AD-A286 029 /

DERAR \

An Automatic Placement Tool for

Rapid Prototyping of Printed Circuit

Boards
John Granacki and Tauseef Kazi
ISURR-93-388 —
November, 1993 § NEO {/- E
35
D FLECTEDR
\é <OV 0 3199 E E& |
L ; e
e ant oo8 oefd ap;:ts
ﬁp? “ix .- ,_: :.S:i- .r‘ sole~
| EmsnReT ST
e N
\I\MN\I\IE\\M\\\\ |
411 1 0382
INFORM ATION

University 5
of Southern
Callforma

@

SCIENCES

3101822-1511

INSTITUTE L_L | | |
4676 Admiraltv Wav/Marina del Revi/California 90292-6695

UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES INSTITUTE
4676 Admiralty Way Marins ded Rey, CA 90292

ISI Research Report
ISI/RR-93-388
November, 1993

An Automatic Placement Tool for
Rapid Prototyping of Printed Circuit

Boards

John Granacki and Tauseef Kazi

ISI/RR-93-388
November, 1993
o,
L c QUALIT#—. -~
! 1:"‘:}\ ~y
QLTED a

University of Southern California
Information Science Institute

4676 Admiralty Way, Marina del Rey, CA 90292

Unclassified/Unlimited , . o
! This dozumsent noe resn zppreved
2 for public raluizis 2nd sale; its
| distribuiioz ocnlisuesd |
An Automatic Placement Tool for Rapid Prototyping of Printed Circuit Boards 1

REPORT DOCUMENTATION PAGE OME NO, 07040108

Public WmmthHMnthwihou Mhﬂmhttmm searching exiting data
SOUICes, muﬂmmwm mlnt‘ n of information, Send com mmhbumnodmuduw
:ﬁ:’nm ““ eolocﬂo%:l“' ormation, Mmm mm.n:mwmon u:'r‘lduan s.tvb;o..’w":r;:fwnomdon ”)'
1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
11-93 Research Report
4. 1ITLE AND SUB m'."'—'s' - - - 5. FUNDING NUMBERS
An Automatic Placement tool for rapid prototyping of Printed Circuit J-FBI-91-282
Boards.
[& AUTHORGS)
John Granacki
Tauseef kazi
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON
REPORT NUMBER
USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695
9. SPONSORINGMONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES
12A. DISTRIBUTION/AVAILABILITY STATEMENT 128. DISTRIBUTION CODE
UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Maximum 200 words)

This report describes a fully automatic placement tool for PCBs (printed circuit boards), nap (nonhierarchi-
cal automatic placement) that combines approaches from different placement heuristics developed both for
PCB and VLSI chip placement. Although the problem of placement for a PCB can be abstractly cast into
the same formalism as the problem of VLSI cell placement, a practical tool must incorporate many addi-
tional features. In this report we describe the impact of incorporating these PCB-specific features as well as
other constraints imposed by the CAD environment (that is, the schematic capture system and the automatic
routing tools) into an automatic placement tool. Next we discuss the selected heuristics and their associated
data structures in detail. Following this discussion, we present the results of using the placement tool on
two test cases along with an analysis of the tools performance. Finally, we identify the limitations of the
current implementation and we propose some possible solutions and future work.

[~ 14. SUBJECT TEAMS 15, NUMBER OF PAGES
Physical Design 20
Placement
Printed Circuit Board 16. PRICE CODE
PCB
17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
|
'NSN 7540-01-280-3500 Standard Form 298 (Hev. 2-09)

Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. it is important
that this information be consistent with ' - rest of the report, particularly the cover and title page.

Instructions for filling In each block of :
optical scanning requirements.

rm tollow, It is important to stay within the lines to meet

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Bilock 3. Type of Report and Dates Covered.

State whether report is interim, final, etc. If
applicable, enter inciusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one vofume,
repeat the primary title, add volume number, and
include subtitie for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers, To include contract
and grant numbers; may include program
olement numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C -Contract PR - Project

G -Grant TA -Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this shouid follow
the name(s).

Block 7. Performing Orgénization Name(s) and
Address(es). Seif-axplanatory.

Biock 8. Performing Organization Report
Number, Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address{es). Self-explanatory

Block 10. Sponsoring/Monitoring Aqency
Report Number, (if known)

Block 11. Supplementary Notes, Enter

information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ...; To be
published in... When a report Is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 171, Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

avallability to the public. Enter additional
limitations or speclal markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD -See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA -See Handbook NHB 2200.2.

4 Leave blank.

Block 1 _o. Distribution Code.

DOD -Leave blank.

DOE - Enier DOE distribution categories
from the Statdard Distribution for
Unclassifiad Scientific and Technical
Reports.

NASA - Leave blank.

NTIS -Leave blank.

