
AD-A286 065 9 "

A tabular interface for automated verification
of event-based dialogs

Hung-Ming Wang

Gregory Abowd3 1 DTIC. I
28 July 1994 L

CMU-CS-94-189 N ELIEC 994

N NvOV 1 0 1994'

LinLF
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

aCollege of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332

1 q'ý""--9 4 - 3 4 8 8 8

This work is the result of an independent study project within Carnegie Mellon's Master of Software

Engineering (MSE) program. G. Abowd was a member of the MSE faculty and was sponsored in part by

the U.S. Department of Defense when working on this project. G. Abowd is currently an Assistant Professor

at Georgia Institute of Technology. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies, either expressed or implied, of the

DoD or the U.S. government.

94 11 9o5

Keywords: Computation Tree Logic, Dialog Analysis, Model Checking, Propositional Produc-
tion System, Symbolic Model Verifier

Abstract

In this report, we investigate the feasibility of a tabular interface for the specifi-
cation and analysis of event-based dialogues. These dialogues are used to define
high-level descriptions of interactive systems, and they are based on Olsen's
Propositional Production System (PPS) notation. The simulation of the abstract
user-system dialogue is an effective means of matching a design with an
expected task model. Monk and Curry have produced a prototype dialogue simu-
lation tool, the Action. Simulator. which demonstrates how a tabular paradigm
can be used to specify and simulate the dialogue. Further analysis of the dialogue
can uncover problems which are not so easy to detect with simulation. If we
view the dialogue as defining a finite state machine, then we can make use of
powerful model verification tools, such as Clarke's Symbolic Model Verifier
(SMV) tool, to perform more powerful analyses on the dialogue. We also find
that the tabular paradigm for input is an interesting alternative to the input lan-
guage for the SMV tool. We provide in this report a mechanical translation from
the tabular dialogue specification into SMV and provide templates or heuristics
for various reachability analyses using the Computation Tree Logic (CTL) for-
malism. This research, therefore, presents the beginnings of two significant
contributions. For the HCI community, we show how model verification tools
can be used to provide a more powerful analytic technique beyond simulation for
the specification and design of interactive dialogues. For the model verification
community, we demonstrate the possibility of developing a simpler interface to
specify and analyze certain finite state machines.

Accesion For _

D1, 1AB -i

*B y

Distribution I

Availability Codes

Avail andc or
Dist Special

A-1

•4

1. Introduction

The design of any compý tem is an incremental process. The designers have coarse
ideas at first. They must try out these ideas and refine them until a complete design specifi-
cation is obtained. It is not cost effective to implement every design idea, so cheaper, more
abstract models are built to explore early design ideas. A model may take the form of
English prose descriptions, sketches of screens, executable prototypes, formal specifica-
tions, or user manuals. Whatever form it takes, a good model is:

* easy to describe, or specify;

* easy to understand and communicate its meaning;

• readily analyzable to determine its properties; and

0 easily modified.

There are usually conflicts among the four desi.- u ibutes identified above. Informal tex-
tual descriptions might reduce the effort for desciiptioi and communication, but they are
difficult to reason about. More formal models have the advantage of applying a large body
of mathematical knowledge to proof and analysis, but they are typically too cumbersome
and difficult for use by average programmers. Prototyping can pr.wide animated simulations
of expected system behavior, helping to uncover problems befre implementation, but it
relies on human interaction with the prototypes and cannot automatically ve:.t-v certain
properties of the model.

In this report, we will examine the event-based dialogs which are used to model interactive

behavior between a user and system. These dialogs can be defined at a very high level of
abstraction for use in early interactive system design. Specifically, we will be concerned
with Olsen's Propositional Production System (PPS) [2]. Monk and Curry have defined a
tabular method for expressing a proper subset of PPS and have shown how it can be imple-
mented on a standard spreadsheet package to provide a simulation of the dialog [3]. The tab-
ular interface to PPS has several advantages. It is simple to define and understand the dialog,
and possible to validate the model for correspondence to high-level task requirements in the
form of usage scenarios. The dialog can easily be changed to suit the task scenarios. It is not
possible, however, to do more sophisticated kinds of dialog analysis, such as determining if
certain dialog states are reachable, or if certain actions are always reversible. Olsen, Monk
and Curry have started to address these deeper analysis techniques, but have not yet shown
how a more powerful analysis technique can be added to the expressive and simple tabular
specification [6].

The main contribution of our work is to demonstrate how existing model verification tools
can be linked to the tabular PPS dialog description to provide more powerful analyses.
Model verification is an area of research of increasing importance in software engineering.
Its basic premise is that a system, once described as a finite state machine, can be subjected
to exhaustive analysis of its entire state space to determine what properties hold. The main

page 5

drawback of this approach is the state explosion problem, in which the number of states of
the system increases exponentially as it becomes more and more complex. Since realistic
examples of system end up having very large state spaces, exhaustive search was considered
too expensive. The main advances in model verification technology now allow for examina-
tion of systems with huge state spaces (over 1030 states) [8]. We will demonstrate how a tab-
ular PPS event-based dialog can be translated into one particular model verification tool, the
Symbolic Model Verifier (SMV), developed at CMU [4].

The link between tabular event-based dialog specification and model verification which we
establish in this report represents two distinct contributions. First, dialog modeling is impor-
tant in the design and analysis of interactive systems,- but there are very few tools or tech-
niques for doing this. Pre-condition and post-condition semantics of low-level interaction
widgets have been used in the UIDE system to automatically generate an interface from its
specification, but this does not speak to the analysis of the specification [2]. Probably the
closest related technique to one we are proposing would be the Statemate system [13] based
on Harel's statecharts [I 1[12]. Statecharts provide a visual formalism for specifying com-
plicated state transition systems and the Statemate system provides a way to simulate the
specification and perform certain reachability and deadlock checks on the specification. At
this point, we are unable to say how our approach with model verification and tabular speci-
fication compares to statecharts and Statemate.

The second contribution of this work is the development of better interfaces for model veri-
fication technology. The advances in model verification that have enabled the efficient
examination of complex systems with many states have not been accompanied by suitable
advances in the interfaces to those tools. One of the major obstacles preventing their more
widespread adoption is that the tools are too difficult to use. By demonstrating the mechani-
cal translation from the tabular event-based dialog description into the SMV tool. we are
laying the foundation for an enhanced interface to SMV which should prove more usable for
certain applications.

The remainder of this report is organized as follows. Section 2 describes the overall frame-
work of our method and clearly indicates how our work translating PPS tabular descriptions
into SMV for further analysis fits into an overall design life cycle. In Section 3. we provide
an overview of PPS and define the tabular definition of PPS dialog modcls. In Section 4. we
provide a brief overview of the Computation Tree Logic (CTL) an4 'he SMV tool. Section
5, the first significant section of this report, explains the translatic i step from a PPS tabular
description into the CTL representation of SMV. In that section. we define the mechanical
steps for translating from PPS into SMV and prove that the translation is well-defined. Sec-
tion 6 presents a case study of analysis and gives a guideline of how certain desired proper-
ties can be cast in CTL formulae. Section 7 describes five follow-up activities if a property
does not hold in the automatic analysis. Section 8 concludes our results and discusses the
future work.

pW 6

2. The Overall Process of Dialog Design

This section describes the overall dialog design process and the role that both PPS and SMV
play in that process. The method we are advocating is divided into five steps, as shown in
Figure 1 - formulating the dialog model in PPS, validating the PPS task model by simula-
tion, mechanically translating the dialog model into SMV, automatically verifying CTL-
based properties, and visualizing the design problems for correction.

S"TaskkModels

Design Ideas

1 Dialog Model 2. Task Model
Fr log Validation
Formulation

3. Mechanical 5. Design Problem
Translation Visualization

CTL Machine
represented in SMV

4. Automatic Property
Analysis

Figre I. Ile dialog design procem

2.1. Dialog Model Formulation

The first step in dialog design is to create an initial dialog description based on an under-
standing of the system to be built and the tasks it must support. Developing an adequate task
model for use in initial design of an interactive system is a rich area of research called task
analysis (for a summary of task analysis approaches, see Chapter 7 of [11). Monk & Curry
have developed a scenario-based method for generating a dialog model. There are several
artifacts which result from their method (a work objective decomposition, descriptions of
illustrative scenarios, and exceptions lists), but the principal artifact is a tabular dialog

page 7

description in a reduced PPS syntax using their own tool, Action Simulator, a specialized
spreadsheet package [3]. The work in this paper does not address this issue of dialog formu-
lation any further. Rather, we are more concerned with how a dialog description can be
manipulated and analyzed.

2.2. Animated Simulation against Task Model

The development of a good dialog model requires an iterative process. Once we have a PPS
tabular specification, it is not difficult to evaluate the dialog model against the task model if
there is some computer support. Simulation of the dialog is one way to check its adequacy.
In Monk & Curry's work, the Action Simulator is used to compare a dialog model against
the task scenarios used to develop it. This requires the use of a software program that keeps
a record of what conditions are set and uses this record to display a list of user events that
are available for selection. The designer can examine the effect of one of these events by
selecting it. This changes the dialog state and a new list of available user events is displayed.
The designer can run though the scenarios in the task model and check that the model allows
the user to generate the appropriate user events and whether a task can be accomplished.

Analysis of a dialog model by observing its behavior in this way is useful to gain an under-
standing of the design. However, there are several questions a designer might ask that are
tedious or difficult to answer by exhaustive simulation of the dialog itself. For example.
Olsen, Monk & Curry [61 list several varieties of reachability properties that would be virtu-
ally impossible to check using the Action Simulator.

