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Software for Flow Distribution
in Electronic Rack Structures

Ron J. Pieper
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, California 93943

Brief Description

A FORTRAN CODE has been developed which p,-dicts pressures and flow rates in a

piping network for the regimes of laminar, transition, and turbulent flow. A novel and

effective scheme for modeling the transition region betweei laminar ant turbulent flow

is demonstrated. A proposed linear indicator for the deviation from lamipl. behavior

is introduced into the analysis in order to facilitate the computational task. Although

the turbulent flow problem is inherently nonlinear, the method of analysis described

herein, typically employed with linear electrical networks, is found to converge rapidly

to an approximate solution without user-specified a priori guesses.
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1. Introduction

An interest in the properties of incompressible fluid flow in pipes can undoubtedly be

traced as far back as the era of the Roman empire. A brief synopsis of the historical

development of fluid mechanics can be found in many of the introductory level texts

[Vennard (1961) for example].

The problem of accurately solving for the paramete:s in incompressible fluid flow

in piping networks is dependent upon the single-pipe model for fluid flow. Many

semi-empirical methods for characterizing the flow properties have appeared in the

literature [Matthew (1981), Wuori (1993), and Churchill (1977)]. Since the early work

by Feigenbaum (1978), see for example [Hofstadter (1981)], on chaos in simple sys-

tems, considerable progress has been made on analytically characterizing turbulence

in fluids [Landau and Lifshitz (1987)]. Nevertheless, many engineering problems are

solved using the Stanton diagram, which shows Nikuradse's measured data.

For engineering problems which require repetitive numerical evaluation, an empir-

ical relationship facilitates the task and various investigators [Tsang and Kee (1987),

Round (1980, 1985), and Colebrook (1939)] have proposed such formulae. These for-

mulae have the drawback that the transition region between laminar and turbulent

flow is inadequately represented. Only the fluid flow properties in the laminar region

are fairly well understood [Vennard (1961)] using methods of fluid analysis.

One of the earliest and most well known methods for solving pipeline networks

is attributed to Hardy Cross [Giles (1962) and Lindeburg (1982)]. The Hardy Cross

scheme, not only requires an a priori guess on the initial flows, but upon comparison

with more recently reported methods [Carnahan and Christensen (1972), Bending

and Hutchinson (1973), Gay and Preece (1975, 1977)], it is found to be less efficient.

Finally, in a recent Naval Postgraduate School (NPS) thesis [Ellis (1993)], a pipeline
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method formalism based on the Cholesky method for matrix reduction has been

investigated. Although the mathematical analysis of the scheme is fairly efficient, the

physical modeling did not encompass conditions for other than laminar flows.

The main purpose of this report is to extend the range of flow to include transition

and turbulent flow regimes. As this is primarily a feasibility study, various facilitating

assumptions were made. First, it is assumed that English units are preferred for

input/output. Second, all pipes are assumed to have uniform circular cross-sections.

2. Physical Modeling

For incompressible fluids, two of Bernoulli's rules [Lindeburg (1982)] for conservation

of mass and energy are, the continuity equation

Q = AV 1 = A2V2  (1)

and Bernoulli's law

t = P(V2 + (p - px) + pg(z 2 - zi) + pgh' (2)
Q 2

where the subscript 2/1 refers to positions 2/1 and the symbol lists given in Section

10 defines the other relevant parameters. The head loss, as defined by the Darcy-

Weisbach equation, is given by

h' fLV2
= 2gd (3)

where L is the pipe length, d is the hydraulic diameter, and f is the friction factor.

For circular cross-section pipes the hydraulic diameter and the physical diameter are

identical. Using similitude analysis [Vennard (1961)], it is possible to show that the

friction factor depends only on two dimensionless parameters, the Reynolds number

Re pVd (4)
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where p is the dynamic viscosity, and the relative roughness

(5)

where e is the roughness of the pipe.

