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Abstract

We generalize the notion of PAC learning from an example oracle to a notion of efficient
learning on a quantum computer using a quantum example oracle. This quantum example
oracle is a natural extension of the traditional PAC example oracle, and it immediately follows
that all PAC-learnable function classes are learnable in the quantum model. Furthermore, we
obtain positive quantum learning results for classes that are not known to be PAC learniable.
Specifically, we show that DNF is efficiently learnable with respect to the uniform distribution
by a quantum algorithm using a quantum example oracle. While it was already known that
DNF is uniform-learnable using a membership oracle, the quantum example oracle is provably
less powerful than a membership oracle. We also generalize the notion of classification noise
to the quantum setting and show that the quantum DNF algorithm learns even in the
presence of such noise. This result contrasts with a recent negative result for DNF in the
statistical query model of learning from noisy data.
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1 Introduction

Recently, there has been increasing interest in the question of whether or not quantum phys-
ical effects can be used to solve problems that appear to be computationally difficult using
traditional methods. In this paper, we apply quantum methods to questions in computa-
tional learning theory. In particular, we focus on the problem of learning-from examples
alone-the class DNF of polynomial-size Disjunctive Normal Form expressions.

The DNF learning problem has a long history. Valiant [18] introduced the problem
and gave efficient algorithms for learning certain subclasses of DNF. Since then, learning
algorithms have been developed for a number of other subclasses of DNF [13, 4, 3, 11, 2,
1, 7, 16, 9] and recently for the unrestricted class of DNF expressions [6, 12], but almost
all of these results-and in particular the results for the unrestricted class-use membership
queries (the learner is told the output value of the target function on learner-specified inputs).
This has left open the question of to what extent membership queries are necessary for DNF
learning, even in models where the learner is only required to produce a hypothesis that
weakly approximates the target DNF expression with respect to the uniform distribution
(definitions are given in the next section).

We show that DNF is efficiently learnable with respect to the uniform distribution by a
quantum algorithm that receives its information about the target function from a quantum
example oracle. This oracle generalizes the traditional PAC example oracle in a natural way.
Specifically, the quantum oracle QEX(f, D) is a traditional PAC example oracle EX(f, D)
except that QEX(f, D) produces the example (x, f(x)) with amplitude D(.r) rather than
with probability D(x). We show that, with respect to the uniform distribution, a quantum
example oracle can be simulated by a membership oracle but not vice versa. Thus our result
can be viewed as evidence that DNF is learnable without the full power of membership
queries.

Furthermore, we generalize the notion of classification noise and show that our algorithm
learns DNF even if the quantum example oracle exhibits such noise. This is particularly
interesting in light of recent results of Blum et al. [6] showing that DNF is not learnable in
the statistical query (SQ) model. Because SQ learning is conjectured to be equivalent to the
model of PAC learning with classification noise, our result is evidence that quantum learning
algorithms may be better able to handle noise than traditional algorithms.

To obtain our quantum DNF learning algorithm, we modify the recent Harmonic Sieve
algorithm (HS) for learning DNF with respect to uniform using membership queries [12].
In fact, HS properly learns the larger class PTI of functions expressible as a threshold of a
polynomial number of parity functions, and our algorithm properly learns this class as well.
The Harmonic Sieve uses membership queries to locate parity functions that correlate well
with the target function with respect to various near-uniform distributions. The heart of
our result is showing that these parities can be located efficiently by a quantum algorithm
using only a quantum example oracle.



2 Definitions and Notation

2.1 Functions and Function Classes

We will be interested in the learnability of sets (classes) of Boolean functions. The Boolean
functions we consider are, unless otherwise noted, of the type f : {0, 1}1 , {O, 11 for fixed

positive values of n. We call {0, 1}" the instance space of f, an element x in the instance
space an instance, and the pair (x, f(x)) an example of f. We denote by xi the ith bit of
instance x.

Intuitively, a learning algorithm should be allowed to run in time polynomial in the
complexity of the function f to be learned; we will use the size of a function as a measure
of its complexity. The size measure will depend on the function class to be learned. In
particular, each function class F that we study implicitly defines a natural class 1?- of
representations of the functions in F. We define the size of a function f E _F as the
minimum, over all r E 1.-r such that r represents f, of the size of r, and we define below the
size measure for each representation class of interest.

