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Abstract

This paper considers the problem of bulk-loading large data sets for for the
gridfile multi-attribute indexing technique. We propose a rectilinear parti-
tioning algorithm that heuristically seeks to minimize the size of the gridfile
needed to ensure no bucket overflows. Empirical studies on both synthetic
data sets and on data sets drawn from computational fluid dynamics appli-
cations demonstrate that our algorithm is very efficient, and is able to handle
large data sets. In addition, we present an algorithm for bulk-loading data
sets too large to fit in main memory. Utilizing a sort of the entire data set
it creates a gridfile without incurring any overflows.
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1 Introduction

We are developing a scientific database to support retrieval of subsets of Computational Fluid Dynamics
(CFD) data sets. Retrieval of subsets is required for visualization and data exploration. All of our data
is two or three-dimensional and thus requires multiattribute indexing. We are specifically interested in
partially qualified, fully qualified, and point queries. Gridfiles are a well known multi-attribute indexing
technique [5]. The basic idea is to partition each attribute range into subranges, thereby inducing a
multi-dimensional rectilinear partitioning on the entire multi-attribute space. Enough partitions are
chosen to ensure that all tuples sharing the same subrange in each dimension will fit on a disk page.
Any point query can be then be satisfied with two disk accesses, one to fetch a pointer to the data page.
and one to fetch the data page itself.

The data we wish to store is contained in files created by CFD simulations. Both the size of the data
sets and anticipated extensive use of the data sets require that we provide fast organization of new data,
and fast retrivial of existing data. Our two dimensional data is typically a large set of tuples of the form:

(X, Y, floatl, float, ... f loatN)

Current data sets measure only tens of megabytes, but are projected to be 2-3 orders of magnitude
larger soon. Although we are specifically concerned with CFD data sets, large physically oriented data
sets are common outputs to a wide spectrum of scientific computations.

In this paper we show how to quickly load entire data files into a gridfile indexing structure. This
is termed bulk loading. Note similar functionality is required from relational databases for reloading

relations when changing platforms, during recovery, or during reorganization. In a relational database
the relation is analogous to the data set in our work.

The main contributions of this paper are:

1. A partitioning algorithm which requires up to two to four orders of magnitude less CPU time
than the only known algorithm for partitioning data into gridfile blocks. We provide experimental

results for our partitioning algorithm.

2. An efficient algorithm to aggregate under-utilized logical grid-buckets to achieve better disk uti-

lization. We provide expermental results which demonstrate the utility of the aggregation phase.

3. A complete algorithm for bulk-loading of large data sets (significantly larger than main memory)
that guarantees no bucket overflows.

The rest of this paper is organized as follows: In the next section we relate our work to prior
efforts. In section 3 we present the general problem in more detail and provide an example. In section
4 we present the existing partitioning algorithm, our new algorithm, and our aggregation algorithm. In
section 5 we experimentally compare the execution times of the two algorithms, on a variety of data
sets including highly skewed CFD data sets. We also demonstrate the effectiveness of our aggregation
technique. In section 6 we present our two phase bulk-loading algorithm. We end with our conclusions
and plans for future work.



2 Previous Work

Bulk-loading of B+ trees [6] has been investigated, but only recently have bulk-loaded grid files been
considered. The single paper on this of which we are aware is that of Li, Rotem, and Srivastava [2].
Their main emphasis is bulk-loading of Parallel Grid Files, i.e. grid files that are distributed across
multiple sites in a shared nothing environment. They define logical partitioning as that of the gridfile
among the sites in the database system, and physical partitioning as that of the portion of a gridfile
located at one site, into the buckets that compose that portion of the gridfile. Their solution is based on
dynamic programming, for both the logical partitioning and physical partitioning of parallel gridfiles.
For physical partitioning their objective function is to minimize bucket overflow. We are concerned only
with physical partitioning at a single site, although a modified version of our algorithm could be used
for logical partitioning. The Li et a]. algorithm optimally partitions one dimension, given a specific
number of partitions and a fixed partitioning in the other dimension (which is likely equally spaced,
but details on this fixed partition are lacking the the Li et al. paper). Our algorithm dynamically finds
the number of partitions, finds a partitioning much more quickly, and directly addresses the issue of
selecting the fixed partition. For uniformly distributed data it may be sufficient to assume an equally
spaced partitioning, but this is not the case when data is skewed.

We show that the dynamic programming approach is too inefficient to be considered for large
grid files. Li et al. recognize this problem themselves, and suggest sampling [7, 8] to accelerate their
algorithm. However, sampling may introduce overflows, the handling of which may be significant. For
each bucket that overflows an additional bucket must be created and the grid directory split. If the
number of overflows within a bucket is larger than the bucket capacity, multiple new buckets will need
to be created and the grid directory will be split multiple times. The earlier work inadequately assesses
the risks of sampling, focusing as it does on the probability that some block overflows rather than, say,
the average number of blocks which overflow and the average total number of overflow tuples.

For the problem specification given in Li et al. , i.e. given a fixed partitioning and fixed number
of partitions, the dynamic programming formulation is an excellent approach, but we propose that it
is better to reformulate the problem and find the smallest number of partitions for which the total
overflow is zero. The freedom introduced by allowing an arbitrary number of partitions enables us to
use a fast heuristic algorithm instead of an expensive dynamic programming algorithm. The possibly
larger number of buckets resulting from an increased number of partitions is reduced via a low cost
aggregation algorithm. Thus, our partitioning algorithm is capable of handling much larger grid files
and still guarantee no overflows while achieving good bucket utilization, although if the data set is too
large to fit into main memory the data must first be sorted. Furthermore, we consider more extensive
data sets than the earlier work, to better understand the effects of positionally skewed and clustered
data which is typical of CFD data sets.