A sourceless section of pipe which is horizontal (z2 = z1), and with constant

cross-section so that V2 = V1, will, from eq (2) and eq (3), then have a pressure drop

p, - p2 =- h - pgh'= pfLV2  (6)

2d

or after use of eq (1)

h=f 2d - (7)
2dA

This suggests the useful electrical analogy with Ohm's law where pressure drop cor-

responds to voltage and fluid flow corresponds to current. It follows that consistent

with the analogy, the effective resistance of the pipe is then given by

R =f -- (8)

where the units of this resistance are defined by the ratio of pressure to flow.

It is observed that the problem of predicting fluid flow in pipes now reduces to

accurate characterization of the friction factor. For the laminar flow domain the

analytically derivable [Vennard (1961)] result

fi64 (9)

R~j;

agrees very well with measurement out to Re _ 2100 which is the well known limit in

pipes, ducts, tubes, and channels for laminar flow. After substitution of eq (9) into

eq (8) it is found that:

32Lu (10)
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and the corresponding relationship for head loss is

32Lp Qhe- •-•-(11)

This is in agreement with an expression cited by Bending and Hutchison (1993). The

subscript I has been used to indicate the laminar flow domain. Note from eq (10)

that, as expected, the pipe resistance is independent of the flow rate in the laminar

regime.

In order to easily characterize the degree to which the fluid flow is turbulent, the

head loss can be expressed as

h = h, x (12)

where the turbulence factor, denoted 0, is a linear gauge of the deviation of the

system from laminar flow. After noting that eq (7) can be reexpressed as

32Lpo fpVd (13)
dA =x64p

it can be concluded from eq (4) that, in agreement with the definition of the Reynolds

number, the turbulence factors satisfy

fRe (14)

As seen from eq (9) • = 1 for laminar flow. In the next section it will be shown that

for transition and turbulent flow b > 1.

The pipe resistance can now be expressed as

R=&xXO (15)

where as previously noted, Re does not depend on the flow rate.

4



3. Friction Factor Estimation for Nonlaminar
Fluid Flow

For purposes of the development here it is necessary to introduce two distinct non-

laminar regions. First, the transition region satisfying

Re, 0  Re > 2100 (16)

where Re. is usually cited typically between 3500 and 4000 [Vennard (1961)] and for

the turbulent region

Re > Re° (17)

One of the most commonly employed empirical formulas for the turbulent flow domain

defined by eq (17) is attributed to Colebrook (1939)

1 2log[ 2.51] (18)
N/ --- lo T--d + Rev9-f

Although, as seen in eq (18), the dependence of the friction factor on Reynolds number

is implicit, the expression will converge rapidly upon iterative substitution.

To date the most viable predictors for the transition region, see eq (16), are

empirical. The Stanton diagram [Vennard (1961)] shows smoothly varying curves

which are based on measurements in the transition region. The Moody diagram,

which only plots expressions for eq (9), for Re < 2100, and eq (18), for Re > Re., is

not useful for the transition region. Bending and Hutchinson (1973) suggested, in a

computer analysis of piping networks, that a linear interpolation between the laminar

and the turbulent domain be made to provide friction data in the transition region.

For the network analysis scheme to be described herein, a linear approximation for

the transition region was found to be insufficiently accurate upon numerical testing.

In particular, the iterative program with the linear approximation would either not
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converge or converge very slowly. The problem in this scheme was the dramatic

discontinuity in the first derivative at the edges of the transition region. A greatly

improved modeling scheme, in terms of convergence, is given by

f2"0 -+ [f(Re.) - sin - 2[10-0)] (19)

where f(Re.) was calculated via the Colebrook model eq (18). Note that, like the

linear approximation model, continuity is preserved at the edges of the transition

region. Because, as seen from eq (19), the slope at the transition edges is zero, the

discontinuity in the slope is much less dramatic and the convergence was found to be

much more rapid. Figure 1 is a graphical representation for these curves in standard

log-log format for various relative roughness factors.