2.3. Mechanical Translation

Olsen, Monk & Curry also propose some algorithms to perform the reachability checks on a
general PPS dialog, but they do not provide a tool for performing the analysis. Our aim in
this report is to examine to what extent those more sophisticated analyses can be achieved
by model verification technology that already exists. The model checking technique is very
promising because the analysis can be automated and the kinds of properties that can be ver-
ified arm very rich. If the PPS tabular specification were mechanically translatable into a
form acceptable for model checking, then we would be able to take advantage of those tools.

A large part of this report is devoted to the transformation process from a PPS specification
into the SMV input language. Both PPS and SMV are finite state systems. However, there
are differences between the two formalisms. SMV supports the Computation Tree Logic
(CTL), a branching-time temporal logic and it enforces that each branch of the computation
tree must be infinite. PPS dialogs can have deadlocks. PPS have a collection of user events
participating in the dialog state transitions but SMV must encode the user events as state
information. These issues should be carefully addressed in the translation process.

SMV is a tool which can accept a CTL machine and CTL specifications. Based on our
results, it should be straightforward to write a translator converting a standard PPS table into
SMV. The translation process could then be hidden from the dialog designer.

PF 8

2.4. Automatic Property Analysis

There are certain frequently desired properties a designer might want to assure before imple-
mentation. It is considered a poor design if there are points in the dialog where the system
might deadlock, if tasks are unreasonably difficult to complete, or if effects cannot be
undone. Being able to detect such potential usability problems early in the design process is
a considerable advantage.

Having a CTL machine represented in SMV language translated from a PPS dialog, the
designer can start to ask questions as CTL formulae which are automatically verified. How-
ever, it would be useful if we could identify the kinds of questions that are usually asked,
and provide guidelines for how to express the questions in CTL formulae. We summarize
several categories of questions and show how these questions can be cast in CTL logic,
based on the properties defined by Olsen, Monk & Curry [6].

2.5. Design Problem Visualization

The SMV model checker will try to provide a counterexample if the property being checked
is false. These counterexamples are output in a log file and relatively difficult to trace, espe-
cially when the state space is very large and complicated. We can redirect the log file output
by SMV to drive the animation tool. In this way, *he designer can easily visualize why and
how the desired property fails, instead of tediously tracing the log file and often getting lost.

3. Propositional Production System

3.1. PPS Dialog Model

Propositional Production Systems were originally introduced by Olsen and used to specify
human-computer dialog at a much higher level of abstraction for analysis purpose of devel-
oping verification algorithms [6]. However, production systems have a long history of use
for modelling human-computer dialog. Tools for the generation of user interfaces use rules
with pre- and post-conditions to describe the behavior of an interface, and automatically
generate a user interface from the rule specification 121. These tools have as their objective
the low level specification of human-computer dialog. For our purpose, it does not matter
whether the propositional production systems are used at a higher abstraction level (such as
"select delivery record N") or in a low level physical specification (such as "release the left
button "). We simply treat PPS as an easy-to-write input language for model checking. I

In a PPS specification, the designers identify a set of user events and several fields. A field is

I It if generally recognzed that modelling at a move abstraict level can etnforce atteton tim critical itsues in the early dcvelop-
mert phase It s easier to verify a dialog model against user wenios if the dialog model is at the same level of abstraction

the task model.

page 9

associated with a set of distinct values. At any time a field can only be in one of the values
associated with it. That is, the values associated with a field are mutually exclusive so set-
ting a new value unsets the value currently set. The vector of current values of all fields rep-
resents the current state of the dialog model. The designers also define a starting state vector
and a collection of rules. A rule takes the following form:

user event, pre-condition vector, post-condition vector

A rule attaches a pre-condition vector and a post-condition vector to a user event. The pre-
and post-condition vectors are written in propositional logic formulae in terms of fields. A
pre-condition vector specifies when a rule is enabled; a rule is enabled if the current state of
the dialog model makes the pre-condition vector of that rule true. A user event is enabled if
the rule is enabled. Depending on the current state, there are probably zero, one, or more
enabled user events. Each time a user can select one user event to execute from the set of
enabled user events. The rule of the selected user event then fires. The post-condition vector
of the firing rule changes the state of the dialog model, which becomes the conditions for the
next rule to fire.

3.2. PPS Copier Example

Table I shows a PPS specification example of a copier taken from [3]. IV this case, each field
is associated with binary values but in general it is not necessary. The collection of rules are
described using a tabular form. Each rule takes one row and has a user event name associ-
ated with it. The top line of each row specifies the pre-condition vector and the bottom line
of each row specifies the post-condition vector. If a field is blank in a pre-condition vector,
this indicates that we don't care about the value of that field when deciding if the rule is
enabled. If a field is blank in a post-condition vector, this indicates that the value of that field
will not be changed if the rule fires. With the starting state of (Ready=NotOK, Copying=Off,
OneCopy= Yes, Defsettings= Yes), only rule I is enabled and thus the user can only choose
the user event SwitchOn to execute. After firing rule 1, the state becomes (Ready=OK,
Copying=Off, OneCopy=Yes, DefSettings=Yes), and therefore rules 2, 3, 5, and 7 are now
enabled. This means that the user events SwitchOff, Copy, MultipleCopies, and ChangeSet-
tings are enabled and the user can select any one of the four events to carry on. The selection
is made by the user and hence the state of the dialog model is essentially determined by both
the rules coded in the table and the user's selection.

Fields Ready: { OK, NotOK }
Copying: { On, Off)
OneCopy: { Yes, No)
DefSettings: (Yes, No)

Initial state: (Ready = NotOK, Copying = Off, OneCopy Yes, DefSettings = Yes)

Rule user event Ready Copying OneCopy DefSettings

1 Sw•jtchOn NotOK ...
OK

per 10

Rule user event Ready Copying OneCopy DefSettings

2 SwitchOff OK Off
NotOK

3 Copy OK Off
On

4 FinishedCopying OK On
Off

5 MultipleCopies OK Off Yes
No

6 CancelCopies OK Off No
Yes

7 ChangeSettings OK Yes
No

8 CancelSettings OK No
Yes

Table 1. PPS specification of a copier

3.3. Expressiveness of PPS Description

A PPS specification of this kind is relatively easy to read and write. PPS is similar to a state
transition diagram in that it consists of rules specifying possible state transitions. State tran-
sition diagrams are a representation most programmers are familiar with. The problem with
using a simple state machine to model a complex system is that the large number of parallel
options leads to a state explosion that makes specification and analysis intractable. PPS
resolves this problem by working at the granularity of state sets instead of every single state.

Notice that the pre- and post-condition vectors and the starting state vector do not have to be
a full vector. The absence of a value of a field in a vector simply means "don't-care" in a
starting state (actually the set of starting states is more correct), means "don't-care" in a pre-
condition, or means "don't-change" in a post-condition. In this way, PPS avoids the neces-
sity of enumerating the entire state space. A key to the expressiveness of a PPS specification
is the use of incomplete condition vectors to describe a wide variety of possible states. For a
large system, the number of rules needed in a PPS specification i! much less than the num-
ber of transitions needed in a typical state machine specification.

In addition, our PPS model also allows non-determinism to enhance its expressiveness. At
any time during the course of the dialog, there is a set of enabled rules. It is possible to let
multiple rules have the same event label, and therefore it is possible to have multiple rules
with the same event label being enabled simultaneously. Given the same event label, any
enabled rule with that event label can fire but only one can fire. The decision of which one to
take is non-deterministic. It is arguable that in the high level design, it is a desired feature to
allow non-determinism. The designer can specify the essential execution paths in a deter-
ministic way while ignore others. Besides, the CTL model we adopt for automated verifica-

page II

tion well supports non-determinism.1

3.4. Formalism of PPS

Suppose N is the number of rules in a PPS specification, and each rule i is in the form of (ai,
prei, posti). Formally, a PPS system is a triple PPS = (A, Y, T) where

* A is a finite set of event labels; that is, A = a 115 I 5 N

* 1 is a finite set of dialog states.

0 T is a binary relation where T • A x (1 -+ Z), in which each member specifies one
rule; that is, T = ((ai, transi) I 1 < i !5 N 1.

We denote the domain of transi by pre, and the range of transi by posti. Each pair of (prej,
posti) in a rule is actually a partial function transi of signature Z --ý Z, which maps a full pre-
state vector to a full post-state vector.

4. Model Checking Technologies

4.1. Computation Tree Logic

Temporal logic and model checking have been used to verify properties in hardware sys-
tems. To apply model checking techniques, one needs to transform the system to be verified
into an appropriate structure that the model checking tool can accept. One then specifies the
property needed to be ensured in a logic formula and the tool automatically analyzes the
structure and tells whether the property holds in the system. The specification language is a
propositional, branching-time temporal logic called CTL (Computation Tree Logic).

The semantics of CTL formulae can be understood with respect to a labeled state-transition
graph. Formally, suppose that AP is the underlying set of atomic propositions, we can define
a CTL machine to be a triple CTL = (S, R, P) where

"* S is a finite set of states.

"* R is a binary relation on S (R 9 S x S) which gives the possible transitions between
states and must be total; that is, V x e S * (3 y e S e (x, y) E R).

"* P: S -+ 2At' assigns to each state the set of atomic propositions true in that state.

