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Chapter 1

Executive Summary

This is the final tecLhnical report for ote prolect ',ahle, Real-T!ime, lntcractive Spoken Lan-
guage Systems, sponsorcd by tile Advanced Rese irch Projects Agency (ARPA) and mon-
itored by ONR unde' contract No. N00014-92-C-0035 (BBN Reference Number 11617)
during the period 16 Npril 1992 to 30 June 1994.

The objective of this project was to m:ake the next significant advance in| human-machine
interaction Ly developing a spoken language system (SLS) that operatws in real-time while
maintaining high accuracy onl cost-effecti-e COTS (commercial, off-the-shelf) hardware.
The system has a highly interactive user interfacc, is largely user independent and to be
easily portable to new applications. The BBN IIARC spoken Language system consists
of the Byblos speech recognition system and the Delphi or HUM language understanding
sy Ste n..

Our research has concentrated on tie developnent of an effective SLS system (that is,
the itegration between speech and language processing), advances in language processing
to move away from a pipeline, syntax-first architecture (o one in which syntax and semantics
play conplementary roles, processing ill-formed input in a principled, domnain-indepenldent
way, and developing a compleely novel approach to language understanding.

The BYBLOS speech recognition system jses a novel four-pass search strategy. It
produces ordered lists of the N top-scoring hypotheses (N-best) which are then reordered
by several detailed knkwledge sources. The N-best strategy 148, 3, 26, 63, 64, 651 permits
the use of computationaily prohibitive models by greatly reducing the search space to a few
dozen word sequences. It has enabled us to use cross-word-boundary triphone models and
trigram language models with ease. The N-best list is also a robust interface between speech
and natural language that provides a way to teco%,er from speech errors in the top choice

-.8U -": -
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Thle lDelphi language understanidinrg Systemr use, at definite clause grammnar formalism,
augmnented by thle use of' constraint nodes 1691 andl a label led argument Formialis, i. The
parsing algorithnl Else,, at statistically trained agenda to produce (lie single best parse for anl
input utterance (2-01. We have added a robust fragmeiti parser to deal Willh speech er-rors
when thle conrcet answer is not in thle N-best list 1231. We developed a new hybrid method
of representation that cotmbines the best features it' logical and frame rcpr~esentat ior;., One
of the most important features of' Del phi is the Scinantic Linkcr, which is able to handle
il- fornied inplut by liiik ine part .111ICI-udestood1 fIra' oe n tS Oil the ha.sis of Mi eanring, With out
reqir1ing at full SVyntactic analysis.

A% ito se . potenmt ially liigli-pay off, a pp r-o chI to I 1Qin ý, uni n derst anrd inig was in it iated unrder
thlis conitrac t. TIhe ilp jrOarChl called lIt. M dli ddeICI riffalertmid in g Model ) i ten rpO1S ratea
statistical mo1del of, meaning. If' SUCCeSSfuLl, lltNI vwill lead to automatic acqUisition of'
linguistic knowledge, coupled Withi high perfortmanice. Alit initial version of H1-M was
implemented and tested inl thle Airl inae Travel Informtationi Service (ATIS) domain. The test
showed the basic soundness of' this niovel approach 1-46, 431.

In the area of portability, we examitned several new zasks as possible targets for porting
the spoketi langtmage technology, intcludirng shared-mlap planninitg, multi-miedia cotifererreing,
arid other database applications. We chose SPLINT, a database of information about Air
Force bases arid equLipmelnt, arid ported the H-ARC SLS to that database ini Conjunction With)
another contract 16, 141.

During the period of this contract, althiough not as part of it, B31N released the first version
of the H-ARK"I'spcecch recognlitioni system as a cornmercia p)roc''rict. HARK is based in part
on BYBLOS speech recognition technology. H-ARK is thle first product of its kind to run
in real-timie with a large vocabulary (over 2000 words) on off-the-shelf, audio-capable Unix
workstations. A companrion product, the HIARK Prototyper'", allows thle HARK vocabulary

*and grammar to be configured by application programmers.

Major accomplishments achieved during this project include:

I . Designed and implemented an initial version of HUM (hidden understanding
mtodel), a ness method for language understanding, based orn aarning at statistical
model of sern-antics from annotated data. The system minimizes the labor-intensive
writing of semantic rules and automnates system training from data, resulting in a
greater level of domain independence.

2. Began the development of tools arid processes for porting a spoken language
system to a new domain. The tools were tested by performing ant actual port, under a
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l'ý Itile 1.ib cont I ICt1, to 1 dj,i,ib~ie C0111,1 1i1i11 111 oii H~IM 101 ,ibttt \I Ai l- ýrce b~asei anid
CtitII lle 111.

3, Proposed concrete steps to\%aid d&fining ihe SemnEval evaluation methodology - a
dotniain - indepe ndenit methodology 1"01' die e nIn at ion of semiant ics capabi Iil tis - and

* developed annotation tools to facilitate explorations of SemnEval.

* 4. Extended thc ATIS speech understanding Systemi to the ATIS3 database.
incre asinag the vocabulary to abot.i 3 ,0t' 0 wor-ds, and partici pated in thle miionuaI AR PA
0' .1tlu1aions. There Wýas at signliiCant dec~rease iii error ate~ over thie prOWLI oti sar and
the BYI3LOS system again had the tIlulest ',peech rCcognlitioii accuracy ill thie
C\allUation.

5. Our' escai-Ch int thle I~l~polIiIte Inicciatitin of lexical, synitactic, and Sematntic
kitý ol edge produced at systeiin thIiat is c ipabC I f u1L s ing elfici entlIy \kt lie ser typ"s o1'
knowledge will produce a %alid interpretVationl Of anl uitterance in Context. Syniactic
k nmk' ledge is Used if' it is .1 Mal able and reliabil e, but anl utterance lbhat is out side thle
scope of DEL PL Il 1s gramii oa~r canl Still be under-Stood if phraises Can be recognii ed
anid coin i ned Semianti cally.

(i. We develIope d a learnable mo~ delI of' seniontit s, to faci lit ate the acqu isitLioti of
do maln-spec i ic information that1 was formle rI very labor intensive to produce.

7. At the 1992 ARPA Speech and Natural Language Workshop, BBN gave a
demnonstration of the first I IXX-word, reCal-tuneC. Continuous, speaker independent
speech recognition system imopletnented ott an off-Iihc-shelf workstation, Without any
accelerator hoards.

8. BBN also gave the first real-time demonstration of a complete spoken laniguage
understanding system in the ATIS (Air Travel Information System) domain.

10.- We participated fully in the ATIS data collection effort, contributing at large
portion of the ATIS traininig and evaluation data.

11. A demno suite, which includes real-time speech recognition and understanding
demonstrations, was delivered to NSA and NIST. The demos run on thle Silicon
Graphics Indigo. The real-time ATIS system has been used by NIST to collect ATrIS
data from subjects.

Drs. Madeleine Bates and John Makhoul were invited to participate inl the National
Academny of Sciences Colloquium on Human-Machine Communication by Voice, Irvine,
California, February 8-9, 1993. They gave the following presenrtat ions: Madeleine Bates,"
Models of Natural Language Understanding.', John Makhoul, "State of the Art in
Continuous Speech Recognition.", These two papers appeared in a book published by thle
*National Academy of Sciencesl7, 45].
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WVe h1a\c C.' clxiid ami] \\ orked c losclv % siih 'c'cral I \ P-~ide SLS program committecs,
III partiicuilar tile Coiiiilitice that determinles hie milc ldolotoy o- [le AIlS s\,s.tenIs (thle
M ADCC 'A' commiinit tee. Sonie of ott r CU Iit hLl011 on thle C\ saILatil onm01t1idol ogy arec
dIocumented in 1 24, 73!.

Dr. ýI adekcine Bates wits Chair of' tile 1 913 ART.IA Human Language Technology
-Workshop. which took place onl March 21 -24. 1993, at the Merrill Lynch Conlecrenee
Center, Plainsboro. NJ. I111I1 B UN presented demoniiirations oft the: B BN real ti ole Aris
system at this workshop, and th1C BBN real time AMiIS system w%.,s available In thle demio
00loom Othrogh out the workshop. S he a I o .o-chaired hei A pp icd N aturial L an guage

ProcessIng, Contecretice inl Trento, Italy in April, tO')1).

We part~iCIipated In tile annual ARI',' SpchC1 anld MI sikhp.And tile I lumanLangag
TechItno logy work sh ops. by p i-csen ilHlg paperS Jd g-i it ig dIC10II t i ratioti IS tf flie t ecltiioofogv
des el o ted Utnd er this e tort. kle feinec s ,the pa per, 1')01 these wvorks In t, as, well as
(ithler pie sentat ions and paperis pIoRdUCL 11cd Iffid t1lii s c nitrC t , can he f'ound inl tie
bibliography.

In Chapter 2 of' this document, we presento gencral overview of' the BBN H-ARC spoken
language understanding system. Chapter 3 dlescribies thle Delphi natural language
ecoiponient of HARC, and Chapter 4 dctatils tWe semantic Lninker coniponcint of Delphi.
Some of' thle speech rcsearch carried out under this contract is discussed in Chapter 5. and
our most recent research it a novel method of' iatutal lan~guage processing is presented inl
Chapter 6.



Chapter 2

Overview of HARC

2.1 Introduction

In this chapter we describe tile design and performance of a complete spoken language
understanding system currently undcr developmCnt at b,3N. The system, dubbed HARC
(Hear And Respond to Continuous spccch), succcsSfully integrates state-of-the-art speech
recognition and natural language understanding subsystems, The system has been tested
extensively on a restricted airline travel information (ATIS) domain with a vocabulary of
over 1000 words. In this application, tile system functions as an electronic airline guide,
searching a database to answer questions posed by the user,

HARC is implemented in portable, high-level software that runs in real time on today's
workstations to support interactive online human-machine dialogs at a very comfortable
pace. No special purpose hardware is required other than an A/D converter to digitize the
speech.

The system works well for any native speaker of American English and does not require
any enrollmnent data from the users. HARC has shown consistently high performance in
formal evaluations on the ATIS domain.

The BBN HARC spoken language system weds two technologies, speech recognition and
natural language understanding, into a deployable human-machine interface. The problem
of understanding goal-directed spontaneous speech is harder than recognizing and
understanding read text, due to greater variety in the speech and language produced. We
have made minor mnndifications to our speech recognition and understanding methods to
deal with these variabilities. The si.,:ech recognition uses a novel multipass search strategy

12
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thaI alht m. ocal flexlhilit' and efliciencv in the al'plication of powerful knowledge
SOLIuIcC,. The natltl ral language s)Stei is basetd OnI tirmal lingui stliC princi ple , with
extensions to deal with speech errors and to make it robust to natural variations in
language. The result is a very usable system for domains of moderate complexity.

"While the techniques used here are general, the ilost complete test of the whole system
"thus far was made using the ATIS corpus, which is briefly described ill Section 2. Section
3 describes the techniques used and the rcsu~lts obtained for spc,:h recognition, and Section
4 is devoted to natural language. 'he methods for combining speech recognition and
language understanding, along w\ith rieuh, I'f1r the cormbined .,vstenll are given in Section 5.
Finali\,, in Section 6. we describe a eal-otei implellientation of' the system that rulns
entirey ill solfware on a single workstationl.

More details on the speciilc techniiqcs useNcd, tile makeup of the cori)us, and the results canl
be found in the papers presented at the ARPA Workshops Onl Speech and Natural Language
and other meetings 141, 23, 21, 44, 33, 40, 61, 46, 70, 40, 50, 62, 49, 11, 481.

2.2 The ATIS Domain and Corpus

2.2.1 ATIS Domain

The Air Travel Information Service (ATIS) is a system for getting information about
flights. Tile information contained in the database is similar to that found in the Official
Airline Guide (OAG) but is for a small number of cities. The ATIS corpus consists of
spoken queries by a large number of users who were trying to solve travel related
problems. The ATISO and ATIS I corpora contain about 4,000 utterances, most of which
were read sentences, mostly by speakers with dialects from the southern U.S. The ATIS2
training corpus consists of 12,214 spontaneous utterances from 349 subjects (159 female,
1 )0 male) who were using simulated or real speech understanding systems in order to
obtain realistic speech and language. The data originated from 5 collection sites using a
variety of strategies for eliciting and capturing spontaneous queries from the subjects [441,

* with a disproportionate amount of the data coming from MIT.

1,289 utterances were truncated or contained word fragments due to stuttering. Many more
contained various nonspeech sounds. There were also frequent long pauses and hesitationts
in the data. Each sentence in tile corpus wts classified as class A (self contained meaning),
class D (referring to some previous sentence), or class X (impossible to answer for a
variety of reasons). The speech recognitica system was tested on all three classes, although
ithe results for classes A and D were given more importance. The natural language system
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Midii~ibic i'cccClr kroldcisij.I.lInI ý\siii cf oietl oinI on lAss '11\ 1,irI)
,ilir.njriti'\ ~ C. li~.5L'ii~l iti ,ll 1 i!~ est elie, n hiroriginlal oolev.

2.2.2 Formnal Evaluaition Conditions

The November '92 cvaluatioii test set has data Iron 35 speakers. The number)C' 11 oif uttrance
per speaker varied mrm 2 ito 41. ~l)Lt tIre nInhe11r 0I IUtIateranc mm-1 eaChI Of tile .5
data-collection sites was carefully balanced All ic oklts gisen ssere collected wvith the
Seruohe ilser microphone (samle as thie training data, thle rCcOgli unit mode wvas
speaker- Independent -- the test Npeakers s \ere not ii. the trajining "et and O Crv sentenice sa
treated Independently.

By~ courmmi ttee decis;ion there was no Co mm on basIe 'tie Contrrol Cond it ion fol [ieu thraininog
data or sp~eechl grammnar to be used for the AIlS icsts. The onily constraint was that thle
single commilon test set mnust he used.

2.3 BYBLOS - Speech Recognition

BYBLOS is a state-of-the-art, phionetically-based, continuous speech recognition system
that has been under developmient at 13BN for over seven years. This system introduced all
effective strategy for using conltext-dependent phonetic hidden Markov models (1-MM) and
denionstiated their feasibility for large vocabulary, continuous speech applications 1251,
Over the years, the core algorithms have been refined p r;-arily onl artificial applications
using iead speech for training and testing. These same basic algorithms, with small
extensions, have proven to be remtarkably suited to thle recognition of completely
spontaneous speech produced in a goal-directed task, such as ATIS.

2.3.1 New Extensions for Spontaneous Speech

Spontaneous queries spoken in a problem-solving dialog ;.,xhibit a wide variety of
disfluencies. There were three very frequent effects that we attenipted to solve -
excessively long segments of waveform w",h no speech, poorly transcribed training
utterances, and a variety of nonspeech sounds produced by thle user.

When background noise is przsent, the HMM is not a particularly reliable discriminator of
speech vs. silence, and many insertion errors result. We chose to find and truncate long
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ICU 1011 '1 11 1 IIIL I ýe 11 %%1 Ith 0 C \,I I N 1.111tIL' , lIi O' ~ I I L'ý 1 I CIiiC0 0111,1 %'i11 Iciid al %% ih1
iioi'e hllýIiiN tecal IeI% Il)CC~L-1 I 11vet 11 doc.'t(mt~ N% ei d1 loinple adiposec

Typieallý, thlee are Inanl ni UIn~iCbd he 1101 %einaI s II f Oll' of aCkgIOUIld sileceI reainnl~lg In
tilhe wa vefortmis after t runl at ing (lhe long one %. W, 1uLd diill h it) tic beo Ii Umnerous that they
inwasuriibly degraded the perOr~niaWCe gainl uIsuUal lens-ed floni using

crossss od - hn 11di 11`1i phne1I 1M NI We d1' scdi I lrocesl nrc IUlo atomatiteall Inavii ur thle
I~lissiitg lilenice local ion. 11 lunning ihe recogtil/eý1 (ithe 1tiaiiiing dala coit~trailiied Ito thle
corrc~i 5%o0i sCI seqiein hut 1l4Msiing 0111i011,1 11Cch.I heisser caci Ord. Theni wke

Spontaneousi stIIQ tlw in ta11Pile olspetikA [Ie fethit lit AL ituItibCad Ianw ipt Iionspec

eseni,, such 11LI pauseI fitW ii -nt11it Uli, tfiio0-ii teaC.riligs, coughsII, ltnghter. atitlied-
breathI noise. WC' attetitpte d Io' Illa ide a do/Ci 1141i , ho 1! Sease of iiionspeech sountds tht at were
hot h )ont i netit affi! ii unICARou Ii iwe cr. \% he i vsC aIll wed he1 decoder toi find non speech
modelfs bet wee itssord, vse tonir tihat the i e,.ere i-i e false detct on s than correct onies.
Because our silenice model had titlei LtilticaltV dealliig Withj breath noises, tipI smacks, atid
other- noises, owi best results \xeie actiieved by inak ing tilie noitspeed I modIelfs very uniiikelIy
in thc grutniiniar.

