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I. OBJECTIVES

The objectives of this project were to investigate the full-wave

(Maxwellian) analysis for solving and computing the electromagnetic

behavior of microwave integrated circuits.

II. SUMMARY OF WORK DONE

The majority of the work was done in the first two years of this

project. Summary reports for the first year's work and the second year's

work are included to give details. The final six month's period was used

primarily to prepare final manuscripts for submission to journals, and to

give a preliminary organization for Mr. Hsu's Ph.D. dissertation. All

publications to date and the preliminary version of Mr. Hsu's dissertation

are appended to this report. The following is a list of these appendices:

1. Annual Report for the period January 1, 1988 to December 31, 1988.

2. Annual Report for the period January 1, 1989 to December 31, 1989.

3. "Quasi-Static Analysis of a Micr6strip Via Through a Hole in a

Ground Plane," by Taoyun Wang, R. F. Harrington, and J. R. Mautz,

IEEE Trans. on MTT, Vol. 36, No. 6, pp. 1008-1013, June 1988.

4. "The Inductance Matrix of a Multiconductor Transmission Line in

Multiple Magnetic Media," J. R. Mautz, R. F. Harrington, and C-I G. Hsu,

IEEE Trans. on MTT, Vol. 36, No. 8, pp. 1293-1295, August 1988.

5. "Boundary Integral Formulations for Homogeneous Material Bodies,"

R. F. Harrington, Journ. of EM Waves and Appl, Vol. 3, No. 1, pp. 1-5, 1989.

6. The Excess Capacitance of a Microstrip Via in a Dielectric

Substrate," IEEE Trans. on CAD, Vol. 9, No. 1, pp. 48-56, January 1990.

7. "A Stable Integral Equation for Electromagnetic Scattering from
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Homogeneous Dielectric Bodies," J. R. Mautz, IEEE Trans. on AP, Vol. 37,

No. 8, pp. 1070-1071, August 1989.

8. "On the Location of Leaky Wave Poles for a Grounded Dielectric

Slab," C-I G. Hsu, R. F. Harrington, J. R. Mautz, and T. K. Sarkar,

submitted to IEEE Trans. on MTT.

9. "Fundamental Mode Dispersion of a Microstrip Transmission Line,"

G-I G. Hsu, R. F. Harrington, J. R. Maut -C Jan, submitted to

IEEE Trans. on MTT.

10. "On the Dynamic Model for Passive Microwave Printed Circuits,"

C-I G. Hsu, dissertation proposal, June 1990.

III. PERSONNEL

The following persons have worked on this project:

Roger F. Harrington, Principal Investigator, Professor of Electrical

Engineering, Syracuse University.

Joseph R. Mautz, Research Engineer, Department of Electrical and

Computer Engineering, Syracuse University.

Chung-I Gavin Hsu, Research Assistant, Graduate Student, Department

of Electrical and Computer Engineering, Syracuse University.

Ing-Chieh Jan, Research Assistant, Graduate Student, Department

of Electrical and Computer Engineering, Syracuse University.
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I. OBJECTIVES

The objectives of this project are to obtain full-wave (Maxwellian)
analyses suitable for computing the electromagnetic behavior of micro-
wave integrated circuits. Initial work has been on (a) attempting to ex-
tend the quasi-static analyses to include correction terms to allow
application at higher frequencies, and (b) full-wave analyses to two-
dimensional problems such as multiconductor transmission lines in multi-
ple dielectric media.

II. SUMMARY OF FIRST YEAR'S WORK

A) Preliminary to extending the analyses to higher frequencies, we
completed some quasi-static solutions. The following topics have led to
papers published or pending, as listed in Section IV.

(i) Quasi-static analysis of a microstrip via through a hole
in a ground plane and in a dielectric substrate. Abstract of [1]: The
equivalent circuit of a via which connects two semi-infinitely long trans-
mission lines chrough a circular hole in a ground plane is considered.
The 7-type equivalent circuit consists of two excess capacitances and an
excess inductance. They are quasi-static quantities and thus are computed
statically by the method of moments from the integral equations. The
integral equations are established by introducing a sheet of magnetic cur-
rent in the electrostatic case and a layer of magnetic charge in the mag-
netostatic case. Parametric plots of the excess capacitances, the excess
inductance, and the characteristic admittance of the via are given for
reference.

Abstract of [4]: The equivalent circuit of a via which connects two
semi-infinitely long microstrip transmission lines imbedded in a dielec-
tric medium above a ground plane is considered. The 7-type equivalent
circuit consists of an excess capacitance and an excess inductance. The
excess inductance of the via is the same as the one computed in the case
of free space (without a substrate). The excess capacitance of the via is
computed quasi-statically by the method of moments and the image method
from the integral equations. It converges rapidly as the number of image
terms is increased. Parametric plots of the excess capacitance of the via
are given for reference.

(2) The equivalent circuit of a microstrip crossover with and
without a dielectric substrate. Abstract of [4]: The equivalent circuit
of a microstrip crossover is found. Integral equations are obtained for

the densities of excess charge, and these equations are solved by the method
of moments. Introduction of a specified transverse distribution of charge,
which satisfies the edge condition, reduces the computing time dramatically
while the accuracy remains excellent. Several plots of the excess charge

densities are provided along with numerical values of lumped excess capaci-

tances.

Abstract of [51: A quasi-static analysis is carried out to examine
the capacitive coupling between two nonintersecting microstrip lines above
a ground plane and in a dielectric substrate. The charge density along
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the width of each strip is described using a prescribed charge distribu-
tion. A pair of coupled integral equations is derived and solved via
the method of moments to obtain the excess charge densities . The lumped
excess capacitances are computed and compared to the ones obtained using
wire lines with radii equal to the equivalent radii of the strips.

(3) The inductance matrix of a multiconductor transmission
line in multiple magnetic media. Abstract of [2]: Consider a multicon-
ductor transmission line consisting of Nc conducting cylinders in inhomo-
geneous media consisting of Nd homogeneous regions with permeabilities ui
and permittivities ei. The inductance matrix [L] for the line is obtained
by solving Lhe magnetostatic problem of Nc conductors in Nd regions with
permeabilities Ui. The capacitance matrix [C] for the line is obtained
by solving the electrostatic problem of Nc conductors in Nd regions with
permittivities Ei. It is shown that [L] = vo0o [C'1-1, where [C'] is the
capacitance matrix of an auxiliary electrostatic problem of Nc conductors
in Nd regions with relative permittivities set equal to the reciprocals
of the relative permeabilities of the magnetostatic problem, i.e., 2/Eo

0oli.

B) Work has been done on the following full-wave solutions:

(1) The full-wave solution for the microstrip transmission line
has been investigated using the volume integral formulation. This gives an
integral equation formulation where the unknowns are the conduction current
and charge on conducting boundaries, the bound charge of the dielec6.ric
boundaries, and the polarization current in the dielectric volume. For
waves, the propagation constant is obtained from the solution of a nonlinear
eigenvalue equation. A numerical solution to this equation has been obtained
to allow computation of the propagation constant, or, equivalently, the
effective dielectric constant. The solution is complicated, and the computa-
tions are time consuming. We are presently looking for ways to simplify this
solution.

(2) The full-wave solution for the microstrip transmission line
has been investigated using a surface integral formulation. This gives an
integral equation where the unknowns are the conduction current on the con-
ducting boundaries and the equivalent electric and magnetic surface cur-
rents on the dielectric boundaries. Again the propagation constant is
obtained from the solution to a nonlinear eigenvalue equation. The numeri-
cal solution to this equation has not yet been successfully obtained. Work
is continuing on this solution.

There are many different surface integral formulations for any par-
ticular problem. These are summarized in the paper on boundary integral
formulations for homogeneous material I lies ([3] of Section IV). The
following is an abstract of [3]: There are many boundary integral formu-
lations for the problem of electromagnetic scattering from the transmis-
sion into a homogeneous material body. The only formulations which give a
unique solution at all frequencies are those which involve both electric
and magnetic equivalent currents: and satisfy boundary conditions on both
tangential E and tangential ft. Formulations which involve only electric

(or magnetic) equivalent currents, and those which involve boundary condi-
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tions on only tangential E (or tangential H) are singular at frequencies
corresponding to the resonant frequencies of a resonator formed by a
perfect conductor covering the surface of the body and filled with the
material exterior to the body in the original problem.

Ill. PLANS FOR THE SECOND YEAR'S WORK

A) Study of the volume integral formulation for the full-wave solution
of 2-D problems will continue. Methods of reducing the complexity of the
solution will be considered. In particular, a perturbation approach, start-
ing from the quasi-TEM solution and adding correction terms will be studied
and compared to the direct solution.

B) Study of the surface integral formulation for the full-wave solu-
tion of 2-D problems will continue. Again methods of redu--ig the complexity
of the solution will be considered. However, this formula ,n does not
appear to be as well suited to the perturbation approach as does the volume
integral formulation of A above.

C) Study of the integral formulations for the full-wave solution of
3-D problems will be started. The particular approach to be taken will
depend on the results of A and B above. It is hoped that a 3-D solution
will lead to a formulation useful for actual printed circuits.

IV. PUBLICATIONS

[1) T. Wang, R. F. Harrington, and J. R. Mautz, "Quasi-Static Analysis of
a Microstrip Via through a Hole in a Ground Plane," IEEE Trans.,
vol. MTT-36, No. 6, June 1988.

[2] J. R. Mautz, R. F. Harrington, and C-I G. Hsu, "The Inductance Matrix
of a Multiconductor Transmission Line in Multiple Magnetic Media,"
IEEE Trans., vol. MTT-36, No. 8, pp. 1293-1295, Aug. 1988.

Accepted for publication:

[31 R. F. Harrington, "Boundary Integral Equations for Homogeneous
Material Bodies," Journ. Electromagnetic Waves and Applications,
in press, to appear 1988.

Submitted for publication:

[41 T. Wang, J. R. Mautz, and R. F. Harrington, "Tle Excess Capacitance
of a Microstrip Via in a Dielectric Substrate," submitted to IEEE
Transactions on Integrated Circuits and Systems.

[(5 S. Papatheodorou, R. F. Harrington, and J. R. Yiautz, "The Equivalent
Circuit of a Microstrip Crossover," submitted to Transactions of the
Society for Computer Simulation.
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(61 S. Papatheodorou, R. F. Harrington, and J. R. Mautz, "The Equivalent
Circuit of a Microstrip Crossover in a Dielectric Substrate," sub-
mitted to IEEE Transactions on Microwave Theory and Techniques.

Report:

[7] S. Papatheodorou, J. R. Mautz, and R. F. Harrington, "The Equivalent
Circuit of a Microstrip Crossover in a Dielectric Substrate," Report
TR-88-11, Department of Electdical and Computer Engineering, Syracuse
University, August 1988.

V. PERSONNEL

The following is the project staff for the first year:

Principal Investigator: Dr. Roger F. Harrington,
Professor of Electrical Engineering.

Research Engineer: Dr. Joseph R. Mautz,
Department of Electrical ind Computer Engineering.

Research Assistant: Mr. Chung-I Gavin Hsu, Graduate Student,
Department of Electrical and Computer Engineering.
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1. OBJECTIVES

The objectives of this project are to obtain full-wave (Maxwellian)

analyses suitable for computing the electromagnetic behavior of microwave

integrated circuits. Initial work has been on (a) attempting to extend

the quasi-static analyses to include correction terms to allow

application at higher frequencies, and (b) full-wave analyses to two-

dimensional problems such as multiconductor transmission lines in multi-

ple dielectric media. More recent work has been on (c) the solution of

three-dimensional problems.

II. SUMMARY OF THE SECOND YEAR'S WORK

A) Publication of the first year's work as journal articles: The

following papers have been published during the second year:

1. Roger F. Harrington, "Boundary Integral Formulations for

Homogeneous Material Bodies," Journal of Electromagnetic Waves and

Applications, vol. 3, No. 1, pp. 1-15, 1989.

Abstract - There are many boundary integral formulations for the

problem of electromagnetic scattering from and transmission into a

homogeneous material body. The only formulations which give a unique

solution at all frequencies are those which involve both electric and

magnetic equivalent currents, and satisfy boundary conditions on both tan-

gential E and tangential H. Formulations which involve only electric (or

magnetic) equivalent currents, and those which involve boundary

conditions on only tantential E (or tangential H) are singular at

frequencies corresponding to the resonant frequencies of a resonator

formed by a perfect conductor covering the surface of the body and filled

with the material exterior to the body in the original problem.
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2. Joseph R. Mautz, "A Stable Integral Equation for Scattering from

Homogeneous Dielectric Bodies," IEEE Transactions on Antennas and

Propagation, vol. 37, No. 8, pp. 1070-1071, August 1989.

Abstract - It is shown that a previously derived integral equation

for electromagnetic scattering from a homogeneous dielectric body does

not have a unique solution at resonant frequencies of the cavity formed

by making the surface S of t.- body perfectly conducting and filling the

region internal to S with the external medium. This integral equation

was formulated so that an equivalent electric current radiates in the

presence of the homogeneous external medium to produce the scattered

field external to the body. A combination of equivalent electric and

magnetic currents is used to formulate an integral equation whose

solution is always unique.

3. Taoyun Wang, J. R. Mautz, and R. F. Harrington, "The Excess

Capacitance of a Microstrip Via in a Dielectric Substrate," IEEE

Transactions on Computer-Aided Design. vol. 9, No. 1, pp. 48-56, January

1989.

Abstract - The equivalent circuit of a via which connects two semi-

infinitely long microstrip transmission lines imbedded in a dielectric

medium above a ground plane is considered. The r-type equivalent circuit

consists of an excess capacitance and an excess inductance. The excess

inductance of the via is the same as the one computed in the case of free

space (without a substrate). The excess capacitance of the via is

computed quasi-statically by the method of moments and the image method

from the integral equations. It converges rapidly as the number of image

terms is increased. Parametric plots of the excess capacitance of the

via are given for reference.
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B) Two-dimensional full-wave solutions of printed circuits: The

surface integral formulation was found to be more suitable for

computation than was the volume integral formulation. Hence, this

solution was used for the final computations. A Technical Report was

written: "Fundamental Mode Dispersion of a Microstrip Transmission

Line," by Chung-I G. Hsu, R. F. Harrington, J. R. Mautz, and I-C Jan,

Report TR-89-6, November 1989. A paper by the same name and authors has

been submitted to the IEEE Transactions on Microwave Theory and

Techniques.

Abstract - A spectral domain type solution with nonumiform subdomain

basis functions is implemented to investigate the dispersion character-

istics of the fundamental mode of a microstrip transmission line. Agree-

ment with the data available in the literature is demonstrated in several

plots, where only the longitudinal current is used in numerical

computation. This numerical scheme proves to be an alternative, or

rather a supplement, to various well-developed methods in this area.

C) Integral formulations and solutions for the three-dimensional

printed circuit problem. we have obtained a formulation for the 3-D

circuit as an extension of the arbitrarily-shaped wire formulation for the

homogeneous dielectric case. (For example, see Chapter 4 of FIELD

COMPUTATION BY MOMENT METHODS, R. F. Harrington, Krieger Publishing Co.,

1982). The solution for the printed circuit problem is much more diffi-

cult than that for the homogeneous dielectric problem, because now the

Green's function contains a Sommerfeld integral. Some approximate and

numerical methods for evaluating the integral have been obtained in the

literature, but the solution is still complicated. We intend to use an

"equivalent radius" simplification to obtain a wire-type solution for
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arbitrary printed circuits. The equivalent radius will be obtained from

the simpler 2-D problem of a printed circuit transmission line.

D) Software packages for printed circuit multiconductor transmission

lines: Three menu-driven, user-friendly software packages have been pub-

lished by Artech House. These are:

(1) "Matrix Parameters of Multiconductor Transmission Lines," by A.

A. R. DJordJevic, R. F. Harrington, T. K. Sarkar, and M. B. Bazdar. This

program calculates the quasistatic matrix parameters of multiconductor

transmission lines, i.e., matrices of inductance, capacitance, resist-

ance, and conductance. The program can treat multiple dielectric layers

as well as multiple conductors of arbitrary shape. A complete user's

manual accompanies the computer program.

(2) "Time-Domain Response of Multiconductor Transmission Lines," by

A. R. Djordjevic, R. F. Harrington, T. K. Sarkar, and M. B. Bazdar. This

program uses the output of the previous prcqrram as input. It computes

the response of a lossless multiconductor transmission line with linear

or nonlinear loads. It uses the modal time-domain solution, which is the

most accurate and fastest one. The terminating networks may contain

generators, resistors, short circuits, open circuits, interconnectors,

inductors, capacitors, and nonlinear resistors. The output consists of

voltage waveforms on all lines at specified points along the line.

