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1 Introduction

Background

The hydraulic performance of a high-velocity channel depends on maintain-
ing a supercritical flow regime over specified portions of its length.
Predicting the potential location of shocks, such as oblique sianding waves and
hydraulic jumps, and determining the superelevation of the water surface in
channel bends arc necessary (0 evaluate and maintain the required wall
heights. Typically empirical equations or physical hydraulic models have
been used 0 make these evahustions.

Physical models were used in the original study of many cxisting flood-
control channels, but urbanization within their drainage basins hes resulted in
discharges greater than those for which the channel was originally designed.
Obstacies, such as debris or bridge piers. may cause the flow 10 jump 0 2
subcritical state, thus resulting in flood damage. Therefore, an inexpensive
and a readily available means for evalusting these channels is aseded. A

numerical modef is a logical approach.

A numerical flow model, HIVEL2D, has doen developad ss s tool o
evaluste high-velocity channels which sre cun-aaade concrese lined channels
with hydraulically steep siopes. The successful design of high-velocity
channels depends 0n sccurste predictions of the flow depths. HIVEL2D is »
depth-sveraged. two-dimensional (2-D) flow model designed specifically for
flow fieids that contain supercritical and subcritical reginws as well as the
transitions between the regitnes The model does aot include Coriolis or wind
effects. and sedirnent transport is oot addreseed since these pbenomens are not
applicable to concrete lined channels.

Purpose and Scope

The purpose of this report is 10 describe the samerical flow model.
HIVEL2D. and to illustrase typical high-velocity flow fields that the mode! is
capebie of simuiating. These model verifications consist of comparing results
computed using HIVEL2D with isboratory dats.  Model limitations are also
discussed. Rt is important thet HIVEL2D users understand which flow
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situations are suited (o simulation using HIVEL2D and which are not.

A user’s manual will be the second report published for this work unit.
The user’s manual will discuss such topics as grid generation (FastTABS),
hardware requirements (personal computers (PC’s) and/or workstations), time
involved in grid generation and simulation runs, and guidance relative to grid
layout and parameter choice.




2 Description of Model

The model is designed to simulate flow typical in high-velocity channels.
The model is a finite element description of the 2-D shallow-water equations
in conservative form. Specifically, the model is designed 10 provide the water
surface in and around boundary transitions, bridge piers, confluences, bends,
and other geometric festures common in high-velocity cheanels. HIVEL2D is
wmbkwnbmnmwmmummm
regimes.

The system of nonlinear equations are solved using the Newson-Raphson
iterative method. The Newton-Raphson method was selected for this moded
because the nonlinear terms in high-velocity channel flow fickds are quite
significant.

Stresses are modeled using the Manning's formulation for boundary drag
and the Boussinesq reistion for Reynolds stresses. Eddy viscosities are
WxMMnWWMmM‘:WN
local flow vanables

Assumptions

HIVEL2D solves the depth-sveraged unstesdy shallow-water equations
wnplicitly using finite clements The governing oquations are presented in
detail in Appendia A

An important (and standard) sssumption made in the derivation of the gov-
m‘mmummmmwmmwm
\he horizontal accelerations and acceleration due 1o graviey This assumes that
the pressure distnbution is hydrostatic The hydrostatic pressure sssumption
is generally aspplicable to high-velocity channels. However, care must be
Mmmmmmmmm-mmmmum
long relative to the depth. All hydrostatic models overestimate the speed of
short wavelengths.

ToumvaMMmMmm
wavelengths. consider the vertical momentan equation:
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where
» = fluid density
P = pressure
z = vertical Cartesian coordinate
w = the z-direction compoaent of velocity
t = time
g = acceleration due o gravity

Near the crest of a wave, or anywhere that the water surface is convex, the

fluid clement riding near the surface has a negative vertical acceleration, i.c.,
dw/ds < 0. Therefore, the vertical acceleration acts opposite (o gravity and

pressure is reduced. Coaversely, near the trough where the water surface is

concave, the near-surface fluid element has a positive acceleration, and 350 acts
to enhance the pressure. The nes effect is that the surface curvature reduces

wavelength, the siower it will tend to propagate. For long wavelengths this

umpact is negligible.

Another consequence of the hydrostatic assunption is that the shaliow-
water equations can provide no information sbout the length of 8 jump, i.c.,
distance from the leading to the trailing edge of & hydraulic jump. The
shallow-water equations contain no vertical velocity or acceleration; therefore,
any energy that should be captured in vertical motion is lost. The shallow-
water equations must simulste the jump as a discontinuity and all vertical
energy is immediately dissipsted. This is unlike the real system in which an
undular jump mey form that dissipates this vertical motion over a long
distance.