2.3.2 Forward-Backward N-best Search Strategy

The BYBLOS speech recognition system uses a novel multi-lpass search strategy designed
to use progressivcly more detailed models onl a correspotndingfy reduced search space. It
produces an ordered list of thc N top-scoring hypotheses which is then reordered by
several detailed knowledge sources. This N-best strategy [26, 631 permits the use of
otherwise computationally prohlibitive models by greatly reducing the search space to a few
(N=20-100) word sequences. It has enabled us to use cross-word-boundary, tr'phonle
models and tingram language models with ease. TheC N-besit list is also a robus' interface
between spee,ýh and natural language that provides a way to recover from speech errors.

*We use a 4-pass approach to produce the N-best lists for natural language Drocessing.

1. A forward pass with a bigramn grammar and discretc 1-MM models saves the top
word-ending scores and times [5].

2. A fast time-synchronous backward p~ass produces ail initial N-best list using thle
Word-D-pende-'n N-best algorithm [64).



, t~iI ilic' N seniticic usolww 1'iisc H iC\C All kl-b A tIl bOtiiddii tiiphltoiis

4. The N-best list is rescoted s% ill a trigrant Vii mnar and rcirdered again.

Each utterance IS qu~antized and decoded threeC 1Lii 0. Once With) each gender-dependenit
mlodel and once willh a gender-i udepetideni mnodcl. I or eachi uttet ance, thle N-best list with
tile highee top. I hypothesis Score IS ehLIstiI. The 1,-;' ChOiCe InIth II ilial list Conlsititu'the,,11
speech recognition results reported hebis'. IIhen ýIl irie list is paNssed to tile languagle
unldersti:td in liComponent for furtherl reotd rote ia Itierpreta ]iI ill

2.3.3 Training Conditions

AlthouLgh ther1e were no restinctions oin the trainine. dlaa to hc used, we used speech dalta
f'ront thie ATIS2 subcorpus eXClUSiselV to train thie piiraitieters of' tile acolslije mo1del. We
did this hecause we 1helt that thie MTIS21 Subset best represerned thle Conditions of' thle test
and hecause we felt that Simply adding more traininig data to achieve increimental
improvements is Scientifically uninterst~inlg.

However, we filtered the training data f'or quality in several ways. We removed from tilc
trai;ning ainy utterances that were marked as truncated, containing a word fragmenct, or
containing rare nonspeech events. Our- forward-bac kward training pr-ogram also
automnaticAlly rejects any input that fails to align pioperly, thereby discarding many
sentences with incorrect transcriptions. These steps removed 1 ,489 utterances from
coilsider-ati ott,

After holding out the 1001 sentences of tile Feb. '92 test as a development test set, we
were left with a total of 10925 utterance,, for training thle HMMs. For statistical language
modL. training we used all available (17,313) sentenice texts fromi ATISO, ATISI, and

mum ATIS2 (excluding the development test sentences from the language model training during
M the development phase).

The lexicon used for recognition was ;nitialized by including all words observed in the
complete grammar training texts. Common closed-class words such as days of the week,
months, numbers, plane types, etc., wvere completed by hand. Similarly, we included
derivations (mostly plurals and possessives) of many open-class words in the domnain. We
also added about 400 concatenated word tokens for commonly occurring sequences such as
WASHINGTON-D-, SAN-FRANCISCO, and D-C-TEN. The final size of thle lexicon
was 1 830~ words. For the November '92 evaluation test set only 57 word tokens, covering
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52 nLIquC word,1. ,elee Vt) -of-\ocdhul,.r (lV ibthis 1I\1con. This Is onl, .a 0.0%
OOV %\o0'd OCCI' FICICC de tiuel" tiltC • t•ole test ,,.;

We estimated the parameters of our Nsatistical bigiin and trigrail grammars using a new
backing-off procedure 1551 that is somcwhat simpler than that of Katz 1381. The n-grams
"were computed oil word classes in order to share the Ncry sparse training. A total of 1090
semantic classes were defined (most words remained singletons in their class).

2.3.4 Speech Recognition Results

Tahle 2. I ,,iow,, the ollicial rest, or YII(). ,,S u I ti esl'i, ,lialoi , bioken dotn 1)
utterance class. We also shlo tile ,s\Crage perp'lk It\ of the tiglanll and tIlgri.':II languagc
models is IleasUied o the eO I thuataoii testi sets W il. lIri i out-t1l -Wciabular, o'ds,

Serlltice IIigianlt nrgraM i hi922Nov .,NOV93.1

('lass Perplex i Perplex ', Word i-rrors

A+L 17 1 12 0.2-4.3-3.3
pA+D+X 210 15 9.4--7.6-4.4-A 15.. . 16 _ - i4_ _ 3
1) 20 14 7.0-4.8-4.0)

IX i 35 28 I 17.2-14.5-8.6)

Table 2.1: Official SPREC results ott Fche2. Nov92, aid Nov93 test sets.

The word error rate in each category was lower than any other speech system reporting oil
this data.

F, a discussion e,, these results, thle reader is referred to section 5.1.4 of 1601.

2.4 Delphi - Natural Language Understanding

"T:he natural language (NL) component of HARC is the Delphi system. Delphi uses a
definite clause grammar formalism, augmented by the use of constrain, nodes [69] and a
labelled argument formalism [21]. Our initial parser used a standard context-free parsing
algorithm, extended to handle a unification-based grammar, It was then modified to
integrate semantic processing with parsing, so that only semantically coherent structures
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%%0InlJ hc. p1.i~: dInI tile 1111 Ttci Ad he \,1TCd did robstLeI1Ss WCre emIhllInCed by-
L5 i miict) III .mgcndd-hdsesl %ktt~ds i, mll) SC~lk-kllmmmg tICpendiimg Oil the mleasured

stallmsimcml likeilihood Of granmmatical iules 1 201. Thils greatly reduced thle search space for
tile he% 11 alse.

T'he most1 recent version of Delphi includes chan-es to the syntactic and semantic
-counpsmnents that maintain the tight syntactic/semnantic coupling characteristic of earl ier
%ersionN, while allowing tlie system to Provide semiant ic interpr"' tion~s of input vwhiclh has-
not saudI~ g!ohiI %s Iactic anlaissis. This1 IIinluded theC deselOpnIicnt 01' a ''tailbaCk
cOrnpoitno' 12.1 701,J lin sshicli qtdtmstmcal eiltlidtes mldv ani Itmportant role. h'lis Coimponient
.ilk los )clphil wo deal elt'ct is clv \s ith I II)QUiNi1 Ic\Ill-lornied npaILS thdt1 ;11V C01t`1t101 III
%pýIalol speech. I., sscll as %knih thle 55 okI erroit primduced h\ thie s'.')!Ccli l'cigili/5'r

2.4.1 P~arsing as Transduction - (;ain'tim~itical Relations

The Delphi V)Irsel' t" nit ai dlesice Hoi conlsouLCting s\ Ititactie trees, hut an infortmation
transducer. Seman~ltic Iinterpret tloii I" a proce ss Ope rat inig onl a ',e to0 I i lessage 5
characterizi ng local 'g ran itat ica.l re l.-iions' arr~iong phrases, rathler thant a~s a recursive tree
walk over a globally complete iumd coherient lpfse tiec. The grammnar has been reoriented
around local grammatical relation,, such as deep-structure subject and object, as well as
other adjunct-like relations. Thle goal Of the parser is to make these local gi-ainmatical
relations (which are primarily encoded iii o;-derinf; and cunstituency of phrascs) as readily
available to the semantic intetpreter as information explicitly encoded in the words
themilselves.

From thi point of' view of' a syntactic-seniantic transducer, the key point of ally
grammatical relation is that it licenses a small number of' semantic relations between the
"meanings" of thle related constituents. Sometimes the grammatical relation constrains thle
semantic relation in ways that cannot be predicted fromn the sernantics of the constituents
alon.- (,c.g. Given "John", "Mary", and "kissed", only the grammatical relations or prior
world knowledge determine who gave and who received). Other tinmes the grammatical
relation simply licenses the only plausible semantic relation (e.g., "John", "hamburger",
and "ate"). Finally, in sentences like "John ate the fries but rejected the hamburger",
semantics would allow the hamburger to he eaten, but our knowledge of its destiny is
mediated by its lack of any grammatical relation to "ate".

Grammatical relations are expressed in the gramnmar by giving each element of the right
hland bide oh a grammar rule a grammattcal relatton as a label. A typical rule, in schematic
form, is:
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(NP -tHEAD (UP ...4 :PP-COMP (PP :PREP

tA h Ich says)- th at aI IIOI wI)Iphase foloInwed by a pricpoitiotial phrase provides evi denrce for the
relation l'P-CONlP ýietweeri the PP1 and] I IE-AI of (lhe NP.

One of' the right-hand elements must he lbie led the "head" of thie rule, and is the initial
sourtce of in for mat ion aboutI the semantic and SY110C "bIatic'ind in g staIe" Whit Ceon trol s
whether other elements of' the right-hand side can hitd) tohle head via their labeled
relation

Thits %1t%% itiade it possible to both decrease tile M1111her o1 er1-alniiit roleN (h-11 1131. to
453) and OICteaWes tc N ieWO CONse-rae. Most altachtitciii, can be modelled b1 siniplll hiIntiý
adjuntiton,. atid sinc- thie detail, N' thle s ' Int~tetc lice structure are tnot cenitral to aI
transducer, each adttiitct can be ~ci, *iv t't "logicills attached'' to the heiad'' of' the

InI effect, we factored %ingle giai]11tna1 rulesC 'that pridueed orderedCC Sequettes o1'
cotn stlit ue rits) inito stmallecr hi nary adjunction 111 rules that cani be coombinted together in ttvarious
ways; ordering cotnstrainits on these adjttncts are pros idod by lexical semantic
wel l-lbrtnedriess rules, For example, rallier th13- Using SUI)aCUgCorii~atiiOt featurcs tW n~ame
sets of'eatcgorics that appear together as comtpletmentts of a verb, we have defitned
approximately 15 verb phrase- rules that list the possible cotnstituetnts that riay appear as
complemnetts to a verb. These may embed within each other freely, so long as the results
are wentantically interpretable by thle head. S intilat recurIsive bitnary conmplenment anid
adjunct rules are provided for tioun phrases. This recursive scheme allows the adjUnetioti
rules of the grammnar to be combined togethecr in novel ways, govertied by thle lexical
sernantics of individual words. The grammnar writer does tnot nieed to foresee all possible
combinations.

2.4.2 "Btm-inds rules" - the Semantics of Grammatical Relations

The interface between parsing and semantics is a dynamic process structured as two
coroutines in a cascade. The input to the semantic interpreter is a scqueiice of mnessages,
each requesting the semantic "binding" of some constituent to a head. A set of 'binding
rules" for each grammatical relation licenses the binding of a constituent to a head via that
relation by specifying the semantic implications of binding. These rules specify features of
th4 semantic structure of the head and boukid constituent that must be true for binding to
take place, and may also specify syntactic requirerricnts. Rules may also allow certain
semantic roles (such as time specification) to have multiple fillers, while other roles may
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AIIIOV Jist one lii cI.

A." adjuncts ale added to a structure, the hinding listi s conditionally extended as long as
semiantic coherence is tmaintained. When a COIStUItcnt1 is syntactilcally COMI)lete (i.e., n10
1110re adjuncts are to be added), Delphi evaluates u Ies that check for semantic
completeness and produce anl "interpretation" of' 'ihe cirs ituclnt.

2.4.3 Rabustness Based oir Statisticts awic Seniamnics

UIl0tlh1l' Vp% hilVing a IianisdUCtioi sy'steml kl thl semlanltics hased on gralinniaical
relations does not deal directly wNith the ke\ issue )I rohustriess -the ability to make sense
of' an iniput even if' it canirot be assigned a svell-l'oi lied global synitactic anlalysis. The
di'flicoIi y w ith standard synJI it c tic tchiques is thaU lOCal SYntactOC eVidece1 is nlot enIough
to aecen at ely leternmim g raniniatical relations. A NP~ followed by a verb may be the
Subject of' that v'erb) jthn1ew to B osto n") or ilia% lie Unr iela ted ("The mil Ia in troduced to
1011 LikW to B oston"). The standard so lution is to lii A a global paise, wh ichel provides t he
necessary confirming evidence tor thle loeal relations, it contains.

In Delphi we view standard global I-arsing as 1creVIý 01.. way to obtain evidence for thle
existence of the grammatical relations in anl input string. Delphi's strategy is based on two
other sources of information. D~elphi applies scmnanl ic eonstraints incrementally during time
parsing process, so that oiily semantically coherent grammnatical relations are considered.
Additionally, Delphi has statistical informiation onl the likelihood of' various word senses,
grammatical rules, and grammnatical-semiantic transductions. Thus Delphi canl rule out
many locally possible grammatical relations oii the basis of' senrivntic itcoherenee, and canl
rank alternative local structures onl the basis of' empirically measured probabilities. The neti
result is that even in the absence of' a global parse, Delph; canl quickly and reliably produce
the most probable local grammatical relations and semantic content of various fragments.

Delphi first attempts to obtain a complete syntactic analysis of its input, using its
agenda-based best-first parsing algorithm. If it is unable to do this, it uses the parser in a
fragment-production mode, which produces the most probable structure for anl initial
segmnitt of thle input, then restarts the parser in a top down mode onl thle first element of
*the unparsed string whose lexical category provides a reasonable w- -hor- for top-down
prediction. This process is repeated until thle entire input is spanned with fragments.
Experiments have shown that the combination of stat'stical evaluation anid semantic
constraints produces chunks of tha input that are very useful fo.- interpretation by
non-syntactically-driven strategies.
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2.4.4 AXdvantages of' Delphi's .Xppioach

T'he se paration of' syntactic grat nflar rules frnti senian tic bintding and coimplet ion rules
greatly f acilitates f'ragmient parsing. While it allow,, syntax and semantics to be strongly
coupled in termis of' processing ( par~iittg and winaiatic interpretat ion) it allows thim to be
.essentially decoupled in termis of' notation. This inak es the grammnar and thle semantics
conisiderably easier to niodi t'y and maintain.

We helietve, hiowe'.er, that inl thle long termi the tnot imtportantt ad.aiitage I,, that separating
s\ tltltctlC julesý Ito111 semlantIKc t'iii.IincP leCd 10 d. lio e% kinid Of laIgLUage mod0l, haWed onI
irrdllimii.ltli r'elaItion',, lIIt MInch s'. ntactic, semani.1c .11id lesical knIowledge C.1n he aIcquired
11N. largely autolliate Imeans. We %e\% thle ok'ol ) thL. g atilinar ats codifying thle way that
ttee stru'Lcture proviides evidence li0i 9iitMiniaticacl telations. Thle seliaratioti between trtle
types s\ ill allo%, us o tilthe Illit tlite to Consider the eff'ect of, gratituilatical e-latiotis oil
mleaning, tide pentdeitI ofI tile \% a\ that evideince or theset relations is proiducedr hy the
parse!.

Otie efl-eet of, tills apprioac h Is ito imake It poss le to use, a IyptheliilCsized semanlt ic
inte rpret at iont of' , set of' trtee I'rapiteni ti t)s geniertate a tne w syntiacti rle uI. Thuis, int normial
operat ion. thle primnary ev idencte I ir a r a ia el ation is t(lie result of act ually patrs inig
part of att itiput. IHowever, sinice gramnifatical relations bewtween constituents enitail
semantic relations, if' we van inake art estinwite of' the likelihood of certain semantic
re lilatios hased on doma in kntowvledge, praginiat i e, anld t ask tmodelIs, etc., it is ii n prnciple
possible to use abducti ye rea.sotiing to Su~ggeSt likely gratmtat ical relations. atid thereby
automatically propose new gramnnhir rutles.

2.5 Combined Spoken Language System

Figure 2.1 shows thle componietits of thle entitre spoken latiguage systemn.

The basic interface between I3YBLOS and Delphi in IIARC is the N-best list. In thle miost
basic strategy, we allowed the NL component to search arbitrarily far downt the N-best list
until it either foutnd a hypothesis that produced a database retrieval or reached thle end of
the N-best list. However, we have noticed in the past that, while it was beneficial for NL
to look beyond the first hypothesis in an N-best list, the answers obtaincd by NIL fromn
speech Output tended to degrade the further dowtn in the N-bcst list they were obtained.