A path is an infinite sequence of states (so. s1, s2 ...) such that V i * (si, Si+l) E R. For any
machine CTL = (S, R, P) and any state so E S, there is an infinite computation tree with root
labeled so such that s --+ t is an arc in the tree iff (s, t) E R. Figure 2 shows a CTL machine
and the associated computation tree rooted at so.

I. The stuatim of having two enabled rules simply means two branching paths. W* ca cosrnct a CTL machine where both
paths exist in the computation tme.

pug 12

SS2S

so Si

Si S2 so

Figure 2. CTL machine and the corresponding tree for starting state SO

CTL operators permit explicit quantification over all possible futures. The syntax and
semantics for CTL formulae are defined in [7] and are only summarized as follows:

"* Every atomic proposition is a CTL formula.

"• Iffandg areCTL formulae, then so are -f,f& g,f I g,f--g, AXf, EXJfA[f Ug],
Ef U g], AFf, EFf, AGf, EGf.

The symbols - (not), & (and), and I (or) are logical connectives. These connectives and their
derivable propositions, such asf--> g (f implies g), have their usual meanings. X is the next-
time operator. The formula AXf (EXf) intuitively means that formula f holds in every (in
some) immediate successor of the current state. U is the until operator, and the formula A[f
U g] (EJf U gJ) intuitively means that along every (some) computation path there exists an
initial prefix of the path such that g holds at the last state of the prefix andf holds at all other
states along the prefix. The formula AFf (EF]) means that along every (some) path there
exists some future state in which f holds. The formula AG f (EG f) means that f holds in
every state along every (some) path.

Taking the above copier example, perhaps we will want to check if the copier can be
switched off at any time when the copier is on. The corresponding CTL formula would look
like follows.

AG(Ready = OK -> EX(Ready = NotOK))

4.2. Symbolic Model Verifier

SMV is a model checker which accepts a CTL machine and a CTL formula, and automati-
cally tests whether or not the formula holds in the machine. If the SMV model checker
determines the formula is true, then the property holds in the CTL machine and also in the
system from which the CTL machine is translated.

page 13

The primary purpose of the SMV input language is to describe the transition relation of a
CTL machine. A detailed description of the syntax and semantics of the SMV input lan-
guage, and the function of the SMV model checker can be found in [4].

If any of the specifications does not hold in the CTL machine, the SMV model checker will
attempt to produce a counterexample, proving that the specification is false. Some formulae
require infinite execution paths as counterexamples. In this case, the model checker outputs
a looping path up to and including the first repetition of a state. However, generating a coun-
terexample is not always possible, since formulae preceded by existential path quantifiers
cannot be proved false by showing a single execution path.

SMV model checker needs to exhaustively search the state space. The BDD-based (Binary
Decision Diagram) symbolic model checking algorithm makes it possible to efficiently
determine whether specifications expressed in CTL formulae are satisfied [?]. We will not
explore this topic as it is far out of the scope of this report.

5. Translation of Tabular Description into SMV

5.1. Mimicking User Events

In a PPS specification, each rule is associated with a user event. A user event is enabled if
the current state makes the pre-condition vector of the rule true. At any time, the number of
the enabled user events could be zero or more. If there are zero enabled user events, this
means the dialog enters into a deadlock, and the user cannot do anything. If there are more
than zero enabled user events, then the user can select one of them to execute. Each time
after a rule fires, the current state is changed according to the post-condition vector of the
rule, and a new collection of enabled user events should be determined for user's next selec-
tion.

The above description will probably give readers a dynamic impressior as someone exe-
cutes the PPS dialog. Essentially, after a PPS table is defined, a state machine is already stat-
ically defined. Given any state, the collection of enabled user events from that state can be
easily computed by examining each rule. Consequently, if we treat a user event name as an
input symbol, a user event name is simply like an alphabet accepted by FA (finite automa-
ton).

More precisely, a user event name is like an alphabet accepted by NFA (non-deterministic
finite automaton) because NFA allows (i) zero, (ii) one, or (iii) more transitions from a state
on the same input symbol. Case (i) means that at a dialog state, a particular user event E is
not enabled, and thus the user cannot select it. Case (ii) means that at a dialog state, a partic-
ular user event E is enabled, and there is only one rule making the user event E enabled.
Case (iii) means that at a dialog state, a particular user event E is enabled, and there is more
than one rule making the user event E enabled. Case (iii) is allowed because we allow multi-
ple rule- to have the same event label. This problem is dealt with in Section 5.2.

pae14

The problem of using a CTL machine to mimic a PPS system is that the CTL model does
not include the concept of alphabets explicitly. The transition relation is specified by a for-
mula which confines the relationships of the state vectors between two states; there exic,., a
transition between two states if the two state vectors together make the formula true.

To model the user events, our strategy is to group all possible user event names of a PPS
table into an event type, and declare a special state variable, Event, whose value always
denotes an enabled user event. This implies that the "event value" has become part of the
state information. This also implies that in the resultant CTL machine, the corresponding
computation tree will only contain nodes each of whose Event variable represents an
enabled user event; any other node (i.e., a dialog state with an non-enabled user event, or
simply an unreachable dialog state) should not emerge in the computation tree.

Also, it is possible to have a deadlock in a PPS specification. In a CTL machine, however,
each branch of the computation tree has an infinite trace. The deadlock modelling problem
is dealt with in Section 5.3.

S.2. Non-determinism

There are two ways to specify transition relations of a CTL machine and its initial states in
SMV. They can be specified by a collection of parallel assignments, introduced by the
ASSIGN statements, or by propositional formulae directly, introduced by the TRANS and
INIT statements.

An ASSIGN statement usually involves lots of case expressions. The value of a case expres-
sion is determined by thefirst expression on the right hand side of a colon such that the con-
dition on the left hand side is true. This means that if we use this way to specify transition
relations, only one rule will fire when the same user event can fire two rules.

Consider a very simple but strange PPS specification. Only one user event el is defined and
x is the only state variable. Initially the value of x is a. Rule 2's pre-condition is true and
therefore subsumes rule 1.

Rule user event x

1 el a
b

2 el
C

An SMV program using ASSIGN statements might look as follows.

MODULE main
VAR

Event (el i;

x (a, b, c };

ASSIGN

init(x) := a;
next(xt W

case
fvent - e1 & x . a b;
fvent = 61 C;
1 X.

eSac;

We expect that there exists a next state in which x is b and also a next state in which .r is c.
However, the verification results tell us the latter is not true. This is because the case
expression textually imposes a priority order on the conditions.

SPEC EX(x = b) -- SIKV reports that this specification is true
SPEC EX(x = c) -- SKV reports that this specification ist false

Alternatively, we may use the TRANS and INIT statements. It is possible in SMV to specify
the transition relation directly as a propositional formula in terms of the current and next
values of the state variables. Any current/next state pairs is in the transition relation iff they
make the formula true. Similarly, it is possible to give the set of possible initial states as a
formula in terms of only current state variables. An SMV program modeling the same
example using this alternative shows that both specifications are true.

MODULE main
VAR

Event : { el };
x : (a, b, c);

INIT x = a
TRANS (Event = el & x = a & next(x) = b) 1

(Event = el & next(x) = c) I
M(Event = el & x = a) I (Event = el)) & next(x) = x)

SPEC EX(x = b)-- SMV reports that this specification is true
SPEC EX(x = c) -- S1V reports that this specification is true

The SMV literature does not recommend the use of TRANS and INIT since it is possible to
write logical absurdities using these features [4]. For example, one could specify the logical
constant 0 to represent the transition relation, resulting in a system with no transitions at all.
However, the above example justifies our need to use these features. Because they are dan-
gerous, it is the responsibility of those writing translators to ensure appropriate use of
TRANS and INIT statements. We will fulfill this responsibility in Section 5.5.

5.3. Deadlock

A CTL computation tree cannot have finite traces. That is, given a current state, there must
exist at least one successor. However, a PPS specification might have a deadlock. This
means that at some point none of the rules are enabled, and hence none of the user events
can be selected.

We resolve this situation by defining a special "stuck" event. When a PPS dialog gets into a
deadlock, the user can only take the stuck event and remains stuck forever. From the CTL
machine's point of view, there is still a "null" transition when the deadlock happens. The
logical condition for deadlock is the complement of the disjunction of all rule's pre-condi-

rrns.

Consider a very simple example as follows. Two user events el and e2 are defined and 1 1
the only state variable. Initially the value of - is a Therefore only event el can he taken and
X becomes b. Since the current state is h. only esent e2 can he taken and ýv becomes (Nov%
the current state is (and neither of the rules are enabled. So the dialog gets. into i deadl•ok

Rule uW eN x

1 61 a
b

2 Q2 b
C

An SMV translation is as follows. In addition to the normal user events, a special stuck
event is included in the event declaration. For conciseness, we use DEFINE statements,
which are analogous to macro definitions in an ordinary programming language. Two mac-
ros are defined for each rule: one corresponds to the pre-condition vector; the other corre-
sponds to the post-condition vector, no-enabled denotes the situation where none of the
rules' pre-condition are satisfied. default denotes that the dialog state does not change at
all (when it is stuck).

