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I. OBJECTIVES

The objectives of this project were to investigate the full-wave
{Maxwellian) analysis for solving and computing the electromagnetic

behavior of microwave integrated circuits.

II. SUMMARY OF WORK DONE

The majority of the work was done in the first two years of this
project. Summary reports for the first year's work and the second yerr's
work are included to give details. The final six month's period was used
primarily to prepare final manuscripts for submission to journals, and to
give a preliminary organization for Mr. Hsu's Ph.D. dissertation. All
publications to date and the preliminary version of Mr. Hsu's dissertation
are appended to this report. The following is a list of these appendices:

l. Annual Report for the period January 1, 1988 to December 31, 1988.

2. Annual Report for the period January 1, 1989 to December 31, 1989.

3. "Quasi-Statié Analysis of a Micréstrip Via Through a Hole in a
Ground Plane,"” by Taoyun Wang, R. F. Harrington, and J. R. Mautz,

IEEE Trans. on MTT, Vol. 36, No. 6, pp. 1008-1013, June 1988.

4. "The Inductance Matrix of a Multiconductor Transmission Line in
Multiple Magnetic Media,”™ J. R. Mautz, R. F. Harrington, and C-I G. Hsu,

IEEE Trans. on MTT, Vol. 36, No. 8, pp. 1293-1295, August 1988.

5. T"Boundary Integral Formulations for Homogeneous Material Bodies,™

R. F. Harrington, Journ. of EM Waves and Appl, Vol. 3, No. 1, pp. 1-5, 1989,

6. The Excess Capacitance of a Microstrip Via in a Dielectric

Substrate," IEEE Trans. on CAD, Vol. 9, No. 1, pp. 48-56, January 1990.

7. "A Stable Integral Equation for Electromagnetic Scattering from




Homogeneous Dielectric Bodies,™ J. R. Mautz, IEEE Trans. on AP, Vol. 37,

No. 8, pp. 1070-1071, August 1989,
8. "On the Location of Leaky Wave Poles for a Grounded Dielectric
Slab," C-I G. Hsu, R, F. Harrington, J. R. Mautz, and T. K. Sarkar,

submitted to IEEE Trans. on MTT.

9. "Fundamental Mode Dispersion of a Microstrip Transmission Line,"
G-I G. Hsu, R. F. Harrington, J. R. Maut © '=C Jan, submitted to

JEEE Trans. on MTT.

10. "On the Dynamic Model for Passive Microwave Printed Circuits,”™

C-I G. Hsu, dissertation proposal, June 1990.
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The following persons have worked on this project:

Roger F. Harrington, Principal Investigator, Professor of Electrical
Engineering, Syracuse University.

Joseph R. Mautz, Research Engineer, Department of Electrical and
Computer Engineering, Syracuse University.

Chung-I Gavin Hsu, Research Assistant, Graduate Student, Department
of Electrical and Computer Engineering, Syracuse University.

Ing-Chieh Jan, Research Assistant, Graduate Student, Department

of Electrical and Computer Engineering, Syracuse University.
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I. OBJECTIVES

The objectives of this project are to obtain full-wave (Maxwellian)
analyses suitable for computing the electromagnetic behavior of micro-
wave integrated circuits. Initial work has been on (a) attempting to ex-
tend the quasi-static analyses to include correction terms to allow
application at higher frequencies, and (b) full-wave analyses to two-
dimensional problems such as multiconductor transmission lines in multi-
ple dielectric media.

II. SUMMARY OF FIRST YEAR'S WORK

A) Preliminary to extending the analyses to higher frequencies, we
completed some quasi-static solutions. The following topics have led to
papers published or pending, as listed in Section IV.

(1) Quasi-static analysis of a microstrip via through a hole
in a ground plane and in a dielectric substrate. Abstract of [1]: The
equivalent circuit of a via which connects two semi-infinitely long trans-
mission lines chrough a circular hole in a ground plane is considered.

The T-type equivalent circuit consists of two excess capacitances and an
excess inductance. They are quasi-static quantities and thus are computed
statically by the method of moments from the integral equations. The
integral equations are established by introducing a sheet of magnetic cur-
rent in the electrostatic case and a layer of magnetic charge in the wmag-
netostatic case. Parametric plots of the excess capacitances, the excess
inductance, and the characteristic admittance of the via are given for
reference.

Abstract of [4]: The equivalent circuit of a via which connects two
semi-infinitely long microstrip transmission lines imbedded in a dielec-
tric medium above a ground plane is considered. The [-type equivalent
circuit consists of an excess capacitance and an excess inductance. The
excess inductance of the via is the same as the one computed in the case
of free space (without a substrate). The excess capacitance of the via is
computed quasi-statically by the method of moments and the image method
from the integral equations. It converges rapidly as the number of image
terms is increased. Parametric plots of the excess capacitance of the via
are given for reference.

(2) The equivalent circuit of a microstrip crossover with and
without a dielectric substrate. Abstract of [4]: The equivalent circuit
of a microstrip crossover is found. Integral equations are obtained for
the densities of excess charge, and these equations are solved by the method
of moments. Introduction of a specified transverse distributiom of charge,
which satisfies the edge condition, reduces the computing time dramatically
while the accuracy remains excellent. Several plots of the excess charge
densities are provided along with numerical values of lumped excess capaci-
tances.

Abstract of [5]: A quasi-static analysis 1is carried out to examine
the capacitive coupling between two nonintersecting microstrip lines above
a ground plane and in a dielectric substrate. The charge density along




the width of each strip is described using a prescribed charge distribu-~
tion. A pair of coupled integral equations is derived and solved via

the method of moments to obtain the excess charge densities . The lumped
excess capacitances are computed and compared to the ones obtained using
wire lines with radii equal to the equivalent radii of the strips.

(3) The inductance matrix of a multiconductor transmission
line in multiple magnetic media. Abstract of [2]: Consider a multicon-
ductor transmission line consisting of N. conducting cylinders in inhomo-
geneous media consisting of N4 homogenecus regions with permeabilities uLj
and permittivities €4y. The inductance matrix [L} for the line is obtained
by solving ithe magnetostatic problem of N. conductors in Ng regions with
permeabilities uj. The capacitance matrix [C] for the line is obtained
by solving the electrostatic problem of N, conductors in Nd regions with
permittivities €4. It is shown that [L] = u g, [c']1-1, where [C'] is the
capacitance matrix of an auxiliary electrostatic problem of N, conductors
in Nq regions with relative permittivities set equal to the reciprocals
of/the relative permeabilities of the magnetostatic problem, i,e., €£/€o=
U /U, .

o i

B) Work has been done on the following full-wave solutions:

(1) The full-wave solution for the microstrip transmission line
has been investigated using the volume integral formulation. This gives an
integral equation formulation where the unknowns are the conduction current
and charge on conducting boundaries, the bound charge of the dielectric
boundaries, and the polarization current in the dielectric volume. For
waves, the propagation constant is obtained from the solution of a nonlinear
eigenvalue equation. A numerical solution to this equation has been obtained
to allow computation of the propagation constant, or, equivalently, the
effective dielectric constant. The solution is complicated, and the computa-
tions are time consuming. We are presently looking for ways to simplify this
solution.

(2) The full-wave solution for the microstrip transmission line
has been investigated using a surface integral formulation. This gives an
integral equation where the unknowns are the conduction current on the con-
ducting boundaries and the equivalent electric and magnetic surface cur-
rents on the dielectric boundaries. Again the propagation constant is
obtained from the solution to a nonlinear eigenvalue equation. The numeri-
cal solution to this equation has not yet been successfully obtained. Work
is continuing on this solution.

There are many different surface integral formulations for any par-
ticular problem. These are summarized in the paper on boundary integral
formulations for homogeneous material t iies ([3] of Section IV). The
following is an abstract of [3]: There are many boundary integral formu-
lations for the problem of electromagnetic scattering from the transmis-
sion into a homogeneous material body. The only formulations which give a
unique solution at all frequencies are those which involve both electric
and magnetic equivalent currents. and satisfy boundary conditions on both
tangential E and tangential #. Formulatioms which involve only electric
(or magnetic) equivalent currents, and those which involve boundary condi-




tions on only tangential E (or tangential H) are singular at frequencies
corresponding to the resonant frequencies of a resonator formed by a
perfect conductor covering the surface of the body and filled with the
material exterior to the body in the original problem.

IIT. PLANS FOR THE SECOND YEAR'S WORK

A) Study of the volume integral formulation for the full-wave solution
of 2-D problems will continue. Methods of reducing the complexity of the
solution will be considered. In particular, a perturbation approach, start-
ing from the quasi-TEM solution and adding correction terms will be studied
and compared to the direct solution.

B) Study of the surface integral formulation for the full-wave solu-
tion of 2-D problems will continue. Again methods of redurag the complexity
of the solution will be considered. However, this formula .n does not
appear to be as well suited to the perturbation approach as does the volume
integral formulation of A above.

C) Study of the integral formulations for the full-wave solution of
3-D problems will be started. The particular approach to be taken will
depend on the results of A and B above. It is hoped that a 3-D solution
will lead to a formulation useful for actual printed circuits.

IV. PUBLICATIONS

{1} T. Wang, R. F. Harrington, and J. R. Mautz, '"Quasi-Static Analysis of
a Microstrip Via through a Hole in a Ground Plane," IEEE Trans.,
vol. MTT-36, No. 6, June 1988.

(2] J. R. Mautz, R. F. Harrington, and C-I G. Hsu, "The Inductance Matrix
of a Multiconductor Transmission Line in Multiple Magnetic Media,"
IEEE Trans., vol. MTT-36, No. 8, pp. 1293-1295, Aug. 1988.

Accepted for publication:
[3] R. F. Harrington, '"Boundary Integral Equations for Homogeneous

Material Bodies,' Journ. Electromagnetic Waves and Applications,
in press, to appear 1988.

Submitted for publication:

[4] T. Wang, J. R. Mautz, and R, F. Harrington, '"The Excess Capacitance
of a Microstrip Via in a Dielectric Substrate,” submitted to IEEE
Transactions on Integrated Circuits and Systems.

[5] S. Papatheodorou, R. F. Harrington, and J. R. Mautz, "The Equivalent
Circuit of a Microstrip Crossover,' submitted to Tramsactions of the
Society for Computer Simulation.




[6] S. Papatheodorou, R. F. Harrington, and J. R. Mautz, "The Equivalent
Circuit of a Microstrip Crossover in a Dielectric Substrate," sub-
mitted to IEEE Transactions on Microwave Theory and Techniques.

Report:

[7] S. Papatheodorou, J. R. Mautz, and R. F. Harrington, ''The Equivalent
Circuit of a Microstrip Crossover in a Dielectric Substrate,' Report
TR-88~11, Deparcment of Electdical and Computer Engineering, Syracuse
University, August 1988.

V. PERSONNEL

The following is the project staff for the first year:

Principal Investigator: Dr. Roger F. Harrington,
Professor of Electrical Engineering.

Research Engineer: Dr. Joseph R. Mautz,
Department of Electrical ind Computer Engineering.

Research Assistant: Mr., Chung-I Gavin Hsu, Graduate Student,
Department of Electrical and Computer Engineering.
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1. OBJECTIVES

The objectives of this project are to obtain full-wave (Maxwellian)
analyses suitable for computing the electromagnetic behavior of microwave
integrated circuits. 1Initial work has been on (a) attempting to extend
the quasi-static analyses to include correction terms to allow
application at higher frequencies, and (b) full-wave analyses to two-
dimensional problems such as multiconductor transmission lines in multi-
ple dielectric media. More recent work has been on (¢) the solution of

three-dimensional problems.

II. SUMMARY OF THE SECOND YEAR'S WORK

A) Publication of the first year's work as journal articles: The
following papers have been published during the second year:
1. Roger F. Harrington, "Boundary Integral Formulations for

Homogeneous Material Bodies,™ Journal of Electromagnetic Waves and

Applications, vol. 3, No. 1, pp. 1-15, 1989,

Abstract - There are many boundary integral formulations for the
problem of electromagnetic scattering from and transmission into a
homogeneous material body. The only formulations which give a unique
solution at all frequencies are those which involve both electric and
magnetic equivalent currents, and satisfy boundary conditions on both tan-
gential E and tangential H. Formulations which involve only electric (or
magnetic) equivalent currents, and those which involve boundary
conditions on only tantential E (or tangential H) are singular at
frequencies corresponding to the resonant frequencies of a resonator
formed by a perfect conductor covering the surface of the body and filled

with the material exterior to the body in the original problem.




2. Joseph R. Mautz, "A Stable Integral Equation for Scattering from

Homogeneous Dielectric Bodies,™ IEEE Transactions on Antennas and

Propagation, vol. 37, No. 8, pp. 1070-1071, August 1989.

Abstract - It is shown that a previously derived integral equation
for electromagnetic scattering from a homoéeneous dielectric body does
not have a unique solution at resonant frequencies of the cavity formed
by making the surface S of ti. bcdy perfectly conducting and filling the
region internal to § with the external medium. This integral equation
was formulated so that an equivalent electric current radiates in the
presence of the homogeneous external medium to produce the scattered
field external to the body. A combination of equivalent electric and
magnetic currents is used to formulate an integral equation whose
solution is always unique.

3. Taoyun Wang, J. R. Mautz, and R. F. Harrington, "The Excess
Capacitsnce of a Microstrip Via in a Dielectric Substrate," IEEE

Transactions on Computer-Aided Design. vol. 9, No. 1, pp. 48-56, January

1989,

Abstract - The equivalent circuit of a via which connects two semi-
infinitely long microstrip transmission lines imbedded in a dielectric
medium above a ground plane is considered. The I'-type equivalent circuit
consists of an excess capacitance and an excess inductance. The excess
inductance of the via is the same as the one computed in the case of free
space (without a substrate). The excess capacitance of the via is
computed quasi-statically by the method of moments and the image methed
from the integral equations. It converges rapidly as the number of image
terms is increased. Parametric plots of the excess capacitance of the

via are given for reference.
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B) Two-dimensional full-wave solutions of printed circuits: The
surface integral formulation was found to be more suitable for
computation than was the volume integral formulation. Hence, this
solution was used for the final computations. A Technical Report was
written: "Fundamental Mode Dispersion of a Microstrip Transmission
Line,"™ by Chung-I G. Hsu, R. F. Harrington, J. R. Mautz, and I-C Jan,
Report TR-89-6, November 1989. A paper by the same name and authors has

been submitted to the IEEE Transactions on Microwave Theory and

Techniques.

Abstract - A spectral domain type solution with nonumiform subdomain
basis functions is implemented to investigate the dispersion character-
istics of the fundamental mode of a microstrip transmission line. Agree-
ment with the data available in the literature is demonstrated in several
plots, where only the longitudinal current is used in numerical
computaéion. This numerical scheme proves to be an alternative, or
rather a supplement, to various well-developed methods in this area.

C) Integral formulations and solutions for the three-dimensional
printed circuit problem. We have obtained a formulation for the 3-D
circuit as an extension of the arbitrarily;shaped wire formulation for the
homogeneous dielectric case. (For example, see Chapter 4 of FIELD
COMPUTATION BY MOMENT METHODS, R. F. Harrington, Krieger Publishing Co.,
1982). The solution for the printed circuit problem is much more diffi-
cult than that for the homogeneous dielectric problem, because now the
Green's function contains a Sommerfeld integral. Some approximate and
numerical methods for evaluating the integral have been obtained in the
literature, but the solution is still complicated. We intend to use an

"equivalent radius™ simplification to obtain a wire-type solution for

11




arbitrary printed circuits. The equivalent radius will be obtained from
the simpler 2-D problem of a printed circuit transmission line.

D) Software packages for printed circuit multiconductor transmission
lines: Three menu-driven, user-friendly software packages have been pub-
lished by Artech House. These are:

(1) "Matrix Parameters of Multiconductor Transmission Lines," by A.
A. R. Djordjevic, R. F. Harrington, T. K. Sarkar, and M. B. Bazdar. This
program calculates the quasistatic matrix parameters of multiconductor
transmission lirnes, i.e., matrices of inductance, capacitance, resist-
ance, and conductance. The program can treat multiple dielectric layers
as well as multiple conductors of arbitrar§ shape. A complete user's
manual accompanies the computer program.

{2) “Time-Domain Response of Multiconductor Transmission Lines," by
A. R. Djordjevic, R. F. Harrington, T. K. Sarkar, and M. B. Bazdar. This
ptcgram‘uses the output of the previous prooram as input. It computes
the response of a lossless multiconductor transmission line with linear
or nonlinear loads. It uses the modal time-domain solution, which is the
most accurate and fastest one. The terminating networks may contain
generators, resistors, short circuits, open circuits, interconnectors,
inductors, capacitors, and nonlinear resistors. The output consists of
voltage waveforms on all lines at specified points along the line.

3) "Scattering Parameters of Microwave Networks with Multiconductor
Transmission Lines,"” by A. R. Djordjevic, M. B. Bazdar, G. M. Vitosevic,
R. F. Harrington, and T. K. Sarkar. This program uses the output of the
first program as input. It analyzes networks consisting of multiconduc-
tor transmission lines and discrete elements. The output is the scatter-

ing matrix, the impedance matrix, and the admittance matrix of the

12
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network. The transmission lines are treated by modal analysis in the
time domain, including losses. The output is in a format similar to that

obtained from network analyzers used for experimental measurements.