Block 13. Abstract. Include a brief {Maximum
200 words) factual summary of the mest
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in

accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). if form contins classified
Information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL {(unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

N

An Automatic Placement Tool for the

Rapid Prototyping of Printed Circuit |Aceo fo -
Fﬂs CRA& N i
DTIC TAG . _
Boards v Uananou ced - :

| Josutonon

John Granacki and Tauseef Kazi -
USC/Information Sciences Institute oot
4676 Admiralty Way “‘1 PR tyu:d
Marina del Rey, CA 90292 CT Coagor

310.822.1511 ‘\ -

A

Abstract

This report describes a fully automatic placement tool for PCBs (printed circuit boards),
nap (nonhierarchical automatic placement) that combines approaches from several differ-
ent placement heuristics developed both for PCB and VLSI chip placement. Although the
problem of placement for a PCB can be abstractly cast into the same formalism as the prob-
lem of VLSI cell placement, a practical tool must incorporate many additional features. In
this report we describe the impact of incorporating these PCB-specific features as well as
other constraints imposed by the CAD environment (that is, the schematic capture system
and the automatic routing tools) into an automatic placement tool. Next we discuss the
selected heuristics and their associated data structures in detail. Following this discussion,
we present the results of using the placement tool on two test cases along with an analysis of
the tools performance. Finally, we identify the limitations of the current implementation and
we propose some possible solutions and future work.

1.0 Introduction

We developed the nap tool as part of an ARPA-sponsored project {1] to fully automate the
physical design, fabrication and assembly of a PCB from a user specified netlist, parts list
and board description. One of the project’s objectives is to use existing commercial and uni-
versity-developed software whenever possible. A commercial router that can be operated in
a batch mode from a script was available; however, there was no suitable fully automatic
placement tool to generate the component placement needed by the router.

Most computer-aided design tools commercially available for the physical design of printed
circuit boards claim to have automatic placement capability [2]- [4]. In fact, few tools offer
little more than matrix placement which is usually only useful for meriory components [5].
Instead most CAD/CAE vendors emphasize interactive graphical capabilities which require
the designer to place the components on the board.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 2

The lack of emphasis on robust fully automatic placement capabilities [6] is basically
driven by lack of market demand. Early attempts to automate placement caused most expe-
rienced designer to believe that they could generally produce a more compact design with
less routing layers than an automatic placement tool in a reasonable amount of time. Also
most automatic placement tools require the designer to modify the final placement to meet
some constraints or design rules that could not be handled by the tool. Therefore, an interac-
tive graphics editor has to be included in addition to any automatic placement capability.
Since most PCB designers do not use automatic placement and prefer to use an interactive
tool, the CAD vendors have had little incentive to develop a robust fully automatic place-
ment tool. Finally, tools that did provide automatic placement capabilities for pre-1990
technology did not evolve because of lack of market demand and therefore do not meet the
current PCB technology requirements.

2.0 Requirements for a Rapid Prototyping PCB Placement Tool

There are three categories of requirements: project, PCB technology and CAD environ-
ment.
The project requirements are:

1. The placement tool should be easy to interface with any CAD system for schematic
capture or layout.

2. The placement tool should produce a 100% autoroutable layout.

3. The routed PCB should use the same number of signal routing layers that an experi-
enced designer would require or in the worst case 50% more layers.

4. The placement tool should be fully automated.

5. The heuristics used should be proven, well documented and easy to implement.

The major requirements needed for PCB technology are:
1. arbitrary preplacement of parts,
two placement surfaces for parts (top and bottom),
special handling for decoupling capacitors and termination resistors,
component alignment and orientation,
grouping of parts,
assignment of additional space around a part based on package type, and

N AN

placement of spare components, which are usuaily unconnected when placed (but
future connections may be known).

The project requirement for easy interfacing can also be viewed as a CAD-environment
issue --- this requirement had the greatest impact on the data to be provided by the user and
the data formats. To achieve the greatest flexibility for interfacing, all data required by the

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 3

placement tool is stored in individual files as ASCII characters [7]. There are five required
files and two optional files. The filenames and the type of data stored in each are shown in
Table 1 for a design identified by the string design-id If a component/part library and a
package library that were CAD-system independent were available the files: design-id.bbx
and design-id.ppt would not be required.

TABLE 1. Description of designer-supplied data used by nap

Filename Placement Data Required
| design-id.nd netlist Yes

design-id.pt parts list Yes

design-id.bbx bounding box & location of pin #1 for each package | Yes
type

design-id.ppt package type for each part type in part list Yes

design-id.bmo mechanical outline of board and location of special Yes
features like holes

design-id.crt relative weighting factors to selected nets and parts No
(multiplies connection strength)

nap.ini miscellaneous parameters and design constraints No
used by nap (e.g. grid spacing, border spacing,
defaults supplied)

3.0 Selection of Heuristics for this Implementation

According to a recent survey article 8] heuristic algorithms for placement can generally be
grouped into one of five classes: simulated annealing, force-directed placement, min-cut
placement, placement by numerical optimization, and evolution-based placement. Rather
than discuss each of these classes, we refer the reader to this excellent survey article and
restrict our discussion to our criteria and rationale for selecting a min-cut class of heuristics.