Another significant assumption is thet the bed slope is geometrically mild
%0 that sin § = tan = §, where § is the channel slope. This geometrically
mild slope assurnption is distinguished from s hydraulicaily mild slope that
coniveys flow as sabcritical (i e , the shallow water equations sssume that the
slope is geometrically mild. although it may be hydraulically steep). This is a
tessonable msurmption in most high-velocity channe! applications where the
slope is less than 0 02 However, when spplication is mwde to a long channel
reach having » favorable siope in excess of say 0.05, the mild slope
assumption will tend 0 overestimate the flow speed and underestimate the
flow depth.

Oupter 2 Ovecrigtion of Mode!




Discretization

Discrete values of the unknown variables are solved using a Petrov-
Galerkin finite element formulation of the governing equations. Details of the
finite element formulation are presented in Appendix B. The model is quite
stable as a result of the particular Petrov-Galerkin test function employed,
which is weighted upstream along characteristic lines. The finite element
model reproduces triangular and quadrilateral bilinear elements and can be
easily modified to capture complex geometries.

HIVEL2D solves the finite element equations using the weak formulation.
The weak formulation facilitates the specification of natural boundary condi-
tions and allows accurate shock capturing, which is essential in modeling
supercritical flow.

Temporal derivatives are solved implicitly using a finite difference discreti-
zation. The temporal derivatives can be approximated using either a first-order
(a = 1.0) or second-order (a = 1.5) backward difference. A first-order differ-
ence is used for the spin-up to a steady flow solution, whereas a second-order
difference is more appropriate for unsteady flow simulation.

Boundary Conditions

Inflow and outflow boundary conditions can be specified as supercritical or
subcritical. Supercritical inflow boundaries require the specification of the
three degrees of freedom (i.e., the x- and y-components of unit discharge and
the depth or the x- and y-components of velocity and the depth). Subcritical
inflow boundaries 1 juire that only two specific degrees of freedom be given
(i.e., the x- and y-components of unit discharge or the x- and y-components of
velocity). Borndary conditions at supercritical outflow boundaries should not
be specified. Subcritical outflow boundaries require the specification of
tailwater elevation (i.c., depth plus bed elevation).

Sidewall boundary conditions are enforced using the weak statement. The

boundary conditions enforced are that the mass and momentum flux through
the sidewalls are zero. Sidewalls also enforce a partial slip condition.

Chagter 2 Description of Model




3 Test Cases

Numerous test cases are presenied o illustrate the model’s ability to simu-
late high-velocity channel flow fields. More importantly, results of test cases
point out flow conditions that are not accurately modeled by HIVEL2D. The
model user must understand when the model’s governing equations are ade-
quate for the particular problem to be solved and when they are not. It is
demonstrated that the numerical scheme accurately solves the depth-averaged
2-D equations. The depth-averaged equations appropriately describe most
high-velocity channel flow fields.

Several features commonly found in high-velocity channels are included in
the test cases: simulations of channei contractions, expansions, confluences,
bends, hydraulic jumps, bridge piers, bores, and roll waves.

Input parameters for each simulation are provided in tabular form: the
temporal difference coefficient a; the Petrov-Galerkin weight coefficient 8
(for smooth flow) and B, (for flow near shocks). Manning's coeffici :nt n; the
eddy viscosity » (for smooth flow) and », (for flow near shocks); and the
acceleration due to gravity g. Detailed descriptions of the temporal difference
and Petrov-Galerkin weight coefficients are provided in Appendix B. Early
tests were conducted using a version of HIVEL2D that used a constant user-
specified eddy viscosity for the entire flow ficld. The current version of
HIVELZ2D varies the viscosity based on local flow varisbles. Details of how
viscosities are determined are presented in Appendix A.

Channal Contraction

Initially, HIVEL2D was run to simulate supercritical flow in a channel
contraction. A laboraiory investigation of supercritical flow in channel
contractions was reported by Ippen and Dawson (1951) in which depth con-
tours were presented. One particular test documented flow conditions in a
straight-wall contraction with an approach Froude number of 4.0. The
straight-wall contraction was a 2-ft- (0.61-m-) wide' channel, transitioning to

' A table of factors for converting aon-S1 waits of messuresment % ST units is found on page v.
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a 1-ft- (0.30-m-) wide channel at a convergence angle of 6 deg. The grid
used for the simulation is provided in Figure 1. The grid consisted of 1661
nodes and 1500 elements. The long appruach length of 20 ft was used to
ensure uniform flow conditions at the contraction. Figure 2 shows contours
of flow depth observed in the laboratory and those computed using HIVEL2D
for a discharge of 1.44 cfs (0.041 cms) and an upstream Froude number of
4.0. Input parameters used in the numerical simulation are provided in

Table 1. A water-surface mesh generated using these HIVEL2D results is
shown in Figure 3.

