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Software for Flow Distribution
in Electronic Rack Structures

Ron J. Pieper
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

Brief Description

A FORTRAN CODE has been developed which p-cdicts pressures and flow rates in a
piping network for the regimes of laminar, transition, and turbulent low. A novel and
effective scheme for modeling the transition region betwees. laminar ana turbulent flow
is demonstrated. A proposed linear indicator for the deviation from lamina’ behavior
is introduced into the analysis in order to facilitate the computational task. Although
the turbulent flow problem is inherently nonlinear, the method of analysis described
herein, typically employed with linear electrical networks, is found to converge rapidly

to an approximate solution without user-specified a priori guesses.
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1. Introduction

An interest in the properties of incompressible fluid flow in pipes can undoubtedly be
traced as far back as the era of the Roman empire. A brief synopsis of the historical
development of fluid mechanics can be found in many of the introductory level texts
[Vennard (1961) for example).

The problem of accurately solving for the paramete:s in incompressible fluid flow
in piping networks is dependent upon the single-pipe model for fluid flow. Many
semi-empirical methods for characterizing the flow properties have appeared in the
literature [Matthew (1981), Wuori (1993), and Churchill (1977)]. Since the early work
by Feigenbaum (1978), see for example [Hofstadter (1981)], on chaos in simple sys-
tems, considerable progress has been made on analytically characterizing turbulence
in fluids [Landau and Lifshitz (1987)]. Nevertheless, many engineering problems are
solved using the Stanton diagram, which shows Nikuradse’s measured data.

For engineering problems which require repetitive numerical evaluation, an empir-
ical relationship facilitates the task and various investigators [Tsang and Kee (1987),
Round (1980, 1985), and Colebrook (1939)] have proposed such formulae. These for-
mulae have the drawback that the transition region between laminar and turbulent
flow is inadequately represented. Only the fluid flow properties in the laminar region
are fairly well understood [Vennard (1961)] using methods of fluid analysis.

One of the earliest and most well known methods for solving pipeline networks
is attributed to Hardy Cross [Giles (1962) and Lindeburg (1982)]. The Hardy Cross
scheme, not only requires an a priors guess on the initial flows, but upon comparison
with more recently reported methods (Carnahan and Christensen (1972), Bending
and Hutchinson (1973), Gay and Preece (1975, 1977)], it is found to be less efficient.
Finally, in a recent Naval Postgraduate School (NPS) thesis [Ellis (1993)), a pipeline
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method formalism based on the Cholesky method for matrix reduction has been
investigated. Although the mathematical analysis of the scheme is fairly efficient, the
physical modeling did not encompass conditions for other than laminar flows.

The main purpose of this report is to extend the range of flow to include transition
and turbulent flow regimes. As this is primarily a feasibility study, various facilitating
assumptions were made. First, it is assumed that English units are preferred for

input /output. Second, all pipes are assumed to have uniform circular cross-sections.

2. Physical Modeling

For incompressible fluids, two of Bernoulli’s rules [Lindeburg (1982)] for conservation

of mass and energy are, the continuity equation
Q=AW= AV, (1)

and Bernoulli’s law

. y
%‘- = p(sz_Vl?) + (P2 — ;1) + pg(22 — 1) + pgh’ (2)

where the subscript 2/1 refers to positions 2/1 and the symbol lists given in Section
10 defines the other relevant parameters. The head loss, as defined by the Darcy-

Weisbach equation, is given by
Lv?

where L is the pipe length, d is the hydraulic diameter, and f is the friction factor.
For circular cross-section pipes the hydraulic diameter and the physical diameter are
identical. Using similitude analysis [Vennard (1961)}, it is possible to show that the
friction factor depends only on two dimensionless parameters, the Reynolds number

_ovd

p (4)




where u is the dynamic viscosity, and the relative roughness

aln

(5)

where e is the roughness of the pipe.

A sourceless section of pipe which is horizontal (22 = z,), and with constant

cross-section so that V3 = V}, will, from eq (2) and eq (3), then have a pressure drop

g PfLV?
P -pa=h=pgh' === (6)
or after use of eq (1)

_ e
h=f3aa (7)

This suggests the useful electrical analogy with Ohm’s law where pressure drop cor-

responds to voltage and fluid flow corresponds to current. It follows that consistent

with the analogy, the effective resistance of the pipe is then given by

R=fleY

2dA ®
where the units of this resistance are defined by the ratio of pressure to flow.

It is observed that the problem of predicting fluid flow in pipes now reduces to

accurate characterization of the friction factor.

For the laminar flow domain the
analytically derivable [Vennard (1961)] result

f=z ©)
agrees very well with measurement out to Re < 2100 which is the well known limit in
pipes, ducts, tubes, and channels for laminar flow. After substitution of eq (9) into
eq (8) it is found that:

32L
Re=—F

FA (10)
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and the corresponding relationship for head loss is

32Lu
he = oy Q (11)

This is in agreement with an expression cited by Bending and Hutchison (1993). The
subscript £ has been used to indicate the laminar flow domain. Note from eq (10)
that, as expected, the pipe resistance is independent of the flow rate in the laminar
regime.

In order to easily characterize the degree to which the fluid flow is turbulent, the

head loss can be expressed as

h=h[X!/) (12)

where the turbulence factor, denoted ¥, is a linear gauge of the deviation of the

system from laminar flow. After noting that eq (7) can be reexpressed as

foVd
64p

_32Lp

h= d*A

Q x (13)

it can be concluded from eq (4) that, in agreement with the definition of the Reynolds

number, the turbulence factors satisfy
Re
v=F v (14)

As seen from eq (9) ¥ = 1 for laminar flow. In the next section it will be shown that
for transition and turbulent flow ¢ > 1.

The pipe resistance can now be expressed as
R=R¢xvy (15)

where as previously noted, R, does not depend on the flow rate.




3. Friction Factor Estimation for Nonlaminar
Fluid Flow

For purposes of the development here it is necessary to introduce two distinct non-

laminar regions. First, the transition region satisfying
Re, > Re 2> 2100 (16)

where Re, is usually cited typically between 3500 and 4000 [Vennard (1961)] and for
the turbulent region
Re > Re, (17)

One of the most commonly employed empirical formulas for the turbulent flow domain

defined by eq (17) is attributed to Colebrook (1939)

e 2.51

1
77 = —2log [m + Rev] (18)

Although, as seen in eq (18), the dependence of the friction factor on Reynolds number
is implicit, the expression will converge rapidly upon iterative substitution.