A DNF expression is a disjunction of terms, where each term is a conjunction of literals
and a literal is either a variable or its negation. The size of a DNF expression r is the number
of terms in r. The DNF function class is the set of all functions that can be represented as
a DNF expression of size polynomial in n.

Following Bruck [8], we use PT, to denote the class of functions on {0, 1 }n expressible
as a depth-2 circuit with a majority gate at the root and polynomially-many.parity gates at
the leaves. All gates have unbounded fanin and fanout one. The size of a PTI circuit r is
the number of parity gates in r.

2.2 Quantum Turing Machines

We now review the model of quantum computation defined by Bernstein and Vazarani [5].
First we define how the specification (program) of a quantum Turing machine (QTM) is
written down. Then we describe how a QTM operates.

The specification of a QTM is exactly the same as the specification of a probabilis-
tic TM, except the transition probabilities between PTM configurations are replaced in a
QTM specification with complex-valued numbers (amplitudes) that satisfy a certain well-
formedness property. We define well-formedness as follows. For a QTM M, let RM be the
(infiniLe-dimensional) matrix where each row and each column is labeled with a machine
configuration (c, and c,, respectively) and each entry in RM is the amplitude assigned by M
to the transition from configuration cc to c,. Then M satisfies the well-formedness property
if RM is unitary (RtRM = RMRtm = I, where Rt is the conjugate transpose of RM). A
QTM specification also contains a set of states (including all of the final states) in which an
Obs operation is performed; we define this operation below.

To describe the operation of a QTM, we use the notion of a superposition of configurations.
For example, consider a probabilistic Turing machine M' that at step i flips a fair coin and
chooses to transition to one of two configurations cl and c2 . While we would generally think
of M' as being in exactly one of these configurations at step i + 1, we can equivalently think
of M' as being in both states, each with probability 1/2. Continuing in this fashion, for
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each step until M' terminates we can think of M' as being in a superposition of states,
each state with an associated probability. After M' takes its final step, each of its final
states will have some associated probability (we assume without loss of generality that all
computation paths in M' have the same length). If M' now "chooses" to be in one of these
final states a! randomly according to the induced probability distribution on final states,
then the probability of being in af is exactly the same in this model as it is in the traditional
PTM model.

In summary, we can view a PTM M' as being in a superposition of configurations at
each step, where a superposition is represented by a vector of probabilities, one for each
possible configuration of M'. 'ikewise, we view a QTM M as being in a superposition of
configurations at each step, but now the superposition vector contains an amplitude for each
possible configuration of M. The initial superposition vector in both cases is the all-zero
vector except for a single 1 in the position corresponding to the initial configuration of the
machine. Note that each step of a PTM M' can be accomplished by multiplying the current
superposition vector by a matrix RM, which is defined analogously with RM above. In the
same way, each step of a QTM M is accomplished by multiplying its current superposition
vector by RM. The difference between the machines comes at the point(s) where M "chooses"
to be in a single configuration rather than in a superposition of configurations. M does this
(conceptually) by transitioning to a superposition of configurations all of which are in one of
the Obs states mentioned above. The superposition vector is then changed so that a single
configuration has amplitude 1 and all others are 0. This is exactly analogous to the PTM M'
choosing its final state, except that the probability of choosing each configuration ci is now
the square of the magnitude of the amplitude associated with ci in M's current superposition
vector. (We formalize the definition of Obs below.)

We adopt Simon's notation [17] and write

X

to denote a superposition of configurations x each having amplitude ax. While in general
this sum is over all possible configurations of the QTM, when we use this notation it will
be the case that all of the configurations having nonzero amplitude are in the same state
and have the tape head at the same position. In this case, the configurations .r are only
distinguished by their tape contents, so we will treat x as if it is merely the tape content
and ignore other configuration parameters.

Given this notation, we formally define the Obs operation as follows. Let b E {0, I}.
Then

Obs a,= l lx) with probability Ex laoI 2 .