III. PLANS FOR FUTURE WORK

A) The work on mode dispersion on a microstrip transmission line,
item IIB above, will be published.

B) Study of the solution to three-dimensional printed circuits, item
IIC above, will continue. It is planned to develop a user~-friendly
computer program to handle three-dimensional integrated circuits of
arbitrary shape.

C) It time permits, the full-wave solution of a microstrip
transmission line, item IIB above, will be generalized to a
multiconductor line with conductors of arbitrary shape.

IV. PUBLICATIONS

(1] Roger F. Harrington, "Boundary Integral Formulations for Homogeneous

Material Bodies," Journal of Electromagnetic Waves and Applications,

vol. 3, No. 1, pp. 1-15, 1989.
[2] Joseph R. Mautz, "A Stable Integral Equation for Scattering by Homoge-

neous Dielectric Bodies," IEEE Transactions on Antennas and

Propagation, vol. 37, No. 8, pp. 1070-1071, August 1989.
{3] T. Wang, J. R. Mautz, and R. F. Harrington, "The Excess Capacitance

of a Microstrip Via in a Dielectric Substrate," IEEE Transactions

on Computer-Aided Design, vol. 9, No.fl, pp. 48-56, January 1989.

(4] C-I G. Hsu, R. F. Harrington, J. R. Mautz, and I-C Jan, "Fundamental

Mode Dispersion of a Microstrip Transmission Line," Submitted to
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IEEE Transactions on Microwave Theory and Techniques.

V. PERSONNEL
The following is the p;oject staff for the second year:

Principal Investigator: Dr. Roger F. Harrington, Professor of
Electrical Engineering.

Research Associate: Dr. Joseph R. Mautz, Department of Electrical and
Computer Engineering

Research Assistant: Mr. Chung-1 Gavin Hsu, Graduate Student, Department
of Electrical and Computer Engineering

Research Assistant: Mr. Ing-Chieh Jan, Graduate Student, Department of

Electrical and Computer Engineering.
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Quasi-Static Analysis of a Microstrip Via
Through a Hole in a Ground Plane

TAOYUN WANG, sTUDENT MEMBER, IEEE, ROGER F. HARRINGTON, FELLOW, IEEE,
AND JOSEPH R. MAUTZ, SENIOR MEMRER, IEEE

Abstract ~The equivalent circuit of a via which connects two semi-
infinitely long transmission lines through a circular hole in a ground plane
is considered. The 7 -type equivalent circuit consists of two excess capaci-
tances and an excess inductance. They are quasi-static quantities and thus
are computed statically by the method of moments from the intepral
cquations. ‘The infegral equations are established by introducing a sheet of
magnetic current in the clectrostatic case and a layer of magnetic charge in
the magnetostatic case. Parametric plots of the excess capacitances, the
excess inductance, and the characteristic admittance of the via are given
for reference.

I. INTRODUCTION

HE GEOMETRY of the problem to be considered in

this paper is shown in Fig. 1. Two semi-infinitcly long
transmission lines, wire 1 and wire 2, are connected by a
via through a hole in a conducting ground plane. The via
consists of wire 3 and wire 4. The radii of wires 1, 2, 3, 4,
and the hole, denoted a,, a,, a,, a;, and ag, respectively,
are very small compared to the heights, &, and h,, of wire
1 and wire 2 with respect to ground. The media in the
upper region (region a) and the lower region (region b)
may be different. Let us assume that (¢,, u,) and (e, ;)
are the constitutive constants for region a and region b,
respectively. Also, the media and all the conductors are
perfect (lossless). For simplicity, the equivalent circuit of
the via is assumed to be m-type, as is shown in Fig. 2. In
Fig. 2, Y, is the characteristic admittance of wire 1 above
the ground plane and Y, is the characteristic admittance
of wire 2 below the ground plane. The circuit of Fig. 2 is
valid when only a small portion of the line voltage is
dropped across L, and when only a small portion of the
line current is shunted through C,, and C,,. We desire to
determine the capacitances C,, and C,, and the inductance
L. The problem described here is of practical interest. For
example, printed circuits on different sides of a ground
plane inside computers are often connected by a via
through a hole in the ground plane. The related problems
of the connection of two perpendicular strips above a
ground plane [1}, the connection of two parallel wires

Manuscript received August 21, 1987, cevised January 4, 1988, This
work was supported by the Office of Naval Rescarch, Arlington, VA
22217, under Contract NOOO14-8%-K-0027 and by the New York State
Center for Advanced Technology in Computer Applications and Soft-
ware Engineering, Syracuse University.

The authors ase with the Department of Elecirical and Computer
Engincering, Syracuse Umivensity, Syracuse, NY 13244-1230,

IEEE Log Number 8820438,
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Fig. 2. The equivalent circuit for the problem.

above a ground plane {2], and the connection of two
parallel strips above a ground plane [3}, [4] were previously
considered.

The equivalent capacitance C,, of the portion of the via
above the ground plane is a quasi-electrostatic quantity
and is defined as [2], [3]

. Qi+ 0,-14g
lim ——————.

C,=
! [N vV

. (1)
Here Q, is the total electric charge on the portion of wire 1
of length /,, Q, is the total charge on wire 3, V is the
constant voltage maintained at the surface of the wires
with respect to ground, and g, is the uniform charge
density on wire 1 far away from the via, or equivalently,
the charge density required to raise the potential of wire 1

0018-9480 /88 /0600-1008501.00 ©1988 IEEE




s

* WANG et al.: QUA&I:STATIC ANALYSIS OF A MICROSTRIP VIA

to-¥ volts if the hole were closed, wire 3 were removed,
and wire 1 were extended to infinity. Henceforth in the
clectrostatic case, charge density means charge per unit
length. However, since the numerator of the right-hand
side of (1) approaches a constant that is very small com-
pared to Q, and [,q,. as /, becomes large, numerical
calculation of C,, from (1) would result in significant
error. To avoid this, we subtract the uniform charge den-
sity from the total charge density so that the difference,
called the excess charge density, is the unknown in the
boundary integral equations. The equivalent capacitance
C,, is then the sum of the total excess charge on wire 1 and
wire 3 if the voltage V is set to one volt. Hence C,, is also
called the excess capacitance of the upper part of the via
(wire 3). In a similar manner, the equivalent capacitance
C,, is defined and is called the excess capacitance of the
lower part of the via (wire 4).

The equivalent inductance L, is a quasi-magnetostatic
quantity defined by (2], [4]

1
L“7{];“1](“'—Am).d,+'l;irc3/.]'d,}
+l{j (A= Ay)-di+ [ A,dz} (2)
1 wire 2 wire 4

where A4, is the total magnetic vector potential on wire i,
i=1,2,3,4, due to the steady electric current of filamen-
tary strength I flowing from wire 1 through the via to wire
2. A, is the uniform magnetic vector potential on wire 1
far away from the via or, equivalently, the magnetic vector
potential that would be produced by an I ampere current
on wire 1 if the hole were closed, wire 3 were removed, and
wire 1 were extended to infinity. 4,4 is similarly defined.
The sum of the four integrals in (2) is a line integral from a
point far to the left on the surface of wire 1 to a point far
to the right on the surface of wire 2. Equation (2) is
derivable from [4, eq. (1)). L, is also called the excess
inductance of the via. For convenience, we call the first
bracketed term the excess inductance of the upper via
(wire 3) and the second bracketed term the excess induc-
tance of the lower via (wire 4).

[1. FORMULATION

The excess capacitances C,, and C,, are quasi-electro-
static quantities and thus computed in the electrostatic
case. As shown in Fig. 3, we first close the hole by a
conductor and place a sheet of magnetic current M just
above the hole and — M just below it. Steady in that it has
no surface divergence, this magnetic current is related to
the electric field E, over the hole by

M=E,Xn (3)
where # is the unit vector normal to the ground plane and
pointing upwards (from region b to region a). By the
uniqueness theorem (5, sec. 3-3] and the equivalence prin-
ciple [5, sec. 3-5], the ficld remains the same in region a

130
!
i wire 3
Wirel
Region a
Ground
L cstne agAes
{ta)
LS Fitd
-M Region b
Ground - Wire 4
Wire 2
i 4
(hy
Fig. 3. The clectrostatic problem divided into two parts. (a) The electiic

ficld remains unchanged in region a if the hole is closed and M s
placed above the hole. (b) The electric ficld remains unchanged in
region b if the hole is closed and -~ M is placed just below the hole.

and region b if
de*

dn

d¢P
=g,

“dn

in the hole

(4)

€

where ¢' is the electric potential in region /, i =a,b. In
addition to (4) the following boundary conditions must
also be satisfied:

¢ =V
¢b=V

on wires 1 and 3 (5)
on wires 2 and 4.
Neither wire 3 nor wire 4 is connected 1o the ground plane
in Fig. 3.

The total charge density may be recognized as the sum
of the excess charge density and uniform charge density,
iLe.,

qu, + 4, on wire |

q.3 on wire 3

q= e d (6)
G.4 on wire
4.2+ 4oy on wire 2

where the subscript e on g denotes excess charge density.
gor and g, are known and are given hy

2w,V
90 = a2k jay) hy> a,

27e,V ()
qm=—_—|n(2h2/uz)' hy>a,.

If the potential V' is set 10 one volt. the total excess charge
will give rise to the desired excess capacitance, i.e.,

Ca= f Gadl+ | q.dl
wire | wired

C.,= / qadi+ [ q..dl. (8)
wire 2 wirc 4 ‘

Let ¢(q,,) denote the potential due to ¢, in the pres-
ence of the completed ground plane (hole closed), ¢' (M)
the potential in region a duc to M residing on the region a
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. side of the completed ground plane, and ¢ ‘M) the
potential in region b due to M residing on the region b
side. Then,

¢ = d(qo )+ dlqa)+d(q.. )+ (M)
¢ =¢(qgy) + ¢(qg.2) v dlg. ) -4 (M) {9)

Note that the electric potential due to a sheet of steady
magnetic current is analugous to the magnetic scalar
potential due to a sheet of steady electric current. The
latter is studied in many fundamental electromagnetic field
theory books, for example, {6]. Substitution of (9) into (4)
and (5), with ¥ being set to one volt, yields integral
equations for the excess charge densities:

¢(q.4)+9(q.,)+9"' (M)
=1"¢(qm)
$(q.2)+¢(q.)- ¢~ (M)
=1-¢(q;)

3¢(q.) de(q.:) do* (M)
@ on + an T on

o 2olaa)  99len) A0 (M)
9n T, T,
d¢(q01) d(qp;)

' 9n 27,
Although ¢, and ¢,, exist on the semi-infinitely long
wires 1 and 2, they decay to zero rapidly as one moves
away from the via. We may truncate ¢, and gq,, and the
boundary equations on wire 1 and wire 2 at some dis-
tances, say 3h, and 3h,, from the via. By doing so, we
neglect the contribution to the excess capacitances from
the excess charge beyond the lengths 34, on wire 1 and 3h,
on wire 2. Now, the method of moments may be used to
solve for q,,, 9.,, 9.3, 9.4. and M numerically. We divide
wire 1 and wire 2 (truncated) and wire 3 and wire 4 into
subsections, assume uniform charge distribution on each
subsection, and enforce the first two of equations (10) at
the center of each subsection. Furthermore, we divide the
hole into annuluses, assume uniform circulating current
distribution on each annulus, and enforce the third of
equations (10), which is averaged over the interval {rom 0
to 27 for the azimuthal variation, at the midpoint between
the edges of each annulus. A detailed discussion of the
moment method as applied to this problem is presented in
7]

Now, we turn to the magnetostatic case to compute the
excess inductance. Similar to the electrostatic case, we
close the hole by a conductor and place a layer of magnetic
charge density m just above the hole and — m just below
it, as is shown in Fig. 4. This m is equal to the normal
magnetic field over the hole. Again by the uniqueness
theorem and the equivalence principle, the magnetic field
remains unchanged in region a and region b if

H . =H"

tan n

on wires 1 and 3

on wires 2 and 4

LT

=-¢

in the hole. (10)

(1)

is enforced, where I is the tangential magnetic intensity
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Fig. 4. The magnctostatic problem divided into two parts. (a) The
magnetic ficld remains unchanged in region a il the hole is closed and
m is placed just above the hole. (b) The magnetic field remains
unchanged in region b if the hole is closed and - m is placed just
below the hole.

over the hole in region i, i =a.b. Let i (wire i) denote
the magnetic intensity duc to the electric current on wire §
in the presence of the completed ground plane for 4=
1.2.3.4, H' (m) the magnetic intensity due to m above
the completed ground plane, and H~(m) the magnetic
intensity due to m below the completed ground plane. We
can write
H? = H(wire 1)+ H(wire 3)+ H* (m)
H®=H(wire2)+ H(wire4)— H (m). (12)
Note that the magnetic intensity due to a layer of magnetic
charge is analogous to the electric field due to a layer of
electric charge, as discussed in {6]. Therefore, H ' (m) and
H ™ (m) may be represented by the gradients of some
scalar functions ¥ * (m) and ¥ "~ (m). That is,
H'(m)=-v¥'(m)
H (m)y=-v¥ (m).
Substitution of (12) and (13) into (11) gives
o¥'(m)+o¥ (m)f,,

= H(wire 1) — H(wire 2) + H(wire 3) — H(wire 4)|, .
(14)
Equation (14), an integral equation for m, implies that
¥ (m)+ ¥ (m) equals ¥'™, where ¥™ is a potential
whose gradient is the right-hand side of (14). To com-
pensate for the fact that ¥™ is only known to within an
additive constant, we require that the total magnetic charge
associated with m vanish. The moment method may be
applied now to solve the scalar equation derived from (14)
subject to the above constraint on m.
Since there is no coupling between wire 1 and wire 3 and
between wire 2 and wire 4, we have

A, =A(wire 1)+ A (m)
Ay=A,(wire2)— A5 (m)
A, =A(wire3)+ A, (m)
A=A wired) - A, (m)

(13)

(15)
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where A (wire i) is the magnetic vector potential on the

*surface of wire i due to the current / on wire i in the
presence of the completed ground plane, i=1,2.3.4.
Moreover, A, (m) is the vector potential on the surface of
wire i, i =1,3, due to m residing on the region a side of
the completed ground plane, and A, (m) is the vector
potential on the surface of wire i, i=2.4, due to m
residing on the region b side. Note that (15) is valid only
for the vector potential component tangent to each wire
and that the other component is not of interest. Letting /
be one ampere and putting (15) into (2), we get the excess
inductance of wire 3:

d-f (A,(wnre 1)- Ay,)- dl+f

wife 3

Ay (wire 3)-di

+f Al (m)-di+ [ A (m)-al (16)
wire 1 wire 3
The excess inductance of wire 4 is obtained from the above
expression by replacing all the 1's by 2's, 3's by 4's, m’s by
~ m’s, and superscripts + by —, that is,

L¢2 =

(A, (wire 2)—Am)-dl+f A (wire 4)- dl

wire 2 wire 4

—f A{(m)~dl—f A; (m)-dl.
wire 2 wirc 4

Because of the small radii of the wires, the current on the
surface of each wire may be approximated by a filamen-
tary current / on the axis of the wire. Thus the first two
integrals in (16) can be evaluated analytically [2]. The last
two integrals may be expressed in terms of magnetic
intensities according to Stokes's theorem. The result is

4h,
L,=—2h In —-4h,+a,+a
'o4n [ ("3) 3]

+p,LH,"(m)ds (18)

(17)

where in the last integral, S, is the planar surface bounded
by the axes of wire 1 and wire 3 and the ground. The
subscript n on H*(m) denotes the component normal to
S, and pointing into the paper. The expression for L, is
similar to (18) in form. The excess inductance of the via is
then the sum of L,; and L,,.

IIl. NuMERICAL RESULTS AND DISCUSSION

In order to implement the compuler program on a
PC/AT, we simplify the computation by choosing only
one expansion function for the magnetic current and none
for the magnetic charge. This is justified as follows. Since
the radius of the hole is very small compared to the heights
h, and h,, the couplings (electric and magnetic) through
the hole between wire 1 and wire 2 are negligible to the
first-order approximation. In other words, the fields in the
hole are primarily from the via (wire 3 and wire 4). In the
electrostatic case, the tangential electric field in the hole is

ton

in the radial direction with the variation being of the form
K

Ey=—-r

, - (19)
le ~(p/asy

where p s the radial distance from the center of the hole
and K is a constant determined by

[E,-dl=1. (20)

The tntegration path is chosen in the radial direction from

the surface of wire 3 to the edge of the hole. Substitution
of (19) into (20) gives

In(a,/a,+/\ 3) —l).

Thus the magnetic current is circulating and its amplitude
is given by

K=

(21)

1
In(u,/a, + \/(a,/u‘)z— 1 ) m/l —(p/m)

M= . (22)

In the magnetostatic case, the normal magnetic field in
the hole is negligible. Hence the magnetic charge may be
neglected and a closed form for the excess inductance of
the via is obtained. That is,

By h, ] h,

L,= 5 h ln(x,a3)+2ﬂh '"("20.) (23)
where x, and x, are constants. Approximately, x, =«, =
0.5413.

