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FOREWORD

This publication was prepared under contract
by the UNITED STATES JOINT PUBLICATIONS RE-
SEARCH SERVICE, a federal government organi-
zation established to service the translation
and research needs of the various government
departments.
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CERTAIN PROBLEMS IN MAGNETQHYDRODYNAMICS
1.
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CONSIDERING THE FI

/ FPollowing is a translation of an article by
I. I. Nochevinka entitled "Nekotoryye Zadachi
Magnitnoy Gidrodinamiki s Uchetom Konechnoy
Provodimosti Sredy" (Euglish version above)
in Vestnik Moskovskogo Uriversiteta, Seriya
ITI, kizika, Astronomiya (Herald of Moscow
University, Series 3, Physics,_Astronomy),
Vol 1961, No 1, Mosccw, 1961._/

An approximating method of finding the parameters of
planar motion of a conduvcting gas is offered, taking into
account "magnetic" viscosity in the presence of a magnetic
field, perpendicular to the plane of flow.

An approximating technique is advanced for the solution
of the equations which describe the planar, isentropic flow
of an ultrarelativistic gas in an arbitrary magnetic field.

Examinations of the motion of conducting fluids in the
“enviromment of magnetic fields, with the consideration of
magnetic viscosity, have always encountered substantial
mathematical difficulties. Up till now only the special
cases of motion of a fluid with finite conductivity in &
magnetic field have been successfully investigated,

We will examine planar motion of an ideally compres- o
sible fluid with finite conductivity in a transverse magnetic
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field MO, O. H ) , which can be descrived by the system
of equations

fOt[L;'H"] = -1, V’FI‘; di\'Ti' = 0;

@)t = - -Lypr+ Lo divert) = 0 pr =, 50, (1)
, .
where 1*-- 4:.. . = coefficient of magnetic viscosity,
i ' : : .
f* = —;;vﬂ" - volume density of the electromagnetic
force.

We introduce the dimehéioﬁlesa parameters

H* — v* . .
HoSeiemie=tip=brign 2oy
v ¥ Po ) ‘o hﬂs T
Go 4. 1 :
= —Y* %= L, (2)
Yo Yo

where by the gero index is signified the corresponding
characteristic magnitudes for the given flow., System
(1) in dimensionless variables. takes the form

rotjeH] —a*H; divlH - - 0;
(ty) o == - J—- VP div(w) =0 P [, (us), ‘ (3)

. H? .
where P=p-+ 3= -~ the total pressure of the gas and of
the magnetic field.

In the case of constant finite conductivity
(n :const) , considering that " djv H=0 , the equation of
induction to within the gradient of am arbitrary function




can be put in the form

-

l"-ﬁ! -y rot . 4 (4)

which 1s equivalent to the equsations

, _ 9 ] Jd
t’)’”: = ”5!; ('CHz)' Ty H: o ’;;; (, H:)"

i. e ¥ ""grad?-'whgreip-' 7.‘!1”:. (5)

Thus, the investigation of planar motion of an ideally
compressible conducting fluid with & constant coefficient
of conductivity in & trunsverse magnetic field reduces to
the investigation, with the aid of well-cultivated .
methods, of purely hydrodynamical potential fléws by the
means of the tranzformed equation of state / 2 /.

In 8 series of casss it is necessary to consider the
variabllity of the coefficient of conductivity due to
the presence of large conductivity gradients. If under
these circumstances the conductivity gradient coincides
in direction with the conductivity current, as for —
example in the cooling of .the stream in a plasmahron, /3]
then |[grad yrotH}=0 end the equation of induction
within the margin of an arbitrary function ocen be written
as

juH) - v(x.y) Tot H,
from wkich

j(ary g) = n(xy)gradq. (6)

vhere 4?=lnH, and InH, =:const form a family of surfaces,
‘"normal to the lines of current. This is equivalent to
some vortical flow with a coefficient of proportionality




n(x y)

In suoh cases, when from a series of factors giving
rise to a variability in the magnetioc viscosity, we can
single out a basic one, i.e., we can consider the coef-
ficient of magnetic viscosity as a function of omne in-
dependent variable, e.g. n=n(T), the examining of the
parameters can be conducted with the aaeiotanco of the
method doveloped in work / 1_/.

In the role of an application we will examine the
problem of the outflow of an ideally compressible fluid
in the presence of a conduoctivity gradient which coin-
cides in direction with the conductivity current, from an
infinite vessel with flat sides in the presence of a
perpendicular magnetic field. We will accept the above
mentioned suppositions and consider the equation of
state in the form P(p.s)aA(s)v}-—Bl + Performing caloula-
tions analogous to / 1_/, we will obtain equations for
the determination of the functions of current ¢} and of
the gquasipotential ¢| in the variables r(n). 8 (8| -~ the
angle of inclination of the velocity vector with the

X - axis).