It is worth noting that the work by Churchill (1977) agreed very well with the

scheme just described for Re > 2100 and provided an explicit formula for the friction

factor, f. However, for Re < 2100 (laminar flow) the expression deviated significantly

from the classical expression of eq (9). Hence it was not used.

The argument supporting the claim that the turbulence factor eq (14) is generally

greater than unity is loosely based on the following observations. First, in 1913 Blasius

proposed an empirical relationship for smooth pipe, i.e., e = 0 in the turbulent flow

regime [Vennard (1961)]

0.316fwwt p 03 1 3000 < Re < 100,000 (20)

Second, the construction algorithm for predicting f in the transition region, eq (19)

requires that
64

2! 64 -(21)
R;

This leads to the inequality that is established from a comparison of eq (20), eq (21),

6



and Fig 1
64[

f-o10 pipe --- fLmooth pipe --- flaminar -- 64 (22)

and is supported by analysis and measurement [Vennard (1961)]. The inequality,

S_> 1, then follow s directly from the definition of the turbulence factor, 0 , gien by

eq (14).

The turbulence factor has been introduced into this report for two reasons. Al-

though the friction factor is a linear indicator for the system response of the fluid

dynamics, it is not L. anear indicator for the deviation of the system from laminar

behavior. Note that the quantity (Re - 2100) is a nonlinear indicator for the devia-

tion from laminar behavior. The purpose of this work has been to extend the Ellis

(1993) effort to encompass nonlaminar regimes. The turbulence factor will readily

demonstrate the need for this extension. Second, it turns out that the laminar pipe

resistance, RI, can be computed at the onset of the problem and only the turbulence

factors need to be updated in the iterative calculations of eq (15) rather than to com-

pute eq (8). In brief, the turbulence factors provide some computational advantages

which, for large piping networks, would be significant.

4. Basic Circuit Modeling

Following the electrical analogy for an arbitrary k'" pipe, a pressure difference, Apk,

across a pressure source, Ap.k, in series with a pipe resistance, rk, with a flow qk,

satisfies

Apk = qkrk - APok (23)

consistent with the convention established by Fig 2. The corresponding relation in

terms of a current source is given by

qk = q~k + yS:APk (24)
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Figure 1: Friction factor model.
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A4

Figure 2: Presstre source circuit model.

where y, - 1/rk. Figures 2 and 3 define the nomenclature and the topology. Equation

(24) can be compactly represented for all branches or pipes in matrix format

Q = Q. +YAP (25)

where it is seen that eq (24) and eq (25) have unresolved unknowns associated with

flow rate and pressure. The condition of continuity at the nodes

Sqk, = 0 3-, 2,... nT (26)
k

where n7- is the total number of nodes in the network, provides enough information to

resolve the flow rates and pressure drops. A formulation for this process is presented

in the next section.
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Figure 3: Flow source circuit model.

5. Mathematical Formulation

The mathematical formalism is presented via an illustration taken from the Ellis

(1993) thesis. The piping network shown in Fig 4a has five nodes and six connecting

branches. It is also seen that the branch between nodes 1 and 5 contains a pump.

This pump provides a source for fluid flow at its high pressure side shown at node-1

with an arrow. The low pressure side is the corresponding sink. The corresponding

flow graph is shown in Fig 4b. Each branch now has an arbitrarily chosen orientation

arrow which defines the convention for positive fluid flow. Note that consistent with

the flow direction shown for branch 1, the source shown on Fig 4a would be assigned

a negative numerical vale. The first step in the mathematical formalism is to cre-

ate both a network representation for the fluid pipeline network and a corresponding

flow graph. The flow rates in the b branches, in this case 6, can be represented as a bx 1

10
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(a)

1 2)2 ,\ (3) 3

5v (6)

(b)

Figure 4: a) Six branch pipeline network; b) Associated flow graph for a) [15].

11



column vector
q,
q2
q3 

(27)
q4

L qB .