The contraction is a geometrically simple case, but the results demonstrate
the model’s ability to capture the oblique standing waves resulting from
changes in the wall boundaries. Oblique standing waves are created as the
supercritical velocity encounters the converging sidewalls. These standing
waves are reflected from opposing sidewalls for a distance downstream.
HIVEL2D captures the standing waves and the depth increase as the waves
intersect at the channel center line.

Tabile 1
Input Parameters for the Channel Contraction

1.0

0.1.0.8

0.011

0.005.0.005 ft’/sec (4.85 x 10* m'/sec)

32.208 tusec’ (9.817 misec’)

Hydraulic Jump

Tests were conducted to compare the results from HIVEL2D with some of
those obtained in the physical model study of Rio Puerto Nuevo Flood-Control
Channel (Stockstill and Leech 1990) conducted for the U.S. Army Engineer
District. Jacksonville. Three models were constructed and tested for the
Puerto Nuevo study. These models were selected for comparisons with
HIVEL2D calculations simply because the channels’ geometric and hydraulic
details were at hand and several festures common to high-velocity channels
were included. Specifically, the Puerto Nuevo study channels contained
supercritical confluences, horizontal curves, expansions, and a tailwater-
imposed hydraulic jump. To avoid similitude questions, HIVEL2D was run at
laboratory scale. " his resulted in direct comparisons of calculations to
observed quantities.

The Margarita Channel was one of the three models tested for the project.
The Margarita Channel consisted of two reverse curves separated by a short

Chapter 3 Test Cases




tangent, a channel expansion, and tailwater that produced a hydraulic jump
upstream of the width transition. Details of the modeled reach of the
Margarita Channel are presented in Figure 4. Input parameters used in
modeling the Margarita Channel are provided in Table 2, and the finite ele-
ment grid is shown in Figure 5. Typically when steady-state solutions are
sought, a first-order temporal derivative is appropriate and an « = 1.0 is
used. Because portions of the Margarita Channel exhibited unsteady flow
features, an @ = 1.5 was used resulting in a second-order temporal derivative.
The finite element grid consisted of 796 nodes and 651 elements. Figure 6
compares water-surface profiles along the channel walls for a discharge of

1.2 cfs (0.034 cms) with a tailwater depth at the downstream end of the model
of 0.601 ft (0.183 m).

Table 2
Input Parameters for the Margarita Channel
| contion e

1.8

0.2,0.6

0.010

0.008,0.025 ft¥/sec (7.43 x 10, 2.32 x 10* m?¥/sec)

32.208 fvsec’ 19.817 m/sec?)

HIVEL2D not only captured the hydraulic jump in the channel, but also
reproduced the asymmetric flow patterns downstream of the width transition
that were observed in the physical model. The short length of the transition
(1 transverse on 4 longitudinal) in conjunction with the asymmetric flow
distribution produced by the upstream bend resulted in a large eddy in the
downstream channel that produced flow concentrations along the left wall.
Depth-averaged velocities at three stations are presented in Figures 7-9.
Higher velocities (1.9 fps (0.58 mps)) existed along the left wall whereas the
flow along the right wall was essentially stagnant as shown by the dark area in
Figure 10. The numerical model results shown in Figure 11 show that
HIVEL2D accurately predicted the asymmetric flow patterns downstream of
the expansion.

Supercritical Confluence

The numerical model was further tested by comparing computed results of
the Puerto Nuevo/Guaracanal Channel confluence with those observed in the
laboratory study. Geometric details of the supercritical confluence are pro-
vided in Figure 12. Table 3 lists the input parameters, and Figure 13 shows
the finite element grid, which is composed of 491 nodes and 390 elements.
Boundary conditions for these tests were supercritical inflow with 3.6 cfs
(0.10 cms) in the main channel and 1.1 cfs (0.03 cms) in the tributary channel

Chapter 3 Test Cases




Table 3
Input Parameters for the Supercritical Confluence

1.0

0.1,0.5
0.009

0.006,0.005 ft’/sec (4.86 x 10 m¥/sec)
32.208 fusec? (9.817 m/sec?)