3) "Scattering Parameters of Microwave Networks with Multiconductor

Transmission Lines," by A. R. DjordJevic, M. B. Bazdar, G. M. Vitosevic,

R. F. Harrington, and T. K. Sarkar. This program uses the output of the

first program as input. It analyzes networks consisting of multiconduc-

tor transmission lines and discrete elements. The output is the scatter-

ing matrix, the impedance matrix, and the admittance matrix of the
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network. The transmission lines are treated by modal analysis in the

time domain, including losses. The output is in a format similar to that

obtained from network analyzers used for experimental measurements.

III. PLANS FOR FUTURE WORK

A) The work on mode dispersion on a microstrip transmission line,

item IIB above, will be published.

B) Study of the solution to three-dimensional printed circuits, item

IIC above, will continue. It is planned to develop a user-friendly

computer program to handle three-dimensional integrated circuits of

arbitrary shape.

C) It time permits, the full-wave solution of a microstrip

transmission line, item IIB above, will be generalized to a

multiconductor line with conductors of arbitrary shape.

IV. PUBLICATIONS

[1] Roger F. Harrington, "Boundary Integral Formulations for Homogeneous

Material Bodies," Journal of Electromagnetic Waves and Applications,

vol. 3, No. 1, pp. 1-15, 1989.

[2] Joseph R. Mautz, "A Stable Integral Equation for Scattering by Homoge-

neous Dielectric Bodies," IEEE Transactions on Antennas and

Propagation, vol. 37, No. 8, pp. 1070-1071, August 1989.

(3] T. Wang, J. R. Mautz, and R. F. Harrington, "The Excess Capacitance

of a Microstrip Via in a Dielectric Substrate," IEEE Transactions

on Computer-Aided Design, vol. 9, No.. 1, pp. 48-56, January 1989.

[4] C-I G. Hsu, R. F. Harrington, J. R. Mautz, and I-C Jan, "Fundamental

Mode Dispersion of a Microstrip Transmission Line," Submitted to



14

6

IEEE Transactions on Microwave Theory and Techniques.

V. PERSONNEL

The following is the project staff for the second year:

Principal Investigator: Dr. Roger F. Harrington, Professor of

Electrical Engineering.

Research Associate: Dr. Joseph R. Mautz, Department of Electrical and

Computer Engineering

Research Assistant: Mr. Chung-I Gavin Hsu, Graduate Student, Department

of Electrical and Computer Engineering

Research Assistant: Mr. Ing-Chieh Jan, Graduate Student, Department of

Electrical and Computer Engineering.
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Quasi-Static Analysis of a Microstrip Via
Through a Hole in a Ground Plane

TAOYUN WANG, STUDENT MEMBER, IEEE, ROGER F. HARRINGTON, FELLOW, IEEE,
AND JOSEPH R. MAUTZ, SENIOR MEMBER, IEEE

Abstract-llte equivalent circuit of a via nitich connects two semi- 2o,
infinitely Iongi ranmsision lines through a circular hole in a ground plane

is considered. Tihe r-type equivalent circuit consists of two excess capaci-
lances and an excess inductance. They are quasi-static quantities and thus

are compulItl %latically by the method of inoment, fromn the integral
equatlior. 'time integral cqualions are esgablisited by introducing a sheet of Wire I

magnetic current in the electrostatic case and a layer ol magnetic charge in
the magnetostatic case. Parametric plots of the excess capacitances, the wife
excess inductance, and the characteristic admittance of the via are given hi
for reference.

I. INTRODUCTION

T HE GEOMETRY of the problem to be considered in
this paper is shown in Fig. 1. Two semi-infinitely long

transmission lines, wire I and wire 2, are connected by a a5•h

via through a hole in a conducting ground plane. The via (42,Az. It

consists of wire 3 and wire 4. The radii of wires 1, 2, 3. 4, wire4 2az Wire2
and the hole, denoted a,, a 2 , a 3, a 3, and a,, respectively,

are very small compared to the heights, h, and h :, of wire
I and wire 2 with respect to ground. The media in the T
upper region (region a) and the lower region (region b) Fig. 1. The geometrical structure of the problem.

may be different. Let us assume that (g:,pu) and ((2 ,142)
are the constitutive constants for region a and region b, T Le IT
respectively. Also, the media and all the conductors are
perfect (lossless). For simplicity, the equivalent circuit of
the via is assumed to be i-type, as is shown in Fig. 2. In Y' I Yez
Fig. 2, Y,, is the characteristic admittance of wire I above
the ground plane and Y.2 is the characteristic admittance - ,
of wire 2 below the ground plane. The circuit of Fig. 2 is -

valid when only a small portion of the line voltage is Fig. 2. The equivalent circuit for the problem.

dropped across L, and when only a small portion of the
line current is shunted through C,, and C,2. We desire to above a ground plane [21, and the connection of two
determine the capacitances C,, and C, 2 and the inductance parallel strips above a ground plane 13j, 141 were previously
L,. The problem described here is of practical interest. For considered.
example, printed circuits on different sides of a ground The equivalent capacitance C, of the portion of the via
plane inside computers are often connected by a via above the ground plane is a quasi-electrostatic quantity
through a hole in the ground plane. The related problems and is defined as [2), [31
of the connection of two perpendicular strips above a
ground plane [1), the connection of two parallel wires C= lim (1)

It-.oc V

Manuscript receivcd August 21, 1987; revised lanuary 4. 1988 This Here Q, is the total electric charge on the portion of wire I
work was supported by the Office of Naval Resarch, Arlington. VA of length 11, Q3 is the total charge on wire 3, V is the
22217, tinder Contract N(XX)14-K•-K-(KI27 and by the New York State l
('Center fior Advanced Tcchnooloy in ('amptiter Applict.ion, and Soft- constant voltage maintained at thie surface or the wires

ware I- ngincerins. Syracuse Univcrsnyý with respect to ground, and q,, is the uniform charge
'l1c autlhors arc with thie l)paritcent of Electrical and Conputer density on wire I far away from the via, or equivalently,

Engineering. Syracuse University. Syracuse. NY 13244-1240,d

IEEE Log Number 8920438. the charge density required to raise the potential of wire I

0018-9480/88/0600-1008$01.00 •1988 IEEE



17
WAN6 Et 01.: QUAI-'STATIC ANALYSIS OF A MICROSrFRIP VIA I1,)

lo-V volts if the hole were closed, wire 3 were removed.
and wire I were extended to infinity. Henceforth in the wire 3
electrostatic case, charge density means charge per unit Wire I Region a
length. However, since the numerator of the right-hand Ground
side of (1) approaches a constant that is very small corn- M
pared to Q, and 1iqo0 , as I1 becomes large, numerical
calculation of C,, from (1) would result in significant
error. To avoid this, we subtract the uniform charge den-
sity from the total charge density so that the difference. M
called the excess charge density, is the unknown in the Gtrund wire 4
boundary integral equations. The equivalent capacitance Wire2
C,1 is then the sum of the total excess charge on wire I and
wire 3 if the voltage V is set to one volt. Hence C,, is also
called the excess capacitance of the upper part of the via 1,,1

(wire 3). In a similar manner, the equivalent capacitance Fig 3. The elctros•atic prohlem dividcd into I•wo part%. (a lihe clck-cic

C,2 is defined and is called the excess capacitance of the field remains unchanged in rcgmon a if the hole is closcd and At is
lower part of the via (wire 4). placed above the hole. (b) The electric field remains unchanged in

The equivalent inductance L, is a quasi-magnetostatic region b if the hole is closed and - At is placed just below the hole.

quantity defined by [21, [41 and region b if

A, -di ir I 80a dot) in the hole (4)

1 ,() where io' is the electric potential in region i, i =a, b. In
+ - A20)'dl + A4.d! (2) addition to (4) the following boundary conditions must

I wire2 Jwire 4 also be satisfied:

where A, is the total magnetic vector potential on wire i, *a _ V on wires I and 3
i-1,2,3,4, due to the steady electric current of filamen- = V on wires 2 and 4. (5)
tary strength I flowing from wire I through the via to wire
2. Al0 is the uniform magnetic vector potential on wire I Neither wire 3 nor wire 4 is connected to the ground plane
far away from the via or. equivalently, the magnetic vector in Fig. 3.
potential that would be produced by an I ampere current The total charge density may be recognized as the sum
on wire 1 if the hole were closed, wire 3 were removed, and of the excess charge density and uniform charge density,
wire I were extended to infinity. A 20 is similarly defined. i.e.,
The sum of the four integrals in (2) is a line integral from a ql + qol on wire I
point far to the left on the surface of wire I to a point far q,,3 on wire 3
to the right on the surface of wire 2. Equation (2) is q wir (6)
derivable from [4, eq. (1)]. L, is also called the excess q-4 on wire 4
inductance of the via. For convenience, we call the first q,2 + q0, 2  on wire 2
bracketed term the excess inductance of the upper via
(wire 3) and the second bracketed term the excess induc- where the subscript e on q denotes excess charge density.
tance of the lower via (wire 4). q70 and q,,2 are known and are given by

1i. FORmULATION q,,1 ln(2h /a,)' (I 7)
The excess capacitances CI and C,2 are quasi-electro- 2Th,V (7)

static quantities and thus computed in the electrostatic q0 - I/, >> a,.
case. As shown in Fig. 3, we first close the hole by a ln(2h2 /U 2 )'

conductor and place a sheet of magnetic current M just If the potential V is set to one volt. the total excess charge
above the hole and - M just below it. Steady in that it has will give rise to the desired excess capacitance. i.e.,
no surface divergence, this magnetic current is related to
the electric field EA over the hole by C'1 = J qdl d i+f qe3 di

wire I wire 3

M -EA X n (3) C = f 2, ,, +

where a is the unit vector normal to the ground plane and
pointing upwards (from region b to region a). By the Let O(lq,,) denote the potential due to q,, in the pres-
uniqueness theorem (5, sec. 3-31 and the equivalence prin- ence of the completed ground plane (hole closed). *' (M)
ciple [5, sec. 3-51, the field remains the same in region a the potential in region a due to Al residing on Ole rcgion a
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side of tile completed ground plane, and 0 ,ll) the wire3
potential in region h due to AI residing on the region h Wire 3
side. Then, Wirel

Region a
0002) + -(q,,) + (q..) - Mau----Grou

* =,q) + *(, 4 q,)- ,r, (A). (()__

Note that the electric potential due to a sheet of steady
magnetic current is analogous to the magnetic scalar 111- 1Reg1onM
potential due to a sheet of steady electric current. The WMReioe 4

latter is studied in many fundamental electromagnetic field Ground Wire 4

theory books, for example, (61. Substitution of (9) into (4) Wire 2
and (5), with V being set to one volt, yields integral
equations for the excess charge densities: _

(q,,t) + 4(q, 3) + 0 (M) "i
Vig. 4. The magnloostatic problem dividcd into two parts. (a) The

= I - -O(qoi) on wires I and 3 magnetic field remains unchanged in region a if the hole is closed and
0 is placed just above the hole. (h) The magnetic field remains

0(q, 2 ) + O(q4) - -(M) unchanged in region h if the hole is closed and - ni is plac•d just
hctow the hoile.

=1- (qu2 ) on wires 2 and 4

a*(qt) a*(q,3 ) a.9+(M) over the hole in region i, i=a.b. Let IH (wire i) denote
a n a ln + n the magnetic intensity duc to the electric current on wire i

dO(q,2) XO(q,4) do (At) in the presence of the completed ground plane for i=
2  ) d2 q- +, ( 1,2.3,4, !1(m) the magnetic intensity due to in above

dn d an + a2 dn the completed ground plane, and H-(mn) the magnetic

do(qol) d•a(q0 ) intensity due to in below the completed ground plane. We
' It dn + '2 an in the hole. (10) can writeH = H(wire 1) + H(wire 3) + H * (m)

Although q,, and q, 2 exist on the semi-infinitely long
wires I and 2. they decay to zero rapidly as one moves
away from the via. We may truncate q,, and q,2 and the Note that the magnetic intensity due to a layer of magnetic
boundary equations on wire I and wire 2 at some dis- charge is analogous to the electric field due to a layer of
tances, say 3h, and 3h2 , from the via. By doing so, we electric charge, as discussed in [61. Therefore, H ((m) and
neglect the contribution to the excess capacitances from 1-((i) may be represented by the gradients of some
the excess charge beyond the lengths 3h, on wire I and 3h 2 scalar functions *I' (mi) and 'I-(m). T[hat is.
on wire 2. Now, the method of moments may be used to t' (?I) = -V'4 (,i)
solve for q,,, q, 2 , q, 3 , q,4. and M numerically. We divide =( (13)
wire I and wire 2 (truncated) and wire 3 and wire 4 into
subsections, assume uniform charge distribution on each Substitution of (12) and (13) into (11) gives
subsection, and enforce the first two of equations (10) at V ('in)+ OnP( in
the center of each subsection. Furthermore. we divide the
hole into annuluses, assume uniform circulating current = H(wire I) - I1(wire 2) + li(wire 3)- II(wire 4)1,,*.
distribution on each annulus, and enforce the third of (14)
equations (10), which is averaged over the interval from 0 Equation (14), an integral equation for ni, implies that
to 21r for the azimuthal variation, at the midpoint between 4' ' (n)+ * - (m) equals *".C where 4""" is a potential
the edges of each annulus. A detailed discussion of the whose gradient is the right-hand side of (14). lo com-
moment method as applied to this problem is presented in pensate for the fact that 4", is only known to within an
[7]. additive constant, we require that the total magnetic charge

Now, we turn to the magnetostatic case to compute the associated with in vanish. The moment method may be
excess inductance. Similar to the electrostatic case, we applied now to solve the scalar equation derived from (14)
close the hole by a conductor and place a layer of magnetic subject to the above constraint on mi.
charge density m just above the hole and - in just below Since there is no coupling between wire I and wire 3 and
it, as is shown in Fig. 4. This mi is equal to the normal between wire 2 and wire 4. we have
magnetic field over the hole. Again by the uniqueness
theorem and the equivalence principle, the magnetic field A, = Aewife !) + A,'
remains unchanged in region a and region b if A2 = A2 (wire 2)- A2 (i)

IIa.= " (11) A, = A,(wire 3l) - A,' (tt)
is enforced, where 1I,'. is the tangcntlial magnetic intensity /44 - A4(wire 4) - A4 (On) (15)
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where A,(wire i) is the magnetic vector potential on the in the radial direction with the variation being of the form
"surface of wire i due to the current I on wire i in the K

presence of the completed ground plane. i = 1,2.3,4. -4 =- (19)
Moreover, A, (m) is the vector potential on the surface of PV I - (p/a11
wire i, i - 1,3, due to m residing on the region a side of where p is the radial distance from the center of the hole
the completed ground plane, and A, (no) is the vector and K is a constant determined hy
potential on the surface of wire i, i = 2A4. due to n
residing on the region b side. Note that (15) is valid only. dl=
for the vector potential component tangent to each wire f1

and that the other component is not of interest. Letting I
be one ampere and putting (15) into (2), we get the excess The integration path is chosen in the radial diretion from

inductance of wire 3: thc surface of wire 3 to the edge of the hole. Substitution
of (19) into (20) gives

L,, 1  (A,(wire1)-Ato).dt+ f A,(wire3).dA K ( 3)1)wire I wire 3 K =(21)

1 wireI wire 3 Thus the magnetic current is circulating and its amplitude

The excess inductance of wire 4 is obtained from the above is given by
expression by replacing all the l's by 2's, 3's by 4's, no 's by I I
- m's, and superscripts + by -, that is. Al = -- -- . (22)

L, 2  f (A 2(wire 2)- Ao).dl+f A,(wire 4).di In ( a/ai + /(al/a,) 2 P- I -(o/a5),

2wire 4In the magnetostatic case, the normal magnetic field in

- Ar2A(m)'dl-f A4 - (m).di. (17) the hole is negligible. Hence the magnetic charge may be
2wire 4 neglected and a closed form for the excess inductance of