The elements of the augmented node-branch incidence matrix, cj, can be def

as

cq = 1 Branch j leaves node i (28a)

cj = -1 Branch j enters node i (28b)

c7• = 0 otherwise (28c)

where i = 1,2,.. nT nodes andj 1,2,... ,b branches. This leads to:

1 1 0 0 0 0
0 -1 1 1 0 0

C" a 0 0 -1 0 1 0 (29)
0 0 0 -1 -1 1

-1 0 0 0 0 -1

where, in general, C' has b columns and nT rows. It is apparent that for each column,

which is associated with a node,

Scjaqk = 0 (30)
k

or more formally

C'Q =-0 (31)

consistent with flow rate conservation at all nodes (see eq (26)). In order to reduce

the order of the problem by 1 it is useful to define one of the nodes as the ground or

datum reference. In principle it should not matter which node is taken as this datum
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node, however, in the coded implementation it is assumed that the circuit nodes

are numbered such that the datum node is the node bearing the highest numerical

designator. For example, as seen on Figs 4a, b, the node-5 is the datum node. Because

the assignment of nodes is independent of the assignment of branches and is arbitrary,

there is no sacrifice in the generality of the method. Following this point, the node-

branch incidence matrix, C, can be defined according to the rules dictated by eq (27)

with the index i satisfies the condition i = 1, 2,... , n where

n = nr - 1 (32)

Thus, for this example, the node-branch incidence matrix is
.1 1 0 0 0 0 "

0 -1 1 1 0 0 (33)C= 0 0 -1 0 1 0

.0 0 0 -1 -1 1

In general C has b columns and n rows. It follows from eq (30) that

CQ=0 (34)

which forces a condition of flow rate conservation or continuity at all nodes.

The node pressures, defined with respect to the reference datum node, can be

represented by the column vector

SP(35)

Pn

which, for the example under consideration, the node pressure vector P is a 4 x 1

column vector since n = 4. The node branch incidence matrix can be used to predict

the head losses from the rule

H = CTP (36)
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where the branch head loss vector, represented as:

H [h2 (37)

hB

can be calculated using eqs (11) and (12). For the example being examined, H is a

6 x I column vector, corresponding to the number of branches.

In Section 4 the pressure drop vector was introduced without any assumptions

regarding the physical modeling introduced in Section 2. Under the practical as-

sumptions made leading to eq (6), it is correct to let

A P-....+H (38)

in eq (25), which leads to

Q = Q+Y H (39)

Premultiplication of this equation by C leads to:

O=CQ.+CYH (40)

where the left hand side of eq (40) is predicted from eq (34). After substitution of eq

(36) into eq (40) and solving for P, it follows that

P = Y;'Q (41)

where

Q--CQ. (42a)

and

Y, = CYCT (42b)
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Given the matrix Y. and the source vector 4,, any number of matrix inverting

schemes [Hamming (1962)] could be employed to evaluate eq (40). As suggested in the

Ellis (1993) thesis the very efficient Cholesky reduction algorithm is applicable here

because the matrix Y. is, not only symmetric, but po-.tive definite. The Cholesky

reduction into upper and lower triangular matrices permits a rapid matrix inversion

using Gaussian elimination as described in Appendix A.

Once the node pressures given by eq (40) are obtained the branch head losses and

flow rates are easily calculated from eq (36) and eq (39), respectively. Note that, once

the flow rate vector is obtained, the flow rate velocities can be computed according

to the rule

v V2(43)

in agreement with eq (1). The corresponding velocity magnitudes, (IvI i, JV21,. IVBI)

can then be applied with eq (4) to calculate the Reynolds numbers, the friction factors,

and the turbulence factors using eq (14). The pipe resistances are calculated from eq

(15) and the corresponding admittances, ,Y, , Yb, follow from

1/r, 0 0 ... 0
0 1/r 2  0

Y- 0 . 0 (44)

. 0
L 0 0 ... 0 1/rb

If the current turbulence factors differ significantly from the previous turbulence fac-

tors according to the rule

MAXERR > max lkk(previous) - ?kk(current): {branches k = 1,b} (45)

the process is repeated. The Fortran input parameter MAXERR defines the maximum

deviation in the turbulence factors between iterations. It is assumed initially, in the

15



first step of the iterative scheme, that the flow is in the laminar regime, that is, all

turbulence factors = 1.