and supercritical outflow. Figures 14 and 15 show that the HIVEL2D
captured the overall features of the diamond-shaped standing wave pattern
resulting from the confluence geometry. The water surface contours shown in
Figure 15 illustrate the model’s ability to simulate superelevation in the water
surface within the tributary channel bend. Water-surface profiles along the
flume walls obtained using HIVEL2D and-those observed in the laboratory are
presented in Figure 16. In most supercritical channels the water surface oscil-
lates in time even under steady boundary conditions. The recorded laboratory
results are the maximum water-surface elevations observed, whereas the
numerical model represents average water-surface elevations. HIVEL2D ade-
quately simulated the initial shock wave crest, but the location of each subse-
quent wave crest was increasingly in error. This difference is due to the shal-
low-water assumption used in the 2-D numerical model. The shallow-water
assumption results in all waves traveling with the celerity of a long wave,
whereas three-dimensional flow is actually composed of many wave speeds,
the maximum of which is the long-wave celerity. The larger wave speed
means that the standing wave angles will be greater than the three-dimensional
waves. Generally, this shallow-water equation limitation should be of little
consequence since channel wall heights are set to contain the maximum water-
surface elevation plus freeboard.

Bridge Pier

A hypothetical bridge pier was tested to demonstrate HIVEL2D’s ability to
simulate a Class B bridge in which the piers choke the flow such that the
approaching flow is subcritical even though the channel slope is hydraulically
steep. The channel was 100 ft (30.5 m) wide by 1,000 (305 m) ft long. Two
piers were used to choke the flow. Each pier was 20 ft (6.1 m) wide by
100 ft (30.5 m) long with a square nose and tail. The finite element grid for
the bridge pier problem was composed of 993 nodes and 900 elements

(Figure 17).

Water-surface meshes calculated using HIVEL2D are shown in Figures 18
and 19. Table 4 lists input parameters for this simulation. The flow
approaching the piers was subcritical and accelerated around the piers to
supercritical. The imposed tailwater resulted in a hydraulic jump immediately
downstream of the piers. The hypothetical problem demonstrates HIVEL2D’s
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Table 4
Input Parameters for the Bridge Pler Problem

1.0

0.2,0.5

0.020

10.0,10.0 ft*/sec (0.93 m¥/sec)
32.208 ft/sec?

ability to model subcritical flow, the transition to supercritical flow, and also
the transition to subcritical flow via the hydraulic jump.

Dam Break Problem

Unsteady flow simulations were conducted to test HIVEL2D's discretiza-
tion to the temporal derivatives of the governing equations. Results were
compared to hydraulic flume results reported in Bell, Elliot, and Chaudhry
(1992). A plan view of the flume facility is shown in Figure 20. The flume,
constructed of Plexiglas, simulated 2 dam break through a horseshoe bend.
Because this was a 2-D problem and model results were being compared to
hydraulic flume results, the limitations of the shallow-water equations them-
selves needed to be considered. Initially, the reservoir had an elevation of
0.1898 m relative to the channel bed; the channel itself was at a depth (and
clevation) of 0.0762 m. The velocity was zero and then the dam was
removed. The surge location and height were recorded at several stations and
compared to the model at three of these, at stations 4, 6, and 8. Station 4 was
6.00 m from the dam along the channel center line in the center of the bend,
Station 6 was 7.62 m from the dam near the conclusion of the bend, and
Station 8 was 9.97 m from the dam in a straight reach. The model-specified
parameters are shown in Table 5.

Table 5
Test Conditions For The Dam Break Case

5

10,186

0.25, 0.50

0.009

0.001, 0.01 m¥/sec
9.802 m/sec’
0.05 gec
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The numerical grid (Figure 21) contains 698 elements and 811 nodes. This
grid was reached by increasing the resolution until the results no longer
changed. The most critical reach was in the region of the contraction near the
dam breach. The basic element length in the channel was 0.1 m with five
elements across the channel width. For the smooth channel case, Bell, Elliot,
and Chaudhry (1992) used a one-dimensional calculation to estimate the
Manning’s n to be 0.016, but experience at the U.S. Army Engineer Water-
ways Experiment Station suggests that this value should actually be 0.009
(Brater and King 1976).