We eliminated simulated annealing because of the long run times required, the difficulty in
finding the best energy function and cooling schedule, the need for manually editing the
simulated annealing placement to resolve component overlap, and our relaxed economic
constraint allowing additional layers to be used in routing if necessary.

We eliminated force-directed heuristic based on previous experience trying to choose force
constants that were sufficiently robust. Also, this heuristic is easier to implement for uni-
formly sized components and a slotted board. For the general PCB problem, component
overlap usually occurs and editing is required.

We believe that numerical optimization is better suited for integrated circuit designs where
the pads or exterior connections were regularly arranged on the periphery of the layout.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 4

Most printed circuit boards that we encountered had most of the external connections at
only one or two edges of the board and often had additional test connections scattered
across the surface of the board. We also note that for some algorithms in this class there is
no obvious approach to handling preplaced components.

Since a part/package library and detailed information concerning the location of the pins on
each package were not available (at the time this tool was being developed), we selected a
min-cut heuristic based on partitioning which would not require the detailed physical infor-
mation for the pins on each package. The lack of package information also prohibited the
implementation of gate swapping within or between packages and pin swapping on gates
with multiple inputs.

Other considerations that biased our decision to use min-cut heuristics were the ability of
min-cut heuristics to handle preplaced components and the short run times required for
most layouts and the ability to produce 100% auto-routable designs with a reasonable num-
ber of routing layers.

4.0 Detailed Description of the Implementation

The implementation described in this report consists of three phases: an initial constructive
phase based on quadrature placement using maximum conjunction/minimum disjunction
[9] with additional consideration for component area included in the partitioning process,
[10]. The “initial partition” which anchors the partitions to board regions is then used as the
seed for an iterative improvement phase based on the Fiduccia-Mattheyses heuristic [11].
After the iterative improvement phase is completed, a global improvement phase based on
the approach used in GORDIAN [12] is applied to the resulting partitioning. Finally, the
components within the globally improved partitioning are placed as close as possible to the
location assigned to each partition. The empty spaces on the plane are represented as a set of
maximum empty rectangles and the space is managed using the method described by V. Jay-
akumar [13].

4.1 The Constructive Initial Partitioning Phase

In this phase, the design is bisected horizontally and vertically recursively to obtain 2" par-
titions, where “n” is specified by the user. Constructive initial partitioning is employed here
in order to build the initial bipartitions. The procedure for each bisection follows (the dis-
cussion of the procedure is for a vertical cut):

1. Assign a location to the partition based on whether it is a vertical or a horizontal cut
(this is explained in more detail later). Based on the location of the two partitions
assign the pre-placed components to the partition containing them.

2. Compute the conjunctions of all the components in the parent, with the components
to the left and to the right of the cut line. Let C;; be the conjunction of component i
with the components to the left and Cz the conjunction with the components to the
right.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 5

3. Select the child partition (either left or right) which has the smaller area of compo-
nents. Let P be the selected partition while P, the other one.

4. Select a component i from the parent which has the highest value for D;, where
D‘-= C,;,-C,-o.

5. Move the component from the parent to the child partition P,.
6. Re-compute Cjs and C;, for each component j in the parent which is connected to i.

7. If there are more components in the parent then go to step 3.

The partitioning phase partitions the circuit into a number of disjoint sets of components. The
process involves recursive bipartitioning until the desired number of partitioning are
obtained. It can be seen in Figure 1 that when the top partition (which initially contains all
the components) is bipartitioned, it is cut vertically into two child partitions. These child par-
titions when partitioned are cut horizontally into four (2 for each) child partitions. This way
the partitioning process goes on until the desired number of partitions are obtained. In gen-
eral, a partition at an odd numbered level (viewing the top part as the level 1 node of the par-
tition tree) is cut into vertical child partitions while those at even numbered levels are cut into
horizontal partititions. This could be controlled by a parameter but we chose to control it by
board orientation, which means the horizontal axes is the longer or the major axis of the
board.

TOP PART

Vert. cut

Figure 1. A graph model of the partitioned circuit.

