \right]^0.464 - \left[\frac{Gd_e}{\mu_L} \right] 0.808
\]

XXVIII

d. Stroebe, Baker, Badger \(^{(138)}\), for boiling inside long vertical tubes.

\[
h = \frac{7.8(10)^{6} \times 10^{0.1}}{(c_p)^{0.3} \frac{\sigma^2(\Delta T_L)}{k}}
\]

XXIX

The coefficients and exponents were obtained by tests with water. The authors of reference 138 point out that the equation is entirely empirical and the geometry of the test section (a 2 in. O.D. by 20 ft. long tube) was constant during all the tests.

No factor was obtained which could account for the effects of geometrical changes and the equation should be used with discretion for conditions appreciably divergent from those covered in the work.

Since dimensionless groups are not used, the same units should be used as those in reference (138), namely:
\[\dot{Q}/A = \frac{A_{\text{channel}}}{A} \lambda p_L \left\{ \frac{x_{\text{out}} g}{R_{\text{out}}} \left(\frac{Z_e}{\frac{Z_{\text{out}}}{R_{\text{out}}}} \right)^{1/2} \right\} \]

where \(A \) is the area of the heated wall of a vertical cylindrical channel whose horizontal cross section area is \(A_{\text{channel}} \), where \(R = (\rho_L - \rho_v)/\rho_v \) and where \(Z_e \) is the hydrostatic head of liquid, equivalent to the pressure drop across the heater. The \(\rho_v \) and \(x \) are taken at the exit end of the heater. The mass fraction of vapor (quality) and the pressure drop across the heater on the forced flow experiments of authors other than reference 139 were not given. Comparison of the predictions of this equation with the experimental work done by Sydoriak and Roberts for nitrogen varies with the quality at the exit of the heater; at low qualities the ratio of their experimental heat flux to their calculated heat flux is 0.48 and at high qualities this ratio is 0.95.

With hydrogen the measured results average about 0.7 of the calculated results. No trend of this figure with quality was apparent; however, the quality was quite high in most of the runs.

4.9 Forced Convection-Maximum Heat Flux-Nucleate Boiling

a. Gambill and Greene (52), for maximum heat flux to fluids in vortex flow.

\[\dot{Q}/A = [359,700 \ u_{ax} + (7.10)(10^6)] [1.29 - 0.049(L/d)] \]

where \(u_{ax} \) is the "superficial axial velocity".

The correlation was made from data taken on water. There were no data found for cryogenic fluids in vortex flow.
a. Motte and Bromley derive correlating equations for three assumed cases of convection film boiling in which the heat transferred into the liquid by (1) thermal conduction, (2) "eddy conduction", and (3) eddy conduction with the time of contact that is small compared to the ratio of the scale of turbulence to the intensity of turbulence. These equations are used as a basis for correlation only and are not to be considered as exact equations. The correlations were not made with cryogenic fluids. The equation in case 2 best fits the data taken with several fluids such as hexane, carbon tetrachloride, and alcohol. This equation is:

\[
\frac{h}{u'k_v \rho_v \lambda_f} \frac{d\Delta T}{h} - 7.29 \sqrt{\frac{u'k_v \rho_v \lambda_f}{d\Delta T}} = \frac{C\Delta T}{s} \frac{\mu_L}{\rho_L} \left(\frac{\mu''L}{\rho_L} \right)^{-0.05} \quad \text{XXXII}
\]

\[
u' = \text{incident velocity of liquid on tube}
\]

\[
u'' = \text{velocity of liquid in conduit where level of turbulence is determined.}
\]

\[
\lambda_f = \lambda \left[1 + 0.4(\Delta T)c \right]^2 \frac{d\Delta T}{\rho_v} \quad \text{XXXIII}
\]

5. CONCLUSIONS

a. The existing experimental data on heat transfer between solid surfaces and cryogenic liquids (helium, hydrogen, nitrogen, and oxygen) vary appreciably between experimenters, even when heater geometries and orientations, pressures, etc. are comparable. The variations are both in the magnitude of the heat flux and in the shape of the heat-flux-versus-temperature-difference curves, and are possibly due to uncontrolled parameters such as surface roughness and contamination.

b. Existing theoretical and empirical formulations are in qualitative agreement with some of the experimental data. More carefully controlled experiments are needed, and formulations which account for parameters such as surface condition should be developed.
c. No experimental data were found for: natural convection without boiling for oxygen and nitrogen; forced convection without boiling for helium, hydrogen, and oxygen; forced convection with nucleate boiling for helium; and forced convection with film boiling for helium.

6. TOPICS OF STUDY FOUND IN THE HEAT TRANSFER LITERATURE

Following is an alphabetical list of the topics covered in the papers of this survey. These topics deal with some phase of heat transfer; although some of the papers are not concerned with cryogenics directly, they may be applicable to low temperature systems. Reference numbers are listed under each topic.