Our partitioning algorithm is a modification of the rectilinear partitioning algorithm developed
by Nicol[4] for the purposes of load-balancing irregular data-parallel computations. The two principle
differences between our algorithm and this earlier one are that the number of subranges in each dimension
are not considered fixed in the present context, and that there is an upper limit on the number of tuples
in a bucket.
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3 General Problem Description

Before considering algorithmic issues, let us first examine the general problem. Our exposition is of the
two-dimensional case; all the algorithms generalize immediately to higher dimensions. We also assume
that each attributed range is partitioned into the same number of subranges. This is not rigorously
necessary, but we have not addressed how one would choose the desired relationship between number
of subranges in each dimension.

Let S be a set of tuples (a1,a2,q[]) where attributes a, and a2 are the indexed attributes and q[] is
the rest of the tuple. In our specific data sets al and a2 are x and y coordinates, and q[] is an array of
3-5 floating point values representing physical quantities such as pressure, density, directional derivative
information, chemical composition, and so on. For ease of exposition assume the domain of both a, and
a2 are integers E 1,. .. , n; the algorithms extend in a straightforward fashion to real-valued attributes
and generalized ranges. The empirical results we report are based on these extensions. Let Y be a n x n
frequency matrix which for each entry contains the number of tuples with that coordinate, i. e.

fij = II {tIt E S, a, = i, a2 =j} , 1 < ij < n

We use the following notation:

T = the number of tuples in data set S,

P = the number of partitions in each dimension,

B = the maximum number of tuples a bucket can hold,

Ui = the number of unique coordinate values in dimension i,

I *,,,as . 11 -X• f Ui},

Ci = (ci, 1,ci, 2,.. .,c i,p-1 ) is the vector of cuts in dimension i, specifically C1 is the vector of
horizontal cuts and C2 is the vector of vertical cuts,

[0i,j] = the P x P occupancy matrix resulting from applying the cut vectors C1 and C2 to S,

total overflow E7= ZjL max{0ij - B, 0}.

We seek a pair (C1 , C2) whose total overflow equals zero, and whose number of cuts is minimized.

To make these concepts more intuitive, in the left hand side of figure 1 we have the partitioned
data set for S = {(1, 1)(1,3)(1,4)(2,2)(2,8)(3,9)(4,2)(4,3)(5, 1)(5,3)(7,2)(7,4)(8,8),(9,3)}, P = 3, C1
(the horizontal cuts) = (2,7), and C2 = (2,6). The partitioning (C1 , C2) divides the domain of S into
9 bins. Note, the dashed lines of (C1 , C2) are slightly offset to clearly show the occupancy of the bins.
In this case bin 1 contains points (1,1) and (2,2); bin 2 contains (1,3) and (1,4); bin 3 contains (2,8);
bin 4 contains (4,2), (5,1) and (7,2); bin 5 contains (4,3), (5,3), and (7,4); bin 6 contains (3,9); bin 7 is
empty; bin 8 contains (9,3); and bin 9 contains (8,8). Thus, the occupancy matrix, [Oi,j], is:

2 2 1
3 3 1
0 1 1
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Figure 1: Partitioning Example; Left: total overflow equals 1; Right: total overflow equals 0

If we assume B -- 2, then the total overflow for this partitioning is 2 because bins 4 and 5 each

contain 3 points. If we move the position of the second cut of C1 to position 6, i. e. let C1 -- (2,6), as
shown in the right hand side of figure 1, then the total overflow would be zero.

4 Algorithm Descriptions

We now describe the algorithm of Li et. al., and our own. Our implementation of the earlier algorithm

is presented in 4.1 in some detail. We provide the detail because it is lacking in the Li et. al paper,

and we wish to show that we've made every effort to optimize the performance of their dynamic pro-

gramming solution. Section 4.2 gives our own partitioning algorithm, while 4.3 describes our method

for aggregating under-utilized buckets.

4.1 Dynamic Programming Solution

The dynamic programming equation to be described is precisely the one given in Li et al. [2]. We reword

that formulation and describe specifics of an optimized algorithm for solving that equation.

It is assumed that S is already partitioned in the horizontal dimension, i.e. Ct is fixed. Our task
is to find a vector C2 that minimizes the total overflow. Let pr(itj) be the n c (j - i + 1) submatrix of

cF obtained by restricting a2, i we a2 : j. Now consider the column of bins resulting from partitioning

T•(i*,j) horizontally by C1. Let OVl(i~j) be the sumn, over each member of this column, of the bin
overflow. For example, with B = 2 and the right hn seleft of figure 1, OVh(2,3) equals 2 since the
middle bin has 4 tuples, and no Lie.al., and o ur on other two bins. To reduce overflows we
might consider partitioning .(i,j) vertically with p -I cuts, thereby creating a P d e submatrix of bins
with an attendant total overflow value. There may be many ways of partitioning columns i through j
of 7Z(i,j) with al- b cuts; let TOVi(i,j, 1) be the minimum possible total overflow cost among all these
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possibilities. The principle of optimality [11 then asserts that

JMini=.-.1 .....j 1 J{TOV(l,i,I- 1)+ OVI(i + 1,j)}, 1<1 j,
TOV 1(I,j,I) = (1)

IOV (i,j), I =I

Of particular interest is the value TO V1(1,T, P), and the partition that achieves this cost.