The partitions shown in Figure 1 will occupy the regions shown in Figure 2 on the following
page. It can be seen that all partitions are of a uniform size, although due to irregular sizes of
components the area of components within a partition may be greater then the area assigned

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 6

to it. This does not become a problem since we are not restricting the components to be
placed within the boundary of their partition, rather each component is placed at a site, clos-
est to the center of the partition, as the board gets filled, this may force the component to get
placed at the opposite corner of the board. The advantages of assigning locations to parti-
tions is that a reasonable wire length estimate can be obtained without the exact location of
each component or the pins. We also know exactly which partitions contain the preplaced
(fixed components like connectors, etc.) components.

Level 3 cut Level 3 cut
Y X,)
(X/4{Y/4) @3x/4|Y/4)

4, y

(X18,Y/4) (3X/8,Y/4) (3X/8,Y/4) (9X/8,Y/8)
% | <Jlevel 2 cut
(DY) OXA
(X/8,3Y/4) GXBIYM) | (X/BIVME) (9X/8,3Y/4)

(3X/I43Y/4)

0,0) ﬁ
Level 3cut Levellcut Level 3 cut

Figure 2. Relationship of the cuts and partition locations.

4.2 The Iterative Improvement Phase

Once the initial bipartitions are created they are improved using a heuristic method based on
Fiduccia-Mattheyses method [11]. The method is applied on the two child partitions (left,
P and right, Pg) obtained after partitioning the parent partition. The method used here is
outlined below:

1. Compute the conjunctions of all the components in the two (left and right) partitions,
with the left and right partitions. Let C;; be the conjunction of a component { with par-
tition P;.

2. Unlock all components and save the current state of the partitions as the best state.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 7

3. Select two components, one from each partition. The criteria for selecting a compo-
nents is outlined below.

- Select a component i from the left partition such that it is not locked and:
D;= Cig - Cyy = MAX

- Select a component j from the right partition such that it is not locked and:
D;= Cj - Cjp = MAX

4. IfA/(AgR+A;) < ALPHA (A; and Ay are the area occupied by components in left and
right partitions and ALPHA is the balance factor), move the component j from Pg to
P;. If Ap/(Ag+A[) < ALPHA move the component i from Py to Pp, otherwise move
the component (i or j), which has a greater value of D.

5. Lock the component (i or j) moved. Recompute Cy; and Cyg for each component k
connected to the component moved.

6. If the value of cut size (number of wires going between the two partitions) for current
state of the partitions is less then the cut size for the best state, let the current state be
the best state.

7. If there are any unlocked components, go to step 3.

8. Set the current state to the best state of the partitions.
The above method is applied iteratively, until there is not improvement in cutsize. This
implementation does not use all of the data structures developed by Fiduccia-Mattheyses

for convenience in combining the other heuristics and the heuristics for managing the empty
space.

4.3 The Global Improvement Phase

Once the desired number of partitions have been obtained by the bipartitioning process, all
the partitions are improved globally using a greedy procedure. Basically if moving a com-
ponent from the partition it is currently in, to another partition, will reduce the total wire-
length, the component is moved, provided the original partition has an area greater then the
minimum required. This process is repeated for each prospective component until there is
no component which improves the wirelength if moved. The process is outlined below:

1. Create an m x n matrix, where m is the number of components and » is the number of
partitions. An entry w;; in the matrix is the total wirelength of the board with the com-
ponent i placed in partition P;.

2. Select a component i contained in partition P; from the design such that:
- The area A; of the partition P; is greater then the minimum required.
Aj/A*n>ALPHA, (Aisthe total board area and n the partitions.)
- iif moved to another partition P, would result in a reduced wirelength.

BPk, wi < W,'j

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 8

- The reduction in wirelength is maximum over all the components.
Wi" Wi = AMX, Yi

3. If component i exists, move it from P; to P;. Re-compute w;, Vx and wy,; and wy, Vy,
where y is a component connected to the component i. Go to step 2.

Although the result of the global improvement phase is still a local minimum, introducing a

global perspective usually produces some improvement (decrease in the estimated wire-

length). This decrease has been demonstrated by running the program with different param- o
eters on several real circuits and comparing the results obtained by running nap with and

without the global improvement phase.

4.4 Managing the Empty Space (include as subheadings data structures?)

o
Placement for a single sided board is accomplished by defining a plane and associating a list
of empty spaces with it. The empty spaces are represented as a set of maximum empty rect-
angles and the space is managed using the method similar to one described by V. Jayakumar
(13].
o
The empty spaces are basically a set of overlapping rectangular regions. Initially there is
one big rectangle equal to the size of the board. When placing a component, all rectangles
are searched exhaustively to see which of the them can accommodate the component. From
o
o
®
@
®
An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 9
®

M

these rectangles, one is chosen that can accomodate the component at a location closest to
the center of the partition containing it.