In Figs. 5-7. the normalized excess capacitance of the
upper via (wire 3) C,, /(¢,d;) is plotted. The curves are
also applicable to the normalized excess capacitance
C.,/(€,a,) of the lower via (wire 4) if all the subscripts |
are replaced by 2. In Figs. 8 and 9! the normalized excess
inductance L, /(2p,a,) of a symmetric via is plotted. A via
is symmetric if (h,. a,.¢,. ;) = (h,, a,.€,. ;). These plots
can also be viewed as plots for the normalized excess
inductance 1., /(p,a,) of the upper via. If the subscripts 1
are replaced by 2, they become plots of 1., /(jp,ay), the
normalized inductance of the lower via. In Figs. 10 and 11
the characteristic admittance 7,Y, of a symmetric via is
plotted. Here 7, is the intrinsic impedance of the medium.
The characteristic admittance of the via is defined as

Y9=V(Crl +Ct2)/Lf'

If a TEM wave approaches the via along wire 1 and if
wire 2 is terminated with a matched load (Y;,). then it can
be shown that the least reflection will occur when

Y( = \/?f—)_l"ﬁ)—l_

(24)

(25)

! Note that the curves in Figs. R and 9 arc plotted undcr the assumption
that the hole is amall in relation to the heights &y and &, To cmphasize
this and to be consistent with other plots, we add the restniction ay - 24,
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To see this, we notice that the voltage reflection coefficient at the T plane on wire 1 in Fig. 2 is given by

wLC., wLC,
C, 1——-—2'— +C,, l-_—i——

Yon(l - “’2L¢C¢2) - yoz(l - szcCt\)

1
+ Yo Yo~ L_

joL, .
I= : 26
Yo(l— w*LC,3) + You(1- 2L C,) 1 WwLC,, WL C, (26)
- +Yo Yo+ —|Cu|l - ——— |+ Ca|l - —5—
JuL, L, 2 2
where « is the angular frequency. Usually, WL (C, + To design a reflectionless via, consider the following
C,;) < 1. The above expression then reduces to numerical example. Suppose that

- YO‘ - Yoz + ijOYol Yoz - jw(Cd + sz) (27)
Yo, + Yoo + jwL Y Yo + jw(C, +C,;)

hy=h,=100cm
a,=a,=010cm
as=Za, (28)

r

When (25) is satisfied, the magnitude of the numerator of
(27) assumes its minimum, the magnitude of the de-
nominator is roughly Y,, + ¥y,, and thus |T| is minimized.
The reflection from the via is minimized. Furthermore, if 2 2.10
(25) is satisfied and if the system is symmetric (¥, = Yy,), Yor = Yo, = -
there is no reflection from the via. That is, all of the power 1ln(2h,/a)
from the incident wave will be transmitted through the via ; "

to the matched load. In this case, the via is callihd reflec- the reflectionless condition becomes
tionless. nY,=2.10. {30)

and that we wish minimize reflection from the via. Since

(29)
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Fig. 10. Normalized characteristic admittance of a symmetric via (ag =
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Fig. 11. Normalized characteristic admittance of a symmetric via (as =
2ay, k=h,/a))

Using the & =10 curve in Fig. 11, we find that the above
condition is satisfied when a; =0.034 cm. Hence, given
'28), the via will be reflectionless when the radius of the
via is 0.034 cm.
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The Inductance Matrix of a Multiconductor
Transmission Line in Multiple Magnetic Media

JOSEPH R. MAUTZ, SENIOR MEMBER, (EEE,
ROGER F. HARRINGTON, reLiow, IEEE, AND
CHUNG-I G. HSU, STUDENT MEMBER, IEEE

Abstract —Consider a multiconductor transimission line consisting of N,
conducting cylinders in inhomogeneous medis consisting of N, homoge-
neous regions with permeabilities u, and permittivities ¢,. The inductance
matrix { L] for the line is obtained by solving the magnetostatic problem of
N, conductors in N, regions with permeabilities u,. The capacitance
matrix [C] for the line is obtained by solving the electrostatic problem of
N, conductors in N, regions with permittivities ¢,. It is shown that
(L] = pugeo(C’)~2, where [C'] is the capacitance matrix of an auxiliary
electrostatic problem ol N, conductors in N, regions with relative permit-
tivities set equal to the reciprocals of the relative permeabilities of the
magnetostatic problem, i.e., ¢/ /¢y = 1o /n,.

1. INTRODUCTION

Fig. 1 shows a multiconductor transmission line consisting of
N, conductors and N, insulating materials above a perfectly
conducting ground plane. The system is uniform in the z direc-
tion (direction of propagation), and the cross-sectional shapes of
the conductors and insulators are arbitrary. The insulators have
arbitrary permeabilities u, and permittivities ¢,. An upper ground
plane could be present and treated as an additional conductor in
a manner similar to that of {1].

To the quasi-static approximation, the multiconductor trans-
mission line is characterized by a capacitance matrix [C), ob-
tained from an electrostatic analysis, and an inductance matrix
[L], obtained from a magnetostatic analysis. The formulation of
the problem for [C] and a numerical algorithm for its computa-
tion are given in [1}. In che appendix of {1} it is shown that if the
insulating matter is nonmagnetic, the inductance matrix of the
line is given by

[L] =noto[ G] " (D

Here [(,] is the capacitance matrix of the multiconductor trans-
mission line if all dielectric constants are set equal to 1.

In this paper we shall show that when the insulators are
magnetic, a modified relationship holds. In particular, it is

(L] =potolC ™ (2)

where [C’] is the capacitance matrix of the line if all relative
permittivities are set equal to the reciprocals of the relative
permeabilities, i.c.,

('
—-ﬂ‘ "—l‘z‘.

© B @)

Note that the auxiliary problem for finding [C’) has relative
permittivities less than unity if the corresponding relative per-
meabilities are greater than unity.

Relationship (2) is strictly true only if all conductors are
perfect. It assumes that all current in the magnetostatic problem
flows on the surfaces of conductors., For actual conductors,
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Contract NOUO14-83-K-0082 and by the New York State Center for Advanced
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Fig. 1.

A multicond
magnetic region above a ground piane.

transmission line in a multilayered dielectric and

depending on the frequency, some of the current flows internal to
the conductors. Relationship (2) is then only approximate.

Although (2) can be inferred from the last two sentences in
[2, sec. V], we have not seen an explicit proof in the literature.
The purpose of this short paper is to give a simple proof of (2)
for the multiconductor case with layered media.

II. PROOF OF (2)

The electrostatic problem from “which [C] is calculated is
formulated in detail in [1]. We shall refer 10 that formulation
when needed. The magnetostatic problem from which (L] is
calculated is an extension of the formulation for nonmagnetic
media, given in the appendix of [1]. The formulation for magnetic
media is given below.

The inductance matrix L] is an N, X N, matrix that satisfies

v=[LlJ (4)
where ¢ and I are N, X1 column vectors. The jth element of [
is the z-directed conducnon current on the jth conductor. The
ith element of | is the x-directed magnetic flux passing between
a unit length of the ith conductor and the lower ground plane. If

I | -
[ B —— ’

Bofo lc I )
and if {C’]™! exists, then (4) will imply that the desired relation-
ship (2) is true. In the remainder of this section, we establish (5).

We formulate the magnetostatic problem with magnetic media
in terms of the total electric current Jyru, on the surfaces of the
conducting cylinders and on the boundaries between different
magnetic media. The total electric current on the conducting
surfaces is the conduction current plus the magnetization current.
The total electric current on the magnetic media boundaries is
the magnetization current. The magnetic flux density B is given
by

B=UXA=VA, Xa, (6)

where A, is the only component of 4 due to steady current
flowing in the z direction. For the two-dimensional problem, it is
given by

A(o)-——E/ Jr(p )ln("' ")dl (7

I-l ‘

where /, denotes the jth interface. The first N, interfaces are the
surfaces of the N, conductors. If the upper ground plane is

0018-9480/88 /0800-1293301.00 ©1988 IEEE




1%,

. present, the (N, + 1)th interface is the surface of this plane. The
last N interfaces are the magnetic media boundaries. Thus,

M-M""N; (8)

where M, is N, if the upper ground plane is abseat. If the upper
ground plane is present, them M, is N, +1. The number N/ of
magnetic media boundaries could be greater than N, -1 because
these boundaries are arbitrarily shaped, not necessarily parallel to
one another or to the lower ground plane. In (7), ¢’ is the
position vector of dl’, and ' is the position vector of the image
of dI’ about the lower ground plane.

Substituting (7) into (6) and assuming that p is not on any of
the interfaces (/, )}, we obtain

B & ( p-p p—¥
B(p)=-— Jr(p' - —
(p) z.,g,f,,’(” lo-oF lo-#1
The limits of (9) as p approaches /, from cither side are

bo & | p=o P
x - — 4 -

)xu,d/'. (9)

z)Xu,dl'

poJr(p)

L
ZF——;—(ux-‘). {pon !

i=1,2,---. M (10)
where f, denotes the principal value of the integral over / , and
a is a unit vector normal to /; at p. Moreover, B* (p) is B(p) on
the side of /, toward which » points, and B~ (p) is B(p) on the
other side of /.

On the surface of the ith conductor, A, is constant and is the
x-directed magnetic flux ¥, passing between a unit length of the
ith conductor and ie lower ground plane. Hence, similar to
(1, eq. (A2)],

ponl

a@=ve {107 (i

If the upper ground plane is present, it is the (N, +1)th conduc-
tor and, because A, vanishes on it, ¥, ,, = 0. Substitution of (7)
into (11) gives

M ar
Bo lo-pl) {oonl.
- J p' ln( ) dl’-wi’ .
2"1-11’:7( ) e —#l i=1,2,--+, M.
' (12)

Continuity of the tangential component of magnetic intensity
on the magnetic media boundaries requires that

< B*(p)-B‘(p) -0 ponl
B ™ ! i=M+1, M +2,-- M

. (13)

where 8, B* (p), and B~ (p) are the same as in (10). Further-

more, 4 is the permeability on the side of /; toward which a

points and p; is the permeability on the other side of /.

Substituting (10) into (13) and then dividing (13) by u,(1/p; -

1/p; ], we obtain

1 . 1
pol w' po &
—— | m———— +—-— Y
2 _1_-_}_ Jr(ﬂ) 2'j¥l£j-’r(9)
L sl w0

-
’

( p-p PP
-0 lo-#
{ponl,

imM +1, M +2,-- M.

2)-ndl’-O.

(14
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If the ith conductor is of finite cross section, then /, is a closed
curve on which

1
":Jr(n)'“—onxr(t’) (13)

uJ(p)= nxB*(p)

1
p (0) (16)
where a is the unit normal vector that points outward from the
surface of the conductor. Furthermore, B8 (p) and uS are,
respectively, the magaetic flux density and the permeability just
outside the conductor. In (16), J-(p) is the conduction current
on the conductor. Equations (15) and (16) imply that

Bo
J, - ——=Jr(p
C ( p) B; ( P) T( )
on the surface of the ith conductor, provided this conductor is of
finite cross section.
If the ith conductor is an infinitesimally thin strip, then /, runs
from one edge of the strip to the other on which

(17)

Jc(p)u:-nx[%-((—:-))--%:((—:} : (18)
Substitution of (10) for B (p) in (18) leads to
Je(p) -%[Et—; +;7%5]Jr(p)
1 1 1M
+ ;—: oy m] Jgf,‘fr(»’)
(e o

on the surface of the ith conductor, provided this conductor is of
zero thickness.

Now, consider the auxiliary electrostatic problem which has
the same geometry as that of the present magnetostatic problem,
but with relative permittivities ¢ /¢, sct cqual to py/p,. The
formulation presented in [1} is, in fact, valid for dielectric media
of arbitrary shape. The unit vector u, in (11) of {1] should be
replaced by m when the diclectric media arc arbitrarily shaped. 1t
is clear that (12), (14), (17), and (19) have the same mathematical
forms as (9), (11), (15), and (17) of {1}, respectively. Therefore,
the solution of the magnetostatic problem can be related to that
of the auxiliary electrostatic problem by

. 1 .
() ';;(—oafr”(v’),

i=1,2,-, N, (20)
where J{(p") is the conduction current of the magnetostatic
problem when y, =1 is the only nonzero magaetic flux and
oi"(p") is the Iree charge of the auxiliary electrostatic problem
when the potential of the ith conductor is unity and all other
conductors are grounded. Multiplying (20) by ¢, and summing
over i, we obtain

N 1 M
L 1) =— L of(0) ¥ (21

il Bofo j=1
After noting that the right-hand side of (21) is J(p), we in-
tegrate (21) over /, to obtain (5) with the jith element of [C 1
given by

G=[apo)ar, ij=120N. ()
’/
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Premultiplication of (5) by {C’]™! yields

¥ =ngto(C]7'T. (23)
The inverse of (C’] exists because [C’] is positive definite, which
can be concluded from the fact that the electrostatic energy
stored in the system is always greater than zero with nontrivial

free charge distribution on the conductors. Comparison of (23)
with (4) gives the desired relationship (2).

III. ConcLusioN

A simple relationship between the inductance matrix and the
auxiliary capacitance matrix has been given. Thanks to this
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relationship, the computer code given in {1] and (3] for abtaining
the capacitance matrix of the electrostatic probiem can be used to
obtain the inductance matrix of the magnetostatic problem:
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Boundary Integral Formulations for Homogeneous Material Bodies

Roger F. Harrington

Department of Electrical Engineering
Syracuse University
Sytacuse, NY 13244-1240, USA

Abstract- There are many boundary integral formulations for the problem of electro-
magnetic scattering from and transmission into a homogeneous material body. The only
formulations which give a unique solution at all frequencies are those which involve both
electric and magnetic equivalent currents, and satisfy boundary conditions on both tan-
gential E and tangential H. Formulations which involve only electric (or magneti%
equivalent currents, and those which involve boundary conditions on only tangential
(or tangential K ) are singular at frequencies corresponding to the resonant frequencies
of a resonator formed by a perfect conductor covering the surface of the body and filled
with the material exterior to the body in the original problem.

I. INTRODUCTION

In electromagnetic theory, a boundary integral equation is one which involves the
integral of an unknown source times a Green'’s function over the surface bounding
a material body. In this paper we consider boundary integral equations for deter-
mining the electromagnetic field internal and external to a homogeneous material
body, when it is excited by sources external to the body. The problem when the
sources are internal to the body, or when sources are both external and internal,
requires a minor modification of the theory.

There are infinitely many boundary integral equations that can be formulated
for calculating the electromagnetic field internal and external to a homogeneous
material body. In this paper we formulate two classes of such equations, which
we call source formulations and field formulations. In the source formulation the
problem is formulated in terms of unknown electric and magnetic equivalent cur-
rents separately for the internal and external regions, and the boundary conditions
are applied to tangential E and tangential H on the boundary surface S. This
leads to two equations in four unknowns, and further restrictions must be made on
the sources. In the ficld formulation, a single set of equivalent currents {J, M}
is used to produce the field in both the internal and external regions, and the
boundary conditions are again applied to tangential E and tangential H on S.
This leads to four equations in two unknowns, and we must make a further choice
of how to satisfy the equations. Some choices of sources and field equations lead to
operator equations that are singular at certain “resonant frequencies”, and other
choices lead to operator equations that have unique solutions at all frequencies.

A number of different boundary integral equations for homogeneous material
bodies have been used for computation by various authors. For two-dimensional
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problems, a formulation obtained by Miller (1] has been used by Solodukhov and
Vasil’ev [2] and by Morita [3]. A formulation equivalent to our E-field method
has been used by Wu and Tsai (4], and by Arvas, Rao, and Sarkar {5]. For three-
dimensional problems, a formulation obtained by many investigators, called the
PMCHW formulation in [6], has been used by Wu {7], by Mautz and Harrington
{6] and by Umashankar, Taflov, and Rao in [8]. For references to methods not
classified as boundary integral formulations, see {8].

II. DEFINITION OF OPERATORS

The problem to be considered is shown in Fig. 1. The homogeneous imate-
rial body is bounded by S and has constitutive parameters u;, ¢; (i denotes
internal) . The region external to the body is also homogeneous and has constitu-
tive parameters pe, ¢¢ (e denotes ezternal). The impressed sources are denoted
T_mp , F"‘P , and the field that they produce with the body absent is denoted
E'™P H'™P . The unit normal pointing outward from § is denoted 7. The total
field in the internal region is denoted E, H. The total field in the external region
is

F= Eimp + E—ncat (1)

"= Fimp + H—acal (2)

where the scattered field E““, H*® is that produced by the material body.
Lossy bodies can be treated by considering ¢;, or u;, or both, to be complex.

internal region external region

[T Her &4

E,E E - F"W + E."‘
F = F"" + Fntll

Figure 1. A material body bounded by § in the impressed field produced
by 7™, M.
We use eleciric and magnetic surface currents radiating into homogeneous me-

dia of infinite extent as equivalent sources. The notation J., M, denotes equiv-
alent currents on § radiating into media having constitutive parameters u., £
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everywhere, as shown in Fig. 2. Tie notation E,(j.,ﬁ.), ﬁ,(je, 7&7,) is used to
denote the ficld produced by J,, A, , obtained from the usual poteutial integrals.
In other words,

Ee(Je,Me) = Ee(7.,0) + E(0,M,) 3)
He(Je, M) = He(J.,0) + He(0,M.,) (4)
where

Ee(Je,0) = —jwAe(Te) - Voe(Te) (5)
He(Ter0) = ;l-v x Ae(Te) (6)
Ee(o,ﬁe) = —Elv X FG(M—!) (7)
He(0,M,) = —jwFe(M¢) — Vipe(M,) (8)

Here 4., Fe, ¢e, and 9. are the usual magnetic and electric potentials
A = e / [ 7167 - 7y a 9
be = ;1://; ge(F)Ge(F — 7) ds' (10)
Fe= e,/LH,(;’)G,(F - 7)ds (11)

1 - - - ]

Ye = ’—l://;me(r )Go(F - 7') ds (12)

The electric charge ge and magnetic charge m, are related to J. and M, by
the equations of continuity

1 —
Ge =——_—-V,-J¢ (13)
Jw
Me = ".—l'vc : Me (14)
jw

where V,. is the surface divergence. The Green’s function is that for infinite
media,
e—Jke[T—7|

(15)

©T njr -7

where ke = w /rete .

