BEBN SYSTEMS AND TECHNOLOGIES

A Division of Bolt Beranch and Newman ing

AD-A286 349
B AR

ARPA Grder Number 8455 R
Contract Number: N00014-92-C-0035 L
Contract Duration: 16 Aprii 1992 - 30 June 1995 LAy

Principal Investigators: J. Makhoul, (617)873-332 Sy D
. M. Bates, (617)873-3496 ' '

Final Report

USABLE, REAL-TIME, INTERACTIVE SPOKEN
LANGUAGE SYSTEMS

Madeleine Bates, Robert Bobrow, Francis Kubala, Robert Ingria,
John Makhoul, Scott Miller, Long Nguyen, Sandra Peters, Richard
Schwartz, David Stallard, George Zavaliagkos

CLEARED
FOR OPEN PUBLICATION

September 1994 .
P ) poy 07 1994 B

CECTORS FAEEDOM OF INFORMATIOH
[RE R &€ ,,Tl“ ‘ I { ‘[ \,\(IA 0.PA)
TR FENGL

ity o7
005 r |

i l' !i Ill l|||||i||
i

A G/t AL




Contents

—
P i
l f
1 Pacclitive Sumindgry l/q;'/‘ l ! N
A S R | __,..___.\j
2 hverview of ARG 12
21 Intoducnon 1
22 The AVIS Domam and Corpos o . it
P21 ALS Doman . . A
222 Formal [ yaluanon Conditions : . !
23 BYBLOS  Speech Recogmuon L . 1
231 New Extensions tor Spontaneons Speech . 1
231 Forward-Backward N best Scareh Straepy T
233 hammg Condivons 0 000 00000 16
234 Speech Recogmtion Results . 0 L . : C L7
24 Delphy Natral Language Understandung o . . 17
241 Parsvng as Transduction  Granmaticad Relations S I8
242 Bidig rules”  the Semantics of Grammatica! Relations : 1\
2431 Robustness Based on Stativiies and Semantics : S0
20 Advantages of Prelphn’s Approe. b A

|




EEE

«

-

(SRS SYEENON B YA T [, i sy o A

o dmertace 21
7 Rewult 2
28 Reat fune Implementation . 2K
DU Sumnae 2
The Delpin Natural Language Understanding Syatem M
i Ineducnon . S Ui
P Goamimar Ned T Sy o Sematitios Tiicaee e 82
VU TH Fenmedness Handime The Semantie Tanker o 0 00 00 000 A5
V4 Quantiicaton . e e e e e 37
IS Discearse o000 e e 38
VOO Backend Mappig .0 oo 39
LT hterfuce To A Speech Recogmizer .00 000000 e 40
38 Results OF Formal Evalustion On ATIS . . . 0.0 o oL oo oo L. 41
39 Porting Delphi to the SPLINT Domain . . . . . . . e R 3
310 Conclusion And Summary . . . . . . oo e e 44
The Semantic Linker 45
4.1 Introduction . . ... .. e e e e e e e e e e e 45
4.2 Generating and Interpreting Fragments . . . . .. . .. .. .. e 46
4} Computing the Possible Links and Their Probabilities . . . .. .. ... .. 48

44 Scarching the Space of Combinations . . . . . .. ... L L 49




L

3

e Hhandhne Conecoone and 1 apsis
2 Hallucimanon .
45 Atter Combinanon - Genevating the Logieal Forme 0 00 00 000000

46 Resultvand Discasaion 00 L

Written Language Training for Spoken Lanpuage Modeling

S Inuoduction

S2 The WSS Corpus .0 00 00 0

S3 Revogmtion besiean . 00 000 o e
SA4 0 Madehng Spoken Language 000000000 L
5.5 Inereasing the Canguage Model Teming 000000000 oo
56 Results oo o o o e e e
5.7 Spontancous Diclation . . . . . Lo
5.8 Conclusions . .. ... e

HUM-- Hidden Understanding Model

6.1 Inwoduction . .. ......... e e e e e e .
6.2 Expressing Meanings . . .. .. ... .. .. e e e e
6.2.1 Tree Structured Meaning Representations . . . . . ... .. ... ..
6.2.2  Alternative Tree Representations . . . . . . . .. ... ... ....
6.2.3 Frame Based Representations . . . . .. ... ... .. ..... -
6.3 The Statistical Model . . . . .. .. .. L o

6.3.1 Semantic Language Mndel . . ... .. ... ..o

sS4

S

AN

St

SR

00

60

6!

62

66

68

69

Tl




A
M

N ek, ¥
1]

T

LT

A

T

6,32 Lenical Reabzavon Model o o0 0 o 000004

-y

6.4 The Understanding Component . .. .0 oo oo oL T
6.5 The Traimng Component . . . . . .. . . ... o o T0
0.6 Experimental Results . . 0 . o oo o o e T

7 Limuauons . ..o s TN

ox Conclusions 0000 oY




‘List of Tables

s

L]
)

Orhcial SPREC results on Peh9 2 Novt! and Noavi b est «ets
CCConect and Weighted error an the November "92 test st

“HCorrectand Sumple Lrror on the December "93 test set.

Qut of vocabulary words as o tlunction of vocabubny size
Enlarging tise lexicon improves OOV rate ar ' rror rale

OOV rate and error rale tor VK lexieon .. L L L.

§7

0l

62




'List of Figures

20 BEN'SSES ATIS Systemy o e 22
2.2 A Spoken Interact cnownh the BBN HARCYATS Syatem L 2
2.0 BUN/ATIS Answers a Question about Ground Transportanon .0 L L L 24
240 Uncrances Need Notbe Complete of Grammaiead 0000 000 0L 25
2.5 Using Prior Context, BBNAATTS Answers a Comples Query ... ... L 25
2.0 BBN/ATIS Provades a bull Vocabulary fost 0000 000000 20
27 BBN/ATIS Helpforthe User 000000 0000 20
2.8 The "Other..” Window Lets User Change System Parameters ... L. 27
b Systemy Diagram . .. Lo o e 3
32 Semantic Graph . .0 o000 o 33
33 Fragment Graphs . . . . .. . .. e R}
6.1 The Main Components of a Hidden Understanding System . . . . . ... .. 65
6.2 A Frame Based Meaning Representation . . . . . oL o000, 66O
6.3 A Trec Structured Meaning Representation . . .. o0 oL o000 0L 67
6.4 A Specialized Sublanguapge Analysis and a Full Syntactic Analysis Rt
6.5 A Tree Structure Corresponding to a Frame Representavion . . . . . . . .. 70

]




o A Tartal Newwork Correspondmy to the NTIS Flight Coneept 00 00000 73

607 A Meanmg Tree and its Corresponding Path Through State Space . . ... . 75

T o

LT
1

4
4




‘Chapter 1

Executive Summary

This is the final technical report for the project Usable, Real-Time, Inteructive Spoken Lan-
guage Systems, sponsored by the Advanced Rescarch Projects Apency (ARPA) and mon-
itored by ONR unde contract No. N0OO014-92-C-0035 (BBN Reference Number 11617)
during the period 16 April 1992 10 30 June 1994,

The objective of this project was to make the next significant advance in hvman-machine
interaction by developing a spoken language system (SLS) that operates in real-time while
maintaining high accuracy on cost-effective COTS (commercial, off-the-shelf) hardware.
The system has a highly interactive user interface, is largely user independent and to be
easily portable to new applications. The BBN HARC spoken Language system consists
of the Byblos speech recognition system and the Delphi or HUM language understanding
systen. |

Our rescarch has concentrated on tne development of an effective SLS system (that is,
the irtegration between speech and language processing), advances in language processing
to move away from a pipeline, syntax-first architecture 1o one in which syntax and semantics
play conplementary roles, processing ill-formed input in a principled, domain-independent
way, and developing a complewcly novel approach to language understanding.

The BYBLOS speech recogrition system ases a novel four-pass scarch strategy. It
“produces ordered lists of the N top-scoring hypotheses (N-best) which are then reordered
by several detailed knuwledge sources. The N-best strategy [48, 3, 26, 63, 64, 65] permits
the use of computationally prohivitive models by greatly reducing the search space to 4 few
dozen word sequences. It has enabled us to use cross-word-boundary triphone models and
trigram language models with ease. The N-best list is also a robust interface between speech
and natural language that provides a way to recover from speech errors in the top choice

8
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word sequence.

The Delphi language understanding system uses a definite clause grammar formalism,
augmented by the use of constraint nodes {69] and a labelled argument formalis,n. The
parsing algorithim uses a statistically trained agenda 1o produce the single best parse for an
input utterance [20]. We have added a robust fragmendt parser to deal with speech errors
"when the correct answer is not in the N-best list {23], We developed a new hybrid method
of representation that combines the best features of logical and frame representations. One
of the most important features of Delphi is the Semantic Linker, which 1s able 1o handle
ill-formed input by linking partially-undersiood fraements on the hasis of meaning, withowt
requiring a full svatactic analysis.

A novel, potentially high-payolT, approach to language understanding was initiated under
this contract. The approach, called HUM (Hidden Understanding Maodel) incorporites a
statistical model of meaning,  1f successful, HUM will lead to automatic acquisition of
linguistic knowledge, coupled with high performance.  An initial version of HUM was
implemented and tested in the Airline Travel Information Service (ATIS) domain. The test
showed the basic soundness of this novel approach [+6, 43).

In the area of portability, we examined several new tasks as possible targets for porting
the spoken language technology, including shared-map planning, multi-media conferencing,
and other database applications. We chose SPLINT, a database of information about Air
Force bases and equipment, and ported the HARC SLS to that database in conjunction with
another contract |6, 14].

During the period of this contract, although not as part of it, BBN released the first version
of the HARK™speech recognition system as a commercia procdiict, HARK is based in part
on BYBLOS speech recognition technology. HARK is the first product of its kind to tun
in real-time with a large vocabulary (over 2000 words) on off-the-shelf, audio-capable Unix
workstations. A companion product, the HARK Prototyper™, allows the HARK vocabulary

“and grammar to be configured by application programmers.

Major accomplishments achieved during this project include:

1. Designed and implemented an initial version of HUM (hidden understanding
mcdel), a new method for language understanding, based on ‘earning a statistical
model of semanlics from annotated data. The system minimizes the labor-intensive
writing of semantic rules and automates system training from data, resulting in a
greater level of domain independence.

2. Began the development of tools and processes for porting a spoken language
system to a new domain. The tools were tested by performing an actual port, under a
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Rome 1ab contract, w0 J database contaiming miormaton about Air Foree bases and

cquipment.

Y Proposed conerete steps toward defimng the SemEval evaluation methodology — a
domain-independent methodology for the evaluation of semantics capabilities ~ and

developed annotation tools to facilitate explorations of SemEval.

. 4. Extended the ATIS speech understanding system to the ATIS3 database,
increasing the vocabulary to abou: 3,070 words, and participated in the annual ARPA
evaluations. There was a sigaificant decrease v error rate over the previous year and
the BYBLOS system again had the Toghest speech recognition aceuracy in the
eviluation.

5. Our rescarch into the appropriate integration of lesical, syntactic, and semantic
knowledge produced a system that is capable o using efficiently whatever types of
knowledge will produce a valid interpretation of an utterance in context, Syntactic
Knowledge is used if it is available and rehiable, but an ctierance that is outside the
scope of DELPLHT's grammar can still be understood if phrases can be recognized
and combined semantically.

0. We developed a learnable model of semantics, to facilitate the acquisition of
domain-specific information that was formerly very labor intensive to produce.

7. At the 1992 ARPA Speech and Natural Language Workshop, BBN gave a
demonstration of the first 1000-word, real-time. continuous, speaker independent
speech recognition system implemented on an off-the-shelf workstation, without any
accelerator boards.

8. BBN also gave the first real-time demonstration of a complete spoken language
understanding system in the ATIS (Air Travel Information System) domain,

10.- We participated fully in the ATIS data collection effort, contributing a large
portion of the ATIS training and evaluation data,

1. A demo suite, which includes real-time speech recognition and understanding
demonstrations, was delivered to NSA and NIST. The demos run on the Silicon
Graphics Indigo. The real-time ATIS system has been used by NIST to collect ATIS
data from subjects.

Drs. Madeleine Bales and John Makhoul were invited to participate in the National
Academy of Sciences Colloguium on Human-Machine Communication by Voice, Irvine,
California, February 8-9, 1993, They gave the following presentations: Madeleine Bates,”
Models of Natural Language Understanding.”, John Makhoul, “State of the Ar in
Continuous Speech Recognition.”. These two papers appeared in a book published by the
"National Academy of Sciences|7, 45].
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We have chared and worked elosely with several ) ARPA-wide SLS program comniittees,
i particular the committee that determines the men adology Tor the ATIS systems (the
MADCOW commitice). Some of our contributions (o the evaluation methodology are
documented in |24, 731,

Dr. Madeleine Bates was Chair of the 1993 AREA Human Language Technology

-Workshop, which took place on Murch 21-24, 1993, at the Merrill Lynch Conference

Center, Plainsboro, NJ. [11] BBN presented demonstrations of the BBN real time ATIS
system il this workshop, and the BBN real time ATTS system was available in the demo
room throughout the workshop. She also co-chaired the Apphed Natural Language
Processing Conference in Trento, [y in April, 1992,

We partictpated in the annual ARPA Speech and N1 workshops, and the Human Language
Technology workshops, by presenting papers and giving demonstrations of the techinology
developed under this effort. References © the papers from these workshops, as well as
other presentations and papers produced under this contret, can be found in the
bibliography.

In Chapter 2 of this document, we present @ general overview of the BBN HARC spoken
language understanding system. Chapter 3 describes the Delphi natural language
component of HARC, and Chapter 4 details the Semantic Linker component of Delphi.
Some of the speech research curried out under this contract is discussed in Chapter 5, and
our most recent rescarch in a novel method of natural language processing is presented in
Chapter 0.
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Overview of HARC

2.1 Introduction
5 In this chapter we describe the design and performance of a complete spoken language
understanding system currently under development at L3M. The system, dubbed HARC
(Hear And Respond to Continuous speech), successfully integrates state-of-the-art specch
i‘; recognition and natural language understanding subsystems. The system has been tested
ft' extensively on a restricted airline travel information (ATIS) domain with a vocabulary of
g over 1000 words. In this application, the system functions as an electronic airline guide,
; searching a database (o answer questions posed by the user,
5 HARC is implemented in portable, high-level software that runs in real time on today's
5‘; workstations to support interactive online human-machine dialogs at a very comfortable

.