Because of the small radii of the wires, the current on the the via is obtained. That is,

surface of each wire may be approximated by a filamen- II In 192 h 2

tary current I on the axis of the wire. Thus the first two Le 2t hI a - -h 2  In K (23)

integrals in (16) can be evaluated analytically (21. The last
two integrals may be expressed in terms of magnetic where Kt and K2 are constants. Approximately, xK = ýK =

intensities according to Stokes's theorem. The result is 0.5413.

hA1 In Figs. 5-7. the normalized excess capacitance of the

L,=--L 2hIn -4hI+a,+a 3J upper via (wire 3) (,., 1 a3 ) is plotted. The curves are
also applicable to the normalized excess capacitance

Ce2 /(f 2a1 ) of the lower via (wire 4) if all the subscripts I
+ /tf H,,(nm)dv (18) are replaced by 2. In Figs. 8 and 91 the normalized excess

inductance L,/(21.nai) of a symmetric via is plotted. A via
where in the last integral, So is the planar surface bounded is symmetric if(hI. a1 .kI, /It,) - (h 2 , a 2,( 2,112). Tlhese plots
by the axes of wire 1 and wire 3 and the ground. The can also be viewed as plots for the normalized excess
subscript n on HW(m) denotes the component normal to inductance I.ri/(lia,) of the upper via. If the subscripts I
St and pointing into the paper. The expression for I1-2 is are replaced by 2, they become plots of I.,.2 /(ALt20). the
similar to (18) in form. The excess inductance of the via is normalized inductance of the lower via. In Figs. 10 and I I
then the sum of L,t and L, 2 . the characteristic admittance • Y, of a symmetric via is

plotted. Here ij, is the intrinsic impedance of the medium.
The characteristic admittance of the via is defined as

111. NUMERICAL RESULTS AND DISCUSSION

In order to implement the computer program on a
PC/AT, we simplify the computation by choosing only If a TEM wave approaches the via along wire I and if
one expansion function for the magnetic current and none wire 2 is terminated with a matched load 02), then it can
for the magnetic charge. This is justified as follows. Since be shown that the least remection will occur when
the radius of the hole is very small compared to the heights
h, and h2, the couplings (electric and magnetic) through (25)
the hole between wire I and wire 2 are negligible to the =

first-order approximation. In other words, the fields in the
hole are primarily from the via (wire 3 and wire 4). In tile Note that the curncs in Figs. X and 9 arc plotted under the asirunptionhole re prmaril from the va (wie 3 a d wir 4). n th nth the hole " sin, lla| in relation to, the heights. h, and h. ,. To c'mpha%,,i
electrostatic case, the tangential electric field in the hole is this and te h'comitent •ilh other plowic add the re'mricto, n f, -a ,t ,
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Fig. 3. Normalized excess capacitance of the upper via (as -2a), Fig. 7. Normalized excess capacitance of the upper via (as -2o3.
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Fig. 6. Normalized excess capacitance of the upper via (a, - a,. k - Fig. 8. Normalized excess inductance of a symmetric via (as - 2a0,
as/a,). k - a,1/a 1).

To see this, we notice that the voltage reflection coefficient at the T plane on wire I in Fig. 2 is given by

Yot(I - tiLIC,2) -Y020I- W2L'C')jL 1 YW2 ]*2-"-e~"( LC') AC2 1eLC )2

.- +( 2 6)1 C -+ C

*~ C0  IN I

mY01 ( I -c'•L'C.2) + Y02(1- 2L'Ct).•L + r°Y°1Y0 + J_ ,[ C', (I W •2LIC122 +c'2 ( 1 - 'L'Ct (26)

where -w is the angular frequency. Usually, w2L,(C,, + To design a reflectionless via, consider the following
C12) -w 1. The above expression then reduces to numerical example. Suppose that

r- r° - Y02 + jw L, Y01 Y°2 - J'o (c", + C12),{7 hi h 2=1.00 cm
r = Y + Y12 + j , L , 7o o + j , • ( C , + C , 2) . ( a 2 0 -1 0 c m

When (25) is satisfied, the magnitude of the numerator of as = 2a (28)
(27) assumes its minimum, the magnitude of the de-
nominator is roughly Yo, + Yo2, and thus Inl is minimized- and that we wish minimize reflection from the via. Since
The reflection from the via is minimized. Furthermore, if 21r 2.10
(25) is satisfied and if the system is symmetric (Y., - Y02), Vl-Yo 2 = toff- - (29)
there is no reflection from the via. That is, all of the power i1 ln(2hj/a,) -

from the incident wave will be transmitted through the via the reflectionless condition becomes
to the matched load. In this case, the via is called reflec- n,-21.(0
tionless. Y 20.3)
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The Inductance Matrix of a Mfulticonductor y
Transmission Line in Multiple Magnetic Meda t

JOSEPH It. N4AUTZ. umitio mEmsEBL, IEEE. 2
ROGER F. HARRINGTON, vuu~ow, IEU, AND rm2

CHUNG-1 G. HSU- S1UDUW MEMBaER, IEEE (4d iA~d) a A

4A&~e -Consider a ,MdtlmiuorW transmission line consisting of N,
eon hiatiumg cyllmdets in inhomrogeous media consisting of N,, homoge- 4
114o01 1`000o01 With permeabhiils P, and pefiutfivitles c,. The inductance0 (03. ,L3 3 )
maltrix I LI for the line is obtained by solving the magnatostatie problem of
IV, cornucdatos in N,, regions with perieabiltes AA,. The capacitance (6 ALS
matrx (C) for the line is obtained by solving the electrostatic problem of NC/4
N, coaductors In A(,, regions with penmittivities c,. it is shown thiat - X
(L - gAe0 [oC'j' . "here (C') is the capacitance matrix Of an auxiliary Fig. 1. A multiconductor transmission line in a multilayered dielectric and
electrostatic problems of N, conductors in N,, regions with relative permit. magnetic region above a ground plane.
tivides set equal to fth reciprocals of the relative permeabilities of the

magntostalcproblem, i.*-. c;/co - At0 /Ji,.
depending on the frequency, some Of the current flows internal to

1. INTRoDUCTIO11N the conductors. Relationship (2) is then Only approximate.

Fig. I shows a multiconductor transmission line consisting of Although (2) can be inferred from the last two sentences in
IV,. conductors and IV, insulating materials above a perfectly (2, sec. V1, we have not seen an explicit proof in the literature.
conducting ground plane. The system is uniform in the z direc. T1he purpose of this short paper is to give a simple proof of (2)
tion (direction of propagation), and the cross-sectional shapes of for the multiconductor case with layered media.
the conductors and insulators are arbitrary. The insulators have
arbitrary permeabilities j, and permittivities c,. An upper ground 11. PROOF 01r (2)
plane could be present and treated as an additional conductor in The electrostatic problem from -which (C] is calculated is
a manner similar to that of [I I. formulated in detail in [1]. We Shall refer to that formulation

To the quasi-static approximation, the multiconductor trans- when needed. The magnetostatic problem from which (LI is
mission line is characterized by a capacitance matrix [C), ob- calculated is an extension of the formulation for nonmagnetic
tained from an electrostatic analysis, and an inductance matrix media, given in the appendix of [1]. The formulation for magnetic

U~, obtained from a magnetostatic analysis. The formulation of media is given below.
the problem for [C] arnd a numerical algorithm for its computa- The inductance matrix L I is an Nc X Nc. matrix that satisfies
tion are given in 111. In Lhe appendix of [I] it is shown that if the
insulating matter is nonmagnetic, the inductance matrix of the iIR ~(4)
line is given by where ý and Fare N.V X 1 column vectors. The j th element of T

[UI p;&c0[ CDJ 1 is the z-directed conduction current on the jth conductor. The
i h element of ýl is the x-directed magnetic flux passing between

Here (4.] is the capacitance matrix of the multiconductor trans- a unit length of the i th conductor and the lower ground plane. If
mission line if all dielectric constants are set equal to 1. 1

In this paper we shall show that when the insulators are I_- (C' (5)
magnetic, a modified relationship holds. In particular, it is or

(U - pog[ C1j (2) and if (C] I' exists, then (4) will imply that the desired relation-
ship (2) is true. In the remainder of this section, we establish (5).

where (C'1 is the capacitance matrix of the line if all relative We formulate the magnetostatic: problem with magnetic media
permintivities are set equal to the reciprocals of the relative in terms of the total electric current Jrn. on the surfaces of the
permeabilities, i.e., Iconducting cylinders and on the boundaries between different

9 A0 a12**,N, 3 magnetic media. The total electric current on the conducting

(0 1ksurfaces is the conduction current plus the magnetization current.
The total electric current on the magnetic media boundaries is

Note that the auxiliary problem for finding (C'J has relative the magnetization current. The magnetic flux density B is given
permittivities less than unity if the corresponding relative per- by
meabilities are greater than unity.

Relationship (2) is strictly true only if all conductors are B- V X( A - VA, X a.. (6)
Perfect. It assumes that all current in the magnetostatic problem where A, is the only component of A due to steady current
flows on the surfaces of conductors. For actual conductors, flowing in the z direction. For the two-dimensional problem, it is

Manturscnipt received November 211.19117; revised march 7. 911. This work given by
was supported by the Office o( Naval Research. Arlington, VA 22217. under A
Contract N0I00t445-K.0032 and by the New York State Center for Adane Aj p) - "0 .. ' I ; dl' (7)
Technology in Computer Applications and Software Engineeging. Syracuse E j Jr' in
University. j-1P

The authors are with the Department of Electrical and Computer Engineer- wher Ming. Syracuse University. Syracuse. NY 13244-1240. 11dnot the jth interface. The first N, interfaces are the
IEEE Log Number 6822040. surfacets of the N,, conductors. If the upper ground plane is

0018-9480/88/08001293$01.OO 01988 IEEE
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present, the (,V + l)th interface is the surace of ibis plane. The If the i th conductor is of finite cross section, then /, is a closed

Wlt N,' interfaces are the magnetic media boundaries. Thus, curve on which

M MI+ N () UJr(p) - -NXB'(p) (15)

whereM ,is N, ith f uppa od plan is absent. If the upper Po

ground phme is present, the MI is N, + 1. The number NJ of 1
mag•etic media boundaries could be grma than Nd-1 because uJC( P) - ;-it* , n X B* (P) (16)

thea boundaries are arbitrarily shaped, not necessarily parallel to
one another or to the lower ground plane. In (7), p' is the where a is the unit normal vector that points outward from the

position vector of dr', and i' is the position vector of the image surface of the conductor. Furthermore, B+ (p) and ),* are,
of dr' about the lower ground plane. respectively, the magnetic flux density and the permeability just

Substituting (7) into (6) and assuming that p is not on any of outside the conductor. In (16), 'c(p) is the conduction current
the interfaces (i,), we obtain on the conductor. Equations (15) and (16) imply that

"-. ( ,-,' p-a-- ×,P.(a+(,. ,o .
0()-- At- P -- d (P -dtP'. 09 Jr(P) (17)

The linlits of (9) as p approaches 1, from either side are on the surface of the i th conductor, provided this conductor is of
finite cross section.

o , f0P -p- _ - If the i th conductor is an infinitesimally thin strip, then I, runs
( 2) s P -•, - , X dl from one edge of the strip to the other on which2 v.(. f-(i) (18)11IP01

oT (a X ,), pon,0 J -X (P) 8-)

wherenI, denotes the priiipal value of the integral over I,, and Substitution of (10) for B ± (p) in (1$) leads to
i is a umt vector normal to t, at p. Moreover, B÷ (p) is B(p) on go I ".I ,_ 1

the side of 1, toward which x points, and B- (p) is B(p) on the Jc(P) T , P) + -L Jr( P)
other side of /,.

On the surface of the ith conductor, A, is constant and is the + I 1 '
x-dhrected magnetic flux 4', passing between a unit length of the 2 - I- ( t,
ith conductor and ..e lower ground plane. Hence, similar to 27 L (p) (T

[1 q A ) ,p on 1, (If • l _ p ' P io : . d t' (19)
A,(p) 0j,, i - 1,2,... , Mi. (1)i7\ _P ,2)

If the upper ground plane is present, it is the (N, + 1)th conduc- on the surface of the t th conductor, provided this conductor is of

tor and, because A, vanishes on it, 4  sA ( +-0. Substitution of (7) zero thickness.
Now, consider the auxiliary electrostatic problem which has

into (11) gives the same geometry as that of the present magnetostatic problem,

I/ II U (P - &' \p on , but with relative permittivitics c/0o set equal to po/p, The
- f , Jr( P') in j / " 4 s-1,2,..-, MI. formulation presented in (1) is, in fact, valid for dielectric media

of arbitrary shape. The unit vector a, in (11) of (1] should be
(12) replaced by n when the dielectric media are arbitrarily shaped. It

Continuity of the tangential component of magnetic intensity is clear that (12), (14), (17), and (19) havc the same mathematical

on the magnetic media boundaries requires that forms as (9), (11), (15), and (17) of I[l, respectively. Therefore,

+ ) D- the solution of the magnetostatic problem can be related to that

R 5' ( 5 -) I on M of the auxiliary electrostatic problem by
(13) i)(11) = -- I ) i-1,2,...+-,1N, (20)

where x, B* (p), and B-(p) are the same as in (10). Further-

more,m " is the permeability on the side of 1, toward which a where JPI)(p') is the conduction current of the magnetostatic

points n 1p7 is the permeability on the other side of 1,. problem when 4, -1 is the only nonzero magnetic flux and

Substituting (10) into (13) and then dividing (13) by a,[1//p, - ao')(p') is the free charge of the auxiliary electrostatic problem

1/)&7 1, we obtain when the potential of the ith conductor is unity and all other
conductors are grounded. Multiplying (20) by *, and summing
over i, we obtain

+ I - A i,(o' N,, ,
_2 7 _ ]i,.(,+ .2 w1 /.sf) Es(),'PV •., 1(p) 4'1  (21)

2 1 ooi-

"After noting that the right-hand side of (21) is J'.(P'), we in-( -P' P -d' d . tegrate (21) over t, to obtain (5) with the jith element of [C'l

PP - 91, 1P ' given by

p on It (1) J, p') d1, ,-,.,....l'. (22)
i-M 1 +I, Mi +2,'",M. (14)



-4/
Ian t|U sNSACTIONS 6•N MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 8, AUGUST 1988 1295

Premultiplication of (5) by (C']-' yields relationship, the computer code given in [11 and [31 for obtauing
the capacitance matrix of the electrostatic problem can be used to

;- (0[C11] -IT (23) obtain the inductance matrix of the magnetostatic problem.

The inverse of [C'J exists bemusm [C'] is positive definite, which
can be concluded from the fact that the electrostatic energy
Stored in the system 3s galwa $ tr than Zero with nontrivial (11 C. Wei. R. F. Hari4bton, J. R. Mauz, and T. K Sarkar. "Multiconduc-

tor transmission lines in mululayered dielectrc media." IEEE Tram.free charge distribthion oa th conductors. Comparison of (23) Micruw,, Thkori Tech., vol. MTr-32. pp. 439-450, Apr. 1914.
with (4) gives the desired relationship (2). [21 1. V. Lindell. "On the quasi.TEM modes in nhomoeneous multiconduc-

tot transmission lines.*" IEEE Trans. MAcrowaJuaue T Tech., vol. MTT-
29, pp. $12-?17, Aug. 1981.111. CONCLUSION [31 C. Wei and R. F. Harnagton. "Extension of the multiconductor tranasms-

A simple relationship between the inductance matrix and the sion fine solution to zero-thickness conductors and to conductors between
parallel ground planes," Department of Electncsl and Computer En-auxiliary capacitance matrix has been given. Thanks to this gineenng. Syracuse Uruv., Rep. TR.83-5. Mar. 1983.
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Boundary Integral Formulations for Homogeneous Material Bodies

Roger F. Harrington

Department of Electrical Engineering
Syracuse University
Syracuse, NY 13244-1240, USA

Abstract- There are many boundary integral formulations for the problem of electro-
magnetic scattering from and transmission into a homogeneous material body. The only
formulations which give a unique solution at all frequencies are those which involve both
electric and magnetic equivalent currents, and satisfy boundary conditions on both tan-
gential F and tangential f. Formulations which involve only electric (or magnetic)
equivalent currents, and those which involve boundary conditions on only tangential E
(or tangential 11) are singular at frequencies corresponding to the resonant frequencies
of a resonator formed by a perfect conductor covering the surface of the body and filled
with the material exterior to the body in the original problem.