To date the most viable predictors for the transition region, see eq (16), are
empirical. The Stanton diagram [Vennard (1961)] shows smoothly varying curves
which are based on measurements in the transition region. The Moody diagram,
which only plots expressions for eq (9), for Re < 2100, and eq (18), for Re > Re,, is
not useful for the transition region. Bending and Hutchinson (1973) suggested, in a
computer analysis of piping networks, that a linear interpolation between the laminar
and the turbulent domain be made t.o provide friction data in the transition region.
For the network analysis scheme to be described herein, a linear approximation for
the transition region was found to be insufficiently accurate upon numerical testing.

In particular, the iterative program with the linear approximation would either not




converge or converge very slowly. The problem in this scheme was the dramatic
discontinuity in the first derivative at the edges of the transition region. A greatly

improved modeling scheme, in terms of convergence, is given by

_ Re _ Re . [~ (Re—2100)
f=2100 " [f (Re.) 2100] o [2(Rzo ~2100) (19)

where f(Re,) was calculated via the Colebrook model eq (18). Note that, like the
linear approximation model, continuity is preserved at the edges of the transition
region. Because, as seen from eq (19), the slope at the transition edges is zero, the
discontinuity in the slope is much less dramatic and the convergence was found to be
much more rapid. Figure 1 is a graphical representation for these curves in standard
log-log format for various relative roughness factors.

It is worth noting that the work by Churchill (1977) agreed very well with the
scheme just described for Re > 2100 and provided an explicit formula for the friction
factor, f. However, for Re < 2100 (laminar flow) the expression deviated significantly
from the classical expression of eq (9). Hence it was not used.

The argument supporting the claim that the turbulence factor eq (14) is generally
greater than unity is loosely based on the following observations. First, in 1913 Blasius
proposed an empirical relationship for smooth pipe, i.e., ¢ = 0 in the turbulent flow

regime [Vennard (1961)]

Janooth pipe = %-f— 3000 < Re < 100,000 (20)

Second, the construction algorithm for predicting f in the transition region, eq (19)

requires that

Seransition 2 flaminar = g—i (21)

This leads to the inequality that is established from a comparison of eq (20), eq (21),

6




and Fig 1
64
fmugh pipe 2 flmooth pipe 2 fhmmu = ﬁ (22)

and is supported by analysis and measurement [Vennard (1961)]. The inequality,
¥ 2 1, then follows directly from the definition of the turbulence factor, ¥, given by
eq (14).

The turbulence factor has been introduced into this report for two reasons. Al-
though the friction factor is a linear indicator for the system response of the fluid
dynamics, it is not & anear indicator for the deviation of the system from laminar
behavior. Note that the quantity (Re — 2100) is a nonlinear indicator for the devia-
tion from laminar behavior. The purpose of this work has been to extend the Ellis
(1993) effort to encompass nonlaminar regimes. The turbulence factor will readily
demonstrate the need for this extension. Second, it turns out that the laminar pipe
resistance, R, can be computed at the onset of the problem and only the turbulence
factors need to be updated in the iterative calculations of eq (15) rather than to com-
pute eq (8). In brief, the turbulence factors provide some computational advantages

which, for large piping networks, would be significant.

4. Basic Circuit Modeling

Following the electrical analogy for an arbitrary k*® pipe, a pressure difference, Ap;,
across a pressure source, Ap,;, in series with a pipe resistance, ri, with a flow ¢,
satisfies

Ape = quri — Apak (23)
consistent with the convention established by Fig 2. The corresponding relation in

terms of a current source is given by

9k = qux + YrAps (24)

7
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Figure 2: Pressure source circuit model.

where y; = 1/r,. Figures 2 and 3 define the nomenclature and the topology. Equation

(24) can be compactly represented for all branches or pipes in matrix format
Q=Q,+YAP (25)

where it is seen that eq (24) and eq (25) have unresolved unknowns associated with

flow rate and pressure. The condition of continuity at the nodes

Yai=0 j=12..n7 (26)
k

where ny is the total number of nodes in the network, provides enough information to
resolve the flow rates and pressure drops. A formulation for this process is presented

in the next section.




Figure 3: Flow source circuit model.

5. Mathematical Formulation

The mathematical formalism is presented via an illustration taken from the Ellis
(1993) thesis. The piping network shown in Fig 4a has five nodes and six connecting
branches. It is also seen that the branch between nodes 1 and 5 contains a pump.
This pump provides a source for fluid flow at its high pressure side shown at node-1
with an arrow. The low pressure side is the corresponding sink. The corresponding
flow graph is shown in Fig 4b. Each branch now has an arbitrarily chosen orient.ation
arrow which defines the convention for positive fluid flow. Note that consistent with
the flow direction shown for branch 1, the source shown on Fig 4a would be assigned
a neéa.tive numerical vale. The first step in the mathematical formalism is.to cre-
ate both a network representation for the ﬂuici pipeline network and a corresponding

flow graph. The flow rates in the b branches, in this case 6, can be represented as a bx1

10



(a)

(b)

Figure 4: a) Six branch pipeline network; b) Associated flow graph for a) [15].
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column vector
G
92

Q= (27)

[ 98
The elements of the augmented node-branch incidence matrix, c;, can be def:

as
c¢; = 1 Branch j leaves node : (28a)
c;; = —1  Branch j enters node : (28b)
c; = 0  otherwise (28¢)

where 1 = 1,2,...,nr nodes and j = 1,2,...,b branches. This leads to:

1 1 0 0 0 0]

y 0-1 1 1 0 0
c* 0 0-1 0 1 0 (29)

0 0 0 -1 -1 1

-1 0 0 0 0 -1]

where, in general, C* has b columns and nr rows. It is apparent that for each column,

which is associated with a node,
D =0 (30)

or more formally

c°Q=0 (31)

consistent with flow rate conservation at all nodes (see eq (26)). In order to reduce
the order of the problem by 1 it is useful to define one of the nodes as the ground or

datum reference. In principle it should not matter which node is taken as this datum

12




node, however, in the coded implementation it is assumed that the circuit nodes
are numbered such that the datum node is the node bearing the highest numerical
designator. For example, as seen on Figs 4a, b, the node-5 is the datum node. Because
the assignment of nodes is independent of the assignment of branches and is arbitrary,
there is no sacrifice in the generality of the method. Following this point, the node-
branch incidence matrix, C, can be defined according to the rules dictated by eq (27)

with the index ¢ satisfies the condition i = 1,2,...,n where
n=nr—1 (32)