The boundary integral equations involve the tangential components of E and
H over S. However, the tangential component of H is discontinuous at a surface
current J, and the tangential component of E is discontinuous at a surface
current H. Hence, it is important to evaluate tangential components on the
proper side of surface currents. For this, we define a surface S+ to be just
outside §, and S— to be just inside S (see Fig. 2). The notation

(16)
(17)

:)
| t*:l

+
e
+

(
e

&'I *‘I
vv

Je,
Je,

:»
m




#Lﬁ

4

Harrington

denotes tangential components evaluated on S+, and the notation
A x E; (Je, M) (18)
fx Hy (Je,Me) (19)

denotes tangential components evaluated on S—.

We also need equivalent surface currents (J;, M;) on § radiating into media
having constitutive parameters y;,¢; everywhere, as shown in Fig. 3. The no-
tation E;(J;, M;), H;(J;, M,) is used to denote the field produced by J Jin M;,
obtained from the usual potential integrals. In other words, E;(J;, M;) and
H(J;,M;) are given by (3)-(15) with all subscripts e changed to i. Again tan-
gential components of E and H are discontinuous at surface currents J and M
on S. Just as in the previous case, we define a surface S+ to be just outside S,
and S— to be just inside S (see Fig. 3). To denote tangential components on
S+ we use (16) and (17) with subscripts e replaced by i. To denote tangential
components on S— we use (18) and (19) with subscripts e replaced by 1.

Figure 2. The surface currents 7&@: _rad_i_gting_int_«_) rx_13dium HeyEe
everywhere produce fields E.(Je, M), He(Je, Me) .

Figure 3. The surface currents 7,’,@‘_!-.' Jaciii;ting_ilﬁo _n_ledium Mir€i
everywhere produce fields E;(J;, M;), Hi(J;, M;).
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III. SOURCE FORMULATIONS

To solve the original problem of Fig. 1, we have to solve the following mathematical
problem: In region e, find the field (1) and (2), where E'™P, 1" are a known
field and Em", H*® are an unknown solution to Maxweil’s equations satisfying
the radiation condition. In region i, the unknown field E, H is a solution to
Maxwell’s equations. Furthermore, the tangential components of E and H over
S+ in the external region must equal the tangential components of E and H
over S— in the internal region.

By the use of equivalent currents Je,Me over S radiating into media e every-
where, Fig. 2, we can write a general expression for the field in region e as

E.=E™ + Ee(T., M) (20)

Fg = Fmp + -H-e(jg,ﬁe) (21)

By the use of equivalent currents Ji,M; over S radiating into media i every-
where, we can write a general expression for the field jn region i as

Ei=EiJi,M,) (22)
Hi=HyJ;, M, (23)
The formulas (20) and (21) give the field E,H outside S (andon S+ ); and the
formulas (22) and (23) give the field E,H inside S (and on S—). Continuity

¥
of the tangential components of E and H from the external to internal regions
requires that

A x [E‘""’ +E; (7,,M,)] =4 x E; (7, ;) (24)

A x [F‘"“’ + Fj(i,,xi,)] =ax B (7, M) (25)
Rearranging (24) and (25), we have

i x [EZ(Te, TT.) - E;(i,-,?w’i)] = -AxE™ (26)

ax (B! (Je,Me) - BT (75, 7H)] = -4 x ™ (27)

These are two equations to determine four unknowns (Jey Me,Ji, M;). We must
enforce two more relationships among these four unknowns before a unique solu-
tion can be obtained.

A. Electric Current Formulation

One simple way to reduce the four unknowns to two unknowns is to set
M.=M;=0 (28)

i.e., express the fields in terms of surface electric currents only. Equations (26)
and (27) then reduce to

i x [Bd(7,0) - E;(7:,0)| = - x B (29)

r4
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A x [T/’;‘(L,O) - 71';(7‘.0)] = —ax H™ (30)
We will show in Section V that the operator represented by (29) and (30) becomes
singular st frequencies for which S, when covered by a perfect electric conductor
and filled with the external medium, forms a resonator. Hence, numerical solution
of (29) and (30) must fail in the vicinity of such frequencies.

This failure can be clearly seen from Fig. 4 of {4}, where, in addition to the
backscattering cross section, the authors compute the condition number of the
macrix of the numerical solution. The matrix becomes extremely ill-conditioned
at kga = 2.405, which is the first internal resonance of an empty conducting
circular cylinder. Note that the computation wert bad regardless of the losses

in the material cylinder, since it is the external medium (in this case free space)
which determines the frequencies of failure of the equation.

B. Magnetic Current Formulation

Another possible way to reduce the four unknowns in (26) and (27) to two
unknowns is to set
TJe=J;=0 (31)
i.e., express the fields in terms of surface magnetic currents only. This is the dual
case to A above, and the equations are self dual. (An interchange of symbols
according to duality (9, Sec. 3-2| produces equations of the same mathematical
form.) Hence, the dual equations must become singular at dual frequencies, i.c.,
frequencies for which the surface S, covered by a perfect magnetic conductor and
filled with the external medium, forms a resonator. These resonant frequencies
are the same as those for the electric current case, section A above, and hence the
magnetic current formulation fails at precisely the same frequencies as does the
electric current formulation.

C. Combined Current Formulation

Another way to reduce the number of unknowns in (26) and (27) to two is to
set

Je = -7.' =7 (32)

M.=-M;=M (33)
In other words, use a single unknown electric current J to represent both J,
and —J;, and a single unknown magnetic current M to represent both M, and
—M;. This we call the combined current formulation. The reason for choosing
(32) and (33) is most easily seen from the viewpoint of the field formation of
Section IV, where we discuss it in more detail. It is shown in Section IV-A that

the combined source formulation is equivalent to the combined field formulation,
which has been shown to be nonsingular at all frequencies.

D. Other Choices

Many other relationships among Je, M, J;, M; could be chosen. One choice
which would lead to a formulation which has no frequencies of singularity is an
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extension of the combined source formulation for conducting bodies [10]. This
involves choosing

M, = aeh x J, (34)
M; = apn x J; (35)
where ae and a; are constants to be chosen. For reasons discussed in {10}, a good
choice is a¢ = n, and a; = n;, where n, and n; are the intrinsic impedances
of region e and region i, respectively. Also, a proof similar to that used in [10]
shows that the operator resulting from (34) and (35) has no singular frequencies,

and no mathematical difficulties would be encountered in a numerical solution to
(26) and (27).

IV. FIELD FORMULATIONS

In this formulation we use the equivalence principle [9, Sec. 3-5] to pick a given set
of sources able to produce the desired field, and then satisfy sufficient boundary
conditions on the field to determine the sources. This is the approach used in {6).
It might alternatively be called a direct application of the equivalence principle.
According to the equivalence principle, an electromagnetic field can be termi-
nated by placing the required electric and magnetic surface currents on S. If we
specify that the field and sources outside S remain the same as in the original
problem, Fig. 1, then the currents
J =

x H =nx (™ + T*Y (36)
=Exa=(E"P+E“ x4 (37)

do not change the field outside S but produce zero field internal to S. Since the
field is zero internal to S, we can change the medium to any convenient value.
In particular, if we replace the internal medium by the external medium, we have
J and M radiating into a medium with pe,e. everywhere. This gives us the
desirable situation that the potential integrals can be used to calculate the field
from J and M. This procedure gives us the external equivalence of Fig. 4.

A second application of the equivalence principle gives us the internal equiva-
lence of Fig. 5. We specify that the field internal to § remain the same as in the
origiaal p.oblem, and the field outside S be zero. This requires the terminating
currents it x (—H) and (—F) x i, the minus sign resulting from the fact that
7 now points into the region of zero field. Hence, the surface currents required
for Fig. 5 are just the negative of those for Fig. 4, given by (36) and (37). Once
again we can change the medium in the region of zero field to any desired value.
In particular, we change it to be equal to the internal medium, so that we have
—~J and —M radiating into a medium with p;, €; every whcre Hence, we can
again use the potential integrals to calculate the field from ~J and —M.

We now use the notation of Section Il to write four boundary integral equations
involving the tangential components of E and H on S— in Fig. 4 and S+ in
Fig. 5. Just inside S in Fig. 4, we have A x E =0 and A x H =0, or

:)
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=imp

N

-0

He,o €,
F = —E—1 + Eu-l
-H—- = FM’ + -E—-eul

Figure 4. The field external to S is the same as in the original problem,
Fig. 1.

-M A

By &

zero field

Figure 5. The field internal to § is the same as in the original problem,

Fig. 1.
A x [E‘;(i,”ﬁ) +E™) =0 (38)
A x [7{';(7, M) + 71'*’""] =0 (39)
Just outside S in Fig. 5, we have A x E =0 and a x H =0, or
axEf(-7,-M)=0 (40)
axilGJd,-M) 0 (41)

Rearranging (38) and (39), and taking the minus signs out of the operator in (40)
and (41), we have

J, E™ (42)
-7, Tw‘) aAx H™P (43)
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axEJ(J,M)=0 (44)
axHI (T, M)=0 (45)

Note that these are four equations in two unknowns J,M. Perhaps certain

pairs of these equations can be used to compute J,M . More generally, linear
combinations of them can be used.

A. Combined Field Formulation

The method that appears to have been used the most is to reduce the set of
four equations to two by adding (42) to (44) and (43) to (45). This gives us the
pair of equations

i x [EZ(3,M)+ B/ (7,M)]| = -ax E™ (46)
A x [F;(i,‘ﬂ) + F?(?,H)] = -aAxH™ (4m)

These are very similar to the equations obtained from the combined current for-
mulation, Section III-C, except for the side of § on which the various fields are

evaluated. To be explicit, if we substitute (32) and (33) into (26) and (27) we
obtain

A x [E:(i,m +E; (T, M’)] =-Ax E™ (48)
A x [ﬁ:(i, M) + H;(i,m] = -ax @A™ (49)

We now show that, in spite of the different positions of + and — signs, (46) and
(47) are equivalent to (48) and (49).
At any current sheet we have (9, p. 34]

ax D7) =7 (50)
[E“’ - E(”] xi=M (51)

where E(l), F(l) i3 the field on the s* Y2 of S into which # points, and E(z), ﬁ(z)
is the field on the other side of S. In terms of the notation of this paper,

A x [ﬁja, M) - F;(i,ﬁ)] =7 (52)

ax [ENT M) -E;(3,M)| = -M (53)
Rearranging, we have

axHI (T, My=axH,(T,M)+7T (54)

axEX T, M)=axE,(T,M)-M (55)

The same equations are valid for subscripts e replaced by subscripts i. Substi-
tuting (55) and the same equation with subscripts e changed to i into (48), we
obtain (46). Substituting (54) and the same equation with subscripts e changed
to i into (49), we obtain (47). Hence, the combined field formulation of this
section and the combined current formulation of Section 11I-C are identical.
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It is shown in 6] that the combined field formulation gives a unique solution
at all frequencies. Hence, the combined current formulation of Section I1I-C also
gives a unique solution at all frequencies.

B. E-field Formulation

If we take only the two equations involving tangential E, (42) and (44), we
have the E-field formulation ‘
axE;(J,M)=-axE"" (56)
axEf(J,M)=0 (57)
This formulation was used in [5] for the more general problem of both dielectric
and conducting cylinders present. It may seem strange at first that this for-
mwulation makes no use of the boundary conditions on tangential H. However,
tangential H is determined by tangential E at most frequencies so that (56) and
(57) are sufficient to determine J and M at most frequencies. However, we show
in Section V that the E-field formulation will fail at frequencies for which §,
when covered by a perfect electric conductor and filled with the exterior medium,

forms a resonant cavity. These are precisely the same frequencies at which the
electric current formulation, Section 1II-A, fails.

C. H-fleld Formulation

Dual to the E-field formulation, we can obtain an H-field formulation by using
only (43) and (45) from the set (42)—(45). Since the H-field formulation is dual to
the E-field formulation, it uniquely determines J and M at most frequencies. It
will, however, fail at frequencies for which S, when covered by a perfect magnetic
conductor and filled with the exterior medium, forms a resonant cavity. Since the
field equations are self dusal, these frequencies are precisely the same frequencies
at which the E-field formulation fails.

D. Other Choices

Other choices of two equations from the set (42)-(45), and linear combinations
of the equations, could be made. For example, instead of the simple addition of
equations used in Section IV-A, we could take the more general linear combina-
tions )

A x [E:(i,"ﬁ) + a‘s,*a,‘m] =—AxE™ (58)

A x [F;(?,’M‘) +gHEH(T, M)] = —ax §'™P (59)

where a and (3 are constants to be chosen. It is shown in (6] that any choice
of a and B for which a8* (+ denotes conjugate) is real and po:-itive gives a
formulation having a unique solution at all frequencies. In particular, the choice
= —¢i/ee (60)

B = —pi/pe (61)

gives the Miiller formulation [1). This formulation has the advantage that the
static electric field contribution to the left-hand side of (58) due to the electric
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charge associated with J is zero. Similarly, the static magnetic field contribution
to the left-hand side of (59) due to the magnetic charge associated with M is zero.
According to the last sentence on page 300 of (1], the singularity of the kernels
in (58) and (59) due to the electric and magnetic charges is no more pronounced
than the reciprocal of the distance between the source point and the field point.
Hence, the singularity that the kernels of the integral equations (58) and (59)
exhibit as the source point passes through the field point is not as pronounced
as the singularity of the kernels of (46) and (47). Computations have shown (6]
that the use of Miiller’s formulation (this section) instead of the combined field
formulation (Section IV-A) can lead to more accurate solutions for low contrast
bodies.

There are infinitely many other choices of combinations of equations from the
set (42)-(45) that could be made. There may be theoretical and/or computational
reasons for other choices, but such reasons are not at present known. We therefore
do not discuss any other choices of combinations of equations.

V. SINGULARITIES OF OPERATORS

We stated in Section I1I-A that the electric current formulation failed at frequen-

cies for which §, when covered by a perfact electric conductor and filled with the

external medium, formed a resonator. In Section IV-B we stated that the E-field

formulation failed at these same frequencies. We now prove these statements.
For these proofs, we use the theorem that, given an equation

Lf=g (62)
the operator L is singular if the corresponding homogeneous equation
Lf=0 (63)

has a nontrivial solution f,. For the electric current formulation, (29) and (30),
we must show that there are some frequencies for which

A x [’E;‘(?e,O) - E,T(?.-,O)] =0 (64)
A x [Fj(i,,O) - 7{‘,-‘(7,-,0)] =0 (65)

are satisfied by J.,J; # 0,0. In words, (64) and (65) state that we must seek
nonzero Je such that 7 x E. and # x H, are zero on S+, or nonzero J; such
that 7t x E; and # x H; are zero on §—, or both.

In the next paragraph, we assume that (64) and (65) are true. We use (64)
and (65) to derive (66) and (67). Although (66) and (67) are true, there is no
assurance that they are as restrictive as (64) and (65). Therefore, the set of all
possible solutions to (64) and (65) will belong to the set of all possible solutions
to (66 and (67).

Consider the composite situations where, in region e, (E.,(Je,0), He(Je,0))
exists in medium (g, €e) and, in region i, (E;(J;,0), H;(J;,0)) exists in medium
(14, €;) . Because of (64) and (65), the tangential components of both the electric
and magnetic fields in the composite situation are continuous across S. Therefore,
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the composite situation has no sources so that its fields collapse to zero. As a

result, (64) and (65) imply that

A xEf(Te,0)=0 o6
v (66)
ane(J¢,0)=0

Regarding (66), refer to Fig. 2. From our knowledge of cavity resonators, we
know that there are resonances within S, with currents J. on S such that
both tangential E and tangential H are zero on S+. Hence, at each resonant
frequency, there will be a non-trivial J, which satisfies (66). A resonant frequency
is a frequency at which S, when covered by a perfect electric conductor and filled
with (yte,€e) forms a resonant cavity. Moving on to (67), refer to Fig. 3. Again
from our knowledge of cavity resonators, we know that there can be resonances
within §. However, this time we are evaluating A x E and # x H on §-
as denoted by the — superscripts in (67). There are no resonances for which
tangential £ and tangential H are both zero on S—. Hence, (67) can never
have a non-trivial solution J;.

In the previous paragraph, it was shown that the resonant frequencies were
the only frequencies at which (66) and (67) could have a non-trivial solution
(JesJ;). This non-trivial solution is called (JR,0) where Jp is the resonant
current. Obviously, (J,0) satisfies (64) and (65). It turned out (66) and (67)
are s restrictive as (64) and (65). The solutions to (64) and (65) are the same
as th« solutions to (66) and (67). Therefore, the only frequencies for which the
total operator of (64) and (65) is singular are the resonant frequencies. This is
the statement made in Section [[I-A.