For the 1992 evaluation, we optimized both the depth of the search that NL per-formed on
the N-best output of speech and how we used a inumber of fall-back strategies for Nl_ text
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priocc sinie 1231. We t'orintl that, Lin N h conelrr ent lo.niance •I all the coot po nen ti, the

ot liwll i•mber o1' hl pot hces it) COll, Ior was N:. Fu:iiherr 10re, we foutnd Ihat rather

than applying tIle talI-back mechanism to each of ilhece hypothe.ies iii turn, it was better to

make one IpasS through the N-best hypotheses usi wi- he full parsing strategy, and then, if

110 sentences were accepted, make another pass u"uii,2 the fall-back strategy.

2.6 Interface

hlie interlace to thtc BFN I IARCIATIS SrtemiI CiOli:AS Ol a t.', large io'ntroMMl hulons, ai

sequllence of taltUi lighlt., and i weries of display %in dows.

11The C Oll huMtI tollsOil 111 t l usr d the mU.ou , i,) Ccol11n rid tile ksyls1 I1o heiin Io

listen for a spoken tlL ii ol rco1 m t tanlid. to cancel .1i ry ill progress, to providle Iell, p to

clear the COltext, alnd to display notlher windlowo Ill %% hich tIle lseIr iay Set various sySte101

paramleters or quit.

T[he status lights indicate whether the system is Ready (not listening, but ready for the user

to click the Listen button and talkl. Listening (microphone on), Recognizing (BYBLOS

speech recognition in progress) Ulnderstanding (tile l)clphi language understanding system

in progress, followed by tfie translalion of the under,,tood utterance to database commands),
aand Retrieving (database retrieval),

The display windows include the results of the speech recognition process, Delphi's

paraphrase of the meaning of the utterance, the data (usually a table) retrieved from tihle
database, -and the context that is mainrtained from one query to the next.

Figures 2.2 through 2.8 show the BBN ATIS screen after various kinds of queries or other

user actions.

2.7 Results

In Table 2.2 we show the official performance on tile November '92 evaluation data as
calculated by NIST. The percent correct and the weighted error rate is given for the Delphi

system operating on the transcribed text (NL) and for the combined HARC system (SLS).

The results are shown for classes A+D combined and separately. The weighted error
measure weights incorrect answers twice as much as no answer.

wcAighi .1 error (WE) = 2 x %incorr~ct answers + %no answers
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Figure 2.2: A Spoken Interaction with dic 13B3N IIARCATIS Systemi

Clear Context I Listen j[ II Other..

sIt.oning Recognizinog Und~nitandisg Retrieving

2.HOW MCH WILL IT COST TO TAKE A TAXI FROM THE AIRPORT i0

DOW NTWOW NUTO RON TO

Here Its the price for the ground transportatiotn Ifrom the airport In Toronto by I

_____.

Figure 2.3: BBN/ATIS Answers a Question about Ground Trransportation
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Figure 2.4: UttcranLCs Need Not be Comipilct or Grammatical

Help! ~
Clar -Context Lso

Listening Recogniuing Unduitanding Retrieving

#7.111WANT TO FLY UNITED AND I WANT A NON Si OP THAT LEAVES
TOMORROW MORNING BETWEEN 9 AND 1030

Hare are the nonstop United flights from Chicago to San Francisco on
September 30,1994 that leave between 9:1)0 A.MI and 10:3r 0.M.

-DXP AMV A/C 7LICKS

A.140041 T LAWI? I TIM TINS raw To CODGS LAYS M9LS

"I A9 .40 = 12 0: pm M4 DI001 DAILY 1,
0114 24 12 05 O AK 707 DAILY

UPA*79 94ee 13 213 , 040 DIG DAILY L
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Sa Fnw9c 19941

Figure 2.5: Using Prior Context, BBN/ATIS Answers a Complex Query
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Help, ________ Voeabulify, Alphabetical

-1CONTINENTALSample Questions COST
#T ha' in the Databassif COULD
H Usinrg Ire ArIS System CON

H Hints Fr SccssJ CZECHOSLOVAK IIRLINES
Vocabulary. I lphybotlcal DAICY

xi: Vocabulary by Type DALLA6

aW Error Mveaages DALLAS FORT WORTH
__ _ __ _ DAT

'A Trouble Shooting j DATABASE
DAY
DC10

DrCEMBER
DEFINE
DEFINITION

TO SOP AIlIE)DELTA

Isan Frndcol~onstop Ur7e on ~'

Figure 2.6: BI3NIATIS Provides a Full Vocabulary List

-4Listen u Cancel Other..
Help!

Sample QuestionsWa' n h aas

77 Wliot' tin the Dat~labas? you can ask about:city of origin
TI Uw rg lthe ATIS Sy atem airport of origin

J llri H"ForSacce.. destinlation city
destination airport

Vocabsislary by Typo departure tlime

A' fares
- Error Meassages intermediate stops

Trouble Shooting meals served
aircraft

How To Quit days of the week available

Ground Transportation:

(to and from the airport and downtown)
type of conveyance
price

Barr FFirrure 2.7: BBN/ATIS Help for the User
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System Mod* Display Girt0ons 5ý item Commands WholWhat
-- and Settings

(..Simple Demo F- Show context Identify Speaker

O'Demo j Truncate Long Answers 12Audio Feedback Choose Scenario

AZ Scenario SoMrig *j Promopt About Truncation -_j Vo~ica Commiands Enter Slto

Drata Cotlection r- Show Explanallonp F- Record Speech

CrDevelopor _ Show N-Best

~r~ofuhLJ - Show Unused Words
tj Show Indicators Type aC!ommen

SekaCo-mm.2L

Playbackr CommentL

Plybck Uttr-n 2

Figure 2.8: The "Othei....Window Lets Uier Chang~e Systemn Paranmctc s

Corpus N o7 LWE SLS Cr SLS WE
AMD 85.0 22.0- 81.0 30.6

A 88.8 1 15.7 84,6 23.7
D 78.6 328 74. 4.

Table 2.2: %lCorrcct and Weighted error onl the Novemiber '92 test Set.

The weighted error on contcxt-dependent scntences (D) is iLaLOL' twice that onl scntcniccs
that stand alone (A). This higher error rate results trom two phenomena. First, it is Often
difficult to resolve references correctly and to know how much of the previous constraints
are to be kept. Second, in order to understand a context-dependent sentence correctly, we
must correctly understand at least two sentences, which is less likely.

The weighted error from speech input is from 8%-10% higher than from text. Howevcz,
the difference is lower than might be expected. Even though the I3YBLOS system
rnisrecognized at least one word in 25% of the Utteiances, the Delphi system was able to
recover from most of these errors through we use of the N-best list and fallback processing.

The official STLS result for HARC was a weighted er-or of 30.6%. This represents a
substantial improvement in performance over the weighted error during the previous
(February '92) evaluation, which was 43.7%. It was the third best overall resuls for a
spoken language system of the seven sites participating. Based on end-to-end tests with
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real u.sers, the s'-;tem is usable, given that subject, -ere able to accomplish fheir assigned
tasks. ltoweer, we believe that the largest remainii.: improvement will not be from speech

mod,:ling or basic natural language understanding, k-.a from more careful task modeling.

After the 1992 evaluation, the official ARPA scoring metric was changed from weighted
error to simple unweighted error (percent incorrect + percent unanswered).

The results for the December 1993 ARPA evaluation are given in Table 2.3.

CopsNL ('or- NL. Err ,,I.S Cor- i SL.S Err
A+D 85.3 14.7 7.. . 15 17.5 1

A 90,4 9.6 86.2 13,8
D 78.1 21.8 77.5 52

Table 2.3: GiCorrect and Simple Error ot the December '93 test set.

2.8 Real-Time Implementation

A real-time demonstration of tlhe entire spoken language system described above has been
iniplemn vned. The speech recognition was performed using BBN HARKTM, a
commccially available product for continuous speech recognition of medium-sized
vocabularies (about 1.000 word;). HARK stands for High Accuracy Recognition Kit.
HARK TM (not to be confused with HARC) has essentially the ýame recognition accuracy
as BYBLOS but can run in real-time entirely in software on a workstation with a built-in
AID converter (e.g., SGI Indigo, SUN Sparc, or HP715) without any additional hardware.

The speech recognition displays an initial answer as soon as the user stops speaking, and a
refined (rescored) answer within 1-2 seconds. The natural language system chooses one of
the N-best answers, interprets it, and computes and displays the answers, along with a
paraphrase of the query so the user can verify what question the system answured. The
total response cycle is typically 3-4 seconds, making the system feel extremely responsive.
The error rates for knowledgeable interactive users appears to be ;..ach lower than these
reported above for naive noninteractive users.

--- i.
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2.9 Sunmmary

II !his chapter, we have described the HARC spoken language uiderstanding system.

HARC consists of a modulai integration of the BYBLOS speech recognition system with
the Delphi natural language understanding system. The two components are integrated
"using the N-best paradigm. We have shown that 'his paradigm is a modular, efficient, and
effective method i.r integrating speech CcoLniiiOII and language understanding
coiponents. In addition, the N-best strategy was shiwn to he usef'i wilhin the speecht

recognition systeni. as a means of applying ,.'\jmnsikc knowledge souices, such as
CI'rOSs,-WoI'.d COUsiLC niodels alld trigraun language int'delS. The ente system has been

i,npllemented tO I1un.[ in rýel time on a stanMdar'd ,,.Orl in,,ltl w"IthotlL thie iced for any
additional haidware.

-- ___i____Il__--_ _____I_____Ii___iI___II ____ nJ ~l
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*Chapter 3

The Delphi Natural Language
Understanding System

3.1 Introduction

This chapter presents Delphi, the natuahl language component of tme BBN Spoken
Language System. Delphi is i dunailn-indepeldent natural language question answering
system that is solidly ba!;cd on linguistic principles, yet which is also robust to
ungrammatical input. It includes a domain-independent, broad-coverage grammar of
English. Analysis components include an agenda-based b"l-first parser and a failback
component for partial understanding that works by fragment combination. Delphi has been
forinally-evaluated in the ARPA Spoken Language program's ATIS (Airline Travel
Information System) domain, and has performed well. Delphi has also been ported to a
spuken language demonstrcation system in an Air Force Resource Management domain. We
disc~iss results of the evaluation as well as the porting process.

Delphi is a natural language understanding system based on general linguistic principles
which is adaptable to any question-answering domain. It incorporates a number of
domain-independent knowledge bases, including a general, broad-coverage grammar of
English with a powerful and flexible handling of complcnientation. Unlike most other
linguistically motivated systems, however, Delphi is also highly robust, allowing for partial
understanding when an input is ungrammatical, disfluent, or not properly transcribed by a
speech recognizer. Thus, Delphi can be used for a spoken language application as readily
as for a written one. Furthermore, Delphi's partial understanding component, called the
Semantic Linker, is driven off the same system of semantic rules as Delphi's regular

30



""M I

/ AM~IL.INKIR

QtA' IlliC ATIII'
AND [ACOIJRS1

il, 0I-15

,,R •M\I I I I -" • NII]

FigUe I: SYS te I )jg rI.IatIIIN

bstfirst parser. 13Building a ro t a pplication .he.....e require,; ,noI additiottnal elfo.t.

There are several comnpotentt of the 55-steni. which IN diagramed in Figure 3. 1.

First arc thle parser and Semantic Liniker, Which outputI an intermediate representation wye
call a "sen-tat-.tic graph", The sematntic graph is passed to a quantification stage which
produces a fully scopcd logical formi from it. The loiical form is then passed to thle
discourse s~agc, which resolves pronominal references and performs other typcs of'
task-dcpcndent constraint resolution to produce the final logical form. The final logical
form is theri passed to thle backend translator, and thien to thle application system which
produces-the response. Several knowledge bases are employed by these analysis
components, including grammar, "rcalization rules" and thle domain moldel, which
represents the set of classes and binary relations of tilc given application domain.

Delphi differs from most other' linguistically montivated systems in thle role that is played by
syntax. The primary function of Delphi's parser and syntactic knowledge bases is not to
produce a parse trece, but rather to constrain the search for an appropriate semantic graph
interpretation of thle utterance, Semantic graphs at-c produced not by rule-to-rule
compositionality, but by what might be called "relation-to-relation" compositionality - tile
association of grammatical relations in the syntactic structure with semantic relations in thle
semantic graph.

This more incremental view of the syntax/semlantics interface has three crucial advantages.
First, there is much m'ore flexibility with respect to ordering and optionality of constituents.
Second, because relation-to -relation .ranslations are simple, the task of porting the system
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is greatly simuplified. thlird and tirtallN, painial or meilctai\. analyscs can be represented,
and a complete Semiantic graph interpretation 1,1,1. ~t~t~erIane pIoduLcedI eVenI When a
complete syntactic anialyses is not available.

.In the remainder of' this chapter, we describe Delphi's main processing components,
representational formalismns, and knowledge base

3.2 Grammar And The Syntax/Sumiaiitics Interface

Thle Delptli gramma~r is a [)road coverage, domain indlependen~t graninnar ol' English 55 ritteni
in a version of' thle Definite Clause Grammiar l'ornhliani 1531I that has been extended it)
incIlude labeling of right-hand side Cden.. is with 111C grammliatical relalions they hear to thle
head ol thie construction. An example is:

(S ?arg ?mood)

subJects (NP ?arg ?mood etc.)
heoads (VP ?agr ?mood etc.)

InI this rule, there is a head VP and an NP which bears the SUBJECT relation to it. Other
gramnmatical relations include the familiar DIRECT-OBJECT and INDIRECT-OBJECT as
well as the prepositions, such as TO, FROM, WITHI and so onl.

Annotat~ig sub-constituents with grammatical relations regularizes the syntactic structure
with respect to particular grammatical rules, and allows a 'reýlation-to-relation" form of
compositionality, us opposed to the more traditional "rule-to-rule' version that is
exen. plificdl by such systems as Gemini [281 and tile Core Language Engine [2]. in
relation- to-relation cornpositionality, each grammatical relation in thle syntactic structure
corresponds to a semantic relation in a parallel semantic structure we call a "semantic
graph", The terminal nodes of the semantic graph are thle word mleaniings, corresponding to
the lexical heads of syntactic structure.

'An example of a semantic graph, representing tile meaning of "What flights fly from
Boston to Denver", may be seen in Figure 3.2. The semantic graph is not a fully quantified
formula; rather it may be thought of as a form of predicatc-airgurnent representation, with
quantifiers in place, fromn which a fully quantified formula can be generated. The allowed
class and relation labels comec fromn the domnain model.
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Ii i~1 61It kllull....N,1

Figure 3.2: Semantic Graph

This view of the svntax/semantics interface has marked advantages. For one thing, because
(lie syntactic/Se niantic structure is NORuilt tip oic alllgltiCitt a It taime, it heconte s 11tlCI easier
to cco imodate such plienomcna as order-vaitation ond optioitlity of argultnients that are
difficult fot. other a.proaches

The itllpolta lice ol this feature iillav I" seen in the examples of argounlellt ordei-variation
and optionality that abound in real data. Consider the following from thie ATIS domain, in
which coninplenments can vary liecly ili order:

What flights fl from Bostont to DeLnv,,er?
What flights fly to Denver frion Boston:?

or be separated fron the head by a modilier tylpicaliy regarded as an adjunct:

What flights fly at 3 pm from Bo.ton to Denver?

In somc cases, modifiers cail be omitted, as in:

What flights fly from Boston ?
What flights fly to Denver?

and sometimes the omission of an argument can have anaphoric co,,zequences, as in:

Wha; restrictions apply ?

which cannot be felicitously uttered except in a context where there is something in the

discourse that a restriction could "apply" to.
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Lo I \ent110na I approachles to su tc atcgorization. suc h as Dfinii e Clas GramCiinmar 1 531!
Categorhil Grammar I 1 I, IIATI-11 1061, and lexicalizcd TAG 15,81 all deal with
coimplementation by including inl one form or another a notion uf 'subcatcgorization
frame'" that specifics a sequence of coiiplentent phrases and constraints onl them. H-andling

.all thie p~ossible variations inl complemeont distribution in such formialismis inevitably leads to
anl explosion inl thc number of such tianws, and a correspondingly more difficult trcA in
port ing to a new doinaini.

In our approach, ott thc ni h'r hanld, it beceottic s possible to viecw subcategoriziation of at
lexsic at i tc i as a set of' const rainits Iil thec otI1into g arcs of' its SC mn tlic graphl no0dC
D.)ifferen t types of consitraints - oirde r of' argumntiets, optional ity of' algl.1 nIens,
semlantic-c lass cotnistraintis aind sc iOU nitC 1cc fet-, ol a rgu ticOts - can all be repre seniited
separately, instead of' enumcratintg all possiblec argument sequenices inl a Set of alterntives'
siihcategorizatiot framecs.