“pace. No special purpose hardware is required other than an A/D converter to digitize the
speech.

The sysiem works well for any native speaker of American English and does not require
any enrollment data from the users. HARC has shown consistently high performance in
formal evaluations on the ATIS domain.

The BBN HARC spoken language system weds two technologies, speech recognition and
natural language understanding, into a deployable human-machine interface. The problem
of understanding goal-directed spontaneous speecli is harder than recognizing and
understanding read text, due to greater variety in the speech and language produced. We
have made minor mhdifications to our speech recognition and understanding ethods to
deal with these variabilities. The sycech recognition uses a novel multipass search surategy

12
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CHAPTER 2. OVERVIEW OF HARC 13

that allows preat flexability and efticiency in the apphication of powertul knowledge
sources. The natural language system is based on tormal linguistic principles with
extensions to deal with speech errors and to make it robust to natural variations in
language. The result is a very usable system for domains of moderate complexity.

"While the techniques used here are general, the inost complete test of the whole system
-thus far was made using the ATIS corpus, which is briefly described in Section 2. Section
5 describes the techniques used and the results obtained for speceh recognition, and Section
4 is devoted to natural language. The methods for combining speech recognition and
language understanding, along with results for the combined system are given in Section §.
Finaliv, in Secuon 6, we describe o real-time implementation of the system that runs
entrely in software on a single workstation.

More details on the specific technigues used, the makeup of the corpus, and the results cun
be found in the papers presented at the ARPA Workshops on Speech and Nawral Language
and other meetings {41, 23, 21, 44, 33, 40, 61, 46, 70, 40, 50, 62, 49, 11, 48].

2.2 The ATIS Domain and Corpus

2.2.1 ATIS Domain

The Air Travel Information Service (ATIS) is a system for getting information about
flights. The inforniation containied in the database is similar to that found in the Official
Airline Guide (OAG) but is for a small number of citics. The ATIS corpus consists of
spoken queries by a large number of users who were trying to solve travel related
problems. The ATISO and ATIS| corpora contain about 4,000 utterances, most of which
were read sentences, mostly by speakers with dialects from the southern U.S. The ATIS2
traiming corpus consists of 12,214 spontaneous utterances from 349 subjects (159 female,
130 male) who were using simulated or real speech understanding systems in order to
obtain realistic speech and language. The data originated from 3 collection sites using a
variety of strategies for eliciting and captusing spontaneous queries from the subjects [44],
“with a disproportionate amourt of the data coming from MIT.

1,289 utterances were truncated or contained word fragiments due (o stultering. Many more
contained various nonspeech sounds. There were also frequent long pauses and hesitations
in the data. Each sentence in the corpus was classiiied as class A (self contained meaning),
class D (referring to some previous sentence), or class X (impossible o answer for a
variety of reasons). The speech recognitivit system was tested on all three classes, although
-the results for classes A and D were given more importance. The natural language systein
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and combincd speech understandimg ssvstems werc ored only o classes A and D,
athouch they were presented waith all o the test wences i therr ongimal order.

2.2.2 Formal Evaluation Conditions

The November "92 evaluation test set bas data from 38 speakers. The number of utterances
per speaker vaned from 2 to 41, hat the number ol utlerances from cach of the &
data-collecuon sites was carefully balanced Allreults given were collected with the
Sennhetser microphone (same as the traimng ditar The recoguition mode was
speaker-independent - the test speakers were not 1 the training set and every semence was
treated independently.

By committee decision there was no common baseine control condition for the training
data or speech grammar to be used lor the ATIS tests. The only constraint was that the
single common test set must be used.

2.3 BYBLOS - Speech Recognition

BYBLOS is a state-of-the-art, phonctically-based, continuous speech recognition system
that has been under development at BBN for over seven years. This system introduced an
effective strategy for using context-dependent phonetic hidden Markov models (HMM) and
demonstiated their feasibility for large vocabulary, conlinuous speech applications [25].
Over the years, the core algorithms have been refined primurily on artificial applications
using 1cad speech for training and testing, These same basic algorithins, with small
extensions, have proven (o be remarkably suited to the recognition of completely
spontaneous speech produced in a goal-directed task, such as ATIS,

2.3.1 New Extensiens for Spontaneous Speech

Spontaneous queries spoken in a problem-solving dialog zxhibit a wide variety of
disfluencies. There were three very frequent effects that we attenipied to solve -
excessively long segiments of waveform with no speech, poorly transcribed training
utterances, and a variety of nonspeech sounds produced by the user.

When background noise is present, the HMM is not a particularly reliable discriminator of
speech vs. silence, and many insertion errors result. We chose to find and truncate long
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regions o fonspeech with aovens ehable enerpy doapeed detector that van deal wath
noive buists near the speechs The spee. b detecton ~sevenad sple adaptive
SNR-dependent detection thiesholds

Typically, there are many untranscribed short segiments of background silence remaiming i
the waveformy after truncating the long ones, W lound them o be so numerous that they
‘measurably degraded the performance gam usually denved trom using
cross-word-boundary tnphone HMMy We desised  procedure to automatically mark the
missing silence Tocations by runnmg the recognizes i the taming data constrained to the
correct word sequence, but allowing optional silea. between cach word. Then we
retraned the model using the output ol the tecogni 1 as correcied transeriphions

Spontancous data fram nanve speakers exhiings a e number and variety of nonspeech
eventy, such as pause Giflers tum’s and uli™s, throar Cleanngs, coughs, faughter, and heavy
breath noise. We attenpted 1o model @ dozen browd classes of nonspeech sounds that were
hoth prominent and numerous. flowever, when we allowed the decoder to find nonspeech
models between words, we fourd that there were imore false detections than correct ones.
Because our silence model had e difticulty dealimg witl breath noises, lip smacks, and
other noises, our best resalts were achieved by making the nonspeech models very unlikely
in the grammar.

2.3.2 Forward-Backward N-best Search Strategy

The BYBLOS speech recognition system uses a novel multi-pass search strategy designed
10 usc pragressively more detailed models on a correspondingly reduced search space. It
“produces an ordered list of the N top-scoring hypotheses which is then reordered by
several detailed knowledge sources. This N-best strategy {26, 63] permits the use of
otherwise computationally prohibitive models by greatly reducing the search space to a few
{N=20-100) word sequences. It has enabled us to use cross-word-boundary r'phone
models and irigram language models with euse. The N-besi list is also a robus:! interface
between speech and natural language that provides a way to recover from speech errors.

- We use a 4-pass approach to produce the N-best lists for natural language orocessing,
1. A forward pass with a bigram grammar and discretc HMM models saves the top
word-ending scores and times [S].

2. A fast time-synchronous backward pass produces an initial N-best list using the
Word-Dapendent N-best algorithm [64].
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Tolbach of the Nosentence hypotheses s resce sith arescward-boundary tniphones
and semr-contnuous denstty FIMM S and the best Bist s reordered

4. The N-best hist is rescored wath a trigram gea nmar and reerdered again,

Each utterance is quantized and decoded three tnies. once with cach gender-dependent
“model and once with a gender-independent model. | or each utterance, the N-best list with
the highes top- 1 hypothesis score 15 chosen. The top choice 1 the final list constitutes the
speech recognition results reported below. Then the entire fist s passed o the language
understanding component for further reord ring and aterpretanon.

233 'f'raining Conditions

Although there were no restinctions on the training Jata o be used, we used speech data
from the ATIS2 subcorpus exclusively to train the parumeters of the acoustic model, We
did this because we felt that the ATIS2 subset best represented the conditions of the test
and because we felt that simply adding more traimng data o achieve incremental
improvements is scientifically uninteresting,

However, we filtered the training data for quality in several ways. We removed from the
traixing Any utterances that were marked as truncated, containing a word fragment, or
containing rare nonspeech events. Our forward-backward training program also
automatically rejects any input that fails to align properly, thereby discarding many
senlences with incorrect transeriptions. These steps removed 1,289 utterances from !
consideration. |

After holding out the 1001 sentences of the Feb. '92 test as a development test set, we
were left with a total of 10925 utterances for training the HMMs. For statistical language
modu, training we used all available (17,313) sentence texts {rom ATISO, ATISI, and
ATIS2 (excluding the development test sentences from the language model training during
the development phase).

The lexicon used for recognition was initialized by including all words observed in the
complcte grammar training texts. Common closed-class words such as days of the week,
“months, tumbers, plane types, etc., were completed by hand. Similarly, we included
derivations (mostly plurais and possessives) of many open-class words in the domain, We
also added about 400 concatenated word tokens for commonly occurring sequences such as
WASHINGTON D _C, SAN_FRANCISCO, and D_C.TEN. The final sizc of the lexicon
was 83" words. For the November '92 cvaluation test szt only 57 word tokens, covering
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S2muque words, were out-of-vocabulary (O0VY - this levicon. This s only a 0.6%
OOV word occurrence rae over the whole test ses

We estimated the parameters of our statistical bigram and trigram grammars using a new
backing-off procedure |53] that is somewhat simpler than that of Katz {38]. The n-grams
“were computed un word classes in order to share the very sparse training. A otal of 1090
- semantic classes were defined (most words remained singletons in their cliss).

2.34  Speech Recognition Results

Table 2.1 shows the official results Tor BYBLOS or this evaivation, broken down by
utteranee class. We also show the avecage perplesity of the Digram and tngram janguage
madels @y measured on the evaluation st sets Geporng out-of-vocabulany words),

5 CSemtence  Bigram [ Togram - Feb92-Nov9 2-Nove 3 |

& P Class | Perplex - Perplex ‘o Word Errors

g PA+D T 07 T ©6.2-4.3-33

| A+D+x © 20 ] s 9.4-7.6-4.4

;’. r-— e — ‘ - J B ] - e e --d

H LA pos o 0 5.8-4.49-3.0)

: D L 7.0-4.8-4.0)

hy | X i 35 28 | 17.2-14.5-8.6)

1 S (R S SO el

# Table 2.1: Official SPREC results on Feb®2, Nov92, aid Nov93d test sets.

The word error rate in each caegory was lower than any other speech system reporting on
this data.

o U

R

Fur a discussion o these results, the reader is referred to section 5.1.4 of {60}

2.4 Delphi - Natural Language Undersianding

The natural language (NL) component of HARC is the Delphi system. Delphi uses a
definite clausc grammar formalism, augmented by the use of constraint nodes [69] and a
“labetled argument formalism [21]. Qur initial parser used a standard context-free parsing
algorithm, extended to handle a unification-based grammar, It was then modified to
integrate semantic processing with parsing, so that only semantically coherent structures

i

?
&
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would he placed inthe sy ntactie chart The speed and robustness were enhanced by
swatching 1o an agenda-based chart-parser, with seheduling depending on the measured
statistical hkehhood of grammatical tules 120] This greatly reduced the search space for
the best parse.

The most recent version of Delphi includes chanees to the syntactic and semantic
-compunents that maintain the tight syntactic/semantic coupling characterisiic of carlier
versions, while alfowing the system o provide semantic interpretations of input which has
no vahid global syntactic analysis. This included the developmient of a “fallback
camponent™ {23, 70]0 i wineh statstical estimages play an important role. Plus component
allows Delphi o deal eftectively wath Iinguisuealls ill-formed mputs that are common i
spoataneous speech, as well as wath the word errons produced by the sprech recognizer

2.4.1  Parsing as Transduction - Granunatical Relations

The Delphr passer s not a device for constructing synlicue trees, but an information
transducer. Semientic interpretation s a process operating on i set of messages
characterizing local "grammatical relations™ ameng phrases, rather than as a recursive tree
walk over a globally complete and coherent parse tree. The grammar has been reoriented
around local grammatical relations such as deep-structure subject and object, as well as
other adjunct-like relations. The poal of the parser is to muke these local giammatical
relations (which are primuarily encoded in ovdering and constituency of phrases) as readily
available o the semantic interpreter as information explicitly encoded in the words
themselves.

From the point of view of a syntactic-senuntic transducer, the key point of any
grammatical reladon is that it licenses a small number of semantic relations between the
“meanings” of the related constituents. Sometimes the grammaucal relation constrains the
semantic relation in ways that cannot be predicted from the semantics of the constituents
alone (e.g. Given "John", “Mary", aud “kissed”, only the grammatical relations or prior
world knowledge determine who gave and who received). Other tinies the grammatical
relation simply licenses the only plausible semantic relation (e.g., *John"”, “hamburger”,
and “ate™). Finally, in sentences like “John ate the fries but rejected the hamburger”,
semantics would allow the hamburger to be eaten, but our knewledge of its destiny is
mediated by its lack of any grammatical relation to “ate”.

Grammatical relations are expressed in the grammar by giving cach element of the right
nand side of a grammar rule a grammatical relation as a label. A typical rule, in schematic
- form, is:
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(NP ) +:HEAD (NP ...) :PP-COMP (PP :PREP )

which says that a noun phrase followed by a prepositonal phrase provides evidence for the
relation PP-COMP between the PP and HEAD of the NP,

One of the right-hand clements must be labeled the “head” of the rule, and is the initial
source of information about the semantic and syntachie “binding state™ which controls
whether other elements of the right-hand side can “ind™ o the head via their Tabeled
relation

This view made 1t possible to both decrease the puniber of grammadr rules (from a3 1o
453) and merease syntactic coverage. Most attachiments can be modelled by simple binary
adjuncion, and sinee the detwls of the syntactic tree structure are not ceniral o a
transducer, cach adpunct can be seen an bee “logreally attached™ 1o the “head™ of the
conshituent,

In effect, we factored single grammar rules Hhat produced ordered sequences of
constituents) into smaller binary adjuncuion rules that can be combined together in various
ways; ordering constraints on these adjuncts are provided by lexical semantic
well-formedness reles. For example, rather than using subcategorization features to name
sels of categories that appear together as complements of a verb, we have delined
approximately 15 verb phrase rules that list the possible constituents that may appear as
complements to a verb. These may embed within cach other freely, so long as the results
are semantically interpretable by the head. Simila recursive binary complement and
adjunct rules are provided for noun phrases. This recursive scheme allows the adjunction
rules of the grammar to be combined together in novel ways, governed by the lexical
semantics of individual words. The graminar writer does not need to foresee all possible
combinations.