Component \Original Empty Rectangle\‘ (Xb,Yb)

4

X2,Y2)

XLYD

(Xa,Ya)

Figure 3. The empty rectangle {(Xa,Ya),(Xb,Yb)]
after placement of a component, gets split
into 4 smaller overlapping rectangles:

1. [(Xa,Ya),(X1,YD)]
2. [(Xa,Ya),(Xb,Y1)]
3. [(X2,Ya),(Xb,Yb)]
4. [(Xa,Y2),(Xb,Yb)]

This location is assigned to the component and all rectangles which overlap with the com-
ponent, are adjusted. Adjustment may break one rectangle into 4 smaller rectanqles as
shown in Figure 3. All zero dimension rectangles and those rectangles which are fully con-
tained by others are deleted.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 10

_

4.5 The Data Structures

There are two main data structures used in nap, one is for representing components and the
other for the partitions. The data structures for components (comp_type) and for partitions
(part_type) are shown in Figure 3.

part_type comp_type
int part_no; char * name;
int level; int locked,pre_placed;
int x_dim,y_dim; int wire_length,;
int x,y; int x,y,layer,orient;
int area; float criticality;

int conjunction_l;

int conjunction_r;

int how_to_place_group;
comp_type*comps_in_group;

comp_type *comp_list; part_type *partition:
part_type *left, *right; comp_type *next;
part_type *1_sib,*r_sib; comp_type *next_in_part;
part_type *parent; conn_type *connects;

Figure 4. The two main data structures.

The components are kept as a linear list sorted by their reference designators. Every compo-
nent has a name field (which is the reference designator), fields for placement information
(x, y, layer, pre_placed and orient), fields used when partitioning (locked, conjunction_l,
conjunction_r, criticality, wire_length) and fields for placing components in groups (how_-
to_place_groups and comps_in_groups). In addition to these fields there are a number of
pointers, a pointer (partition) to the partition which contains it, a pointer (next) to the next
component in the sorted linear list of all components, a pointer (connects) to the list of all
the 2 pin nets containing the component and a pointer (next_in_part) to the next component
that is contained by the same partition. The list of components along with their interconnec-
tions is shown in Figure 4.

Comp_type | Comp_type | {Comp_type | Comp_type |
COII—l_p—S_b pext pext 155 {1 PR —p nexl
Collm Wlll“ws connects
) . . -
[Net' | [Ne' | Nel
:
\ o e N
\ conn_type ~._
'\ [int connections;

int wire_length;

Figure 5. Linked lists of components with interconnections.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 11

Partitions are represented in the form of a tree as shown in Figure 2. Each partition contains
a part_no field (which is just a unique number assigned to identify it), a level field (which is
the depth in the partition tree), x_dim and y_dim (the size of the partition), an area field {the
cumulative area of the components in the partition) and fields specifying the location of the
partition (x and y fields). There are 5 pointers left, right, left_sib, right_sib and parent to cre-
ate the partition tree. All leaf partitions in the partition tree point to a list of components
they contain. The comp_list pointer points to the first component in the list, which has its
next_in_part pointer pointing to the second component and so on. This is depicted in
Figure 5. Also shown in the figure are the “partition” pointers of the components pointing
back to the partitions containing them.

comps

i

Figure 6. Relationship of partition pointers to linked list of components.

There are other data structures (shown in Figure 6) in addition to partitions and compo-

nents. These include packages (pkg_type), data structure for managing empty spaces, voids,
and holes on the board and data structures for managing pre-placed components. As seen in
the figure these objects are arranged as linear lists of nodes containing the appropriate infor-
mation. For example the node for the pre_placed_comps has a pointer pointing to the corre-

Pointers to components
— 7\

[1
board__| PTe-P10ed-C0MPS oo] B "[5
et]
s ——— e

x_dim, y_dim

x_dim, y_dim

plane___ |}

. (x1.yl (x1,y1) (xl.yl (x1.yl)
empties (x2y2) (x2y2) (x2yf=- —(x2.y2)

Figure 7. Data structures linking geometric objects and components to locations.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 12

sponding comp_type object and has a field that specifies the orientation (rotation). The
empty spaces (see Section 4.4 on page 8) are rectangles, represented as pairs of points
(x1,y1) and (x2,y2) for the end points of the diagonal. The holes are circles with a center
(x,y) and the diameter (dia). And voids are rectangles with thc end points (x1,y1) and
(x2,y2) of the diagonal stored in the node.

5.0 Experimental Results and Analysis

In this section, the results from a series of experiments using a single heuristic method or a

combination of heuristic methods is presented. We did not randomize any arbitrary choices

in our heuristics to determine the noise or scatter produced by arbitrary choices as suggested
by Knapp [14].

5.1 Comparison to Breuer’s mincut placement algorithm

nap uses the mincut algorithm to do the initial partitioning. It uses the constructive initial
partitioning method described by Breuer [9). nap does not have fixed slots but has a grid for
the placement of the components. A component could be placed any where on the board and
may take a number of grid cells.