MODULE main
VAR

x: (a, b, c);

Event: (el, e2, Stuck);

DEFINE
prel x = a;

pre2 x = b;
noenabled := ! (prel I pre2);
postl next(x) = b;
post2 : next(x) = c;
default := next(x) = x;

INIT -- assign initial states
(x = a) &

-- restrict user events to only those which are enabled
-- if no user event is enabled, then the system gets stuck
((prel & Event = el) I
(pre2 & Event = e2)
(noenabled & Event = Stuck))

TRANS -- execute transitions specified by the rules
((Event = el & prel & postl) I

(Event = e2 & pre2 & post2) I
(Event = Stuck & no-enabled & default)) &

-- restrict user events to only those which are enabled
-- if no user event is enabled, then the system gets stuck
((next(prel) & next(Event) = el) I
(next(pre2) & next(Event) = e2) I
(next(no-enabled) & next(Event) = Stuck))

Notice that in the INIT statement, the first part is to assign the initial states and the second
part is to decide the enabled user events. In the TRANS statement, the first part is to assign

ptge 17

values according to the post-conditions and the second part is to decide the enabled user
events in the next state. Notice that next (preN) means that the next state satisfies the pre-
condition of rle N.

5.4. Summary of Translation Steps

1. Declare the necessary state variables of the PPS dialog model.

2. Declare the user events of the PPS dialog model plus a special stuck event.

3. For each rule, define a macro to capture the pre-condition vector.

4. Define a macro which is the negation of the disjunction of all pre-conditions.

5. For each rule, define a macro to capture the post-condition vector.

6. Define a macro which specifies that the state of the dialog model does not change

7. Write down the INIT statement which is a conjunction of two parts. The first part
specifies the starting states. The second part specifies which user events are ini-
tially enabled.

8. Write down the TRANS statement which is a conjunction of two parts. The first
part specifies the next state of the dialog model according to the post-conditions.
The second part specifies which user events are enabled in the next state.

The above steps are a mechanical translation process and can be easily programmed.

5.5. Justifications

Formally, we are constructing a CTL machine which models the PPSt specification. PPSt is
derived from PPS augmented by one additional rule to handle the deadlock. Suppose aN+,
is the special "stuck" event. PPSt = (A t, Z Tt) where

" At is the set of user events plus the stuck event; that is, At = A u I aN+ I /, where
aN+i 9 A.

"* X is the set of dialog states as defined in the original PPS.

"* Tt is a binary relation where Tt Q At x (1 -+ T), which additionally includes one
rule to deal with the deadlock; that is, Tt = T u I (aN+ 1, transN+ d)}, where preN+!
=1 - U prei = dom transN+/, and transN+ i is an identity function of Z.

Isi<N

The domain of transN+I is the complement of the union of all other rules' pre-conditions. It
maps any state vector to the same vector.

The translated SMV program essentially builds a machine of CTL = (S, R, P) where

pap 18

" S is the set of states each of which combines a user event with a dialog state (S
At x 1).

" R is a binary relation where R • (At x E) x (At x Z) which gives the possible tran-
sitions. Observing the logic formula specified in the TRANS statement, there are

essentially two pieces: the first piece specifies the transition of the dialog state
according to the rules while does not specifies the value of the next event; the sec-
ond piece specifies the value of the next event according to the value of the next
dialog state while ignores the values of the current state. Thus literally translating
the logic formula into a set notation, we obtain

R = U t ((ai, s) (, s')) I (s, s') E transi A a' E At /
ISiS~N+I

U / ((a, s), (aj, s')) I a E A t A S E I AS' e dom transj I

I < jSN+I

"* P: S --+ 2AP assigns to each state the set of atomic propositions true in that state.

To justify that CTL is a valid translation of PPSt, we need to argue that for given user events
e and e' and dialog states v and v', the following holds:

((e. v), (e', v')) E R 7= N(v, v') E U Tt.e A v' E dom (U Tt.e')I.

Proof:

U Tt.e =U transi I a, = e, 15 i5 <N+I!

= (s, s') I (s, s') E transi A a, = e, 1 < i < N+ !.

U Tt.e'= U I transj I aj = e', I 5j5 <N+I I

= I (s', s")I(s', s")E transjAaj = e', <j1<!5.N+ I

dorm (J Tt.e') = t s' I s' E dom transj A aj = e', 1 < j 5 N+ I.

((e, v). (e', v')) e R

4* ((e. v), (e', v')) E ..) ((ai, s). (a', s')) I (s, s') E transi A a' E At /
I So SN+1

U (((a. s), (a1, s')) I a E At A S E 1. A S' E dom trans. I
I So 5N+I

€c ((e, v), (e', v')) E I..) ((ai, s), (a', s')) I (s, s') E transi A a' E At/
I <_ S N+I

A

((e, v), (e', v')) E U (((a, s), (aj, s')) I a E At A SE Z A s' r dorm transj /

I. The notaion Rs denows the set of all the secondary values of pairs which corrspond to s in a binary relation Rk that is. Rs
=I (s. t)e R1.

I %I %N+1

4* (e, v. V) e (ai, so s ') I (so s') e transi [for the argument of -c:, e' E At]

I ii S SN.

A

(e'. v')e I (aý, s') I s' e dom transj I [for the argument of e ee At and v E El
I S• I ' N. I

t* (e, v. v') e ..) ((ai. s, s') I (s, s') E trans1 I
I S aSN NJ ^A, ier

A

(e', v) .J(aj.s ') I s'E dom transj1
I S; N*I ^"t N r

4* (e, v, v') r (ai. s, s') I (s. s') E transi A ai = e A 1 • i < N+1 I
A

(e', v') E ((a. s') I s' e dom tranSj A aj = e' A 1 <j < N+ I}

€c (v. v') e I (s, s') I (s, s') e transi A ai = e A 1 : i < N+1l)}
A

v E so Is' e dom transj A aj = e'A I <jS N+I)

- (v, v') e U Tt.e A v' e dom (U Tt.e'). C3

To justify that the transition relation in CTL has no finite traces, we need to argue that there

always exists a successor for a reachable state- that is, we need to show the following:

((e, v). (e'. v')) e R =* 3 e" L At, v" L 1 * ((e', v), (e'" v")) E R.

Proof:

From the definition of R and the hypothesis of ((e, v), (e', v')) E R. we can infer that

3z x. 15 x N+1 e ax = e'A v'e dom transX.

Let v" - trans(v'). We also know that trans(v') r E and E = U dom transi.
I S i S N.J

Therefore, v" e U dom transi. This implies that
I SIaJV+I

3 y. 1:5 yS N+1 * v" e domr trans,

Let "= a) Then ((e', v '), (e ", v")) = ((ar v'), (a., v")). Given the definition of R,

((a, v'), (a)" v")) E / I ((a,, s), (a', s')) I (s, s') E transi A a' E At /
I S a S N.J

. (((a, s). (a, s')) I a e At A S E 1: A s' E dom trans1 /
J •j SN+l

=R. 0

6. Verification of Properties

Various properties can be analyzed against the PPS dialog in the translated CTL machine. In
Section 6.1., we present a PPS dialog of a schedule organizer and use our translation tech-
nique to construct a SMV program for it. In Section 6.2., we identify several categories of
questions and provide CTL templates for expressing these questions. In Section 6.3., we
summarize a list of insights that we discovered in our attempt of establishing templates.

6.1. PPS Dialog of a Schedule Organizer

The example comes from a product of a well-known brand. The detailed features have been
abstracted away and only the essential functionality is captured. A user can turn the orga-
nizer on/off, and the organizer is divided into several modes: schedule, calendar, telephone,
memo,... etc. A*user can access a mode, select a day, edit an appointment for a day, view a
day's schedule, overview a month's schedule, delete an appointment, and perform some
other actions like checking memo and searching a phone number.

We abstractly model the organizer with three modes: Calendar, Schedule, and Other. A user
can switch the power On and Off. The field of Today records whether currently the system is
at today. The field of TargetDay records whether currently the system is at a user's desired
day. The field of Editing records whether a user is editing an appointment. The field of
Saved records whether there is an appointment being edited without being saved. The PPS
dialog is written in Table 2. Notice that the post-conditions of certain rules are intentionally
specified in a non-deterministic way. For example, when the action of SwitchOn is taken, the
system will lead to today as the current day but whether it is a user's desired day is the user's
decision. Thus rules I and 2 are written for the SwitchOn action and the post-condition of
TargetDay can be either Yes or No. Also notice that we put no limit on the number of
appointments for a day. After selecting a desired day, a user can view the appointments for
that day in sequence by continuously taking the ViewNext action. To signal that the appoint-
ments for a desired day have all been viewed, the post-condition of TargetDay is changed
from Yes to No. However, this change is also a non-deterministic decision since the dialog
model does not record how many appointments there are for each day. Four rules are written
for the VewNext action, because of the non-determinism, and because of the interaction
between Today field and TargetDay field.

Fiedse Powei(OM N I
Mode: (ScheduhL Calendar. ONW I
Today. TargelOay. Eding. Saved: (Yes. No }

Wastat: (Power-O. Mods.Odw, Edling-No. SavWdYes)

Rule uSeK evel Power Mode Today Ta"getDay Editiig Saved

I Swthon ION
On Yes Yes

page 2/

Rj User VvM Power Mode Today
TergulOay Edbing saved

2 SwftOn ON
On Yes No

3 SwfthOR On

4 GtaidayS On
Sche"ule Yes Yes No

s GaTomdVC On
C4leda Yes Yes No

6 AelaSchedule On
Schece NO

7 AcceseC4alndar On

Caendwa No

a AcceseteO r On
Other Yes Yes NO

9 AcceseOther On
Other Yes No No

10 SpecOayYS On Sche"ue
Yes Yes No

11 SpecllyOayS On Scedtkle
No Yes No

12 SpecOyOayC On Calender
Yes Yes NO

13 Sepcity•0yC On Calewdar
No Yes No

14 VIOlewN On Schedule Yes
No

15 Vi~wNext On Schedule No Yes

Yes No No

16 VlewNexI On Schedufe No yes

No No No

17 ViewNext On Schedule Yes Yes
No No No

Is OverView On Caledar

19 Edt On Schedule
Yes No

20 Commit On Yes
No Yes

21 DejefeOn. On Schdule No

22 DelMo.d On Caendr No

23 DoOther On Other

Thble 2. PPS splilkatiom o a schedue orgpaizer

By following the mechanical translation steps identified in Section 5.4., the SMV program

pp22

of the schedule organizer can be easily obtained according to Table 2. The source program is
included in Appendix I.