Thus, for this example, the node-branch incidence matrix is

1 1. 0 0 00O
0-1 1 1 00
€C=lo 0-1 0 10 (33)
6 0 0 -1 -11
In general C has b columns and n rows. It follows from eq (30) that
CcCQ=0 (34)

which forces a condition of flow rate conservation or continuity at all nodes.
The node pressures, defined with respect to the reference datum node, can be
represented by the column vector
P
P= P2 (35)
. Pn
which, for the example under consideration, the node pressure vector P is a 4 x 1
column vector since n = 4. The node branch incidence matrix can be used to predict

the head losses from the rule
H=CTP (36)

13



where the branch head loss vector, represented as:
hy
H= ":’ (37)
hs
can be calculated using eqs (11) and (12). For the example being examined, H is a
6 x 1 column vector, corresponding to the number of branches.
In Section 4 the pressure drop vector was introduced without any assumptions
regarding the physical modeling introduced in Section 2. Under the practical as-

sumptions made leading to eq (6), it is correct to let
AP —H (38)

in eq (25), which leads to
Q=Q.+YH (39)

Premultiplication of this equation by C leads to:
0=CQ,+CYH (40)

where the left hand side of eq (40) is predicted from eq (34). After substitution of eq
(36) into eq (40) and solving for P, it follows that

P=Y;'Q (41)
where
GQ=-Cq, (42a)
and
Y, =CYCT (42b)

14




Given the matrix Y, and the source vector Q,, any number of matrix inverting
schemes [Hamming (1962)] could be employed to evaluate eq (40). As suggested in the
Ellis (1993) thesis the very efficient Cholesky reduction algorithm is applicable here
because the matrix Y, is, not only symmetric, but positive definite. The Cholesky
reduction into upper and lower triangular matrices permits a rapid matrix inversion
using Gaussian elimination as described in Appendix A.

Once the node pressures given by eq (40) are obtained the branch head losses and
flow rates are easily calculated from eq (36) and eq (39), respectively. Note that, once
the flow rate vector is obtained, the flow rate velocities can be computed according

to the rule

L
vz 1
V= = — 4
1Q (43)
vp
in agreement with eq (1). The corresponding velocity magnitudes, (v, |v2],...,|vs|)

can then be applied with eq (4) to calculate the Reynolds numbers, the friction factors,
and the turbulence factors using eq (14). The pipe resistances are calculated from eq

(15) and the corresponding admittances, y;,y3,. . ., ¥s, follow from

1/ry, 0 0 -~ 0 7
0 1/1‘2 0
Y= 0 .'- 0 (44)
: .0
0 0 - 0 1/ ]

H the current turbulence factors differ significantly from the previous turbulence fac-
tors according to the rule

MAXERR > max |¢i(previous) — hi(current)| : {branches k = 1,5} (45)

the process is repeated. The Fortran input parameter MAXERR defines the maximum

deviation in the turbulence factors between iterations. It is assumed initially, in the

15




first step of the iterative scheme, that the flow is in the laminar regime, that is, all

turbulence factors = 1.

6. Input/Output: Parameters, Conventions,
Procedures

It follows for the definition of specific weight that

7= pg (46)

where g, the gravitational constant, is 32 ft /sec?. Using eq (46) the computer program
computes the density which is needed for calculation of the Reynolds numbers eq (8).
Figure 5 defines the convention for distinguishing the entry (F) and exit (T) nodes

of a particular branch. The arrow defines the direction of positive flow.

F T

- > .

Figure 5: Convention defining nodes.

The required inputs to the FORTRAN program code flow.for provided in Ap-
pendix A are displayed in Table 1.

The calculations are done in formal English units of (ft, Lb, sec). However, the
inputs and outputs are, when appropriate, given in conventional units. Conversion

factors for these cases are shown in Table 2.

16




Table 1: Input Variables
] Symbol | Section | Units l |
_———————-——-—————*—-———1————
R, §3 — typical 3500
MAXERR 85 — typical 0.05
HLCF §2 — typical 60.0
nr §5 — depends on network
b §5 — depends on network
m §2 10-% 1b-sec/ft® | typical H;0, 3.75
w §6 Ib/ft3 typical H;0, 64.0
node specification — F, -T §6 — depends on pipe
L §2 ft depends on pipe
d §2 inches depends on pipe
e §2 mil depends on pipe
source specification Q, 85 gal/min depends on pump(s)

Table 2: Conversion Factors

Formal | Conventional | Conversion
Description | Symbol | Units Units Factor
Flow rate Q ft3/sec gal/min 450
Pressure P 1b/ft? psi 1/144
Roughness e ft mil 12,000

In order to facilitate the process of batch input, the code has been designed to
read the input file flowinp.dat rather than require the user to laboriously submit
the data in the interactive mode. In this way a maximum amount of flexibility can
be incorporated into the program without creating a tedious data entry procedure for
the user of the code. Thus, the “user friendly” goal has been kept in mind.

17




The outputs from the code flow.for, which are listed by branch number (BR),
are displayed in Table 3.

Where appropriate both text symbol and fortran symbol have been specified in
Table 4. For example, PF and PT refer to node pressures at entry and exit, respec-
tively. In some practical cases it may be desirable to employ the equivalent of an
“ideal” constant flow rate pump, that is, gx = ¢,x in eq (24). This is readily handled
by forcing yx — 0 or equivalently r, — 0o. Because of the head loss coupling factor
rule-of-thumb introduced at the end of Section 3, the most convenient way to force
the pump source to behave ideally is to let dy — 0. In practice, because of numerical

instabilities, if y, = 0, it is recommended that the user set
di =103 xmin{d;} i=12,...,b buti#k. (47)

A hardcopy of the input/output for the piping networks tested is provided in

Appendix B. A more detailed description of these cases is covered in the next section.

Table 3: Output Variable

[ Symbol [  Section | Units |

BR 85 —
Q §5 gal/min
PF §6 103 psi (mpsi)
PT §6 103 psi (mpsi)
HEAD = H §5 1073 psi (mpsi)
ERR see RHS eq (44) —
Re §2 —
TBF = ¢ §2 .
Y §5 (gal/min)/mpsi

18




7. Examples

General Observations
Several general observations can be easily confirmed from the data (see Appendix B

for all the case examples discussed in this section). Specifically,
PF - PT = HEAD (pr — pr = ki)

and

Q=Q,+YHEAD (¢ = qu + yihs)

In all the examples the sink node of the pump was arbitrarily taken as the datum
node for convenience of interpretation. The node pressures under columns PF and
PT are as expected, strictly positive. In all three examples some or all of the pipeline
segments were operating in the nonlaminar regime. This is evident by checking the
TBF columns of each example in Appendix B. The associated Reynolds number is
also provided. The branch errors were calculated according to eq (45). It is easily
checked that the MAXERR parameter, line 2 of the input set, put a ceiling on these
branch error values.