Note that by permuting bits of the tape and performing successive Obs operations we can
simulate the informal definition of Obs given earlier. We say that a language L is in BQP
if there exists a QTM M such that, at the end of a polynomial number of steps by M, an
Obs fixes the first tape cell to I with probability at least 2/3 if the input is in L and fixes
it to 0 with probability at least 2/3 otherwise. We will also sometimes think of an Obs as
simply computing the probability that the first cell will be fixed to 1.
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2.3 Learning Models

We being by defining the well-known PAC learning model and then generalize this to a
quantum model of learning. First, we define several supporting concepts. Given a function
f and probability distribution D on the instance space of f, we say that function h is an
c-approximator for f with respect to D if PrD[h = f] _! 1 - e. An example oracle for f
with respect to D (EX(f, D)) is an oracle that on request draws an instance x at random
according to probability distribution D and returns the example (x, f(x)). A membership
oracle for f (MEM(f)) is an oracle that given any instance x returns the value f(x). Let

n,, denote a nonempty set of probability distributions on {0, 1}n. Any set D = UEV, is
called a distribution class. We let Un, represent the uniform distribution on {0, l}In and call

S= U, n sim ply the uniform distribution.
Now we formally define the Probably Approximately Correct (PAC) model of learnability

[18]. Let e and b be positive values (called the accuracy and confidence of the learning
procedure, respectively). Then we say that the function class F is (strongly) PA C learnable
if there is an algorithm A such that for any c and 6, any f E F (the target function), and
any distribution D on the instance space of f (the target distribution), with probability at
least 1 - 6 algorithm A(EX(f, D), E, b) produces an f-approximation for f with respect to
D in time polynomial in n, the size of f, 1/c, and 1/6. The probability that A succeeds is
taken over the random choices made by EX and A (if any). We generally drop the "PAC"
from "PAC learnable" when the model of learning is clear from context.

Next, we consider learning using a QTM. First, note that each call to the traditional PAC
example oracle EX(f, D) can be viewed as defining a superposition of 2'l configurations, each
containing a distinct (x, f(x)) pair and having probability of occurrence D(x). We generalize
this to the quantum setting in a natural way. A quantum example oracle for f with respect
to D (QEX(f,D)) is an oracle running coherently with a QTM M that changes M's tape
lY) to

That is, QEX defines a superposition of 2n configurations much as EX does, but QEX
assigns each configuration an amplitude D(x). Note that a call to QEX followed by an
Obs operation is equivalent to a call to EX. We say that F is quantum learnable if F is
PAC learnable by a QTM M using a quantum example oracle. Because every efficient TM
computation can be simulated efficiently by a QTM [5] and because EX can be simulated
by QEX, we have that every PAC-learnable function class is also quantum learnable.

We will consider several variations on the basic PAC and quantum models. Let M be
any model of learning (e.g., PAC). If F is M-learnable by an algorithm A that requires a
membership oracle then _F is M-learnable using membership queries. If F is M-learnable
for f = 1/2 - 1/p(n, s), where p is a fixed polynomial and s is the size of f, then F is weakly
M-learnable. We say that F is M-learnable by R" if F is M-learnable by an algorithm A
that always outputs a function h E %. If F is M-learnable by F then we say that F is
properly M-learnable. Finally, note that the PAC model places no restriction on the example
distribution D; we sometimes refer to such learning models as distribution-independent. If
F• is M-learnable for all distributions D in distribution class V then F is M -learnable with
respect to D.
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2.4 The Fourier Transform

For each bit vector a E {0, I}n we define the function Xa : {0, 1} - {-1, +1} as

= (-1)_, x = 1 - 2 aixi mod 2).

That is, xa(x) is the boolean function that is 1 when the parity of the bits in x indexed by
a is even and is -1 otherwise. With inner product defined by1 (f,g) = E[fg] and norm

defined by Ilf l1 = V(EiY], {x. I a E {0, 1}i} is an orthonormal basis for the vector space of
real-valued functions on the Boolean cube Zn. That is, every function f : {0, 1}In -+ R can
be uniquely expressed as a linear combination of parity functions:

f = Z(a)xa,
a

where f(a) = E[fXa]. We call the vector of coefficients f the Fourier transform of f. Note
that for Boolean f, f(a) represents the correlation of f and Xa with respect to the uniform
distribution. Also note that f(0) = E[fxo] = E[f], since X@ is the constant function +1.

Parseval's identity states that for every function f, E[f 2] = Ea f2 (a). For Boolean f it
follows that E f 2 (a) = 1. More generally, it can be shown that for any functions f and g,
E[fg] = •_ f(a)ý(a).