Su hcategori zat ion Con istrain ts inl Del phIi arce tencoded ill lex ic at e nli iis usiniig a1 strcitt et i
called a 'miap'' 1711. Beclow is pail of thie lexical enitry for "fly" in the ATIS doniain:

FLY
subject- FLIGHT-OF
to: DEST-OF
from: ORIG-OF
completion: (anid (1!illed flight-of)

(or' (filled dest-of)

Map) entries htave "translation"', "realization" and "completion" comiponents. The tranislation
part of this entry specifics that thc lexical hecad ý'fly" is to correspond to a semiantic-graph
node labeled with event-class FLY. The realization part of the entry specifies what
grammatical relations the lexical itemn takcs, and what semantic relations these cotrespond
to, or "realize", in the semantic graph. Here, the entry specifies that "fly" takes SUBJECT,
TO, and FROM complements, and that these grammatical relations correspond to the
semantic relationF. FLIGHT-OF, DEST-OF, atid ORIG-OF7 respectively. Semantic
selectional restrictions in these argument positions - that the Cl~er uf DEST-OF be a city,
for example - arc implicit from the declarations of the relations in ttic domain model.

The "completion" part of the entry specifies what outgoing arcs are 1required fol the node.
Here, the entry requires that the FLAGHT-01F role be filled, and that either the DEST-OF or
ORIG-OF roles be Id led (forbidding thle intransitive "the flight flies"). More comiplex
optiornality cases are encoded with other completion predicates. For example, the ease
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WIR- 1he i Ina ph o r muILst be piesenit ("Wh tic t I-ei'ctI0 I apply' is e ncoded by the pied ic ate
FIlLU D-. OR- AN API fOR.

Sinle ireali zat ion rules are tied to semnan tic cl asses at her than lexical tranislat ions, and
requ ire for their applicat ion only that Scemantic ci ass restrict ions implicit fromt thle dom ai n
*and range of tile rcalizi'd relation be satisfied. Typical examples arc thle rules governing
noun niodifier meanings, such as "Delta flights", "Delta's flights", "thle flights oii/aboard
Delta". Thes Would all be handled by thc global reAliZation ralc:

{NOM-COMI'1 POSS ABOARI) UN ...

AWl RNE'-01:

Deteriiiiin i n what Senman tic irelIati on a given iira iiiin atical i-c Iat ionl Instance correspo()nds it) is
mast gciierally viewed as a forim of goal-solving in Delphi, in which a chain of rules canl
be invokedi. For example, Syntactic cOnlstructionls MuCh as "X with Y", "X itas Y"' and "X's
Y" are interpreted by first appeal ing to a rule mapping them to a pseudo-relation called
GENIERALlZED-POSSESSION, and then seeking a realization for it that is compatible
with thle classes of X and Y. This avoids having to write three different versions of thle
samec realization rule.

An important advantage of the realization rule formul[ation, apart front its its power and
flexibility, is its simplicity. Realization rules are veiry simple to write, and make maximal
use both of' knowledge about thle domain and general knowledge of' language.

3.3 Ill-Formedness Handling: The Semantic Linker

When anl utterance cannot be parsed with Delphi's best-first parser 1201 - either because it
is ill-formed, mlis-recognized by thc speech system, or Simply because it is outside thle
coverage of thle grammar -it can still be partially understood by the syi~tm, often well
enough to give the correct response. Thle component responsible for partial understanding
in the Delphi system. is ca~llpd tile Semantic Linker 1701.

After a parse fails there is a seýt of fragmentaiy cons~ituents left over inl the chart,
corresponding to a set of semantic graphs. The Semantic Linker seeks to connect these
sub-graphs into a single connected one by adding links between nodes in thle different
sub-graphs.
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Figure 3.3: Fragrment Graphis

At to-eethis is Ihsame tingm thlat [lhe parsei mlid graitmtar do, The difference is tlial

constitttcIst is, based onl req~lircetliis of' theit p[i-imiOt, il the string and oilier syntactic
evi denes. ' l'h Semttant ic Linkeri doe's notc have~ t te w reqt iremincs, be ting ~. looses forml of'
com b inatio oitat calli gnore fragment i order and skipl ovc i tme ryclin g, ui ana~l yzahle
miateijal Wilit ease

AIt liough it is a ve ry sli le reti alIgorithm ii, the Semantl ict Liiike, uses thle swune set of
real ization rules that drivi'e the regular purser. Usiing thec realization rules, the Lintker
determin tes for cad t pair of' niodes inl di l~erec t setanat tic graph s tite set of all links whichi
call cetiect them. It then uses all A * search to find the most plausible set of links which
prtoduce a completc graph.

Suppose for1 example, we have the thll-c fragments "to B~oston", "Denver" and "Delta
flights oii Monday". Then thc three corresponding, sub-graph:vi are those shown in Figure
3.3 where a PP1: is treated as its NP object with the preposition as a tag. For this set of
fragmentary sub-graphis, the possible links are;

1a. VLIGHTSI--- DEST-OF ->BOSTON:TO

1b. FLIGHTS1--- ORIG-OF ->BOSTON:TO

wher th liks re roued ogeher ll orere lit acoringto the fragilctit-pairs they

The plausibility of a given link is a function of a number of different features, including
penltis fom ssuptins iad initscomputation (e.g. that at given preposition canl be

ignored or assumed) and emipirically determined probabilities for the given link (e.g. that
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ggiven .in AIRLINE. and a FLIGH T they are mlosi halbkl~ iiked by thle relation

The Semantic Linker nay also "hallucinate' a rI1C\ iide to bridge two Fragmntes between
whom no liiks canl otherwise be computed. For c.\,IiiiplC, for the uttcrance "from B~oston to
'Deliver", which has no explicit FLiGHT-object. FLIGH~ F ode canl be inserted betw.een
'tile fragments to make senise of (lie utterane.

Because i he Se man tic Liniker uses thle samne set i !01 t id iza I on1C jIs as1tiC rest of' tile
sy stem w ho' titIleC sys5t ici i s portedl it) a new (loma iI thle Scima iii c Liiiker can be used
iIIlIICiiICildCV -- al dod lid adJVaIIttgC over SOmne o0 1W: plpi'Oiiellte to faflibak uinderstanding,
Such as I 231 or 1361.

III formal experiineiiis (as we discuss S;ubwqifiei16\ ihe Seimintic Linjker hans been ,hotw to
draamatically imnprove Delphi' s perfornianee.

3.4 Quantification

The quantifier scopiimg module in Delphi takes a semantic graph and produces a
fully-scoped expression in thle logical laiiguage FMRL. The basic strategy for quantifier
scoping is a descendant of thai used in hie LUNAR system 1771. This is made possible by
thle use of [lhe semantic graph as a common underlying representation for both thle
grammatical and ill-formied parts% of fragmientar1y utterancees. Delphi's seoping module traps
quantiliers from relative clause-,, makes thle quantifiers from PPs etc. outscope the Nil
quantifier, and resolves the scope of quandtfiers from par,.lcl constituents in terms of
left-to-right order inl thle input. These general rules are modified to take into account
differing strengths of quantifiers such as EiACH.

Le-ft-to-right ordering and syntactic structure for grammnatical portions of thle utterance are
recovered from thle semantic graph by backpointers to tile lexical items and grammatical
relations fromt which thle graph was produced. Links established by the Semantic Linker
are treatcd by thle quantification mechanism as if the constituency is indeterminate, so that
only left-to-right scoping rules and individual quantifier preferences take effect.

The resulting mnechanism is robust, and quantificational scoping has been ail insignificant
source of error inl the official ARPA blind-test evaluations of the ATIS ,;ysteim. More
complex strategies have been prop~osed and implemented in thle last two decades, and rould
in principle be modified to work with ill-formied input, but tile simple and robust LUNAR
approach handles esse-ntially all the phenomena seen in the tells of thousands of sentences
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MI AFIS traning collected dUiing1L eXplVlenmenS %wit: n1-lingnN l"LSur'S.

3.5 Discourse

Tile discour'se it cltnisin of Delphi consists of seve al components: resolutioin of locall
ambiguiuies. pronomninal anid de~ictic antcedent rc\, iunoii. ellipsis handling and discouilSC
Con stra int propargat ion.

T'lhL illostl Q0oin1 10 CUSe 01' IncU am nb i guityv ill he\ I S do i i r1 S il ses win eporal ph 11ascs
as in ''tile nine o'clock flight"'. The resolution inec:lialisill Searches both1 for linguistic
iniformatijon ill the curirenit and previous Senitenlce% ~.1. well as pro perit ies of enitities itl
preVious' an1swers. IW resolve wlietllr "nine o'clock' iN AM or 1PM.

The pronoun/dc iic ic rsol ution mechan ismi used ill I)clIphi na ke S use ofI locally expressed
or implied st-mantic constr'aints ito search through a set of candidate antecedents, The
current mechanism ignore-, syntactic numbe[r as a cueC, because cnilpir'ically inl thle AIlS
corpus (and we suspect in othci spontaneous speech applications) it is oftcn inl error. A
simple-minded focus component is used, primarily based onl recency, and secondarily
based onl grammatical relations wiihin an utterance. Because of thle strength of sematntic
cues aitd [the pie valcnce of ill- formed in put, tbe use of' sy I tac tic cues f'or focus is linii ied.

The initerpretation Of' later' sentences Often must include information fromn previous
sentences, without explicit linguistic cues, This is especially true in "design dialogues",
where the~goal is to fiod a description of a set of objects ti- 1 will meet some set of implicit
or explicit constiraints. Consider for example thle following discourse fromn thle ATIS
domnain.

Show Delta flights from Boston to Dallas tomorrow.
Can I leave in the morning?
Is there a nonstop Ilight?
Show me tlie American flights.
I want to Ro from Dallas to Chicago onl Wednesda-y

Note that the constraints of prior sentences (such us on airline, origin, destination etc.) are
implici! for subsequent sentences unless contradicted by information in thle current sentence
(e.g. "American" overrides the "Delta" from thle first sentence) or until there is evidence
that a new problemn is being solved (the new origin and destination in the last sentence
indicates that all previous constraints canl be dropped). Delphi has a "context tracker" that
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malIintains a ,tack of the constwintnis fit HO1 prOLC%011N .'c ranttec sandl has t set of rua es lor
%% hen constratnrs lte ito be mtodified kii deleted beI..-1- 116i18 iterged wvith thle currenlt
senttence.

Finally, we hanldle ellipsis as. a special case of setintic linking. If wve have thle two
Utterancies:

~Show Ott'f/l [he vivis rot I/i'e oornt tg fliq'ht.
in1 1Inericaail 1oI2.30

We canl teat these as it' they were one run-on il-itomed hinput aundl hln 'Amlerican it)
"ilight, "Ind replace utlortling" with -12:30". usingv a1 mtinor \rtant of' thc, Semiantic Linker
linker which alloo s, for later cotnstrainits ito ovcr\%i Ite calnter titles of thec satuie type. Titlis

htaeyIas beett ý'Lry efel~ e cc a i. td C. '1,a larel- is Oft ellipttc,1l CO(IStr11i~tiltt

3.6 Backerid Pdapping

Itt order to get a rcspontse to a user qucry, tlie complete FMRL interpretation of anl
uttcraoce must be trarnslated to anl expression of a target query laltguaige wih.it call be
evaluated directly agatinst the tabular database to retrieve thle answer.

A key step is bridging tile gap ilt conceptual vocabulary between thle two represen tat ionls.
F-or example. the FMRL i lte rpretat ion of thc query "IHow mranty flights onl Delta serve
meals" has onie-plare: predicates like FLIGHT arud AIRLINE. anid two-place predicates like
AIRLINE-OF anid MEAL-OF. The database for the ATIS domnain, ott tlte other hiand, only
has; a single table FLIGHT with fields containing airline anid meal information. Delphi
bridges this gap be-tween representations with a system of local mlapping rules which
translate the onle- and two-place predicates of the FMRL into expressions (if a relational
algebra target language which retrieve [lic extensions of thcse predicates.

Sometimes, however, somne combination of FMRL predicates has a correspondence itt the
database but the individual predicates themselves do riot. For example, in the dlatabase for
thle SPLINT domnain a table itelating aircraft-types to their )hysical characteristics has a
field for the number of engines the aircraft has, but no representation for thle engines
themselves. If we now ask "How many engines does an F- 16 have'?", there is no local
iraxislation of the FMRL predizate ENGINE.

To deal ' ith this., Dtlphi has a systema of global transfortmations that are applied first,
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rcwrl'Jzig subsets ot the l-MRL clause." to a lor it '1Can be hantdled with) local translation
The rule that handles this example is:

(is-a :e engine number)
(aiicraft-engine-of a :e)

(is-a *count* number)
(eql 1 ntmbcr-engines-of :a) *coulnt*)

3.7 ffiterface To A Speech Recognizet-

In spAket language applications, Delphi iS interfaced to the Output of the Byblo~s spe~ech
recognition systemn 191. The N-best paradigmi is u~ed. itt which the recognizer outputs in
order its top N guesses at (lie transcription of the wmentete, for some N-lue of N (usually
5). Delphi thecn RuttS over- 1theSe trnscriptions in the otdcr they have been ranked, first with
the Scmantic Linker disabled so that only grammatical utterances are allowed, and it' notne
is found, runs over themn again with thie Semantic Link~er enabied.
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3.8 Results Of Formal Evaluation On ATIS

Our complete system including tile Semantic Linker was evaluated in the December 1993
ARPA ATIS evaluation. Prior to evaluation, ATIS versions of the system's domain mudel,

"lexicon and realization rules had been developed using several thousand utterances of
* training data collected from users of ATIS. An approximately 1000-utterance set was held

aside as a blind test set on which all narticipating sites were e"fluated.

Error rate in this evaluation was defined vs F+NA, where F was the percentiage of qucr-ics
answered incorrectly, and NA tilc percentage of queries not answered at all. Therc were
two evaluations on tile same corpus using this metric: one of NL. text Understanding alone,
and the other of a complete spoken language system (SLS) comprised of Delphi and the
Byblos recognizer. Our s.yslern achieved an oflicial result of 14.7% on the NL test, which
was the third-lowest error rate achieved. ,'hc SLS error rate was 17.5%.

Our own CXperimnlnts show that using the Semantic Linker reduced our system's error rate
on the NL test by 43ý.. This was largely achieved by dramatically lowering the no-answer
rate NA from 18.7% to 2.3%. Just over 80% of this increment of sentences answered were
answered correctly, so the Linker showed considerable accuracy.

3.9 Porting Delphi to the SNIINT Domain

Although the language understanding technology that is Delphi has greatly improved (as
evidenced by objective ARPA evaluation) and has been incorporated into real-time
demonstations, there has been comparatively little effort to make systems truly
transferable to various types of application systerns and domains, and to develop and

Soptimize human-machine interface paradigms for dual-use applications.

Transferability, also called portability, is key to the development of robust, practical, usable
systems and, thus, to making a wide variety of applications truly iractical, Portability has
long been a goal ([ 17, 16, 341) but seldom has been achievea.

Delphi has been developed under the premise that as much general linguistic knowledge as
possible should be built into the system in a domain-independent way, modularizing the

-domain-dependent information to knowledge bases and easily replaceable components. By
making appropriate use of general linguistic patterns, Delphi enormously reduces the
amount and complexity of knowledge needed to install a new doniain.
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[he SPH1.INI Speech and Language I ntcrItM ion) domain wais made available under a
',epaa•.c con1t with Rome Laboratory. De% elopntent of portable mnodules and tools to
assist the porting process were done under 'his contract; the actual porting was carried out
under the Rome contract.

The SPLINT domain is concerned with Air Force units and their component aircraft,
'weaponry and other physical attributes of aircraft, ordnance, and facilities (such as air
bases, runways, bunkers, etc.). It may b- considered a resource management domain, with
a relational database at its heart. The SPLINT database his 106 lields in 23 tables,

By studying the database, dcevelopers ,wcrc ablc to create an inlitial corpus of sample
questions that might be asked about the dt.,. Sonim additional queries were p ovided by
Rome Laboratory. The original set of questions was augmented by including variations that
differed by substituting diflfcicnt wordS of the ,.,ame type (for example, different missile
tames). Inl this way, ittli inital text corpus of more than 9000 sentenices was created.