Figure 7 shows the example taken from (9], containing 16 moveable components
(A,B......,P) and two pre-placed (fixed) components (I and 2) with zero dimension. The
placement shown in Figure 7 is an optimal placement. The mincut heuristic when applied to

A H e H e H oo

1 2

Figure 8. Placement problem with Optimal Solution.

this problem, places the components optimally and so does nap, provided that the connec-
tors 1 and 2 are placed as shown above and this alphabetical ordering of the cells is used

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 13

(The actual example in Breuer’s paper does not produce an optimal placement using nap
because nap does not preserve the lexical ordering of the cells when it reads in the data, pro-
ducing a different non-optimal initial placement).

5.2 Comparison to Fiduccia Metheyses approach

nap uses the same approach as discussed in the paper [11], but the data structures are not the
same as introduced in the paper. Secondly, the notion of a net is replaced by individual con-
nections between chips. For example a net, N1, connecting three components CI, C2 and
C3, is represented as three individual connections one from CI to C2, second from C2 to C3
and the third from CI to C3. That is all nets are represented as two pin nets in this imple-
mentation.

The specific differences in the data structure and procedures are:

- The cells/components are represented in nap as a linear list sorted by their refer-
ence designators instead of an array.

- There is no array of nets, because all nets are two pin nets.

- The cell gains are re-computed every time a cell is moved from its current parti-
tion to the other partition. Gains of all the cells connected to the cell which was
moved are re-computed.

- The list of cells is not sorted by their cell gains this makes nap less efficient than
the original Fiduccia-Mattheyses heuristic.

5.3 Combining Heuristics: One Heuristic vs. Two Heuristics vs. Three
Heuristics.

nap was run on two real designs. Table 2 and Table 3 give the results obtained when nap
was run on the two designs using different parameters. The first column specifies the num-
ber of partitions the circuit was divided into, columns 2 thru 5 specify the wirelengths
obtained by combining different options of nap. F specifies the use of Fiduccia-Mattheyses
algorithm only, G signifies the use of global improvement phase only, while FG is the wire-
length obtained by combining Fiduccia-Mattheyses with global improvement. No Options
signifies only constructive initial partitioning with no improvement.

TABLE 2. Results” of running nap on “BAM”

Partitions No Options F G %: FG
R I 51

8 1.59 1.32 (1.29% 1.54 1.32 (1.37%

16 1.36 1.13 (1.08) 1.32 1.12 (1.06)

32 1.31 1.01 (1.03) 1.22 (1.28% 1.00 (1.00)

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 14

* Each entry represents the ratio of the wirelength for that experiment to the short-
est wirelength estimated by nap. Entries in parenthesis are the ratio of the actual
wirelength obtained after routing the PCB using finesse router w/ 42-16-42 rout-
ing grid to the shortest actual wirelength. circuits which routed less then 99.5%
are not included here. Wirelength is estimated by Manhattan Distance for conve-
nience. We have shown empirically that the actual wirelengths using the Finesse
router track the estimated wirelength monotonically and can there for be used to
select the placement with the shortest actual routed wirelength.

The router did not finish 100%, but completed more then 99.5% connections

TABLE 3. Results of running nap on “DART”

P a“;‘i"" No Options F G FG
4 1.40 137 1.37 1.37

8 1.21 1.13 1.20 1.13

16 1.17 111 1.20 1.08

32 1.13 1.05 111 1.05

64 1.11 1.04 (1.02) 1.00 (1.00) 1.04 (1.04)

It is clear from the tables that by applying the combination of constructive initial partition-
ing, a heuristic based on the Fiduccia-Mattheyses method and a global improvement heuris-

tic, we get a better result (shorter total wirelength) than by applying each one of them

individually or in combinations of two.

The wirelengths obtained from nap and the actual routing lengths obtained after running the
finesse router have been plotted in Figure 8 for different placements obtained from nap for
the BAM design. The seven points in the curve correspond to the seven entries in Table 2
which routed 100%. The figure clearly shows the monotonicity of the wirelength estimate
and the actual routing length.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards

15

180001

17000— i
16000 —— d'l
o Wirelength estimated by nap
15000—+— o
£] 14000
g ,/
S o
g | 13000— o
2
&
= | 12000
11000 —~
10000
9000 \
Actual wirelength obtained
8000 — after routing.
| | | | | | | | |
| I I | I] I I I
>

Runs of nap with different parameters.

Figure 9. Comparison of actual to estimated wirelengths displaying monotonicity.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 16

6.0 Limitations in this Implementation

1. In the current implementation, we don’t have information about the pins of a compo-
nent. This will have a significant affect on the quality of the layout as all pins are
assumed to be located at the center of the component.