Solution of this equation is aided by precomputing values from which each 0V1(i,j) can be derived
in O(P) time, as follows. C1 partitions F into P submatrices, S1,'"., Sp. For each Sk and column
index j define rk(lj) to be the sum of entries in Si between column indices 1 and j, inclusive. Then,
for any pair of column indices i and j we have rk(i,j) = rk(1,j) - rk(l,i - 1). Now

P
OV1(i,j) = > max{rk(i,j)- B,O}.

k=1

Since rk(i,j) is computed with a single subtraction, OVI(i,j) is computed in O(P) time. The set of all
rk(1,j) values can be computed in time proportional to nlog(P). With only slightly more computation

(a sort in each dimension) we can accommodate tuple sets that are sparse relative to n x n. We project
the data set onto each coordinate axis and sort it, essentially working with a T x T array containing
only T non-zeros. The indices we describe in this paper may be thought of as the ordinal positions

of the data projections on each axis. We take advantage of the sparse structure and still compute all
rk(l,j) values time proportional to Tlog(P).

The dynamic programming equation expresses a recursion in both column index j, and number of
cuts, 1. Our approach is to unravel the recursion with j being the inner index, and I the outer one.

Specifically, we start by solving TOV1(1,j, 1) for all j; given these we solve TOVI(1,j, 2) for all j, and so
on. For I >" 1 when solving TO VI(1,j, I) we must make up toj-l comparisons (actually, we must make
one compar,_ n ,or every non-zero column of -between columns I- 1 and j - 1). If the tuple sets are not
sparse relative to n x n, the complexity of the inner loop of the recursion is O(P n 2), and the outer loop is

executed giving a complexity of O(P 2 n2). In addition, the complexity of the initial precalculation of the
rk(1,j) is O(T log(P)), thus the total complexity is O(P 2 n 2 + T log(P)). If the data sets are sparse
relative to n x n, then the complexity can be reduced to O(P 2 U2 + U2 log(P) + T log(T)), where U2

is the number of unique attribute values in dimension 2, and the additional Tlog(T) is for sorting the
tuples which is needed to maintain the sparse representation. In the rest of this paper we will assume
the data sets are sparse relative to n x n. Sparse data sets are especially relevant since the coordinates
of our unstructured CFD data sets are reals. The asymptotic complexity is O(max{P 2U2,TlogT}).

We will henceforth call this algorithm the DP algorithm.

The speed of the algorithm can be further increased by precalculating and storing all the values
0V 1(i,j) Vi, Vj. The complexity is then O(P U2 + U2 log(P) + T log(T)). The precalculation of
the OVm(i,j) requires time proportional to O(P U2), and is thus included in that term. This storage
cost can be very significant and hence limits the applicability of this optimization. For example, if U2 is
5000, the space required for storing the 0V1 (i, j) is 95 megabytes. We will henceforth call this algorithm
the DP2 algorithm.

We have now described how to calculate the optimal overflow cost and partitioning of S given fixed
partitioning C 1. So far the only difference from our work and that of Li et al. is that we have provided
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the details of our implementation of the dynamic programming problem. We now come to the first
contribution of this paper, how to determine the fixed partitionings and how to determine the number
of partitions.

We assume that the number of partitions in each dimension is the same, thus resulting in square
gridfile directories. We presume the existence of an algorithm which, given a fixed set of cuts in one
dimension finds a "good" set of cuts in the other dimension. The paper by Li et al. provides one such,
but neglects to specify the origin of the fixed cut set. We follow Nicol [41 by using such an algorithm
as the basis for an iterative method: Given fixed cuts in one dimension, find good cuts in the other.
Treat the new cuts as fixed, and find better ones in the previously fixed dimension. The iterations are
maintained until some termination mechanism triggers. The initial fixed cut is uniformly spaced. In
the gridfile application of this idea, each application of the cut-finding algorithm attempts to find cuts
that yield zero overflow at all buckets. Termination of such a partitioning session is defined when either
an overflow-free cut-set is discovered, or after some specified number of iterations (we use 20) no such
cut-set is discovered. The sole parameter to a partitioning session is the number of partitions, P, in each
dimension. A partitioning session may be viewed as a probe that determines whether we can quickly
discovered an overflow-free partitioning using P - 1 cuts in each dimension. Our overall strategy is to
do an intelligent search on P to find the smallest value for which we can quickly determine a desirable
partitioning.

Any cut assignment might be used in the approach above. The results we later report use both
the dynamic programming solution of Li et al., and our own algorithm (to be reported) within this
same framework. For skewed data sets it may be advantageous to have the number of partitions in
each dimension differ, but our aggregation phase described later minimizes the poor efficiency of using
square regions. In the future we intend to investigate non-square regions. Given a square region, strict
lower and upper bounds on the number of partitions needed in each dimension are:

lowerBound = ([T/BJ)O'5

upperBound = T

We thus can do a binary search to find the minimal number of partitions P, lowerBound < P <
upperBound, for which the total overflow is equal to zero. In practice, we have found it is faster start
with the number of partitions equal to 2 x lowerBound. Then, while the total overflow is greater than

zero keep doubling the number of partitions. Once a partition value has been found for which the total
overflow is zero, conduct a binary search with that value as the upper bound, and the previous value

as the lower bound.