CASE A — A four branch pipeline network with an ideal source (see Fig 6a and 6b).
This case illustrates the generation of an ideal flow source. Note, as discussed, this
condition can be obtained by making the pipe diameter of the source branch relatively
small. The associated Reynolds number and turbulence factors will be artificially high
and may not, as represented in the line 1 output for Case A, be within the defined

format.

19
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4 < (4) 3

(b)

Figure 6: a) 4 branch with ideal source; b) 4 branch flow graph for a).

CASE B — A six branch pipeline network with nonideal source (set Fig 4a and 4b).
Note, as seen here, the effect of the nonzero admittance of node 1 is to impede the flow
of the source into the rest of the pipeline circuit. Also, the source is required to be
negative because the pump is physically driving the flow opposite to the convention
defined by the arrow of branch #1.

20




CASE C — A 12 branch piping network for shoebox cooling rack (see Fig 7). Note
that several of the branches have negative Q values. The physical interpretation is

that these cases have a fluid flow opposite to the convention defined on Figure 7.

& (o) =~ o5
9) 9')
\ Wa/ .
\b ) d |
9 )
N\
2 2y |3 2
T / (3)
Q; / B A 4
8 “4) 4

Figure 7: 12 branch shoebox cooling rack.

8. Future Enhancements in the Modeling
Although the work described herein extends the Ellis (1993) thesis by including the

nonlaminar flow regime, it still should be considered as preliminary. For example:

e The network formalism discussed herein should be compared with the bench-
mark Hardy Cross method [Lindeburg (1987)] as well as other more recently
proposed schemes [Carnahan and Christensen (1972), Bending and Hutchinson
(1973), Gay and Preece (1975, 1977)] in order to assess the relative computa-

tional efficiencies.

e The next major modeling development in the algorithm would be the addition
of the capability of evaluating the node to node heat transfers.

21




o Using the theory for compressible fluid flow [Vennard (1961)] required, for ex-
ample, when the cooling fluid is a gas, the developed scheme could be extended
to allow for compressible fluids. Due to the sensitivity of gas properties to tem-

perature this development would have to include effects due to heat transfer.

e An alternate but similar mathematical formalism could be derived for pumps
best characterized as constant pressure sources. It is certainly possible to
“Theveninize” the source in the context of the present mathematical formal-
ism. However, it should be noted that because of the nonlinearity inherent in
the model, this Theveninization would need to be repeated iteratively, decreas-

ing the efficiency of the process.

e As previously noted in Section 3, a significant improvement in the rate of con-
vergence of the method was obtained by reducing the discontinuity in the fric-
tion factor derivatives at the transition edges. It should be possible to apply
mathematical adjustments on eq (19), for example, using a technique known as
Hermite or “osculating” interpolation [Hamming (1962)], in order to completely
eliminate the slope discontinuity. The potential gain in the rate of convergence

could be significant.

e Various mundane, but no doubt practical embellishments could also be consid-
ered. For example, an option of metric system units could be added. Also, an
option to specify pipe bends, vertical elevation, and cross-section types could be
added. If commercial viability is of concern, the program could be dovetailed
with CAD software.

e The required background investigation revealed that despite a long history of

developments on modeling fluid flow in pipes, only recently have mathematical
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methods involving the theory of chaos begun to unravel and predict the prop-
erties of nonlaminar fluid flow. A small-scale physical model which predicts all

the measured properties on the Stanton diagram is at this date unavailable.

9. Conclusion

A mathematical model for predicting laminar and nonlaminar flows in pipeline net-
works has been proposed and successfully tested. This scheme, upon iterative appli-
cation, has been found to converge to an approximate solutioz. The computational
efficiency of this convergence process was found to be highly dependent on the fric-
tion factor modeling in the transition region betweer laminar and turbulent behavior.
In particular, a significant improvement in the convergence rate was obtained by re-
placing the previously proposed linear mode! with a nonlinear model having a less
dramatic first derivative discontinuity. A linear gauge for the deviation from laminar
behavior, referred to as the turbulence factor, was introduced in this report in order

to facilitate the computational task.
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10: Nomenclature

Roman Letter Symbols

L ‘<§<§E:g‘°‘u§-‘§\ﬂ o

pipe cross-sectional area
pipe diameter

pipe roughness

friction factor
gravitational acceleration
head loss due to friction
pressure

flow rate

pipe resistance

Reynolds number
velocity
time-rate-change of work output (pump)
pipe admittance
elevation

Greek Letter Symbols

TR N

specific weight

pipe roughness ratio
viscosity

density

24

Units

ft?

ft

ft

ft /sec?
1b/ft?
b/ft?
ft3/sec
Lb-sec/ft5
ft/sec
Ib-ft /sec
ft3/(Ib-sec)
ft

Ib/ft3

Ib-sec/ft3
slug/ft3




Appendix A: Cholesky Reduction

This appendix provides a more complete description on the Cholesky reduction algo-
rithm [Kraus (1992)]. Positive definite, symmetric matrices can be factored according
to the rule

M=LL" (A1)

where L is an upper triangular matrix. Because of the applicability of this theorem

[Ellis (1993), Kraus (1987)] to the network matrix Y, eq (41b) it follows that

Y, =LL7 (A2)
and for eq (40)

LL'P=Q (A3)

The advantage of the factorization eq (Al) is now apparent since eq (A3) can be

broken into two parts: First,

-~

LI=Q (Ada)

and second,

L’'P=1J (A4b)

which are easily solved in succession via Gaussian elimination to determine first the

column vector J as an intermediate step then the derived node pressures P.
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Appendix B: Input/Output Hardcopy

SHERERE LR EER A XS INPUT FORMAT #*#%ss22&s3 skttt sbs

REYNOLDS’ NUMBER FOR RIGHT EDGE OF TRANSITION REGION

ERROR TOLERANCE IN CALCULATION

THE HEADLOSS COUPLING FACTOR (TYPICAL NUMBER 60 )

THE NUMBER OF NODES

THE NUMBER OF BRANCHES

THE VISCOSITY X 10 -5 LB-SEC/FT"3

THE DENSITY LB/FT -3

STARTING NODE, ENDING NODE, LENGTH(FT),DIAMETER(IN), ROUGHNESS(MILS)
NOTE FOR IDEAL CURRENT SOURCE SET DIAM=.001X SMALLEST

THE NUMBER OF SOURCES

SOURCE STRENGTH GAL/MIN

SOURCE BRANCH

SREERREERERERERRERRAXERAERREERREAREE AR R R REERRRERER SRR KR ERE K

INPUT (CASE A 4 BRANCHES IDEAL SOURCE)

3500.0

0.005

60.0

4

4

3.76

64.

