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1. Introduction'****

Electro-optics is the most recent area of applications to emerge for PLZT
ceramics. Primarily this is because PLZT offers a low-cost, versatile alternative
to crystal technology. General advantages over electro-optic crystals include a
much lower cost, the fact that ceramics can be hot-pressed into any size or shape,
the availability of larger samples of any sizc or shape, the availability of larger
samples that are uniform, higher ON-OFF efficiencies or contrast ratio (due to a
dcep OFF state), more casily controlled optic axis variable grain size allowing for
optimized clectro-optic and scattering propertics, and a mature manufacture and
processing technology. Compared to liquid crystal or mechanical shutters,
advantages include a faster response time (in the ps range), lighter weight, less
vibration, and a wider operating temperature range (-40°C to +-80°C). Thin films
of PLZT are cpitaxially grown on sapphire substrates by sputter deposition and
exhibit both excellent optical transparency and strong electro-optic effects. PLZT
ceramic technology for clectro-optic applications is very promising for future
integrated optics applications, yet so far the nly major research activities on

PLZT and sts applications have been in Japan.

In Figure 1 is a schematic of a typical PLZT/ITO ceramic electro-optic
phasc grating fabricated by Photonics Center swaff at Cornell University's National
Nanofabrication Facility (NNF). Scveral such devices were fabricated, averuging
w size T em x 1 em overall. Two graiing structures « in be present on the device.
Onc grating structure is formed when a voltage is applied to the ITO interleaved
clectrode fingers by the uadratic clectro-optic effect, as described above.
Another, an “intrinsic” grating is present when no voltage is applied, and results
from the difference in the index of refraction between the 1TO and PLZT
materials. The clectrode widths and spacings between clectrodes are equal and

scaled on various grating devices from 100 um to 12.5 um. Details concerning



fabrication of the devices follow. First, properties of both materials are discussed.

2.  PLZT Material Properties'*****

PLZT, developed at Sandia National Laboratory, is lead-lanthanum
zirconate titanate (PbZrO,-PbTiO;-La0,). It is polycrystalline with a grain size
less than 5 prr, has high transparency in the visible and near-IR wavelengths of
the optical spectrum, a large electro-optic coefficient, and a fast response time.
It is an excellent insulator. PLZT is intrinsically non-birefringent, allowing for
flexible orientation of incident-beam polarization. Its composition is denoted by
a (y/z/1-z) notation, where y is the percentage of lead sites occupied by
lanthanum, and #z/1-z is the zirconate-to-titanate ratio in the material. The
substitution of lanthanum atoms in lead sites produces transparency in the
otherwise opaque PZT material. For the composition of the PLZT samples
reported here, transmission is about 65% in the visible and near-infrared, with the
rest of the light reflected. Our samples have an unpoled index of approximately
2.5. The zirconium-titanium ratic detcrmines the principic clectro-optic behavior.
Depending on composition, PLZT displays one of three crystal structures:
rhombohedral, tetrahedral, or cubic. Our wafers are cubic (9.5/35/65), exhibiting
a quadratic clectro-optic effect. The utilization of quadratic PLZT compositions
reduces the required driving voltages compared to linear electro-optic materials.
Our samples are of two thicknesses, 12.5 mils and 25 mils thick, cut from dense,

| By

hot-pressed cylindrical blocks.

3.  ITO Material Preperties’”

ITO is the accepted abbreviation for indium-tin oxide mixtures. Our ITO
is a thin film mixture of 90% InO, and 10% SnO,. Thin films of SnO3 and InO3

are optically transparent in the visible and near-infrared wavelengths of the




spectrum, with an index of approximately 1.8 or 1.9, yet have high electrical
conductivity, with a sheet resistance between 10 and 100 ohms per square. One
deposition process for these transparent conducting films is to first evaporate the
indium, which allows the tin oxide to adhere better, and to then sputter the tin
oxide, for example, by magnetron sputter deposition. Usually, ITO thin films are
prepared by a chemical deposition process that includes a physical deposition
process (such as spray coating), a sputtering process, and a reactive vacuum
evaporation. Often, to increase their transparency, the sputtered films are annealed
in air at 400-500°C. We contract-coated our PLZT wafers, as the ITO target is
more costly and, due to the low vapor pressure of tin, the deposition procedure too
contaminating to the vacuum system of the evaporating device. A typical ITO

thin film measuring 0.5 pum thick has a sheet resistance of 25 £2/sq.