The test results for stations 4, 6, and 8 are shown in Figures 22-24. Here
the time-history of the water elevation is shown for the inside and outside of
the channel for both the numerical model (at « of 1.0 and 1.5) and the flume.
The inside wall is designated by squares and the outside by diamonds. Of
particular importance is the arrival time of the shock front. At station 4 the
numerical prediction of arrival time using « of 1.0 was about 3.4 sec, which
appears to be about 0.05 sec sooner than for the flume. This is roughly 1-

2 percent fast. For a of 1.5 the time of arrival was 3.55 sec, which is about
0.1 sec late (3 percent). At station 6 both flume and numerical model arrival
times for a of 1.0 were about 4.3 sec, and for station 8 the numerical model
was 5.6 sec and the flume was 5.65 to 5.8 sec. With a set at 1.5, the time of
arrival was late by about 0.2 and 0.15 sec at stations 6 and 8, respectively.
The flume at stations 6 and 8 had a earlier arrival time for the outer wave
compared to the inner wave. The numerical model did not show this. In
comparing the water elevations between the flume and the numerical model, it
is apparent that the flume results show a more rapid rise. The numerical
model is smeared somewhat in time, likely as a result of the first-order
temporal derivative calculation of o of 1.0. The numerical model with o set
at 1.5 shows an overshoot. This is likely a numerical artifact and not based
upon physics even though this looks much like the flume results. The surge
elevations predicted by the numerical model are fairly close if one notices that
the initial elevation of the flume data was supposed to be 0.0762 m and it
appears to be recorded as much as 0.015 m higher at some gauges. Since the
velocity was initially zero, then all of these readings should have been

0.0762 m and all should be adjusted to match this initial elevation.

With this in mind, stations 4 and 8 match fairly closely between flume and
numerical model. Station 4 in the flume would still have a greater difference
between outer and inner wave than that predicted by the model. The differ-
ence might be a manifestation of a three-dimensional effect that the model
cannot mimic. The overall timing and height comparisons are good.

Figure 25 shows the spatial profile of the outer wall water-surface
elevation of the numerical model versus distance downstream from center line
of the dam. The two conditions are for « of 1.0 and 1.5, i.e., first- and
second-order temporal derivative.

The nodes are delineated by the symbols along the lines. The overshoot of
the second-order scheme and the damping of the first-order are obvious.

1
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Again, it is probable that the overshoot is a numerical artifact even though this
is much like what the flume would show.

Roll Waves

Roll waves are a phenomenon of a high Froude number environment. If
the Froude number is greater than 2, it can be shown that disturbances can
grow into shocks, which progress downstream faster than the flow. This
results in a characteristic sawtooth-shaped water-surface pattern in which the
steep face is downstream. The roll wave tests used a modified version of
HIVEL2D in which a sinusoidal perturbation was input at the upstream
boundary of a long straight channel. The water depth results, shown in
Figure 26, demonstrate the gradual steepening of the downstream wave face
downstream from inflow point. While this is a qualitative comparison, the
model does demonstrate the capacity to reproduce this characteristic event.
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4 Discussion and
Conclusions

This series of tests demoastrates the ability of the model HIVEL2D to
supply engineering decision makers with a 100l to evaluate hydraulic results of
structural modifications in supercritical channels.

The code itself is relatively flexible with the one major limitation that the
boundary conditions are constant over a simulation. The most significant
limitations are therefore imposed by the equations modeled. These are the
shallow-water equations employing the mild geometric slope assumption and
hydrostatic pressure distribution. The obvious result is that one would not
want o use the model to evaluate features with steep slopes. However, the
hydrostatic assumption is more subtle. The result of this assumption is that
shorter wavelengths will tend to propagate too quickly in the model. This was
particularly noted in the supercritical confluence tests. While the water-surface
predictions were good over the first reflection or so, they became progressively
worse downstream. Another consequence of the hydrostatic assumption is that
energy is dissipated too quickly. The result is that energy that should be cap-
tured in vertical motion is neglected and undular jumps are instead modeled as
strong jumps. Shallow-water models in which vertical motions are assumed
negligible cannot predict the length of a hydraulic jump.