4,1, 1.0,.001,1.0

1,2, 1.0,1.0,2.0

2,3, 1.0,1.0,0.5

3,4, 1.0,1.0,0.6

1

6.0

i

OQUTPUT CASE A

BR Q PF PT HEAD ERR Re TBF Y
1 6.00 .0 282.1 -282.1 .0039 sessusx sesssxs 0000
2 6.00 282.1 183.8 98.2 .0032 10806.2 6.6 .0609
3 6.00 183.8 92.1 91.7 .0032 10806.2 §.2 .0652
4 6.00 92.1 .0 92.1 .0032 10806.2 5.3 .0649

poveeserrrrrrrrrrrrat A PR DR SR SRR ARSI D S D L A e L L L
INPUT (CASE B 6 BRANCH PIPELINE NETWORK)
3500.0
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N O
Q -
e O
O »

5
6
3.75
64.
1,56, 1.0,1.0,1
i,2, 1.0,1.0,2
2,3, 1.0,1.0,0
2,4, 1.0,1.0,0
3,4, 1.0,1.0,0
4,56, 1.0,1.0,5.
1
-6.0
1
QUTPUT CASE B
BR Q

1 -1.7%

2 1.75

3 .58

4 1.17

5 .58

6 1.75

CASE

3500.

0.01
60.0

gege
o

NS NN WOVO®
= bW OO®ELN -

- - ® e - - . -
- » » - - - - -

.0

.0

.5

.6

.6

0

PF PT
25.1

25.1 14.6
14.6 12.9
14.6 11.2
12.9 11.2
11.2

ERR
.0073
.0075
.0000
.0000
.0000
.0078

C ( 12 BRANCH SHOEBOX COOLING RACK)

0

.

-
-

0c0o00O0OO0O0DO0OO0O0CO
ORI PO PO PO PO T P PN
co0oo0oo0oo0oo0co00O0O0OO
coovmwumooowbmn

O TS I Y N T I VN VA VO PRy Y
- @
. w

aamooomaanoo

Re
3149.7
3149.7
1049.9
2099.8
1049.9
3149.7

TBF

2.
2.
1.
1.
1.

0O 00O m» O

2.2

Y

.1679
.1645
. 3409
.3409
.3409
.1854
SRERARRERREERERREEERRAERRERARERERERBERERARRRERBRERREESEREEERRR R R SRR R %




5,1, 1.0,1.0,5.0

1

6.0

1

OUTPUT CASE C

BR qQ
1 3.48
2 1.76
3 1.33
4 1.74
5 1.74
6 1.72
7 -.43
8 .41
9 1.32
10 .40
11 .83
12 -.42

PF

24.
14.

©

OB BONOOO N OO

24.
13.
10.
14.
14.
13.

PT

24.
14.

14.
14.

©
DONDAANDOOONO

13.
10.
10.

HEAD ERR
-24.6 .0341
10.1  .0393
4.9 .0084
9.6 .0371
9.6 .0366
10.2 .0386
-1.3 .0000
1.2 .0000
4.8 .0072
1.2 .0000
2.4 .0000
-1.2  .0000
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Re

6273.
3168.
2394.
3138.
3134.
3104.
773.
T743.
2381.
723.
1497.
753.

N = NDNWOOONnONNDONMOMO

)

T T O T S L I T VI )
O O O WO O W WwWWOobd

.0990
.1681
.2685
.1750
.1762
.1635
.3409
.3409
.2710
.3409
.3409
.3409




Appendix C: Computer Code

$debug

$LIST

¢ program for CALCULATING PRESSURES AND FLOW RATES IN PIPILINE NETWORKS
C 2225 SRR RS SRR AR R LSRR R ERE LSRR R R AR SRR R RS R R R R R SRR XS R R B RS R E R KR &

C PROGRAM flow.FOR WRITTEN BY PROF. RON J PIEPER

c NPS 408 6562101

c AUG. 30, 1994

c SEE FILE f1owINP.DAT FOR INPUT

c SEE FILE f1owOUT.DAT FOR OUTPUT

c SEE FILE flowDIA.DAT FOR DIAGNOSTICS ON INPUT

c DESIGNED TO HANDLE UP TO 40 BRANCHES

c CAN BE ADJUSTED BY INCREASING DIMENSION
c OF THE ARRAYS

C 2222k RREERE LR LR AR SR LR AR EEEEBREEEE SR SRR R SRR B R REEREREREBERESEERRE X%
c m fluid viscosity (1b-sec/ft"2)

¢ rho fluid density (1b/f£t"3)

c g acceleration due to gravity (ft/sec”2)

¢ nu specific gravity rhoxg

c pi pi

c rend reynold’s ¢ (rhosvel*d/mu)

c ¢t friction factor

c vel velocity of fluid

¢ pres pressure of the fluid

[ ‘t‘t#tt‘.tt##ttttpip‘ variables xStk sk kE kR RERR R RS SRR ERREERR RN E
c oll pipe length(s)

c d pipe diameter(s)

c o roughness

¢ rat roughness ratio

C HCLF HEADLOSS COUPLING FACTOR

C sssssssss F FACTOR  SHssstsstssssssstsssssiasssssns

C TURB TURBULENCE FACTOR = F+2100/64 (=1.0 LAMINAR REG)

C MAXERR MAXERR IN TURBULENCE FACTOR

c FOR REFERENCE ALSO SEE ITERATIVE COOLBROOKE-WHITE
c AND ALSO SEE DIRECT CHURCEILL eQ ( IN PLOT PROGRAM)
c applies for ren# > REYEDGE