4.2 “Binding rules” - the Semantics of Grammatical Relations

The interface between parsing and semantics is a dynamic process structured as two
-coroutines in a cascade. The input to the semantic interpreter is a sc.juence of messages,
cach requesting the semantic “binding” of seme constituent to a head. A set of “binding
rules” for each grammatical relation licenses the binding of a constituent to a head via that
relation by specifying the semaatic implications of binding. These rules specify features of
the semantic structure of the head and bound constituent that must be true for binding to
take place, and may also specify syntactic requirements. Rules may also allow certain
semantic roles (such as time specification) to bave multiple fillers, while other roles may
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dlow just one tiller.

As adjuncts are added to a strueture, the binding tise s condinonally extended as long as
semantic coherence is maintained. When a constituent is syntacucally cemplete (i.e., no
more adjuncts are to be added). Delphi evaluates wules that check for semantic
completeness and produce an “interpretation™ of the corstituent.

2.4.3 Robustness Based on Statistics and Semantics

Unfortunately, simply having a transduction system with semanties based on grammatical
relations doues not deal directly with the key issue of robustness - the ability to make sense
of an input even if it cancot be assigned o well-formed global svitactic analysis, The
difficulty with standard syntactie technigues is that local syntactic evidence is not enough
o accurately determine grammatical relations. A NP followed by a verb may be the
subject of that verb ol flew 1o Boston™) or may he unrelated (“The man 1introduced o
John flew to Boston™). The standard solution is to hind a global parse, which provides the
necessary confirming cevidence for the local relations it contains,

In Delphi we view standard global parsing as merely one way (o obtain evidence for the
existence of the grammatical relations in an input string. Delphi's strategy is based on (wo
other sources of information. Delphi applies semantic constraints incrementally during the
parsing process, 5o that only semantically coherent grammatical relations are considered.
Additionally, Delphi has statistical information on the likelihood of various word senses,
grammatical rules, and grammatical-semantic transductions. Thus Delphi can rule out
many locally possible grammatical relations on the basis of semantic incoherence, and can
rank alternative local structures on the basis of empirically measured probabilities. The net
result is that even in the absence of a global parse, Delph? can quickly and reliably produce
the most probable local grammatical relations and semantic content of various fragments.

by

I3

;

e 4O AR

Delphi first attempts to obtain a complete syntactic analysis of its input, using its
agenda-based best-first parsing algorithm. If it is unakle to do this, it uses the parser in a
fragment-production mode, which produces the most probable structure for an initial
segment of the input, then restarts the parser in a top down mode on the first clement of
the unparsed string whose lexical category provides a reasonable a ~hor for top-down
prediction. This process is repeated until the entire input is spanned with (ragments.
Experiments have shown that the combination of stat'stical evaluation and semantic
constraints produces chunks of thz input that are very useful for interpretation by
non-syntactically-driven strategics.
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244 Advantages of Delphi's Approach

The separation of syntactic grammar rules from semantic binding and completion rules
greadly facilitates fragment parsing. While it allows symax and semantics o be strongly
coupled in terms of processing (parsing and semanuc interpretation) it allows them to be
essentially decoupled in terms of notation. This makes the grammar and the semantics
considerably easier to modify and maintain.

We believe, however, ihat in the long term the most important advantage i that separaiing
syilacue rules from semantie binding lead s oy 1o a new hind of fanguage model, based on
grammatcar relations, i which syatactics semantic and lexical knowledge can be acquired
by Targely automatic means. We view the role ol the granmimar as codifying the way that
tree structure provides evidence for giunmatical relations. The separation between rule
types will altow us For the st tume to consider the effect of grammatical relations on
meaning, independently of the way that evidence Tor these relations is produced by the
parser.

One effect of this approach is to mike it possible o use a hypothesized semantic
interpretation of a set of tree fragments o generate a new syntactic rule. Thus, in normal
operation, the primary evidence tor a granmmatizal relation is the result of actually parsing
part of an input. However, since grammaical relations between constituents entail
semantic relations, i we can make an estimate of the likelihood of certain semantic
relations based on domain knowledge, pragmatics, und task models, eic., it is in principle
possible to use abductive reasoning to suggest likely grammatical relations, and thereby
automatically propose new grammar rules.

2.5 Combined Spoken Language System

Figure 2.1 shows the components of the entire spoken language system.

The basic interface between BYBLOS and Delphi in HARC is the N-best list. In the most
basic strategy, we allowed the NL component to scarch arbitrarily far down the N-best list
until it either found a hypothesis that produced a database retrieval or reached the end of

the N-best list. However, we have noticed in the past that, while it was beneficial for NL
“to look beyond the first hypothesis in an N-best list, the answers obtained by NL from ﬂ
speech output tended to degrade the further down in the N-best list they were obtained.

For the 1992 evaluation, we optimized both the depth of the search that NL performed on
the N-best output of speech and how we used a number of fall-back strategies for NL text
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processing [23]. We found that, given the current - Tormance of all the components, the
optimdl number of hypotheses o canstder was N= Furthermore, we found that rather
than applying the fall-back mechanism to cach of these hypotheses in turn, it was better to
make one pass through the N-best hypotheses using the full parsing strategy, and then, if
no sentences were accepted, make another pass using the fall-back strategy.

2.6 Interface

The mterface o the BBN HARC/ATIS system consasts of a tew large control buttons, a
sequence of status lights, and a series of display windows,

The control buttons allew the user (via the mouse. o command the system 1o hegin o
listen for a spoken question or comimand. o cancel . query in progress, o provide help, 10
clear the context, and to display apother window m which the user may set various system
parameters or quit.

The status lights indicate whether the system is Ready (not listening, but ready for the user
to click the Listen button and talk), Listening (microphone on), Recognizing (BYBLOS
speech recognition in progress) Understanding (the Delphi languuge understanding system
in progress, followed by the translation of the understocd utterance to database commands),
and Retrieving (database retricval),

The display windows include the results of the speech recognition process, Delphi’s
paraphrase of the meaning of the utterance, the data (usually a table) retrieved from the
database, ‘and the conlex! that is maintained from one guery to the next.

Figures 2.2 through 2.8 show the BBN ATIS screen afier various kinds of queries or other
user actions.

2.7 Results

In Table 2.2 we show the official performance on the November '92 evaluation data as
calculated by NIST. The percent correct and the weighted error rate is given for the Delphi
system operaling on the transcribed text {(NLj and for the combined HARC system (SLS).
The results are shown for classes A+D combined and separately. The weighted error
measure weights incorrect answers twice as much as no answer.

“weight | error (WE) = 2 x %incorr.ct answers + %no answers
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Corpus | NL Cor | NL WE | SLS Cor | SLS WE
A¥D | 850 K¢ §1.0 30.6
A 88.8 15.7 84.6 237
D | 786 328 74.9 42.5

Table 2.2: %Correct and Weighted error on the November 92 test set.

The weighted error on context-dependent scntences (D) is wbout twice that on sentences
that stand alone (A). This higher error rate results from two phenomena. First, it is often
difficult to resolve references correctly and to know how much of the previous constraints
are to be kept. Second, in order to understand a context-dependent sentence correctly, we
must correctly understand at least two sentences, which is less likely.

The weighted error {rom speech input is from 8%-10% higher than from text. Howeves,

“the difference is lower than might be expected. Even though the BYBLOS system

misrecognized at least one word in 25% of the uderances, the Delphi system was able to

recover from moct of these errors through the use of the N-best list and fallback processing.

The official SLS result for HARC was a weighted ervor of 30.6%. This represents a
substantial improvement in performance over the weighted error during the previous
(February '92) evaluation, which was 43.7%. It was the third best overall result for a
.spoken language system of the seven sites participating. Based on end-to-end tests with
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real users, the system is usable, given that subjects sere able o accomplish their assigned
tasks. However, we believe that the largest remainn.- improvement will not be from speech
modeling or basic natural language understanding, »nui from more careful task modeling.

After the 1992 evaluation, the official ARPA scoring metric was changed from weighted

error to simple unweighted error {percent incorreet + percent unanswered).

The results for the December 1993 ARPA cvaluahon are given in Table 2.3.

“Corpus | NL Cor [NL Err SIS Cor j SLS Eir |
ARDTTESITIET 9SETTITS
A o4 L9662 | 138 |
|

1 |

21.8 71.5 225

D | B

Table 2.3: % Correct and Simple Error on the December 93 test set.

2.8 Real-Time Implementation

A real-time demonstration of the entire spoken language system described above has been
iraplem 'nted. The speech recognition was performed using BBN HARKTM o
commuciaily available product for continuous speech recognition of medium-sized
vocabularies (about 1,000 words). HARK stands for High Accuracy Recognition Kit.
HARKTM (not to be confused with HARC) has essentially the <ame recognition accuracy
as BYBLOS but can run in real-time entirely in software on a workstation with a built-in
/D converter (e.g., SGI Indigo, SUN Sparc, or HP715) without any additional hardware.

The speech recognition displays an initial answer as soon as the user stops speaking, and a
refined (rescored) answer within 12 seconds. The natural language system chooses onc of
the N-best answers, interprets it, and computes and displays the answers, along with a
paraphrase of the query so the user can verify what question the system answured. The
total response cycle is typically 3—4 seconds, making the sysiem feel extremely responsive.
The error rates for knowledgeable interactive users appears to be i..ach lower than these

“reported above for naive noninteractive users.
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2.9  Summary

i this chapter, we have described the HARC spoken language understanding system.
HARC consists of a modular integration of the BYBLOS speech recognition sysiem with
the Delphi natural language understanding system. The two components are integrated
using the N-best paradigm, We have shown that this paradigm is a modular, efficient, and
effective method ar integrating speech ccopnition and language understanding
components. In addition, the N-best strategy was shown to be usefu! within the speech
recoghition system as a means of applving oxpensive knowledge sources, such as
cross-word acoustie models and trigram language models. The entire sysiem has been
Lplemented to run i real time on a standard workstation without the need for any
additional hardware.




‘Chapter 3

The Deiphi Natural Language
Understanding System

3.1 Introduction

This chapter presents Delphi, the natural Tanguage component of the BBN Spoken i
Language System. Delphi is a domain-independent nateral language question answering
system that is solidly based on linguistic principles, yet which is also robust to
ungrammatical input. It includes a domain-independent, broad-coverage grammar of
-English. Analysis components include an agenda-based best-first parser and a failback
component for partial understanding that works by fragment combination. Delphi has been
forinally evaluated in the ARPA Spoken Language program's ATIS (Airline Travel
Information System) domain, and has performed well, Delphi has also been ported to a
spuken language demonstiation system in an Atr Force Resource Management domain. We
discuss results of the evaluation as well as the porting process.

Delphi is a natural language understanding system based on general linguistic principles
“which is adaptable to any question-answering domain. It incorporates a number of
domain-independent knowledge bases, including a general, broad-coverage grammar of
English with a powerful and flexible handling of complementation. Jnlike most other
linguistically motivated systems, however, Nelphi is also highly robust, allowing for partial
urderstanding when an input is ungrammatical, disfluent, or not properly transcribed by a
speech recognizer. Thus, Delphi can be used for a spoken language application as readily
as for a written one. Furthermore, Delphi's partial understanding component, called the
-Semantic Linker, is driven off the same system of semantic rules as Delphi’s regular

30
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best-first parser. Building 4 robust application therelore requires no additional effort.

There are several components of the system, which iy diagramed in Figure 3.1.

First are the parser and Semantic Linker, which output an intermediate representation we
call a “semartic graph”, The semantic graph is passed to a quantification stage which
produces a fully scoped logical form from it. The logical form is then passed to the
discourse siage, which resolves pronominal references and performs other types of
task-dependent constraint resolution to produce the tinal logical form. The final logical
form is then passed to the backend translator, and then to the application system which
_produces-the response. Several knowledge bases are employed by these analysis
components, including grammar, “realization rules™ and the domain model, which
represcnts the set of classes and binary relations of the given application domain.

Delphi differs from most other linguistically motivated systems in the role that is played by
syntax. The primary function of Delphi’s parser and syntactic knowledge bases is not to
produce a parse trec, but rather to constrain the scarch for an appropriate semantic graph
interpretation of the utterance, Semantic graphs are produced not by rule-to-rule
compositionality, but by what might be called “relation-to-relation” compositionality - the
association of grammatical relations in the syntaciic structvre with semantic relations in the
semantic graph.

This more incremental view of the syntax/semantics interface has three crucial advantages.
First, there is much more flexibility with respect to ordering and optionality of constituents.
Second. because relation-to-refation .ranslations are simple, the task of porting the system
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ts gready simphitied. Third and finally, partal or © smentary analyses can be represented,
and a complete semantic graph interpretation for 1. utierance produced even when a
complete syntactic analyses is not available,

In the remainder of this chapter, we describe De'phi’s main processing components,
representational formalisms, and knowledge base ..

3.2 Gramimar And The Syntax/Scmantics Interface

The Dclpl\n grammar is & broad coverage, domain independent grammar of English written
in a version of the Definite Clause Grammar formualism 53] that has been extended 10
include labeling of right-hand side ¢eleni. s with the grammatical relations they bear to the
head ol the construction. An example is:

(8 ?arg ™mood)

->

subject: (NP ?axrg ?mood etc.)
head:; (VP ?agr ?7mood etc.)

In this rule, there is a head VP and an NP which bears the SUBJECT relation to it. Other
grammatical relations include the familiar DIRECT-OBJECT and INDIRECT-OBJECT as
well as the prepositions, such as TO, FROM, WITH and so on.

Annotating sub-constituents with grammatical relations regularizes the syntactic structure
with respect to particular grammatical rules, and allows a “relation-to-relation” form of
compositionality, as opposed to the more traditional “rule-to-rule” version that is
exemplified by such systems as Gemini {28] and the Core Language Engine [2]. in
relation-lo-relation compositionality, each grammatical relation in the syntactic structure
corresponds to a semantic relation in a parallel semantic structure we call & “semantic
graph”. The terminal nodes of the semantic graph are the word meanings, corresponding to
the lexical heads of syntactic structure.