Chapter 4 Diecussion and Conclusions
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Figure 1. Numerical model computational mesh for the channel contraction
problem
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Figure 2. Depth contours of supercritical flow in a contraction
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Figure 3. Water-surface mesh of supercritical flow in a contraction
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Figure 10. Flow conditions in the Margarita Channel physical model




Figure 11. HIVEL2D results of Margarita Channel. Velocity contours and
vectors (darker contours indicate lower velocities)
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Figure 12. Details of supercritical confluence
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Figure 14. Flow conditions in the supercritical confluence physical model




Figure 15. Depth contours in the supercritical confluence computed by
HIVEL2D (lighter contours indicate deeper depths)
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Figure 17. Numerical model computational mesh for the bridge pier problem

Figure 18. Oblique view of the water-surface mesh of the bridge pier problem
(flow is from upper right to lower left)




Figure 18. Side view of the water-surface mesh of the bridge pier problem
(flow is from right to left)
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Figure 21. Numerical model computational mesh for the dam break problem
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Appendix A
Governing Equations

Vertical integration of the three-dimensional equations of mass and momen-
tum conservation for incompressible flow with the assumption that vertical
velocities and accelerations are negligible compared to horizontal motions and
the acceleration of gravity results in the governing equations commonly
referred to as the shallow-water equations. The dependent variables of the
two-dimensional fluid motion are defined by the flow depth A, the x-direction
component of unit discharge p, and the y-direction component of unit dis-
charge g. These variables are functions of the independent variables x and y,
the two space directions, and time t. Neglecting free-surface stresses and the
effects of Coriolis force as these are not considered important in high-velocity
channels, the shailow-water equations in conservative form are given as
(Abbott 1979; Praagman 1979):!

ﬂ+2p.+.a_q.=0 (A1)
at ax ay

for the conservation of mass. Conservation of momentum in the x-direction
and y-direction are given respectively as:

2
>, _a_[f_ + ..;.ghz - hon] + .3;(%? - hG,y)

at ox\ h
(A2)
0z nszp2+q2
= -gh_ + g5 _Z_
ax C J,7/3

and

1" References cited in this Appendix are listed in the References at the end of the main text.
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3 , 8 (pq 9 [a% ,1.p
—_ t 1L - h —_— ] -
8t+ax[h ""] *ay[h *g8h" - hoy

- gn%  gralPTa"
ay C‘Il'm

(A3)

where
8 = acceleration of gravity

00,05, 0,, = Reynolds stresses per unit mass where the first subscript
indicates the direction and the second indicates the face on
which the stress acts

Z = channel invert elevation
n = Manning’s roughness coefficient

C, = dimensional constant (C,= 1 for SI units and 2.208 for
non-SI units)

The governing equations are given in vector form as:

gg+3£’.+iF_’+H=0 (A4)
at ax ay
where
h
e-|p (A3)
q
r p W
P’ 4 lgh? - ho A6
F=|h ? = (A6)
Pq
T_ha" J
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( q )
P4 _y
F,=| & Tx (A7)
2
Q° 1.2
\_h- + .i.gh hoyy}
( 0 )
3z _ _n’pyp? + q?
ghT & 7
He| 2 (A8)
gn % _ gn%alp? + ¢’
ay 2,73
\ G )

where

P = uh, u being the depth-averaged x-direction component of velocity
q = vh, v being the depth-averaged y-direction component of velocity

The Reynolds stresses are determined using the Boussinesq approach of
gradient-diffusion:

ou

O, =2v,.—

xx tax

ou ov 9

oxy-o’u-v{.é;+3;) (A9)
ov

o», = ZV,EV.

Where v, is the viscosity (sum of turbulent and molecular viscosity, commonly
referred to as eddy viscosity), which varies spatially and is solved empirically
as a function of local flow variables (Rodi 1980; Chapman and Kuo 198S):

" 2,2
v, =C, 8¢ .é'_ ._Prﬁ_ (A10)
o

1/6

where C,, is a coefficient that varies between 0.1 and 1.0.
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This system of equations constitutes a hyperbolic initial boundary value
problem. Appropriate boundary conditions are determined using the approach
of Daubert and Graffe as discussed in Drolet and Gray (1988) and Verboom,
Stelling, and Officier (1982). Daubert and Graffe use the method of charac-
teristics to determine the required boundary conditions. The number of bound-
ary conditions is equal to the number of characteristic half-planes that originate
exterior to the domain and enter it. If the inflow boundary is supercritical,
then all information from outside the domain is carried through this boundary.
Therefore, p and g (or u and v) and the depth h must be specified. If the
inflow boundary is subcritical, then the depth is influenced from the flow
inside the domain (downstream control) and therefore only p and q (or ¥ and
v) are specified. Outflow boundary conditions required are determined by
analysis of information transported through this boundary. If the outflow
boundary is supercritical, then all information is determined within the domain
and no boundary conditions are specified. However, if the outflow boundary
is subcritical, then the depth of flow at the boundary (tailwater) must be
specified. The no-flux boundary condition is appropriate at the sidewall
boundaries and is discussed in detail in Appendix B.
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Appendix B
Finite Element Formulation

A variational formulation of the governing equations involves finding a
solution of the dependent variables Q using the test function ¥ over the
domain Q. The variational formulation of the shallow-water equations in
integral form is:

£+PE§+%+H dd =0 (B1)

where ¢ is time and Q, F,, F, and H are defined in Equations A5-A8.