C REDGE THE LEFT EDGE OF TRANSITION REGION

c RTYNOLDS# WHERE COOLBROOK BEGINS

C SEEERRAERERRERERSRSEREEREEREREEERAEER SR ESEEERRARERR LSRR ERERE K

C 58858 NELVOXK CONSTANTS $HREFEIARBRELREARERELEEELSAREEERERRER
ch the numver of junctions in the system
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c Nt the # junction - datum node (n-1)
cB the # branches in the system
cS the # of sources
LT L T T T
c ASSUMPTIONS
c 1. COCLBROOKE-WHITE FORMULAE FOR REY#> redge
c 2. WORK IN ENGLISH UNITS
c 3. FLUID IS INCOMPRESSIBLE
c 4. ALL PIPES ARE CIRCULAR IN SHAPE
c 6. THE CORRECT SOLUTION IS OBTAINED BY ITERATION
o T2 TR T R L T
integer ¥,N1,B,QB,S,DR
integer NT(40), NF(40),X, itest
real mu, rho, g, pi, C(40,40), d4(40), 11(40), r(40),QS1,Q5(40,1)
REAL RLAM(40),TURB(40),Ct(40,40),Cy(40,40),YLAM(40), Y(40,40)
REAL IS(40,1),YN(40,40),P(40,1), YH(40,1),V(40,1), REY(40,1)
REAL AREA(40),ISI(40,1),YNI(40,40),Q(40,1),ERR(40),ep(40),rat(40)
REAL TURBF,MAXERR,QG(40),FCROS(40)
REAL REDGE, EPS,H(40,1),HCLF
CHARACTER*20 FORM
CHARACTER+3 BR
CHARACTER+7 NAME(11)
BR=’BR
NAME(7)=’ TBF *
NAME(4)=’  HEAD’
NAME(2)=' PF °
NAME(3)=’ PT '
NAME(6)=" Re '’
NAME(1)=’ Q
NAME(8)=’ Y °
NAME(S)=’  ERR’

4 FORMAT (A12)
OPEN (UNIT=7,FILE=’f£lowDIA.DAT’ ,STATUS=*NEW’,ACCESS=’SEQUENTIAL’)
OPEN (UNIT=8,FILE='flowINP.DAT’, STATUS=’(QLD’,ACCESS=’SEQUENTIAL’)
OPEN (UNIT=9,FILE=’£10wOUT.DAT’, STATUS=’'NEW’,ACCESS=’SEQUENTIAL’)
SREESERSRRSASEEARREREEEASEERREXERERRERLEAERARARNSERS LSRR R R RES
£°32.174 '
pi=3.1415926
READ(8,8)
8 FORMAT (/,/./././.1.1.1.1.1.0])
c write(»,13)
write(7,13)
13 format (?INPUT THE REYNOLDS # FOR RIGHT EDGE TRANSITION °’)
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read(8,30) redge
WRITE(7,30) REDGE
(o write(»,23)
write(7,23)
23 format (’ enter the maximum error IN TURBULEMCE FACTOR desired’ )
read(8,30) MAXERR
WRITE(7,30) MAXERR
C WRITE(*,21)
21 FORMAT (’ENTER THE AVERAGE HEADLOSS COUPLING FACTOR,TYPICAL #60°)
READ(8,30) HLCF
write(7,21)
write(7,30) HLCF
C write(*,10)
write(7,10)
10 format (’ enter the number of nodes in the rack system N>100 ® )
read(8,15) N
Ni=N-1
15 format (I5)
write(7,15) N
c write(*,15) X

c write(*,20)
write(7,20)
20 format (’ enter the number of branches in the rack system B>N ’ )
read(8,15) B
c write(»,15) B
write(7,15) B
T T T L LI
c write(=,25)
write(7,25)
25  format (’ input the viscosity __ X 10"-5 1b-SEC/ft"2 ’ )
read(8,30) mu
WRITE(7,30) mu
c WRITE(*,30) mu
mu*mu*.00001
30 format (£10.4)
c write(»,35)
write(7,35)
356 format( ’ input the specific weight 1b/ft"3’ )
read(8,30) sw
Tho=sw/g
c write(*,30) sw
write(7,30) sv
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Node-branch matrix

matrix initialization

0O 0 OO0

do 40 i=1,N1
do 40 j=1,B
40  Cc(,j)=0
do 42 i=1,B
WF(1)=0
2 NT(i)=0

receive dat from the keybord to develop a,d and ell matrices D i
for circular pasages

0 Q00

start loop on branches to input node to node information
do 50 i=1,B
write(7,55) i
68 format (’ at branch number ’, 2x, i5)
c write(=,60)
WRLTE(7,60)
60 format (*ENTER nf(i),nt(i),length(ft),diameter(in),ROUGHNESS-mil’)
read(8,*) NF(i),NT(i),el1(i),d(i),ep(i)
ep(i)=ep(i)».001
rat(i)=ep(i)/d(i)
¢ convert from mils to inches
WRITE(7,*) NF(i) ,NT(i),el11(i),d(i),ep(i),rat(i)
c WRITE(*,+) NF(i),MT(i),el11(i),d(i),ep(i),rat(i)
c 70 format( i5,15,78.3,18.3,£9.5)
C ssssssxsesxsx  calculate the coolbrook crossing value at R= 3500
c colebrook-white formula page 198 of fox, let f goto 4f
8qf=(64.0/2100.0)**.5
3100 saves=sqf
8qf=1.0/(-2.0%1og10(2.51/(REDGE*save) + rat(i)/3.7))
IF (SAVE .EQ. SQF) GOTO 4000
error=abs(save-sqf)/sqf
it (error .gt. .001) goto 3100
4000 fcros(I)=sqfes2
c WRITE(#*,*) °*I,FCROS(I),RAT(I)’, I, FCROS(I), RAT(I)
50 continue
C SECTION ON SOURCE INPUT

0

c INPUT SOURCES, S OF THEM
c QS MATRIX OF FLOW SOURCES
c QB SOURCE BRANCH
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90

92

95

c

93

98

100

QS1 SOURCE STRENGTH
WRITE(*,90)
WRITE(7,90)
FORMAT( * INPUT THE NUMBER OF SOURCES ’)
READ(8,92) S
write(7,92) S
write(»,92) S

FORMAT(IS)

DO 98 I=1,S

WRITE(#+,95) I

WRITE(7,95) I

FORMAT( ’INPUT THE SOURCE STRENGTH FOR THE’, I5,’TR SQURCE’)
READ(8,30) @si

write(7,30) Qsi

write(=,30) QSi

QS1=QS1/450
CONVERT FROM GAL/MIN TO FT"3/SEC CONVERSION FACTOR 1/450
X GAL/MIN= (450)°-1 FT“3/SEC
. WRITE(7,93)
WRITE(*,93)
FORMAT(* INPUT THE BRANCH NUMBER OF THE SOURCE ’)
READ(8,15) QB
write(7,15) QB
write(=»,15) QB
CONTINUE
DO 100 K=1,B
IF (K .EQ. QB) THEN
Qs(x,1)= Qs1
ELSE
gs(X,1)=0
ENDIF
CONTINUE

c Start setting up ’ C ’ matrix

c

do 120 i=i,B
ir (WF(i) .LT. W) then
C(NF(i),i)=1
endif
if( NT(i) .LT. N) then
C(NT(1),i)=-1
endif
convert diameter in inches to feet
d(i)=d4(1)/12.0
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c

c

120

area(i)=pis(d(i)=»2)/4
length=el1(i)