Some example Ltterances ini the SPLINT domain are:

What is the range of the AGM-65C mnaverick missile
Hlow inany air force bases are thenr in the US Military Atrea
What are they
Where are the units with aircraft tat carrv vatlcan tail cannons stationed
Show me a map of Griffiss
Which runways there are operational
What's the length of the longest rut way
Sort the air to air missiles by range

This corpus was abstracted into query schema, so that we could more eaily examine it for
completeness:

(ARtE THE <DESCRIPTION-PL> AT
(AFB-DESCRIPTION} OPERATIONAL)

(AFB-DESCRIPTION) -

<AFB-NAME>

<AFB-NKAE> AIR\'FORCE\ ^BASE

<AFB-NAME> APB

_ -
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<PJ"1-NAME>=
GRIFFI SS

LANGLEY

The purpose of the query schemna was NOT to provide a complete representation of all thc
.questions that could be asked ofi the system, but rather to make it easier to bc sure that tilc
training set contained a wide range of re ,re.;c,)tuti se qucries that .ontained an appropriate
distribution of entities.

In order to port Delphi to the S PL INT doma in. SPI'[Ni-s peci iic ve rs ioins o I thle do main
mi odel I, I % con, rea; i Zat on rit; Wsaidt db- ii appli1 aginLeIs wer ic ceded. For I he
speecIi- understanding part of t he a ppl ication, woIrd pron;u nc iat ions were also nlece sarv, .
well as word-class mc~nbersl~p for a stati stical li-grami class grainnaiar. Delphi includes
".Core version;s of som of' ihes knowledge bases: it core domain model with common
classes like NUMBER, and TIMEi-OF-DAY and reclations like GREATER a corc lexicon
with closed-class items such as pr-cposiiions as well as words appropriate to
question-answering in general such as show', to which domnain-speci lie items have to be
added.

In porting to SPLINT,. 60 classes and 05 relations were added to the domain model. 400
words were added to thle lexicon. Of (hem-, approximately half were derived from database
field values. 118 realization rules were added.

The domain miodel was built by a combination of bottom-up (database-structurc driven)
and top-down (corpus driven) techniques. The initial corpus was annotated for surface
meaning using a variant of the notation being developed by the ARPA community for
semantic ZValdat ion, This make it possible to determine the set of concepts and rehations
corresponding to the linguistic expressions represented in the corpus.

The grammar did not need to he modified, with the exception of adding one rule (for
constructions such as "Mach 1").

Thle entire process took about a person month to get 90% coverage onl a 1400 sentence
corpus, developed independently by a non-NL person. An additional person week was
required to develop the speech-related knowledge bases. A complete spoken language
system with Delphi as the understanding component, plus a Motif-based user interface, was
successfully demonstrated at thle 1994 ARPA Human Language Technology meeting, and at
Rome Labs in New York. The porting process is described in more detail in [14, 6!.

This effort demonstrates that, given an appropriat, system design, it is possible to build a
complete spoken language system that is robust to speecb and production errors, and to do
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No rpqdkI1 anid ,hiraLtdo rwardlIy.

3.10 Conclusion And Summary

III Con clui on, we hanve developed aI Leehinol ogy that inakes maximnat use of' general
linlguiStic knloWCledg to imlpr'ove portability, while lit the same time naitnaining robostness,
III tile 'aCe of, the type ot' in pu one can expect 11011 ai teat -tIfc %po ken ltan guage appli cat ion.
The syvstem has, been sho~wn to ic act highi leve l' per'ctormna 0c III ibjecIik~ yehiind -t si
e vailuatiion on thle AT IS domiiain. The sy stil fmiias ako~ been it s%%I i\ to he rap idly port ah Ie to
a nnw domnain. SPLIN~T. This did not require any chmnges ini tile U11idCIiyi ig sysicill codc,
and was done withi a rel at ivetly smal n t clb ii

Thiis work sihows I ithca npt aOIIllion at tin gui stic tie tho ds, based onl genie rat kni w ledge of'
language, canl be used in large, robust SPokeII 1latigiag system~s. and tiat speciatt-puipose
NL understanding systern d (o lot have to be bUilt orm cacti new task.



'Chapter 4

The Semantic Linker

4.1 Introduction

This chapter presents the Se mantic 1.Linker a new i nech an isin fu~r understanding ill - nited
input. The Linker is the doniaiii-iridependeni fallback understanding component used by
thle natural language componen~t o1' Our spoken language systemi. The Semantic Linker is
invoked when our regular parser is unable to parse anl input; it produces a scmnantic
interpretation by combining thle fragmentary sub-patrses let" over' inl theC Chart Using .1n
A*-style search algorithm driven by empirically de~riniined probabilities and paramicter
weights. The Semantic Linker also provides a novel method of' handling ellipsis, The
Scintantic Linker was used inl the ARPA December 1993 7IS evaluation, where it reduced
our systeM's error rate on the NL test by 43% - from 3 1. 1%'/ to 17.8%. This was one of thle
lowest error rates of any system tested.

A., important problem for natural language interfaces is coping with input which cannot be
handled by the system's grammnar. A system which depends onl its input being gramtmatincal
(or onl lying within the cover-age of its gramimar) simply will not be robust and useful.
Somne sort of "failback" component is therefore necessary as a complement to regular
*parsing.

This chapter presents thle Semantic Linker, the fallback component used by thle natural
language component of our- spoken language system. The Semantic Linker is invoked when
our regular chart..based unification grarmmar parser is uniable to parse anl input; it attempts to
comle up with a semantic interpretation by combining the fragmentary sob-parses left over
in thle chart. Thle Semantic Linker wwý used inl thle ARPA December 1993 AMIS evaluation,

45
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where it reduced our mstestems error rate onl thle N. .- t b\ 431'1'r fil 3 1. 1 ý to 178)

OU' wYork- is lotilvated by tile Observation that syntax. b) itself', is only useful insofar as iL
helps us ill comting up) with a semalntic interpretation. Unlike such proposals as 1421, 1231
or. 172], we do tot attempt to "fix" thle palsing ptrocess or reconstruct a parse tree fromn
fragments, but instead try to directly produce at internietdiate predicate-argumnent structure
we call a "semlantic graph". A set of' fragments corresponds to a discoitnecte6 set of'
semantic grap~h", anld tile task of interpretation is ioiid ud set ol' links. - binary relations -

th at conniect these di scontnected sec maitt c graph)1s ]itt a it Sigl ICcon nec ted one. L.tup ic ally
deter"issined probaibilitieS an16 aMaNIIICIer %%CiLIis ate u'cd inl a A I-stVle hcsi-first search to
flnd she Most p).lauible)I Set 01f connections.

The Setmantstic Lin15ke r als(o diftfers cruciall1y 1from1 I sIIIOsal sc SUII as 1361 is LIhat it does0 not(
rely ois task-niodel templaties to solve the ill-torissedlites problem. It is therefore
Completely doinain-independent and Canl be used' or11 alny task. Ilt additioit, thle SeitIansIic
Linker providles a novel method of' ellipsis resolsnisom which is integrated wilhi fallback
un de rstand ing.

We devote the next sectioni, Section 2, to a mrnoe detailed description of semanatic
interpretation and Irlagmlent-generatiots. Section 3 will discuss how thle space of all possible
links arid associated probsabilities arc genserated. Section 4 shows how we efficicently search
this space to produce a connected semantic graph interpretation. Section 5 discusses
subsequent processing, and Section 6 prescils formial evaluation results and our-
conclusions and future plans.

4.2 Generating and Interpreting Fragments

Thc surmantic interpretation of any constituent inl our system, whether a fragmient or a
complete sentence, is represented by a "semiantic graph", inl which the nodes are thle
semantic interpretations of lexical hleads and thle links arc thle semiail'c relationts between
themn. For example, "Delta flies a 747 to Deniver" is rep~resented by the semlantfic graph:

/ --------AIRCRAFT-OF -> 747

FLY- - --- AIRLINE-OF -> DELTA

----DEST-OF -> DENVER:TO

A PP, such "to Denver" in this example, is represented by the semiantic graph
represenitation of its NP object, tagged by thle preposition of thle PP. Quantifiers are left inl
place to be pulled out and scoped by later processing.
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The sen lailli graph fo allt utteranice is 1CI tic eme at '0omPu ted Ito il tile svila tetie an a lysi s
Of thle UueraiCe'l~ usinig a system of' 'realization 1111C, %%. hiCh map) thle gr-aimmlatcal relation
anl argumlent bears to the head onto thle semantic relatio toilte interpretation of' thc argumlent
bears to the interpretation of' thle head. There are prainmatical relations corresponding to
tile familiar notions of subject and direct-obiject etc., as well as to preposition-tags like 'to'
above. in, our. example, thle -TO', grammatical relation holds between "flies" and "Denver".
It is mapped to thle DI3ST-OF semantic relation by (lite realization rule:

TO -> DEST-OF

Where 11Y~ semlantic tVpe reqJUllireents onl head att' PP' object are implicit t'omn thle
defitition of, tile relalionl. A difl'C-CHIe Set of' Irali/.,ti10ir rules P, use0d or01 eaCh domlainl.

Whenl a complete pa'rL' ol' an utterance anntmot be pet[rinined. we a ic lel't with a set ot'
fragmentary analyses inl the Chart which correspond tw syntacticallyv well -formled and
semantically coherent portions of thle input strinV. T[le l'i'agment-generation stage of' the
Linker extracts thle most plausible fragmelnt sub-parses associated with thle lonlgest
sub-strings of' the input, using probabilities associated with thle gramminar rules 1201. It uses
at "greedy" algorithm which first chooses front the chart thle coherent fragment spanning the
longest sub-string of' input, then the cohetrent fragmlent spanning .hc longest sub-string
disjoint from thle first sub-string. and so onl, until a set of' fragmients has beei generated that
spans the entire input stritig.

Each fragment has an associated semantic gratph as its interpretatim3. Suppose for example,
we have tbe three fragments "to Boston", "Deniver" and "I' I'm flights onl Monday". Then
thle three. corresponding sub-graphs are:

POSTON :TO

DENVER

FLIGHTS1.------ AIRLINE-OF -> DELTA

------ DAY-OF-WK -> MONDAY:ON

This set of n sub-graphs ean be turned into a complete connected graph, and therefore a
complete interpretation of the utterance, if we canl find a set of n - I new links between
nodes in different sub-graphs.
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4.3 Computing the Possible Links~ and Their Probabilities

As a first step in finding the best set of' connecting links, the Semantic Linker computes the
*'l ink-group lsI". which has one element, or "link- group", for each pair of fragnments. Tile
link-group for a pair of fragmnicts is simply the set of links that could connect the two
fragments, where each link connects an object in one fragmnent's semantic graph to anl
object in thle other fragmient' s semantic graph. Tile l inks are com1putedI using thle samec set
Of rClIa Ii0I ,.tionrleS that1 diVe thie parse r and sernamt liiin0tcrp ictIcr. They de petid onl thle
";ci mani tyI ve s of thle two ob ,jecis and onl thle P relrIion taLg I I f ally ) of thie second ob ,ject.
This tag can he rela.xed or assuImed With a eily IIM. aN We shajll "ec below&. For thie wet 0f
lr-qnlielts III our cxzinlple the link-group11 list Is:

Ia. FLIGHTSI--- DEST-OF ->BOSTON!TO

1b. FLIGHTSI--- ORIG-OF ->BOSTON:TO

2a. FLIGHTS1--- DEST-OF ->DENVER

2b. FLIGHTSI--- ORIG-OF~- DENVER

3a. DENVER--- NELARBY-TO ->BOSTON:TU

where [lhe links arc grouped together in a ordered list according to the fragmntcn-pairs they
connect. Since there arc three fragments in this example, there are three pairs and thus
three groups.

Each link has a set of features which are computed along with the link. The most
important is the relational probability of thie link, or:

I?(R, CI,C2)

where R is the semantic relation of the link and ClI and C2 are semantic classes of thle two
argumrent positions, and C2 may be tagged by a preposition. This is the probability that a
pair of objects of type Cl and C2 are linked by by the relation R in anl interpretation
(instead of linked by sonic different relation or not linked at all),

A corpus of interpretations generated by hand could be used to determine these
probabilities, but we instead use a corpus of 3000 semantic graph interpretat ions of'
sentences that our regular parser is able to analyze correctly.
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F ront Ohil corpuw. we cani determine tiat thle hink ]I has at high (.99) p~rohahility of
connectin g a I FLIGHT and CII Y T:IO object ý. I icrcas tie linuk 3 a hias at near zerto probability,
since tltc relationt N EARB Y-CITY -01 occurs very inf1reqlUently betweenl tWo Cities.

Links canl have other features depending on assumiptions made in computing them. For
.&xample, a link canl be computed by ignoring theI pitcpositional tag of the second object, in
which case [lhe link is given the feature "IGNORES-PREP". Anl example would be lb
above, which ignores the preposition " ".\A linik can also be computed tiy assuming a
preposititonial tag thlat is not1 presentt, gi vi ng the li nk tilte feator icASSUMES-PREP", as in
3a, wlicr the preposition "near" is tSSUnIicd. AS We' lhalle II seein thcl etsec~tionl, these
featutres are ailso ass i gned nega ii ye weights at' penallies. hal anc in g out[ anly hi ghert reflat ion al
probabi it\i) i f linik nmay hiave gaiined from (iei t assoit ption s mlade by it.

4.4 Searching the Space of Combinations

InI order to structure the search so as to av'oid redundant links and duplication of search
states, we order the link-group list arbitrarily. Levels of thle search tree correspond to
elements of the link-group list. At each level, search states are expanded by generating a
new state for each link L in the cortesponditig link-group. L is added to the links already
chosen by the parent state to make thie links chosen by thle new state. Ani additional "skip"
state is generated, which represents thle choice not to add any of' the finks in that
link-group. Its links are just those of' its p~arent state.

Delow is a portion of thle search tree for thle problem of connecting our example semantic
graph. Each search state is labeled with tile. link it chose, or with "s" indicating thle skip
'state whcre no link was chosen:

/- a
a--- 2a--- 3&

/ -2b-- 3a
/ -- a-- 3a

START--la-- 2a
\ \-2b

\I-a -- 3a
lb-- 2&
\-- 2b

If a state's chosen links contnect all the fragments, the state is said to be "complete", attd
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1101 More expaitsiOit is doine oil it. Complete states ii the tice ahove include <a.sax
< la.2.i < h,2a> etc. 11' the State tU1Sons 01t o l k -groups to try, (Ihe State is said to be

"dead", and ino inure expansion is done oni it. A dead state above is <s,s>.

An[ i mportant connstra int Onl states is thiat they not inctluode contrtadict ory links,. If' a link of'
.the faurm (R A B'), where R is at single-valued reciat ion, is added to a state that already
includes a link oft thie form (R~ A B), thie clash betsseen B and 14' must resolved by
attue Ipt illf to u ili y t(lie two su h-graphis rooted ait ithese nodes. I1 unaifiicationt !'ails, 1 lie state
is class ified as intcohiere it, mid not ex panded f'u rhe t. Examt ple s of inoictrh ent states% ill [ie i
space above ate .'Ia,.2a> and < 11),21>. A' "sueee.s' state is a cotmplete, cohterentt state,
Some examtples ate <.s2a,3a>', <I ki.2h> and < h2>

Each state is associated wýGl a score, Or "Cost", whiCh is the suni of' the log-probabilities of'
its chosen links, p]) uspeCna lties for anyv other. teat ore , th statue May h avye, [IIS us1 ati etilllaLd
cost l'oi each Il ink. it an y, that still has ito he added to con nec t thle graph. ThIiis sc ore is used
to gouide an A *-style best-Ii rsi sea li h 111-0.111 the S paCe

Link 3a has very lowv ptnhahilitv* . vwhlu Ic ink 11) ha.s the IGNORLS-PREP feature, States
choosing these litnks will therefore have low scores. The other states arc incoherent, and
the search will theref'ore produce state < I ii,21b> as the 1),:,t staute. with a complete, coherentu
semoanti(e graph int~erpretation

For reasons of space, we have used at very simple example here. Be!-.nv an.; actual
sentences of the formal test evaluation which the Litnker handled corrctly:

flow much is a coach flighithelu cheapest coach flight on Souti~est Airlines
Phoernix till to Milwaukee ont Simla v
Uos Angeles to Pittsburgh afteronoon Tuesda '
List flights fromi Orlando to T'acomau onl SaturdaY of)i re basis code of Q
Wliqit airline is A S (is in Sami
Instead of Saint Louis how about a plane that stops in Denver

4.4.1 Handling Corrections and Ellipsis

A common problerut faced by ordinary par~ers is speaker disilueney:

Tell mie the Ilights to Deniver ulht to lRostanr
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This ,, ill produce the fraglmlellis "Tell mne tile ilight, It l)en'Vci" and "to Bostmon". Since a
flight cin hdlwe oitl- one DEST'F.OF t,. fragmnctt 'to Bostont cannot be linked according to

is its ost salicint DES'T-O t i rtrpretation. ilehI allcruativ," would be to ignore the "to"
preposition and attempt to link "Boston" as an OlRIl-OF with the IGNORE-PREP feature.