"An example of a semantic graph, representing the meaning of “What flights fly from
Boston to Denver”, may be seen in Figure 3.2. The semantic graph is not a fully quantitied
formula; rather it may be thought of as a form of predicate-argument representation, with
quantifiers in place, from which a fully quantified formula can be generated. The allowed
class and relation labels come from the domain model.
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Figure 3.2; Semantic Graph

This view of the syntax/semantics interface has marked advantages, For one thing, because
the syntactic/semantic structure is built up one argument at a time, it becomes much casier
to uccomodate such phenomeny as order-vanation and optionality of argwments that are
difficult for other approaches

The importance of this feature may & seen in the examples of argument order-variation
and optionality that abound in real data. Consider the following from the ATIS domain, in
which complements can vary freely in order:

What flights fly from Boston (o Denver? !
Whar flights fly 10 Denver from Boston?

or be scparated from the head by a moditier typicaliy regarded as an adjunct;
What flights fiy at 3 pm from Boston to Denver?
In some cases, modifiers can be omitied, as in:

What flights jly from Boston?
What flights fly to Denver?

and sometimes the omission of an argument can have anaphoric corcequences, as in:
Whai restrictions apply?

which cannot be felicitously uttered except in a context where there is something in the
discourse that a restriction could “apply” to.
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Conventional approaches to subcategonzaton, such as Definite Clause Grammar [53],
Categonal Grammar [1), PATR-I1{66], and lexicalized TAG [58] all deal with
complementation by including in one forni or another a notion of “subcategorization
frame” that specifies a sequence of cormplement phrases and constraints on them. Handling
.oll the possible variations in complement distribution in such formalisms incvitably leads o
an explosion in the number of such frames, and a correspondingly more difficult tark in
“porting to a new domain,

In our approach, on the other hand, it becomes possible o view subceategorization of a
lexical item as a set of constraints on the vutgoing wres of its semuntic graph node,
Different types of constraints — order of arguments, optionality of arguments,
seinantic-class constradnts and semantic effects of argumients - can all be represented
separately, instead of enumerating all possible arpument sequences in a set of alternative
snbeategorization framces,

Subcategorization constraints in Delphi are encoded in lexical emuiss using a structere
called a “map”™ [71]. Below is part of the lexical eniry for “lly”™ in the ATIS domain:

FLY

subject: FLIGHKT-OF
to: DEST-OF
Ixrom: ORIG-OF

completion: (and ({illed flight-of)
(or (filled dest-of)
(£4illed orig-of))

(LIS

Map entries have “translation”, “realization” and “completion™ components. The translation
part of this entry specifies that the lexical head “fly” is to correspond to a semantic-graph
node labeled with event-class FLY. The realization part of the entry specifics what
_grammatical relations the lexical item takes, and what semantic relations these correspond
to, or “realize”, in the semantic graph. Here, the entry specifies that “fly” takes SUBIECT,
TO, and FROM complements, and that these grammatical relations correspond to the
semantic relations FLIGHT-OF, DEST-OF, and ORIG-OF respectively. Semantic
selectional restrictions in these argument positions — that the filler of DEST-OF be a city,
for example ~ are implicit from the declarations of the relations in the domain model.

The “completion” part of the entry specifies what outgoing arcs are required fot the node.
-Here, the entry requires that the FLIGHT-OF role be filled, and that cither the DEST-OF or
ORIG-OF roles be {.lled (forbidding the intransitive “the fight flies”). More complex
optionality cases are encoded with other completion predicates. For example, the case
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where an anaphor must be present ¢*“What restrictions apply™ is encoded by the predicate

FILLED-OR-ANAPHOR.

Some realization rules are tied to semantic classes rather than lexical translations, and
require for their application only that semantic class restrictions implicit from the domain
and range of the realized relation be satistied. Typical examples are the rules governing

R

“noun modifier meanings, such as “Delta flights”, “Delta’s flights”, “the flights on/aboard

Delta™, These would all be handled by the giobal realization rule:

{NOM-COMP POSS ABOARD ON ...}

-t

AIRLINE-OF

Determining what semantic relation a given grammatical velation mstance corresponds 1o is
most generally viewed as a form of goal-solving in Delphi, in which a chain of rules can
be invoked. For example, syntactic constructions such as "X with Y", "X has Y™ and "X's
Y™ are interpreted by first appealing to a rule mapping them to a pseudo-relation called
GENERALIZED-POSSESSION, and then seeking a realization for it that is compatible
with the classes of X and Y. Thiy avoids having 1o write thrre different versions of the
same realization rule.

An important advantage of the realization rule formulation, apart from its its power and
flexibility, is its simplicity. Realization rules are very simple to write, and make maximal
use both of knowledge about the domain and gencral knowledge of language.

3.3 ill-Formedness Handling: The Semantic Linker

When an utterance cannot be parsed with Delphi's best-first parser [20] - either because it
is ill-formed, mis-recognized by the speech system, or simply because it is outside the
.coverage of the grammar - it can still be partially understood by the system, often well
cnough to give the correct response. The component responsible for partial understanding
in the Delphi system is called the Semantic Linker [70].

After a parse fails there is a set of fragmentary consiituents left over in the chart,
corresponding to a set of semantic graphs. The Semantic Linker seeks to connect these
sub-graphs into a single connected one by adding links between nodes in the different
sub-graphs.
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Figure 3.3: Fragmem Graphs

At top-level, this s the same thing that the parser and grammar do. The difference is that
the parser and g wnar bave anidea of what the yrammatical relationship between
constituents is, based on requitements of their provimit, in the string and other syntietic
evidence, The Semantic Linker does not have these requirements, being & looser form of
combination that can ignore fragment order and ship over intervening, unanalyzable
material with ease,

Although it s a very different algorithm, the Semanuie Linker uses the same set of
realization rules that drives the regular parser. Using the realization rules, the Linker
determines for each pair of nodes in different semantic graphs the set of all links which
can connect them. It then uses an A* search to find the most plausible set of links which
produce a complete graph.

Suppose for exanmple, we have the three fragments "to Boston”, "Denver” and “Delta
flights on Monday”. Then the three corresponding sub-graphs are those shown in Figure
3.3 where a PP is treated as its NP object with the preposition as a tag. For this set of
fragmentary sub-graphs, the possible links are;

la. FLIGHTS1--- DEST-OF ~> BOSTON:TO
l1b. V¥FLIGHTS1l-~-- ORIG-OF ~-> BOSTON:TO

Za. FLIGHTS1i--~ DEST-OF -> DENVER
<b. FLIGHT81--- ORIG-OF -> DENVER

3a. DENVER--- NEARBY:TO -> BOSTON:TO

" where the links are grouped together in a ordered list according to the fragment-pairs they
connect.

The plausibility of a given link is a function of a number of different features, including
penaltics from assunmiptions made in its computation (e.g. that a given preposition can be
ignored or assumed) and empirically determined probabilitics for the given link (e.g. that
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given an AIRLINE and a FLIGHT they are most — hably linked by the relation
AIRLINE-OF).

The Semaniic Linker may also “hallucinate™ a new nade to bridge two {ragments between
whom no links can otherwise be computed. For example, for the utterance “from Boston to
Denver”, which has no explicit FLIGHT-object, o FLIGHT node can be inserted between
“the fragments to make sense of the utterance.

Because the Semantic Linker uses the same set ol realization rules as the rest of the
system, when the system is ported to a new doman the Semantic Linker can be used
immediately ~ o distinet advantage over some othe: approaches to fallback understanding,
such as [23) or [36].

In formal experiments (as we discuss subsequentiy the Seinantic Linker has been show o
dramancally improve Delphi's performance,

34 Quantification

The guantifier scoping module in Delphi takes a semantic graph and produces a
fully-scoped expression in the logical language FMRL. The basic strategy for quantifier
scoping is a descendant of thut used in the LUNAR system [77]. This is made possible by
the use of the semantic graph as a common underlying representation for both the
grammatical and ill-formed parts of fragmentary utterances. Defphi’s scoping module traps
quantificrs from relative clauses, makes the quantifiers from PPs ete. outscope the NP
quantifier, and resolves the scope of quaniifiers from paraidel constituents in terms of
left-to-right order in the input. These general rules are modified 1o take into account
differing strengths of quantifiers such as EACH,

- Lefi-to-right ordering and syntactic structure for grammatical portions of the utterance ure
recovered from the semantic graph by backpointers to the lexical items and grammatical
relations from which the graph was produced. Links established by the Semantic Linker
arc treated by the quantification mechantsmy as if the constituency is indeterminate, so that
only left-to-right scoping rules and individual quantifier preferences tuke cffect,

The resulting inechanism is robust, and quantificational scaping has been an insignificant
_source of error in the official ARPA blind-test evaluations of the ATIS system. More
complex strategies have been proposed and implemented in the last (wo decades, and could
in principle be modified to work with ill-formed input, but the simple and robust LUNAR
approach handles essentially all the phenomena seen in the tens of thousands of sentences
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ol ATIS trainmg collected during expenments witt  on-=linguist users.

3.5 Discourse

The discourse mechanism of Delphi consists of several components: resolution of Tocal
ambiguitics. pronominal and deictic antecedent resc luton, ellipsis handling and discourse
constraint propagation,

The most common case of local ambiguity in the NTIS domain involves wmporal phrases
as in “the nine o'clock fight™, The resolution meshanisim searches both for linguistic
information in the current and previous sentences, os well as properties of entities in
previous answers, (o resolve wheth2r "nine o’clock™ v AM or PM,

The pronoun/deictic resolution mechanism used in Delphi makes use of locally expressed
or implied semantic constraints to search through a set of candidate antecedents, The
current mechanisim ignores syntactic number as a cue, because empirically in the ATIS
corpus (und we suspect in other spontancous speech applications) it is often in error. A
simple-minded focus component is used, primarily hused on recency, and secondarily
based on grammatical relations within an utterance. Because of the strength of semantic
cues and the prevalence of ifl-formed input, the use of syntactic cues for focus is fimited.

The interpretation of later sentences often must include information from previous
sentences, withoul explicit linguistic cues. This is especially true in “design dialogues”,
where the_goal is to find a descriptiun of a set of objects t 1+ will meet some set of implicit
or explicit constraints. Consider for example the following discourse from the ATIS
domain.

Show Delta flights from Boston 10 Dallus tomorrow,
Can I leave in the morning?

Is there a nonstop flight?

Show me the American flights.

I want 1o go from Dallas 10 Chicago on Wednesday

Note that the constraints of prior sentences (such as on airline, origin, destination etc.) are
implicit for subsequent sentences unless contradicted by information in the current sentence
(e.g. "American” overrides the “Delta” from the first sentence) or until there is evidence
that a new problem is being solved (the new origin and destination in the last sentence
indicates that all previous constraints can be dropped). Delphi has a “context tracker” that
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maintains a stack of the consuramts from previous cerances, dand has w set of rules for
when constrannts are to be moditied o defeted betore being merged with the current
sentence.

K
'y
LIS

Finally, we handle ellipsis as a special case of semantic inking. 1f we have the two
Lo utieranees:

Show me the meadls on the morning flight.
am American at 12:30)

We can treat these as if they were one run-on ih-iormed input and fink "American o
“flight”, and replace “morning™ with *12:307 using @ minor variant of the Semantic Linker
linker which atlows for Fater constraintsy to overw e caslier ones of the same type. This
strategy has been very effective, and ¢ s afarge class of elliptical constructions

3.6 Backend Mapping

- In order to get a response o a user query, the complete FMRL mierpretation of an
& utterarce must be transiated to an expression of a target query language which can be

cvaluated directly against the tabular database to retrieve the answer.

A key step is bridging the gap in conceptual vocubulary between the two representations.

" For example, the FMRL interpretation of the query “How many flights on Delta serve
meals” has one-place predicates like FLIGHT and AIRLINE, and two-place predicates like
AJRLINE-OF and MEAL-OF. The database for the ATIS domain, on the other hand, only
has a single table FLIGHT with fields containing airline and meal information. Delphi
bridges this gap between representations with a system of local mapping rules which
translate the one- and two-place predicates of the FMRL into expressions of a relational
algebra target language which retrieve the extensions of these predicates.

1
L
.
g N

Sometimes, however, some combination of FMRL predicates has a correspondence in the
database but the individual predicates themselves do not. For example, in the database for
the SPLINT domain a table selating aircraft-types to their ohysical characteristics has a
ficld for the number of engines the aircraft has, but no representation for the engines
themselves. if we now ask “How many engines does an F-16 have?”, there is no local
translation of the FMRL predicale ENGINE,

“To deal "vith thie, Delphi has a system of global transformations that are applied first,
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rewriiing subsets of the FMRL clauses to a lorm + at can be handled with local translation
The rule that handles this example is:

(is-a ;e engine number)
" (aircraft-engine-of :a :e)
-
(is-a *count* number)
(ey (number-engines-of 1) *count*)

3.7 TIiterface To A Speech Recognizer

In spoken language applications, Delphi is interfuaced to the output of the Byblos speech
recognition system {9]. The N-best puradigm is used. in which the recognizer outputs in
order its top N guesses at the transcription of the sentence, for some value of N (usually
5). Delphi then runs over these transcriptions in the order they have been ranked, first with
the Semantic Linker disabled so that only grammatical utterances are allowed, and if nonc
is found, runs over them again with the Semantic Linker enabied.
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3.8 Results Of Formal Evaluation On ATIS

Our complete system including the Semantic Linker was evaluated in the December 1993
ARPA ATIS evaluation. Prior to evaluation, ATIS versions of the system’s domain mudel,
“lexicon and realization rules had been developed using several thousand utterances of
“training data collected from users of ATIS. An approximately 1600-utterance set was held
aside as a blind test set on which all participating sites were e+ luated.

Error rate in this evaluation was defined as FHNA, where F was the percentage of querics
answered incorrectly, and NA the percentage of queries not answered at all. There were
twa evaluations on the same corpus using this metric: one of NL text understanding alone,
and the other of a complete spoken language system (SLS) comprised of Delphi and the
Byblos recognizer. Our system achieved an official result of 14.7% on the NL test, which
was the third-lowest error rate achieved. (he SLS error rate was 17.5%.

Our own experiments show that using the Semantic Linker reduced our system’s error rate
on the NL test by 43%. This was largely achieved by dramatically lowering the no-answer
ratc NA from 18.7% to 2.3%. Just over 80% of this increment of sentences answered were
answered correctly, so the Linker showed considerable accuracy.

3.9 Porting Delphi to the S¥iL.INT Domain

Although the language understanding technology that is Delphi has greatly improved (as
evidenced by objective ARPA evaluation) and has been incorporated into real-lime
demonstrations, there has been comparatively little effort to make systems truly
transfcrable to various types of application systems and domains, and to develop and
.optimize human-machine interface paradigms for dual-use applications.

Transferability, also called portability, is key to the development of robust, practical, usable
systems and, thus, to making a wide variety of applications truly practical, Portability has
long been a goal ([17, 16, 34]) but seldom has been achievea.