The homogeneous equations corresponding to the E-field formulation (56) and
(57) are

A x Ex(T, M) =0 (68)
AxEN(T,M)=0 (69)

In this paragraph and the next two paragraphs, we assume that (68) and (69) are
true and investigate how (68) and (69) restrict (J,M). Consider the composite
situation of Fig. 6 where (E(~J,~M), Hiy(~J,~M)) exists in (pi,€i) internal
to S and (E.(J,M), He(J,M)) exists in (e, ) external to §. The field in
Fig. 6 is supported by equivalent electric and magnetic currents 7 and M on S
given by

T =ax (FHT, M) - T (-7,-7)) (70)
M= i x (E:(F,M)-E;(—'J',-M)) (1)

In this paragraph, we find how (68) and (69) restrict 7 and M of (70) and
(71). We have

T=nx (?1‘;“(7,‘1\2) -H.(J,3)) (12)
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M = - x (E;(3,M) - E. (3, M) (73)
and
T=dx (H(3,M)-H;(3,M)) (74)
M = - x (E}(3,M) - E{(J,H)) (75)
Substraction of (74) from (72) yields
T =axH (T, M)+4x 7, (T, M) (76)
where 7 is given by (70). Subtraction of (75) from (73) yields
M=-axE;(J,M)-axE, (T, M) (77)

where M is given by (71). Since there are no external resonance, (69) implies
that '

ax BT, ) =0 (78)
Equation (68) implies that
e o
AT @) = {05, o reonenes (719)

where “resonance” means that the frequency is a resonant frequency and “no
resonance” means that the frequency is not a resonant frequency. Substitution of
(78) and (79) into (76) gives
- 0, no resonance
JT=1a7
R, Tresonance

(80)
Substitution of (68) and (69) into (77) gives

M=0 (81)

_In this paragraph, we express (7, M) in terms of the field just inside S due to
(J, M) of (80) and (81). Substitution of (78) and (69) into (74) and (75) gives

J=nxH;(-T,-M) (82)
M =-axE;(-7,-M) (83)
Now, (E;(—j, -M),H; (-7, —M-)) is the electromagnetic field just inside S

due to J in Fig. 6, so that (82) and (83) can be recast as
T =axHg(T,0) (84)
M= -axE; (7,0 (85)

where (E;(7,0),H;,(J,0) is the electromagnetic field just inside S in Fig. 6.
This field is radiated by J of (80) on S in the presence of (ji;,¢;) inside S
and (pe,¢e) outside S. If the frequency is a resonant frequency, then (J, M) of
(84) and (85) is not trivial for a # 0 because the non-trivial J of (80) radiates
a non-trivial field internal to S in Fig. 6. However, if the frequency is not a
resonant frequency, then J = 0 so that the composite field of Fig. 6 collapses to
zero because it has no source. In this J =M = 0.
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(1. %) H.(T. M)

7

E(-T,-M), Bi(-T,-M)

g,

S

Figure 8. The composite situation used to prove that the E-field formu-
lation fails at resonant frequencies.

VI. DISCUSSION

We have shown that there are many different boundary integral formulations for
the problem of electromagnetic scattering from and transmission into a homoge-
neous material body. One :lass of formulations, called source formulations, leads
to two equations in four unknown currents J., M,,J;, M;. Two additional re-
lationships among the currents must be postulated. When only a single type of
current is used, say electric only or magnetic only, the formulations fail at certain
resonant frequencies. The formulation remains valid at all frequencies only if both
types of current, electric and magnetic, are used.

A second class of formulations, called field formulations, leads to four equations
in two unknown currents J, M. We must then choose which two equations, or
which two linear combinations of the four equations, to use. When only two of
the equations are used, say the E-field or the H-field equations, the formulations
fail at certain resonant frequencies. These are the same frequencies for which
the single-source formulations fail. */hen we take linear combinations of the four
equations, such that we are in effect forcing all four equations to be satisfied, we
obtain formulations valid at all frequencies.

An extension of the source-type formulation has been made to give a single-
equation formulation for the scattering problem (11,12]. This formulation is ba-
sically an electric current formulation of the type discussed in Section 1II-A, for
which an additional relationship has been used to eliminate J;. The result is a
single equation in terms of J,. to give the scattered field. The solution does not
give the transmitted field directly. This involves finding J;, the source of the
internal field. Because this single-equation formulation is of the electric current
type, it fails at those frequencies for which S, when covered by a perfect electric
conductor and filled with the external medium, forms a cavity resonator. How-
ever, it is possible to establish a single-equation formulation in terms of combined
sources to eliminate this problem [13].
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. The Excess Capacitance of a Microstrip Via in a
Dielectric Substrate

TAOYUN WANG, stupNt MiMBiR, (EEE, JOSEPH R. MAUTZ, SENIOR MEMBER, 1EEE,
AND ROGER F. HARRINGTON, teiiow, (ELE

Abstract—The equivalent circuit of a via which connects two semi-
infinitely long microstrip transmission lines imbedded in a dielectric
medium above a ground plane is considered. The I'-type equivalent
circuit consists of an excess capacitance and an excess inductance. The
excess inductance of the via is the same as the one computed in the case
of free space (without a substrate). The excess capacitance of the via
is computed quasi-statically by the method of moments and the image
method from the integral equations. It converges rapidly as the num-
ber of image terms is increased. Parametric plots of the excess capac-
itance of the via are given for reference.

[. INTRODUCTION

VERY important type of microstrip discontinuity in

integrated circuits is a via connection. An often-used
model for analysis of this type of discontinuity is a mi-
crostrip via connecting two semi-infinitely long transmis-
sion lines, as shown in Fig. 1. This problem has been
investigated in [1]-[3] in the case of free space (i.e., with-
out a substrate). The via effect on the transmission line
(TEM) modes is approximated by an equivalent circuit in
the previously mentioned literature. The components in
the equivalent circuit are computed by the method of mo-
ments quasi-statically. The problem is more practical,
however, if the transmission lines and the via are imbed-
ded in a uniform dielectric, as shown in Fig. 2. Here, the
widths of the microstrips are assumed to be very small
compared to the heights so that the microstrips are re-
placed by wires of the equivalent radii which are one
fourth the widths. This equivalence is justitied in (4]. Let
Iy, hy be the heights of trunsmission line | (wire 1) and
transmission line 2 (wire 2). and, 4,, 4>, g, be the radii
of wire 1, wire 2, and the via (wire 3), respectively. By
assumption, iy, s, iy = hy >> ay. aa, ay. The interface
of the diclectric of permittivity ¢ is assumed to be paralicl
to the ground plane. The coordinate system is so chosen
that the x-axis is on the ground plane and parallel to wire
1 and wire 2 and that the y-axis coincides with the axis of
wire 3 (see Fig. 2).

Manuscript received December 5. 1988: revised May 24, 1989, This
work was supported by Digital Equipment Corporation. Mariboro. MA,
and by the Office of Naval Rescarch, Arlington, VA. under Contract
NOOO|14-88-K-0027. This paper was recommended by Associate Editor J.
G. Fossum. '

The authors are with the Depanment of Electrical und Computer Engi-
neering. Syracuse University. Syracuse. NY 13244-1240.
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Fig. 1. A microstrip discontinuity: via connection.
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Fig. 2. A transmission hine model of a microstrip via.

The equivalent circuit of the via for the quasi-TEM
modes is shown in Fig. 3, where Z,; and Z;, are the char-
acteristic impedance of the transmission lines | and 2.
respectively. Since the dielectric is nonmagnetic, L, is the
same as that in free space. which was determined in {3].
We wish to determine C, in this paper.

0278-0070/90/0100-00483%01.00 © 1990 IEEE
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Fig. 3. The equivalent circuit of the via.

II. FORMULATION

The excess capacitance in Fig. 3 is a quasi-static quan-
tity and is defined formally [1]:

Q- Lign - I:‘qu

C. = ” (1)

lim
htly >
where Q is the total charge on wire 1 of length /; (wire |
truncated at x = —/;), wire 2 of length /, (wire 2 trun-
cated at x = 1,), and the via. V is the constant potential
maintained on the surfuces of the wires with respect to
ground. It is convenient to assume that V' is 1 V through-
out the following text. o, and g, are the uniform charge
densities of single transmission lines | and 2. Numerical
computation of C, directly from (1) is not recommended
because the numerator is the result of subtraction of large,
nearly equal numbers as /| and /, get large. The more ef-
ficient method is to decompose the total charge density
into the uniform charge density and the excess charge
density. The latter is then determined by the method of
moments.

Let g be the total charge distribution. Then we may
write

qn *+ 4. on wire |
q = %3 + q., on wire 2 (2)
qes on wire 3.

Here gq) is ¢o existing on wirc 1 and gg is g2 existing
on wire 2. If gy, is delined as gy, existing on the extension
of wire | to x = oo and if ¢y defined as ¢, cxisting on
the extension of wire 2 to x = — o, we have

¥(qa) + ¥(qa) = 1,

1.2
(3)

where ¥ ( - ) is the potential due to the charge density - in
the presence of the dielectric and the ground plane.

The total charge distribution g is governed by the fol-
lowing boundary condition

on wire {, i

v(g) =1, onwirsl, 2 3. (4)
In view of (2) and (3). we writc
¥(q.) = ¥(qa) — ¥(gn), on wire |
v(q.) = ¥(4n) — ¥(qa). on wire 2
¥(q.) =1 — ¥(gn) = ¥(qa).  onwire 3. (5)

+1

49

Note that we replaced | — ¥ (qq ) by ¢ (qg ) on wire |
and 1 — ¥(qgn) by ¥(gm) on wirc 2 to avoid possible
significant round-off errors.

Equations (5) are integral equations to determine the
excess charge distribution. In order to obtain a moment
method solution for q,, we first truncate g, and (S) at x =
—K\h, on wire | and x = K,h, on wire 2. This approxi-
mation is justified due to the fact that ¢, and the right-
hand sides of the first two equations in (5). called the re-
sidual potentials on wire | and wire 2, respectively, decay
rapidly along wire | and wire 2. Experience has shown
that K, and K, should be between 2 and 3.

Let
Ni
p3 Loypm. on wire |
n=1
N2
q. = Z I,,zp,,g, on wire 2
n=1\
M
2-' Iu.\Pn]' on wire 3. (6)
n=1\
where {/,,n=1,2,--- N, i=1,2, 3} are expansion

coefficients to be determined. p,; are pulse expansion
functions defined as follows:

{

X, < x < x, + Ax

P elsewhere,
n=1.2" -, Nii=1]2
Kh +a
X = —Kh +(n-1)Ax, Ax, = Ryl T 4y
N,
K7h1 + a
G = —dy + (0 — 1)Ax, Axy, = 23
N,
! A < v < AL + AV
Put = n=1.2, 0 M
0 clsewhere,
h| - hz
Vo=l + (n - 1)av, Ay= T

In essence, we divide the truncated wires | and 2 and wire
3 into N,, N>, N, subsections, respectively, and assume
uniform excess charge distribution on each subsection. A
simple moment method solution is to satisfy (5) at the
center of each subsection. This results in the following
matrix equations:

Lllél + Ll:éz + Lné; = ’3|
Lllél + L::éz + L:sé; = F:
L,Q, + LuQy + L0y = Py (7)

where é, arc the column vectors of the coefficients /.. L,
are matrices whose mnth elements are the potentials due
to the unit charge distribution in the nth subsection of wire
i at the center ot the mth subsection of wire J. in the pres-
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ence of the diclectric and the ground planc. 13, are the

." column vectors whose mth clements are residual poten-

tials at the center of the mth subsection of wirc j. After
solving the above matrix equations, we sum up the cxcess
charge and obtain the excess capacitance of the via. That
is,

Z AX ZJ ,," + Av 2‘ Iu|

1=

In the next section, we wnll evaluate L,,~ and PI.

(8)

III. CompuTtaTION

To evaluate the moment matrices L, and the excitation
vectors P;, onc necds to find the potential distribution duc
to a uniform line charge in the presence of the dielectric
and the ground plane. There are several approaches to this
problem. One can place a surface polarization charge on
the interface and solve the problem in free space. This is
an efficient approach in the two-dimensional case (i.e.,
the line is infinitcly long). as |5] demonstrated. However,
in the three-dimensional case (i.¢.. the line is finite), onc
needs a huge number of expansion functions for the po-
larization charge and the method becomes too time con-
suming. Another approach is to use the image method.
Although the image method introduces an infinite set of
image line charges and is difficult to generalize to the case
of multilayered dielectrics, the solution is fairly straight-
forward and is obtainable numerically casily in the case
of one dielectric interface. We take the second approach.

The electrostatic potential due to a unit point charge in
the presence of a dielectric interface parallel to an infinite
ground plane (i.e., the Green's function of our problem)

(52 hyg) ‘o
Bt S o L L

TITTIITTIIITIIIIIITI T 7R VPO

ground
(a)
- —— = e = e m~ m— r m — amar — — ———— y-_h
.
iny, hy gl
*~—
{x1:hz0)
TITITTIITITTTITITIII 77777777 VO
ground
(b
‘0
et e -, — e —— - y=h,
I(°"2.o)
10.%,0)
TTTTTITITTITTTT 77T 7777777 7RI 77 y:0
ground
(©

Fig. 4. Theee cises of line charge sources.

using an integral representation of the free-space Green's
function {10}, {11]. Then, the potential distribution due
t0 a uniform line charge is obtained by integration over
the line source. Reference [6} gives the complete detailed
derivation.'

Case |: A uniform line charge of finite length with unit
line charge density lies on the diclectric interface. The
location of the linc is specified by its two end points ( X,
hy.0) and (X5, /1,, 0). as is shown in Fig. 4(a). Call this
line charge A\,. Then the potential duc to Ay is given by
(6]

l 2

\/(Xg —x): + (v - h,)z +20 4+ X - x

‘L(A')'rinmr = In

dreg 1 + ¢,

vi(X, —x): +(y—h,): + 04X —x

\/7X,—r)+(v (2k +

l)h.)2 +T X —x

3
Ze, z 1 — ¢
| + € 4-0\1 + ¢

_ 1 2 i l—e,)‘
4rey | + €, 4=0\1 + ¢,

¢( >‘l ) |rmdiclculn'c

Ny =< # (v = (2% + )k

*In

\/(Xz —-.\')2 +(y+ (2k+ l)h,)2 +20+ X —x

\[(X. - .r)z +(y+ (2 + l)h,)z + 2

\/(X. - .t)', + (v -(2+ l)h,): + 27

has been obtained by the image method in which the im-
age charges are found directly |6]. |8]. by considering
flux lines rather than thc images themscives [9]. and by

(9)
\/—X.~—r) + \+(u+|)h.)'+:3+x.—
+ZZ+X3°.(
+X|".!'
(10)
+X|".(

"Note that many relerences such as {12§ do not give the Green's function
in all four combinations of source and lickl regions. Some relerences such
as [ 7] give o complete form, which is ot the simplest torm,
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. where r = (.x, v, 2) is the field point where the potential
* 7 is to be evaluated und €, = € /¢, is the relative dielectric
constant.

Case 2: A uniform line charge of finite length with unit
line charge density is placed inside the dielectric. The lo-
cation of the line is specified by its two end points (X,
hs, 0) and (X5, h., 0), as is shown in Fig. 4(b). Call this
line charge A,. Then the r~=>ntial due to A, is given by

(6]

4

Ay

According to (3). the potential diie to the charge density
gy, onthe line (=00 < v € oo, v=~h, z=0)is unity.
Since this potential is given by the product of gq, with the
right-hand side of [6, (A-73)} with x, h, y, and ¥’ replaced

L2, o (1 -¢)
y AN = - . E 4
. \')""‘-‘" dre | + e, 4-0\1 + ¢,
VIXs =) (v = hy + 2 +#224 X —x
< In
ViXs = xY + (v +hy +2h) #2234 X —x
\/rX. - .r): + (v + h + 2kh.): +20+ X - x
. (1)
VX, =) +(y=h +2kh) +22+ X, —x
YA Lo Ly (lzey
Mrmdicleane ™ 476 (To  dme st \ 1 + ¢,
viX, - .\r)2 +(y—h - Zkh,): +22+ X -x
* In
ViXo =V # (v + hy— 2% +2° + X —x
ViX, —x) +(y+h—2kh) + 2+ X, —x
. (12)
VX, = x) + (v == 2%y + 22+ X, = x.
In (12), L. is the series in (11). by a,, k, h,, and h,, respectively, we obtain
* Case 3: A uniform line charge of finite length with unit 290 2 2, > /1 =g\
line charge density is placed inside the dielectric. The lo- aren 1 + e {‘" <Z—> + kg (l + € >
cation of the line is specified by its two end points (0, Y|, 0 'I ’ ! "
0) and (0. Y, 0). as is shown in Fig. 4(c). Call this line - In <| + ->] = 1. (15)
charge X Then the potential due to N, is given by [6] k
! e 09‘ | — ¢ !
AN = — :
id “)I’"‘“" dme |l + €, 4=0 <l + e,)
el (Y, = 2k =) 2 Yy = 2y -y
- In
\/\ Yo + 2kh, + ,\'): + 0+ Y+ 2kh +y
\/.\': + (Y, + 2kh, + _v)2 + 224+ Y + 2%kh + v
. (13)
Vil + (Y, = 2%kh, - _v)l + 204+ Y, = 2%kh -y
T I —¢\
v M”"""""W"“ Ame LZJU T ire d7e L%JI <l + e,)
P+ (Vs + 2kh, - o+ i+ Ve 2k -y
\/ (Vs = 2hy +v) P+ V= 2k +y
(Y, = 2khy + N Y =2+
(14)
\/.r’ + (Y, + 2khy - y)z + 37+ Y, + 2%~y

In (14), L., is the series in (13).
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Accordmg to (3). the potential duc to the charge density

* goaontheline (- s v s o v =/, 2 =0)is unity.
“Since this potential is given by the product of o with the
right-hand side of [6, (A-75)] with x, A, ¥, and v’ replaccd
by ay, Ay, hy, and h,, respectively, we obtain

t () « & (15 (- )
d7e In a, +k§ 1 + ¢, ! k*hi =1

(16)

The two-dimensional potentials on the left-hand sides of
(15) and (16) are also given by Weeks [7].