6.2. Category of Questions

In the following subsections, each explains one category of questions, provides a template
for casting the questions as CTL formulae, and gives verification examples on the schedule
organizer. Note that in the template description, s-stint denotes a logic formula expressed in
terms of a state value or a conjunction of state values (e.g., Power=Of f, Today=Yes & Edit-

ing=No); e-stint denotes a logic formula expressed in terms of an event label (e.g., even-
t=AccessSchedule, event=Deleteone). If there is more than one stmit emerging in the
template, the numeric suffix denotes whether the stint's should be the same or could be dif-
ferent.

6.2.1. Rule Set Connectedness

Question: Given initialization, can all rules somehow be enabled?

We assume that all rules are put forth for some purpose. If some rule is impossible to fire,
there is potentially a problem in the dialog design. The designer needs to either revisit the
dialog design or simply eliminate the useless rule. In the following template, e-srmt
expresses the event associated with a rule, and s-stint captures the pre-condition of that rule.

Template: EF (e-stmt & s-strut) for each rule

EXampk: EF(event=SwitchOn & Power=Off)
EF(event=SwitchOff & Power=On)
EF(event=GetTodayS & Power=On)
EF(event=GetTodayC & Power=On)
EF (event=AccessSchedule & Power=On)
EF (event=AccessCalendar & Power=On)
EF(event=AccessOther & Power=On)
EF(event=SpecifyDayS & Power=On & Mode=Schedule)
EF(event=SpecifyDayC & Power=On & Mode=Calendar)
EF(event=ViewNext & Power=On & Mode=Schedule & TargetDay=Yes)
EF(event=ViewNext & Power=On & Mode=Schedule & Today=No &

TargetDay=Yes)
EF(event=ViewNext & Power=On & Mode=Schedule & Today=Yes &

TargetDay=Yes)
EF(event=OverView & Power=On & Mode=Calendar)
EF(event=Edit & Power=On & Mode=Schedule)
EF(event=Commit & Power=On & Editing=Yes)
EF(event=DeleteOne & Power=On & Mode=Schedule & Editing=No)
EF(event=DelMonthAppt & Power=On & Mode=Calendar & Editing=No)
EF(event=DoOther & Power=On & Mode=Other)

The above formulae verify whether all rules in the schedule organizer dialog example can
eventually be enabled. SMV reports that all are true.

page 23

G.2.2. Free of Deadlock

Question: Given initialization, is it true that the dialog will never get into a state where no
user events can be taken?

That is, we want to avoid the situation where none of the regular user events are enabled,
and the only event that a user can take is the special "stuck" event. Such a situation would
of course be very annoying to a user.

Template: , EF (event=stuck) or equivalently, ! EF (noenabled)

Example: EF (event=stuck)
!EF(no-enabled)

Either of the above formulae is sufficient to verify this property, since the two formulae are
equivalent in our translated CTL model. SMV reports both true.

6.2.3. Free of Live Deadlock

Question: From any state of a given state set, can the user escape from that state set'?

In the template, s-strut) expresses the state set to escape from.

Template: AG (s-strut1 -> EF (s-stt))

Example: AG(Mode=Other -> EF('Mode=Other)f
AG(Mode=Schedule -> EF (!Mode=Schedule))
AG(Mode=Calendar -> EF(!Mode=Calendar))

The above formulae verify if a user can always escape from the Schedule mode, Calendar
mode, and Other mode, respectively. SMV reports all true.

6.±4. Weak Task Completeness

Question: Can a user find some way to accomplish a task from initialization? Accomplish-
ment of a task is represented in terms of a particular state that could be reached or a particu-
lar user action that could be taken.

In the template, s-strut and e-strut express the tasks need to be accomplished.

Template: EF (s-strut) or EF (e-strut)

Example: EF (Today=Yes)
EF(TargetDay=Yes & Editing=Yes & Saved=No)
EF (event =OverView)
EF(Mode=Calendar & Editing=Yes)

The first formula checks if the system can reach a state where today is the current day. The
second formula checks if the system can reach a state where a user can specify a desired day
and edit an appointment while the appointment is not yet saved. The third formula checks if

a user can overview a month's schedule. The fourth formula checks if a user can edit some-

pap 24

thing while in the Calendar mode. SMV reports that the first three formulae are true but the
fourth one is false. It is obvious that the last one does not hold since the system must be in
the Schedule mode before a user can edit an appointment.

6.2.5. Strong Task Completeness

Question: Can the dialog model inevitably lead a user to accomplish an important task from
initialization? Accomplishment of a task is also represented in terms of a particular state that
could be reached or a particular user action that could be taken.

This property is valuable for a novice user. The dialog inevitably leads the user to try some
important or most frequently used functions without the user searching which actions to
take. On the other hand, we might want a negative answer to this question if we want to
avoid a novice user unintentionally performing some undesired tasks such as changing the
time setting of a watch when viewing the time display. In the template, s-strut and e-stmt
express the tasks need to be accomplished.

Template: AF (s-stmt) or AF (e-strut)

Example: AF (Today=Yes)
AF(TargetDay=Yes & Editing=Yes & Saved=No)
AF (event=OverView)
AF(Mode=Calendar & Editing=Yes)

The formulae check if the four tasks identified in the previous subsection can be inevitably
completed. Only the first one is true because initially only SwitchOn action is enabled and
SwitchOn leads to today as the current day.

6.2.6. State Inevitability

Question: From any state of a given state set, will the dialog model absolutely take the user
to a critical state?

We usually want to make sure no matter how the user navigates through the system, the user
can absolutely get to an important state or a frequently needed state. In the template, s-stmtl
is the given state set, and s-strut2 is the target state set.

Template: AG (s-stmtl -> AF (s-stmt2))

Example: AG(Mode=Other -> AF(TargetDay=Yes))
AG(Mode=Other -> AF(Today=Yes))
AG(Mode=Other -> AF(Mode=Schedule & Today=Yes))
AG(Editing=Yes & Saved=No -> AF(Saved=Yes))

The above four formulae should be self-explanatory. SMV reports only the second one is
true. However, it is highly desired that the fourth formula holds, which ensures that a user
will never accidentally lose what he is editing. This desired property would hold if we
change the rule set in a way that a user must "commit" the edited appointment before leav-
ing editing.

page 25

6±.7. Weak Task Connectedness

Question: From any state of a given state set, no matter which enabled action a user is going
to take, can the user find some way to get to a target state set?

In the template, s-strut1 is the given state set, and s-stmt2 is the target state set.

Template: AG (s-stmtl -> EF (s-stmt2)

Example: AG(Today=No & TargetDay=No -> EF(Today=Yes & TargetDay=Yes))
AG(TargetDay=Yes & Editing=Yes & Saved=No -> EF(Saved=Yes))
AG(Mode=Calendar & Editing=Yes -> EF(Mode=Schedule))
AG(Mode=Schedule -> EF(Mode=Calendar & Editing=Yes))

The first formula checks whether a user can get to today as the desired day if currently the
system is not at today and is not at a user's desired day. The second formula checks whether
a user can save an edited appointment if currently the system is at a desired day, a user is
editing appointment, and the appointment is not yet saved. The first two formulae are verifi-
ably true. Notice that the third formula is trivially true because the dialog will never reach a
state where the system is in the Calendar mode and at the same time a user is editing an
appointment. Also notice that the fourth formula is false because of the same reason.

It is important to notice that this template generally poses a question which is stronger than
needed. Since we include the event to be taken as part of the state information, if the prop-
erty of AG(s=sl -> EF(s=s2)) holds, it not only guarantees that there exists some way to
arrive at s2 from sl, but also means that "whatever enabled action a user is going to take
when the system is in the state set of si, there exists a way to arrive at s2." Alternatively, we
might provide a template as follows:

Template: EF (s-stImt & EF (s-stmut2))

However, this template poses a question which is too weak. If the property of EF(s=sl &
EF(s=s2)) holds, it only means that there exists a particular state, say t, in the state set of sl
(where t e sl), and from t there exists a way to arrive at s2.

There is one way to express exactly the question we want to ask, as illustrated in the follow-
ing template. This template, however, requires an exhaustive enumeration of all possible
events.

Template: AG ((s-stmtl & e-stmtf -> EF (s-stmt2)) I
(s-stmtl & e-stmt2 -> EF (s-stmt2))
(s-stmtl & e-stmt3 - > EF (S-Stmt2)) I

... for each event in the event set)

We choose to provide a stronger template because it subsumes what is generally asked and
does not need to explicitly list all elements in the event set.

E26

6.2.8. Strong Task Connectedness

Question- From any state of a given state set, no matter which enabled action a user is going
to take, can the user find some way to get to a target state set via a particular user action?
This particular user action is supposed to be the last action.