Delphi has been developed under the premise that as much general linguistic knowledge as
possible should be built into the system in a domain-independent way, modularizing the
- domain-dependent information to knowledge bases and easily replaceable components. By
muaking appropriate use of general linguistic patterns, Delphi enormously reduces the
amount and complexity of knowledge needed to install a new domain.
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The SPLINT 1Speech and Language Integration) domain was made available under a
separale contract with Rome Laboratory. Development of portable modules and tools to
assist the porting process were done under this contract; the actual porting was carried out
under the Rome contract,

The SPLINT domain is concerned with Air Force units and their component aircraft,
‘weaponry and other physical attributes of wircraft, ordnance, and facilitics (such as air
bases. runways, bunkers, ete.). It may be considered a resource management domain, with
a relational database at its heart. The SPLINT database has 1006 ficlds in 23 tables,

By swdying the database, developers were able o create an initial corpus of sample
questions that might be asked uabout the data. Some additional queries were provided by
Rome Laboratory. The original set of questions was augmented by including variations that
differed by substituting different words of the same type (for example, different missile
names). In this way, an initial text corpus of more than 9000 sentences was created.

R SRR A R
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Some cxample utterances in the SPLINT domatin are:

What is the range of the AGM-65C maverick missile

How many air force bases are there in the US Military Area

What are they

Where are the units with aircraft that carry valcan tail cannons stationed
Show me a map of Griffiss

Which runways there are operational

What's the length of the longest runway

Sort the air to air missiles by range

This corpus was abstracted into query schema, so that we could more easily cxamine it for
completeness:

(ARE THE <DESCRIPTION-PL> AT
(AFB-DESCRIPTION} OPERATIONAL)

{AFB-DESCRIPTION} =
<AF¥B-NAME>
<AFB-NAME> AIR\ "FORCE\ "BASE
<AFB-NAME> AFB
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<AFB-NAME> =
GRIFFISS
LANGLEY

The purpose of the query schema was NOT to provide a complete representation of all the
~questions that could be asked of the system, but rather to make it casier to be sure that the
training set contained a wide runge of remresentative queries that contained an appropriate
distribution of cntities.

I order o port Delphi to the SPLINT domain, SPLINT-speciiic versions ol the domain
model, lexicon, reaization rules and db-mapping rules were needed. For the
speech-understanding part of the application, word pronunciations were also necessiry, s
well as word-class membership for a statisticad n-pram class grammwe. Delphi includes
“core™ versions of some of these knowledge bases: a core domain model with common
classes like NUMBER and TIME-OF-DAY and relations like GREATER a core lexicon
with closed-class items such as prepositions as well as words appropriate to
question-answering in general such as “show", to which domain-specific items have to be
added.

In porting to SPLINT, 60 classes and 65 relations were added to the domain model. 400
words were added to the lexicon. Of these, approximately half were derived from database

ficld values. 18 realization rules were added.

The domain model was built by a combination of hottom-up (database-structure driven)

“and top-down (corpus driven) techniques. The initial corpus was annotated for surface

meaning using 4 variant of the notation being developed by the ARPA community for
semantic gvaluation. This make it possible to determine the set of concepts and relations
corresponding to the linguistic expressions represented in the corpus.

The grammar did not need to be modified, with the exception of adding one rule (for
constructions such as “Mach 1").

The entire process took about a person month to get 90% coverage on a 1400 sentence

corpus, developed independently by a non-NL person. An additional person week was
required to develop the speech-related knowledge bases. A complete spoken language
system with Delphi as the understanding component, plus a Motif-based user interface, was
successfully demonstrated at the 1994 ARPA Human Language Technology meeting, and at
Rome Labs in New York. The porting process is described in more detail in [14, 6].

" This effort demonstrates that, given an appropriat: system design, it is possible to build a

complete spoken language system that is robust to speech and production errors, and to do
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sa rapadiy and stringhtforwardiy.

3.10 Conclusion And Summary

ln conclusion, we have developed a technology that makes maximal use of general
linguistic knowledge to improve portability, while at the same ume maintaining robustiess
in the face of the type of input one can expect from g real-like spoken language application,
The systent bas been shown o reach high levels of performance in objective blind-test
evaluation on the ATIS domain, The system has alvo been shown o be rapidly portable o
a new domain, SPLINT. This did not require any changes in the underlying svstem code,
and was done with a relatively small effort.

This work shows that computational linguistic methods, based on general knev ledge of
fanguage. can be used in large, robust spoken language systeins, and (hat special-purpose
NL understanding systemi do not have to be built for cach new task.




Chapter 4

The Semantic Linker

4.1 Introduction

This chapter presents the Semantic Linker, a new mechanism for understanding ill-formed
input. The Linker is the domuin-independent fullback understanding component used by
the natural language component of our spoken language systemi. The Semantic Linker is
invoked when our regular parser is unable to parse an input; it produces a semantic
interpretation by combining the fragmentary sub-purses lefi over in the chart using an
A*-style scarch algorithim driven by empirically determined probabilities and parameter
weights. The Semantic Linker also provides a novel method of handling cllipsis, The
Semantic Linker was used in the ARPA December 1993 "TIS evaluation, where it reduced

“our systém's error rate on the NL test by 43% - from 31.1% to 17.8%. This was one of the

lowest crror rates of any system tested.

A important problem for natural language interfaces is coping with input which cannot be
handled by the sysiem's graminar, A sysiem which depends on its input being gramunatical
(or on lying within the coverage of its grammar) simply will not be robust and useful.
Some sort of “fallback” component is therefore necessary as a complement to regular

-parsing.

This chapter presents the Semantic Linker, the fallback component used by the natural

language component of our spoken language system. The Semantic Linker is invoked when
our regular chart-based unification grammar parser is unable to parse an input; it altempts o
come up with a scmantic interpretation by combining the fragmentary sub-parses left over
in the chan. The Semantic Linker was used in the ARPA December 1993 ATIS cvaluation,

45
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where it reduced our system’s error rate on the Nooest by 43 drem 3 1% w 17.8%).

Our work is mouvated by the observation that syntax, by itself, is only useful insofar as it
helps us in coming up with a semantic interpretation. Unlike such proposals as [42), (23]
or {72], we do not attempt (o “fix™ the parsing process or reconstruct a parse tree from
Tragments, but instead try to direetly produce a1 intermediate predicate-argument structure

“we call a “semantic graph”. A set of fragments corresponds 1o a disconnected set of
semantic graphs, and the task of interpretation is 1o tind a set of links - binary relations -
that conneet these disconnected semantic graphs o a single connected one, Empirically
determined probabilities andg parameter weights are used ina A *-style best-first search to
find the most plausible set of connections.

The Semantie Linker also dilfers crucially from proposals such as {30] in that it does not
rely on task-mode! templates to solve the ill-formedness problem. It is therefore
completely domain-independent and can be used Tor any task. Tn addition, the Semantic
Linker provides a novel method of ellipsis resolution which is integrated with fallback
understanding.

We devote the next section, Section 2, to a more detarled description of semantic
interpretation and fragment-generation. Scction 3 will discuss how the space of all possible
links and associated probabilities are generated. Section 4 shows how we efficiently scarch
this space to produce a connected semantic graph interpretation. Section 5 discusses
subsequent processing, and Section 6 presents formal evaluation results and our
conclusions and future plans.

4.2 C-enerating and Interpreting Fragments

The scmantic interpretation of any constituent in our system, whether a fragment or a
complete sentence, is represented by a “semantic graph”, in which the nodes are the
semantic interpretations of lexical heads and the links are the seman’¢ relations between
them. For example, “Delta flies a 747 to Denver” is represented by the semantic graph:

/v<=~~=-AIRCRAFT-OF ~> 747
FLY~~-- AIRLINE-OF -> DELTA
\===== DEST~QOF -> DENVER:TO

A PP, such “to Denver” in this example, is represented by the semantic graph
representation of its NP object, tagged by the preposition of the PP. Quantifiers arc left in
place to be pulled out and scoped by later processing.
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The semantic graph for an utierance s incrementa.. vomputed from the syntacue analysis
of the utierance using a system of “realization rules ™ which map the grammatical relation
an argument bears 1o the head onto the semantic relation the interprelation of the argument
bears to the interpretation of the head. There are grammatical relations corresponding to
the familiar notions of subject and direct-object ete.. as well as o preposition-tags like “10”
.above. In our example, the “TO" grammatical reialion holds between “flies™ and “Denver”.
It is mapped to the DEST-OF semantic relation by the realization rule:

TO -> DEST-OF

where U semantic type requirements on head and PI* object are implicit from the
definition of the relation. A different set of realization rules 15 used for each domain,

When i complete parse of an utterance cannot be performed, we are left with a set of
fragmentary analyses in the chart which correspond ta syntactically well-formed and
semantically coherent portions of the input string. The fragment-generation stage of the
Linker extracts the most plausibic fragment sub-parses associated with the longest
sub-strings of the input, using probabilities associated with the grammar rules [20]. It uses
a “greedy™ algorithm which first chooses from the chart the coherent fragment spanning the
longest sub-string of input, then the coherent fragment spanning .he longest sub-string
disjoint from the first sub-string, and so on, until a set of fragments has beeis gencrated that
spans the entire input string.

Each fragment has an associated semantic graph as its interpretatizn. Suppose for example,
we have the three fragments “to Boston™, “Denver™ and “I* 'ta flights on Monday™. Then
the three corresponding sub-graphs are:

POSTON:TO

DENVER

FLIGHTS8l-w-~== AIRLINE-OF -> DELTA
ARCLEELEL DAY-OF-WK -> MONDAY:ON

This sct of n sub-graphs can be turned into a complete connected graph, and therefore a
complete interpretation of the utterance, if we can find a set of n — 1 new links between
nodes in different sub-graphs.
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4.3 Computing the Possible Links and Their Probabilities

As a first step in finding the best set of connecting links, the Semantic Linker computes the
Mink-group list”, which has one element, or “link aroup”, for cach pair of fragments. The
link-group for a pair of fragments is simply the set of links that could conncet the two
" fragments, where each link connects an object in one fragiment’s semantic graph to an
object in the other fragment’s semantic graph., Tiie links are computed using the same set
of realization rules that drive the parser and semantic interpreter. They depend on the
semantic types of the two objects and on the prepoviton tag Ul any) of the second object.
This tag can be relaxed or assumed with a penalty. s we shall see below, For the set of
fregments m our example the link-group list is:

la. FLIGHTSl-~- DEST~OF =-> BQSTON:TO
1b. FLIGHTS1-~-~ ORIG-OF -> BOSTON:TO

2a. FLIGHTSl-~- DEST-OF -> DENVER
2b. FLIGHTS81--~ ORIG-~OI' -> DENVER

3a. DENVER--- NEARBY-TO -> BOSTON:TU

where the links arc grouped together in a ordered hst according to the fragment-pairs they
connect. Since there are three fragments in this example, there are three pairs and thus
three groups.

Each link has a set of features which are computed along with the link. The most
important is the relational probability of the link, or:

P(R,C1,C2)

_where R is the semantic relation of the link and C1 and C2 are semantic classes of the two
argument positions, and C2 may be tagged by a preposition. This is the probability that a
pair of objects of type Cl1 and C2 are linked by by the relation R in an interpretation
(instead of linked by some different relation or not linked at all).

A corpus of interpretations generated by hand could be used to determine these
Probabilities, but we instcad use a corpus of 3000 semantic graph interpretations of
sentences that our regular parser is able (o analyze correctly.
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From this corpus, we can determine tha the hink 14 has o high (.89) probability of
connecting o FLIGHT and CITY:TO object, whereas the link 3ahas a near zero probubility,
sinee the relation NEARBY-CITY-OF accurs very infrequently between two cities.

Links can have other features depending on assumptions made in computing them. For
example, a link can be computed by ignoring the picpositional tag of the second object, in
which casc the link is given the feature “IGNORES-PREP”. An example would be 1b
abave, which ignores the preposition * 1", .\ link can ulso be computed by assuming a
prepositional tag that is not present, giving the link the feature *ASSUMLES-PREP™, us in
Ja, where the preposition “near™ is assumed. As we shall see i the next section, these
features are also assigned negative weights as penalties. balancing out any higher relational
probabiliysihe Hink may have gained from the assumptions made by it

4.4 Searching the Space of Combinations

In order to structure the search 5o as 10 avoid redundant links and duplication of search
states, we order the link-group list arbitrarily. Levels of the search tree correspond to
clements of the link-group list. At each level, scarch states are expanded by gencrating a
new state for each link L in the corresponding link-group. L is added to the lirks already
chosen by the parent state to make the links chosen by the new state. An additional “skip”
state is generated, which represents the choice not to add any of the links in that
link-group. Its links are just those of its parent state,

Delow is-a portion of the scarch tree for the problem of connecting our example semantic
graph. Each search state is labeled with the link it chose, or with “s” indicating the skip
“state where no link was chosen:

/i- 8
&-- 2a~- 3a
/ \- 2b~- 3a
/ /-- 8-- 3a
8TART-~-la-- 2a
\ \~-- 2b .
\ /~- 8 -- 3a
lb-~ 2&
\~- 2b

If a state’s chosen links connect all the fragments, the state is said to be “complete”, and

o _ S R O O O R R R R R R R R R RN wmREERS



CHAPTER 4. THE SEMANTIC LINKER 50

no more expansion 1s done onat. Complete states 1 the tree above include <as, 3a>,
<ladax, <Ib2as e I the state runs out of dink-proups to try, the state is said to be
“dead"”, and no more expansion is done on it, A dead state above is <$,5>.

An important constraint on states is that they not include contradictory links. If a link of
the form (R A B"), where R is a single-valued reiation, is added 1o a state that alrcady
‘includes a link of the form (R A B), the clash between B and B' must resolved hy
atiemnpting to anifly the two sub-graphs rooted at these nodes. IV unification fails, the state
is clagsified as incoherent, and not expanded further. Examples of incoherent states in the
space above are <2 Ta,2a> and <1020 A Usuecess™ state is a complete, coherent staie,
Some examples are <s2a,3a>, < 1a2b> and << 1h.2a>,

Fach state Is associated with a score, or Yeost” which is the sum ol the log-probabilities of
its chosen links, plus penalties for any other feature . the state may have, plus an estimalced
cost for eaeh link, if any, that stil) has to be added to conneet the graph. This score is used
1o guide an A¥-style best-first scarch through the space.