5 . r (')(69‘ o T R WY 7.
e+ Lin [x 128,
29 (oo —p)* o 77
! ...'. - 28 “» - .) ! 0"4 -
' K[ 7’ (1) (622 — - 4ut) ] o (7
P _ 4l "’(6"-—9:-9.. 4 ]2
Jr2 - dr 23(”_?), ‘ ar
. V¥ 2-:“"._.“3 2 0% o
K] e~ - 4 | M (8)

By the introduction of Chapygin's approximeting funotion
K(r)|s equations (7) and (8) can be put in the form [ij




it ¢ (—:T ‘. ‘ ',f: . [I"’; =0, (9)

whare the ccaliicientz D, ard C] are c¢hoscon 90 that they

o
will give tre approximate equation of statels best approxd
imation to what is asxsd for in the defined range cf
Mach nunbers.

Let AR and A'E’Y be pro- A s P s
Jections of the wallz onto the -~ —-—-
plane XY (¥ig. 1). We will
turn the X-axis perpendicular
to the wall of the vessel ) '
through the middle of BB'.
We will consider the volume
outflow per second of the ¢ l ¢,
fluid @, which by virtue of
continuity mus% be one and
the same in all sections of
the streap, Let &#» -~ a Tig. 1
vlane of fluid at infinity,

sy, = a plar.e outgside the :
vessel, %o - a plane in an sdiabztically restricted gas.
We will select the line of current along the X-axis as
zerc, i.e, (s 0)=0 for 0. pe—e 4,-5 . By this a
coernstant is immediately defined for =ach line of curreut,
equal to the outflow of the fluid thrcugh a cection of =
tube ol current and passing through the line in question
erd zero, l.e., ©=¢{M)--¢(M) , The boundary condi-
tions s, ) for sach 2 choice we ovtain as

ﬂ’

. LT3 Q . K O ° s - .
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Considering the region of variability of the plane
of the fluid #x > %’ f, from the relationsnip connecting
r with . 1/, we will determine the range of varia-
bility of r. Then immediately with the relp of (10) we
obtain boundary cornditiocns for the function ¢(r, 6) .

.:,(,. .._'i') L for 1uisr>ry

Y(ra — 1y ) = -9; for 2 0 0
r ¢ <
Y (r, - —2~) ey Tor ry 171y
) 1 (’_ 0 4y j )
s (ta—1rp M 2 for . e (11)

Equation (9) csn be solved by & Fourier method

L{r.t) . R{n®(W), (12)

For the funotions R(r) and ((6) we obtain the squations

_":F“') . a2 ® (") | 0. : (13)
@Ry , | dR( . R
e P :;:At(._'?--l)k(r) 0.

(14)

where




Fron the condition of periodicity for the furnction 0(6)

OE =G, P20 (15)

it follows that p?-=p? , whare n is an Integer., Introduo~

ing a new variable }—_‘~ym =y 1irto Bessel's equa-
tion (14) we will obtain

3 f' ‘ .
rRA DR (I — -—) R{r)--0, |
r

- dr i ’

. o (16)
whose solution is expressible by Bessel funotions of
imaginary argument. :

R(@) = Cil, + GiK,. | (17)

From the condltionsz of boundedness of the fluid pleane at
infinity pa<N:! the boundedness of r(%) rfollows; from
where C;=-0 « The general solution of equation (14) we
sbtaia in the form

$(r.9) = ﬁlAn.cos(u”) + Ansin (MK (V—=4% nv). \' (18)

{

The function (7, 8) can be analogously defined.

The trarsitioa to the phyaical plane can be accomp-
lished with the aid of the formulas .

i i
i o3 1 i o O l

- L 9L - Zsinh Zr\dy -
dx == " {(r,cos e " sin 3 )dr : }

b T
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LI A Jr ) e
. . Jz Fe\ )
}{QSH\”-*‘j v[gosﬂ.-n)dﬁL
\ ™ & oh ; (19)

Thue the methods Adeveloped in hydrodynaries can be
effectively applied not only in the investigetion of
plunar motion of a conducting fluid in a transverse nag-
netic fle‘d wheu the oonuuctiv1ty ie infinitely large,
but 8liso in & seriss of cases wher it 1s necessary to
concern cneself with the presencs of magnetic viscesity,
constent or varisble with the gradiewt which coincides
with the direction of the conductivity curreat.

The approximaiing metnod deecribed can aleo be
applied in the examination of planar probiems in the
ultrareletivistic case cf motion of a3 conducting medium
in the presence of arbi%rary magnetic fields.