This property makes sense since a user may easily remember one particular user action to
accomplish a desired task. In the template, s-stmt] is the given state set, e-strut is the partic-
ular user event, and s-stmr2 is the target state set. Notice that the template also poses a ques-
tion which is stronger than the one generally asked because it considers whatever enabled
action a user initially is going to take.

Template: AG (s-stmtl - > EF (e-stmt & Ax (s-strmt2)))

Example: AG (Today=No & TargetDay=No
-> EF(event=GetTodayS & AX(Today=Yes & TargetDay=Yes)))

AG(Today=No & TargetDay=No
-> EF(event=SpecifyDayC & AX(Today=Yes & TargetDay=Yes)))

The first formula checks whether, by doing GetTodayS, a user can get to today as the desired
day if currently the system is not at today and is not at a user's desired day. This is verifiably
true. The second formula checks whether a user can achieve the same by doing SpecifyDavC,
and this is false. This result does not matte- since we intentionally non-deterministically
define Today's post-condition to be either Yes or No.

6.2.9. Rule Reversibility

Question: Given a rule which is going to fire. is it possible to eventually reverse the state
back to the original situation after the rule fires?

A user may want to reverse the effect of a rule in terms of getting back to the same choice of
user events. In the template, e-stmrt expresses the event associated with a rule, and s-stmtl
captures the pre-condition of that rule.

Template: AG (e-strut & s-stmtl -> EX EF (s-stmtl))

Example: AG (event=ViewNext &
Power=On & Mode=Schedule & Today=No & TargetDay=Yes

-> EX EF(Power=On & Mode=Schedule & Today=No & TargetDay=Yes))

The above example verifies this property for rule 15 and rule 16 as they have the same pre-
condition, and this formula verifiably holds.

6.2.10. Undo within N Steps

Question: From any state of a given state set, if the next state leads the system out of the
state set, can a user go back to the given state set within N steps?

Template: AG(s-stmtl -> Ext !s-stmtJ -> (Ex_(s-stmtl) I EX EX(S-Stmtl) I .-- N times))

page 27

Example: AG(Editing=Yes -> EX(!Editing=Yes -> EX(Editing=Yes)))
AG(Editing=Yes -> EX(!Editing=Yes -> EX(Editing=Yes) I

EX EX(Editing=Yes)))

The first formula verifies that once a user leaves editing he can go back to edit within one
step, and the tool reports it is false. The second formula verifies the same within two steps,
and the tool reports it is true.

It is critical to note that the template is valid only for state variables whose post-conditions
are deterministically decided. Suppose that for a particular action the variable s can be non-
deterministically assigned as either sl or s2 and the property of AG(s=sl -> EX(!s=sl ->
EX(s=sJ))) is true. This does not guarantee that si can be undone within one step because s
may be assigned as sl and this makes !s=sl -> EX(s=sl) vacuously true and therefore
EX(!s=sl -> EX(s=sl)) true. However, if there exists a case in which sl cannot be undone
within one step when s is assigned as s2, then the verification result gives a fake conclusion.

6.2.11. Accessibility

Question: From any reachable state, can the user find some way to get to some critical state
set (such as the help system)?

In the template, s-strut expresses the critical state set.

Template: AG EF (s-stMt)

Example: AG EF(Today=Yes & TargetDay=Yes)

To use a schedule organizer, it is frequently necessary to get to today as the desired day at
any time. The example verifies this property and the result is true.

6.2.12. Accessibility within N Steps

Question: From any reachable state, no matter which enabled ac~ion a user is going to take,
can the user find some way to get to some critical state set within N steps (such as the help
system)?

In the template, s-stut1 expresses the critical state set. Notice that since we include event
label as a state variable, checking accessibility within one step usually ends up with false-
ness. For example, a simple counterexample against the property of AG(EX(state=s)) would
be a state different from s with some user event e (which is going to be taken) which retains
the state. This kind of checking makes more sense if the property is asked for N > 1.

Template: AG(EX(S-Stmtl) I EX EX(s-stmtl) I ... N times)

Example: AG(EX(Today=Yes & TargetDay=Yes))
AG(EX(Today=Yes & TargetDay=Yes) I

EX EX(Today=Yes & TargetDay=Yes))

The first formula checks if today can be designated as the desired day within one step and

pap 28

the result is false. A counterexample is when the system is at the state of Today=No and Tar-
getDay=No, and event=AccessSchedule, there exists no next state in which Today= Yes and
TargetDay= Yes, since the action of AccessSchedule will not change the variables of Today
and TargetDay. The second formula checks if Today= Yes and TargetDay= Yes can be
accessed within two steps from anywhere and the result is true because the dialog provides
the GetTodayS and GetTodayC actions.

6.2.13. State Avoidability

Question: From a given state set, can a user reach a target state set without entering an
undesired state set?

The rcison for this kind of checking is that sometimes it is annoying to inevitably get into an
undesired state. In the template, s-stmtl is the given state set, s-stmt2 is the undesired state
set, and s-stmt3 is the target state set, and e-stmtl, e-stmt2.... etc. are the events that the user
will not perform.

Template: AG (s-stmtl & s-stmt2 & ! e-stmtl & e-stmt2 & ... as necessary
-> E[! (s-strnt2) U (s-strt3)])

Example: AG(Mode=Schedule &
!Editing=Yes &
!event=Edit
-> E[!Editing=Yes U Mode=Calendar])

AG(Power=On &
!Today=Yes &
!event=GetTodayS & !event=GetTodayC
-> E[!Today=Yes U TargetDay=Yes])

AG (Mode=Calendar &

!TargetDay=Yes &
!event=SpecifyDayC & !event=SpecifyDayS &
!event=GetTodayS & !event=GetTodayC
-> E[!TargetDay=Yes U Editing=Yes])

All three formulae hold. The first formula checks that, from the Schedule mode, a user can
get to the Calendar mode without the need of editing an appointment. During this course,
certainly the user will not choose to edit an appointment as otherwise it is the user who
intentionally edits something. The second formula checks that from any state when the power
is on, a user can specify a desired day without having today as the current day. The third
formula checks that from the Calendar mode, a user can edit an appointment without
designating a specific day.

It is interesting to notice that, because our CTL machine includes the event that a user can
take as part of the state information, the process of checking this property may require
incrementally filtering out the events which a user will not -select to perform. For example, to
check the first case, the designer might initially specify something like

AG (Mode=Schedule &
!Editing=Yes &

-> E[!Editing=Yes U Mode=Calendar])

page 29

This would result in falseness since the formula did not eliminate the Edit action. By looking
through the counterexample, the designer can decide whether the event that the
counterexample provides makes sense when a user wants to avoid the state of Editing= Yes.
Then the designer can filter out the Edit event that a user will not perform. However, in some
cases it is clumsy to filter out the events one by one. For example, the last case requires
explicitly filtering out four user events.

6.2.14. Event Constraint

Question: Does the dialog model ensure/prohibit a particular user action for a given state
set?

In the template, s-strut expresses the given state set, and e-stmt denotes the user event which

needs to be assured/prohibited.

Template: AG (s-strut -> e-stmt) or AG (s-stmt -> ! e-stmt)

Example: AG (Editing=Yes -> !event=DeleteOne)

If a user can delete an appointment when editing an appointment, it would be confusing to
the user since which appointment will be deleted is not clear. The example checks whether a
user is disallowed to perform deletion when editing. This property holds for the dialog.

6.2.15. Feature Assurance

Question: Does the dialog model assure a desired feature in a given state set?

In the template, s-stmtl expresses the given state set and s-stmt2 the desired feature.

Template: AG (s-stmtl -> s-stmt2)

Example: AG(Editing=No -> Saved=Yes)

The example checks if there is no appointment lost when a user is not editing. This property
is false for this dialog since when a user is editing, there are lots of ways to leave editing
without saving the edited appointment first. This suggests a way to modify the dialog as
Section 6.2.6. does.

6.3. Summary of Insights

Firstly, in our attempt of providing templates for frequently asked questions, some difficul-
ties arise because we include the event (that a user can take) as part of the state information
in our translated CTL machine. This results in the following undesired facts:

"* The templates given in Section 6.2.7. and Section 6.2.8. are stronger than needed.

"* The template given in Section 6.2.12. generally does not make sense if the ques-
tion is asked for N = 1.

pare 30

The template given in Section 6.2.13. needs to explicitly filter out certain events
that a user will not select to take.

To eliminate this problem, one possibility is to use the approach by Atlee and Gannon [9].
They model the event-based system using two distinct kinds of states: an EXIT state deter-
mines which event to take, a -EXIT state captures the result of firing an event. The system
runs alternately between an EXIT state and a -EXIT state. However, their translation is
based on a different kind of requirements specification called SCR, which is more complex
than PPS. At this point, we are unable to say whether their approach can resolve our difficul-
ties identified above.

Secondly, we allow non-determinism in a PPS dialog description because we believe it
makes a PPS description more expressive when the dialog design is conducted at a higher
level (e.g., we put no limit on the number of appointments for each day in the scheduler
organizer example). However, non-determinism inhibits the designer from using the tem-
plate given in Section 6.2.10. This leaves a trade-off for the designer: either constructing a
deterministic PPS specification (less expressive) and being able to check the undo property,
or writing a non-deterministic one (more expressive) and unable to check the undo property.