Now, it is trivial to write out the expressions for the
moment matrices and excitation vectors. In fuct, we only
need to use the formulas in the dielectric region. A small
special consideration must be made when the diagonal
elements of L; are evaluated. In that case. the & = 0 terms
in the scries in (10), (12), and (14) are replaced by

-u
’ — ] +1
-\'i ‘)[
21n = i=1.2 (17)
i_
A
2(1\ ' Ay 4Y| + ..\\'
+ o ——— e e
Zln ( I> ..U\ d"‘)a - A\
i=3 (18)
Results

dxegly, (m, n)

_ 2 % I —¢
] + 6 4=0\Il + ¢

r)

| {Ja;‘ + 81 +0, Voi+3i+6
: n k] R ] ' ¥ B

Vo7 + 33 + 6, Vo5 + 37 + 6.
0! = xnl - -‘.llnl
0 = Xin+ - -tl’" J =1 (if’" =n

2 tre bt ‘ the k = Oterm is
By =2(k + )iy replaced by (17).)
Bz 2k.h|
ol =X —X;nz
0 = Xne1y1 — Xm2 .

. J=2

By =hy + (2k + 1)h
By =hy — (2k + 1)
0! =xni
0 = Xinaiyt j=3

Bi = yu + (2k + 1)
By = ym = (2k + 1)1y
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dreyL,A(m. n)
@ &
Y =,
- lz.—.‘u<| + 6,)
In .
VOi + 33+ 8, VO + 3y + 6,
) l — ¢ A
+ v» :
7 L%‘l <l + e,)
| {W?i + 331 +8, V83 + @ +03]
n T 3 :
N HES NG s
2
l
=0
= '\'u.‘ - “l'll' j = l
= Yuen2 ~ .T,',,l
=2k + 1)hy + iny
=2k + UYhy = b
!
=1
€,
=1
E,
= Xy = Ao j=2(fm=n,
= v o the k = 0 term 15
= Nenz T A replaced by (17) )
= 2kh| + 2’13
= 2k
1 = 2[\"“ - 2/)3
= 2kh| |
=1
€,
_ 1
é(
= X2
= a2 j =3

= 2khy + hy + ¥,

Lan

= Zkh, - h: + v

= 2kh| - h: - '\',’,,
= 2khy + I — v,

Sm
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. dxe, L, \(m. n)

_ i l-e,‘
-7'A=u l + ¢,

- In

BT B+ VOt B+ hs

o l"( i
+ v, 4
y’ké‘n (l + e,>

o mw,mﬂs,,
VBT H 8L+ Ba VBT ¥ By + 84
2
L €
vy: =0
8 = x,,
B, = (2% + 1)h, s =1
B, = (2k + V)hy —
Bi=(2k+ 1)h
B = (2k + 1)h,
, -
Y = ;‘r
1
Y = e—
0=«
By, = 2kh, + I + v,
B, =2kh; + hy — v, ., j=2
By =2kh + hs — v,
By =2kh + Iy + v, .,
Be = 2khy — Iy = v,
By = 2khy = In + v,
By =2k, — ha + v, .,
By =2khy = hy — v, i

VO BT+ 8, VOt 4+ m!

<>

s
l -
Y=
€,
l
Y=
€,
0 =0

Bl = 2khl + _\./'u + A
‘33 = 2khl + _\',’,, ~ Vued

j=3(fm=n,
By = 2khy + v, — v, the k = 0 term i<
replaced by (18).)

By = 2kl + v, + v, .,
Bs = 2kh, = v, = v, .
Be = 2khy — v, + v,

B, = 2khy = v, + v,a

Bu = 2kh| - .\','" -V

o ] k
Pl(’") = 2q()l Z <l - 6,) ]n

I + e 40=0\1 + ¢

M+0
Vot +3i+ 0
I + 6 4=0\1 +¢, M+9

0= ~x,,
By =2(k « 1) hy; Bx = 2kh,
By=(2k+ Dl + . By =2k + 1)h ~ hs
Py(m) = - 2don 3: <l 6'>‘ n \/—r_ﬁ_‘ 9
i I+ 640\l +¢ VO + 33+ 0
€ [A=0\1 + ¢ VoI« 31 + 8
. i <| —e,>‘m~/§‘-7_;3’§+o}
i\l + e, Vot + Bl + 8
0= x
By =2k + 1)hy + hyy By=(2k + 1)Yh = hs
8y = 2kh, + 2hy: 8, = 2kh,
Bs = 2kh, = 2hs, B, = 2kh,

V8- + 37 + 8
VO + 35 + 6

2‘ “w ]"’ ,L
Py(m) =1 - do 2 ( E) In

I +¢64=0\1 + ¢
o "’.(l-e,>‘ln~/5’_+_E§+0
€ [t=0\1 + ¢ m+0
S <| —e,)‘l Jo-‘+6;'+01
PO
k-1 VO© + Bs + 0.




In the above equations, the primed coordinates denote the
center of each subsection and §y; = g, /(47ey). i = 1, 2.
Note that the expressions given above are not numericatly
most efficient but show some patterns for casy program-
ming. The following section gives some numerical re-
sults.
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=0 IV. Nuserican RisuLts anp DISCUSSION
The computer program to calculate the excess capaci-
By =(2k+ L)h + 30 Br=(2k + 1)y = ¥, tance of the via was written in Fortran and was run in an
IBM AT/PC machine with Microsoft Fortran. It only took
R . "N e 5 b . gl ., T 7T .
By =2khy + Iy + v, By =2%kh - h + ¥, .105 1o run a case (wnlh'.:‘) subscctions and 10 image terms
in the series). To verify our code. we made two basic
2k / , 5 ; , checks.
Bs = 2khy = hy = y\i  Be = 2kIy + 1z — ¥, Check 1: 1t the diclectric constant is 1 (i.c.. there is no

diclectric medium at ally. then the problem is identical to
the one in |3). For the following geometry:

hy = 0.08 m a, = 0.002 m
s = 0.4 m ay = 0001 m
ay = 0.002 m
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we calculated the excess capacitance:
C. = 0.3701 pF

With the same data, [3] gives C, = 0.3776 pF.

Check 2: The excess capacitance should be convergent
as the number of the image terms in the series used in the
calculation gets large. With the above data and ¢, = 4,
we plot the excess capacitance versus the number of the
image terms in Fig. 5. We observe rapid convergence.

To be consistent with [3], we plot the normalized ex-
cess capacitance of the via in various cases, as shown in
Figs. 6-8. Figs. 6 and 7 replace figs. 4 and 5 in [3] and
help design a reflectionless via together with the curves
of figs. 6 and 8 in |3]. Scc {31 for detailed discussion.

In conclusion, we used a simple wire model to compute
the excess capacitunce of a via connecting two semi-infi-
nitcly long microstrips. The approximation dcteriorates
when the microstrips are not narrow in comparison to the
heights of the microstrips above ground. In this case, one
can divide the microstrips into rectangles or triangles and
can still follow the same approach (the method of mo-
ments and the image method) as that in this paper.
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A Stable Integral Equation for Ele;tromngnetic
Scattering from Homogeneous Dielectric Bodies

JOSEPH R. MAUTZ, SENIOR MEMF.ER, IEEE

Abstract—1t is shown that a previously derived integral equation for
electromagunetic scattering from a homogeneous dielectric body does not
have 8 unique solution at resonant frequencies of the cavity formed by
making the surfsce S of the body perfectly conducting and filling the
region internal to S with the external medium. This integral equation was
formulated so that an equivalent electric current radiates in the presence
of the homogencous externsl medium (o produce the scattered field
external to the body. A combination of equivalent electric and magnetic
currents is used to formuiste an integral equation whose solution is
always unique.

[. INTRODUCTION

Consider electromagnetic scattering from a homogencous dielec-
tric body immersed in a homogeneous medium. The surface of t+
body is S. Assuming that the scattered field can be producc. b:
equivalent clectric current J, placed on S and radiating into o
homogeneous medium having the material parameters of the external
ambient medium. Marx [} derived an integral equation for J, and
Glisson [2) put this equation into familiar notation. A resonant
frequency is a frequency for which S, when covered by a perfect
electric conductor and filled with the external medium forms a
resonant cavity. At a resonant frequency, this integral equation does
not uniquely determine the pure electric current that supposedly
produces the scattered field external to S. Actually, at a resonant
frequency, a pure electric current is not sufficient to produce an
arbitrary scattered field; a magnetic current is also needed (3, pp.
351-362].

1I. FORMULATION OF THE INTEGRAL EQUATION

Continuity of the tangential electric field across S is expressed as
(2, eq. 9]
Ax(E +E)=axE . )
Except for the superscripts plus and minus, our notation is that of 2].
The superscript plus denotes field evaluation on the side of S facing
the external region and the superscript minus denotes field evaluation
on the side of S facing the region internai to the bady. We assume that
the electromagnetic ficld (E,, H,) is radiated not by J, alone but by
the combination of the electric current J, and the magnetic current aft
x J,, both exactly on S:

E,=E,(J,, ad xJ,) )

H.=H,{J,, ait xJ,). 3)

Manuscript received January 27, 1988: revised May 10, 1988. This work
was supporied by the Office of Naval Rescarch. Arlington VA, under
Contract N00014-85-K-0082. and by the New Yurk State Centcr for
Advanced Technology in Computer Applications and Sofiware Engineering
(CASE), Syracuse University.

The author is with the Depariment of Electrical and Computer Engincering,
Syracuse University, Syracuse, NY 13244-1240,

(EEE Log Number 8927717.

Here, a is an arbitrary constant. The source (J,, aft x J,) is similar
to the combined source in [4]. If a = O, then the integral equation in
the process of being dcrived will be the onc presented in {2]. The ficld
(E4, Hy) is radiated by the combination of electric and magnetic
currents J, and M, exactly on S:

Eq=E (34, M) 4)

Hy=H,(J4, My). (5)

If, as in [2], (J4, M) is to radiate no field in the external region, then

Jg= —Ax(H} +H') 6)

M;=-(E}+E)xi. )]

The original scattering problem, the simulation of the field in the
cxterior region, and the simulation of the field in the interior region
are as illustrated in (2. Fig. 1] with M, replaced by @t x J,.

Substituting (2), (4). (6), and (7) into (1) and rearranging terms,
we obtain an integral equation similar to [2, eq. (24)]:

My-axE; (35, Mg)= -ax(E'+E; (AxH', E'xf)} (8)
where
Ja=-axH}J,, adx],) 9)

My=AxE}(J,, ad xJ,). (10

The homogeneous equation associated with (8) is

Ms-daxE;(Js, Mg)=0 (n
where J; and M, are given by (9) and (10). If a solution J, to (8)
exists, then it is unique if and only if the homogeneous equation (i1)
with supporting equations (9) and (10) has only the trivial solution J,
= 0.

If @ = 0, then the integral equation (8) with supporting equations
(9) and (10) is thc same as [2, eq. (24)] and, of course, the
homogencous equation (11) with supporting cquations (9) and (;0) is
the same as the homogencous cquation associated with {2, cy. (24)].
When the frequency is a resonant frequency, there is a nontrivial
electric current Jg such that

AxE! (Jg, 0)=0. (12)

AxH; (Jz, 0)=0. (13)

Assuming that @ = 0, it is evident from (12) and (13)thatJ, = Jpis
a nontrivial solution to the homogencous equation (11) with support-
ing equations (9) and (10). Therefore, even if (2. eq. (24)] had a
solution at a resonant frequency, then this solution would not be
unique.

Can a different choice of a cause (8)-(10) to have not more than
one solution? Otherwise stated, can a be choscn such that the
homogeneous equation (11) with supporting equations (9) and (10)
has only the trivial solution J, = 0?

Assuming that (9)-(11) hold, consider the composite situation
where, in the internal region, (E (Js, My), Hy (34, M,)) cxists in

0018-926X/89/0800-1070801.00 © 1989 IEEE
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(e €9) and, in the external region, (E.(J,, at x J,), H,(J,,af x
Je)) exists in (i,, €, ). The sources of the above defined composite
field are clectric and magnetic currents J and M on S given by

J=ax(H; J,, adxd)-H; (Js, M,) (14)
M=(E;!(J,, adxJ,)-E; (34, M) xA. (15)
Equations (10) and (11) reduce (15) to
M=0. (16)
Equation (11) is recast as
axE; (s, My)=0. (1"
Since there are no external resonances, (17) implies that
axH; (), M,)=0. (18)
From (18), wc obtain
AxH; (3 My)=-J,. (19
Equations (9) and (19} reduce (14) o
=0 (20)

According to (16) and (20), the composite field defined in the
paragraph containing (14) has no sources. Therefore, this field
collapses to zero. In particular,

axE’ (), aix],)=0. @n

It is shown in [4, egs. (4)-(B)] that, if Re(a) > 0, then the only
solution to (21) is J, = 0. Here, Re denotes the real part. Thus, if
Re(a) > 0, thenonly J, = 0 can satisfy (9)-(11). Therefore, if Re(a)

50
1071

> 0. then the integral equation (8) with supporting equations (9) and
(10) can not have morc than one solution J,.
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Abstract — A simple numerical procedure is implemented to find the loci of the TE
and TM leaky wave poles for a grounded dielectric slab as the thickness is varied.
The information of how these complex poles are distributed is very important when

various deformed integration paths for Sommerfeld integrals are considered.
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1 Introduction

It is well known that the electromagnetic fields due to a dipole in a layered media
in an open region can be expressed in terms of an improper integral [1] to account
for the continuous spectra. In order to perform this integration accurately and
efficiently, the integration path must be deformed off the real axis in some cases.
Various deformed paths have been considered by many researchers, e.g., Newman
and Forrai [2], Michalski and Zheng [3], Fang and Chew [4], and Sarkar [5], to name
a few. For half-space problems, there are only two surface wave poles located on
either Sheets I and IV or Sheets II and III of the Riemann surface (3, 6], depending
on the constitutive parameters of the two media. For a grounded dielectric slab.
besides a finite number of surface wave poles, there are an infinite number of leaky
wave poles [7-9]. If the branch cut is properly chosen [3, 7, 9], then all the surface
wave poles are located on the top sheet (proper sheet or Sheet ), whereas all the
leaky wave poles are located on the bottom sheet (improper sheet or Sheet II) of
the Riemann surface. The locations of the leaky wave poles are immaterial if the
integration path stays on Sheet [. In order to improve the computational efficiency.
detorming the path to Sheet II is desirable in some cases, e.g., the steepest descent
method of integration for far fields, where part of the path enters Sheet II [9. 10.
13]. In this case, precise information on how these leaky wave poles are distributed
is very important unless the residues of these leaky wave ~oles are negligible. Some
researchers [10, 11], when applying the steepest descent method of integration. or
its approximate version the so called saddle point method, only take into account
surface wave poles. Their results are correct if the dielectric slab is thin and if the
observation point is not too close to the interface, which is shown in next section.
However, when the thickness of the slab is moderate, or when the observation point

is close to the interface, some of the leaky wave poles, not too far away from the




saddle point, may have been captured.

The locations of the TE and TM leaky wave poles can be found by solving
for the roots of two simultaneous transcendental equations {7, 9], which are then
mapped to the complex plane of the integration variable. Although standard root
searching routines could be applied, we gain no idea how these roots are distributed
on the complex plane, since there are infinite number of them. It is the purpose
of this short communication to show a simple numerical procedure of finding the
loci of the leaky wave poles as the thickness is varied, which in turn gives us the

desired information.

2 Root Loci

For simplicity, we assume that the grounded dielectric slab is non-magnetic and
lossless. The constitutive parameters for the half space and the slab are (u,,¢,)
and (., €€, ), respectively. The thickness of the slab is d. The locations of the

surface and leaky wave poles are the roots of [9, 10, 12],

DTE = V1 - € + /e — €2 cot (\e, — €2kod) (1)

for the TE case, and

Dpyp = jeny/1 = €2 = \Je, — €2tan (\/e, — £2kod) (2)

for the TM case. Here ¢ is the normalized parameter such that k, = £k, is the
transverse wave number or integration variable for the Sommerfeld integral in
terms of a transmission line representation in the z direction {9, 10], where z is
perpendicular to the interface. For convenience, the branch cut is chosen to be
the line such that Im{y/1 = €2} =0 [3, 9, 10, 13], as shown in Fig. 1. When this

branch cut is chosen, the roots of (1) and (2) on Sheets I and II of complex £ plane
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are the surface wave and leaky wave poles, respectively. It is well known that the
surface wave poles are real and confined in the region (1, ,/¢;), and the number of
them is finite [10, 12]. Furthermore, it can be shown that the leaky wave poles
assume both real and complex values, and the number of them is infinite [7, 9].
A simple graphical procedure [9, 12] can be employed to find the real roots of (1)

and (2), as shown in Figures 2(a) and 2(b), respectively. In these two figures,
X = k,dvfe, — €2 and B = k,dVe, — 1. (3)

The intersecting points on the upper and the lower parts are related to the surface
and leaky wave poles on the Re(¢) axis, respectively.