4.2 Rectilinear Partitioning

We now come to the second contribution of our work, an alternative rectilinear partitioning algorithm.
Like that of Li et al., it optimizes the cuts in one dimension given a fixed set of cuts in the other. In
the discussion to follow we take C1 as fixed.

At each step of the algorithm we seek to define a column of buckets whose width is as wide as
possible without any bucket in the column being assigned more than B tuples. To define the first column
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we seek the largest index j for which OVI(l,j) = 0; call this index ji. Since OVI(l,j) is monotone
non-decreasing in j, we may identify j, with a binary search. Using the precalculated rk(i,j), each

candidate j requires O(P) time to compute 0Vi(1,j), hence O(Plog U2 ) time is required to define the

first column. The second column is computed exactly as the first, only taking index ji + 1 as the

starting point, i.e., identify the largest j2 for which OV1 (j 1 + 1,j2) = 0. This process continues until

either P or fewer adjacent overflow-free columns are discovered, or all P - I cuts are placed and the

last column suffers overflow. In the former case the partitioning session terminates; in the latter case

we may freeze the newly discovered cuts and choose new cuts in the other dimension. The complexity

of one partitioning session has several components. First there is an O(TlogT) cost for sorting the

tuples in each dimension. Now for each time we optimize in one dimension we first compute new

rk(l,j) values, which takes O(Tlog(P)) time. This is followed by a O(P 2 logU 2 ) cost for allocating

cuts. Since any partitioning session iterates a bounded number of times, the asymptotic complexity is

0(max{ P2 log U2 , Tlog T}).

The original rectilinear application [4] was shown to converge to unchanging cut sets (given suffi-

ciently many iterations). Our algorithm too would converge, but we have found it more prudent to back

away to a larger number of partitions when a small number of iterations fails to find a suitable partition.

The original rectilinear partitioning problem was shown to be NP-hard in three dimensions; the same

proof suffices to show the intractability of finding minimal P for which a square overflow-free partition

exists. The tractability of the rectilinear partitioning problem in two dimensions is still unknown.

It is informative to consider an essential difference between our partitioning algorithm and that

of Li et al. We are uninterested in any partition that has overflow, and so expend no computational

energy on minimizing non-zero overflows. If, given C1 it is possible to find C 2 yielding an overflow-free

partition, our algorithm will find it. If none exists, our algorithm determines that quickly. By contrast,

the previous algorithm seeks to find C 2 that minimizes overflow. We are uninterested in whether the

minimal overflow is two or three, only whether it is zero or non-zero. This distinction permits us to find

overflow-free partitions with substantially less work than the previous algorithm, as will be seen in the

empirical results.

4.3 Aggregation

Our third contribution is an algorithm for aggregating adjacent buckets with low utilization. After the

partitioning phase some of the buckets may have low utilization. If two adjacent buckets both have 50%

utilization or smaller we may combine them into a single bucket (even though the gridfile directory will

contain two pointers-they will be identical). Following partitioning, we apply an aggregation scheme

based on this observation.

Let B equal the bucket capacity. First assume the grid directory is of size 2i x 2i, and view it as four

equal sized 2'-' x 2'-' quadrants labeled NW,NE,SE,SW. Define a procedure CanMerge(A, B,j) that

returns logical true if neither A nor B has already been merged into some group at level j and their sum

of utilization is less than 100%. Define procedure Merge(A, B,j) to merge A and B into one bucket

at level j. Using CanMerge and Merge we define a recursive function function Aggregate(A,j) as

follows.

7
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Figure 2: Aggregation Examples

1. If A consists of a 1 x 1 gridfile or if A has already been merged into some group at level j - 1,
return.

2. Partition A into four quadrants, NW,NE,SE,SW.

3. If the sum of utilizations of all four quadrants is less than 100%, aggregate them all into one
bucket, return.

4. if CanMerge(NW,NEj) AND CanMerge(SW,SEj) then:
call Merge(NW,NE,j), Merge(SW,SEij)

5. if CanMerge(NW,SWj) AND CanMerge(NE,SEj) then:
call Merge(NW,SW~j), Merge(NE,SE~j)

6. if CanMerge(NW,NEj) then: call Merge(NW,NEj)

7. if CanMerge(SW,SEj) then: call Merge(SW,SEj)

8. if CanMerge(NW,SWj) then: call Merge(NW,SWj)

9. if CanMerge(NE,SEj) then: call Merge(NE,SE~j)

10. call Aggregate(NWj+1), Aggregate(NE,j+1), Aggregate(SWj+l), Aggregate(SEj+l)

Assuming the grid file directory D is initially 2' x 2i, the aggregation is accomplished with the call
Akggregate( D, i).

As an example consider the grid directory in the left hand side of figure 2 and a bucket capacity of
.0. Entries in the directory are the number of tuples in the bucket. We can not merge the whole into
)ne bucket, nor can we merge as two halves, but we can merge the NW and SW quadrants and then
-all the aggregation strategy on the two remaining quadrants.