The finite element approach taken is a Petrov-Galerkin formulation that
incorporates a combination of the Galerkin test function and a non-Galerkin
component to control oscillations due to convection. The finite element form

of the governing equations is:
; I\bi%+%+%iyl+ﬂ dg, B2)
=0, for each i

where
e = subscript indicating a particular element
i = subscript indicating a particular test function
~ = discrete value of the quantity
The geometry and flow variables are represented using the Lagrange basis ¢:
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82

Q=zl: $.0, ®3)

where j is the nodal location. Bilinear triangular and quadrilateral elements
are used with nodes at the element corners. Figure Bl shows the two bilinear
elements used in terms of local coordinates ¢ and .

n
4

n
1 i
¢ ¢
-1 -1
- -1 1

1 1

Figure B1. Local bilinear elements

The test function used (to be elaborated in the next section) is:

Vv, =0, 1+ ¢, (B4)

where
¢, = Galerkin part of the test function
I = identity matrix
¢, = non-Galerkin part of the test function
To facilitate the specification of boundary conditions, the weak form of the

equations is developed using an integration by parts procedure. Integration by
parts of the terms
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" ox (BS)

yields the weak form of the equations. The ~ is omitted for clarity and the
variables are understood to be discrete values. The weak form is given as:

3Q %, 0. o L,90 ., 530
> I[h-&_ _a;Fx 7371'; 'PtA-g Yi%% &6

"'4’#] m¢+f¢i(Fxnx+F}ly)ﬂ‘¢ =0

where (n,, n)) = ;l, the unit vector outward normal to the boundary I',, and

4

¢ ®7)
oF,
30

Natural boundary conditions are applied to the sidewall boundaries through the
weak statement. The sidewall boundaries are "no flux” boundaries. That is,
there is no net flux of mass nor momentum through these boundaries. This
boundary condition is enforced in an average sense through the weak state-
ment. Setting the mass flux through the sidewall boundary to zero:

§ @n, +gn)dr =0 (BS)
r

where
p = x-direction component of unit discharge
q = y-direction component of unit discharge

There is no net momentum flux through the boundaries. Therefore, the
x-direction momentum through the boundary is set to zero:
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f [(up)n, + (uq)n,] ar =0 (BQ)
r

and the y-direction momentum through the boundary is set to zero:

§ [0P)n, + (v)n ] dT = 0 (B10)
r

where
u = p/h = the depth-averaged x-direction component of velocity
v = g/h = the depth-averaged y-direction component of velocity
h = the depth of flow
Sidewall drag is treated as a partial slip condition. That is the boundary

stress terms in the governing equations, integrated along the sidewall, are
specified via the Manning relation:

- 1 é,(ho_n, + ho_p)dT 1 ¢gp_‘”’ - ‘1 ar (Bl1)

- I é, (ho;‘nx + ho p) dT 1 b, gq nz up 2 q dr(B12)

where
040, 0y, 0,, = Reynolds stresses per unit mass where the first subscript

indicates the direction and the second indicates the face
on which the stress acts

8 = acceleration of gravity

C, = dimensional constant (C,= 1 for SI units and 2.208 for
non-SI units)
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Petrov-Galerkin Test Function

For the shallow-water equations in conservative form (Equation B2), the
Petrov-Galerkin test function ¢, is defined as (Berger 1993)":

R ®13)
¢ = B[AX-E;A A)’-a?E]

where 8 is a dimensionless number between 0 and 0.5, and ¢ is the linear
basis function. In the manner of Katopodes (1986) the grid intervals are

chosen as:
12
ax)? (ax)? (B14)
=2|1=] +]=
& [[as] [an]
and
S [2). (& ’] (B14)
=2 21 +| =
o (2] 2

where ¢ and n are the local coordinates defined from -1 to 1 (Figure B1).

To find A consider the following:

A= a_Ff.(g)_ (B16)
aQ
P'AP=4 (B17)

where A = I\ is the matrix of eigenvalues of A, and P and P’ are made up
of the right and left eigenvectors.