I. INTRODUCTION

In electromagnetic theory, a boundary integral equation is one which involves the

integral of an unknown source times a Green's function over the surface bounding

a material body. In this paper we consider boundary integral equations for deter-
mining the electromagnetic field internal and external to a homogeneous material

body, when it is excited by sources external to the body. The problem when the

sources are internal to the body, or when sources are both external and internal,

requires a minor modification of the theory.
There are infinitely many boundary integral equations that can be formulated

for calculating the electromagnetic field internal and external to a homogeneous

material body. In this paper we formulate two classes of such equations, which
w1 call source formulations and field formulations. In the source formulation the
pr'oblem is formulated in terms of unknown electric and magnetic equivalent cur-
rents separately for the internal and external regions, and the boundary conditions
are applied to tangential P and tangential H on the boundary surface S. This

leads to two equations in four unknowns, and further restrictions meust be made on

the sources. In the field formulation, a single set of equivalent currents {J, A}
is used to produce the field in both the internal and external regions, and the

boundary conditions are again applied to tangential P and tangential ff on S.

This leads to four equations in two unknowns, and we must mnake a flirther chloice
of how to satisfy the equations. Some choices of sources and field equations lead to

operator equations that are singular at certain "resonant frequencies", and other

choices lead to operator equations that have unique solutions at all frequencies.

A number of different boundary integral equations for homogeneous material

bodies have been used for computation by various authors. For two-dimensional
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problems, a formulation obtained by MUller (1] has been used by Solodukhov and
Vasil'ev [21 and by Morita [31. A formulation equivalent to our E-field method
has been used by Wu and Tsai [4], and by Arvas, Rao, and Sarkar [5]. For three-
dimensional problems, a formulation obtained by many investigators, called the
PMCHW formulation in [61, has been used by Wu (7), by Mautz and llarriiigton
[61 and by Umashankar, Taflov, and Rao in [81. For references to methods not
classified as boundary integral formulations, see 18].

u. DEFINITION OF OPERATORS

The problem to be considered is shown in Fig. I. The homogeneous mate-
rial body is bounded by S and has constitutive parameters Ai, ei (i denotes
internal). The region external to the body is also homogeneous and has constitu-
tive parameters Pc, £e (e denotes ezternaO. The impressed sources are denoted

71"'p, ]-•mP, and the field that they produce with the body absent is denoted

T-m, WinP. The unit normal pointing outward from S is denoted A. The total
field in the internal region is denoted E, 1. The total field in the external region
is

= ,mp + Ec(1)

H = "' + ct (2)

where the scattered field scat, H$cat is that produced by the material body.
Lossy bodies can be treated by considering ei, or pi, or both, to be complex.

ft

inlternal region external region

= r" + r""

Figure 1. A material body bounded by S in the impressed field produced

by 7P,Wmp

We use electric and magnetic surface currents radiating into homogeneous me-
dia of infinite extent as equivalent sources. The notation 7 e, Me denotes equiv-
alent currents on S radiating into media having constitutive parameters pc, Ce
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everywhere, as shown in Fig. 2. The notation Ee(Je, Me), He(Je, Me) is used to
denote the field produced by Je,, Fe , obtained from the usual potential integrals.
In other words,

Ee(Je. Me) = Ee(J,10) + Ee(0, -Me) (3)
H,(7., W11.0).(7,o) + ff,(0, He) (4)

where

Ee(Je,,) = weJe Ve(e 5
'HePe,0) V Ae(Je) (6)

lie

= ) FMe)( ) (7)
Ce

He(O, Me) = -jwFe(M-) - Vike(M,) (8)

Here ;i, ts, •., and 1be are the usual magnetic and electric potentials

-Ae = /e IA 7e(r)Ge(F - F') d.' (9)

=1 ff qe(j)Ge(f - ) das' (10)

Fe = e s ,(')Ge(F - ') ds' (11)

S= 1Jfme(-')G,(F - ') ds' (12)

The electric charge qe and magnetic charge me are related to Je and Me by
the equations of continuity

qe = - V, Je (13)

e =- V,., Me(14)
3W

where Vs. is the surface divergence. The Green's function is that for infinite
media,

Ge= e-jk. I;-j;'
G,--47r~f - ;'l 15

where ke = we p .
The boundary integral equations involve the tangential components of E and

7" over S. However, the tangential component of H is discontinuous at a surface
current 1, and the tangential component of E is discontinuous at a surface
current M. Hence, it is important to evaluate tangential components on the
proper side of surface currents. For this, we define a surface S+ to be just
outside S, and S- to be just inside S (see Fig. 2). The notation

Sx He (Je, Me) (17)
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* .denotes tangential components evaluated on S+, and the notation

i x E, (J IAM.) (18)

ii He (J7,me) (19)
denotes tangential components evaluated on S-.

We also need equivalent surface currents (Ji, Mi) on S radiating into media

having constitutive parameters pi,ei everywhere, as shown in Fig. 3. The no-

tation Ei(Ji,Mi), li(Ji,Mi) is used to denote the field produced by Ji, Mi,
obtained from the usual potential integrals. In other words, Ei(Ji,Mi) and

h(Jy iJmi) are given by (3)-(15) with all subscripts e changed to i. Again tan-
gential components of R and H are discontinuous at surface currents J and M
on S. Just as in the previous case, we define a surface S+ to be just outside S,
and S- to be just inside S (see Fig. 3). To denote tangential components on

S+ we use (16) and (17) with subscripts e replaced by i. To denote tangential
components on S- we use (18) and (19) with subscripts e replaced by i.

11

5LiA., i.'

S+

Figure 2. The surface currents Je,Me radiating into medium !Le,Ce

everywhere produce fields Ee(Je, Me), He(Je, Me).

n

(JL,, M,)

S_

Figure 3. The surface currents Ji,Mi radiating into medium 11i,ei
everywhere produce fields Ei(Ji, ,Mi), Ri(Ji, ,i).
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". III. SOURCE FORMULATIONS

To solve the original problem of Fig. 1, we have to solve the following mathematical
problem: In region e, find the field (1) and (2), where klmp, P1 '"' are a known
field and "a', I7rca are an unknown solution to Maxwell's equations satisfying
the radiation condition. In region i, the unknown field F, H is a solution to
Maxwell's equations. Furthermore, the tangential components of E and H over
S+ in the external region must equal the tangential components of E and if
over S- in the internal region.

By the use of equivalent currents je,He over S radiating into media e every-
where, Fig. 2, we can write a general expression for the field in region e as

Re =--- ' + Ee(Je,Me) (20)

F = -W ' + He(Pe, !We) (21)
By the use of equivalent currents 7i,Mi over S radiating into media i every-
where, we can write a general expression for the field in region i as

-Ei = -Ei('i,(iff) (22)
-Hi = Hi(Ji, i) (23)

The formulas (20) and (21) give the field R ,i! outside S (and on S+), and the
formulas (22) and (23) give the field Y,17 inside S (and on S-). Continuity
of the tangential components of E and H" from the external to internal regions
requires that f X Pm + Te (Ye He iXT 7Io(4)

A r (MP +H+ f(7e, He)]ii fzX Hi(ji",M) (25)

Rearranging (24) and (25), we have

fi X [Re (j~e, He) - PE, (Ji, M0) ii X VmP (26)

it [HJ(Pe, Me) - H1i (J1 , M1 )] = -x i"(7
These are two equations to determine four unknowns (Je, Me, Ji, MH). We must
enforce two more relationships among these four unknowns before a unique solu-
tion can be obtained.

A. Electric Current Formulation

One simple way to reduce the four unknowns to two unknowns is to set

Me = Mi = 0 (28)
i.e., express the fields in terms of surface electric currents only. Equations (26)
and (27) then reduce to
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4 -1 (JO)f(jiO0)] ii m "! (30)

We will show in Section V that the operator represented by (29) and (30) becomes
singular at frequencies for which S, when covered by a perfect electric conductor
and filled with the external medium, forms a resonator. Hence, numerical solution
of (29) and (30) must fail in the vicinity of such frequencies.

This failure can be clearly seen from Fig. 4 of 14), where, in addition to the
backscattering cross section, the authors compute the condition number of the
matrix of the numerical solution. The matrix becomes extremely ill-conditioned
at k0 a = 2.405, which is the first internal resonance of an empty conducting
circular cylinder. Note that the computation went bad regardless of the losses
in the material cylinder, since it is the external medium (in this case free space)
which determines the frequencies of failure of the equation.

B. Magnetic Current Formulation

Another possible way to reduce the four unknowns in (26) and (27) to two
unknowns is to set

J, = J, = 0 (31)

i.e., express the fields in terms of surface magnetic currents only. This is the dual
case to A above, and the equations are self dual. (An interchange of symbols
according to duality [9, Sec. 3-2J produces equations of the same mathematical
form.) Hence, the dual equations must become singular at dual frequencies, i.e.,
frequencies for which the surface S, covered by a perfect magnetic conductor and
filled with the external medium, forms a resonator. These resonant frequencies
are the same as those for the electric current case, section A above, and hence the
magnetic current formulation fails at precisely the same frequencies as does the
electric current formulation.

C. Combined Current Formulation

Another way to reduce the number of unknowns in (26) and (27) to two is to
set

Je = Ji (32)

Me = -Mi = M (33)

In other words, use a single unknown electric current j to represent both 7e
and -Ji, and a single unknown magnetic current M to represent both Me and
-Mi. This we call the combined current formulation. The reason for choosing
(32) and (33) is most easily seen from the viewpoint of the field formation of
Section IV, where we discuss it in more detail. It is shown in Section IV-A that
the combined source formulation is equivalent to the combined field formiilation,
which has been shown to be nonsingular at all frequencies.

D. Other Choices

Many other relationships among Je, Me, Ji, Mi could be chosen. One choice
which would lead to a formulation which has no frequencies of singularity is an
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* .extension of the combined source formulation for conducting bodies 110]. This
involves choosing

-= he? x J, (34)

Al-, = xfi x j (35)

where ae and ai are constants to be chosen. For reasons discussed in 110], a good
choice is a, = r7. and ai = qi, where 77e and rii are the intrinsic impedances
of region e and region i, respectively. Also, a proof similar to that used in (10]
shows that the operator resulting from (34) and (35) has no singular frequencies,
and no mathematical difficulties would be encountered in a numerical solution to
(26) and (27).

IV. FIELD FORMULATIONS

In this formulation we use the equivalence principle (9, Sec. 3-5] to pick a given set
of sources able to produce the desired field, and then satisfy sufficient boundary
conditions on the field to determine the sources. This is the approach used in [6].
It might alternatively be called a direct application of the equivalence principle.

According to the equivalence principle, an electromagnetic field can be termi-
nated by placing the required electric and magnetic surface currents on S. If we
specify that the field and sources outside S remain the same as in the original
problem, Fig. 1, then the currents

7 = nX y = X (JIpP + (36)

M = F X ii = (EMP + r.cal) X 'h (37)

do not change the field outside S but produce zero field internal to S. Since the
field is zero internal to S, we can change the medium to any convenient value.
In particular, if we replace the internal medium by the external medium, we have
7 and V radiating into a medium with ye,,e everywhere. This gives us the
desirable situation that the potential integrals can be used to calculate the field
from 7 and M. This procedure gives us the external equivalence of Fig. 4.

A second application of the equivalence principle gives us the internal equiva-
lence of Fig. 5. We specify that the field internal to S remain the same as in the
original poblem, and the field outside S be zero. This requires the terminating
currents fh x (-ff) and (-Y) x A, the minus sign resulting from the fact that
ii now points into the region of zero field. Hence, the surface currents required
for Fig. 5 are just the negative of those for Fig. 4, given by (36) and (37). Once
again we can change the medium in the region of zero field to any desired value.
In particular, we change it to be equal to the internal medium, so that we have
-7 and -M radiating into a medium with pi, ci everywhere. Hence, we can
again use the potential integrals to calculate the field from -.J and -M.

We now use the notation of Section 11 to write four boundary integral equations
involving the tangential components of P and ff on S- in Fig. 4 and S+ in
Fig. 5. Just inside S in Fig. 4, we have fixE = 0 and fix TI = 0, or
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H=H +H

zr f S

Figure 4. The field external to S is the same as in the original problem,
Fig. 1.

-•7 a

zero field

Fi•,'re 5. The field internal to S is the same as in the original problem,
Fig. 1.

A (38)
fi x [He-(j,M) + HPj] -0 (38)

Just outside S in Fig. 5, we have fA x E = 0 and fitxl = 0, or
ix +t(-i,-M) = 0 (40)

is x 1i, (- j, --AI) 0 (41)

Rearranging (38) and (39), and taking the minus signs out of the operator in (40)
and (41), we have

fi x Ep-(J,M) = -_, x -ip (42)

ft x HN(J,M) = _ j, x j-imp (43)
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", X 4(J, W) 0 (44)

ii X Ht(j,W1) 0o (45)

Note that these are four equations in two unknowns j,!M. Perhaps certain
pairs of these equations can be used to compute J,M. More generally, linear
combinations of them can be used.

A. Combined Field Formulation

The method that appears to have been used the most is to reduce the set of
four equations to two by adding (42) to (44) and (43) to (45). This gives us the
pair of equations

fiX + ii p (46)

4 X [(JM+H A!M) -ix i' m 1  (47)

These are very similar to the equations obtained from the combined current for-
mulation, Section III-C, except for the side of S on which the various fields are
evaluated. To be explicit, if we substitute (32) and (33) into (26) and (27) we
obtain

fi X[E, (J, M) + Ei( M)l_ =ii X PMP (48)

fax X H,(J, M) + Hi 0, M)] +--' =- ix m p (49)

We now show that, in spite of the different positions of + and - signs, (46) and
(47) are equivalent to (48) and (49).

At any current sheet we have [9, p. 34]

A ff ii() _ g(2)]. (50)

where 3 .- 1) isthe field on th" s -'-of S into which fi points, and E(2), -H-(2)

is the field on the other side of S. In terms of the notation of this paper,

fAX [H. (J, M)- H.(7, T)J =+J (52)

fA (53)

Rearranging, we have

ftx -+(J,M) = xH(J,M) + (54)

fi x P'(J,M) =f i x T,- (,M) - M (r,5)
The same equations are valid for subscripts e replaced by subscripts i. Substi-
tuting (55) and the same equation with subscripts e changed to i into (48), we
obtain (46). Substituting (54) and the same equation with subscripts e changed
to i into (49), we obtain (47). Hence, the combined field formulation of this
section and the combined current formulation of Section I11-C are identical.
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It is shown in [61 that the combined field formulation gives a unique solution
at all frequencies. Hence, the combined current formulation of Section Ill-C also
gives a unique solution at all frequencies.

B. E-field Formulation

If we take only the two equations involving tangential E, (42) and (44), we
have the E-field formulation

ii X (j, ) = ji rnp(56)

ii X T(7,M) = 0 (57)
This formulation was used in 15] for the more general problem of both dielectric
and conducting cylinders present. It may seem strange at first that this for-

aIulation makes no use of the boundary conditions on tangential F. However,
tangential 1 is determined by tangential E at most frequencies so that (56) and
(57) are sufficient to determine J and M at most frequencies. However, we show
in Section V that the E-field formulation will fail at frequencies for which S,
when covered by a perfect electric conductor and filled with the exterior medium,
forms a resonant cavity. These are precisely the same frequencies at which the
electric current formulation, Section III-A, fails.

C. H-field Formulation

Dual to the E-field formulation, we can obtain an H-field formulation by using
only (43) and (45) from the set (42)-(45). Since the H-field formulation is dual to
the E-field formulation, it uniquely determines J and M at most frequencies. It
will, however, fail at frequencies for which S, when covered by a perfect magnetic
conductor and filled with the exterior medium, forms a resonant cavity. Since the
field equations are self dual, these frequencies are precisely the same frequencies
at which the E-field formulation fails.

D. Other Choices

Other choices of two equations from the set (42)-(45), and linear combinations
of the equations, could be made. For example, instead of the simple addition of
equations used in Section IV-A, we could take the more general linear combina-
tions

Ax _ [~(j, M)+ a~t(jM] X -24-P (58)

AX [Ti , M) +/Ht (jM = fl .iiX " (59)

where a and P are constants to be chosen. It is shown in (61 that any choice
of a and 0 for which af3 (* denotes conjugate) is real and po5 ;kive gives a
formulation having a unique solution at all frequencies. lit particular, the choice

a = -til/e (60)

0 PiP (61)

gives the Muller formulation [1]. This formulation has the advantage that the
static electric field contribution to the left-hand side of (58) due to the electric
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charge associated with 7 is zero. Similarly, the static magnetic field contribution
to the left-hand side of (59) due to the magnetic charge associated with M is zero.
According to the last sentence on page 300 of (11, the singularity of the kernels
in (58) and (59) due to the electric and magnetic charges is no more pronounced
than the reciprocal of the distance between the source point and the field point.
Hence, the singularity that the kernels of the integral equations (58) and (59)
exhibit as the source point passes through the field point is not as pronounced
as the singularity of the kernels of (46) and (47). Computations have shown [61
that the use of Miller's formulation (this section) instead of the combined field
formulation (Section IV-A) can lead to more accurate solutions for low contrast
bodies.