Acceleration of the Heating Surface (effect of)
52, 56, 77, 78, 79, 95, 153

Binary (two component) Fluids
11, 72, 74

Bubble Dynamics
6, 7, 22, 35, 38, 41, 43, 45, 47, 56, 57, 58, 68, 71, 87, 89, 108, 110, 111, 152, 155

Composition of Heating Surface (effect of)
29, 44, 69, 70, 76, 87, 115

Contamination of Heating Surface (effect of)
3, 4, 20, 24, 63, 69, 90, 115

Correlations (theoretical and empirical)
11, 12, 13, 14, 15, 18, 19, 20, 25, 28, 31, 34, 37, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 60, 64, 66, 67, 69, 71, 72, 73, 74, 81, 84, 86, 87, 90, 93, 94, 97, 98, 100, 105, 108, 109, 111, 112, 119, 123, 124, 128, 133, 136, 138, 140, 151, 152, 153

Cryogenic Fluids
5, 13, 14, 24, 26, 49, 59, 61, 62, 63, 64, 66, 75, 94, 97, 99, 112, 116, 130, 139, 142, 143

Descriptive Material (Photographic Studies, Etc.)
2, 34, 41, 44, 57, 58, 72, 89, 97, 120, 145, 146, 147, 148
Film Boiling Experiments

4, 13, 14, 15, 41, 49, 50, 57, 59, 66, 71, 89, 90, 97, 98, 99, 108, 121

Film Boiling Theory

3, 6, 13, 14, 15, 18, 19, 41, 66, 67, 71, 89, 97, 98, 121, 151, 152, 153

Forced Convection Heat Transfer to Single Phase Gas

61

Forced Convection Heat Transfer to Single Phase Liquid

32, 41, 42, 71, 72, 79, 89, 119, 126, 132, 133, 150

Forced Convection Boiling Heat Transfer

3, 5, 16, 21, 25, 31, 34, 37, 41, 42, 46, 53, 57, 59, 70, 72, 74, 81, 89, 93, 97, 100, 112, 116, 123, 124, 126, 130, 137, 139, 141

Geometry of the Heating Surface (effect of)

49, 58, 69, 70, 71, 77, 78, 79, 90, 98, 124, 146, 147

Maximum Nucleate Boiling Heat Flux (Burnout)

3, 4, 12, 17, 20, 21, 38, 41, 42, 52, 57, 58, 70, 71, 72, 73, 76, 82, 89, 108, 128, 131, 137, 153

Natural Convection Heat Transfer to Single Phase Liquid

10, 18, 40, 41, 75, 89, 136, 140, 142, 143, 144

Natural Convection Heat Transfer to Boiling Liquid (pool boiling)

4, 12, 13, 14, 18, 19, 24, 28, 29, 41, 43, 44, 62, 63, 64, 69, 75, 87, 89, 90, 99, 108, 109, 116, 123, 124, 151, 152

Nucleate Boiling Experiments

Nucleate Boiling Theory

6, 11, 12, 18, 22, 46, 51, 53, 63, 71, 74, 83, 89, 94, 97, 100, 103, 104, 105, 111, 119, 123, 124, 126, 127, 128, 139, 151, 152
Orientation of Heating Surface
24, 29, 40, 66, 70, 89, 102, 138

Pressure Effects on Boiling Heat Transfer
4, 20, 21, 24, 26, 31, 34, 37, 41, 42, 44, 55, 63, 64, 70, 71, 76, 87, 89, 90, 97, 100, 103, 112, 115, 124, 125, 126, 129, 130, 146

Quality (mass fraction of vapor) Effect on Boiling Heat Transfer
16, 24, 34, 93, 100

Roughness of the Heating Surface
16, 27, 29, 52, 69, 70, 146, 147, 153

Subcooling Effect on Boiling Heat Transfer
3, 6, 18, 19, 21, 28, 29, 37, 41, 42, 46, 57, 58, 70, 75, 84, 89, 98, 109, 124, 125, 138, 146, 147, 153

Surveys of Previous Work
6, 20, 23, 39, 52, 72, 89

Transient Boiling (effects of rapid changes)
6, 87

Transition Boiling Experiments (changing from nucleate to film)
40, 108, 146, 153

Transition Boiling Theory
153

Turbulence or Agitation Effects on Boiling
16, 113, 122, 146

Vibration Effect on Boiling
10

Vortex Flow with Boiling
51, 63, 81, 133

Wetting Agent Effect
4, 40, 115, 146
7. BIBLIOGRAPHY

42. Epstein, H. M., Chastain, J. W., and Faucett, S. L., Heat transfer and burnout to water at high subcritical pressures, ASTIA-AD104543.

35

49. Frederking, T. H. K., Film boiling of helium I and other liquefied gases on single wires, AICHE J. 5, 403 (1959) No. 3.

55. Goldman, K., Heat transfer to water at 5000 PSIA flowing turbulently in round tubes, N.D.A. 10-8, White Plains, N.Y.

62. Hanson, W. B.; and Richards, R. J., unpublished (1956).

38

39

100. Mumm, J. F., Heat transfer to boiling water forced through a uniformly heated tube, Argonne Nat. Lab., Lemont, Ill. 5276.

112. Powell, W. B., Heat transfer to fluids in the region of the critical temperature, JPL, C.I.T., Pasadena, Calif.

114. Raber, B. F., and Hutchinson, F. W., Graphical determination of heat transfer coefficients, heating and ventilation, 88 (1945) No. 12, 94-6 (1945) No. 6.