2. The wirelength prediction in the current implementation uses the manhattan distance
to compute the length of wire between two components. As mentioned above the nets
are broken into from-to links. The accuracy of the prediction will increase signifi-
cantly once we have the pin locations. Also we can use a better method like minimum
spanning tree or the stiener’s tree approach once we have the net information incor-
porated.

0

During the partitioning phase, nap assumes the location of a component to be inside a
partition. This may not be always true as a component may actualiy get placed at a
location far away from the partition due to unavailability of space inside or close to
the partition on the board. This will deteriorate the placement quality. This may be
solved by dynamically changing the partition size during partitioning.

4. Hyperedges have been represented as cliques.

7.0 Conclusions and Future Work

The preliminary results presented here indicate that there is some decrease in estimated
wirelength when two or more heuristics are used in combination. Due to the “noise” {14]
caused by arbitrary choices and the limited number of experiments performed, it is not clear
how the heuristics should be combined or what cost functions should be used to obtain bet-
ter results, consistently over a single heuristic. Also we think that the fact that the estimated
wirelength decreased when the number of partition was increased may be related to our
inability to more accurately estimate wirelength based on pin location and the use of a sim-
ple Manhattan distance to estimate the wirelength. As part of the future work, we plan to try
and resolve these uncertainties and to run many more experiments on different circuits.

The following subsections look at some of the open research problems that could lead to the
development of a more robust placement tool for the board level-placement problem and
would also leverage placement research for VLSI technologies and multi-chip modules.

7.1 Comparison of standard cell techniques, sea of gates, PCBs, etc.

A large body of the research in placement in the past has been directed at the integrated cir-
cuit problem including standard cell placement, macro placement and gate array cell/macro
placement. In general, the algorithms are directly applicable but it is sometimes difficult to
predict if certain characteristics of the design style will cause problems or not perform as
well when used on a printed circuit board problems. For example, most standard cell
designs use a row-oriented layout where the cells are abutted with each other along the row;
the cells are dual-ported; there is usually no routing over the cells and the number of routing
layers is limited to two or three iayers --- on a PCB the row-oriented layout would map

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 17

fairly well but usually the packages are not abutted; not having dual porting could result in a
relatively larger overall layout and possibly would require more vias and routing layers.
One of our research goals is to develop a placement framework that would allow a single
algorithm to be easily applied to different technologies so the appropriateness of a given
algorithm in different situations could be evaluated. This is not usually done because of the
difficulty of setting up all the practical aspects of the problem that have to be included to
make the comparisons/evaluations meaningful and accurate (see Section 2.0 on page 2).

7.2 Guidelines for combining cost functions/heuristics

Often a single cost function based on a single variable like wirelength is used by the place-
ment heuristic. It would be interesting to combine together different variables in the cost
function and to characterize these cost functions for circuits with different characteristics. It
is possible that certain heuristics with specialized cost functions might produce better place-
ments for certain classes of circuits. Identifying these situations would allow the layout
designer to exploit this information and achieve a better placement. With a placement
framework as mentioned in the previous section, it might also be possible to determine the
best cost function for any given circuit empirically by trial and error.

7.3 How to best handle connectors

Connectors are always a concern in formulating the placement problem. In certain cases, for
example, integrated circuit chips the location of the pads can be exploited and used as a con-
straint; however, the situation in the placement and location of connectors on a board is
often more arbitrary, less regular and more critical. A better formulation of the general
problem of how to treat fixed objects (pins) like connectors would most likely lead to better
board layouts. The general problem of dealing with connectors has not been addressed in
the placement literature.

7.4 Use of schematic data

There is usually a significant amount of information in a logic/circuit schematic that could
be used to produce a better layout. For example, experienced circuit designers will often
layout the circuit in sections, blocks, on separate schematic sheets or hierarchically. Fre-
quently the layout will reflect the signal data flow and the signal control flow, this informa-
tion could be used to orient the components [15] and place groups of components or layout
the data flow path. Current PCB layout tools do not use this information. Using this infor-
mation means that the placement tool must function as a floorplanning [16] tool as well as a
placement tool. We plan on building a prototype tool that will use this information to place
the components on a printed circuit board.