60 diameters accounts for in/out head loss

add1=HLCF*d (i)
ell(i)=length+ addl

CALCULATE THE LAMINAR RESISTANCES FOR EACH BRANCH

RLAM(i)= 32.0% mus e11(i)/(AREA(I) * (d(i))**2)
YLAM(I)=1/RLAM(I)
CONTINUE

C WRITE "C" MATRIX TO SCREEN AND RECORD FOR CHECK

c

123

125
126

WRITE(7,123)
WRITE(*,123)

FORMAT( * THE C MATRIX BELOW, TRANSPOSED ’ )
DD 126 I=1,B

WRITE(*,125) (C(J,I),J=1,N1)

WRITE(7,125) (C(J,I),J=1,N1)

FORMAT(8(1X,F8.4))
CONTINUE

C WRITE THE LAMINAR RESISTANCE AND ADMITTANCE VECTORS

c

130

O

140

WRITE(7,*) 'THE LAMINAR RESISTANCE AND ADMITTANCE VECTORS’
WRITE(*,*) 'THE LAMINAR RESISTANCE AND ADMITTANCE VECTORS’
DO 130 I=1,B
WRITE(7,*) RLAM(I),YLAM(I)
WRITE(*,*) RLAM(I),YLAM(I)
TURB(I)=1.0
CONTINUE
MATRIX MULTIPLICATION OF MATRICES

DO 140 J=1,B

DO 140 K=1,B

Y(J,K)=C

IF (J .EQ. K) THEN
Y(J,3) = YLAM(D)

ENDIF

CONTINUE

MATRIX MANIPULATION SECTION

b

columns of C

C
¢ Nirows of C
c
c

CT transpose of C

CALL TRANSP(C,CT,Ni,B)

write(#*,*) ’ write transpose of matrix C ’
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write(7,*) ’ write transpose of matrix C ’
call Warray(CT,B,N1)

c write(*,*) ’ write matrix Y’
write(7,*) ’ write matrix Y’
call Warray(Y,B,B)

C PROPOSED ENTRY POINT FOR ITERATIVE SCHEME

250 call matmul(Cy,C,Y,N1,B,B)

C write(s,*) ’ write PRODUCT CsY NiXB °
write(7,*) ' write PRODUCT C+Y N1XB °
call Warray(Cy,N1,B)

CALL MATMUL(YN,Cy,Ct,Ni1,B,N1)
¢ node flow source vector CQs
call mataul( Is,C,QS,Ni,B,1)
¢ commented out artifact of old scheme
DO 200 I=1i,N1
1s(1,1)=-IS(1,1)
ISI1(1,1)=158(1,1)
200 CONTINUE
DO 295 I=1,N1
D0 295 J=1,N1
YNI(I,J)=YN(I,J)
295 CONTINUE
C SECTION ALSO WRITES THE ARRAY PRIOR TO BEING cHOLESKY PROCESSED
WRITE(7,*) ’YNI MATRIX PRIOR TO CHOLESKY °*
c WRITE(*,*) ’YNI MATRIX PRIOR TO CHOLESKY °
call Warray(YNI,Ni,N1)
WRITE(7,+) ’ISI MATRIX PRIOR TO CHOLESKY °
c WRITE(*,*) *ISI MATRIX PRIOR TO CHOLESKY °
call Warray(ISI,r:,1)
call CHOLESKY(YNI,ISI,N1)
WRITE(7,*) 'YNI MATRIX FOLLOWING CHOLESKY °*
WRITE(*,s) *YNI MATRIX FOLLOWING CHOLESKY °'
call Warray(YWI,Ni,N1i)
NODE MATRIX P=YR"-1+IS
BRANCH PRESSURE CT*P
BRANCH FLOW RATE
MATRIX PRODUCT Y=H
DO 296 I=i,N1
P(1,1)=1IS1(1,1)
296 CONTINUE

Q
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CALL MATMUL(H,CT,P,B,Ni1,1)

CALL MATMUL(YH,Y,H,B,B,1)

DO 300 I=1,B

Q(I,1)=YH(I,1)+QS(I,1)
C DIVIDE PRESSURES IN LB/FT"2 BY 144 TO CONVERT TO PSI
300 CONTINUE

¢ REYNOLDS NUMBER REGIME DETERMINATION
DO 5000 I=1,B
V(I,1)=ABS( Q(I,1)/AREA(I))
REY(I,1)=rhosV(I,1)*d(I)/mu

REN=REY(I,1)

c WRITE(s,s) * REYNOLDS #', REY(I,1)
WRITE(7,+) ® REYNOLDS #’, REY(I,1)
if (REY(I,1) .LE. 2100.0) THEN

Y(I,I)= YLAM(I)
TURB(I)=1.0
TURBAV=1.0
ERR(I)=0
F=64.0/2100.0
else
it (REY(I,1) .1E. REDGE ) THEN
X1=REDGE-2100.0
YisFcros(i) - 64.0/2100.0
F= 64.0/2100.0 + Y1+SIN(PI* (REN-2100)/(2#X1))

else
c colebrook-white formula
8qf=(64.0/2100.0)**.5
1310 save=sq?f
8qf=1.0/(-2.0+10g10(2.51/(Ren*save) + rat(i)/3.7))
c IF (SAVE .EQ. SQF) GOTO 1400