In practice there is no restriction to powers of two. Although our current partitioning algorithm

.ssumes the grid has an equal number of partitions in each dimension we present our aggregation
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algorithm in the most general case. Without loss of generality assume the shape of the grid directory
is N rows by M columns, where N < M. We find the largest i such that 2ý < N. Let GI be the
2' x M subdirectory of the grid directory composed of the first 2i rows, and let G2 be the N - 2' x M

subdirectory composed of the complement of the original directory. We first aggregate G1. Let j =
M div N, this is the number of square 2' x 2' subdirectories that can fit in G1. For each one of these
j square subdirectories we apply the square region aggregation algorithm above. We are then left with
a 2i x (M - j . 2') subdirectory and G2. We apply the algorithm recursively on these two regions.
In the right hand side of figure 2 we show an example for a 13 x 20 grid directory. Subdirectory G1
is composed of G1-A, GL-B, and G1-C. The square power of two region aggregation policy above is
applied to Gl-A and G1-B, while the entire aggregation policy is called recursively on GI-C and G2.
This algorithm could be improved to yield slightly better bucket utilizations, but is very fast and has
proved to sufficient for our needs so far.

Depending on the use of the gridfile, different aggregation strategies can be used. If the gridfile
is read only, as in our CFD database, then the buddy-system pairing approach needed to facilitate
splits for future insertion of tuples is not necessary. In this case regions of aggregated buckets need
not be rectangular and hence could allow for more aggregation resulting in improved bucket utilization.
We have not yet developed any algorithms to calculate this aggregation since the above algorithm has

been sufficient for our needs to date. On the other hand, if the gridfile is being used in a transaction
processing environment and tuples might later be inserted, the buddy pairing must be preserved.

5 Experimental Comparison

In this section we present experimental results for the two partitioning algorithms. We present both
run times and bucket utilization results. In all of our experiments we do not make any attempt to get

smooth curves or collect confidence intervals. The figures are the result of one experimental run and
thus often have some noise, presumably from use of the workstation by other jobs. All experiments
were run on a Sparc 10 workstation.

Sanity checks on the code were made by running both algorithms through a profiler to make sure
time was being spent in sections of the code where expected. The run time of the RP algorithm is
dominated by the startup costs of creating the pre-calculated rk(l,j) and sorting the records. For most
of the data sets in this paper over 40% of the run time is spent creating the rk(l,j) and over 20% of
the time sorting the data points. Note that even with this high cost of creating rk(l,j), the overall
algorithm significantly faster than when the rk(1,j) are not precalculated. In contrast, the run time of
the DP algorithm is dominated by the actually partitioning since it is O(P 2 U2a,).

In section 5.1 we present results for a single partitioning given a fixed partitioning in the other
dimension. In the following sections we present results assuming the number of partions and the
initial partitioning is not known. In section 5.2 we present results when the from uniformly distributed

synthetic data sets, while in section 5.3 we present results for highly skewed CFD data sets. In section
5.4 we present the bucket utilization results from our experiments and demonstrate the utility of the

aggregation phase.
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i.1 Fixed Partitioning Given

Ve first compare the DP, DP2, and RP algorithms assuming that a fixed partitioning exists in one

[imension. We conduct these experiments since this is the exact scenario for which Li et al. proposed
heir algorithm. Note again that how this fixed partitioning is obtained is not specified in Li et al. [2].

We consider a data set of 5,000 tuples where the x and y coordinates of each tuple are each chosen
rom a uniform distribution from 1 to 2000. We obtain the initial horizontal partitioning by equally
pacing the cuts within the domain. In table 1 we present results for the number of partitions in each
limension varied from 12 to 5 assuming a bucket capacity of 50 tuples. The columns headed "seconds"
ecord the amount of CPU time used for the partitioning, columns headed "overflow" are the total

iumber of tuples that did not fit within the bucket capacity, and the columns headed "BlocksOver"
.re the number of blocks which overflowed. The overflow and BlocksOver numbers are identical for the
)P and DP2 algorithms since the algorithms find the exact same partitioning and only differ in run
ime. First note that the RP algorithm is one to two orders of magnitude faster than the DP and DP2
lgorithms for all values of P. Conversely, the dynamic programming algorithms minimize total overflow
ietter when there is a large number of partitions. Thus, for the specific problem and objective function
Ls formulated by Li et al. the dynamic programming algorithm proposed satisfies the objective function
oetter than our rectilinear partitioning algorithm, but at the expense of significantly more ccmputation.

k premise of our work ik that it is better to partition with a sufficiently large number of partitions to
*nsure no overflows.

Note that although the DP algorithm does have a smaller number of tuples overflowed, it results
n a larger number of buckets which overflow when the number of partitions is less than 11. The blocks

vhich overflow when the RP algorithm is used are all in the last column of the partitioning, whereas
vhen the DP algorithm is used the overflow blocks are spread out in the partitioning space. Consider
he case where the number of partitions is 10. When the RP algorithm is used there are 10 overflow
,locks. These 10 blocks have 106, 106, 101, 111, 94, 94, 108, 112, 113, and 106 tuples allocated to them.

ýince only 50 tuples fit per block 18 new blocks will need to be created. One the other hand, when the
)P algorithm is used there are 40 overflow blocks, each of which has at most 68 tuples, requiring 40 new
,locks to be created. Hence, total overflow is not a good indicator of the optimality of a partitioning.
Ve propose that a better metric would be the number of new blocks needed to hold the overflows. We
till continue to use total tuple overflow in this paper since our algorithms dynamically find the number
f partitions needed to make the overflow zero.