This clearly would not produce the correct interpretation, however, The Linker provides an
alternative when thie clashing value is to the right of' the existing -ulue in the string. In this
case, graph Unilication operatl-s in anl asymmetrical overwrite mode, in which values to the
right in the string replace values to the lefl. The resultingl State receives the Combinational
feature REPLlACEMENT, which ik not penali/cd ,t1igly. Il Ie relational pirobaility of
the I.-ST-OF link is good, it will defeat its IiNURI,-PREIl rival, as it Should. In this
way, we are able to titegratle Somel'l aspeClts 01f dlh ,lieIlh b1CV-halldlilg in 1101 With the other
types otl ill-fIr' dill s.es, dis.cu ,sed here.

r uiph ftlication with o,,¢rverw iting is also useCd f'o1 Cllipsis-hlt tdling, hl i cllipsis-hiuidliig
node, the Lilnker tries to eombine the sI naotic graph of' thIe current utr.lance into tile
SCllatic gral)h of the previous ite. F:or exatpler, Consider the dialogue:

""What flights fly to Denver on Wednesday at 3 pm?''

/ ------ -LGHT-OF --------- > FLIGHT1-- QUANTIFIER -- > WHAT
PLYI .--- DEST-CITY-OF -> DENVER

\---- TIME-OF --- > TI --- D-O-W -> WEDNESDAY

\---- T-O-D -- T3 -- > HOURS -> 3

\---> AM-PM -> PM

" early Wednesday morning''

/ ----- D-O-W -- > WEDNESDAY

T4 I-- HOURS -> 8
--T-O-D -- > T6 -- BEFORE -- > T7

\-- AM-PM -> AM

The most plausible link between the two graphs is a TIME-OF between FLY I and T4, but
FLY I already has a TIME-OF link to TI, and so TI and T4 must be unified. There is no
clash between the D-O-W links, but the graph unification routine, which is extended to do
reasoning about certain relations such as "BEFORE" above, detects the clash between the
T-O-D links, and and so the T-O-D link of the lirst graph is replaced with that of the
second,
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Note thai I com~eilional atpproachlit) lim' that xI ased oil imatching Syntactic struictures,
\IChIN1 751, %kould have dzhltcult\ here. slince thei" IN little S\ iltac tic parallielisml ill this
example. The advantage Of Our' approach is its ability to detect and replace just those
comlponlents of structure whlichl clash o'l a semlantfic !cvcl.

4.4.2 Hlallucinaition

SuippoSe thatill a % e a11\ oic 111 telegrdllic lliucraitee hit' does not Include thle % oid fIlightsY:

This tittei-aice genlerates tile Ii aginleilt Boto'. malens "oilo Monday- and "Delta".
Clearly, no complete set Of links C;111 b1 gemmerate~id hili~l would fully Connect this Sci.
without inltroducing an objeci ot somle other Neniamitiic Class NucLh as F.IGH T t.) act its at
"hub" betweeit themi.

To handle these situat ions, the Semantic Liimker IS a~ble to "haUllucin~te" Objects Of certaitn
semanttic classes, and add link-groups between that hallucinated object and thme fragmentts
which are explicitly present. The list of such semiantic classk.. is a dornain-depenldcnt
parameter of thie Linker, and iii thle ATIS domlainl compri)ses just thle claIsseS FLIGHT and
GROUND-TRANSPORMFIATN.

A link to a hallucinated object carries a substantial penalty, as it introduces into time
discourse an object for which there may lie only indirect evidence. The search ordinarily
bypasses -hallucinated objects, unle!;s alternatives are worse or unavailable.

Note that a reconstructive parsing approach, such as typified by 1231 or 1721, would
potentially have difficulty with this example, as there is not even at fragment which could
p~lausibly act as the syntactic head.

4.5 After Combination - Generating the Logical Form

After the combination phase is complete, we have zcro or more success states fromi which
to generate thle utterance interpretation. If there is miore than onc success state, thle Linker
simply picks the the subset of them with the highest score. In the case that no success,
states are found, an interpretation may still be generated by "scavenging" through thle state
space for the best p~artial connection states found in thle course of search.
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Once I complete Wiemarie graph I as been prodk c, hle 'Linker must still decide whtich of,
the ntomitnatlt ematnlics obJects are to bec displayed k.tisfý thec user's request - what we
term) the "topic" of thie utterance, Various heuristic: are used, including whether the
quan tifier of' the i) miinal in WI-I, whether it occur,,i an argumte nt to at display verb like
.show-', and whe1Kther it sign ifIies a non -trivial con sitalit onl 01ther noini inal s.

4.6 Rcsults and Discussion

Ouir comlplete -, sten tInic luidng O ie Se tt amicIttk. LIOL asst, alead In (the I )eee m heI 1993
ARPA cvaluatioti. Elrror rate in (his e valuato int I, dleined as., F4NA, where F was the
peree it age 0I t q IitriC S alt swe red i ocuitec ii v atid N \ he1 prce-Cntage of' LqIIit ne ot ails Wred
at all. Prelimlitary r-eSLIiN indicat lthat Our[ ssslte~i :O~i an error rate of 1 7.,9% on) the
N L test. whi ch was oiie of* th leowest error i~ato 'Im hi e ed by atn' oft, the pit-icipatitig
s yst emtis

Our experiments show that usitng the Semantic Linker reduced our systemns error rate oti
the NL test by 43% (From 3 1.1 to 17.8%/). The no-answer rate NA was dramatically
reduced firom 18.7% to 2.3%. Just over- 80% of' tiltsincretnent of wcntences answered were
answered correctly, so the Lminker sliott~cd eoitsiderahle accuracy.

IIn Conclusiotn, we have presented aitnew falihacUk understanding system that works with
semantic representations directly Intstead Wf with sytntactic structure or task tenriplatcs. we
have also presented a new way to do ellipsis resolution with this compotnent. Furthermore,
this system has been proven in formal tests to dramatically improve overall performance.

Several areas of future work arc seen. One is the use of' automnatic training methods to
determine feature weights. A secoiid area of future work is the use of relational
p-obabilities and search ill the genleration of fragments themselves, A third atud last area of
future work is to more fully integrrate. tie Semantic Linker into the regular parsing
mechanism itself, and to investigate ways in which parsing can be viewed as simnilar to the
linking process.



*Chapter 5

Written Language Training for Spoken
Language Modeling

5.1 Introduction

We attempted to improve recognition accuracy by reducing the inadequacies of the lexicon
and language model, Specifically we address the following three problems:

(I) the best size for the lexicon,

(2) conditibning written text for spoken language recognition, and

(3) using additional training outside the text distribution.

We found that increasing the lexicon 20,000 words to 40,000 words reduced the percentage
of words outside the vocabulary from over 2% to just 0.2%, thereby decreasing the errur
rate substantially. The error rate on words already in the vocabulary did not increase
substantially. We motflied the language model training text by applying rules to simulate
the differences between the training text and what people actually said. Finally, we found
that using another three years' of training text - even without the appropriate preprocessing,

* substantially improved the language model. We also tested these approaches on
spontaneous news dictation and found similar improvements.

Speech recognition accuracy is affected as much by the language model as by the acoustic
model. In general, the word error rate is roughly proportional to the square root of the
perphexity of the language inodel. In addition, in a natural unlimited vocabulary task, a

54
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",, bstalt 1a portion of ,he word errors conre from• 'N, that are not eve n ii the recogn ition
vocabtal'.i. These out-of'-vocabulary (OO'V) word, ý,., e no chanc,.' of being recognized
correctly. Thus, our goal is to estimate a good languaiec model fl'omn the available training
text, and to determine a vocabulary that is likely to cover the test vocabulary.

The straightforward solution to improving the language model might be to increase the
complexity of the model (e.g., use a higher order Markov chain) andlor obtain more
language model training text. But this by itself will not necessarily provide a belter model,
especially if the text is not an ideal model of what people vwill actually say. The simple
solution to increase thie coverage of the vocahular,,. ýo increase the vocabulary size. But
this also increases the word error rate and the corl/pu alion anld izc (•f the recognition
process.

In this chapter we consider ,e,.eral simple techntruc, t o1r inupros 12g the powe r of the
language model. First, in Section 3, we -xplore the e feet of increasing the ,ocabulary size
on recognition accuracy in an unlimited vocabula. y [.t,.k. Second, it Section 4. we consider
ways to mrodel the differences between the language 1ttodel training text and the way
people actually speak. And third, in Section 5, we ,how that simply increasing the amlount
of language model training helps significantly.

5.2 The WSJ Corpus

The November 1993 ARPA Continuous Speech Recognition (CSR) evaluations was based
on speech and language taken from the Wall Street Journal '/'SJ). The standard language
model training text was estimated from about 35 million words of text extracted from the
WSJ from 1987 to 1989. The text was normalized (preprocessed) with a model for what
words people use to read open text. For example, "$234.56" was always assumed to be
read as "two hundred thirty four dollars and fifty six cents". "March 13" was always
normalized as "March thirteenth" - not "March the thirteenth", nor "March thirteen". And
so on.

The original processed text contains about 160,000 unique words. However, many of these
are due to misspellings. Therefore, the test corpus was limited to those sentences that

* consisted only of the most likely 64,000 words. While this vocabulary is still quite large, it
has two beneficial effects. First, it greatly reduces the number of misspellings in the texts.
Second, it allows implementaticns to use 2-byte data fields to represent the words rather
than having to use 4 bytes.

The "standard" recognition vocabulary was deaned as the most likely 20,000 words in the
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corpus. 1 lhen, the standard Ihingu,ige lmiodel ,,ia dciied as a Ir ram language model
estimated specilically for these 20K words. This ,,tiildard n.del, provided by Lincoln
Laboratory, was to be used for the controlled portion of the recognition tests. In addition,
participants were encouraged to generate an improved language model by any means (other
Ulan examining the test data).

5.3 Recognition Lexicon

We lind that. typically, over 2'.t of the word occutitenees in ai levelopmnet set are not
included in the standar'd 20K-\word \ocabulary. Natllflllv , s. o)ds that are not in the
vocabulary cannot he reco gnized accuL'a[Cly. (At het. we ringlii try to leteect that ther'e is
one or More unknown words at illi- point in a sCnitMice, and then attempt to recognize the
phloneme sequence, aid then guess a possible letter equlellCe for this phonellmel sequence.
Unfortunately, in English, even if we could recognizc die pholne iies perfectly, there are
many valid ways to spell 1. 1 iaitcular p)honemie seque,'nce.) However, in addition to this
word not beitig recoqnizt , " ofteti see that one or two words adjaccti to this missing
word are also mio¢ uis is because the recognition, in choosing a word in its
vocabulary, also 'io- )ng conttext for t(le lomowing or preceding words. In
general, we find thlit ,. .rror rate increases by about 1.5 to 2 time,-. the number of
out-of-vocabu' ., O .5.,.

One simple way it lcrca.,.. ne percentage of OOV words is to increase the vocabulary
size. But which words hould be added'? The obvious solution is to add words in order of
their relatfve frequency within the full text corpus. There arc :-veral prohlcems that might
result from this:

I. The vocabulary might have to be extremely large before the OOV rate is reduced
significantly,

2. If the word error rate for the vast majority of the words that are already in the
smaller vocabulary increased by even a small amount, it might offset any gain
obtained from reducing the OOV rate.

3. The language model probabilities for these additional words would be quite low,
which might prevent them from being recognized anyway.

We did not have phonetic pronunciations for all of the 64K words. We sent a list of the
(approximately 34K) words for which we had no pronunciations to Boston University.
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"Thev Iound prOltuncialions for about hall (181) ol• tlhe ..ords il their (expanded Nloh.v
diCtio'lar\. Wheni we added ticese wordls t, our WSJ dictionar), we had a total of 50K
words that we could use for recognition.

The following table shows the percentage 0' OOV words as a function of the vocabulary
size. Th'e measurement was done on the WSJ I Hubl -20K" development test which has

"2,464 unique words with the total count of 8,227 words. Due to the unavailability of
phonctic pronunciations (nientioned abhove). the final vocabular' size would bC the second
colulill.

lop N :Vocal).- 1)•0V

20k 19998 187 2.27
30k 28247 85 1.03
40k . -98 39 0.47
48k 40213 14 0.17

50k 41363 12 10.15
04k 483 8001

Table 5. I: Out of' vocabulary words as a function of' vocabulary size

We were somewhat surprised to see that tile percentage of OOV words was reduced to
only 0. 17% when the lexicon included the most likely 40K words - especially given that
many of the most likely words were not available because we did not have phonetic
pronunciations for them. Thus, it was not necessary to increase the vocabulary above 40K
words.

The second worry was that increasing the vocabulary by too much might increase the word
error rate due to the increased number of' choices, For example, normally, if we double the
vocabulary, we might expect an increase in word error rate of about 40%! So we performed
an experiment in which we used the standard 20K language model for the 5K development
data. We found, to our surprise, that the error rate increased only slightly, from 8.7% to
9.3%. Therefore, we felt confident that we could increase the vocabulary as needed.

We considered possible explanations for the smal! increase in coror due to a larger
vocabulary. We realized that the answer was in the language nodel. In the first case, when
we just increase the vocabu'lry, the new words also nave the same probability in the
language model as the old words. However, in this case, all the new words that were added
had lower probabilities (at least for the unigram model) than the existing words. Let us
consider two possibilities that we would not falsely substitute a new woird for an old one.
If the new word were acoustically similar to one of the words in the test (and therefore

-- 3[ I- i i I L _ innn_ n_.._
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,imilar to a word in thie original ,ocabuklny, their the word would be correctly recognizcd
becatse the origiral word would always hae a higher language model probability. If, on
the other hand, the new word were acoustically very different from the word being spoken,
then we Might expect that our acoustic models would prevent the new word from being
chosen over the old word, While the argument mnkes some sense, we did not expect the
loss for increasing tLe vocabulary from 5K words to 20K words to be so small.

Finally, the third question is whether the new words would be recognized when they did
occur, since (as menti..ned :-hove) their language model probabilities were generally low.
In fact, we found thlat, ,ven Ithou gh tile erlor rate Ii w these new words was higher thaln for
the more likely word.,, wc were still able to recognize about 50,7% to 70% of them
correctly, presumnably baed largely on tile acoustic model. Thus, the net effect of this was
to reduce the wo•,l d error rate by about I ( to 115' ) absolute.

5.4 Modeling Spoken Language

Another effect that we work.,d on was t(le difference be-"cen the processed text, as defined
by the preprocessor, and the words that people actually used when reading WSJ text. In
the pilot WSJ corpus, the subjects were prompted with texts that had already beezi
"normalized", so that there was no ambiguity about howv to read a sentence. 1-lowever, in
the WSJI corpus, subjects were instructed to read the original texts and to say whatever
seemed most appropriate to th.nm. Since the WSJ I promptilig texts were not normalized to
deterministic word sequences, subjects showed considerable variability in their reading of
the prompting text.

However, the standard languge model was derived from the normalized text produced by
the preprocessor. This resulted in a mismatch between 'he language model and the actual
word sequences that were spoken. While the preprocessor was quite good at predicting
what people said most of the time, there were several cases where people used different
words than predicted. For example, the preprocessor predicted that strings like "$234"
would be read as "two hundred thirty four dollars". But in fact, most people read this as
"two hundred AND thirty four dollars". For another extreme example, the preprocessor's
prediction of "10.4" was "tell point four", but the subject (in the WSJI development data)
read this as "ten and four tenths". There were many other similar examples.

The standard model for the tests was dhe "nonverbalized punctuation" (NVP) model, which
assumes that the readers never speak any of the punctuation words. The other taodel that
had been defined was the "verbalized punctuation" (VP) model, which assumed that all of
the punctuation was read out loud. This year, the subjects were instructed that they were
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free to roild [he pulllcuatioll out JQLIud 01r no1, ini vdh. bever \%.v they fcel most comfltortable.

11It rii out thai people didln'l %crbalwti imoi puoi, -.'.iation. llowever, they regularly
verbalied qu olation mnarks in mallny different vwal that were all different than l the ways

predicted by the standard preprocessor.