There are infinitely many other choices of combinations of equations from the
set (42)-(45) that could be made. There may be theoretical and/or computational
reasons for other choices, but such reasons are not at present known. We therefore
do not discuss any other choices of combinations of equations.

V. SINGULARITIES O OPERATORS

We stated in Section I11-A that the electric current formulation failed at frequen-
cies for which S, when covered by a perftct electric conductor and filled with the
external medium, formed a resonator. In Section IV-B we stated that the E-field
formulation failed at these same frequencies. We now prove these statements.

For these proofs, we use the theorem that, given an equation

Lf= g (62)

the operator L is singular if the corresponding homogeneous equation

Lf= 0 (63)

has a nontrivial solution fo. For the electric current formulation, (29) and (30),
we must show that there are some frequencies for which

+ - -o (64)fix~ (E,(J,)'IE(J0)] =0 (4

fix [,NJe,OV-7i7J,) (65)

are satisfied by 7, 7i 3 0,0. In words, (64) and (65) state that we must seek
nonzero Je such that 4 × E-- and A x H-e are zero on S+, or nonzero Ji such
that Ax Ei and i x Hi are zero on 5-, or both.

In the next paragraph, we assume that (64) and (65) are true. We use (64)
and (65) to derive (66) and (67). Although (66) and (67) are true, there is no
assurance that they are as restrictive as (64) and (65). Therefore, the set of all
possible solutions to (64) and (65) will belong to the xet of all j,~,,qil,le molhtimnn
to (66, and (67).

Consider the composite situations where, in region e, (T., (P.,0), He(Je,0))
exists in medium (lit,ce) and, in region i, (fi(ji, 0), jii(J, 0)) exists in medium
(js,,,). Because of (64) and (65), the tangential components of both the electric
and magnetic fields in the composite situation are continuous across S. Therefore,
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the composite situation has no sources so that its fields collapse to zero, As a
result, (64) and (65) imply that

fL E.+(J,0) =0
P (je,0) :0 (66)i X 1T,+ (-Je.0) 0

,•x E-(J. o) 00,) 0 
(67)i X • ( ,0) =0

Regarding (66), refer to Fig. 2. From our knowledge of cavity resonators, we
know that there are resonances within S, with currents Je on S such that
both tangential P and tangential 11 are zero on S-+. Hence, at each resonant
frequency, there will be a non-trivial Je which satisfies (66). A resonant frequency
is a frequency at which S, when covered by a perfect electric conductor and filled
with (p.,,e) forms a resonant cavity. Moving on to (67), refer to Fig. 3. Again
from our knowledge of cavity resonators, we know that there can be resonances
within S. However, this time we are evaluating fi x E and f x H on S-
as denoted by the - superscripts in (67). There are no resonances for which
tangential E and tangential R" are both zero on S-. Hence, (67) can never
have a non-trivial solution Ji.

In the previous paragraph, it was shown that the resonant frequencies were
the only frequencies at which (66) and (67) could have a non-trivial solution
(7 e,7 i). This non-trivial solution is called (JR,0) where JR is the resonant
current. Obviously, (JR,O) satisfies (64) and (65). It turned out (66) and (67)
are %s restrictive as (64) and (65). The solutions to (64) and (65) are the same
as t1,- solutions to (66) and (67). Therefore, the only frequencies for which the
totai operator of (64) and (65) is singular are the resonant frequencies. This is
the statement made in Section I1-A.

The homogeneous equations corresponding to the E-field formulation (56) and
(57) are

i E(j,if-) =0 (68)

ii x (7,M) =0 (69)
In this paragraph and the next two paragraphs, we assume that (68) and (69) are
true and investigate how (68) and (69) restrict (J, M). Consider the composite
situation of Fig. 6 where (E,(-J,-M), Hi(-J,-M)) exists in (pi,ei) internal
to S and (E,(J,M), Hte(,M)) exists in (Me,Ce) external to S. The field in
Fig. 6 is supported by equivalent electric and magnetic currents J and ) on S
given by

A X , (nf+,(j, TY) - T1 -(-,-j' ) 1To(7)
-h X (-i(J,) - -B-(-j, -A!)) (71)

In this paragraph, we find how (68) and (69) restrict 3 and ) of (70) and
(71). We have

S (72)
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M= -t X (73)

and

7 = ~X (Hý()F,MT) R- H(j, M)) (74)

M - i (75)

Substraction of (74) from (72) yields

R = (7x H ) + ii x R;-(j,M) (76)

where 7 is given by (70). Subtraction of (75) from (73) yields
T = -ii x 'Pt(J,Y) - ii E; •(, j) (77)

where M is given by (71). Since there are no external resonance, (69) implies
that

SX ,(, 0 (78)

Equation (68) implies that
ft ( { 0, no resonance (79)

O JR, resonance

where "resonance" means that the frequency is a resonant frequency and "no
resonance" means that the frequency is not a resonant frequency. Substitution of
(78) and (79) into (76) gives

0 = 1, no resonance (80)
a= J, resonance

Substitution of (68) and (69) into (77) gives

)R = 0 (81)
In this paragraph, we express (.,M) in terms of the field just inside S due to

(T,.i) of (80) and (81). Substitution of (78) and (69) into (74) and (75) gives

i = ,i x HF(-7,-!) (82)

= -i x ri-(-7,-H) (83)

Now, (-E(-J,-A),iT(-J,-M)) is the electromagnetic field just inside S

due to J in Fig. 6, so that (82) and (83) can be recast as

ieii; × H'e(Y, 0) (84)

M = - R- x E 0(jo) (85)

where (I,(J,0),H'(Y,0) is the electromagnetic field just inside S in Fig. 6.
This field is radiated by Y of (80) on S in the presence of (pi,t) inside S
and (pe,ec) outside S. If the frequency is a resonant frequency, theu (J, ;W) of
(84) and (85) is not trivial for ac # 0 because the non-trivial i of (80) radiates
a non-trivial field internal to S in Fig. 6. However, if the frequency is not a
resonant frequency, then Y = 0 so that the composite field of Fig. 6 collapses to
zero because it has no source. In this 7 = M = 0.
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Figure s. The composite situation used to prove that the E-field formu-
lation fails at resonant frequencies.

VI. DISCUSSION

We have shown that there are many different boundary integral formulations for
the problem of electromagnetic scattering from and transmission into a homoge-
neous material body. One clans of formulations, called source formulations, leads
to two equations in four unknown currents 7e, Me, J7, Mi. Two additional re-
lationships among the currents must be postulated. When only a single type of
current is used, say electric only or magnetic only, the formulations fail at certain
resonant frequencies. The formulation remains valid at all frequencies only if both
types of current, electric and magnetic, are used.

A second class of formulations, called field formulations, leads to four equations
in two unknown currents 7, M. We must then choose which two equations, or
which two linear combinations of the four equations, to use. When only two of
the equations are used, say the E-field or the H-field equations, the formulations
fail at certain resonant frequencies. These are the same frequencies for which
the single-source formulations fail. '!hen we take linear combinations of the four
equations, such that we are in effect forcing all four equations to be satisfied, we
obtain formulations valid at al frequencies.

An extension of the source-type formulation has been made to give a single-
equation formulation for the scattering problem (11,121. This formulation is ba-
sically an electric current formulation of the type discussed in Section III-A, for
which an additional relationship has been used to eliminate ji. The result is a
single equation in terms of 7, to give the scattered field. The solution does not
give the transmitted field directly. This involves finding 7i, the source of the
internal field. Because this single-equation formulation is of the electric current
type, it fails at those frequencies for which S, when covered by a perfect electric
conductor and filled with the external medium, forms a cavity resonator. How-
ever, it is possible to establish a single-equation formulation in terms of combined
sources to eliminate this problem [13].



39

Boundary Integral formulation* 15

ACKNOWLEDGMENTS

This work was supported by the U.S. Olfice of Naval Research under Contract No.
N00014-88-K-0027, and by the New York State Center for Advanced Technology
in Computer Applications and Software Engineering, Syracuse University. The
author wishes to thank Dr. Joseph R. Mautz for his help with Section V.

The Editor thanks E. Arvas and N. Morita for reviewing the paper.

REFERENCES

1. Miller, C., Foundations of the Mathematical Theory of Electromagnetic Waves,
Springer-Verlag, Berlin, 301, 1969.

2. Solodukhov, V. V., and E. N. Vasil'ev, "Diffraction of a plane electromagnetic wave
by a dielectric cylinder of arbitrary cross section," Soviet Physics Tech. Phys., Vol.
15, 32-36, 1970.

3. Morlta, N., "Analysis of scattering by a dielectric rectangular cylinder by means of
integral equation formulation," Electron. and Comm. in Japan, Vol. 57-B, 72-80,
1974.

4. Wu, T. K., and L. L. Tsal, "Scattering from arbitrarily cross-sectioned layered lossy
dielectric cylinders," IEEE Trans. Antennas Propagat., Vol. AP-25, 518-524, 1977.

5. Arras, E., S. M. Rao, and T. K. Sarkar, "E-field solution of TM-scattering from mul-
tiple perfectly conducting and lossy dielectric cylinders of arbitrary cross-section,"
Proc. IEEE, Vol. 133, pt. H, 115-121, 1986.

6. Mauts, J. R., and R. F. Harrington, "Electromagnetic scattering from a homoge-
neous material body of revolution," Archyv fir Elektronik und liberirag., Band 33,
71-80, 1979.

7. Wu, T. K., Electromagnetic Scattering from Arbitrarily-Shaped Lossy Dielectric Bod-
ies, Ph.D. dissertation, University of Mississippi, 1976.

8. Umashankar, K., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbi-
trarily shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans.
Antennas Propagat., Vol. AP-34, 758-766, 1986.

9. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New
York, 1961.

10. Mautz, J. R., and R. F. Harrington, "A combined-source solution for radiation and
scattering from a perfectly conducting body," IEEE Trans. Antennas Propagat.,
Vol. AP-27, 445-454, 1979.

11. Marx, E., "Integral equation for scattering by a dielectric," IEEE Trans. Antennas
Propagat., Vol. AP-32, 166-172, 1984.

12. Glisson, A. W., "An integral equation for electromagnetic scattering from homoge-
neous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. AP-32, 173-175,
1984.

13. Mauts, J. R., "A stable integral equation for electromagnetic scattering from homo-
geneous dielectric bodies," IEEE Trans. Antennas Propagat., In press, 1988.

Roger F. Harrington received the Ph.D. degree from the Ohio State University in 1952.
While there, he was a Research Fellow in the Antenna Laboratory. Since 1952 he has
been Professor of Electrical Engineering at Syracuse University. lie has also served as
Visiting Professor at the University of Illinois, the University of California at Berkeley, the
Technical University of Denmark, and the East China Normal Unversity. He is the author
of "Time Harmonic Electromagnetic Fields" (McGraw-Hill) and "Field Computation by
Moment Methods" (Krieger Publ. Co.).



40
.48. IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN. VOL 9. NO I. JANUARY i'VO

The Excess Capacitance of a Microstrip Via in a

Dielectric Substrate
TAOYUN WANG, STUDLNI MIMBER, I.uE, JOSEPH R. MAUTZ. S%-NIOR MI-MIll R. h11--

AND ROGER F. HARRINGTON. t+.t.i(w. o hw l

Abnct-The equivalent circuit of a via which connects two semi- microstrip line I
Infinitely long micruotrip transmission lines inmbedded its a dielectric

medium above a ground plane is considered. The F-type equivalent
circuit consists of an excess capacitance and an excess inductance. The via

excess inductance of the via is the same as the one computed in the case mtissirip line 2

of free space (without a substrate). The excess capacitance of the via

Is computed quasi-statically by the method of moments and the image
method from the integral equations. It converges rapidly as the num-
ber of Image terms is increased. Parametric plots of the excess capac-
itance of the via are given for reference.

I . I N T R O D U C T I O N " / / / / / / / / / / / / / / / / / / / / / / / J -' / / '7 / / 1 / / / / / 7 7 / /

A VERY important type of microstrip discontinuity in u
integrated circuits is a via connection. An often-used ground

model for analysis of this type of discontinuity is a im- Fig. I. A microstrip discontinuity: via connection.

crostrip via connecting two semi-infinitely long transmis-
sion lines, as shown in Fig. i. This problem has been
investigated in 111-131 in the case of free space (i.e., with-
out a substrate). The via effect on the transmission line 2a
(TEM) modes is approximated by an equivalent circuit in
the previously mentioned literature. The components in
the equivalent circuit are computed by the method of mo- -/.

ments quasi-statically. The problem is more practical,_wire I ,,, 3

however, if the transmission lines and the via are imbed- 2D•

ded in a uniform dielectric, as shown in Fig. 2. Here. the
widths of the microstrips are assumed to be very small -

compared to the heights so that the microstrips are re- - /
placed by wires of the equivalent radii which are one hfi| ,i 2

fourth the widths. This equivalence is justified in (41. Let
h, h2 be the heights of trannsiission line I (wire I) and
transmission line 2 (wire 2). and, a,, a,. a. be the radii h2
of wire 1, wire 2. and the via (wire 3), respectively. By
assumption. hi, h., h, It- >> at, &P, a,. The interface
of the diclectric ol" perniittivity c is assumed to he parallel
to the ground plane. The coordinate system is so chosen
that the x-axis is on the ground plane and parallel to wire ground

I and wire 2 and that the %.-axis coincides with the axis of Fig. 2. A transmil•sioni line imiodel of a micriiririp via.

wire 3 (see Fig. 2).

Manuscript received December 5. 1988; rcvisecd May 24. 1989. This The equivalent circuit of the via for the quasi-TEM
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neering. Syracuse University. Syracu.%c. NY 13244-1240. same as that in free space. which was determined in 131.

IEEE Log Number 8931291. We wish to determine C, in this paper.

0278-0070/90/0100-0048501.00 © 1990 IEEE
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•rr / "Note that we replaced I - i(q0) by (qo*) on wire I
.L and I - 0((q/1) by '(q 2) on wire 2 to avoid possible

Zo, C* Z0 2  significant round-off errors.

T Equations (5) are integral equations to determine the
excess charge distribution. In order to obtain a moment
method solution for q,, we first truncate q, and (5) at x =

Fig. 3. The equivalent circuit of the via. -Klht on wire I and x = Kh, on wire 2. This approxi-

mation is justified due to the fact that q, and the right-
hand sides of the first two equations in (5), called the re-

!!. FORMULATION sidual potentials on wire I and wire 2. respectively, decay
The excess capacitance in Fig. 3 is a quasi-static quan- rapidly along wire I and wire 2. Experience has shown

tity and is defined formally [I]: that K, and K, should be between 2 and 3.

Q - 1iq 01  - (I) Let
C '. = lim (1)vi,

., V ,,p,, on wire I
where Q is the total charge on wire I of length 11 (wire I = I
truncated at x = -Ii ), wire 2 of length 1, (wire 2 trun- N2

cated at x = 1A), and the via. V is the constant potential q". I ,,'1 - ,,, on wire 2

maintained on the surfaces of the wires with respect to
ground. It is convenient to assume that V is I V through- 1,,.1 ,,3, on wire 3. (6)
out the following text. qo and qo3 are the uniform charge
densities of single transmission lines I and 2. Numerical 2 3 } are expansion
computation of C, directly from (I) is not recommended weefficie t be d Ni an
because the numerator is the result of subtraction of large, functions defined as follows:
nearly equal numbers as 11 and 1, get large. The more ef-
ficient method is to decompose the total charge density / x,,j < X < Xr + Ax,
into the uniform charge density and the excess charge , O elsewhere,
density. The latter is then determined by the method of
moments. n = 1.2, ' ,N, i = 1, 2

Let q be the total charge distribution Then we may Kihl + a3
write .,,1  = -KIil, + (it - I) A.rl. Ax I -

N1

q, + q,., on wire I
q = q1i_ + q,,, on wire 2 (2) _ = -a( + (11 - I)Ax,, Ax2, Kiht + a3

~q, on wire 3.