.2 Number of Partitions Not Given: Uniformly Distributed Data

Ve now assume that the number of partitions is not known and that no initial fixed partitioning is
iven. We first consider the run time of the algorithm for uniformly distributed data. The x and y
Dordinates of each tuple are each chosen from a uniform distribution from 1 to N, where N depends
n the experiment. In all reported experiments we do not allow any duplicate data set points since our
!FD data does not have any duplicate points. We have verified that inclusion of duplicates results in

milar relative performance. We first consider the relative performance of the algorithms as the number
f tuples is varied.
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RP Algorithm DP DP2
P seconds overflow BlocksOver seconds seconds overflow BlocksOver
12 6.50e-01 0 0 2.47e+02 I,36e+02 0 0
11 6.30e-01 98 9 2.19e+02 1.27e+02 14 5
10 6.70e-01 1051 10 1.80e+02 1.23e+02 239 40
9 6.20e-01 1672 9 1.59e+02 1.13e+02 950 76
8 6.50e-01 2321 8 1.97e+02 9.87e+01 1800 56
7 6.30e-01 2t 58 7 1.22e+02 8.94e+01 2550 43
6 6.20e-01 3465 6 9.54e+01 8-02e+01 3200 31
5 6.80e-01 3940 5 7.43e+01 7.07e+01 3750 20

Fable 1: CPU Times and Overflow, Fixed Partitioning Given

In figures 3 and 4 we plot the computation time in seconds versus the number of tuples in the

relation assuming coordinate values are uniformly distributed from I to 2000. Note that the y-axis is

h0garithittic. From top to bottom we plot the computation time of the DP, I)P2. and RP algorithms.
Reenmber that the 1)I'2 algorithm is the same as the [)P algorithm except it precomputes and stores
the' ()l( I,j )A Vj. 'T'lle plot in figure :1 assumes 50 tuples fit per page, the plot in figure 4 assumes 300

tuples per page. If page size is 9192 bytes then tuples size would be 16-4 and 27 bytes respectively. A
tuple size of 16-4 bytes may be a typical size for transaction processing systems, and tuples in our data
sets are usully around 2.1-32 bytes. As the number of tuples increases the run time of the D)P algorithm
beco'mes tot) long to be of practical use. A relation of -10,000 16-1 byte tuples is only 6.A mega-bytes. for
32 byte tuples this is only 1.2 mega-bytes, hence it is reasonable to expect there to be sufficient memory

to partition datat sets of at least -10.000 tuples.

Fo'r 10,000 164 byte tuples, figure 3, the )1P algorithm requires 26600 seconds (about 7..1 hours).
and 100,000 tuples require 77200 seconds (21.4 hours). These times are cleariv prohibitive. The i)D12
algorithin requires 3000 seconds (50 minutes) and 6070 seconds (101 minutes) for -10.000 and 100.000
tiiples respectively, but it requires 15 mega-bytes of space to hold the precompute(l 011(1.j). The RP
algorithii only requires 12 and 40 seconds for .10,000 and 100,000 tuples respectively. Thus, the RPl
algorithm is a practical algorithm. The RIP algorithm is about 2000 (250) times faster than the D)P (!)!P2)
algorithmn for -10,000 tuples. The difference in solution times is not unexpected given the complexities
of the 1)D', DP2, and RP algorithms which are O(max{ iP2 U. Tlog T)), O(max{ P1'. Tlog T}). and

O(imax{ P2 log 12,1' log T}) respectively.

We now consider how the number of unique attribute values in the data set impacts the relative
performance of the policies. In figure 5 we plot the computation time in seconds versus the maximum
of the attribute domain for a data set with .10,000 tuples and assuming 300 tuples fit per page. Note
that the y-axis is logarithmic. The curves from top to bottom are for the DP, DP2, and RP algorithms.

We did not run the DP2 algorithm when the storage space for the precalculated OV(ij) exceeded 80

nuega-bytes, thus there are no points plotted for maximum domain values of 5,000 and higher. Increasing
the maximum domain value increases the number of unique attribute values in the data set. The DP
intld DP2 algorithms are highly sensitive to the number of unique values in the data set. Conversely,
the RP algorithm is relatively insensitive to the number of unique values. When the maximum domain
value is 2,000, the RP algorithm is 450 (110) times faster than the DP (DP2) algorithm. When the
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maximum domain value is 10,000, the RP algorithm is 17,000 times faster than the DP algorithm. All
other experiments in this section assume a maximum domain value of 2000. For many of our CFD data
sets the number of unique values is almost equal to the number of tuples, thus even 10,000 is a very

small value.

We now consider how the tuple size effects the relative performance of the two algorithms. In figure

6 we plot the computation time in seconds versus the number of tuples per page assuming 40,000 tuples

with an attribute domain maximum of 2000. Once again the y-axis is logarithmic. As the number

of tuples per page decreases, hence the tuple size increases, the DP algorithms requires significantly

more computation. Conversely, the RP algorithm is relatively insensitive to the size of the tuples.
Thus, the RP algorithm remains a viable algorithm for a wide range of tuple sizes. The degradation
of the DI) algorithm as tuple size increases is easy to predict from the complexity of the algorithm:

o( /',(I',,,, )2 + ('F 1,,,)1og( t)). As tuple size increases the number of tuples per bucket decreases
and hence the number of partitions, P), increases. We would expect the runtime of the RP algorithm

to increase also since the complexity of the RP algorithm is O(P11 Iog(U,,,.,)), but the majority of the

rui time of the RP algorithm is spent sorting the tuples and creating the rk( I,j), thus obscuring the

"'nnsitivity to tuple size.