6. Input/Output: Parameters, Conventions,
Procedures

It follows for the definition of specific weight that

- = P9 (46)

where g, the gravitational constant, is 32 ft/sec2. Using eq (46) the computer program

computes the density which is needed for calculation of the Reynolds numbers eq (8).

Figure 5 defines the convention for distinguishing the entry (F) and exit (T) nodes

of a particular branch. The arrow defines the direction of positive flow.

F T

Figure 5: Convention defining nodes.

The required inputs to the FORTRAN program code flow. for provided in Ap-

pendix A are displayed in Table 1.

The calculations are done in formal English units of (ft, Lb, sec). However, the

inputs and outputs are, when appropriate, given in conventional units. Conversion

factors for these cases are shown in Table 2.

16



Table 1: Input Variables

Symbol Section Units

R.. §3 - typical 3500
MAXERR §5 - typical 0.05

HLCF §2 - typical 60.0
nT §5 - depends on network
b §5 - depends on network
A §2 I0-5 lb-sec/ft3 typical H20, 3.75
W §6 lb/ft3  typical H20, 64.0

node specification -F, -T §6 - depends on pipe
L §2 ft depends on pipe
d §2 inches depends on pipe
e §2 mil depends on pipe

source specification Q. §5 gal/min depends on pump(s)

Table 2: Conversion Factors

Formal Conventional Conversion

Description Symbol Units Units Factor

Flow rate Q ft3/sec gal/min 450

Pressure P lb/ft2  psi 1/144

Roughness e ft mil 12,000

In order to facilitate the process of batch input, the code has been designed to

read the input file flowinp .dat rather than require the user to laboriously submit

the data in the interactive mode. In this way a maximum amount of flexibility can

be incorporated into the program without creating a tedious data entry procedure for

the user of the code. Thus, the "user friendly" goal has been kept in mind.

17



The outputs from the code f low.f or, which are listed by branch number (BR),

are displayed in Table 3.

Where appropriate both text symbol and fortran symbol have been specified in

Table 4. For example, PF and PT refer to node pressures at entry and exit, respec-

tively. In some practical cases it may be desirable to employ the equivalent of an

"ideal" constant flow rate pump, that is, q,- = qo• in eq (24). This is readily handled

by forcing Ak -- 0 or equivalently rk -+ oo. Because of the head loss coupling factor

rule-of-thumb introduced at the end of Section 3, the most convenient way to force

the pump source to behave ideally is to let dk -- 0. In practice, because of numerical

instabilities, if Yk = 0, it is recommended that the user set

dk= 10-3 x min{di1 i = 1,2,...,b but i 6 k. (47)

A hardcopy of the input/output for the piping networks tested is provided in

Appendix B. A more detailed description of these cases is covered in the next section.

Table 3: Output Variable

Symbol Section Units

BR §5
Q §5 gal/mnn

PF §6 10-3 psi (mpsi)
PT §6 10-3 psi (mpsi)

HEAD = H §5 10-3 psi (mpsi)
ERR see RHS eq (44) -

Re §2
TBF = 0 §2

Y §5 (gal/min)/mpsi

18



7. Examples

General Observations

Several general observations can be easily confirmed from the data (see Appendix B

for all the case examples discussed in this section). Specifically,

PF - PT = HEAD (PF - PT = hk)

and

Q=Q+ Y HEAD (qk = q.k + ykhk)

In all the examples the sink node of the pump was arbitrarily taken as the datum

node for convenience of interpretation. The node pressures under columns PF and

PT are as expected, strictly positive. In all three examples some or all of the pipeline

segments were operating in the nonlarninar regime. This is evident by checking the

TBF columns of each example in Appendix B. The associated Reynolds number is

also provided. The branch errors were calculated according to eq (45). It is easily

checked that the MAXERR parameter, line 2 of the input set, put a ceiling on these

branch error values.