Here qIt1 is q,,, existing on wire I anti q.1 is q,.z existing P1,,Y = Y < = 1. 2, N ,

on wire 2. If q1l is delined as q,), existing on the extension els0 ccwhere,
of wire I to x = oo and if q,)2 delined as q(12 existing on -

the extension of wire? to x = -o, we have /= ' + ( A - I)A', AY =

+ t'(qo') = I, on wire i, i = I, 2 In essence, we divide the truncated wires I and 2 and wire

(3) 3 into NI, N,, N, subsections, respectively, and assume
uniform excess charge distribution on each subsection. A

where 0() is the potential due to the charge density - in simple moment method solution is to satisfy (5) at the

the presence of the dielectric and the ground plane. center of each subsection. This results in the following

The total charge distribution q is governed by the fol- matrix equations:
lowing boundary condition L,,Q, - LI1 Q_ + L,3Q 3 = P,

0(q) = I, on wires I. 2. 3. (4) L,,2Q + Li,_2Q + L,.,3 Q, = P,

In view of (2) and (3). we write I.,,0 + L.2Q. + L13 Q. = P3  (7)

()- (q.,) on wire I where Q, arc the column vectors of the coefficients 1,,,. Lp,
(,.)= ¢(q1 ) - ¢(q), on wire 2 are matrices whose math elements are the potentials due

to the unit charge distribution in the nth subsection of wire
()= I - •'(q ) - ¢(q,•). on wire 3. (5) i at the center of the ruth subsection of wire j, in the pres-
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ence of the dielectric and the ground plane. i; are the _ 7-( h"( ° Y-f

"column vectors whose rnth elements are residual potcn- (.h,.o

tials at the center of the rith subsection of wire j. After
solving the above matrix equations. we sum up the excess ,,/,,,/,//,/.,,// /yo

charge and obtain the excess capacitance of the via. That ground

is, (a)

co= ax , " I,,, + Ay Y I,,,. (8) ,.,. ,,,o,

In the next section, we will evaluate L4j and P,,. (Ag.h2.0 )

Ill. COMPUTATION ground

To evaluate the moment matrices Lj, and the excitation
vectors Pit one needs to find the potential distribution due '°

to a uniform line charge in the prcsencc of the dielectric (0.0
and the ground plane. There are several approaches to this Ito.,,o)
problem. One can place a surface polarization charge on /1////y0///1/1////111/,,,//x•//77 o

the interface and solve the problem in free space. This is ground
an efficient approach in the two-dimensional case (i.e., (c)
the line is infinitely long), as 151 dcnmonstrated. Ilowever. Fig. 4. "Wto:;,c% ,, line charge sources.

in the three-dimcnsional case (i.c., thie line is finite), one
needs a huge number of expansion functions for the po-
larization charge and the method becomes too time con- using an integral representation of the free-space Green's

suming. Another approach is to use the image method. function I1010, Ill. Then, the potential distribution due

Although the image method introduces an infinite set of to a uniform line charge is obtained by integration over

image line charges and is difficult to generalize to the case the line source. Reference 161 gives the complete detailed

of multilayered dielectrics, the solution is fairly straight- derivation.'

forward and is obtainable numerically easily in the case Case I. A uniform line charge of finite length with unit

of one dielectric interface. We take the second approach. line charge density lies on the dielectric interface. T'hc

The electrostatic potential due to a unit point charge in location of the line is specified by its two end points (X,.

the presence of a dielectric interface parallel to an infinite hi. 0) and (X2. hIz, 0). as is shown in Fig. 4(a). Call this

ground plane (i.e., the Green's function of our problem) line charge X,. Then the potential due to X, is given by
161

XI I -2(X, - x) + (v - 1,, + + X, -r
1 ) r i n a i r 4 1r eo + E 4 X I x- ,+ ( y - h ) I + z z + X , - x

-r " ;- -.0- (+ + 2k + I'h + Z + X, - )
'IniInL+X- \l + (, + +

-r(X x (+ + (2- + I)-It + zy + (2 - xi

(12•b~l~rinidctm -4•reo l+ E. t=0 I + E,}

V•(x, _02 + (,- (2k + I) h,)2 X
•In

/(, );+ (y + (2k + I h,+;Z' +X

X, - + (+ +(2k + l)/I, + Z" + X -x- - (10)
,/x, -) + ( 2k, + 0 h,)- + z' + X,

has been obtained by the image method in which the im- 'Note that many relcrcew such a 1 t) 'ive the Greens itn

age charges are found directly 161. 181. by considering in ;ll iour conihinationw% of sourcc and lield regions. Soo.e rclcrcnce% siich

flux lines rather than the images themselves 191. and by a% 171 givc : coimplete Iorm. which is mot the %iplcm,! form.
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where r = (x, v. z) is the field point where the potential According to (3). the potential dlie to the charge density
is to be evaluated and e, = e/t,, is the relative dielectric q,, on the line ( -o :5 x : cc. y = h,, c = 0) is unity.
constant. Since this potential is given by the product of q0, with the

Case 2: A uniform line charge of finite length with unit right-hand side of 16, (A-73)] with x, h, y, and v' replaced
line charge density is placed inside the dielectric. The lo-
cation of the line is specified by its two end points (X,.
h,, 0) and (X2, h,, 0), as is shown in Fig. 4(b). Call this
line charge X,. Then the r,-ntial due to X, is given by
[61 •,,,,,)11 2f, ( - ,•

S..... "rtrl•"+ = 40rE + ++, f,' +

V/(XT - x) 2 + (y - I, + 2kh,): + z" + X, - x
• In

L/(X, - + y + h, + 2k0,) + z" + X, - x

/(X, -x) " + (v + h, + 2kh, )2 + +X, - x

V(X1 -tx) + ( Iy - , + 2k/h)" + :" + X, - X]

I + e,, (X2)tIide.~.0In = ,--; + +-; I° ,ZT.

[ J+ x( y -+, - 2k,,) + z2+ X - x
* In

"I V(X, - x)2 + ( v + h,2- 2khn)" + z' + X, x

V(X, - x)+ ( + h,- 2kh, + + X,)x (12)
"1_ . ( + +2,)

V(XI - x. + ( v - h, - 2k/h, + :" + X,)'

In (12), L"'o is the series in ( I). by a,, h,, h1 , Lnd h,, respectively, we obtain
"Case 3: A uniform line charge of finite length with unit 2qn, 2 n (1, - -(l- '

line charge density is placed inside the dielectric. The lo- 4n1I +e [n\ aIn / + E,
cation of the line is specified by its two end points (0. Y,, I +

0) and (0, Y,. 0). as is shown in Fig. 4(c). Call this line In (I + •) 1-. (15)
charge Xh. Then the potential due to X is given by 161 k

X)z=0 II + ( r

+ (Y, - 2kh, - y) + :2 + Y, - 2kh, - y
* In -

/x" + ( + 2kh, + ) + z: + Y, + 2kh, + y

x- + (Y, + 2khI +yA +z' + Y, +2kh, + vY

Y,2 + ( Y, 2kh, y) + z' + Y, - 2k/h, + (4- Z + -, _Zco
€'(x+ I,2,,k,, y) + +-Y, +, k y

Ix2.+- + 2kh, - +y + + z" + Y, -, - +Y

"+ Y, (2kh + y)i + z + Y, - 2kh, + Y

/.2+ (Y, + 2kh, -y): + z.' + Y, + 2kh y

In (14), Ej',,o is the series in (13).
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According to (3). the po)tential duc to the charge density 4 7r(,,L,t(m.t )
• . 0o on the line < x . *, = /t,.- = 0) is unity.

Since this potential is given by the product of q,. with the =
right-hand side of t6. (A-75)1 with x. h, y. and .' replaced K-\ + f,
by a2, h", h2, and h2 , respectively, we obtain 4+ 8 V + +

-h:- + nn I I
'20 [ I ., In ,, , -T..-:- = .•)- 02+ ,-oý i+6

(16) + *Y2: ( )
2 = \ I + f,

The two-dimensional potentials on the left-hand sides uf [F 3- + 0, 1 + + 61
(15) and (16) are also given by Weeks 171. •_In -7

Now, it is trivial to write out the expressions for the L + 01 1 +
moment matrices and excitation vectors. In fact, we only
need to use the formulas in the dielectric region. A small
special consideration must be made when the diagonal
elements of L, are evaluated. In that case, the k = 0 terms 71 = 2
in the series in (10). (12), and (14) are replaced by I + e,

I+ \ Aa,' + I Oj=.,, -.l',
2h,

2In • - , = 1. 2 (17) 6= .r,,,1, r

I + + 1 0= (2k + I)/I + hI,
L - 0, (2k + I~h -t h,,

I +,- ( ,A
2 In [( I + ( a y) + I ' 2 Y 1 + A v ]

i = 3 (18)
-fl =-

Results 
Er

4r"EoLjI(pit, i) -Y =

2 j( 0= - j = 2(ifm = t.

1 + ek•=o\ -' / the k = 0 temr is
-2 = , , , replaced by (17))

In+ 0 7+0: •, =2kh, +2h,'[ In +0- + O, V ý; + 6, f02 =2kh.

81 = x,, 1 -0x,',,1 ') = 2k/iI - 2h,

0= xt•,.ni - X) I = 1 (if /t = f,. 3. = 2k/h02 the k = 0 term is
0 = 2(k + I)h, replaced by (17).)

=2 2k/h,

02 X•,+ ) -= -r

01= hz + (2k + I)/i 8, =

02 h2 - (2k + )I, , t',,,. J 3

0, = x. 1 = 2khI + /I, + y,,

82 =X(. + (2 1 3) = 2kh, - h, +-

01 + (2k + I) = 2kh, - h/. -+,

02 = Y" - (2k + 1)/h, = 2khI, + h/ - y,
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•4w+,,L,,(in. i)I

It,

= "Yl ;:;)

*In 1 ' -0 + ; , + .,.0, - .,,., 0
'T 'TO+2 + /2, =2k/, +

+ :• ,\ -- Er/ 3 (if in = n.S:J= 2kh, + -;, y,, the k = 0 term iq

I + + 3 F•"T + 11, rcplaced by (18).)
• . -• + •. • •-+ - - + • = 2k,, + :.',+ :,

= 2kh/, y- v ,,

3, = 24/i -, ,, + ,,

, = 2kh/ - y,, + Y,,

2 = 2k/i, - -

I + - '
Y: 0 o__('_ ___ •

0x,,,,P,(m) =C(I In T +

= 2k+1)" + -2n (I "\ .0 + 3j4 +0

", (2k + I)i, +y v = + 'To + +

02 = (2k + I)hi - y,, 0 + •+- I

131, = (2k + I)hi - ,,- ,1 = (2k + =)h + Y, 2(k /- I hi; /3: = 2kh,

= (2k + I) hI, + /t,.; . = (2k + I)h, - h,

2qiu In

;(m) I( + ::-.I+ J+ 0

= + 4(I 1in d

0= =.++
0 =

/3+ = (2k + I)hi, + h,; /30 = (2k + I)h, -h,
/3, = 2kh/ + h_, + y,,

= 2kh, + /tŽ - 5 =2 + 2/i,; 03, = 2kh,
S= 2k/h - 2/_,, 2khI(3, = 2kit, + h,~- yA,, 24I,, 2 / l_-~ in}' •

/3, =2kh, + h, + yV,,, .") = TI + Er,",, +EJ n +0

= 2k/ I,- 0-2 ' i,\( ~ V2+o3-

2kh, - h, + Y,, f, -.- = I n++/j +0= 2,.,, -_,,: + ,,+ + OD ,°) I [ 'o
+ =, _ _

20 2ki, - y,, +/;
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0 =0 IV. NLt1:RikWAI, RISULIS ANI) DIScUSsION

The computer program to calculate the excess capaci-
= (2k + I) h + y,,; 3 = (2k + 1)Ii1 -)',h tance of the via was written in Fortran and was run in an

IBM AT/PC machine with Microsoft Fortran. It only took

03 = 2kh, + 112 + y,,; 4 = 2kh, - h, + yI, 10 s to run a case (with 29 subsections and 10 inmage termus
in the series). To verify our code. we made two basic
checks.

Check 1: If the dielectric constant is I (i.e.. there is no
dielectric medium at all). theni the problem is identical to

In the above equations. the primed coordinates denote the the one in 131. For the following geometry:
center of each subsection and 4o) = q,,,/(4 ref ). i = 1. 2.
Note that the expressions given above are not numerically h = 0.08 I Ul = 0.002 I
most efficient but shoi, some patterns for easy program- h = 0.04 , = 0.001 n

ming. The following section gives sonic numerical re-
suits. , = 0.002 ti
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. Communications

A Stable Integral Equation for Electromagnetic Here, a is an arbitrary constant. The source (J,, aft x J,) is similar
Scattering from Homogeneous Dielectric Bodies to the combined source in 141. If a = 0, then the integral equation in

the process of being derived will be the one presented in 121. The field
JOSEPH R. MAUTZ. SENIOR MEMBER. IEEE (Ed. Hd) is radiated by the combination of electric and magnetic

currents J, and Md exactly on S:
Abataact-Ilt is shown that a previously derived Integral equation for

eleetromagnetc scattering from a homogeneous dielectric body does not Ed = E,(J,- Md) (4)
have a unique solution at resonant frequencies of the cavity formed by
making the surface S of the body perfectly conducting and filling the Hd-= Hd(Jd, M,,). (5)
regio Internal to S with the external medium. This integral equation was If. as in 121, (d, ( ,Md) is to radiate no field in the external region. then
formullated so that an equivalent electric current radiates in the presence
of the homogeneous external medium to produce the scattered field J= - x(H + H1) (6)
externml to the body. A combination of equivalent electric and magnetic
currents is used to formulate an integral equation whose solution is Md= -(E + +EI)xa. (7)
always unique.

The original scattering problem, the simulation of the field in the
exterior region. and the simulation of the field in the interior region

Consider electromagnetic scattering from a homogeneous dielec- are as illustrated in 12. Fig. I1 with M, replaced by adl X J,.
tric body immersed in a homogeneous medium. The surface of to- Substituting (2). (4). (6), and (7) into (1) and rearranging terms,
body is S. Assuming that the scattered field can be produc,, b. we obtain an integral equation similar to 12. eq. (24)1:
equivalent electric current J, placed on S and radiating into
homogeneous medium having the material parameters of the external i- d x Ed (J1, Md) = - ax ! E' + E; (i x H', E' x Ail (8)
ambient medium, Marx [iI derived an integral equation for J, and
Glisson [21 put this equation into familiar notation. A resonant where
frequency is a frequency for which S, when covered by a perfect Jd= -ixlIf(J,, ailXJ,) (9)
electric conductor and filled with the external medium forms a
resonant cavity. At a resonant frequency, this integral equation does Nd = 1ax E+ (J,, a a x J,). (10)
not uniquely determine the pure electric current that supposedly
produces the scattered field external to S. Actually, at a resonant The homogeneous equation associated with (8) is
frequency, a pure electric current is not sufficient to produce an Ml-fi xE (J,, ,,)=0 (i I)
arbitrary scattered field; a magnetic current is also needed [3, pp.
351-3621. where Jd and Ki are given by (9) and (10). If a solution J, to (8)

II. FORMULATION OF THE INTEGRAL EQUATION exists, then it is unique if and only if the homogeneous equation ( 1I)
with supporting equations (9) and (10) has only the trivial solution J,

Continuity of the tangential electric field across S is expressed as = 0.
[2, eq. (9)) If at = 0, then the integral equation (8) with supporting equations

(9) and (10) is the same as 12. eq. (24)1 and, of course, the
ix (E,, + E') = a × E,;. (I) homogeneous equation (II) with supporting equations (9) and (.1) is

Except for the superscripts plus and minus, our notation is that of 121. the same as the homogeneous equation associated with 12. eq. (24)1.
The superscript plus denotes field evaluation on the side of S facing When the frequency is a resonant frequency, there is a nontrivial
the external region and the superscript minus denotes field evaluation electric current JR such that
on the side of S facing the region internal to the boly. We assume that
the electromagnetic field (E,, H,) is radiated not by J, alone but by llx E (JR. 0)=0. (12)
the combination of the electric current J, and the magnetic current a h a x H * (JR, 0) = 0. (13)
X J,, both exactly on S:

Assuming that oa = 0, it is evident from (12) and (13) that J, = JR is
E, = E,(J,, a•A x J,) (2) a nontrivial solution to the homogeneous equation (I1) with support-

H,= H,(J,, a l x ,). (3) ing. equations (9) and (10). Therefore, even if [2. eq. (24)1 had a
solution at a resonant frequency, then this solution would not be

Manuscript received January 27. 1988; revised May 10. 1988. This work unique.
was supported by the Office of Naval Research. Arlington VA, under Can a different choice of a cause (g)-(l0) to have not more than
Contract N00014-8S-K-0082. and by the New York State Center for one solution? Otherwise stated, can cr be chosen such that the
Advanced Technology in Computer Applications and Software Engineering homogeneous equation (I1) with supporting equations (9) and (10)
(CASE). Syracuse University.