Link 3a has very low probability, while link b has the IGNORES-PREP feature. States
choosing these links will therefore have low scores. The other states are incoherent, and
the scarch will therefore produce state <1a,2b> as the bost state, with a complete, coherent
scmantic graph interpretation.

For reasons of space, we have used a very simple example here. Below are actual
sentences of the formal test evaluation which the Linker handled corectly:

How much is a coach flight the cheapest coach flight on Soutiest Airlines
Phoenix till 10 Milwaukee on Sunday

Los Angeles to Pitsburgh afternoon Tuesday

List flights from Orlando 1o Tucoma on Saturday of fare basis code of
What airline is A S as in Sam

Instead of Saint Louis how about a plane that stops in Denver

4.4.1 Handling Corrections and Ellipsis

A common problem faced by ordinary parsers is speaker disfluency:

Tell me the flights to Denver uhth to Bosten
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This wall praduce the fragments “Tell me the theins to Denver™ and "o Boston™. Since a
flight can have only one DEST-OF the fragment “to Boston™ cannot be linked according to
its most salient DEST-OF interpretation. The alternative would be to ignore the “to”
preposition and attempl to link “Boston™ as an ORIG-OF with the IGNORE-PREP feature.

This clearly would not praduce the correct interpretation, however, The Linker provides an

“alternative when the clashing value is to the right of the existing value in the string. In this

case, graph unification operates in an asymmetrical overwrite mode, in which values 1o the
vight in the string replace values to the lefi. The resulting state receives the combinational
feature REPLACEMENT, which is not penalized strongly. 1f the relational probability of
the DEST-0U link 1s good, it will defeat its [GNORIE-PREP rival, as it should. In this
wity, we are able to integrate some aspects of the distlueney-handling in [19] with the other
types ol ill-formednesy discissed here,

Graph unihcation with overwriting is also used tor ellipsis-handling. 1o elhipsis-handling
mode, the Linker tries 10 combine the semantic graph of the current utterance into the
semantic graph of the previous one. For example, consider the dialogue:

‘'‘wWhat flights fly to Denver on Wednesday at 3 pm?‘’

[===-- FLIGHT-QF --v--ecew- > FLIGHT1-- QUANTIFIER ~-> WHAT
FLYl-~~~ DEST~CITY-OF -> DENVER
\=~=~TIME~QF -«~=> Tl-=« D~-0-W =-> WEDNESDAY
\««== T=-0-D == T3 ~-> HOURS -~> 3
\===> AM~PM -> PM
‘iearly Wednesday morning’’

S D-O-W --> WEDNESDAY
e /-- HOURS -> 8
\=mm=- T-0-D --> T6 ~- BEFORE --> T7

\~-- AM-PM -> AM

The most plausible link between the two graphs is a TIME-OF between FLY 1 and T4, but
FLY 1 already has a TIME-OF link to T1, and so T! and T4 must be unified. There is no
clash between the D-O-W links, but the graph unification routine, which is extended to do
reasoning about certain relations such as “BEFORE" above, delects the clash between the
T-O-D links, and and so the T-O-D link of the first graph is replaced with that of the
second.
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Note that a convennonal approach o elitpsis that 1+ sased on matching syntactic structures,
such ax [78]0 would have difficulty here, sinee there s litde syntactic parallelism in this
example. The advantage of our approach is its abiliy to detect and replace just those
components of structure which clash on a semantic level,

"4.4.2  Hallucination

Suppase thid we have a more elegraphic uiterance shat does not inelude the word “lights™
Bostew 1o Denver on Monday Dela

This utlerance generates the faagments *Boston™, “to Denver™, “on Monday™ and “Dela’.
Clearly, no compleie set of links can be generated which would fully connect this set,
without introducing an object of some other semantic class such as FLIGHT to act as a
“hub™ between them,

To handle these situations, the Semantie Linker s able to “hallucinate™ objects of certdin
semantic classes, and add link-groups between that hallucinated object and the fragments
which are explicitly present. The list of such semantic classes is a domain-dependent
parameter of the Linker, and in the ATIS domain comprises just the classes FLIGHT and
GROUND-TRANSPORTATION.

A link '0 a hallucinated object carries a substantial penaity, as it introduces into the
discourse an object for which there may be only indirect evidence. The scarch ordinarily
bypasses hallucinated objects, unless alternatives are worse or unavailable.

Note that 4 reconstructive parsing approach, such as typified by {23] or |72}, would

potentiaily have difficulty with this example, as there is not even a fragment which could
plausibly act as the syntactic head.

4.5 After Combination - Generating the Logical Form

After the combination phase is complete, we have zero or more success states from which
1o generate the utterance interpretation. If there is more than one success state, the Linker
-simply picks the the subset of them with the highest score. In the case that no success
states are found, an interpretation may still be gencrated by “scavenging” through the state
space for the best partial connection states found in the course of search.
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Onee o complete semantic graph has been produc. . he Linker must still decide which of
the naminal semaintics objects are o be displayed  satisfy the user’s request ~ what we
term the “topic” of the utterance. Various heuristic . are used, including whether the
quantifier of the vominal in WH, whether it occurs as an arguiment to a display verb like
“show”, und whether it signifies a non-trivial constramt on other nominals,

4.6 Results and Discussion

Our complete system including the Semantie Linkc: was evaluated in the December 1993
ARPA evaluation. Error rate in this evaluation wo detined as FENA, where 19 was the
percentage of queries answered incorrectdy, and N the percentage of gueries not answered
at all, Prefiminary resuiis indicate that our svstem eceived an ervor rate uf 17.8% on the
NL test, which was one of the lowest error rates achieved by any of the partcipating
systems,

Our experiments show that using the Semantic Linker reduced our system's crror rale on
the NL test by 43% (from 31.1% 10 17.8%). The no-answer rate NA was dramatically
reduced from 18.7% to 2.3%. Just over 80% of this merement of sentences answered were
answered correctly, so the Linker showed considerable accuracy.

In conclusion, we have presented o new fallback understanding system that works with
semantic representations directly instead of with syntactic structure or task templates. We
have also presented a new way o do ellipsis resolution with this component. Furthermore,
this system has been proven in formal tests to dramaticallv improve overall performance.

Several arcas of future work are seen. One is the use of automatic training methods to
determine feature weights. A sccond arca of future work is the use of relational
probabilities and search in the generation of fragments themselves. A third aud last area of
future work is to more fully integrate the Semantic Linker into the regular parsing
mechanism itself, and to investigale ways in which parsing can be viewed as similar to the
linking process.




Chapter 5

Written Language Training for Spoken
Language Modeling

5.1 Intruduction

We attempted to improve recognition accuracy by reducing the inadequacies of the lexicon
and language model. Specifically we address the following three problems:

(1) the best size for the lexicon,

(2) conditioning written text for spoken language recognition, and

(3) using additional training outside the text distribution.

We found that increasing the lexicon 20,000 words to 40,000 words reduced the percentage
of words outside the vocabulary frora over 2% to just 0.2%, thereby decreasing the error
rate substantially. The error rate on words already in the vecabulary did not increase
substantially. We mod.fied the language model training text by applying rules to simulate
the differences between the training text and what people actually said. Finally, we found
that using another three vears' of training text - even without the appropriate preprocessing,

-substantiaily improved the language model. We also tested thesc approaches on

spontaneous news dictation and found similar improvements.

Speech recognition accuracy is affected as much by the language model as by ihe acoustic
model. In general, the word error rate is roughly proportional to the square root of the
perplexity of the language model. In additicn, in a natural unlimited vocabulary task, a
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substantal portion of the word errors come from w - i that are not even in the recognition
vocabulary. These out-of-vocabulary (O0V) words “uive no chanes of being recognized
correctly, Thus, our goal is 10 estimaie a good language model from the available training
text, and to determine a vocabulary that is likely to cover the test vocabulary,

The straightforward solution to improving the language model might be to increase the
-complexity of the model (e.g., use a higher order Markov chain) and/or obtain more
language model tzaining text. But this by itself will not necessarily provide a better model,
especially if the text is not an ideal model of what people will actually say. The simple
solution to increase the coverage of the vocabulary o o increase the vocabulary size. Bul
this also increases the word error rate and the comypuation and ~ize of the recognition
process.

A
In this chapter we consider several simple techmiques Tor tmproving the power of the
language model. First, in Section 3, we explore the eifect of increasing the vocabulary size
on recognition accuracy in an unlimited vocabula v tick. Second, in Section 4, we consider
ways 10 model the differences between the language maodel training text and the way
people actually speak. And third, in Scction §, we show that simply increasing the amount
of language model training helps significantly.

5.2 The WS]J Corpus

The November 1993 ARPA Continuous Speech Recognition (CSR) evaluations was based
on speech-and language taken from the Wall Street Journal WSJ). The standard language
model training text was estimated from about 33 million words of text extracted from the
WSJ from 1987 to 1989. The text was normalized (preprocessed) with a maodel for what
“words people use to read open text. For example, “$234.56" was alwayy assumed to be
read as “two hundred thirty four dollars and fifty six cents”. “March 13" was always
normalized as “March thirteenth™ — not "March the thirteenth”, nor “March thirteen”. And
SO on.

The original processed text contains about 160,000 unique words. However, many of these
are due to misspellings. Therefore, the test corpus was limited to those sentences that
.consisted only of the most likely 64,000 words. While this vocabulary is still quite large, it
has two beneficial cffects. First, it greatly reduces the number of misspellings in the texts.
Second, it allows implementaticns to use 2-byte data fields to represent the words rather
than having to use 4 bytes.

The *standard” recognition vocabulary was deuned as the most likely 20,000 words in the
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corpus. Then, the standard lunguage model was denned as a trigram language model
estimated specifically for these 20K words. This standard model, provided by Lincoln
Laboratory, was to be used for the controlled portion of the recognition tests. In addition,
participants were encouraged to generate an improved language model by any means (other
than examining the test data).

5.3 Recognition Lexicon

’

We find that. typieally, over 24 of the word occurrences in a development set are noy
included in the standard 20K-word vocabulary. Nuaturally, words that are not in the
vocabulary cannot be recognized accurately, (AU best, we might try to detect that there is
one or more unknown words at tis point in a sentence, and then atiempt to recogrize the
phoneme sequence. and then guess a possible letter sequence Tor this phoneme sequence,
Unfortunaiely, in English, even il we could recogmze the phonemes perfectly, there are
many valid ways to spell a particular phoneine sequence.) However, in addition to this
word not being reconnize ' - often see that one or two words adjucent Lo this missing

word are also mis-e 1s is because the recognition, in choosing a word in its
vocabulary, also o mg context for the fonowing or preceding words. In
general, we find that 0 ror rate increases by about 1.5 to 2 times the number of
out-of-vocabu™ . U0 A

One simple way w decrear. e percentage of OOV words is to increase the vocabulary
size. But which words .hould be added? The obvious solution is to add words in order of
their relative frequency within the full text corpus. There are =»veral problems that might
result from this:

1. The vocabulary might have to be extremely large before the OOV rate is reduced
significantly.

2. If the word error rate for the vast majority of the words that arc already in the
smaller vocabulary increased by cven a small amount, it might offsct any gain
obtained from reducing the OOV rate.

3. The language model probabilities for these additional words would be quiie Jow,
which might prevent them from being recognized anyway.

We did not have phonetic pronunciations for all of the 64K words. We sent a list of the
(approximately 34K) words for which we had no pronunciations to Boston University.
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They found pronunciations for about halt ¢IXIK) of the wards in their (expanded Moby)
dictionary. When we added tiese words o our WS dictionary, we had a total of S0K
words that we could use for recognition.

The following table shows the percentage of QOV words as a function of the vocabulary
Size. The measurement was done on the WSJ1 Hubl “20K" development test which has
*2,464 unique words with the total count of 8.227 words. Due to the unavailability of
phonetic pronunciations (mentioned above). the final vocabular size would be the second
column,

“Top N Vorab, THOOV T T

) TTA0K T 908 T 187 P2
O30k 28247 0 8BS0
W0k - 598 39047 |
sk 4023 ) 14 foa7]
SOk 41363 ) 121005 |
Lok 48380 100

Table 5.1: Out of vacabulary words as a function ol vocabulary size

We were samewhat surprised to see that the percentage of OOV words was reduced 10
only 0.17% when the lexicon included the most likely 40K words ~ especially given that
many of the most likely words were not available because we did not have phonetic
pronunciations for them. Thus, it was not necessary to increase the vocabulary above 46K
words.

The second worry was that increasing the vocabulary by too much might increase the word
crror rale due to the increased number of choices. For example, normally, if we double the
vocabulary, we might expect an increase in word error rate of about 40%! So we performed
an experiment in which we used the standard 20K langusge model for the SK development
“data. We found, to our surprise, that the error rate increased only slightly, from 8.7% to
9.3%. Therefore, we felt confident that we could increase the vocabulary as needed.

We considered possible explanations for the smali increase in crvor due to a larger
vocabulary, We realized that the answer was in the language «nodel. In the first case, when
we just increase the vocaiwlary, the new words also nave the same probability in the
language model as the old words. However, in this case, all the new words that were added
-had lower probabilities (at least for the unigram model) than the existing words. Let us
consider two possibilitics that we would not falsely substitute a new word for an old one.
If the new word were acoustically similar to one of the words in the test (and therefore
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similar o a word in the original vocabulimy, then the word would be correctly recognized
because the origisal word would always have a higher language model probability. If, on
the other hand, the new word were acoustically very different from the word being spaken,
then we might expect that our acoustic models would prevent the new word [rom being
chosen over the old word. While the argument makes some sense, we did not expect the

loss for increasing the vocabulary from SK words to 20K words to be so small.

Finally. the third question is whether the new words would be recognized when they did
oceur, since (as menticned chove) their language model probabilities were generally tow.
In fact, we found that, even though the error tate for these new words was higher than for
the more likely words, we were siill able 10 recogmize about S0% 1o 70% of them
correctly, presumably based largely on the acoustic model. Thus, the net effect of this was
(o reduce the word error rate by about 1% to 1.5% . absoluie.