CASEA - A four branch pipeline network with an ideal source (see Fig 6a and 6b).

This case illustrates the generation of an ideal flow source. Note, as discussed, this

condition can be obtained by making the pipe diameter of the source branch relatively

small. The associated Reynolds number and turbulence factors will be artificially high

and may not, as represented in the line 1 output for Case A, be within the defined

format.
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(a)

(2) 2

()3)

4 (4) 3

(b)

Figure 6: a) 4 branch with ideal source; b) 4 branch flow graph for a).

R f- A six branch pipeline network with nonideal source (set Fig 4a and 4b).

Note, as seen here, the effect of the nonzero.admittance of node 1 is to impede the flow

of the source into the rest of the pipeline circuit. Also, the source is required to be

negative because the pump is physically driving the flow opposite to the convention

defined by the arrow of branch #1.

20



CASE-C - A 12 branch piping network for shoebox cooling rack (see Fig 7). Note

that several of the branches have negative Q values. The physical interpretation is

that these cases have a fluid flow opposite to the convention defined on Figure 7.

9) 0) 4 )

2)/

2,

8 41

Figure 7: 12 branch shoebox cooling rack.

8. Future Enhancements in the Modeling

Although the work described herein extends the Ellis (1993) thesis by including the

nonlarninar flow regime, it still should be considered as preliminary. For example:

"* The network formalism discussed herein should be compared' with the bench-

mark Hardy Cross method [Lindeburg .(1987)] as well as other more recently

proposed schemes [Carnahan and Christensen (1972), Bending and Hutchinson

(1973), Gay and Preece (1975, 1977)] in order to assess the relative computa-

tional efficiencies.

"* The next major modeling development in the algorithm would be the addition

of the capability of evaluating the node to node heat transfers.
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"* Using the theory for compressible fluid flow [Vennard (1961)] required, for ex-

ample, when the cooling fluid is a gas, the developed scheme could be extended

to allow for compressible fluids. Due to the sensitivity of gas properties to tem-

perature this development would have to include effects due to heat transfer.

"* An alternate but similar mathematical formalism could be derived for pumps

best characterized as constant pressure sources. It is certainly possible to

"Theveninize" the source in the context of the present mathematical formal-

ism. However, it should be noted that because of the nonlinearity inherent in

the model, this Theveninization would need to be repeated iteratively, decreas-

ing the efficiency of the process.

"* As previously noted in Section 3, a significant improvement in the rate of con-

vergence of the method was obtained by reducing the discontinuity in the fric-

tion factor derivatives at the transition edges. It should be possible to apply

mathematical adjustments on eq (19), for example, using a technique known as

Hermite or "osculating" interpolation [Hamming (1962)], in order to completely

eliminate the slope discontinuity. The potential gain in the rate of convergence

could be significant.

"* Various mundane, but no doubt practical embellishments could also be consid-

ered. For example, an option of metric system units could be added. Also, an

option to specify pipe bends, vertical elevation, and cross-section types could be

added. If commercial viability is of concern, the program could be dovetailed

with CAD software.

"* The required background investigation revealed that despite a long history of

developments on modeling fluid flow in pipes, only recently have mathematical
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methods involving the theory of chaos begun to unravel and predict the prop-

erties of nonlaminar fluid flow. A small-scale physical model which predicts all

the measured properties on the Stanton diagram is at this date unavailable.

9. Conclusion

A mathematical model for predicting laminar and nonlaminar flows in pipeline net-

works has been proposed and successfully tested. This scheme, upon iterative appli-

cation, has been found to converge to an approximate solution. The computational

efficiency of this convergence process was found to be highly dependent on the fric-

tion factor modeling in the transition region between laminar and turbulent behavior.