! References cited in this appendix are listed in the References at the end of the main text.
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3 = P x P (B18)
where
[ M 0 0 ]
12
()‘12 + Vz)
A- 0 A — 0 (B19)
(: +v)
0 0 A
(st N vz)”z
and
A\ =u+c (B20)
N ®21)
N =u (B22)
¢ = (ghy? (B23)

A similar operation may be performed to define R

This particular test function is weighted upstream along characteristics
similar to a concept like that developed in the finite difference method of
Courant, Isaacson, and Rees (1952) for one-sided differences. These ideas
were expanded to more general problems by Moretti (1979) and Gabutti
(1983) as split-coefficient matrix methods and by the generalized flux vector
splitting proposed by Steger and Warming (1981). In the finite element
community, instead of one-sided differences the test function is weighted
upstream. This particular method in one dimension (1-D) is equivalent to the
SUPG (streamline upwind Petrov-Galerkin) scheme of Hughes and Brooks
(1982) and similar to the form proposed by Dendy (1974). Examples of this
approach in the open channel environment using the generalized shallow-water
equations are presented for 1-D in Berger and Winant (1991) and for 2-D in
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Berger (1992). A 1-D St. Venant application is given by Hicks and Steffler
(1992).

Shock Capturing

Berger (1993) shows that the Petrov-Galerkin scheme is not only a good
scheme for advection-dominated flow, but is also a good scheme for shock
capturing because the scheme dissipates energy at the short wavelengths.
When a shock is encountered, the weak solution of the shallow-water
equations must lose mechanical energy. Some of this energy loss is analogous
to a physical hydraulic system losing energy to heat, particle rotation, etc; but
much of it is, in fact, simply the energy being transferred into vertical motion.
And since vertical motion is not included in the shallow-water equations, it is
lost. This apparent energy loss can be advantageous.

To apply a high value of 8, say 0.5, only in regions in which it is needed,
since a lower value is more precise, construct a trigger mechanism that can
detect shocks and increase § automatically. The method employed detects
energy variation for each element and flags those elements that have a high
variation as needing a larger value of 8 for shock capturing. Note that this
would work even in a Galerkin scheme since this trigger is concerned with
energy variation on an element basis and the Galerkin method would enforce
energy conservation over a test function (which includes several elements).

The shock capturing is implemented when Equation B24 is true
Ts, > y (B24)
where 7 is a specified constant and

s, = EDfs‘ E (B25)

where ED,, the element energy deviation, is calculated by

- 173
[1 E - By "“] (B26)
ED, - | ,

a

i
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where
O, = element i
E = mechanical energy
a;, = area of element i

and E, ;» the average energy of element i, is calculated by

‘[ E dg
(B27)

b1

a.

and

E = the average element energy over the entire grid
S = the standard deviation of all ED,

Through trial a value of vy of 1.0 was chosen.

Temporal Derivatives

A finite difference expression is used for the temporal derivatives. The
general expression for the temporal derivative of a variable, @, is:

[aQ,] Q,] v - Q" /2 I :72)

- ™ Tm _ 1

tl*l - ™

where
a = temporal difference coefficient
Jj = nodal location
m = time-step
An «a equal to 1 results in a first-order backward difference approximation and

an a equal to 1.5 results in a second-order backward difference approximation
of the temporal derivative.
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Solution of the Nonlinear Equations

The system of nonlinear equations is solved using the Newton-Raphson
iterative method (Carnahan, Luther, and Wilkes 1969). Let R, be a vector of
the nonlinear equations computed using a particular test function y; and using
an assumed value of Q.. R, is the residual error for a particular test function
i. Subsequently, R, is forced toward zero as:

R g - R (B29)

]
3Q;

where £ is the iteration number, j is the node location, and the derivatives
composing the Jacobian are determined analytically. This system of equations
is solved for Ag and then ar. improved estimate for @F*' is obtained from:

¢ - ¢ - g ®30

This procedure is continued until convergence to an acceptable residual error
is obtained.

Equation B29 represents a system of linear algebraic equations that must be
solved for each iteration and each time-siep. A “Profile” solver is imple-
mented to achieve efficient coefficient matrix storage. This method stores the
upper triangular portion of the coefficient matrix by columns and the lower by
rows. Any zeros outside the profile are not stored or involved in the com-
putations. The necessary arrays are then a vector composed of the columns of
the upper portion and a pointer vector to locate the diagonal entries.
Triangular decomposition of the coefficient matrix is used in a direct solution.
The program to construct the triangular decomposition of the coefficient ma-
trix uses a compact Crout variation of Gauss Elimination.

B9
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