7.5 Component class information

PLEX [17] was an Expert system that attempted to mimic human designers to achieve a bet-
ter placement. PLEX used a constructive approach based on reasoning but did not employ

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 18

any classical CAD heuristics for placement. We think a hybrid approach would be best, that
is, one that employs expert systems techniques to solve parts of the problem like grouping
class of components and well known heuristics to solve the problem of where to place the
group, etc. ¢

7.6 Statistical experiments with appropriate randomization

Knapp [14] points out that due to arbitrary choices (tie breakers) most heuristics may arrive °®
at a local minimum which is relatively high compared to other local minimums. This can be
avoided by using a pseudo random number generator and a different seed to explore the
range of solutions. We plan to add this to our placement framework so that it can be used
routinely in testing and evaluating heuristics, combinations of heuristics and different cost
functions. ®

7.7 Fuzzy set theory for placement

Since components are often connected to more than one additional component or groups of
components, the membership in a particular group or set of components seems like it could ®
be characterized as a fuzzy membership. Only one paper in the literature [18] has explored
this approach for gate arrays. These researchers compared their results with a force-directed
approach but only published limited comparisons so it is difficult to assess this approach.
One interesting feature is the way the cost functions are defined. We plan on formulating a
similar approach for PCBs and to run extensive experiments including Knapp’s approach
for examining the statistical noise.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 19

B

(m

[2]
(3]
(4]
(5]
(6]
7
(8]
9]

(10}

(1]

(12]

(13]

(14]

(15]

(16]

References

Granacki, John J., “Research in Information Science and Technology: Systems
Assembly Core Research,” Final Technical Report, USC/Information Sciences Insti-
tute, November, 1992.

Spectrum staff, “Focus report: engineering software, Printed-circuit board design,”
IEEE Spectrum, vol. 27, pp. 82-85, November,1990.

Losquadro, Michele (Directories Editor), “Design Guide Special: Directory of CAE
Systems,” High Performance Systems, vol. X, pp. 92-113, December, 1989.

Losquadro, Michele (Directories Editor), “Design Guide Special: PCB Layou Sys-
tems,” High Performance Systems, vol. XI, pp. 53-71, January, 1990.

Khaison, Alexander and Wadland, Kenneth R., “Next Generation PCB Placement
Tocls,” Printed Circuit Design, vol. 8, September, 1991

Saia, Michael, “Perspectives: Placing Parts,” Printed Circuit Design, vol. 9, March,
1992.

Granacki, John J., “Printed Circuit Board Fabrication and Assembly Service: User
Guide,” USC/Information Sciences Institute, November, 1992,

Shahookar, K., and Mazumder, P., “VLSI Cell Placement Techniques,” ACM Com-
puting Surveys, vol. 23, no. 2, pp. 143-220. June, 1991.

Breuer, Melvin, “Min-Cut Placement,” Journal Design Automation and Fault Toler-
ant Computing, vol. 1, pp. 343-362, October, 1977.

Lauther, Ulrich, “A Min-Cut Placement Algorithm for General Cell Assemblies
Based on a Graph Representation,” Journal of Digital Systems, vol. 1V, pp. 21-35,
1980.

Fidducia, C.M. and Mattheyses, R.M., “A Linear-Time Heuristic for Improving Net-
work Partitions,” In Proceedings 19th Design Automation Conference, pp. 175-181.
ACM/IEEE June, 1982.

Klienhans, J. M, Sigl, G., Johannes, F. M., and Antreich, K. J., “GORDIAN: VLSI
Placement by Quadratic Programming and Slicing Optimization,” IEEE Transac-
tions on Computer-Aided Design, vol. 10, no. 3, pp. 356-364. March, 1991.

Jayakumar, V., “A Data Structure for Interactive Placement of Rectangular Objects,”
In Proceedings 17th Design Automation Conference, pp. 237-242. ACM/IEEE, June,
1980.

Knapp, D.W., “Fasolt: A Program for Feedback-Driven Data Path Optimization,
IEEE Transactions on Computer-Aided Design, vol. 11, no. 6, pp. 677-695. June,
1992.

Barth, Richard, Monier, Louis and Serlet, Bertrand, “PATCHWORK: LAYOUT
FROM SCHEMATIC ANNOTATIONS,” In Proceedings 25th Design Automation
Conference, pp. 250-255. ACM/IEEE, June, 1988.

La Potin, David P, and Director, Stephen W., “Mason: A Global Floorplanning
Approach for VLSI Design,” IEEE Transactions on Computer-Aided Design, vol. 5,
no. 4, pp. 477-489. October, 1986.

An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 20

@
(17} Virdhagriswaran, Sankar, Levine, Sam, Fast, Scott, Pitts, Susan, “PLEX: A Knowl-
edge Based Placement Program for Printed Wire Boards,” In Proceedings The Third
Conference on Artificial Intelligence Applications, pp. 302-305, IEEE, 1987. °
(18] Razaz, M. and Gan, J., “FUZZY ALGORITHMS FOR PLACEMENT OF INTE-
GRATED CIRCUITS,” In Proceedings UK IT 888 Conference, pp. 460-463, IEE,
Hitchen, July 1988.
[
[
®
o
o
®
o
o
An Automatic Placement Tool for the Rapid Prototyping of Printed Circuit Boards 21 °

M