error=abs(save-sqf)/sqf
it (error .gt. .001) goto 1310
1400 f=gqlss2
endif
TURBF=Fs*Ren/64.0
TURBAV=(TURB(I)+TURBF)/2.0
Y(I,1)=1/(RLAM(I)*TURBAV)
ERR(I)=ABS(TURBAV-TURB(I))/turb(i)
TURB (1)=TURBAV
ENDIF
c WRITE(»,*) I,’FRICTION FACTOR’, F,’THE TURB FACTOR’,TURBAV
WRITE(7,*) I,’FRICTION FACTOR’, F,’THE TURB FACTOR’,TURBAV
5000 CONTINUE
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EPS=0
DO 5100 J=1,B
c WRITE(*,+) ’ THE ERROR FOR BRANCH’,J,’ IS’,ERR(J)
WRITE(7,+) ° THE ERROR FOR BRANCH’,J,’ IS’,ERR(J)
IF (ERR(J) .GT. EPS ) EPSsERR(J)
5100 CONTINUE
IF (EPS .GT. MAXERR) GOTOD 250
C C CCCCCCC NOTE ERR DEFINED IN TERMS OF TURBF IS ALREADY NORMALIZED
WRITE(9,5900) BR,NAME(1),NAME(2),N¥AME(3),NMAME(4),
+ NAME(S) ,NAME(6) ,NAME(7) ,NAME(8)
6900 FORMAT(A3,8(1X,A7))
c
c READY TO BEGIN OUTPUT OF SOLUTION
c WRITE(+,*) ’BRANCH,FLOW(Q),PF(MPSI),PT(MPSI), head, ERR,
c + REY#, TURB FACTOR, FLOW(Q-@s), °
WRITE(7,*) ’BRANCH,FLOW(Q), presURE F, pres T, head, ERR,
+ REY#, TURB FACTOR, FLOW(Q-Qs)’
DO 7000 J=1,B
Sources calculated in terms of effective pressure diff ( thevenin)
NOTE THE FLOW VALUES ARE IN GAL/MIN
CONVERT FLOW VALUES TO GAL/MIN
DIVIDE PRESSURES IN LB/FT"2 BY 144 TO CONVERT TO PSI
ADMITTANCE Y CONVERTED TO (GAL/MIN)/mPSI
* 1000 to convert to mpsi
PF=P(NF(J),1)/144.0%10%#3
PT=P(NT(J),1)/144.0%10**3
B(j,1)=H(j,1)/144.0%10+43
Y(J,J)=Y(J,))*450.0%144.0/10%*3
Qs(J,1)=450.0*Qs(J,1)
Q(J,1)=Q(J,1)*450
QG(J)=Q(J,1)-Qs(J,1)
WRITE(*,6000)J,Q(J,1),PF,PT, H(j,1) ,ERR(]j),
c + REY(J,1),TURB(J),Y(J,))
WRITE(7,6000)J,Q(J,1) ,PF,PT,B(j,1) ,ERR(J),
+ REY(J,1),TURB(J),Y(J,J)
WRITE(9,6000)J,4(J,1) ,PF,PT,H(j,1) ,ERR(]),
+ REY(J,1),TURB(J),Y(J,J)
6000 FORMAT(I3,1X,F7.2,3(1X,F7.1),1X,F7.4,2(1X,F7.1),1X,F7.4)
7000 CONTINUE

o000

Qo

WRITE(®,%) ’ SEsstssssststssassssisstsssssstsshssnsns’
HRI‘I'E(#.*) ’ »
WRITE(#*,*) ’ SEE FILE £1owOUT.DAT FOR OUTPUT )
WRITE(*,*) * SEE FILE flowDIA.DAT FOR CHECKING INPUTS °*
WRITE(*,*) °’ :
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WRITE(#,%) ’ 3854343885050 8 50804000 SRERRS S04
STOP
END

subroutine cholesky(a,b,n)
C SOLVES THE PROBLEM AX=B
c X UNKNOWN N TUPLE
C A KNOWN RANK 2 MATRIX OF ORDER N
c B KNOWN ¥ TUPLE ( UPON ENTRY )
c B=X ( UPON EXIT)
real b(40,1)
real a(40,40)
write(7,*) ’ in cholesky routine, matrix order n follows °’
call Warray(a,n,n)
call decomp(a,n)
b(1,1)=b(1,1)/a(1,1)
do 10 i=2,n
d=b(i,1)
il=i-1
do 5 1=1,il
5 d=d-a(1,i)*b(1,1)
10 b(i,1)=d/a(i,i)
b(n,1)=b(n,1)/a(n,n)
ni=n-1
do 30 1=1,n1
k=n-1
kisk+1
do 20 j=ki,n
20 b(k,1)=b(k,1)-a(k,j)*b(j,1)
30 b(k,1)=b(k,1)/a(k,k)
return
end

subroutine matmul(c,a,b,n,m,l)
SOLVES THE PROBLEM C=A+B
C UNKNOWN MATRIX 1xn
A KEOWN MATRIX MxN
b KNOWN MATRIX 1Im
real a(40,40), b(40,40), c(40,40)
¢ columns of a and ¢
n # rovs of a and columns of b
c 1 # rows of b and ¢
do 25 i=1,n
do 25 j=1,1

0o 000

00
-]
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25

410

10

20

21

588

c(i,j)=0
do 25 k=1i,m
c(i,jd)= c(i,j)+ a(i,x)=b(k,})
return
end

subroutine decomp(a,n)

real a(40,40)

i=]

write(7,+) ’ now in decomp routine °’

write(7,*) ’the order of matrix a is’, n

do 410 ii=1,n

write(7,35) (a(ii,jj),jj=1,n)

continue

if (a(1,1) )1, 1,3

write(7,2)

write(7,+) i,a(i,i)

format( ’ zero or negative radicand ’)

goto 200

a(1,1)=sqrt(a(1,1))

do 10 j=2,n

a(1,j)=a(1,j)/a(1,1)

do 40 i=2,n

il=ji-1

d=a(i,i)

do 20 1=i1,i1

dhold=d

d=d-a(l,i)*a(1,i)

if ( d .eq. 0) then
WRITE(7,*) * d is zero '
write(7,+) 1,a(1,i), dhold

endift

write(7,») * i, matrix(i,i) follow °*

write(7,+) i, a(i,i)

if (a(i,i)) 1,1,2

a(i,i)=sqrt(d)

if (i .eq. n) goto 45
i2=i+1

do 40 j=i2,n

d=a(i,j)

do 30 1=i,i1

d=d-a(1,1)#+a(1,3)

a(i,j)=d/a(i,i)

do B0 i=2.,n
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c Zero out lower part of matrix
il=i-1
do 50 j=1,i1

50 a(i,j)=0
write(7,+) ’made it through decomp , matrix follows °
do 400 ii=i,n
write(7,35) (a(ii,jj),jj=1,n)
format(8(2x,£8.4))

400 continue

200 return
end
SUBROUTINE TRANSP(A,AT,NR,NC)
REAL A(40,40), AT(40,40)
D0 20 J=1,NC
DO 20 K=1,NR

20 AT(J,K)=A(K,J)
RETURN
END

subroutine warray(a,n,m)
¢ writes array to screen and to diagnostic file
real a(40,40)
c n rows of a
c m columns of a
do 20 j=1,n
write(7,30) (a(j,i),i=1,m)
c write(*,30) (a(j,i),i=1,m)
20 continue
30 format (8(1x,18.4))
return
end
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