4. Fabrication

4.1 Introductory Comments

Fabrication of ITO structures on PLZT substratcs took place at the National
Nanofabrication Facility at Cornell University’s Knight Laboratory under a User
Program contract with the facility. The gratings have electrode and spacing
widths of 100 um, 50 pm, 25 pm, and 12.5 um. The grating structures are

interfaced to the external world by aluminum bonding/contact pads.

Two independent sets of PLZT/ITO gratings were fabricated by two
separate processing techniques common to microelectronic device fabrication:
first, dry etching, a subtractive process, and then lift off, an additive one. These
techniques are methods of pattern transfer. Lift-off generally yields better defined
edges than etching. In each case the PLZT wafers were contract-coated with ITO

by Thin Film Devices, Inc., CA.




4.2 Mask Generation

In both etched and lift-off cases, chrome-on-glass lithographic mask plates
are first generated. Two masks are required, one for the electrode grating pattern
and the other fo"r the aluminum bonding-pad pattern. For this, CAD was used to
generate the physical layout of both the clectrode grating pattern and the
aluminum bonding-pad pattern. The design data was then "fractured" into a file
representation consisting of rectangles. The iractured data files are recorded on
magnetic tape, which is then sent to an optical pattern generator. The pattern
gencrator scquentially reads the tape and writes the fractured rectangle pattern to
the photosensitive film on the mask plate in a series of flash exposures. Once
devcloped, the pattern is transtferred to the photoresist layer, which is then
"descummed” in an oxygen-plasma reactive-ion etcher to remove any cxcess
exposed resist remnants.  Next, a chrome etchant is used to wet-etch away the
chrome arcas of the mask nof protected (covered) by photoresist. An image of the
pattern is left in the chrome. Finally the remaining resist, which has served as a
protective coating thretgh the processing thus far, is stripped away with a

photoresist remover.

The two masks are now used to pattern the wafers. As mentioned above,
two sets of devices were fabricated, the first sct by etching, the other by lift-off.
Both masks are used in cach processing case.

4.3 Dry-Etch Process

Lithography and pattern transfer by ctching follow.

The ITO-coated PLZT waters are first cleansed with alternating and

overlapping baths of acctone and alcohol, spin-coated with a positive resist, and



"soft baked" for 1 minute at Y0°C. The electrode-grating mask is then proximity
aligned with the resist-coated wafer and 1:1 contact lithography performed on an
HTG Mask Aligner (405 nm) to pattern the resist. The resist pattern is developed.
Exposed areas become more soluble in the developer and are removed by the

development process.

As in generating the mask above, the remaining photoresist serves to
protect ITO-coated areas during etching. The set of wafers is etched in an argon-
ion barrel etcher which provides isotropic, undirectional etching of the ITO film
layer. The wafer is etched through a depth equal to the ITO layer, which is
approximatzsly 1400 angstroms. In this way the electrode-grating pattern is

transferred to the wafer.

Finally, the remaining resist is stripped away with a solvent, leaving the

ITO grating-electrode pattern.

4.4 Lift-Off Process

In the lift-off case, the wafers are ITO coated after the lithography for the
grating-electrode pattern has been performed. The lithography steps involved in
lifi-off are as follows. The PLZT wafers are cleansed, and positive resist is spun
and soft cured, as above. Here, however, the photoresist is spun directly on the
PLZT substrate. The wafers are then contact exposed (HTG Mask Aligner),
patterning the resist, "hard baked" in ammonia to cure or solidify the resist, "flood

exposed," and then developed.