There is only one pole associated with curve (1) in Fig. 2(a). It is a surface wave
pole if B > x/2, a leaky wave pole in the regions 1 < £ < \/¢; and /&, < £ < o
if 1 < B<n/2and B < 1, respectively [7], [9]. Likewise, the pole associated with
curve (1) in Fig. 2(b) is always a surface wave pole. Clearly, there are two poles
associated with the rest of the curves in both figures. As an illustration, let curve
(2) in Fig. 2(a) be examined. If B > 37 /2, the semi-circle intersects with curve (2)
at two points, one for the surface wave pole and the other for the leaky wave pole.
As B is reduced and becomes smaller than 37/2, the surface wave pole falls down
to Sheet II from Sheet I through ¢ = 1, which is the branch point. It then becomes
a leaky wave pole and moves toward the right, whereas the original leaky wave
poles stays on the same sheet and moves toward the left. As B reaches a value B,,
such that the semi-circle is tangent to curve (2), these two leaky wave poles merge
into one. If we reduce B further, then the semi-circle does not intersect with curve
(1) any more, and the poles move symmetrically off the Re(¢) axis on Sheet II. It
is understood that the poles move smoothly as B is varied. Based on the above
observation, the numerical procedure of finding the locus of the leaky wave poles

in the £ plane associated with each curve in Figures 2(a) and 2(b) is as follows.
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1. Find B, and the corresponding &, called §,. Since &, is real, this step is straight

forward.

2. Search for a new root £, for the parameter B, = B, — AB with £, — jé as the

initial searching point, where both AB and § are small positive numbers.

3. Search for new roots &, for the parameters B,,, = B,—AB,,n=1,2,3,--,

with £, as the initial searching points.

If the AB, are reasonably small, a few iterations of steps 2 and 3 give satisfactory
results using a Newton-Raphson algorithm. The same procedure can be repeated
to generate the locus associated with each curve in Figures 2(a) and 2(b). Since
when £ is a root of (1) or (2), then —¢ and ££° are also roots, we only show
the loci in the fourth quadrant (these are the leaky wave poles that matter for
a time dependence e’*!). Figures 3 to 6 show the loci of the leaky wave poles
for €, = 4 and 9, respectively. Careful scrutiny of these figures reveals that the
TM poles approach the real axis faster than do the TE poles as B increases from
zero. Furthermore. for both the TE and TM cases. the pole associated with the
lower numbered curve in Figures 2(a) and 2(b) approach the real axis faster than
that associated with the higher numbered curve. This explains why only the
lower ordered leaky poles are important for a thin slab when steepest descent
path is adopted. A comparison of Fig. 1, which shows steepest decent paths for
various observation angles, with Figures 3 to 6 demonstrates that many leaky
wave poles can be captured by the deformation, depending on the observation
angle and physical parameters of the slab. The residues of the leaky wave poles
are highly attenuated in the far field as claimed by Fang and Chow [4]. In fact,
they completely ignored the residues of the leaky poles for separation distance
ko,r > 27 and observation angle 8§ = 7/2, i.e., on the interface. However, it is clear

from [14] that for some values of the dielectric constant and height, the closeness of
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the leaky wave poles to the steepest descent path still has to be taken into account
even for k,r = 100 and 0 < 6 < x/2. Although the physical parameters employed
in [4] and [14] are different, our burpose is to emphasize that care must be taken
when ignoring the residues of the leaky waves poles. Moreover, without knowing

the locations or the loci of the leaky wave poles, this cannot be done satisfactorily.

3 Concluding Remarks

A simple numerical procedure for finding the loci of TE and TM leaky wave poles
as the thickness of the slab is varied is presented. These loci provide important
information when the integration path of the Sommerfeld integral for grounded
dielectric slab problem is deformed into the “improper” sheet of the Riemann
surface. The accuracy of the loci has been checked extensively against contour

plots for expressions (1) and (2) with the B’s as parameters.
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Figure captions

Fig. 1. Steepest descent paths in the complex ¢ plane for different observation angles,
where the solid line is on the top sheet, the dotted line is on the bottom sheet, and

the zigzag line is the branch cut.
Fig. 2. Graphic solution for the TE and TM surface and leaky wave modes.
Fig. 3. Loci of the TE leaky wave poles in the complex £ plane, ¢, = 4.
Fig. 4. Loci of the TM leaky wave poles in the complex £ plane, ¢, = 4.
Fig. 5. Loci of the TE leaky wave poles in the complex £ plane, ¢, = 9.

Fig. 6. Loci of the TM leaky wave poles in the complex £ plane, ¢, = 9.
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Fundamental mode dispersion of a microstrip transmission line

Abstract — A spectral domain type solution with nonuniform subdomain basis
function is implemented to investigate the dispersion characteristics of the funda-
mental mode of a microstrip transmission line. Agreement with the data available
in the literature is demonstrated in several plots, where only the longitudinal cur-
rent is used in numerical computation. This numerical scheme proves to be an
alternative, or rather a supplement, to various well-developed methods in this

area.
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1 Introduction

The dispersion characteristics of an open microst - been an active re-
search topic over the past two decades. Various methods and numerical results
have been reported [1]-{12]. Although these methods appeared rigorous, some dis-
crepancies among their results were noticed by Kuester and Chang [6] in 1979.
Since then, the accuracies have been improved a lot. However, the spectral do-
main solutions are all employed with entire domain expansion functions [1], [2], [8],
[12], whereas the space domain solutions are associated with sobdomain expansion
functions (5], [10], [11]. In this report, a spectral domain solution using nonuniform
subdomain basis function is implemented to investigate the dispersion character-
istics of the fundamental mode of a microstrip line. Agreement with the existing
data in the literature is demonstrated in several plots, where we have used only
the longitudinal current in numerical computation. This numerical schemne proves
to be an alternative, or rather a supplement, to various well developed methods in

this area.

2 Basic formulation

The microstrip line under consideration is shown in Fig. 1. The conductor sitting
on the air-dielectric interface is assumed to be of zero thickness, and the structure
is assumed lossless. The ground plane and the dielectric slab are of infinite extent
in the z and the y direction, whereas the strip extends from —oo to oo in the
y direction. The parameters of interest are the phase constant and the current
denstities on the strip. For simplicity, we only consider the fundamental mode,
which is the lowest order mode propagating unattenuated in the z direction. The

problem is basically a two dimensional one. A phase factor e=7#¥, where S is
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between the wave numbers of the air and the dielectric, is common to all the field
and current distributions, and is the only factor depending on the y coordinate.

Hence,
flz,y,2) = f(z,2)e (1)

follows through the entire analysis.
To account for the continuous spectrum of the open structure, we express the

field and the current in terms of the improper integral [13, Ch. 4]

f(z,2) = 2_17r. /_': (&, 2)e % de 2)

which is identified as an inverse Fourier Transform. Thus, the Fourier transform

of f, denoted by f, is obviously defined as

z) = [:; f(z,2)e*%dz (3)

It is known that the fields can be decomposed into TE and TM components
with respect to any direction [13, ch. 3]. The most natural choice for our problem
is the direction perpendicular to the diele ‘ric interface, i.e., the z direction. The
z components of the magnetic and electric vector potentials, i.e., A(z,y,2) and
F(z,y,z), which give rise to TM to z and TE to z fields, respectively, can be

exrressed by

e~i8y /oo Byeioi(z=d) o=ilzge g < 4

A(ﬁ,y,Z) = —Jﬁy/ B Cos azz —jf"'df 0<2<d (4)
Sln ag ' - -
—Jﬂy/ D e"J‘-'l(z—d) -Jffdg d <z

F(z,y,z) = ©

_ng/ Dsmagz ‘1£”d€ 0<z<d
sin aqd oo T
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where
£+ 8% + af = Wi,
£ + B2 + af = wpoeoe,

are the dispersion relations. In (4) and (5), By, Bz, Dy and D, are unknown func-

(6)

tions of £ that can be determined, if desired. Furthermore, to have field which

decays from the dielectric and satisfies the radiation condition, we require that
Re(a;) 20 and Im(a;) <0 (7)

The electric Dyadic Green’s function in spectral domain, evaluated at the dielectric
interface, has been found by many authors, e.g., Farrar [5], Faché [10], and Itoh

(7], to name a few. In spectral domain, we have 7]

Zyv(f’ d) ~yz(€’ d) jy(f,d) = Ey(f,d) (8)
Zey(€,d) Zee(€,d) || Ju(€,d) E;(¢,d)

where , )
Zl6d = o o e AT, ©

Zin(6,d) = Zuyl6,d) = gro [ 2 ] (10)
Zagdy= L e, B (11)

v, &+ B Dn | €+ D,

are the spectral impedance functions evaluated at the interface. In equations (9)
- (1 1 )a

D,, = a; — je,a;y cot ad (12)

D, = oy — ja, cot azd (13)

The spatial counterparts of the spectral currents J,(¢,d) and J,(¢,d), can be ex-

pressed as

Jy(x) = ZanJy,,(x) (14)

3
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and
Jo(z) = an.],n(:c) (15)
n
respectively,where a,, and b, are unknown coefficients. Using the method of mo-
ment [14], we enforce the boudary condition

E, =0, onstrip (16)

by taking the inner product of the tangential electric field at the interface, obtained
from the inverse Fourier transform of (8), with Jy,» and J.m for all m. Doing so,

we obtain the homogeneous matrix equation

) () | [ fead | _ [ 10 )
M) ) [ [ B ]| O

The eigenvaiues could be found by searching the 3’s such that the determinant of
the matrix in (17) is zero.

By virtue of Parsavel’s theorem

" i@ @z = 5= [7 fos e (19)

each element of the matrix in (17) reads

MP? ——/ nZpa(&d)md€, g =y,2 (19)

Notice that some authors [4], [8] have neglected the conjugate sign in (19). That is
because the eigenvalues remain the same if either even or odd entire domain basis

functions are chosen.
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3 Numerical Procedure

3.1 Integration path

Equation (19) is an improper integral, whose integrand contains a; and a3, both
being double-vaiued functions. Since the integrands for p,q = y,z are all even
functions of a3, only &, introduces the branch points and the branch cuts to the ¢
plane. For bound mode in lossless structure, the branch points are always on the
imaginary axis of the £ plane. Fig. 2 shows the branch points and branch cuts

chosen by Kowalski [2], Fache [10] and Zheng [11].

Since

[ Jerk? = B2 — €2 — &/ + €2 — k2 cot (1/e.k2 — 57 — €2 d),

k? < 8%+ €2 < ¢, k?

<
~j\/ B2 + €2 — k2 — je /B + €2 — kZ coth (/8% + €2 — e, k2 d),

ek < €1+ 57

(20)

and

[ —j /B2 + 62— k2 — j, <, k2 ~ B2 — €2 cot (\/e, k2 — B2 — €2 d),
k2 < B%+ &% < ¢k}
D.=§ = ——0 . (21)
—j\f B+ E2 — k2 — j\/B? + €2 — e, k2 coth (/B2 + €2 — k2 d),

ki< €2+ 52

\

those roots of D,, and D., corresponding to the surface TM and TE waves of the
grounded dielectric slab, respectively, must be in the interval k? < 2% + £2 < ¢, k2.
Letting [13], [15]

X=d/ek2—p2+£>0 (22)
A =kodVe —1>0 (23)
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the roots of

Xtan X = (A? — X212 (24)

&

and
— X cot X = (A? — X?)1/? (25)

then correspond to those of D,, and D., respectively. It is seen from Fig. 3 and
Fig. 4 that there will be at least one surface wave pole, which is TM,, on the ¢

plane, whereas the cut—off frequency for T E; mode is

f__._c"__
7 4dy/e, — 1

To find the desired phase constant, we must try different 3’s in (17). Since the

(26)

phase constant of the fundamental bound mode is always larger than that of the

TM, surface wave [16], [17], the surface wave poles are understood to be on the

2

imaginary axis of the ¢ plane. The 3’s can be restricted in the region between ¢’

and the phase constant of the T M, mode in the root searching process. Hence, we
can keep the path of integration along the real axis. In general, if the higher order
bound modes are investigated, and if the frequency is greater than the cutoff’s of
the other surface wave modes, there are some poles on the real £ axis. In this
case, the deformed path, as shown in Fig. 5, is proposed. A major advantage of
deforming the contour off the real axis is that we do not have to search the surface
wave poles. Slight inaccuracy in the locations of the poles on the real axis may
result in large errors, if real axis integration is employed. Of course, the tradeoff is
that the integrand becomes more complicated if we deform the path to the complex

plane.




3.2 Expansion function

For a single microstrip structure, entire domain basis functions have proven to be
efficient. However, in consideration of the extendibility to multiple strip structure,
subdomain basis functions may be more suitable. Furthermore, to retrieve the
edge condition of the current, non-uniform discretization of the strip is employed.

The chosen basis functions are

Jon(z) 1, zZpui <z <2y (27)
nlT) =
Y 0, otherwise

T— Ty
—_—, zn—l < I < xn

Ty — Tpai
Jzn(x) = M, xn < x < x"+1 (28)
Tn4l — Ty
0, otherwise
Their Fourier transforms are
. sin (A, /2) T
(&) = 72 (29)
. sin (€A,/2) T sin (£ Ang1/2) P
Jen(§) = Ez [ A, Door € (30)
where A, =z, — zn—1 and £,_1/2 = (Tn-1 + 24)/2. Thus
Mz =g =2 [ 2, 2 (1)
4oy 1

Mg =Mz = 72

x o Vg
F(m,n) F(m,n+1)
- [ An - A'n+1 ] d€ (32)
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LT _. AfTT . 4_] * 5 _1_
an - Mnm - . [) Z::::E‘,
|F(m,n) Fm+1ln) F(mn+l) F(m+1ln+l)
AmAn Am+lAn AmAn+1 Am-HAn-H

dé (33)

where

fzm2-1/2 ) Sin (€In2—l/2

F(m,n) = sin ( ) cos [(Zm=1/2 — Tn-1/2)¢&] (34)

3.3 Computations of matrix elements

It is clear that the efficiency and the accuracy are based upon how each matrix
element, in terms of the improper integral, is evaluated. The improper integral is
a function of frequency, dielectric constant, width and height of the slab, width
and location of the subsegment, and § used in the computation. The behavior of
the integrand is very different from one set of parameters to another. Hence, care
must be exercised in performing the integrals.

Close scrutiny shows that all the integrands are of the order O(1/£3) as £ —
0o. At £ = 0, the integrands are of finite values. As discussed in the previous
subsection, if 3 is restricted to be larger than the phase constant of the TM, mode
of the grounded dielectric slab, then there is no singularity on the real axis of the
¢ plane. Hence, the convergence of the integrals is guaranteed, as the physics of
the system should be.

Due to nonuniform discretization of the strip, A, # A,, in general. The
oscillatory terms F(m,n), which is a product of three sinusoidal functions with
different periods, may behaveX quite irregular. The integration thus become quite
difficult. As a remedy, we decompnse {0, o0] into [0, L] and [L, oo}, where L is tess

than the first zero of F(m,n). The integrand over [L, 00| is further decomposed
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according to the identity

sinA-sinB-cosC = i[cos(A—-B——C)
+cos(A—B+C)—cos(A+B—-C)—cos(A+ B+ C)] (35)

Each integrand now contains only one sinusoidal function, where its zeros are
periodic. Therefore, it is easier to perform the integration. As an example, for
each MYY, we have to perform 4 integrals of the form
™ < 27
J, 2l cos (=-e)de (36)
where ¢ is the period determined by (35). We can separate the above integral over

[L, 00] into two parts, over [L, U] and [U, oo], where

U = max [5016 Ver, \/(?—27E 246 k2~ 52] (37)

Filon’s algorithm [18] is applied to the integral over [L,U]. For the integrals over
[U, 0], the asymptotic expression of Z,,(¢) is substituted into the integrands,
which makes the integrals proportional to

B(z) = /°° St du (38)

ud

The strategy for performing this integral depends on the value of z. If z < 1, then

cosz sinz 1

B(z) = —— — —— — 5Cilz) (39)

where C;(z) is the cosin integral defined by

% cos u (=1)nH1g
(z) = du=— ) A 2
Ci(z) /Z - ¥ - 1n:v+nz_: 5m - (2n)! (40)
where v = 0.5772 is Euler’s constant. If 1 < z < 307, then
Ci(z) = — — lnx+/z-1-ﬂ—udu (41)

9
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where the last integral is performed using Filon’s algothm. If z > 30x, then

_sinz i (=1)"(2n)!  cosz f: (=1)"(2n +1)!

In 2r pn+l (42)

n= n=0
where N, and N, are such that (2N;+2)(2N;+1) < z? and (2N, +3)(2N,+2) < 2?
respectively. It is known that both series in (42) are asymptotic series which
diverge as Ny and N, approach infinity (19]. If z is very large, 3 or 4 may be
more than appropriate for N; and N,. Furthermore, using Filon’s algorithm for
the integral over [L, U], we need to divide [L, U] into subintervals, over each the
Gaussian-Legendre quadrature can be used. The number of subintervals needed
is M = [2(U — L)/q) + 1. If M is greater than 30, the method of average [15] is
suggested to perform the integral over [L,o0]. Usually, M is likely to be large if

frequency is high, or if the width of the strip is wide. However, the memoth of

average is not implemented in our computer program.