3 DNF Learning

In this section we present our primary result, that DNF is quantum learnable with respect to
the uniform distribution. Our result builds on the HS algorithm for learning DNF with respect
to the uniform distribution using membership queries [12]. The HS algorithm depends on a
key fact about DNF expressions: for every DNF f with s terms and for every distribution
D there exists a parity Xa such that IED[fXal Ž 1/(2s + 1) [121. It follows immediately
from this fact that for every DNF f and distribution D there is a parity \a that is a weak
approximator to f with respect to D. Furthermore, for many probability distributions
(e.g., distributions such that D(x) <• p(1/E)/2n for all x and for p a fixed polynomial), an
algorithm of Kushilevitz and Mansour [15] can be used to efficiently find such a \a. The
Kushilevitz-Mansour algorithm is the only aspect of HS that requires membership queries.
Finally, an algorithm of Freund [10] is employed to boost the Kushilevitz-Mansour weak
learning algorithm into a strong learner.

The HS algorithm and its primary subroutine WDNF are sketched in Figures 1 and 2 (c,
and c2 represent fixed constants). The HS algorithm runs for at most k steps, or stages.
ri(z) represents the number of weak hypotheses wj among those hypotheses produced before
stage i that are "right" on x. At each stage i, the boosting algorithm implicitly defines
a distribution Di(x) based on ri(x); this is the distribution for which the weak learner is
expected to produce a weak hypothesis. We can generate x's according to this distribution

I Expectations and probabilities here and elsewhere are with respect to the uniform distribution over the
instance space unless otherwise indicated.



Invocation: h +- HS(n, s, MEM(f), e, 6)
Input: n; s = size of DNF f; MEM(f); e> 0; 6 > 0
Output: with probability at least 1 -6 (over random choices made by HS), HS returns h such
that Pr[f = h] > 1 - f

1. k 4- cjs 2 log(l/f)
2 B(j; n, p) =_ (n) pi (1 -

3. l , B([kl2J - r;k- i- 1,1/2 + 1/(4s + 2)) if i- k/2 < r < k/2, 0 =0 otherwise
4. r - ma , ... _, /• .

5. wo o WDNF(n,s, MEM(f), Un,6/2k)
6. for i +- 1,...,k- 1 do
7. ri(x) =_ 110 <_ J< i I wj(x) = f(x)}l

8. accept +- Est(E_[ai,(x)], c2E2/3, ý/2k)

9. if accept < 2c2e2/3 then
10. k+--i
11. break do
12. endif13. -jx)= a',, (_) /2n"accept

14. wi +- WDNF(n, s, MEM(f), b,(x), 6/2k)
15. enddo
16. return h(x) - MAJ(wo(x),w,(x),. .. ,Wk-I(X))

Figure 1: Harmonic Sieve algorithm for learning DNF.

as follows. Choose an instance x uniformly at random and flip a coin that comes up heads
with probability ca, (a is a scaled binomial distribution). If the coin comes up heads.
output x. Otherwise, select a new x uniformly at random and flip the coin again. Repeat
this process until some x is output.

Thus

Di(x) = • (
EY ar1(y)

In order for the Kushilevitz-Mansour algorithm to find a good weak approximator with
respect to distribution Di, we need to be able to closely approximate Di(x) for every value
of x. The function Di is HS's estimate of Di. Note that because of the bound on the

iivariable accept and the accuracy with which accept estimates E,,[a,(,)], with high probability

E•[,,[(X)] = c3accept for fixed c3 E [1/2,3/21, and thus A,(x) = c3D,(x) for all x.
We have omitted the details of line 2 of WDNF because this is the main point at which our

quantum algorithm will differ from HS. Rather than using membership queries to locate the
required parity X., the new algorithm will use a quantum example oracle. Both algorithms
depend on a key fact about DNF expressions: for every DNF f with s terms and for every
distribution D there exists a parity Xo such that IED[fx.]I >_ 1/(2s + 1) [12]. We will show
how to find such a parity X. for any distribution Di simulated by HS given access only to a
quantum example oracle.
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Invocation: wi 4- WDNF(n, s, MEM(f), cD, b)
Input: n; s = size of DNF f; MEM(f); cD, an oracle that given x returns c. D(x), where
c is a constant in [1/2,3/2] and D is a probability distribution on {0, 1}I; 6 > 0
Output: with probability at least 1 - 6 (over random choices made by WDNF), WDNF returns
h such that PrD[f = h] > 1/2 + 1/(4s + 2)

1. g (X) -~ c2f(X)D(x)
2. find (using membership queries and with probability at least 1 - 6) Xa such that

IED[gx.]I > 112s + 1
3. return h(x) - sign(ED[gX.])- •(X)

Figure 2: WDNF subroutine called by HS.