In particular, a significant improvement in the convergence rate was obtained by re-

placing the previously proposed linear model with a nonlinear model having a less

dramatic first derivative discontinuity. A linear gauge for the deviation from laminar

behavior, referred to as the turbulence factor, was introduced in this report in order

to facilitate the computational task.
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10: Nomenclature

Roman Letter Symbols Units

A pipe cross-sectional area ft2

d pipe diameter ft
e pipe roughness ft
f friction factor
g gravitational acceleration ft/sec2

h head loss due to friction lb/ft2

P pressure lb/ft2

Q flow rate ft3 /sec
R pipe resistance Lb-sec/ft5

Re Reynolds number
V velocity ft/sec
w. time-rate-change of work output (pump) lb-ft/sec
Y pipe admittance ft3 /(lb-sec)

z elevation ft

Greek Letter Symbols

-y specific weight lb/ft3

C pipe roughness ratio
p viscosity lb-sec/ft3

p density slug/ft3
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Appendix A: Cholesky Reduction

This appendix provides a more complete description on the Cholesky reduction algo-

rithm [Kraus (1992)]. Positive definite, symmetric matrices can be factored according

to the rule

M=LLT (Al)

where L is an upper triangular matrix. Because of the applicability of this theorem

[Ellis (1993), Kraus (1987)] to the network matrix Y, eq (41b) it follows that

Yn = LL' T(A2)

and for eq (40)

LLTp=Q (A3)

The advantage of the factorization eq (Al) is now apparent since eq (A3) can be

broken into two parts: First,

LJ=Q (A4a)

and second,

LTP = J (A4b)

which are easily solved in succession via Gaussian elimination to determine first the

column vector J as an intermediate step then the derived node pressures P.
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Appendix B: Input/Output Hardcopy

*€*€*€***€***** * INPUT FORMAT *******e***ee****s**
REYNOLDS' NUMBER FOR RIGHT EDGE OF TRANSITION REGION
ERROR TOLERANCE IN CALCULATION
THE HELDLOSS COUPLING FACTOR (TYPICAL NUMBER 60 )
THE NUMBER OF NODES
THE NUMBER OF BRANCHES
THE VISCOSITY I 10 -5 LB-SEC/FTr3
THE DENSITY LB/FT -3
STARTING NODE, ENDING NODE, LENGTH(FT),DIAKETER(IN), ROUGHNESS(MILS)

NOTE FOR IDEAL CURRENT SOURCE SET DIAH-.001X SMALLEST

THE NUMBER OF SOURCES
SOURCE STRENGTH GAL/MIN
SOURCE BRANCH

INPUT (CASE A 4 BRANCHES IDEAL SOURCE)
3500.0
0.005
60.0
4
4
3.75
64.
4,1, 1.0,.001,1.0
1,2, 1.0,1.0,2.0
2,3, 1.0,1.0,0.5
3,4, 1.0,1.0,0.6
1
6.0
1

OUTPUT CASE A
BR Q PF PT HEAD ERR Re TBF Y

1 6.00 .0 282.1 -282.1 .0039 ******* ******* .0000
2 6.00 282.1 183.8 98.2 .0032 10806.2 5.6 .0609
3 6.00 183.8 92.1 91.7 .0032 10806.2 5.2 .0652
4 6.00 92.1 .0 92.1 .0032 10806.2 5.3 .0649

INPUT (CASE B 6 BRANCH PIPELINE NETWORK)
3500.0
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0.01
60.0
5
6
3.75
64.
1,5, 1.0,1.0,1.0
i,2, 1.0,1.0,2.0
2,3, 1.0,1.0,0.6
2,4, 1.0,1.0,0.6