Thirdly, to question the accessibility and reversibility properties, the designer usually wants
to know directly how easy it is to access a critical state or to undo an effect. However, the
templates we provide can only check whether something can eventually be done, or some-
thing can be done within certain steps. It would be helpful if the tool can compute the maxi-
mum and minimum steps needed to access a particular state or to undo an undesired effect.
The new advances in model checking show there are algorithms to accomplish this and have
already been incorporated in the tool [101. This potentially can provide the ability of com-
puting the "cost functions" for reversibility and accessibility.

7. Animated Feedback for Fix-up and Improvement

If SMV tool reports that a CTL formula is false, it will try to give a counterexample output
in a log file. The counterexample includes a series of state transitions starting from an initial
state which violates the property being checked. Note that in the printout of an execution
sequence by SMV, only the values of variables that change are printed. We are particularly
interested in the event variable since its change suggests the sequence of user actions that
explains why and how the property does not hold. In addition, the variable of prei (1 < i <
N) indicates whether rule i is enabled.

Currently our approach of feeding the counterexample back to the animation tool is still
primitive. We examine the values of event variable and manually perform the sequence of
user events in the Action Simulator. For example, the counterexample for the property of
AG(Editing= Yes & Saved=No -> AF(Saved= Yes)) is listed in Appendix II. This is a desired
property since it ensures that an unsaved appointment needs to be inevitably saved and thus
a user will never accidentally lose an edited appointment. The counterexample suggests a
sequence of actions: SwitchOn, AccessSchedule, Edit, AccessSchedule, Edit, AccessSched-

pagje 31

ule.... (repeat Edit and AccessSchedule forever). From the experience of executing this
sequence in Action Simulator, the problem is that there are lots of actions a user can choose
when the user is editing something. Only the Commit action will actually save the appoint-
ment while the user may accidentally choose one of the other enabled actions (such as
SwitchOff, AccessSchedule, AccessCalendar, AccessOther, GetTodayS, GetTodayCC,... etc.)
without saving the edited appointment. One way to refine this situation is to have Edit-
ing=No being a pre-condition of all actions except Edit and Commit, and therefore a user
must commit the appointment before leaving editing.

There are several problems of this primitive approach. First, the SMV tool will not give an
indication in the case where it cannot generate a counterexample. The tool simply prirns out
an initial state and nothing else. When only an initial state is printed out, we need to figure
out whether it is a "real" counterexample or it implies that a counterexample cannot be pro-
vided. Second, we need to locate at which point(s) of the counterexample the property being
checked is violated. This means that we must, based on the property being verified, under-
stand the "context" of scenario given by the counterexample and interpret the counterexam-
pie appropriately. Third, since we allow multiple rules to be associated with the same event
label (as we want to allow non-determinism), we cannot decide exactly which rule to fire by
only examining the event variable in the counterexample. We also need to examine the other
state variables, especially the ones which are non-deterministically defined, to properly
select which rule to fire. At this point, we have not yet resolved these issues and cannot pro-
vide an automated process for animated feedback.

8. Conclusion and Future Work

Our work demonstrates that it is possible to link an event-based tabular dialog specification
with the powerful model checking technology, whereby a PPS dialog can be modeled as a
CTL state-based machine and analyzed using the SMV model checker. The result is a
method whose specification interface is intuitive and whose analysis is automatable. The
mechanical translation from PPS to SMV we present in this report means that this process
can be automated. We also provide a collection of CTL templates to answer certain kinds of
frequently asked questions. This can reduce the need of learning deep model checking tech-
niques for average programmers. We also show how a counterexample of a property can be
used to improve the dialog design. However, there are many directions that this research can
be carried on.

We have already built the automatable translation process from PPS to SMV. It is desired to
have a corresponding automatable process to tie the knot from SMV back to PPS through
Action Simulator or some other appropriate simulation tool. This can give more sensible
feedback to the designer via visualization and therefore provide better facilities to improve
the design. Moreover, the collection of templates presented in this report is crude and simply
a start. ft would be extremely helpful to have a codification of templates available to ordi-
nary designers. The goal is to build a tool to automate step 3 and step 5 identified in Figure
1, and incorporate the codification into it.

pae 32

Some difficulties of establishing templates resulted from the fact that our translated CTL
machine involves the enabled user events as state information. Atlee and Gannon used a
two-stage transition approach to model a different form of event-driven specifications [9].
An interesting subject is to investigate if their approach can better support our needs.

Properties concerning accessibility and reversibility generally require to know how easy a
state can be accessed or how easy an effect can be undone. Campos, Clarke, et al. presented
algorithms to calculate the minimum and maximum lengths over paths leading from a set of
starting states to a set of final states [10]. We believe that this advance can readily be
adopted by our approach to compute the cost functions of many properties.

The relationship of our work to Statemate system [13] needs to be examined. There are at
least two interesting topics in this direction. First, it would be useful to know the difference
of the kinds of properties analyzable by our approach and Statemate. Second, our tabular
specification grows flat as we add rules. However, a system usually has different aspects of
behavior which are orthogonal with each other, and the designer should be able to focus on
one aspect at a time. The statechart [11][12], the foundation of Statemate, provides a hierar-
chical way to specify complex state transitions. We need to investigate if it is possible to
impose some kind of structure on our tabular specification.

Appendix I

MODULE main
VAR

Power (Off, On };
Mode (Schedule, Calendar, Other 1;
Today (Yes, No);
TargetDay : Yes. No 1;
Editing { Yes, No);
Saved (Yes, No };
event (SwitchOn, SwitchOff, GetTodayS, GetTodayC, AccessSchedule,

AccessCalendar, AccessOther, SpecifyDayS, SpecifyDayC,
ViewNext, OverView, Edit, Commit, DeleteOne, DelMonthAppt,
DoOther, stuck);

DEFINE
prel Power=Off;
pre2 Power=Off;
pre3 Power=On;
pre4 Power=On;
pre5 Power=On;
pre6 Power=On;
pre7 Power=On;
preB Power=On;
pre9 Power=On;
prelO Power=On & Mode=Schedule;
prell : Power=On & Mode=Schedule;
pre12 Power=On & Mode=Calendar;
prel3 Power=On & Mode=Calendar;
prel4 Power=On & Mode=Schedule & TargetDay=Yes;
prel5 Power=On & Mode=Schedule & Today=No & TargetDay=Yes;
prel6 Power=On & Mode=Schedule & Today=No & TargetDay=Yes;

page 133

prel7 :-Power-On & Mode-Schedule & Today=Yes & TargetDay=Yes;
Vrell PoversOn & Mode=Calendar;
pr*l9 :-Power-on &x Mode=Schedule;
proZO : Power=On & Editing-Yes;
pre~i : Power-On & Mode-Schedule & Editing=No;
pre22 :sPower-On & IMode=Calendar & Editing=No;
pre23 :=Power=On & Mode=Other;
no~enabled (prel Ipre2 Ipre3 Ipre4 I pre5 I pre6 I pre7 Ipre8

pre9 IprelO Iprell Ipre12 pre13 p re14 pre15 Ipre16
preI7 Ipre18 pre19 Ipre2O pre2l Ipre22 Ipre23);

posti : next(Power)=On &next(Mode?=Mode & riext(Today)=Yes &
next (Target~ay? =Yes & next (Editing? =Editing & next (Saved) =Saved;

post2 .snext(Power)=On & next(iMode)=Mode & next(Today)=Yes &
next (Targetflay) =No & next (Editing) =Editing & next (Saved) =Saved;

post3 :=next(Power)=Off & next(Mode)=Mode & next(Today?=Today &
next ?TargetDay) =TargetDay & next (Editing) =No & next (Saved) =Saved.

post4 next(Power)=Power & next(Mode)=Schedule & next(Today)=Yes &
next (TargetDay? =Yes & next (Editing) =No & next (Saved)=Saved;

post5 next(Power?=Power & next (Mode) =Calendar & next (Today) =Yes &
.next (TargetDay) =Yes & next (Editing) =No & next (Saved? =Saved;

post6 :next(Power)=Power & next (Mode)=Schedule & next(Today)=Today &
,,_.xt (TargetDay? =TargetDay & next (Editing) =No & next (Saved) =Saved;

post7 :=next(Power)=Power & next(Mode)=Calendar & next (Today) =Today &
next(Targetflay) =TargetDay & next (Editing) =No & next (Saved) =Saved;

post8 :=next(Power)=Power & next(mode)=Other & next (Today) =Yes &
next (Targetflay?=Yes & next (Editing) =No & next)Saved) =Saved;

post9 :=next(Power)=Power &next(Mode)=Other & next (Today) =Yes &
next (TargetDay? =No &next (Editing) =No & next (Saved) =Saved;

postlO :=next(Power)=Power &next (Mode) =Mode & next(Todayh=Yes &
next (TargetDay) =Yes & next (Editing) =No & next (Saved) =Saved;

postli : next(Power)=Power & next(Mode)=Mode & next(Today)=No &
next (TargetDay) =tes & next (Editing? =No & next (Saved) =Saved;

postl2 :next(Power)=Power & next (Mode) =Mode & next(Today)=Yes &
next (TargetDay? =Yes & next (Editing) =No & next (Saved) =Saved;

postl3 :next(Power)=Power & next (Mode) =Mode & next(Today)=No &
next (Targeti~ay? =Yes & next (Editing) =No & next (Saved) =Saved;

post14 next(Power)=Power & next(Mode)=Mode & next (Today) =Today &
next (TargetDay) =Targetoay & next (Editing) =No & next (Saved) =Saved;

postlS :3next(Power)=Power & next (Mode) =Mode & next (Today? =Yes &
next (TargetDay) =No & next(Editing)=No & next)Saved)=Saved;