Specifically, consider the call to WDNF at line 14 of HS for a fixed i, and for notational
convenience let D =- Di and a(x) = a . Then with high probability there is a c3 E
[1/2, 3/2] such that for all X.,

f f(x)X.(x)D,(x) = c3ED[fX.] = E[af x]/accept,

and thus for some X,

IE[afx.][ 
>

3(2s + 1)'

Our goal will be to find such a X. using only a quantum example oracle for f. From this
,X. we can produce a weak approximator for f, as illustrated by WDNF. Conceptually. to
find such a X. we will run a quantum program that will sample the \a's with probability
proportional to E 2[affxa]. The technique we use to perform this sampling is similar to an
algorithm of Bernstein and Vazarani that samples the X(s's with probability f'(a) = E'[f\x.
Howevei, there are two difficulties with using their technique directly. First, their algorithm
uses calls to the funý tion f (membership queries), and we want an algorithm that uses only
quantum example queries. Second, their technique works for Boolean functions, but a - f is
not Boolean. The following lemma addresses the first difficulty.

Lemma 1 There is a quantum program QSA.P that, given any quantum example oracle
QEX(f), returns Xa with probability f 2 (a)/2.

Proof: QSAMP begins by calling QEX(f) on a blank tape to get the superposition

2n/2 E Ix, f(x)).

QSAMP next replaces f(x) with (1 - f(x))/2 (call this f'(x)); note that (-l)f'(' = f(x).
Then we will apply a Fourier operator F to the entire tape contents. We define F as

F(la)) =- I D-1) v1y)
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where Jal = n. This operation can be performed in n steps by a quantum Turing machine
[5]. Also recall that (--1)a (y) X(a). Thus applying F gives us

F LEI x, f'(x)) = 9-72-' F(lx, f'(x)))
1
I,+ / - " - 1) X'u( -1)' z ( )= , Z)

xy,Z

1 1
-• Ez[Xy(x)f(x)Ily, 1) + -• "E[xy(x)]ly, 0)

2 Y V2

1= ; jyly>l+ IOO
2 ~y 72= 0

where Ivl = -xi = n and Izi = 1 and the final line follows by orthonormality of the parity
basis. An Obs operation at this point produces ly, 1) with probability f 2 (y)/2, as desired.
0

However, we want to sample the parities according to the coefficients of the non-Boolean
function af. We will do this indirectly bv sampling over individual bits of the function.
First, note that we can limit the accuracy of a and still compute an adequate approximation
to E[afX0 ]. That is, since 0 < a(x) < 1 for all x, for some d = O(log(s/f)) and O(x) =

L2d"a(x)J2-d we have
C2 t 2

lE[OfxIl > ISE[afx]l -12(2s + 1)

for all X. Furthermore, every 0 < 1 can be written as

0 = 012-' + 022-2 + + Od2-d + k2-d

where Oi e {- 1,+1} and k E {-1,0, 1}. Thus

1
IE[Ofx,]I < maxlE[OjfX,]l +'•.

Therefore, if Xa is a good approximator to f then there is some j such that IE[Ojfy,]l is

larger than l/pl(s, 1/c) for a fixed polynomial Pl. Furthermore, the number of such ,a's for
each j is bounded by a p2(s, I/f) by Parseval's.

Thus a quantum algorithm for learning DNF with respect to uniform is obtained by
modifying HS as follows. First, procedure Est (line 8 of HS) will now use QEX(f) to simulate
the example oracle EX(f) in order to estimate expected values. Second, in order to find a
good weak approximator (line 2 of WDNF) we will use the quantum approach outlined above.
That is, for each value of j we will sample the X.'s using a probability equal to E 2[Ojf ', ]/2.
We do this by running a modified QSAMP that, after calling QEX(f), replaces f(x) with
Oj(x)• f(x). This is a reversible operation because x is still on the tape and Of(x) = I for all
x. If we perform this sampling 2dlog(1/6) times for each value of j then with probability
at least 1 - 6 one of the X.'s returned will be a good weak approximator. Finally, we will
simulate EX(f) in order to test whether or not a given X. is a good weak approximator.
This gives us

8



Theorem 2 DNF is quantum learnable with respect to uniform.