The motion of a relit. vistic gas in the presence of
arbitrary magnetic fields caun be represeuted in the form
of an equality to zero of the diverzence of the total
mechanical and eleciromagneiis tensor of the enexrgy~
impulse, In the case ¢f an infinite conductivity of the
gas, the energy~impulse tensor czn be written in the form

= O  prik (3 fem }
T‘-. == v U‘U. : p‘ka (.,k = 1,2,3,4), (20)

where ®*=pV-LuVe?4+w - the total best content of the
g§23 and of the mognetic field, P*=p-+p « the total
pressure, V - the specific volume, {/; ~ 4-velocity,

X238 =X, Y, 2, Xg=ict »

It can be proved that in the case of arbitrarily




chosen magnetic fields 1% is sufficient to limit oneself
only to the investigation of the modified tensor of
energy-impulse of macroscopic bodies, which include in
themselves additional heat content ®W and additidnel

‘4

pressure P’ . In the gensral case w’' and p’ can
easily be calculated by the formulas

@ S| s L limy ) e _.!L( ny u?
w 4= - [Tha 7 3 ane i Ullj‘.' p \o—v l'_";;" !(21)

wrece T - commonents of the electromagnetic field
teno:v on e system of representation K, relative to
whLizit '-e grvren element of gas travels with velocity u .
The expediency of knowing the tosal energy-impulse tensor
of the system, gas and electromagnetic field, compared to
the tensor of the macroscopic bodies appears during the
| trazsition from one representation to the other, seeing
that the Lorentz transformation for the components of the
tensor e¢f an electromagnetic field = £, 1is much simpler
than for the components of the electromagnetic tensor of
energy-impulse 7%,

An investigation of the parameters of planar flow of
an ultrarelativistic gas in a given magnetic field in the
cese of maintaining isentropic behaviour can be conducted
with the aid of the method set forth in work / 1 /. We
will conduct an investigation for an infinitesimally
gmall element of gas in- the labhoratory system K . 1In
the case of isentropic flows, there exists, as is known,
a relativistic analogue of the potential

..é!_, — U‘uﬁ*’

OX.' (22)

15

from which for planar flows we have for i

:"*b" - ‘jj- N ;:'*L»',, P d? .

dty ° dx, (23)




Introducing alwo with the help of the relativistie squa-
tion of continuity the relativistie analogue of the
funotion of current .

- }
Uy & Uy b |
. 1 ] e ’ :

v 0xy v ox, [‘ (24)

» ]

we obtain equations analogouvs t¢ the squations for gta-
tionary, planar, vortical flow of a common gas / 1_/

L L S R
v Ox ‘ oy ! PR .,)y - ‘ ox (XL. x‘y), / (25)

where the role of the coefficient of proportionality

is filled by the magnitude of the reciprocal of the total
| heat content. Thus, the problem reduces to the solution
of the equations (25) with the use of the relativistioc
equation of Bernoulli

Ty =@, = const | (26)

and of the equation of state

P=G-Na (1. ¢ 9, “(27)

!
«

whioh in the case of an ultrarelativistic aystem is
wholly determined by the fixing of one thermodynamic
function (e.g. w% ). Introducing new independent
variables § (w*)and ¢« , where ul - angle, formed by
the 3-vector of velocity |u| with the X-axis, and noting
that = u(w’)., V=V(w*) , we can put the equations |
(25) in the form| :

Loy e o L) ey ety
w* & * T u w/] 42 @ @ udw‘).:o:
_y




¥ith this we suppose that the functions 4 and ¢ are
continuous, finite, single-valued and that the Jacobian

("f) +~0 in all regions of the flow., Placing in (28)
7 . .y R - ﬂi{ -~ \ I *
the quantities u(w®) and = , defined in (26, V(w*) and

2 in (27), noting in the limiting case Y=

O‘ll-h

, and

LI

inpsiog on (arditrary function of w?* ) the simpli-

f.ed crngition

Al—30"~2 44) dwt
w(l—w') &

(29)
we put equétibns (28) in the form
Jp — dr . & ;"""K(w* Oy
= S )%, (30)

where

wes (I — 2u*)

is the Chapygin function introduced by us,

The solution of egquations (30) with the help of
Chapygin's approximeting method is put forth in work

L1/

Isentropic flow of an ultrarelativistic gas 1in a
perpendicular magnetic field is examined by the sur-
mised method. By this it comes to light that a perpen-
dicular magnetic field does not violate the isentropicity
of an ultrarelativistic gas. In the case of a magnetic




field arbitrarily disposed in the plane of flow, isen-
tropic behaviour is generally violated.
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