This lithographic process is known as "image reversal." Imugce reversal
not only reverses the tone, producing a negative image, but more importantly, in

so doing, generates highly desirable undercut profiles in the resist which are




required for lift-off (Figure 2). As indicated, this is a two-part process. First
there is the "hard bake," usually in an ammonia-diffusion oven (for example, a
YES Oven) for 80 minutes at 90°C. In this step exposed areas (previously
rendered soluble by the first exposure) now become insoluble, while the
unexposed areas remain unaffected. Following the ammonia-diffusion hard bake,
the resist is "flood exposed” with UV light to reverse the pattern (405 nm, 90
seconds), a step that now exposes previously uncxposed areas. Once developed,

the original tone resulting from the first exposure alone is reversed.

Lift-off is next. The resist is developed and oxygen-plasma descummed
in 4 reactive ton-etcher (RIE) system (to cleanse developed arcas of residual resist)
and ITO coated. Following deposition, the remaining protective resist is stripped
away in a dissolving solvent, carrying the unwanted ITO portions with it. To
finish, the wafers arc again RIE descummed, and an anncaling bake is performed
to evaporate out any remaining solvent. The stripping step is lift-off. To make
lift-off casier, we used a resist layer that was approximately three times the depth

of the desired ITO deposition.

The lift-off technique greatly improves edge definition in subsequent
deposition and lift-off steps because a slanted sidewall slope is formed, the
undercut profile of which is favorable, as the remaining (protective) resist then
removes cleanly -- "lifts off" -- leaving well-defined edges to the deposition

pattern behind (Figure 3), as commentied upon in the next section.

4.5 Process Comparison

Both sets of finished gratings were examined with a high-quality optical

microscope and profile-depth characterized with an Alpha-Stepper Stylus Profiler

instrument. By these measures, better results were attained by the lift-off process

Ea




than were by the etching process alone. The difference between the two
alternatives has to do with the sidewall slope of the photoresist. In the etching
case, the slant of the sidewall slope generally works against us, creating more ili-
defined edges in our lithography. In lift-off processing however, the slant of the
sidewall slope created during pattern reversal now works < our favor by
generating the undercut profile favorable to lift-otf, as shown in Figure 2, lifting
off easily with a solvent and leaving well-defined metallizaticr: patterns (ITO

electrodes and aluminum pads) behind.

Also, in subsequent testing, gratings processed by the lift-off technique
exhibited cleaner far-field diffraction patterns, both transmitted and reflected, when

light from a HeNe laser was incident upon them.

4.6 Aluminum Contact-Pad Evaporation

Contact lithography is performed using the contact-pad mask and the HTG
Mask Aligner. Positive photoresist is spun on the ITO-patterned wafers. Image
reversal is performed as above to pattern the resist for deposition of aluminum
contact/bonding pads. The pads are deposited along two edges of the chip using
a thermal evaporator. Lastly, lift-off is performed leaving ITO electrode gratings
on a PLZT substrate with aluminum contact pads to serve as interface to an

external power supply or voltage source.
5.  Applications
The device applies in general to reconfigurable waveguide structures and

free-space or plane-to-piane optical interconnect devices. Applications include

electro-optic diffraction gratings, clectro-optic dynamic variable focal length

lenses, electro-optic variable Fresnel lens arrays, electro-optic variable grating




prisms, and reconfigurable electro-optic crossbar switches. Examples of these are
shown in Figures 4, 5, 6, and 7. PLZT technology has already found appiications

in flash goggles, color filters, displays, and image storage.
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Figure 1: Polycrystalline PLZT/ATO ceramic electro-optic phase grating




Figure 2: Photoresist undercut sidewall slope favorable to lift-off
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PLZT Double ITO Grating
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