4 Numerical results

A computer program with only the longitudinal current has been implemented to
check the validity and the accuracy of the present numerical scheme. The symmet-
ric property of the longitudinal current has been used. We restrict the numerical
results to some typical configurations that can be found in the literature. In Fig-
ures 6 to 11, the effetive dielectric constants for several structures are presented.
In these figures, the solid lines represent our solutions using only 5 expansion func-
tions, the long dashed line the solutions from entire domain expansion functions
of the type of the Maxwellian charge distribution, and the short dashed lines the
surface wave modes of the grounded dielectric slab. Furthermore, the square and

triangle represent the results sampled from the literature. Attention could be paid

10
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to Fig. 10, which structure has been tested by many researchers, and theur dis-
crepancies were detected by Kuester and Chang [6]. In Figures 6 and 7, the results
from subdomain and entire domain expansion functions are almost identical, and
are very close to those obtained by Getsinger [3], whose digpersion model is based
on approximating the microstrip line as suitable waveguides. Although some de-
viations between our solutions and Getsinger’s are observed in Figures 8 and 9,
it does not necessarily imply that our solutions are less accurate. From Figures
10 and 11, it is clear that the subdomain basis function yieldf better results than
do# #be entire domain basis function. .

Figures 12 and 13 show the normalized longitudinal currents for d = 3.048mm,
w = 3.175mm and ¢, = 11.7. In Fig. 12, the square and the triangle are the
currents at the center at each subdomain for 5 and 10 expansion functions, respec-
tively, whereas the solid line is for 20 expansion functions. In Fig. 13, the currents
are computed for three different frequencies, 0.001 GHz, 2 GHz and 12 GHz, all
with 10 expansion functions. Although the frequency var; ‘quite a lot, the current
profiles remain close to the Maxwellian charge distribution. Notice, we have use{
more expansion functions near the edge than near the center of the strip, in order

to retrieve the edge condition.

5 Concluding remarks

We have shown that the numerical scheme based on spectral domain analysis with
non-uniform subdomain expansion functions could be an alternative, or at least

a supplement, to the existing methods. Although, we only investigate single-

strip structures, this approach is suitable to asymmetirc multiple-strip structure:

as well. To improve the accuracy, the transverse current component should not be

11
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neglected. However, the improvement by incorporating the transverse current and

the extension to multiple structure are warranted.

References

1]

2]

3]

[4]

[5]

[6]

[7]

E. J. Delinger, “A frequence dependent solution for microstrip transmission
lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 30-39, Jan.
1971.

G. Kowalski and R. Prefla, , “Dispersion characteristics of single and coupled
microstrips,” AEU,, pp. 276-280, 1972.

W. J. Getsinger, “Microstrip dispersion model,” IEEE Trans. Microwave
Theory Tech., vol. MTT-21, Jan., 1973.

T. Itoh and R. Mittra, “Spectral domain approach for calculating the dis-
persion characteristics of microstrip lines,” IEEE Trans. Microwave Theory
Tech., vol. MTT-21, pp. 496-499, July, 1973.

A. Farrar, Fourier Integral Methods for Static and Dynamic problems in

microstrip, Dissertation, Syracuse University, 1975.

E. F. Kuester, D. C. Chang, “An appraisal of methods for computation of
the dispersion characteristics of open microstrip,” IEEE Trans. Microwave

Theory Tech., vol. MTT-27, pp. 691-694, July 1979.

T. Itoh, “Spectral domain immittance approach for dispersion characteristics
of generalized printed transmission line,” IEEE Trans. Microwave Theory
Tech., vol. MTT-28, pp. 733-736, July 1980.

12

80




81

[8] M. Kobayashi and F. Ando, “Dispersion characteristics of open microstrip
lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 101-105,
Jeb. 1987.

[9] C. Shin, R. B. Wu, S. K. Jeng and C. H. Chen, “A full-wave analysis of
microstrip lines by variational conformal mapping techniques,” [EEE Trans.

Microwave Theory Tech., vol. 36, pp. 576-581, Mar. 1988.

[10] N. Fache and D. ['e Zutter, “Rigorous full-wave space-domain solution for
dispersive microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 36,
pp.- 731-737, Apr. 1988.

[11] D. Zheng, Radiation, Scattering and guidance of electromagnetic fields by
conducting objects of arbitrary shape in layered media, Ph.D. dissertation,

Dept. Elec. Eng., Univ. Mississippi, 1988.

[12] K. Uchida, T. Noda and T. Matsunaga, “New type of spectral domain anal-
ysis of a microstrip line,” [EEE Trans. Microwave Theory Tech., vol. 37, pp.
947-952, June 1989.

[13] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw Hill,
1961.

(14] R. F. Harrington, Field Computation by Moment Methods, New York:
Macmillan, 1968. Reprinted by Krieger Publishing Co., Melbourne, FL, 1982

(15] J. R. Mosig and F. E. Gardiol, “A dynamical radiation model for microstrip
structures,” in Advances in Electronics and Electron Physics, vol. 59, pp.
139-237, New York: Academic Press, 1982.

13




82

[16] H. Erment, “Guiding and radiation characteristics of planar waveguides,”

IEE Microwave, Optics and Aoustics, vol. 3, pp. 59-62, Mar. 1979.

[17}] A. A. Oliner and K. S. Lee, “The nature of the leakage from higher modes
on microstrip line,” IEEE MTT-S Digest, pp. 57-60, 1986.

[18] L. N. G. Filon, “On a quadrature formula for trigonometric integrals,” Proc.

R. Soc. Edinburgh, vol. 49, pp. 38-47, 1928.

[19] N. Bleistein and R. A. Ha: =:lsman, Asymptotic Expansions of Integrals,
New York: Dover, 1975.

14




83

Y .
hS
N
/.,
N,
| /
N
//
J{
b
.!/ |
/,I
q
>,
™

~

LI U I R S




84




85

A

- e o e e

,‘l\ T . e

LTI B AR




86

juelsuod 9aseyd pozriewiou 9Yl jJO uUOTIIBIIEBA *Q °*814

*Adousnbsaly snsisa spouw [eluadwepuny ayi jo

(zH9) 3
el 8 & 2
‘\l:l.l.lldllni..—||\ ] 1
N1
i —~ 2
i — €
- [¢] aa8utsiyan AV ww /z°*1=p |,
utrewop si1tjua ___ ___ wrug vmm.cuw
] utewopqns S8I°01="3 G
v Vv Vv ,
L rm
| r et

o
,(*1/9)




87

*Aouanbaij snsioA spouw [eluswepuni Ayl jo

jue3lsuod aseyd paziyewrou Syl jo uorlertaiep [, °314
(zH9) 3
2l g b 2
1 I .
W1
i — 2
} — £
[¢] 198utsiay v
L ww G£9°0=p uTeWop 9ITIUS — — — [~
‘0= ulewWOpqnNs
— ww SE€9°Q=M ﬁ.m
1§°01="3
i — 9
AI] v v \'4 i
| — 8
- Tlm
ﬁ 1

(o]
Nﬁ X/9)




88

i EEE—

*Aouanbarjy snsidA Spow [elusdwepuny aYyi jo
juelsuod aseyd pozryewIou Syl Jjo uollerrep °*g§ °314]

ZHD

zr M3 g b )
ek — : T

_ Wi .

- — €

- [¢] za8utsian Vv s

uTRWOP SATIUD —— — —
. utewopqns -————— S
ww L7 °T=P

- ww §/1°C=M — 9




89

*Aouanboi3j snsian spouw [eIUdWEPUNI dY} FO

juelsuod aseyd paziTewIou 3yl JO UOTIETIEBA °*6 °S1]

21 (ZH0)3 g b %

1 1 T

‘WL
- — 2
— — £
- [¢] 1eButsiep \V4 L
CA.”NEOU 91TIU] — —— —
- UTRWOPQNS ————— - S
ww §59°Q=p

~ Wy GLTrg=M -3

- 15 01="3 e




90

*Aousanbaijy snsioA apow [ejuswepuni 9yl jo

juelsuod aseyd poziyeuwrou 8yl jo uolietiep °Q1 *8t4d

A
gy (M3 ge 82 a1
1 | |
ww ‘= s T
_ SLTI*E=P P
uw §Q°g=M / /
. I.H“w \ \ 0
Lt /%
- / 1
/ /
[gs] aexxey O / /
] [o1] Quoey \V4 / /

UTBWOP AITIUD

uteuwopqns

o
. (4/9)




91

*Aousnbaij snsidoA 9pou [ejudwepuniy syl jo
juelsuod oseyd pazrrewiou syl Jo uolieltiep 1 *8T1j

(zH9)
\\ \\\
I P |
4L P
7
— s | e
A [11] Suayz \V4
= \\ ULBWOPp SITIUD —r —— —— |+
\\\ utewopqns
— e
~ wu S¢9°Q=p — 9
uu Oomﬂz

0
,("1/9)




On the dynamic model for
passive microwave printed circuits

by

Chung-I G. Hsu

A dissertation proposal

Department of Electrical and Computer Engineering

Syracuse University

June, 1990




1 Introduction

Due to the advantage of low cost, small size, light weight, and high reliability [1-4],
the microwave printed circuit (MPC) has become more and more popular during
the past three decades. The theories of the MPC have been widely discussed in
the literature. An extensive listing of reference papers can be found in [3]. Most
models and numerical schemes that have been proposed and published regarding
the MPC are valid at low frequencies (5], [6]. Many numerical techniques, excluding
quasi-static analysis, are summarized in (7). A rigorous approach using an integral
equation formulation, which takes into account the radiation and the surface wave
that are excited at the discontinuities of a microstrip, has been proposed by Katehi
and Alexopoulos (8]. In this study, we seek the same objectives but with different
computational schemes.

The basic structures under consideration are shown in Fig. 1(a) and Fig. 1(b)
for two and three layered MPC’s, respectively. All the media are assumed isotropic,
lossless, and nor-magnetic. The first layer is free space, whereas the second and
the third layers are characterized by (¢;, 4o} and (&3, o), respectively. The planar
circuits are printed on the interfaces. For the three layered structure, a via con-
necting the circuits on the two different interfaces is allowed, although this may
not be a.practical structure.

The method of moments [9] is empioyed to investigate various MPC problems.
The electric field integral equation is formulated in the space domain. Instead of
computing the electric field directly, we use the mixed potentiai integral equation
(MPIE) approach [10], [11], where the vector and the scalar potentials are com-
puted in th2 solution process. The mixed potential approach has been explored
very thoroughly for free space problems [9], and its advantage over the original
EFIE is well known. Mosig and Gardiol [10] extended the MPIE approach to

1
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printed antennas on a grounded dielectric slab. Later. Michalski and Zheng [11]
systematically developed this approach for problems of arbitrarily shaped conduct-
ing bodies embedded in layered media. In general, there are many different choices
for the vector potentials. However, Sommeifeld’s choice has been found to have

advantages over the others [11], and is adopted here.

2 Green’s function and integration path

To begin with, we only deal with the two layered structure, as shown in Fig. 1(a).
Due to an z directed electric dipole on the interface, various components of the

magnetic vector potential and the scalar potential are as follows [10], [11], [16].

Gho [Taihpge] =PI g m
£ De | sin ka(z +d)/ sink,d
w0 k exp (—)kzo2)
Gi o« | Jo(kop) 2 dko, 2)
-/o (k, D.Dm | cos k.1(z + d)/ cos k1 d ’ (
- .kzo
G [, ~ ko1 tan k,1d] exp (=7kz07) dk,,  (3)
DeDm sin k,,(z + d)/ sin k,,d

where the upper and the lower terms in the curly brackets are for z > 0 and

—d < z < 0, respectively. Furthermore, the roots of
D. = jk,, + k;y cot k1 d (4)

and
Dm = jf._.kzo - kzl tan kzld, (5)

respectively, correspond to the TE and TM surface or leaky wave poles in the
complex k, plane. Notice that +k, are the only branch points. In general, the

2
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branch cut is artificial and can be chosen arbitrarily. However, the most natural one
is shown in Figures 2 and 3, in which the numbers of the surface wave poles, located
on the upper half sheet of the Riemann surface, and the leaky wave poles, located
on the bottom sheet of the Riemann surface, are finite and infinite, respectively
[12], {13]. If the integration path is deformed off the real axis, the residues of
the poles captured must be taken into account. Some researchers [10], [14] have
implemented the real axis integration algorithm, which is not easy to perform in
two extremely cases, i.e., if B = k,d\/e, — 1 is very small or very large. If the
parameter B is very small, the first TM surface wave pole is very close to the
branch point k,, where the integrand exhibits a derivative discontinuity [10], [16].
If B is very large, then some leaky wave poles are close to the real axis [15], making
the integrand oscillate irregularly. We choose the integration path shown in Fig. 2
to avoid the complication caused by the poles. However, if k,p gets larger, this
integration scheme gets less efficient due to the oscillation of the Bessel function
along the path. For k,p > 5, we make the following substitution for the integrands
of (1) to (3),

To(kp) = 5 [HO (kop) — HEO(=ksp)] Q

The integration path is then deformed to be along the branch cut as shown in
Fig. 3. Choosing this path, Mosig and Gardiol [16] has shown that the integral
can be decomposed into three parts, i.e., the static term which is purely real, the
space wave term, and the surface wave term. If k,p is very large, the efficiency
is again degraded by the rapid oscillation of the Bessel function in the interval
k, € [0,k,]. In this case, the steepest descent path may be a better candidate.
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3 Numerical results for printed dipoles

Figures 4 to 9 show the current distribution, and the input and mutual impedances
of some printed wire and strip dipoles. The results agree with those available in
the literature [13], [17], [18]. Attention should be paid to Fig. 10, where we use 49
unknowns in the solution process for a strip dipole of width 0.005),, and Barkeshli
uses only three unknowns for a dipole of width 0.01),. Inaccuracy in Barkeshli’s
solution is suspected, since in Fig. 10(a), the results can hardly be differentiated

from those of a wire dipole of radius 0.00125),,.

4 Proposed study for microwave

printed circuits

In the MPC, a microstrip line always serves as a transmission line. The number
of ideal transmission lines needed to represent the microstrip must be the same
as that of the bound modes that can be excited [3]. For simplicity, we restricted
ourselves to the frequency range in which the fundamental mode is the only bound
mode. Furthermore, we assume that w << ),, where w and A, are the width of
the microstrip and the free space wavelength, respectively. Hence, the transverse
current can be ignored with little error introduced. The axial current has singu-
iarities at the two edges of the microstrip. The transverse variations of the axial
current at several frequencies are shown in Fig. 11, where the Maxwellian function
is plotted for comparison. In general, if the frequency gets higher, the current
distribution deviates from the Maxwellian function more. Figures 12 and 13 give
curves of (A,/),)? versus frequency, which are compared with those obtained by
Getsinger [19], Farrar [20], and Faché and De Zutter [21]. It is obvious that if




w/d < 1 and if the frequency is not too high, the Maxwellian function for the

current gives a reasonably accurate result for the propagation constant. To further

improve the accuracy, we assume the transverse variation of the current to be of

the form

1
Je(y) x —mm—e [T (2y /w) + bT3(2y/ w 7
s (1(20/u) + $T(20/ ) ™
where T, is the Chebyshev polynomials of the first kind of order n. After the

propagation constant is found, the unknown coefficient b can be easily solved. The

characteristic impedance can be computed according to [22]

P

Z = Vg (8)
where P is the real power propagating in the axial direction. Fig. 14 shows the
normalized propagation constant and the characteristic impedance computed from
one (b =0) and two (b # 0) expansion functions. The results computed from the
commercial software SUPERCOMPACT and from quasi-static analysis are also
plotted for comparison. The power ratio in the dielectric and the b in (7) are
shown in Fig. 15. The modeling of the discontinuity is illustrated in Figs. 16
and 17. By observing the standing wave pattern exhibited in Fig. 17(a), several
parameters can be computed. Notice that we need to compute two sets of currents

with two different L;’s in Fig. 17(a) in order to determine the scattering matrix.
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(a) Two layered configuration

(b) Three layered configuration

Fig. 1. Side view of microwave printed circuit.
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(B,A)
————ed >-
'ko kc kl (B.O)
| Ko plane (Top sheet)

Fig. 2. Deformed integration path in the complex k, plane.

Surface wave poles

ke ko ki
Kp plane(Top sheet)

Fig. 3. Integration path along the branch cut in the complex k, plane.
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2.688 L d

SUPERCOMPACT
—  Two expansion functions
- - - - One expansion function

n»L»
>

2.75-

2.7804 - —- Quasi-static analysis "
2.65 -
2.60- -
2.554  #»~ i
2.58+ - -
(%) 10 20 £ (GHz) 30
(a)
S8 L l
0
SE — A SUPERCOMPACT . A
— Two expansion functions
- - - - One expansion function
S4q - — - Quasi-static analysis N

®)

Fig. 14 (a) Normalized propagation constant and (b) characteristic impedance
for a microstrip line with &, = 9.6, w = 0.6mm, d = 0.6mm.
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(a) subdomain basis function for smak
double step discontinuity

X=Q~ x=q®*

(b) subdomain basis function for large
double step discontinuity
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(c) equivalent network represented by its
scattering matrix

Fig. 16 Modeling of microstrip double step discontinuity.
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Fig. 17 Modeling of microstrip gap discontinuity.
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