postl6 :=next(Power)=Power & next (Mode)=Mode & next(Today?=No &
next (TargetDay) =No & next (Editing) =No & next (Saved) =Saved;

posti? : next(Power?=Power & next(Mode)=Mode & next(Today)=No &
next (TargetDay) -No & next (Editing) =No & next (Saved) =Saved;

post18 Snext(Power)=Power & next (Mode)=lode & next (Today? =Today &
next (TargetDay) -Targetoay & next (Editing? =Editing & next (Saved? =Saved;

post19 :=next(Power)=Power & next(ldode)=Mode & next(Today)=Today &
next (TargetDay) =TargetDay & next (Editing) =Yes & next (Saved? =No;

post2O next(Power)=Power & next(Mode)=Mode & next(Today)=Today &
next(TarqetDay? =TargetDay & next (Editing) =No & next (Saved) =Yes;

post2l :=next(Power)-Power & next(Mode)=lMode & next(Today)=Today &
next (Target~ay) ='arget]Day & next (Editing? =Editing & next (Saved) =Saved;

post22 :3next(Power)=Power & next(Mode?=Mode & next(Today)=Today &
next (TargetDay) =Targetflay & next (Editing) =Editing & next (Saved) =Saved;

post23 :-next(Power)=Power & next(Mode)=Mode & next(Today)=Today &
next (TargetDay) =TargetDey & next(Editing)=Editing & next Saved) =Saved;

default next(Power)=Power & next (Mode) =Mode & next (Today? =Today &
next (TargetDay? =TargetDay & next (Editing? 'Editing & next (Saved? =Saved;

INIT
(Power=Off & Node=Other &Editing=No & Saved=Yes) &
((pre! & event=Switch~n)
(pr*2 & event=Switch~n)
(pre3 & eventzSvitchaff)
(pre4 & eventaGetTodayS)

pp 3e4

(proS & *vent=G~t~od&YC)
(preG & eventmAccsasSchodule)I
(qrs7 & .ventaAccessCalondar)
(preS & *vent=Acc~ss~ther)I
(pre9 & *v~ntmAccemsOther)
(prelO & event=SpocifyDayS)I
(prell & event=Specify~ayS)I
(pre12 & event=SpecifyDayC)I

V(pre13 & event=SpecifyDaYC)I

(pre14 & event=ViewNext)I
(preI5 & e*vnt=ViewNext)
(prol6 & event=VieMext)
(prel7 & event=ViewNext)I
(prelg & event=OverView)I
(pre19 & event=Edit) I
(pre2O & event=Conunit)
(pre21 & event=DeleteOne)
(pre22 & event=DelMonthAppt)I
(pre23 & event=DoOther)I
(no~enabled & event=stuck))

TRANS
((event=Switchon & prel & posti)
(event=SwitchOn & pre2 & post2)
(event=SwitchOff & pre3 & post3)
(event=GetTodayS & pre4 & post4)
(everxt=GetTodayC & preS & post5)
(everit=AccessSchedule & pre6 & post6)
(event=AccessCalendar & pre7 & post7)
(event=Access~ther & pre8 & post8)
(event=Accesaother & pre9 & post9)
(event=SpecifyDayS & prelO & postlO)
(event=SpecifyDayS & prell & postli)
(event=SpecifyDayC & pre12 & postl2)
(event=SpecifyDayC & pre13 & postl3)
(event=ViewNext & pre14 & postl4)
(event=ViewNext & pre1S & postiS)
(event=ViewNext & pre16 & postl6)
(event=ViewNext & prell & postl7)
(event=OverView & pre18 & postiS)
(event=Edit & prel9 & post19) I
(event=Couunit & pre2O & post2O)
(event=OeleteOne & pre2l & post2l)
(event=DelMonthAppt & pre22 & post22)
(event=IDoOther & pre23 & post23) I
(event=stuck & no-enabled & default))&

((next(prel) & next(event)=Switch~n)I
(next(pre2) & next(ev'ent)=Switch~n)I
(rtext(pre3) & next(event)=SwitchOff)
(next(pre4) & next(event)=GetTodayS)I
(next(preS) & next(event)=GetTodayC)I
(next(pre6) & riext~event)=AccessSchedule)

*(next(pre7) & next(event)=AccessCalendar)
(next(preB) & next(event)=Access~ther)
(next(pre9) & next(event)=Access~tkier)
(next(prelO) & next (event) =SpecifyDayS)

*(next(prell) & riext(event)=SpecifyDayS)
(next(prel2) & next(event) =SpecifyDayC)
(next~prel3) & next(event)=SpecifyDayC)
(next (preW4 & next (event) =ViewNext)
(next(prel5) & next(event)=ViewNext)I
(next(prel6) & next(event)=ViewNext)
(next(prel7) & next(event)=ViewNext)I
(next(preMS & next(event)=OverView)
(next(preM9 & next(event)=Edit)

page 35

(next(preMO & next(*vent)-CoMit)
(noxt(pre2l) & next(evsnt)-DeleteOfle)

(next (pre22) & nextievent) =DelMonthAppt)

(next(pre23) & next(event)=DoOther)I
(next(no-enabled) & next (event)=stuck))

Appendix 11

-- specification AG (Editing = Yes r. Saved =No -> A? Say.., is false

-- as demonstrated by the following execution sequence

state 11.1:
default =0

post23 0
post22 =0

post2l 0
post20 0
postl9 =0

postl8 0
postl7 =0

postl6 0
postiS 0
post14 =0

post13 = 0
postl2 =0
postll =0
postlO= 0
post9 = 0
post8 0
post7 = 0
post6 =0
posts = 0
post4 =0
post3 = 0
post2 = 0
postl =0
no-enabled =0

pre23 =0
pre22 =0
pre2l = 0
pre20 = 0
pre19 =0
prelS 0
prel7 =0
prel6 = 0
prel5 = 0
pre14 = 0
pre13 = 0
prel2 = 0
prell = 0
prelO =0
pre9 = 0
proe- = 0
pre? = 0
pre6 = 0
preS = 0
pre4 = 0
pre3 = 0
pre2 = 1
prel. = 1
Power =Off
mode = other

pqeiE

Today :No

TargetDay No
Editing = No

Saved = Yes
event = SwitchOn

state 11.2:
pre23 = 1
pre9 =1
pre8 = 1
pre7 = 1
pre6 = 1
pre5= 1
pre4 = 1

pre3 = 1
pre2 = 0

prel = 0

Power = On

Today = Yes

event = AccessSchedule

state 11.3:
pre23 = 0

pre2l = 1
prel9 = 1
prell = 1

prelO = 1

Mode = Schedule
event = Edit

-- loop starts here --

state 11.4:
pre2l = 0

pre20 = 1
Editing = Yes
Saved = No
event = AccessSchedule

state 11.5:
pre2l = 1

pre20 = 0

Editing = No
event = Edit

state 11.6:
pre2l = 0

pre20 = 1
Editing = Yes

event = AccessSchedule

References

[1] Dix, A., Finlay, J., Abowd, G. and Beale, R. Human-Computer Interaction. Prentice-
Hall International, 1993.

[2] Gieskens, D. and Foley, J. Controlling user interface objects through pre- and post-
conditions. Human Factors in Computing Systems: Proceedings of CHI'92. ACM
Press, pp. 189-194, 1992.

[3] Monk, A. F. and Curry, M. B. Discount dialogue modelling with Action Simulator.

i~¢37

In People and Computers IX: Proceedings of HCI'94. Cambridge University Press,
1994 In press.

[4] McMillan, K. Symbolic Model Checking: An approach to the state explosion prob-
lem. Carnegie Mellon University, Computer Science Department, Technical Report
CMU-CS-92-131, 1992. Ph.D. dissertation.

[5] Olsen, D. Propositional production systems for dialogue description. In Human Fac-
tors in Computing Systems: Proceedings of CHl'90. ACM Press, pp. 57-63, 1990.

[6] Olsen, D., Monk, A. and Curry, M. Algorithms for automatic dialogue analysis using
propositional production systems. Preprint of journal article accepted for publica-
tion, 1994.

[7] Clarke, E., Emerson E. and Sistla, A. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. In ACM Transactions on Program-
ming Languages and System, vol. 8, no. 2, pp. 244-263, Apr. 1986.

[8] Burch&,,, Clarke, E., McMillan, K., Dill, D. and Hwang, J. Symbolic model check-
ing: 10 states and beyond. In Lecture Notes in Computer Science, Springer-Verlag,
1990.

[9] Atlee, J. M. and Gannon, J. State-Based Model Checking of Event-Driven System
Requirements. In IEEE Transactions on Software Engineering, vol. 19, no. 1, pp. 24-
40, Jan. 1993.

[10] Campos, S., Clarke, E., Marrero, W., Minea, M. and Hiraishi, H. Computing Quanti-
rative Characteristics of Finite-State Real-Time Systems. Carnegie Mellon Univer-
sity, Computer Science Department, Technical Report CMU-CS-94-147, May 1994.

[11] Harel, D. Statechart: a visual formalism for complex systems. In Science of Com-
puter Programming, vol. 8, no. 3, pp. 231-274, Jun. 1987.

[12] Harel, D. On Visual Formalisms. In Communications of the ACM, vol. 31, no. 5, pp.
514-530, May 1988.

[13] Statemate 4.5 Analyzer User Reference Manual. i-Logix, Inc., Aug. 1992.