.There were also several words that were reid differently by subjects. For example, subjects
pronounced abbreviations like, "CORP." and "INC.". While the preprocessor assumed that
all abbreviations would be read as full v irds

We u .,ed two imiethods to model tile way,, pCeo+plle ,.'wiall.\ mread text. The sim plerI applroach
\,,as It include tIle text of tile acoustic t'am ilng d.1t,1 ill tile language niodel Iraining. That is.
\we simnply added thie 37K sentence transcriptions from the acoustic training to the 2M
"sentences of trailning text. The advanlage of this method is that il modeled what people
actually said. The system W;'; detiitely riole MNIkely to recogitize words or sequences that
were previously imtpossible Tile ploblhin with this inethod was that tile ainount of
Itranscribed speech was quite sniall ahou n50 time is smaller) comipared to (the original
training text. We tried repeaiing the traliscripti•i ,eves'erm l times, bilt we found that the
effect was not as stroung as we would like.

A more powerful approach was to suinulate the effects of the different word choices by
simple rules which were applied to all of the 35M words of ,anguage training text. We

chose to use the following rules:

Preprocessed Text Simulated Text
HUNDRED Inumberi I !UNDRD AND Inumiher]
ONE HUNDRED A HUNDRED
ONE D.QLLAR A DOLLAR
ZERO POINT [number] POINT [numberl
AND ONE HALF AND A HALF
AND ONE QUARTER AND A QUARTER

Thus, for example, if the sentence consists of the pattern "hundred twenty", we repeated
the same sentence with "hundred AND twenty".

The result was that about one fifth of the sentences in the original corpus hazi some change
reflecting a difference in the way subjects read the original text Thus, this was equivalent
in weight to an equal amount of training text to the original text.

We found that this preprocessing of the text was suflicient to cover most of those cases
where the readers said things differently than the predictions. The recognition results
showed that the system now usually recognized the new word sequences and abbreviations
correctly.
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5.5 Incr-easing the Language Model rrain~ing

While 35.A words may sceem like a lot of data. it is lot enlough to cover all ol tile trigranis
that are likely 10 occur in thle testing data. So we considered otlier sources for additional
language modeling text. T'he only easily aclcssibit' data available was anl additional 3 years
Thforn 1 990-1992) of WSJ data front thle TIPSTER corintAS produced by thle Linguistic Data
Con sort Iium (I. X)ý

I ueethere were' tWO prolemsIII \% Itt 1.11w1L thil' dkliLa Flis. s,1nce thle tst1 data1: was
Miv it11 h-o1 co1 tonI987-1I989, ý%C %%e* sreCOncCrncd thatl this, nlight aIctuallý hurt1-

perforillanlce dute to somle differences inl tile topics. thiling that 3-\car perioid. S,'coitd, this
text Itad not beeni normalized wit he (lie Il'0pI'OCess( MI lLt We di d !lot h~ave aVaitabie it) LI S tilie
prep Proce ssor I tat \%as u sedt to tranlsf- torintlie ra w te S I Ito word Sequenclie s.

We decided it) use thie new text with nuni mllat proce"snlg. TIhe text was filtered to 'eniove
all tables, capt ions, nutvtnbers, etc. We replaced cachtinitiial examitple of' double-quote (")
with "QUOlTE ajid thle niatchling token with -UNQL' OFE or 'ENDQUO'EL, which were
tile tit0ist con1ini1ti Ways these words were said. No other changes were tmade. We just used
thle raw text as it was, One betictit of, this was that abbreviatiotns werie left as they appeared
in thle text rather thtatn expanded. Anty numbhers, dates, dol lar amount111S. etc, Were just
considered "uniknownt" words, anid did not contribute to the traitling. We assuited tttat we
had sufficient examiples of nunibers inl the original tcxt.

We found that adding this additional language ttaittiiig data reduced ttic error by about 7r%
of the error, indicatinig that the origitnal 35 million words was not sufficient for the models
we were Uising. ThuIs, the additioii of plain text, even though it was from a different three
years, and had liany gaps title to apparent utiknowtn wordts, stilt improved thle recognitioni
accuracy considerably.

5.6 Results

The following table shows the benefit of the enlarged 40K lexicon a.1d tile enhanced
language mnodel training on thle OOV rate ard the word error for the dlevelopmettt test and
the evaluation test,

Surprisingly, the addition of three year's ILM trainirlg (froml a period post-dating the test
data) improved performance oil the utterances that were completely itnside the vocabulary.
Evidently, even thle common tingrains are poorly trained with only thle 35 million word
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.-0V Word Li1,0r,

Vecst Set )2K 40 2.0K 40-IK
Developmen-t- -2 .2017 i6.4 12.92T 2 14.2 12.
Evaluation 1,83 0.23 14.2 12.2

Table 5.2: Enlarging tile lexicon improves OOV rate and error rate

WSJO c,•rpUS. Overall, ouut mcodilicaton,, to the le\.c and gran•lnllar training reduced tile
word error by 14-22,-,.

5.7 Spontaneous Dictation

Another area we investigated %.as spontaneous dictation. The subjects were primarily
former or practicing journalists with some experience at dictation. They were instructed to
dictate general and financial news stories that would be appropriate for a newspaper like
WSJ. In general, the journalists chose topics of recent interest. rhis meant that the original
language model was often out of date for the subject. As a result, the percentage of OOV
words increased (to about 4%), and the language model taken from WSJ text was less
appropriate.

The OOV words in the spontaneous data were more likely to be proper nouns fronti recent
events that were not covered by the LM training material. To counter this, we added all
(1,028) of the new words that were found in the spontaneous [ortion of the acoustic
training data in WSJI. This mostly included topical names (e.g., Hillary Rodham, NAFTA,
etc.).

In order to account for some of the differences between the read text and the spontaneous
text, and to have language model probabilities for the new words, we added the training
transcriptions of the spontaneous dictation (about 8K sentences) to the LM training as well.

New weights for the new language model, IIMM, and Segmental Neural Network were all
optimized on spontaneous development test data. The table belo, .,hows that the OOV
remains near 1% even after the enlargement to a 41K lexicon.

As can be seen, increasing the vocabulary size from 20K to 40K significantly reduced the
OOV rate. It is important to point out that in this case, we did nut have the benefit of a
word frequency list for spontaneous sucech, and that the source of speech had an unlimited
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0. 0OV " % Word Error
ITest Set [ F-O7K-j40-q41 K 1 20Kj- 41K
Development 2.9 1.4 0.tj - 21.7
Evaluation 4.8 i 1.9 1.5 124. 9.1

Table 5.3: DOV rate and error rate for 41 K lexicon

vocabulary. So the reduction in OOV rate ik certainl\ a f'air - if not pessimistic - estimate
of the rcal benellt froml increasing the vocabulary. A..ding the few new words observed in
the spontaneous specch also helped somvewhat, but not nearly as much. The sample of only
8,000 sentences is clearly not suflicient to tind all the new words that people might use.
Presumably, if the sample of spontaneous speech wre large enough to derive word
frequencies, then we could choose a much better list of 40K words with a lower OOV rate.

Overall, the 41K trigram reduces the word error by 23% over the 20K standard trigram on
the November '93 CSR S9 evaluation test. We estimate that more than half of this gain
was due to the decreased percentage of OOV words, and the remainder was due to the
increased language model training, including specific examples of spontaneous dictation.

5.8 Conclusions

We found the following interesting results:

0 Expanding the vocabulary with less frequent words does not substantially increase
the word error on those words already in the vocabulary, but does eliminate many
errors due to OOV words.

a Doubling the amount of language model training text improves the language model,
even though the text comes from different years than the test, and even though the
text was not preprocessed into proper lexical forms.

e It is possible to improve the quality of the language mcleeling text by modeliog the
differences between the predicted reading style and some examples of actual
transcriptions.

a Increasing the vocabulary size and language training had a bigger effect on
spontaneous speech than it did for read speech.

____ ____ __



'Chapter 6

HUM - Hidden Understanding Model

6.1 Introduction

uln this chapter, we describe and eCaluate hidden understanding models, a statistical
learning approach to natural language understanding. Given a string of words, hidden
understanding models determine the most likely meaning for the string. We discuss (I) the
problem of representing meaning in this framework, (2) the structure of the statistical
model, (3) the process o"' training the model, and (4) the process of understanding using the
model. Finally, we give experimental results, including results on an ARPA evaluation.

Hidden understanding models are an innovative class of staLIstical mechanisms that, given
a string of words, determines the most likely meaninig for the string. The overall approach
represents a substantial departure from traditional techniques by replacing hand-crafted
grammars and rules with statistical models that are automatically learned from examples.
Hidden understanding models were primarily motivated by techniques that have been
extremely successful in speech recognition, especially hidden Markov models [18]. Related
techniques have previously been applied to the problem of identifying concept sequences
within a sentence [52]. In addition, the approach contains elements of other natural
language processing techniques including semantic grammars [76, 321, augmented
transition networks (ATNs) 178], probabilistic parsing [29, 27, 591, and automatic grammar
induction [511].

Hidden understanding models are capable of learning a variety of meaning representations,
ranging from simple domain-specific representations, to ones at a level of detail and
sophistication comparable to current natural language systcens. In fact, a hidden

63
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understainding miodel cun hie used to produce a re, cmtation with essentially the same
n iformnat ionl conicl nitas the seninan tic graph uised h% m Del phi \sterni 1221 a genteral

purpose NLPI system. which utilizes it modified Demmeit Clause Giramimnar formalism, This
fact made it possible to interface a hidden unidersandin g system ito the discourse processi hg

-and data- base retrieval coniponients ot Delphi to orniluCC a complete end to end system.
This hybrid systemn participated in the 1993 ATIS natural language evaluation,. Although
only four mnontlis old, the scores achieved by the . oiiihined system were qu~ite respectable.

Because ol diff~erenices% between ltIaniguage u nderstaindtin g and s peechI rccognit iion, sign ilicant
chiange s are requtried iii the hi dde n M varko v miiodel c ti odol og y Unitlike speech, whtere
each Ii I io eiil reicsouIts i it a local seq uentce of spec ti a. thec relation he iwee-Ii th lienc alln ig of it
Senitetice atid the sequence of words is not a sinipll' llinear seqIUentitl nIiodL. l-1igaage is
iiiherently nested, With subIgroupIIS o1f COtCep)IS WiHIn) Other con1ceptS.

A statistical system for uiiderstandiing language iiiuIIt take this oiid oilier diftereciecs into
accounit ill its overall desigin. Ill principle, wve has c Gle tollowiig, reqo tii-elenils for a hliddenl
tunde rstatnd inrg sy stc ii

@ A notational system for expressintg nieanintgs.

o A statistical model thai is capable ot representing mecanings anid the association
between meanings and words.

a Ani automatic training programn which, given pairis of mecanings and word sequenI)ces,
canl estimate the parameters of a statistical moi~del.

@ An-undcrstanding program that canl scarch the statistical miodel to finid the most
likely mecaning given a word sequence.

Below, we desrribe solutions for each of these requirements, arid describe the relationship
of these solutions to other work inl st~cchastie grammars and probabilistic parsing. Finally,
we will report onl initial exl' :rinicnts with hidden understanding models,

6.2 Expressing Meanings

One of the key requirements for a hidden understanding model is that thie nmeaning
represcmntation must be both precise arid appropriate for automatic learning techniques,

Spccific..lly. we require a meaning ýepreseiitation that is:
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prog~tnlexpressions

Figure 6t. 1: The Main ('onl:onents of' a Ii iddeit Understandinig Systemi

"* Expressve. It must be able to ox press niiantings over tl.o Centir C range of, utterances
that are likely to occur in ani U isalicaion.

"* An nut tab Ic, 1t must he possibhie to produce acc urate an notat ionls or01 a1 Sa Ii~i C itt I
large Corp• Withi an acceptable level of hunnan eflkrtt

" Fraigratle. It must he possible to estimate the model paramnetrs itroh a rasotnable
nuiihbcr of training examples,

" Tractbie, IThere niust be a ion tplutat ionially tractahle algo•i thi capable of searchintr g
the meaning space.

In order to facilitate annotation ofb a training corpus, meaning expressions should be as
simple as possible. Frame based ropresse tatioats, such as the example shown in Figure 6.2,
have tile advantage that they are relatively simple ~o understand. A difficulty Withi this style
of rcpresentation is that the frames do not align directly to the Words of' thle senttitees. In
particular, a meaning frame contains few explicit clues as to how the words of a sentence
imply the structural characteristics of the frame. Tree structured meaning represcntations,
discussed in the next section, have the advantage that they can be fully aligned tu time
words of a sentcnce. The cost is that these tree structured representations are more detailed
than their frame based counterparts, thereby requiring greater annotalion effort.
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SHOW:
FLIGHTS:

• -. TIM E :
PART-OF-DAY: morning

ORIGIN:
CITY: ,Bostopj

DEST:
CITY: San Francisco

DATE:
DAY-OF.WEEK: Tuesday

Please show me Mron7ingflighisfronj Boston to San

Francisco on Tuesday,

Figure 6.2: A Frame Based Meaning Rcprescntation

Fortunately, the techniques developed for trec structured repres•ntations can he cxtended to
simpler frame representations as Nyell.

6.2.1 Tree Structured Meaning Representations

TThe central characteristic of a tree structured representation is that individual concepts
appear as nodes in a tree, with component concepts appearing as nodes attached directly
below them. For example, the concept of a flight in the ATIS domain has component
concepts including airline, flight number, origin, and destination. These could then form
part of the representation for the phrase: United flight 203 from Dallas to Atlanta. The use
of a hierarchical representation is one characteristic that distinguishes hidden understanding
models from earlier work in which meaning is represented by a linear sequence of
concepts [521.
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flight

atillCnI-nunit offIn dest

sIio, airline fliglht 0i11u11 ort lgu ,I(t dest cltc term tnu1

Inldicalor Inaille idicai r numnbetr Ilndicatolr Iame¢ Indmtc or 13111e nodes

Yo lime (tJiied fhlght 203 /fini )aill+i to Adait a wo.rds

Figure 6.3: A Tree Structured Meaning Representation

A requirement for tree structured representations is that the order of the component
concepts must match the order of the words they correspond to. Thus, the representation of
the phrase flight 203 to Atlanta from Dallas on United includes the same nodes as the
earlier examnple, but in a different order. For both examples, hcwevcr, the interpretation is
identical.

At the leaves of a meaning tree are the words of the sentcnce. We distinguish between
nodes that appear above other nodes, and those that appear directly above the words.
These will be referred to as nonterminal nodes and terminal nodes respectively, forming
two disjoint sets. No node has both words and other nodes appearing directly below it.

Figure 6.3 shows an example of a typical meaning tree. In this example, the flight node
represents the abstract concept of a flight, which is a structured entity that may contain an
origin, a destination, and other component concepts. Appearing directly above the word
"flight" is a terminal node, which we call aflight indicator. This name is chosen to
distinguish it from the flight node, and also because the word flight, in some sense,
indicates the presence of a flight concept. Similarly, there are airline indicators, origin
indicators, and destination indicators.
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Ilbghl

cliuse

she :1 ghl $10 p
Mlo50\ Cr 0 1l .

shroe hhlir ' a s po rC5• l I0 nor•s,.• I1jqhrI ' / lo / ", 'op • propt r
In 111idI~laror I ni Ioror rr 01u ; u111t road 'rrtnAor del wa vcrr

1
1r I darnlt 011 l) .' ¢1

. - . C " IW a d Op r e p -

Figure 6.4: A Spccialized Sublanguage Analysis and a Full Syntactic Analysis

One view of these tree structured representations is that they are parse trces produced
according to a semantic grammar. In this view, the dominance relations of the grammar
are predetermined by the annotation schema, while the precedence relations are learned
from the training examples,

6.2.2 Alternative Tree Representations

Tree structured meaning expressions can rangc in complexity from simple special purpose
sublanguage representations to the structural equivalent of detailed syntactic parse trecs.
The possibilities are limited only by two fundamental requirements: (1) semantic concepts
must be hierarchicaliy nested within a tree structure, and (2) the sets of terminal and
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lonterI•ollal nodcs' 1IU11[t renamln ds'-inotlli. Roth ol '-e requirenllents can be satisfied by
[Wes iossesrnsg most ol" (he ItrLrCtu la charactcrie-., of con,.entional syntactic parsc trees.
Since our objective is to model meaning, the node- must still be labeled to reflect semantic
categories. However, additional and augmented laihls may be introduced to reflect
syntactic categories as well.

Representations of this form contain significantly more internal structure than specialized
sublanguage models. This can be seen in the exanple in Figure 6A4. The specialized
sublar;guage represcniation requires only seven ilod:',c, while a full syntactically motivated
anal v'sis requires tifteen. The additional nodes arc ,-ed to diStinguish what is being shos%,ii
to Whom. to reliect the fact that the stopover pllra,'c is part of a relative clause, and to
deterruirle th1e internal structure of the relativCie cladr,,.