5.4 Modeling Spoken Language

Another effect that we work:d on was the difference betveen the processed text, as defined
by the preprocessor, and ihe words that people actuslly used when reading WSJ text, In
the pilot WSJ corpus, the subjects were prompled with texts that had already been
“normalized”, so that there was no ambiguity about how to read a sentence. However, in
the WSJI1 corpus, subjects were instructed to read the original texts and to say whatever
seemed most appropriate to them. Since the WSJT prompling texts were not normalized to
deterministic word sequences, subjects showed considerable variability in their reading of
the prompting text,

fowever, the standard Janguage model was derived from the normalized text produced by
the preprocessor. This resulted in a mismatch between the language model and the actual
word sequences that were spoken. While the preprocessor was quite good at predicting
what people said most of the time, there were several cases where peopie used different
words than predicted. For example, the preprocessor predicted that strings like “$234"
would be read as “two hundred thirty four dollars”. But in fact, most people read this as

““two hundred AND thirty four dollars”. For another extreme cxample, the preprocessor’s

prediction of “10.4" was “ten point four”, but the subject (in the WSI1 development data)
read this as “ten and four tenths”. There were many other similar examples,

The standard model for the tests was the “nonverbalized punctuation” (1{VP) model, which
assumes that the rcaders never speak any of the punctuation words. The other 1nodel that
had been defined was the “verbalized punctuation” (VP) model, which assumed that all of

- the punctuation was rcac out loud. This year, the subjects were instructed that they were
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free to read the punctuation out loud or not, in svhatever way they feel most comtortable,
Iturns out that people didn't serbalize most puncivation. However, they regularly
verbalized quotation marks in many different ways that were all different than the ways
predicted by the standard preprocessor,

“There were also several words that were read differently by subjects. For example, subjeets
- pronounced abbreviastions like, “CORP." and "INC.". While the preprocessor assumed that

al! abbreviations would be read as full v ads

We used two methods to model the ways peaple actually read text, The simpler approach
was o include the text of the acoustic traming data in the language model training, That is,
we sinply added the 37K sentence transeriptions from the acoustic training to the 2M
sentences of training text. The advantage of this method is that it modeled what people
actually said. The system wis detinitely more Bhely 1o recognize words or seguences that
were previously impossible The problem with this method was that the amount of
transcribed speech was quite small tabout 50 times smaller) compared o the original
training text. We tried repeating the transeriptions several times, but we found that the
effect was not as strong as we would like.

A more powertul approach was to simulate the effects of the different word choices by
simple rules which were applied o all of the 35M words of language training text, We
chose to use the {ollowing rules:

Preprocessed Text Simulated Text

HUNDRED [number] HUNDRED AND [number]
ONE HUNDRED A HUNDRED

ONE DQLLAR A DOLLAR

ZERO POINT {number] POINT [number]

AND ONE HALF AND A HALF

AND ONE QUARTER  AND A QUARTER

Thus, for example, if the sentence consists of the pattern “hundred twenty”, we repeated
the same sentence with “hundred AND twenty™.

The result was that about one fifth of the sentences in the original corpus had some change
reflecting a difference in the way subiects read the original text Thus, this was equivalent
in weight to an equal amount of training text to the original text.

We found that this preprocessing of the text was sufficient to cover most of those cases
where the readers said things differently than the predictions. The recognition results
showed that the system now usually recognized the new word sequences and abbreviations
correctly.
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5.5 Increasing the Language Model Training

While 35M words may seem like a lot of daca, it s not enough o cover all of the trigrams
that are likely to oceur in the testing data. So we considered other sources for additional
language modeling text. The only casily accessible data available was an additional 3 years
Urom 1990-1992) of WSJ duta from the TIPSTER corpus produced by the Linguistic Data
Consortiuvm (LDC).

However, there were two problems with using this ot Firsto sinee the test data was
Known 1o come Trom J987-1989, we were concerned that this might actually hurt
performance due to some ditferences in the pies diing that 3-year period. Second, this
text had not been normadized with the preprocessar and we did not have availabie o us the
preprocessor that was used to transform the raw test mto word sequences.

We decided 1o use the new text with minimal processing. The text was filtered o emove
all tables, captions, numbers, ete. We replaced each mitial example of double-quote ()
with "QUOTE and the matching token with "UNQUOTE or "ENDQUOTE, which were
tihe most comtaon ways these words were said. No other changes were made. We just used
the raw text as it was, One benelit of this was that abbreviations were left as they appeaced
in the text rather than expanded. Any numbers, dates, doHar amounts, ete, were just
considercd “unknown” words, and did not contribute to the training, We assuimed that we
had sufficient examples of numbers in the original text.

We found that adding this additional language taining data reduced the crror by about 7%
of the crror, indicating that the original 35 million words was not sufficient for the models
we were asing, Thus, the addition of plain text, even though it was from a differemt three

years, and had many gaps due to apparent unknown words, still improved the recognition

accuracy considerably.

5.6 Results

The following table shows the benefit of the enlarged 40K lexicon aud the enhanced
language model training on the OOV rate ard the word crror for the development test and
the evaluation test.

.Surprisingly, the addition of three year's LM training (from a period post-dating the test

data) improved performance on the utterances that were completely inside the vocabulary.
Evidently, even the common trigrams are poorly trained with only the 35 million word
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T OO0V TWord Bror
' Test Set 20K T40K ~ 20K T 0K

Development | 227 [ 017~ 164 2.9
Evaluation 1.8310.23 . 14.2 12,2

d

Table 5.2: Enlarging the lexicon improves OOV rate and error rate

WSJO corpus. Overall, our modilications to thie lexcon and grammar training reduced the
word error by 14-224,

5.7 Spontancous Dictation

Another area we investigated was spontaneous dictaton, The subjects were primarily
former or practicing journalists with some experience at dictation. They were instructed to
dictate general and financial news stories that would be appropriate for a newspaper like
WSJ. In general, the journalists chose topics of recent interest. This meant that the original
language model was often out of date for the subject. As a result, the percentage of OOV
words increased (to about 4%). and the language model taken from WSJ text was less
appropriate.

“The OOV words in the spontancous data were more likely to be proper nouns from recent
events that were not covered by the LM training material. To counter this, we added all
(1,028) of the new words that were found in the spontaneous portion of the acoustic
training data in WSJ1, This mostly included topical names (e.g., Hillary Rodham, NAFTA,
etc.).

In order to account for some of the differences between the read text and tiie spontaneous
text, and to have language model probabilities for the new words, we added the training
-transcriptions of the spontaneous dictation (about 8K sentences) to the LM training as well,

New weights for the new language model, HMM, and Segmental Neural Network wetre all
optimized on spontaneous development test data. The table below .hows that the OOV
remains near [9% cven after the enlargement to ¢ 41K lexicon.

As can be seen, increasing the vocabulary size from 20K to 40K significantly reduced the
OO0V rate. 1t is important to point out that in this case, we did not have the benefit of a
“word frequency list for spontaneous sneech, and that the source of speech had an unlimited
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: % 00V 1% Word Error
Test Set 20K | 40K 4”5 20K 41K
Development T 14] 038 217

29 -
Evaluation 48| 19| 1.5 247 19.1

- Table 5.3: OOV rate and error rate for 41K lexicon

vocabulary., So the reduction in OOV rate is certainly a fair - if not pessimistic - estimate
of the real benelis from increasing the vocabulary. A lding the few new words observed in
the spontancous speech also helped somewhat, but not nearly as much. The samplc of only
8,000 sentences is clearly not sufficient to find all the new words that pecople might use.
Presumably, if the sample of spontaneous speech were large enough to derive word
frequencics, then we conld choose a much better list of 40K words with a lower OOV rate.

Overall, the 41K trigram reduces the word ervor by 23% over the 20K standard trigram on
the November "93 CSR S9 evaluation test. We estimate that more than half of this gain
was due to the decreased percentage of GOV words, and the remainder was due to the
increased language model training, including specific examples of spontancous dictation.

5.8 Conclusions
We found the following interesting results:

e Expanding the vocabulary with less frequent words does not substantially increase
the word error on those words already in the vocabulary, but does eliminate many
errors due to OOV words.

o Doubling the amount of language mode! training text improves the language model,
even though the text comes from different years than the test, and even though the
text was not preprocessed into proper lexical forms.

o It is possible to improve the quality of the language mcdeling text by modeling the
differences between the predicted reading style and some examples of actual
transcriptions.

e Increasing the vocabulary size and language training had a bigger cffect on
spontancous speech than it did for read speech.




‘Chapter 6

HUM - Hidden Understanding Model

6.1 Introduction

uln this chapter, we describe und evaluate hidden understanding models, a statistical
learning approach to natural language understunding. Given a string of words, hidden
understanding models determine the most likely meaning for the string. We discuss (1) the
problem of representing meaning in this framework, (2) the structure of the statistical
model, (3) the process 7 training the model, and (4) the process of understanding using the
model. Finally, we give experimental results, including results on an ARPA cvaluation,

Hidden understanding models are an innovative cluss of staustical mechanisms that, given
a string of words, determines the most likely meaning for the string. The overall approach
represents a substantial departure from traditional techniques by replacing hand-crafted
grammars and rules with statistical models that are automaticaily learned from examples.
tlidden understanding models were primarily motivated by techniques that have been
extremely successful in speech recognition, especially hidden Markov models [18]. Related
.techniques have previously been applied to the problem of identifying concept sequences
within a sentence [52]. In addition, the approach contains elements of other natural
language processing techniques including semantic grammars {76, 32], augmented
transition networks (ATNs) [78], probabilistic parsing (29, 27, 59], and automatic grammar
induction [S1].

Hidden understanding models are capable of learning a variety of mecaning representations,
ranging from simple domain-specific representations, to ones at a level of detail and

* sophistication comparable to current natural language systems. In fact, a hidden

63
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anderstanding model can be used o produce 4 rep entation with essentially the same
information content as the semantic graph used by e Delphi system [22], a general
purpose NLP system, which utilizes a modified Denmte Clause Grammar formalism. This
fact made it possible to interface a hidden understanding system o the discourse processing
and data- base retrieval components of Delphi to rraduce a complete end to end system,
This hybrid system participated in the 1993 ATIS natural language evaluation. Although
“only four months old, the scores achieved by the combined system were quite respectable,

Because of differences between language understanding and speech recognition, signilicant
changes are required in the hidden Markov model iethodology. Unlike speech, where
cich phoneme results in a local sequence of spectia. the relation between the meaning of a
sentence and the sequence of words is not a simple linear sequential model. Language is
inherently nested, with subgroups of concepts within other concepts,

A statistical system for understanding fanguage must take this and other differences into
account in its overall design. In principle, we have tie following requirements for a hidden
understanding systenn.

¢ A notational system for expressing meanings.

o A statistical model that is capable of representing meanings and the association
between meanings and words,

o An automatic training program which, given pairs of meanings and word sequences,
can estimale the parameters of a statistical model.

o An-understanding program that can scarch the statistical model to find the most

likely meaning given a word sequence,

Below, we describe solutions for each of these requirements, and describe the relationship
of these solutions to other work in stochastic grammars and probabilistic parsing. Finally,
we will report on initial exp :riments with hidden understanding models.

6.2 Expressing Meanings

One of the key requirements for a hidden understanding model is that the meaning
representation must be both precise and appropriate for automatic learning techniques.

Specificully, we require a meaning -epresentation that is:
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Figure 6.1: The Main Components of & Hidden Understanding System

o Expressive. It must be able 1o express meanings over the entire range of utterances
that are likely to occur in an application.

— ¢y,

e Sandn T
’

o Annotatable. It must be possible to produce accurate annotations for a sufficiently
large corpus with an acceptable level of human effort,

o Trumable. It must be possible to estimate the mode! parameters from a reasonable
nuthber of training examples.

o Tractable. There must be a computationally tractable algorithm capable of searching
the meaning space.

In order to facilitate annotation of a training corpus, meaning expressions should be as
simple as possible. Frame based representations, such as the example shown in Figure 6.2,
have the advantage that they are relatively simple «© understand. A difficulty with this style
of representation is that the frames do not align directly to the words of the sentences. In
"particular, a meaning frame contains few explicit clues as to how the words of a sentence
imply the structural characteristics of the frame. Tree structured meaning representations,
discussed in the next section, have the advantage that they can be fully aligned o the
words of a sentence. The cost is that these tree structured representations are more detailed
thar their frame based counterparts, thereby requiring greater annotation effort,
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SHOW:
FLIGHTS:
TIME:
PART-OF-DAY: moring
ORIGIN:
CITY: Boston
DEST:
CITY: San Francisco
DATE:
DAY-OF -WEEK: Tuesday

Please show me morning Slights from Boston to San
Francisco on Tuesday.

Figure 6.2: A Frame Based Meaning Representation

Fortunately, the techniques developed for tree structured representations can be extended 1o
simpler frame representations as well.

6.2.1 Tree Structured Meaning Representations

The central characteristic of a tree structured representation is that individual concepts
appear as nodes in a tree, with component concepts appearing as nodes attached directly
below them. For example, the concept of a flight in the ATIS domain has component
concepts including airline, flight number, origin, and destination. These could then form
part of the representation for the phrase: United flight 203 from Dallas 1o Atlanta. The use
of a hierarchical representation is one characteristic that distinguishes hidden understanding
madels from carlier work in which meaning is represented by a linear sequence of
concepts [52].
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Figure 6.3: A Tree Structured Meaning Representation

A requirement for tree structured representations is that the order of the component s
concepts must match the order of the words they correspend to. Thus, the representation ol

the phrase flight 203 to Atlanta from Dallas on United includes the same nodes as the .
“earlier cxa'mplc, but in a different order. For both cxamples, hewever, the interpretation is e
identical, .

At the leaves of a meaning tree are the words ol the sentence. We distinguish between
nodes that appear above other nodes, and those that appear directly above the words.
These will be referred to as nonterminal nodes and terminal nodes respectively, forming
two disjoint sets. No node has both words and other nodes appearing directly below it.

X Figure 6.3 shows an example of a typical meaning tree. In this example, the flight node o
. represents the abstract concept of a flight, which is a structured centity that may contain an
_ origin, a destination, and other component concepts. Appearing directly above the word

“flight”” is a terminal node, which we call a flight indicator. This name is chosen 10
v distinguish it from the flight node, and also because the word flight, in some sense,
- indicates the presence of a flight concept. Similarly, there are airline indicators, origin
indicators, and destination indicators.
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One view of these tree structured representations is that they are parse trees produced
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according to a semantic grammar. In this view, the dominance relations of the grammar !

are predetermined by the annotation schema, while the precedence relations are learned

from the training examples,

6.2.2 Alternative Tree Representations

Tree structured meaning expressions can range in complexity from simple special purpose
sublanguage representations to the structural equivalent of detailed syntactic parse trecs.
The possibilities are limited only by two fundamental requirements: (i) semantic concepls
must be hierarchicaliy nested within a tree structure, and (2) the sets of terminal and
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nonterminal nodes must remain disjomt. Both ol © -se requirements can be satistied by
trees possessing most of the structurar charactents. « of conventional syntactic parse trees,
Since our objective is to model meaning, the node~ must still be labeled to reflect semantic
categories. However, additional and augmented lubels may be introduced to reflect
syntactic categories as well.