The author is with the Depanrment of Electrical and Computer Engineering. has only the trivial solution 3, = 0?
Syracuse University. Syravuse. NY 13244-1240. Assuming that (9)-( 1) hold, consider the comlrxiitc situation

IEEE Log Number 8927717. where, in the internal region, (Ed(Jd, Kd•), Ild(J,,, lo)) exis•ts in
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(jgoe, e) and, in the external region, (F,(J,, aA x J,), H,(J,,aA x > 0. then the integral equation (8) with supporting equations (9) and
"J`,)) exists in (it., e,). The stmrccs of the above defined composite (10) can nol have more than one solution J,.
fildd are electric and inagnetic currents J and KI on S given by

J - HREFERENCES
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Abstract - A simple numerical procedure is implemented to find the loci of the TE

and TM leaky wave poles for a grounded dielectric slab as the thickness is varied.

The information of how these complex poles are distributed is very important when

various deformed integration paths for Sommerfeld integrals are considered.
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I Introduction

It is well known that the electromagnetic fields due to a dipole in a layered media

in an open region can be expressed in terms of an improper integral [1] to account

for the continuous spectra. In order to perform this integration accurately and

efficiently, the integration path must be deformed off the real axis in some cases.

Various deformed paths have been considered by many researchers, e.g., Newman

and Forrai [2], Michalski and Zheng [3), Fang and Chew [4], and Sarkar [.5], to name

a few. For half-space problems, there are only two surface wave poles located on

either Sheets I and IV or Sheets II and III of the Riemann surface [3, 6], depending

on the constitutive parameters of the two media. For a grounded dielectric slab.

besides a finite number of surface wave poles, there are an infinite number of leaky

wave poles [7-9]. If the branch cut is properly chosen [3, 7, 9], then all the surface

wave poles are located on the top sheet (proper sheet or Sheet I), whereas all the

leaky wave poles are located on the bottom sheet (improper sheet or Sheet II) of

the Riemann surface. The locations of the leaky wave poles are immaterial if the

integration path stays on Sheet I. In order to improve the computational efficiency.

deforming the path to Sheet II is desirable in some cases, e.g., the steepest descent

method of integration for far fields, where part of the path enters Sheet II [9. 10.

13]. In this case, precise information on how these leaky wave poles are distributed

is very important unless the residues of these leaky wave -oles are negligible. Some

researchers [10, 11], when applying the steepest descent method of integration, or

its approximate version the so called saddle point method, only take into account

surface wave poles. Their results are correct if the dielectric slab is thin and if the

observation point is not too close to the interface, which is shown in next section.

However, when the thickness of the slab is moderate, or when the observation point

is close to the interface, some of the leaky wave poles, not too far away from the

| | |l | | | II I •1
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saddle point, may have been captured.

The locations of the TE and TM leaky wave poles can be found by solving

for the roots of two simultaneous transcendental equations [7, 91, which are then

mapped to the complex plane of the integration variable. Although standard root

searching routines could be applied, we gain no idea how these roots are distributed

on the complex plane, since there are infinite number of them. It is the purpose

of this short communication to show a simple numerical procedure of finding the

loci of the leaky wave poles as the thickness is varied, which in turn gives us the

desired information.

2 Root Loci

For simplicity, we assume that the grounded dielectric slab is non-magnetic and

lossless. The constitutive parameters for the half space and the slab are (p,0 , co)

and (Po,Eoer), respectively. The thickness of the slab is d. The locations of the

surface and leaky wave poles are the roots of [9, 10, 12),

DTE= 1f1_ 2 + E7-•- 2cot (>/•-kod) (1)

for the TE case, and

DTM =J,,7 1 V -•-•f-7 2 tan(V/--2kod) (2)

for the TM case. Here • is the normalized parameter such that k" = •k, is the

transverse wave number or integration variable for the Sommerfeld integral in

terms of a transmission line representation in the z direction [9, 10), where z is

perpendicular to the interface. For convenience, the branch cut is chosen to be

the line such that Im{ Vr'_-T} = 0 [3, 9, 10, 13], as shown in Fig. 1. When this

branch cut is chosen, the roots of (1) and (2) on Sheets I and II of complex ý plane

2
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are the surface wave and leaky wave poles, respectively. It is well known that the

surface wave poles are real and confined in the region (1, /-), and the number of

them is finite [10, 12]. Furthermore, it can be shown that the leaky wave poles

assume both real and complex values, and the number of them is infinite [7, 9].

A simple graphical procedure [9, 12] can be employed to find the real roots of (i)

and (2), as shown in Figures 2(a) and 2(b), respectively. In these two figures,

X = kod•/-7 - and B = koidv/i•,-. (3)

The intersecting points on the upper and the lower parts are related to the surface

and leaky wave poles on the Re(ý) axis, respectively.

There is only one pole associated with curve (1) in Fig. 2(a). It is a surface wave
pole if B > 7r/2, a leaky wave pole in the regions 1 < ý < vfJ and , < ý < oo

if 1 < B < 7r/2 and B < 1, respectively [71, [9]. Likewise, the pole associated with

curve (1) in Fig. 2(b) is always a surface wave pole. Clearly, there are two poles

associated with the rest of the curves in both figures. As an illustration, let curve

(2) in Fig. 2(a) be examined. If B > 37r/2, the semi-circle intersects with curve (2)
at two points, one for the surface wave pole and the other for the leaky wave pole.

As B is reduced and becomes smaller than 37r/2, the surface wave pole falls down

to Sheet II from Sheet I through ý = 1, which is the branch point. It then becomes

a leaky wave pole and moves toward the right, whereas the original leaky wave

poles stays on the same sheet and moves toward the left. As B reaches a value Bo,

such that the semi-circle is tangent to curve (2), these two leaky wave poles merge

into one. If we reduce B further, then the semi-circle does not intersect with curve

(1) any more, and the poles move symmetrically off the Re(ý) axis on Sheet II. It

is understood that the poles move smoothly as B is varied. Based on the above

observation, the numerical procedure of finding the locus of the leaky wave poles

in the 4 plane associated with each curve in Figures 2(a) and 2(b) is as follows.

3



55

1. Find B. and the corresponding ý, called 4. Since 4, is real, this step is straight

forward.

2. Search for a new root ýj for the parameter B, = Bo - AB with o - j6 as the

initial searching point, where both AB and 6 are small positive numbers.

3. Search for new roots 4,+j for the parameters B,,+ = B,,-AB,,, n = 1,2,3,-

with 4,, as the iaitial searching points.

If the AB,, are reasonably small, a few iterations of steps 2 and 3 give satisfactory

results using a Newton-Raphson algorithm. The same procedure can be repeated

to generate the locus associated with each curve in Figures 2(a) and 2(b). Since

when ý is a root of (1) or (2), then -4 and ±f are also roots, we only show

the loci in the fourth quadrant (these are the leaky wave poles that matter for

a time dependence e'w'). Figures 3 to 6 show the loci of the leaky wave poles

for E, = 4 and 9, respectively. Careful scrutiny of these figures reveals that the

TM poles approach the real axis faster than do the TE poles as B increases from

zero. Furthermore. for both the TE and TM cases, the pole associated with the

lower numbered curve in Figures 2(a) and 2(b) approach the real axis faster than

that associated with the higher numbered curve. This explains why only the

lower ordered leaky poles are important for a thin slab when steepest descent

path is adopted. A comparison of Fig. 1, which shows steepest decent paths for

various observation angles, with Figures 3 to 6 demonstrates that many leaky

wave poles can be captured by the deformation, depending on the observation

angle and physical parameters of the slab. The residues of the leaky wave poles

are highly attenuated in the far field as claimed by Fang and Chow [4]. In fact,

they completely ignored the residues of the leaky poles for separation distance

kor > 27r and observation angle 0 = 7r/2, i.e., on the interface. However, it is clear

from [14] that for some values of the dielectric constant and height, the closeness of

4
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the leaky wave poles to the steepest descent path still has to be taken into account

even for kjr = 100 and 0 < 0 < ir/2. Although the physical parameters employed

in [4] and [14] are different, our purpose is to emphasize that care must be taken

when ignoring the residues of the leaky waves poles. Moreover, without knowing

the locations or the loci of the leaky wave poles, this cannot be done satisfactorily.

3 Concluding Remarks

A simple numerical procedure for finding the loci of TE and TM leaky wave poles

as the thickness of the slab is varied is presented. These loci provide important

information when the integration path of the Sommerfeld integral for grounded

dielectric slab problem is deformed into the "improper" sheet of the Riemann

surface. The accuracy of the loci has been checked extensively against contour

plots for expressions (1) and (2) with the B's as parameters.
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Figure captions

Fig. 1. Steepest descent paths in the complex • plane for different observation angles,

where the solid line is on the top sheet, the dotted line is on the bottom sheet, and

the zigzag line is the branch cut.

Fig. 2. Graphic solution for the TE and TM surface and leaky wave modes.

Fig. 3. Loci of the TE leaky wave poles in the complex • plane, e, " 4.

Fig. 4. Loci of the TM leaky wave poles in the complex ' plane, , = 4.

Fig. 5. Loci of the TE leaky wave poles in the complex • plane, ,E,. 9.

Fig. 6. Loci of the TM leaky wave poles in the complex • plane, Cr- 9.
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Fundamental mode dispersion of a microstrip transmission line

Abstract - A spectral domain type solution with nonuniform subdomain basis

function is implemented to investigate the dispersion characteristics of the funda-

mental mode of a microstrip transmission line. Agreement with the data available

in the literature is demonstrated in several plots, where only the longitudinal cur-

rent is used in numerical computation. This numerical scheme proves to be an

alternative, or rather a supplement, to various well-developed methods in this

area.
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1 Introduction

The dispersion characteristics of an open microst been an active re-

search topic over the past two decades. Various methlods and numerical results

have been reported [1]-[12]. Although these methods appeared rigorous, some dis-

crepancies among their results were noticed by Kuester and Chang [6] in 1979.

Since then, the accuracies have been improved a lot. However, the spectral do-

main solutions are all employed with entire domain expansion functions [1], [2], [8],

[12], whereas the space domain solutions are associated with sobdomain expansion

functions [5], [10], [11]. In this report, a spectral domain solution using nonuniform

subdomain basis function is implemented to investigate the dispersion character-

istics of the fundamental mode of a microstrip line. Agreement with the existing

data in the literature is demonstrated in several plots, where we have used only

the longitudinal current in numerical computation. This numerical scheme proves

to be an alternative, or rather a supplement, to various well developed methods in

this area.

2 Basic formulation

The microstrip line under consideration is shown in Fig. 1. The conductor sitting

on the air-dielectric interface is assumed to be of zero thickness, and the structure

is assumed lossless. The ground plane and the dielectric slab are of infinite extent

in the z and the y direction, whereas the strip extends from -oo to 0c in the

y direction. The parameters of interest are the phase constant and the current

denstities on the strip. For simplicity, we only consider the fundamental mode,

which is the lowest order mode propagating unattenuated in the z direction. The

problem is basically a two dimensional one. A phase factor e-j3, where #• is

1
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between the wave numbers of the air and the dielectric, is common to all the field

and current distributions, and is the only factor depending on the y coordinate.

Hence,

f(X,y,z) = f(x,z)e-j' (1)

follows through the entire analysis.

To account for the continuous spectrum of the open structure, we express the

field and the current in terms of the improper integral [13, Ch. 4]

f(x, z) = T L (• z)e-A~d4 (2)

which is identified as an inverse Fourier Transform. Thus, the Fourier transform

of f, denoted by f, is obviously defined as

f(C,z) = f(x,z)ej3xdx (3)

It is known that the fields can be decomposed into TE and TM components

with respect to any direction [13, ch. 31. The most natural choice for our problem

is the direction perpendicular to the diele 'ric interface, i.e., the z direction. The

z components of the magnetic and electric vector potentials, i.e., A(x, y, z) and

F(x, y, z), which give rise to TM to z and TE to z fields, respectively, can be

exj ressed by

r (osalz eeizd , O d < z

A(x,y,z)= e 0o cosi'2"-"d (4)

{e_•oy foo Dle-j'l (z-d) e-JNd, d < z
F(x,y, z) M D- 2 sin a2z ej dý, O<z<d (5)

fo' sin a 2d - (

2
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where
ý2 + )32 + a 2 = W2oo()

~2 d1a A0160~ (6)
p2 j2 + a 2- W 2JtE

are the dispersion relations. In (4) and (5), B 1, B2 , D1 and D 2 are unknown func-

tions of C that can be determined, if desired. Furthermore, to have field which

decays from the dielectric and satisfies the radiation condition, we require that

Re(cr) _ 0 and Im(ai) < 0 (7)

The electric Dyadic Green's function in spectral domain, evaluated at the dielectric

interface, has been found by many authors, e.g., Farrar [5], Fache" [10], and Itoh

[71, to name a few. In spectral domain, we have [7]
[ .•d) 2v.,d) ] v [ •d) ] = y(,d)(8

Z•(y d) Z..• d) J.(• d) E. (ý, d)

where

Z•(•,d) = ( 92 D I )we, ý2 + '32 D., + eo •+/2 D

24(yd) = 2.y1d) -2 W/1 1 (10)
2+ o /32 •+o Dm

1of ý2 +,32 A. 2 + 12D

are the spectral impedance functions evaluated at the interface. In equations (9)
- (11),

Dm = at2 -I gr cot a 2d (12)

De = ca - ja 2cot a 2 d (13)

The spatial counterparts of the spectral currents J•,(ý, d) and J.( ,d), can be ex-

pressed as

Jy(x) = _anJyn(x) (14)

3
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and

J.(x) = bn.Jz.(X) (15)
n

respectively,where an and bn are unknown coefficients. Using Lhe method of mo-

ment [14], we enforce the boudary condition

Et = 0, on strip (16)

by taking the inner product of the tangential electric field at the interface, obtained

from the inverse Fourier transform of (8), with J,,,, and J.,,, for all m. Doing so,

we obtain the homogeneous matrix equation

[Mn] [M Jn] [an] = [0] (17)

The eigenvalues could be found by searching the O's such that the determinant of

the matrix in (17) is zero.

By virtue of Parsavel's theorem

f(x)g-( x )dx = T f(•)4*(•)d• (18)

each element of the matrix in (17) reads

1 00•.
M•'n = f i m,,Zpq(ý,d)jqndý, p,q = y,x (19)

Notice that some authors [4], [8] have neglected the conjugate sign in (19). That is

because the eigenvalues remain the same if either even or odd entire domain basis

functions are chosen.

4
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3 Numerical Procedure

3.1 Integration path

Equation (19) is an improper integral, whose integrand contains a, and a2 , both

being double-valued functions. Since the integrands for p, q = y, x are all even

functions of a 2 , only a, introduces the branch points and the branch cuts to the ý

plane. For bound mode in lossless structure, the branch points are always on the

imaginary axis of the ý plane. Fig. 2 shows the branch points and branch cuts

chosen by Kowalski [21, Fache [10] and Zheng [11].

Since

k2 < 32 + .2 < EkV

/32 + 2 6,0k jeV0/32 2 + k coth(V1,32 + ,2 - fkO2 d),

f~k 2 < ý2 + /32

(20)

and

-j /3 2 + 2 _k- j 6 rko2-/3 2 -• 2cot(V~k2 -/ 2 -_ 2 d),
2 <32 + 2 2

De= k._- <oh2 + 2  kd (21)

Crk 2 < ý2 + '32

those roots of Dm and De, corresponding to the surface TM and TE waves of the

grounded dielectric slab, respectively, must be in the interval k2 < /32 + •2 < Ek02 .