In figure 7 we plot the ratios of the computation time of the DI' and )1P2 algorithms relative to
the Rl' algrithm. As the tuple size increases the ratio increases.

5.3 Number of Partitions Not Given: Unstructured CFD Data

WVe nw c,.sider the runa time of the algorithm for highly skewed data. We use actual data sets from
,m,.trmcturs.d grid ('Fl) simulations. H1ere the term grid is used to describe the way tihe coordinates in

the dita set are ,onnected. The data set is comimposed of x.y real-valued coordinates. The data sets

tar, fromi computational mnodels of cross sections of airflows around aircraft wings 13]. In figure 8 we
plot the data set for .' set with 1034 points where z E ( - 10 ... 10). Y E (-12 ... 12). and restrict the
rang.e plotted since' the majority of the data is in the central region and plotting the whole range would

maak,, it difficult to, distinguish the points in areas of high concentration. Only 9.1 of the 103.1 points are
maot plitted. lI'hl vettiMal anld horiz.ontal lines are the partitioning lines ressulting from running the R1'
alog)rithm on the. data .set. Note,. there is one vertical line at x = 6.09 which is not included in the plot.

AS can beh se•en froth the partitioning, a fixed equal space partitioning would be a bad choice.

In figure !) we plot the partitioning computation time ver.u-us the number of tuples for three different
data set"'. Vor the. smallest data set. 10:34 tuples. the M" (DrW2) algorithm required 2370 (650) times

niore coa'impitation than the RI' algorithm for partitioning. For the data set with 3959 tuples, the DP

(I0`2) algorithim required 3S.,T17 (5629) times more computation than the RP algorithm. Thus. the DP

algorithmi is especially impractical for highly skewed data. Since the I)P algorithm required 42 hours
for the 39;19 taiples data set we did not run the 15149.1 tuple data set. The RP algorithm required 66

secon•,ds to partition a 1.5.S95 tuple data set.

"The fullr orders of magnitude difference in computation time is not surprising in light of the results
from the experiment plotted in figure 5. For unstructure grid data sets the number of unique attribute
values is almost equal to the number of tupls, hence as the number of tuples in the set increases not
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RP Algorithm 1)1 Alg(.y thin

Bucket Utilization Btl, i.,,t Utilization
It Partttions pre-aggregation post-aggregation [Partitions pre-aggrega ion post-aggregation

1000 5 8.00e-01 8.70e-01 5 8.00e-() I 8.00e-01
5000 12 6.94e-01 7.94e-01 12 6.94e- 01 7.81e-01
10000 16 7.81e-01 7.84e-01 16 7.1le-0I 8.06e-01
20000 24 6.94e-01 7.43e-01 23 7.56e-01 7.60e-0 I
40000 33 7.35e-01 7.47e-01 33 7.35e-01 7.45e-0I
60000 41 7.14e-0 1 7.27e-01 40 7.50e-01 7.54e-01
80000 48 6.94e-01 7 31e-01 47 7.24e-01 7.37e-01
100000 53 7.12e-01 7.27e-01 52 7.40e-01 7.43e-01

Table 2: Average Bucket Utilizations, Number of Tuples Varied

oinlv does the number of partitions needed increase, but so does tile number of unique attribute values.

The RP algorithm does not experience as much of an increase in computation time as the data sets get

larger since the majority of its time is spent in the precalculation of the rk( I.j) and the initial sort of

the data.

5.4 Bucket Utilizations and Aggregation Effectiveness

W6V. i) present the average bucket utilizations for somie of the previous experiments both before and
after otr aggregation phase is completed. In table 2 we present the utilizations for the uniformly

distribtted data experiment in tigure 53. The column label -Partitions- is the number of partitions in

44ach direction. T'his laith st•iallest number for which the algorithin returned a total overflow of zero.

Overall the av.,rage bucket utilization is quite good, about the samte as would result front inserti g the(
tliplc's oi,, at a time. I lhere is little difference betwe'en tlte utilization for lite D)P and Rl' algorithmss. in

additinl,. thie aggregation phase doehs not significantly improve the bucket uttilization. This is because

the, bucket utilization is already good. For mosit eXperiments. the run lime of tihe aggregation phase is
minimal, I,.,s than '2'7, of the Ri' runtime. hence it is wort h aggregating even for a imodest improvement.

In table :.1 wI prese.nt thll 'stilizations for the uniformly distributed data experiment in figure 6.
O)e.. *igain there, I little difference in bucket utili/ation for the two algorithm.s. The average bucket
iittlitataon tends to decrea.e' as the number of tuples per page decreases. When only 5 tuples fit per
par.0' thie bucklet utilization is only 21'r. but after the aggregation it is better than 70'7,. Thus. lthe

.gKgregation phase ran considerably improve the utilization for cases where the utilization is poor. The
runtim.' of the' D)1' algorithm for I and 10 tuples per page was excessive and hence we do not present
arggregat ion results for those parameters.