One interesting characteriistico tl hlie more elabhorae trees is their similarity to those
produced by classical, liinguisticall v motivated, MNuItMlr] Ihinguage systems. Thus, a hidden
understandinrg model can serve to replace the pari-oIl speech tagger, parser. and semantic
interpreter of a classical systeni. Instead of writing gramnimar and semantic interpretation
rules by hand, the traininig program tautomatiically o,,ni,,tructs a statistical model from
examples of meaning trees.

Regardless of the details of the tree structure and labe.,,, the components comprising a
hidden understanding system reinrrin unchanged. The only difference is in how the system
is trained.

6.2.3 Frame Based Representations

One way to think of a frame based meaning is as a partially specified tree in which some
words arc not accounted for. Nevertheless, a friame representation is a complete meaning
representation in the sense that it fully specifies the concepts and structure comprising the
meaning. In terms of a tree structured representation, the set of nonterminral nodes is fully
specified, while some of the terminal nodes may be omitted.

The missing terminal nodes are said to be hidden, in the sense that every word is required
to align to some terminal node, but the alignment is not necessarily given by the meaning
frame. These hidden nodes must later be aligned as part of the training process. The
general idea is to assign a small number of free terminal nodes (typically one or two)
beneath every nonterminal node. These are then free to align to any unassigned words,
provided that the overall tree structure is not violated. An EM algorithm (Estimate-
Maximize) is used to organize the unassigned terminal nodes into classes that correspond
to individual words and phrases, and that bind to particular abstract concepts. Figure 6.5



Show

p.eciJied

Poll cllIt D•in• P la

Indd ll Of hddci den a Iddci, hJudelk O I'wt"l
WI ali Nli Week sple~ified

Phca, sihow me' wwvvlu,', flljhii j ;,l / I n JO 01i 10 .', i"I'alIC/ IO ' itueSda )'

Figure 6.5: A Tree Structure Corresponding to a -rame Representation

shows the complete meaning tree with hidden nodes corresponding to the frame in Figure
6.2.

If wt consider tree structured meaning expressions as parse trees which are generated
according to some incompletely specified grammar, then the problem of aligning the
hidden nodes can be considered as a grammar induction problem. In this way, the problem
of aligning the hidden nodes given only a partially specified set of trees is analogous to the
problem of fully parsing a training corpus given only a partial bracketing. The difference is
that while a partial bracketing determines constituent boundaries that cannot be crossed, a
partially specified tree determines structure that must be prescrved.

! I
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6.3 The Statistical Model

One central characteristic of hidden understanding mnodels is that they are gem'rative. From
this viewpoint, language is produced by a ivo component statistical process. The first
component chooses the meaning to be expressed, effectively deciding what to say. The
"second component selects word sequences to expres,, that meaning, effectively deciding
how to say it. The first phase is referred to as tile %.,mantic hliwiuage model, and can ice
thought of as a stochastic process that produces nunt ing expressions selected fronti a
-.nliver"C of meanings. The second phase i, ref errd tas the hcleical reah(ictill mode,' and
Can hc tllought of aIs a slochastic proc.ss t1ht ge•nlC..'Cs word', onCCe a meaning is given.

B\v analogy with hidden Markov models, wýc refer ,, tile CoinbmIta)in of thes.,e two models
as a hidden understaandinlg model. The wnord hidden refers to the fact thiat Only words cat
lie observed. The internal states of eacih of the two models are unseen and must be infCer-Cd
from the words. The problem of language understanding, then, is to recover t(ie most likely
ineaing structure Oiven a sequence of' words. Mote Iorml1ally, understanding., word
sequence W is accomplished by searching mniong all possible meanings for some meaning
M such mhat P(MIW) is nIaxiniied. By Baycs Rule. P(MIW) can be iewritten as:

P01.\I IV) = POWIAhP(m)

Now, since P(W) does not depend oti M, maximiz.ing P(MIW) is equivalent to
maximizing the product P(WIM) P(M). -However, P(M "V) is simply our lexical
realization model, and P(M) is simply our semantic language model. Thus, by searching a
combination of these models it is possible to lind the maximum likelihood meaning M
given word sequence W. Considering the statistical model as a stochastic grammar, the
problem of determining M given W is analogous to the problem of finding the most likely
derivation for W according to that grammar.

6.3.1 Semantic Language Model

t.or tree structured meaning representations individual nonterminal nodes determine
particular abstract semantic concepts. In the semantic language model, each abstract
concept corresponds to a probabilistic stale tran; ilion network. All such networks are then
combined into a single probabilistic recursive transition network, forming the entire
semantic language model.
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"T'he nlet",ork C'iire mOldI fig to a paltliCtl]l , ahstra,. i nc ecpi co itsl i of states for eaich of its
coIllpoltlnt concepts. together with ot, extra statc\ :ait detine the entry and exit points.
Every Componllent concept is fully connected to c% e: ' other component concept, with
additional paths leading from the entry state to each component concept, and from each
colllpolnmnLt concept to tile exit state. Figure 6.6 slim,.s a sample network corresponding to
theflight concept. Of course, there are many more tlight component concepts if, tile ATIS
domain than actually appear in this example. Associated with each arc is a probability
valie, in a siliIar fashion to the TINA ;ysteni 151" These pro babilities have the form
P(StaterdStatcn - I, Context), which is the pi. 'ability of a taking transition from one
state to•l .liothle withiiin a particula: context. TIhus. -.. ' arc frotItn origiu I to h'st has
probability 1t(dest'origin, flight), ieaning the p ,h,1abilite of etitering d.('t from moigili
within the conitle. of the flight network . Preso malk. this probability is relatively high,
since people usually nmelltion tile de.,tination of at iJmht directly alter mentioning its origin.
Cotilvcrscly, P(origil[destt 1flight) is probably I 'v. bccausc people don't usually express
concepts in tllat ord'er. Thus, while all paths throthl tile state Space are possible, sotie
have much ,,igher probabilities than others.

Within a concept network, comnpon.•lt concept slatc, exist for both nonterminal concepts,
such as origin, as well as termtminal concepts, such awf flight indicator. Arrows pointing into
nonterminal states indicate entries into other networks, while arrows pointing away indicate
exits out of those networks. Terminal states correspond to networks as wcl', although these
are determined by the lexical realization model and ha.e a different internal structure.
Thus, every meaning ýree directly corres ponds directly to some particular path through the
state space. Figure 6.7 shows a fiteaning tree and its corresponding path through state
space.

Viewed as a grammar, the semantic language model is expressed directly as a collection of
networks rather haln as a collection of production rules. These networks represent
grammatical constraints in a somewhat different fashion than do granimars based on
production rules. In this model. constituents may appear beneath nonterminal nodes in any
arbitrary order, while preferences for some orderings are determined through the use of
probabilities. By contrast, most grammars limit the ordering of constituents to an explicit
set which is specified by the grammar rules. The approach taken in the TINA system
eliminates many ordering constraints while retaining the local state transition constraints
determined by its grammar. We believe that an unconstrained ordering of constraints
increases parsing robustness, while thle prefcrences determined by the arc probabilities help
minimize overgeneration.



CHAPTER 6. IllM'A! - HIDN)I)ENVI)IRMNl)' MOD,.IL. 73

4, y.1b' , ' '"

,ll,:r • dtJ a,,,, r•, . . .. .ir : . Iiii

At

FglPialNe Correspn in t t ..... Concept

S~Figure 6.6: A Partial Network Corresponding to the ATIS Flight Concept
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6.3.2 Lexical Realization Model

Just as nonterminal tree nodes correspond to netw&otks in the semantic language model,
terminal nodes correspond to networks in the lexical realization model. The difference is
that semantic language networks specify transition probabilities between states, whiie

-le ical realization networks specify transition probabilities between words. Lexical
realization probabilities have the form P(wordnlwordn - I, context), which is the
probability of taking a transition fro n) one word to lnother g ive a particular context.
Thus, P"s(how please, show -. indicator) is the pIoroability that the word show follows the

word please \% ithin the context ofI a show iulicato, '1rase. In addition, there are two

rI.eudO-wirdS. *hegint* and *end', which indicate the beginning and endin- o1' phrases.
I'l'tus, we have probtabili ties such as P(pleusel * b. it* *• show-indicattor), which is the
probability thIat please is the first word of' a sihon e.,icator phrase, and
I*eL'nld - :tle, show indicator) . which is the INIhability oA exiting a show\\ indicator
phrase gi\ell thai tile pieevious wo id was tni.

6.4 The Understanding Component

\s we have seen, understanding a word string W requires linding a meaning M such that
the probability P(WIM)P(M) is maximized. Since, the semantic language model and the
ILxical realization model are both probabilistic networks, P(WIM)P(M) is the probability
of a particular path through the combined network. Thus, the problem of understanding is

fý, find the. highest probability path among all possible paths, wheric the probability of a
path is the product of all the transition probabilities along Jiat path.

PtPath) = TT u(n) P(state. rtaie,' context) if tin Semantic Language Model 1
', \ P(word,wovrd,_.I,co'ntert) if tin Lexical Realization Model

(6.1)

Thus far, we have discussed the need to search among all nieanini,- for one with a
maximal probability. In fact, if ;t were necessary to search every path through the
combined network individually, the algorithm would require exponential time with respect
to sentence length. Fortunately, this can be drastically reduced by combining the
probability computation of common subpaths through dynamic programming. In particular,
because out meaning representation aligns to the words, the search canl be efficiently
performed using the well-known Viterbi [74] algorithm.
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Sinice ot r tinde rlinvg mlodel is a1 r~ecur`sI iyean sill- leVo Ik, hel States f'0ll the Vi terh
seCarch HILIMs he ii located dyiiarnliCadly as the search proceeds. lIn addition,ý it is necessary to
prune very low probability paths in order 10 keep the computation tractable, We have
developed anl elegant algorithm that integrates slaileallocation. Vitcrbi search, and pruning
all within a singlc traversal of a iree- like data 1troeLCurc. In this algorithm, each or the set

- of cur1rently active states is represented as a nodc in a trec. New nodes are added to the
tree aIs thle computation pushes into neCW Shi'IeitWOrký [fhat ale not curr-cntly active. .Stored
al cactIi node is thie probability of thle inost like ly p. it reachi. [hgilha state, loge the r wit lb
hack pointier Soufficienlt to ree ieale thle path a icr if" itc ded . W henlevyer thle probabIility of all

wltsi a subtree falls helow thle thre-Shol1d SpeCi I ' I hy the LaCm width, theC Clmil- SMI-C sh
IS prUned away.

6.5 The Training Compe" ent

InI order to t rain thle statistical modelI. we must e stimatae transition probabilities for thle
semantic language miodel and lexical realiz~ation model. lII thec case of fully specified
meaning trees, eachi mieaning free caln bc strallzlltlorwardly converted into a p~atht through
state space. Then, by counting occurrence aiid tranlsition frequencies along those paths, it is
possible to form simple estimates of' tile transition probabilities. Let C(s~at em, contexis)
denote thle numnber of times statemi has occurred in contexts, anid let
C(siatenjsitaen, caniexts) denote the number of' times that this condition has led to a
transition to state staten. Similarly, define Counts C(wordn, corntextl) and
C(wordnjwordrn, context1). Then, a direct estimate of the probabilities is given by:

P(statejIatae,,m context) - s context)

aind

P(wordiIwo-rd, conltext) = Oww-d~Iword., context)
C(word,,, context)

In. order to obtain robust estimates, these simple estimates are Smoothed with backed-off
.estimates [31], using techniques similar to those used in speech recognition [38, 55). Thus,
Pdvtatelnstatern, context) is smoothed with Pgastalenicontext), and
P-wordnl worda , context) is smoothed with Pt wordnlcontext). Robustness is further
increased through word classes. For example, Bssaon and San Francisco are both members
of the class of cities.

In the case of frame based representations, it is not always possible to construct ail exact
path through the state space corresponding to a meaning representation. Nevertheless, since

senrmielanuagemodl ad leica reliztitmmodl, i tie ese f fuly pecfiI
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trante,, are treated as partially ,,pecilied trees, ntoo- ! the patih can be reconstmucted, with
some portion s lnde terminied. Then, the prttial path A n be utse d to constrain a gradient
descent search, called the forward- backward algontohm [181 for estimating the model
parameters. This algorithm is an iterative pfocedurC for adjusting the model paraineters so
as to increase the likelihood of generating the training data, and is an instance of the
well-known class called EM (Estimate-Maxi mizi) ,igerithins.

6.6 Experimental Results

We have ito pIe men ted a hidde on uderstanditing s,,,il and )C rfoRnted a vuri ety 01'
experiments. InI addition, we participLted itt the I lQ3 ARPA t'IS NL evaluation. One
experiment involved a 1000 sentence ATIS Corpu,. ,nnotaled according to a simple
specialized sublatiguage toodel. The annotation el'if tt was split between two annotators,
Otie of whOmll was a systeU developer, while the tither was not. To annotate the training
data. we used a bootstrappinLg process in which onil the lirst 100 sentences were annotated
strictly by hand,

Thereafter, we worked in cycles of:

1. Running the training progratii using alt available annotated data.
2. Running the understanding component to annotate new sentences.
3. Hand cc- ..- ting the new annotations.

Annotating in this way, we found that a single annotator could produce 200 siactnces per
day. We then extracted the first 109 sentences as a test set, and trained 'hJi system on the
remaining 900 sentences. The results were as follows:

* 61% matched exactly.

* 21% had correct meanings, but did not match exactly.

* 28% had the wrong meaning.

Another experiment involved a 6000 sentence ATIS corpus, annotated according to a more
sophisticated meaning model. In this experiment, the Delphi system automatically
produced the annotation by printing out its own internal representation for each sentence,
converted into a more readable form. In order to maintain high quality annotations, we



('L.tTII?6 I{ • .17I~-. 'NI)1-'R.i'1..\VDIXGVOWI)I-I, 78

L:,CLd ('111 seittelCieCs lor which Delphi prodtuced a c,,Inplete prUse, and fol w,.hiCll it also
irl'ie ecd a correct ailnsWcr frolll (he dallabihe. \VWe Ohwn ri'noved 300 seni1 tencec as a test set,
and trained tile system on tile remaining 5700. The results \,.erc as follows:

a 85% matched exactly.

a 8% had correct inc-nings, but did not match ewactly.

a 71j had the w\%ong meaning.

For Ihe ARPIA e\'haluition, we coupllfled OUr hidden tilidcrflatlding system I) the discourse
antd backcild Conipolenis of (lie Delphi, Lsim! (lie entir'e 6000 sClntelnce corpus decribed
above as training dala, the •,svicinl proIduced a ,core of ' 26OtA sinplc error oil the ATIIS NI.
evaluation,. 1ty examiining lile T.rrOrS, we hasC rcached 1he conclusion thai nit~aly half are
dLue to simpAle progai'nnliing is.ue, especially in the interface between Delphi and the
hidden understanding system. In fact, the interface \, is still inconplete at tile lime ol ihe
evalulatioI,

We have just begun a series of experiments using frame based annotations, and are
continuing to reline our icchniqucs. In a preliminary test ilvo: ,ing a small corpus of 58,
ATIS sentences, the system correctly aligned die hidden states for over 95% of the
sentences in the corpus.

6.7 ULmitations

Several limitations to our current approach are worth noting. In a small number of cases,
lingu.tic movement phenoinena make it difficult to align the words of a sentence to ally
tree structured meaning expression without introducing crossings. In iuost cases, we have
been able to work around this problem by introducing minor changes in our annotation
such that the tree structure is maintained. A second limitation, due to the local nature of
the model, is an inability to handle nonloced phenomena such as conference. Finally, in
some cases the meaning of a sentence depends strongly upon the discourse state, which is
beyond the scope of the current model.

_ _
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6.8 Conclusions

We Ihave demonsirated the possibility of' automatically' learninug semantic representations
.diirccily fron a tIraining corpus thmrough the applicatll tof' statistical icchliuieItics. 111ilical
"results, including the results of an ARPA evaluation, indicate that these techniques are
"capable of relatively high levels of* performaiiace.

While hiddell uniderstanding models are bascd prjWm',idy oil tie concept, of' hidde NI ark ov
mnodels, we hiav also shown their Irclationship to 0-' 0, work ill '40Cshic cI'lIIaII'S Illd
prohahilih tivi parsingl .

Finally, sse haC n ioled son fillita oti L'to•u,.lt C(11.111 Wel) l al' . ie each o1 i e.
limitations as opportunitiies f~or fiutrhet. rese'luch andl 2 slort loll.
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