Letting [13], [15]

X = d fko- 3 2 ±+ V > 0 (22)

A = kodv"-'IT1 > 0 (23)

5



the roots of
X tan X - (A2 -XI) /2 (24)

and

- X cot X = (A2 - X2)1/2 (25)

then correspond to those of Dm and D,, respectively. It is seen from Fig. 3 and

Fig. 4 that there will be at least one surface wave pole, which is TMo, on the

plane, whereas the cut-off frequency for TE1 mode is

Co (26)
f•-4dV/e- _1

To find the desired phase constant, we must try different O's in (17). Since the

phase constant of the fundamental bound mode is always larger than that of the

TM, surface wave [16], [17], the surface wave poles are understood to be on the

imaginary axis of the ý plane. The O's can be restricted in the region between 'E

and the phase constant of the TMo mode in the root searching process. Hence, we

can keep the path of integration along the real axis. In general, if the higher order

bound modes are investigated, and if the frequency is greater than the cutoff's of

the other surface wave modes, there are some poles on the real ý axis. In this

case, the deformed path, as shown in Fig. 5, is proposed. A major advantage of

deforming the contour off the real axis is that we do not have to search the surface

wave poles. Slight inaccuracy in the locations of the poles on the real axis may

result in large errors, if real axis integration is employed. Of course, the tradeoff is

that the integrand becomes more complicated if we deform the path to the complex

plane.

6
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3.2 Expansion function

For a single microstrip structure, entire domain basis functions have proven to be

efficient. However, in consideration of the extendibility to multiple strip structure,

subdomain basis functions may be more suitable. Furthermore, to retrieve the

edge condition of the current, non-uniform discretization of the strip is employed.

The chosen basis functions are

J W X(1, < X < X{ (27)
1 0, otherwise

X - Xn-- Xn--1 < X < Xn
Xn -- Xn-1

J,( = X.+1 - X < X < X (28)
Xn+, -- Xn
0, otherwise

Their Fourier transforms are

sin (ý/A n /2) e X.,_/2

j"() - /229)

2) [sin (ýAn/2) e -Xn1/2 - sin(ýA"+1/2)e A"+ /2 (30)
L" 2 = - An An+1

where An = X- - and Xn,-1/2 = (xi-I + X,)/ 2 . Thus

M 4 M1=- ZF(m,n) d• (31)

MY = -M _ 4j 1

F(mn) F(mn + 1)] d (32)

7
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=,n- M. -, =

rF(m,n) +F(m+1,n) F(m,n+1) F(m+l,n + d (33)
[tAmAn A.+,iA. Am An+I+ Am+lAn+l j

where

F~, ) sn ZM -1/2) (ýXn-l/ 2 ) COS (mi 2 -xi/>J (34)
F(m, n)=sin ( X2-112 sin 2- [(xl--Xn_,/)

3.3 Computations of matrix elements

It is clear that the efficiency and the accuracy are based upon how each matrix

element, in terms of the improper integral, is evaluated. The improper integral is

a function of frequency, dielectric constant, width and height of the slab, width

and location of the subsegment, and P used in the computation. The behavior of

the integrand is very different from one set of parameters to another. Hence, care

must be exercised in performing the integrals.

Close scrutiny shows that all the integrands are of the order O(1/Q') as

oo. At ý = 0, the integrands are of finite values. As discussed in the previous

subsection, if /3 is restricted to be larger than the phase constant of the TMo mode

of the grounded dielectric slab, then there is no singularity on the real axis of the

ý plane. Hence, the convergence of the integrals is guaranteed, as the physics of

the system should be.

Due to nonuniform discretization of the strip, A,, 3 A,, in general. The

oscillatory terms F(m, n), which is a product of three sinusoidal functions with

v different periods, may behaveX quite irregular. The integration thus become quite

difficult. As a remedy, we decomp,-se [0, oo] into [0, L] and [L, 0o1, where L is iess

than the first zero of F(m, n). The integrand over [L, oo] is further decomposed

8
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according to the identity

sin A sin B cos C -[cos (A - B - C)
4

+cos (A - B + C) - cos (A + B - C) - cos (A + B + C)] (35)

Each integrand now contains only one sinusoidal function, where its zeros are

periodic. Therefore, it is easier to perform the integration. As an example, for

each M,, we have to perform 4 integrals of the form

Zyy ,(,) cos ( 2,)dý (36)

where q is the period determined by (35). We can separate the above integral over

[L, oo] into two parts, over [L, U] and [U, co], where

U= max [OkoVrcT ý( .ir)2 + ECkO - /32] (37)

Filon's algorithm [18] is applied to the integral over [L, U]. For the integrals over

[U, oo], the asymptotic expression of 2,,(ý) is substituted into the integrands,

which makes the integrals proportional to

f cos u_
B(x) CosU d u (38)

The strategy for performing this integral depends on the value of x. If x < 1, then

B(x) = cos x sin x 1 Cj(X) (39)
2x2 2x 2

where Ci(x) is the cosin integral defined by

S= [ cosudi =+oo (-1)n+lx 2 (nCi~x W x cou =--7 - lax+1:9n(-nt (40)
S un=1~ 2n -(2n)!

where y = 0.5772 is Euler's constant. If 1 < x < 307r, then

C,(x) = - lnx + j 1 Udu (41)

9
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where the last integral is performed using Filon's algothm. If x > 30r, then

sinx 'V1 (-1)"(2n)! cosX N 2 (-I)(2n + 1)! (42)
B(X)=• =' 2x 1=o: x2n +1 (42)~n+

where N1 and N 2 are such that (2N'+2)(2N1 +1) < X2 and (2N 2 +3)(2N 2 +2) < x 2

respectively. It is known that both series in (42) are asymptotic series which

diverge as N, and N2 approach infinity [191. If x is very large, 3 or 4 may be

more than appropriate for N1 and N2. Furthermore, using Filon's algorithm for

the integral over [L, U1, we need to divide [L, U] into subintervals, over each the

Gaussian-Legendre quadrature can be used. The number of subintervals needed

is M = [2(U - L)/q] + 1. If M is greater than 30, the method of average [15] is

suggested to perform the integral over [L, oo]. Usually, M is likely to be large if

frequency is high, or if the width of the strip is wide. However, the memoth of

average is not implemented in our computer program.

4 Numerical results

A computer program with only the longitudinal current has been implemented to

check the validity and the accuracy of the present numerical scheme. The symmet-

ric property of the longitudinal current has been used. We restrict the numerical

results to some typical configurations that can be found in the literature. In Fig-

ures 6 to 11, the effetive dielectric constants for several structures are presented.

In these figures, the solid lines represent our solutions using only 5 expansion func-

tions, the long dashed line the solutions from entire domain expansion functions

of the type of the Maxwellian charge distribution, and the short dashed lines the

surface wave modes of the grounded dielectric slab. Furthermore, the square and

triangle represent the results sampled from the literature. Attention could be paid

10
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to Fig. 10, which structure has been tested by many researchers, and theur dis-

crepancies were detected by Kuester and Chang [6]. In Figures 6 and 7, the results

from subdomain and entire domain expansion functions are almost identical, and

are very close to those obtained by Getsinger [3], whose diipersion model is based

on approximating the microstrip line as suitable waveguides. Although some de-

viations between our solutions and Getsinger's are observed in Figures 8 and 9,

it does not necessarily imply that our solutions are less accurate. From Figures

10 and 11, it is clear that t, e subdomain basis function yieldt better results than

do# 44 entire domain basis function.

Figures 12 and 13 show the normalized longitudinal currents for d = 3.048mm,

w = 3.175mm and e, = 11.7. In Fig. 12, the square and the triangle are the

currents at the center at each subdomain for 5 and 10 expansion functions, respec-

tively, whereas the solid line is for 20 expansion functions. In Fig. 13, the currents

are computed for three different frequencies, 0.001 GHz, 2 GHz and 12 GHz, all

with 10 expansion functions. Although the frequency vary quite a lot, the current

profiles remain close to the Maxwellian charge distribution. Notice, we have usei

more expansion functions near the edge than near the center of the strip, in order

to retrieve the edge condition.

5 Concluding remarks

We have shown that the numerical scheme based on spectral domain analysis with

non-uniform subdomain expansion functions could be an alternative, or at least

a supplement, to the existing methods. Although, we only investigate single-

strip structures, this approach is suitable to asymmetirc multiple-strip structuree

as well. To improve the accuracy, the transverse current component should not be

11



80

neglected. However, the improvement by incorporating the transverse current and

the extension to multiple structure are warranted.
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1 Introduction

Due to the advantage of low cost, small size, light weight, and high reliability [1-4],

the microwave printed circuit (MPC) has become more and more popular during

the past three decades. The theories of the MPC have been widely discussed in

the literature. An extensive listing of reference papers can be found in [3]. Most

models and numerical schemes that have been proposed and published regarding

the MPC are valid at low frequencies [5], [6]. Many numerical techniques, excluding

quasi-static analysis, are summarized in [7). A rigorous approach using an integral

equation formulation, which takes into account the radiation and the surface wave

that are excited at the discontinuities of a microstrip, has been proposed by Katehi

and Alexopoulos [8]. In this study, we seek the same objectives but with different

computational schemes.

The basic structures under consideration are shown in Fig. 1(a) and Fig. 1(b)

for two and three layered MPC's, respectively. All the media are assumed isotropic,

lossless, and non-magnetic. The first layer is free space, whereas the second and

the third layers are characterized by (61, Mo) and (e2, bo), respectively. The planar

circuits are printed on the interfaces. For the three layered structure, a via con-

necting the circuits on the two different interfaces is allowed, although this may

not be a.practical structure.

The method of moments [9] is empioyed to investigate various MPC problems.

The electric field integral equation is formulated in the space domain. Instead of

computing the electric field directly, we use the mixed potential integral equation

(MPIE) approach [10], [11], where the vector and the scalar potentials are com-

puted in th3 solution process. The mixed potential approach has been explored

very thoroughly for free space problems [91, and its advantage over the original

EFIE is well known. Mosig and Gardiol [10] extended the MPIE approach to
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printed antennas on a grounded dielectric slab. Later. Michalski and Zheng [11]

systematically developed this approach for problems of arbitrarily shaped conduct-

ing bodies embedded in layered media. In general, there are many different choices

for the vector potentials. However, Sommei-feld's choice has been found to have

advantages over the others [111, and is adopted here.

2 Green's function and integration path

To begin with, we only deal with the two layered structure, as shown in Fig. 1(a).

Due to an x directed electric dipole on the interface, various components of the

magnetic vector potential and the scalar potential are as follows [101, [11], [16].

G A 00 (kp)k ±f exp (-jk,2 0 z)AP()j' J°(k)- De sink.I(z +d)/sink.id

GA 1 f 00 Jo(k~P) kP exp (-j kzz) Ad(2
ZZ o DeDm I cos ki(z + d)/ cos kld (

Go f J ok kpp) P kz - k., tan k-.1d1 exp (-I*k~oz) dkP1 (3
J oJ('p [°- tndDDe, sin k_,(ze + d)/sink, d dkp, (3)

where the upper and the lower terms in the curly brackets are for z > 0 and

-d < z < 0, respectively. Furthermore, the roots of

D, = jk.o + k,, cot k. 1d (4)

and

Dm, = je..k.0 - k. 1 tan k. 1d, (5)

respectively, correspond to the TE and TM surface or leaky wave poles in the

complex k, plane. Notice that ±k, are the only branch points. In general, the

2
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branch cut is artificial and can be chosen arbitrarily. However, the most natural one

is shown in Figures 2 and 3, in which the numbers of the surface wave poles, located

on the upper half sheet of the Riemann surface, and the leaky wave poles, located

on the bottom sheet of the Riemann surface, are finite and infinite, respectively

[12], [13]. If the integration path is deformed off the real axis, the residues of

the poles captured must be taken into account. Some researchers [10], [14] have

implemented the real axis integration algorithm, which is not easy to perform in

two extremely cases, i.e., if B = kodV,-4WT is very small or very large. If the

parameter B is very small, the first TM surface wave pole is very close to the

branch point ko, where the integrand exhibits a derivative discontinuity [10), [161.

If B is very large, then some leaky wave poles are close to the real axis [15], making

the integrand oscillate irregularly. We choose the integration path shown in Fig. 2

to avoid the complication caused by the poles. However, if kop gets larger, this

integration scheme gets less efficient due to the oscillation of the Bessel function

along the path. For kop > 5, we make the following substitution for the integrands

of (1) to (3),

Jo(kop) = [ig2)(k~p) - I42)(-kop)] (6)

The integration path is then deformed to be along the branch cut as shown in

Fig. 3. Choosing this path, Mosig and Gardiol [161 has shown that the integral

can be decomposed into three parts, i.e., the static term which is purely real, the

space wave term, and the surface wave term. If k/p is very large, the efficiency

is again degraded by the rapid oscillation of the Bessel function in the interval

k, E [0, k.]. In this case, the steepest descent path may be a better candidate.

3
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3 Numerical results for printed dipoles

Figures 4 to 9 show the current distribution, and the input and mutual impedances

of some printed wire and strip dipoles. The results agree with those available in

the literature [13], [171, [18]. Attention should be paid to Fig. 10, where we use 49

unknowns in the solution process for a strip dipole of width 0.005A., and Barkeshli

uses only three unknowns for a dipole of width 0.01X.. Inaccuracy in Barkeshli's

solution is suspected, since in Fig. 10(a), the results can hardly be differentiated

from those of a wire dipole of radius 0.00125A,.

4 Proposed study for microwave

printed circuits

In the MPC, a microstrip line always serves as a transmission line. The number

of ideal transmission lines needed to represent the microstrip must be the same

as that of the bound modes that can be excited [3]. For simplicity, we restricted

ourselves to the frequency range in which the fundamental mode is the only bound

mode. Furthermore, we assume that w << A., where w and A, are the width of

the microstrip and the free space wavelength, respectively. Hence, the transverse

current can be ignored with little error introduced. The axial current has singu-

larities at the two edges of the microstrip. The transverse variations of the axial

current at several frequencies are shown in Fig. 11, where the Maxwellian function

is plotted for comparison. In general, if the frequency gets higher, the current

distribution deviates from the Maxwellian function more. Figures 12 and 13 give

curves of (A0/A9 )2 versus frequency, which are compared with those obtained by

Getsinger [19], Farrar [20], and Fachi and De Zutter [21]. It is obvious that if

4
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w/d < 1 and if the frequency is not too high, the Maxwellian function for the

current gives a reasonably accurate result for the propagation constant. To further

improve the accuracy, we assume the transverse variation of the current to be of

the form 1

J(y) 1 - (2y/w)2 [To(2y/w) + bT2(2y/w)] (7)

where T,, is the Chebyshev polynomials of the first kind of order n. After the

propagation constant is found, the unknown coefficient b can be easily solved. The

characteristic impedance can be computed according to [22]

Zc = j (8)

where P is the real power propagating in the axial direction. Fig. 14 shows the

normalized propagation constant and the characteristic impedance computed from

one (b = 0) and two (b # 0) expansion functions. The results computed from the

commercial software SUPERCOMPACT and from quasi-static analysis are also

plotted for comparison. The power ratio in the dielectric and the b in (7) are

shown in Fig. 15. The modeling of the discontinuity is illustrated in Figs. 16

and 17. By observing the standing wave pattern exhibited in Fig. 17(a), several

parameters can be computed. Notice that we need to compute two sets of currents

with two different L2's in Fig. 17(a) in order to determine the scattering matrix.

5
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10go)

(a) Two layered configuration

z

~1~. x

T d,

I d2 (e2 t P)

(b) Three layered configuration

Fig. 1. Side view of microwave printed circuit.
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(AA) (B,A)

-ko ko klI(O

KP plane (Top sheet)

Fig. A. Deformed integration path in the complex k, plane.

Surface wove poles

-ko ko k!i

Kp plone (Top sheet)

Fig. 3. Integration path along the branch cut in the complex k, plane.
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2.98 as

A SUPERCOMPACT
2.75- -- Two expansion functions

-.-- One expansion function
2. ?0 . ...- Quasi-static analysis
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2.6E-
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1a 20 f(GHz)
(a)

58 I
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-I Two expansion functions
-- One expansion function -

54 - - - Quasi-static analysis

521

a la 2a f(GHz)
(b)

Fig. 14 (a) Normalized propagation constant and (b) characteristic impedance
for a microstrip line with E, = 9.6, w = 0.6mm, d = 0.6mm.
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Fig. 16~ Modeling of miriaostrip double step discontinuity.
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