F'.r 4kewed data the aggregation phase results in substantial savings of disk space. In table 41 we
present the utilizations for the unstructured grid (!.) data set for thrree different grids. The average
hum-k,.r itilization without aggregation is very poor hit improves signifirantly with aggregation. Thus.
for hshlv ,kewed data aggregation is essential for achieving good bucket utilizations. Note, there is no

11•.490i tiipl, data for the DP alrorithm since its computation time on the :3959 tuple data set rtequired

12 hours.
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RP Algorithm DP Algorithm
Tuples Bucket Utilization Bucket Utilization

per-page Partitions pre-aggregation post-aggregation Partitions pre-aggregation post-aggregation

300 13 7.89e-01 8.33e-01 12 9.26e-0I 9.26e-01
200 15 8.89e-01 8.89e-01 15 8.89e-01 8.89e-01
100 22 8.26e-01 8.26e-01 22 8.26e-01 8.26e-0 I
50 33 7.35e-01 7.47e-01 33 7.35e-01 7.45e-01
25 51 6.15e-01 6.93e-01 49 6.66e-01 7.14e-01
10 94 4.53e-01 7.1Oe-01
5 169 2.80e-01 7.05e-01

Table 3: Average Bucket Utilizations, Tuples Per Page Varied

RP Algorithm DP Algorithmi
i Bucket Utilization Bucket Utilization

t Partitions pre-aggregation post-aggregation Partitions pre-aggregation post-aggregation

10:_4 10 2.07e-01 6.27e-01 10 2.07e-01 7.95e-01
3959 34 6.85-02 7.61-01 29 9.41e-02 5.87e-01
115N96 131 1.85e-02 5.76e-01

"Fable 4: Average Bucket Utilizations, Unstructured (;rid CFD Data

6 Two-Phase Bulk Loading Algorithm Description

In this section we describe a two phase algorithm for bulk loading of data sets significantly larger than

available buffer space. Suppose the data set contains S" tuples, and(] suppose that a maxiinum of A

tuples Can lb contained ill mlenmory at a time when applying tihe RP algorithm. Our approach has two

steps. First we partition the set into groups of size A or fewer. Each set will contain all points within

a rectangle in the x-y plane; however the collection of sets need not be rectilinear. in t he second step

we apply RI' to each individual set, and merge the individual grid files created. These steps are now

elaborated upon.
(iven .1' and .A we find the smallest perfect square integer R such that R > •. We will partition

the data set into I? groups, as follows. By sorting the data set oil the x-coordinate value we may easily

divide the set into .'_ groups of / successive elements in the sorted order. This serves to partition

the data set along the x-axis into "strips" of tuples. Each such strip may be sorted along tile y-axis.

after which its points may be separated into groups of successive .j points. This effectual divides a strip

into rectangles, with no rectangle containing more than the permitted number of points.

It retnains to apply RPi to each group, and write the buckets of data to disk. One possibility is

to partition each group separately, and define tile final grid file as the union of all separately defined

gridfiles. Recognizing that a cut which is defined for a group on one side of the data donmain imust

propagate through v1-l other groups (and cause splitting of grid directories in each) we consider a

different approach. As the groups are partitioned we build up a global grid file, initially empty. *poln

rpading in a group we identify the set of ruts in the global grid file which affect this group. treat them

as immutable, anti seek to find the minimum number of additional cuts needed to avoid overflow. This

requires a simple modification to the RP algorithm.
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Another optimization is to first strip the attributes being indexed from the data set. Then the
two phase algorithm is applied to the coordinates without requiring I/O of the whole tuple. After
partitioning the set of coordinates and creating the overall grid directory, the buckets could be filled by
making a second pass over the data set. This may result in a faster load time if the tuple size is large.

If the data set (and hence the grid directory) is extremely large, another optimization uses a two
level directory scheme as suggested in [5] where the top level directory has one entry for each of the R
sub-directories. Note, this would mean that a point access could require three disk accesses instead of
two.

7 Conclusions and Future Work

We have proposed and implemented a new rectilinear partitioning (RP) algorithm for physical par-
titioning of gridfiles. Our proposed RP algorithm is significantly faster than the recently proposed
dynamic partitioning (DP) algorithm of Li et al. [2]. The number of overflows RP permits is necessarily

larger than the DP algorithm (which minimizes them), however we argue that minimizing the number
of additional blocks created due to overflow is actually a better measure, and is one for which the RP

algorithm finds better solutions that the DP algorithm.

We considered the use of our greedy algorithm and the DP algorithm as kernels in a loop that

seeks to minimize the size of the grid file needed to achieve no overflows. For synthetic data sets of

uniformly distributed integers the RP algorithm is two to three orders of magnitude faster than the DP
algorithm. For actual ('FD data sets, whose indexed attributes are highly skewed reals, the RP-based
algorithm is three to four orders of magnitude faster than the DP-based algorithm.

We have also developed an efficient aggregation algorithm for improving bucket utilizations of grid-
files resulting from bulk loading using the RP or DP partitioning algorithms. The algorithm has minimal
overhead, and can yield substantial improvements in bucket utilization when the bucket utilization after

partitioning is poor. This aggregation phase is necessary to achieve reasonable bucket utilizations when
the indexed data is highly skewed.

We have also proposed a two phase bulk load algorithm and several optimizations for loading
data sets that are significantly larger then the available buffer space. This algorithm guarantees no
bucket overflows and is proposed as a possible alternative to sampling based methods. We have yet not

investigated the performance of the algorithm.

In the future we plan to experimentally compare our two phase algorithm with inserting one tuple
at a time and sampling based methods. We also intend to consider more sophisticated aggregation
techniques and partitioning with differing numbers of partitions for each attribute.
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