Also, PTI, the class of functions expressible as a threshold of a polynomial number of
parity functions, has the property that every PT1 can be weakly approximated by a parity
with respect to any fixed distribution D [12]. This was the only property of DNF that we
used in the above arguments. Therefore

Theorem 3 PTj is quantum learnable with respect to uniform.

4 Membership Oracle vs. Quantum Example Oracle

In practice, it is not clear how a quantum example oracle could be constructed without
using a membership oracle. Furthermore, because a QTM uses interference over an entire
superposition to perform its computations, it might seem that perhaps there is some way
to simulate a membership oracle given only a quantum example oracle by choosing a clever
interference pattern. In this section we show that this is not the case.

Definition 4 We say that membership queries can be quantum-example simulated for func-
tion class F if there exists a BQP algorithm A and a distribution D such that for all f E Y
and all x, running A on input x with quantum example oracle QEX(f, D) produces f(x).

Theorem 5 Membership queries cannot be quantum-example simulated for DNF.

Before proving this theorem, we develop some intuition. Consider two functions fo and
fi that differ in exactly one input x. Then the superpositions returned by QEX(fo, D) and
QEX(fl, D) are very similar for "almost all" D. In particular, if we think of superpositions
as vectors in an inner produce space of dimension 2', then there is in general an exponentially
small angle between the superpositions generated by these two oracles. This angle will not
be changed by unitary transformations. So in general, an observation will be unable to
detect a difference between the superpositions produced by QEX(fo, D) and QEX(f1 , D).
Therefore a BQP algorithm with only a quantum example oracle QE.X(.fi, D). i E {0. 1}.
will be unable to correctly answer a membership query on x for both fo and ft.

We now present two lemmas that will help us to formalize this intuition.

Lemma 6 Let A be a quantum algorithm that makes at most t calls to QEX(f, D). Then
there is an equivalent quantum program (modulo a polynomial slowdown) that makes all t
calls at the beginning of the program.

Proof: Let H be a unitary matrix representing an arbitrary move p by the QTM M. Then
if M is initially in a superposition E, any), performs the move 1, and then calls QEX(f. D).
the resulting superposition will be

VFD•-D~ayH[z,yilz, x),
x~y,z

where IyI < Izi •- hyi + 1 (we are assuming without loss of generality a standard bit-string
encoding of configurations). But notice that there is a machine M' that first calls QEX,
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shifts x one cell to the right (if necessary), and then simulates the move •. M' is at most
polynomially slower than M and produces the same tape configuration given above. A simple
inductive argument completes the -proof. 0

Before presenting the next lemma, we need several definitions.

Definition 7 Define Obs over any linear combination of configurations (i.e., we no longer
require that the sum of squared amplitudes be 1) as

Obs (ZurIZ)) = E IU-I1.
X X:Xl=I

Define the length of a linear combination of configurations S = Exu.Ix) to be lS II =

E. u.I 2. For any linear combination of configurations S we define for i E {0, 1}

sW= E u4x).
X:X -=i

Lemma 8 Let S, and S2 be superpositions and let S be any linear combination of configu-
rations. Let W be any quantum operation. Then

1. Obs(S) 5 JIlSll.

2. IIWSII = IlS11.

3. IObs(S,) - Obs(S 2)j _ Obs(SI - S2).

Proof: For 1. we have

Obs(S) =--IlS(')ll <ý IlS()ll + IIS('>ll = JIlSl.

2. follows from the fact that W is a unitary operation that preserves length.
To prove 3. we have

lObs(S1 ) - Obs(S 2)I - il Sl'(1 lI - IIS1')lI]
<IIsV - II(11

= Obs(S, - S2 ).