"Representations of this form contain significantly more internal structure than specialized
sublanguage models. This can be seen in the exaunple in Figure 6.4, The specialized
sublanguage representaiion reguires only seven nodes, while a full syntactically motivated
analysis requires fifteen. The additional nodes are 1sed 1o distinguish what is being shown
to whom, (o refiect the fact that the stopover phrase is part of a relative clause, and o
determine the internal structure of the relative clause.

One interesting characteristic of these more elaborate trees is their similarity to those
produced by classical, linguistically motivated, natural language systems. Thus, a hidden
understanding model can serve to replace the part-ol- speech tagger, parser, and semantic
interpreter of a classical system. Instead of writing grammar and semantic interpretation
rules by hand, the training program automatically constructs a statistical model from
examples of meaning trees.

Regardless of the details of the tree structure and labeis, the components comprising a
hidden understanding system remain unchanged. The only difference is in how the system
is trained.

6.2.3 Frame Based Representations

One way to think of a frame based meaning is as a partially specified tree in which some
words are not accounted {or. Nevertheless, a frame representation is a complete meaning
representation in the sense that it fully specifies the concepts and structure comprising the
meaning. In terms of a tree structured representation, the set of nonterminal nodes is fully
specified, while some of the terminal nodes may be omitted.

The missing terminal nodes are said to be hidden, in the sense that every word is required
to align to some terminal node, but the alignment is not necessarilv given by the meaning
“frame. These hidden nodes must later be aligned as part of the training process. The
general idea is to assign a small number of free terminal nodes (typically one or two)
beneath every nonterminal node. These are then free to align to any unassigned words,
provided that the overall tree structure is not violated. An EM algorithim (Estimate-
Maximize) is used tu organize the unassigned terminal nodes into classes that correspond
to individual words and phrases, and that bind to particular abstract concepts. Figure 6.5
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Figure 6.5: A Tree Structure Corresponding to a Frume Representation

shows the complete meaning tree with hidden nodes corresponding to the frame in Figure
6.2.

If we consider tree structured meaning expressions as parse trees which are generated
according to some incompletely specified grammar, then the problem of aligning the
“hidden nodes can be considered as a grammar induction problem. In this way, the problem
of aligning the hidden nodes given only a partially specified set of trees is analogous to the
problem of fully parsing a training corpus given only a partial bracketing. The difference is
that while a partial bracketing determines constituent boundaries that cannot be crossed, a
partially specified tree determines structure that must be prescrved.
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6.3 The Statistical Model

One central charactenstic of hidden understanding models is that they are generative. From
this viewpoint, language is produced by a two component statistical process, The first
component chooses the meaning to be expressed, effectively deciding what to say. The
Second component selects word sequences to express that meaning, effectively deciding
how to say it. The first phase is referred w as the semantic language model. and can be
thought of as a stochastic process that produces meaning expressions sclected from a
upiverse of meanings. The second phase is referred o as the lexical realization model, and
can be thought of as a stochastic process that gener.es words vnce a meaning is given.

By analogy with hidden Markov models, we refer io the combination of these two models ‘
as @ hidden understanding model. The word hidden refers 10 the fact that only words can
be observed. The internal states of each of the two models are unseen and must be inferred
from the words. The problem of fanguage understanding, then, is to recover the most likely
meaning structure given a sequence ol words. More formally, understanding « word
sequence Wois accomplished by searching among all possible meantogs for some meaning
M such that P(M|W) is maximized. By Bayes Rule, PIM|W) can be tewritlen as:

W\ vGE

s : WA P(M)
. MW = e e
s IHRINLS Piv)

BT 1T

Now, since P(W) does not depend on M, maximizing P(M|W) is cquivalent to
maximizing the product P(W|M) P(M). However, P(M V) is simply our lexical
realization model, and P(M) is simply our semantic language model. Thus, by searching a
combination of these models it is possible to find the maximum likelihood meaning M
given word sequence W. Considering the statistical model as a stochastic grammar, the
problem of determining M given W is analogous to the problem of finding the most likely
derivation for W according to that grammar.

P

6.3.1 Semantic Language Model

Yar tree structured meaning representations individual nonterminal nodes determine
particular abstract semantic concepts. In the semantic language model, cach abstract
concepl corresponds to a probabilistic state transition network. All such networks are then
combined into a single probabilistic recursive transition nerwork, forming the entire
“semantic language model.
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The network corresponding to a4 particular abstrac: neept consists of states for each of its
component concepts, logether with twe exira states at define the entry and exit points.
Every component coneept is {ully connected 1o evess other component concept, with
additional paths lexding from the entry state to cach component concept, and {rom cach
component coneept to the exit stale. Figure 6.6 shows a sample network corresponding to
the flight concept. Of course, there are many more light component concepts in the ATIS
domain than actually appear in this example. Associated with cach are is a probability
value, ina similar fashion to the TINA system [5¢° These probabilities have the form
P(Staten|Staten - 1, Context), which is the pro ~ability of a taking transition {rom one
state 1o another within a particulus context. Thus, ».o are from origin to dest has
probability P(destiorigin, flight), meaning the pronability of entering dest from origin
within the context of the flight network. Presumadls . this probability is relatively high,
since people usttally mention the destination of o Hrsht divectly after mentioning its origin,
Conversely, Ploriginldest, flight) is probably 1w because people don't usually express
coneepts in that order. Thus, while all paths through the state space are possible, some
have much wigher probabilities than others.

Within a concept network, companent concept states exist for both nonterminal concepts,
such as origin, as well as terminal concepts, such as flight indicator. Arrows pointing into
nonterminal states indicate entries into other netwarks, while arrows pointing away indicate
exits out of those networks. Terminal states correspond to networks as well, although these
are determined by the lexical realization model and have a different internal structure.
Thus, cvery meaning tree directly corresponds directly to some particular path through the
state space. Figure 6.7 shows a meaning tree and its corresponding path through state
space.

Vicwed as a grammat, the semantic language model is expressed directly as a collection of
networks rather than as a collection of production rules. These networks represent
grammatical constraints in a somewhat different fashion than do grammars based on
production rules. In this model. constituents may appear bencath nonterminal nodes in any
arbitrary order, while preferences for some orderings arc determined through the use of
probabilities. By contrast, most grammars limit the ordering of constituents to an explicit
set which is specified by (he grammar rules. The approach taken in the TINA system
eliminates many ordering constraints while retaining the local state transition constraints
.determined by its grammar. We believe that an unconstrained ordering of constraints
increases parsing robustness, while the preferences determined by the arc probabilities help
minimize overgeneration.
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0.3.2 Lexical Realization Model

Just as nonterminal tree nodes correspond to networks in the semantic language model,
terminal nodes correspond to networks in the lexical realization model. The diflerence is
that semantic language networks specify transition probabilities beiween states, whiie
-lexical realization networks specify transition probabilities between words. Lexical
realization probabilities have the form P(wordn|wordn — 1, context), which is the
probability of taking a transition from one word to another given a particular context,
Thus, Pishowlplease, show ~ indicator) is the prnability that the word show Tollows the
word please within the context of a show indicator ~hrase. In addition, there are two
paeudo-words, *begin* and *end*, which indicawe the beginning and ending of phrases.
Thus, we have probabilities such as P(please| * boyinx, show-indicator), which is the
probability that please is the first word of a show rdicator phrase, and

Pisend = ;me, show - indicator) . which is the probability of exiting a show indicator
phrase given that the previous word was me.

6.4 The Understanding Component

\s we have seen, understanding a word string W requires finding a meaning M such that
the probability P(W|M)P(M) is maximized. Since, the semantic tanguage model and the
lexical realization model are both probabilistic networks, P(W|M)P(M) is the probability
of a particular path through the combined network. Thus, the problem of understanding is
to find the highest probability path among all possible paths, wl.ere the probability of a
path is the product of all the transition probabilities along, hat path,

[ P(staten|state,..i,context) if tin Semantic Language Model
| Plword,|word,, .\, context) if tin Lexical Realization Model
6.1)

PPathy= I uw(n)=
telPath

Thus far, we have discussed the need to search among all nicaning for cae with a
maximal probability. In fact, if it were necessary (0 search every path through the
combined network individually, the algorithm would require exponential time with respect
-to sentence length. Fortunately, this can be drastically reduced by combining the
probability computation of common subpaths through dynamic programming. In particular,
because our meaning representation aligns to the words, the search can be efficicntly
performed using the well-known Viterbi [74] algorithm,
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Since our underiving model is a recursive transitie. network, the states for the Viterbi
search must be allocited dynamically as the search proceeds. In addition, it is necessary to
prune very low probability paths in order to keep the computation tractable. We have
developed an elegant algorithm that integrates staie atlocation. Viterbi search, and pruning
all within a single traversal of a tree- like duta structure. In this algorithm, cach of the set

Lof currently active states is represented as a node in a tree, New nodes are added to the

tree as the computation pushes into new subnietworks that are not currently active. Stored
at cach node is the probability of the most likely path reaching that state, together with a
backpointer sufticient to recreate the path later if needed, Whenever the probability of all
states 1 i subtree falls below the threshold specifie ] by the beam width, the entire subtree
1s pruned away.

)

6.5 The Training Comperent

In order to train the statistical model, we must estimiate transition probabilities for the
semantic language model and lexical realization model. In the case of fully specified
meaning trees, cach meaning tree can be straightforwardly converted into a path through
state space. Then, by counting occuirence and transition frequencies along those paths, it is
possible to form simple estimates of the trunsition probabilities. Let C(statem, contexts)
denote the number of times statem has occurred in contexts, and let

C(siaten|statem, contexts) denote the number of times that this condition has led to a
transition to state staten. Similarly, define counts C(wordrm, conteztl) and
C(wordn|wordm, conteatl). Then, a direct estimate of the probabilities is given by:

Clstate,|state,,, conlect)

P(state stale,,, contexl) =
( nl m context) C(stale,,,context)

and
Clworda|word,, context)

C(word,,, contezt)

p(ward,,|word,,,,contca:t) =

In order to obtain robust estimates, these siniple estimates are smoothed with backed-off

-estimates [31], using techniques similar to those used in speech recognition [38, 55). Thus,

Plstaten|statern, context) is smoothed with P'staten|context), and

Plwordn|wordm, context) is smoothed with Plwordn|context). Robustness is further
increased through word classes. For example, Bosion and San Francisco are both members
of the class of cities.

In the casc of frame based representations, it is not always possible to construct an exact
_path through the state space corresponding to a meaning representation. Nevertheless, since
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frames are treated as partially specified trees, most +the path can be reconsiructed, with
some portions undetermined. Then, the partial path . an be used o constrain a gradient
descent search, called the forward- backward algonthm (18] for estimating the model
parameters. This algorithm is an iterative procedure for adjusting the model paramelers so
as to increase the likelihvod of generating the tratming data, and is an instance of the

well-known class called EM (Estimate-Maximize) algerithms.

6.6 Experimental Results

We have implemented a hidden understanding sy siem and performed a variety of
experiments. In addition, we participated in the 1993 ARPA ATIS NL evaluation, One
experiment involved a 1000 sentence ATIS corpus. annotated according o a simple
specialized sublanguage model, The annotation eflort was split between two annotators,
one of whom was a system developer, while the uther was not. To arnotate the training
data. we used a bootstrapping process in which only the first 100 sentences were annotated
strictly by hand.

Thereafter, we warked in cycles of:

I. Running the traimng program using all available annotated data.
2. Running the understanding component (o annotate new sentences,
3. Hand cc- ~~ting the new annotations.

Annotating in this way, we found that a single annotator could produce 200 seiences per

.day. We then extracted the first 109 sentences as a test sct, and trained thie system on the

remaining 900 sentences. The results were as follows:

e 1% matched exactly.
& 21% had correct meanings, but did not match exactly.

e 28% had the wrong meaning,

Another experiment involved a 6000 sentence ATIS corpus, annotated according to a more
sophisticated meaning model. In this experiment, the Delphi system automatically
produced the annotation by printing out its own internal representation for each sentence,
converted into a more readable form. In order to maintain high quality annotadons, we
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used only sentences for whieh Delphu produced wevmplete parse, and for which it also
reerieved a correct answer from the database. We then removed 300 sentences as a test set,
and trained the system on the renwining 5700, The results were as follows:

o 85% maiched exactly.
8 3% had correct meanings, but did not nuteh exactly.

& 79 had the wrong meaning.

For the ARPA evaluation, we coupled our hidden understanding svstem o the discourse
and backend components of the Delphis Usmg the entire 6000 sentence corpus deseribed
above ay raining data, the systent produced v seore ul 26% simple error on the ATIS NL
evaluation, By examining tne eriors, we have reached the conclusion that nearly half are
due (o simple programiming issues, especially in the interface between Delphi and the
hidden understanding system. In Taet, the interface was still incomplete at the time of the
evaluation,

We have just begun a series of experiments using frame based annotations, and are
continuing to refine our techniques. In a prefiminary test invo:ving a small corpus of 588
ATIS sentences, the system correctly ahigned the hidden states for over 95% of the
senlences in the corpus.

6.7 Limitations

Several limitations to our current approach are worth noting. In a small number of cases,
linguistic movement phenomena make it difficult to align the words of a sentence to any
“tree struciured meaning expression withoul introducing crossings. In mmost cases, we have

been able to work around this problem by introducing minor changes in our annotation
such that the tree structure is maintained. A second limitation, due to the local naturce of
the model, is an inability to handle nonlocal phenomena such as conference. Finally, in
some cases the meaning of a senlence depends strongly upon the discourse state, which is
beyond the scope of the current model.
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6.8 Conclusions

We have demonsirated the possibility of antomatically learning semantic representations
directly from a training corpus through the application of statistical technigues. Empirical
results, including the results of an ARPA evaluation, indicate that these techniques are
capable of relatively high levels of performance.

While hidden understanding iodels are based primanily on the concepts of hidden Markoy
models, we have also shown their relationship to oewer work in stochastic grammars and
probabilistic parsing,

Finally, we have noted some Himtations o our cuarnt approach. We view cach ol these
limitaions as opportunities for further research and exploration.
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