0
Proof of Theorem 5: By Lemma 6, we can assume that all of the calls to QEX

occur at the beginning of the program. Now suppose M with QEXI,D can quantum-simulate
MEMf. Take f(x) = 0 and g(x) = x" A .A A where xd=Iif and onlyx=d. The
second function is zero in all points except in c = (cl,... , c,). We want to use the simulator

to find h(c). The simulator will first make t calls to QEXh,D for h E {f,g} giving

Sh= Z D(zi)...D(zt)lzi,h(zi),...,zt,h(z,)).
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After that, the computation for f and g is the same. The superpositions for h = f and h = g
differ only in configurations

Iz,, h(z, ),..., zt, h(zt))

where one of the zi is c.
Therefore

S1 = Sg + Ef,g ,

where

Ef,9 = ý D(z,).. D(z,)Izi,f(zi),.... ,zt, f(zt)) -

(3i)zi=c
., V/O(zý)... nD(z,)IzI,,(zl),....,. tg (zt)).

(3i)zi=c

If W is the computation after the oracle calls then we observe Obs(WSf) and Obs(WS,) for
f and g, respectively. By Lemma 8

IObs(WSi) - Obs(WS,)l <_ Obs(WEf,g)
< IIWEf,glI
= IIEi,,Il
-- E Vzi .. -D(--))

(3i)zi=c

= 2(1 - (1 - D(c))t)

< 2tD(c).

For almost all points c, D(c) < 1/poly(n) for any poly(n). For all such c our observation
is indistinguishable. El

Note that while there are restrictions on the unitary matrix representing the transitions
of a quantum Turing machine, we did not rely on these restrictions in the proof of this theo-
rem. Thus we have actually proved the stronger result that, even given the ability to apply
arbitrary unitary operations to superpositions, it is not possible to simulate membership
queries in polynomial time given only a quantum example oracle. On the other hand, it is a
simple matter to simulate a uniform quantum example oracle with membership queries.

Lemma 9 For every Boolean function f, QEX(f,U) can be simulated by MEM(f).

Proof: QEX(f,U) can be simulated by applying the Fourier transform F to the tape 10)
and applying f. 0

Thus a membership oracle for f is strictly more powerful than a uniform quantum ex-
ample oracle for f.

5 Learning Noisy DNF's

Recently, Blum et al. [61 have shown that DNF is not learnable with respect to uniform in
the statistical query (SQ) model of learning. The SQ model is apparently a good model of
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learning with classification noise: if a function class is SQ learnable then it is learnable with
classification noise, and every function class that is known to be learnable from such noise
is also known to be SQ learnable [14]. Therefore, the fact that DNF is hard to learn in the
SQ model would seem to be strong evidence that DNF is not PAC learnable from a noisy
example oracle.

However, in this section we show that DNF is quantum learnable with respect to uniform
using a noisy quantum example oracle. We define such an oracle as follows: given a noise rate
ri, a noisy quantum example oracle for f, QEX"(f, D), is exactly like the quantum example
oracle QEX(f, D) except that each of the example labels is reversed with probability ri.
Each call to the QEX"(f, D) chooses which labels to flip independently of all previous calls.
We say that a function class is learnable using a noisy quantum example oracle QEXn(f, D)
if the class is learnable in time polynomial in 1/(1 - 2 q) as well as the standard parameters
(we assume for simplicity that ql is known). The probability PrD[f = h] of success is taken
over the random noise choices made by QEX" as well as any random choices made by the
learning algorithm.

We now state and prove the main result of this section.

Theorem 10 DNF is quantum learnable with respect to uniform using a noisy quantum
example oracle.

Proof: Let E,[fxa] represent the expected value of fX. with respect to the uniform distri-
bution on x given that f(x) is produced by a noisy oracle (quantum or otherwise) having
noise rate i?. Using a technique due to Kearns [14], it can be shown that

E,,[fxa] = (1 - 2rq)E[f x].

Now consider running the quantum DNF algorithm developed earlier using a noisy ciuan-
tum example oracle. The component of this algorithm impacted by the noisy oracle is the
sampling of Xa's to locate a weak approximator for f. Recall that when we used a noiseless
oracle then we sampled each Xa with probability proportional to E2 [f Ya]. From the above
expression we see that the effect of the noise is to reduce the expected values we see when
using the noisy oracle by a value that is inverse polynomial in our allowed running time.
Thus by increasing the number of samples by an appropriate amount we will still be able to
find the desired Xa's.
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