3,4, 1.0,1.0,0.6
4,5, 1.0,1.0,5.0
1
-6.0
1

OUTPUT CASE B
BR Q PF PT HEAD ERR Re TBF Y

1 -1.75 25.1 .0 25.1 .0073 3149.7 2.0 .1679
2 1.75 25.1 14.6 10.6 .0075 3149.7 2.1 .1645
3 .58 14.6 12.9 1.7 .0000 1049.9 1.0 .3409
4 1.17 14.6 11.2 3.4 .0000 2099.8 1.0 .3409
5 .58 12.9 11.2 1.7 .0000 1049.9 1.0 .3409
6 1.75 11.2 .0 11.2 .0078 3149.7 2.2 .1554

CASE C ( 12 BRANCH SHOEBOX COOLING RACK)
3500.0
0.01
60.0
8
12
3.75
64.
8,2, 1.0,1.0,1.0
2,3, 1.0,1.0,2.0
3,4, 1.0,1.0,0.5
4,8, 1.0,1.0,0.6
5,8, 1.0,1.0,0.6
2,6, 1.0,1.0,5.0
7,3, 1.0,1.0,1.0
1,4, 1.0,1.0,2.0
6,5, 1.0,1.0,0.5
6,7, 1.0,1.0,0.6
7,1, 1.0,1.0,0.6
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5.1, 1.0,1.0,5.0
1
6.0
1
OUTPUT CASE C
BR Q PF PT HEAD ERR Re TBF Y

1 3.48 .0 24.6 -24.6 .0341 6273.0 3.4 .0990
2 1.76 24.6 14.5 10.1 .0393 3168.5 2.0 .1681
3 1.33 14.5 9.6 4.9 .0084 2394.5 1.3 .2685

4 1.74 9.6 .0 9.6 .0371 3138.2 1.9 .1750
5 1.74 9.6 .0 9.6 .0366 3134.8 1.9 .1752
6 1.72 24.6 14.4 10.2 .0386 3104.5 2.1 .1635

7 -. 43 13.2 14.5 -1.3 .0000 773.9 1.0 .3409
8 .41 10.8 9.6 1.2 .0000 743.6 1.0 .3409
9 1.32 14.4 9.6 4.8 .0072 2381.3 1.3 .2710

10 .40 14.4 13.2 1.2 .0000 723.2 1.0 .3409

11 .83 13.2 10.8 2.4 .0000 1497.1 1.0 .3409

12 -. 42 9.6 10.8 -1.2 .0000 753.5 1.0 .3409
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Appendix C: Computer Code

$debug
$LIST
c program for CALCULATING PRESSURES AND FLOW RATES IN PIPILINE NETWORKS
C ******************************************************************
C PROGRAM flow.FOR WRITTEN BY PROF. RON J PIEPER
C UPS 408 6562101
C AUG. 30, 1994
C SEE FILE flowINP.DAT FOR INPUT
C SEE FILE flowOUT.DAT FOR OUTPUT
C SEE FILE flovDIA.DAT FOR DIAGNOSTICS ON INPUT
C DESIGNED TO HANDLE UP TO 40 BRANCHES
C CAN BE ADJUSTED BY INCREASING DIMENSION
C OF THE ARRAYS
C *****************************************************************
c mu fluid viscosity (lb-sec/ft-2)
c rho fluid density (lb/f t3)
c g acceleration due to gravity (ft/sec'2)
c nu specific gravity rhoxg
c pi pi

c ren# reynold's # (rho*vel*d/mu)
c f friction factor
c val velocity of fluid
c pres pressure of the fluid
c *****************pipe variables **************************************
c ell pipe length(s)
c d pipe diameter(s)
c e roughness
c rat roughness ratio
C HCLF HEADLOSS COUPLING FACTOR
c ******** F FACTOR ********************************
C TURB TURBULENCE FACTOR a F*2100/64 (-1.0 LAMINAR REG)
C AZERR MAXEERA IN TURBULENCE FACTOR
c FOR REFERENCE ALSO SEE ITERATIVE COOLBROOKE-VHITE
C AND ALSO SEE DIRECT CHURCHILL eQ ( IN PLOT PROGRAM)
c applies for ren# > RETEDGE
C REDGE THE LEFT EDGE OF TRANSITION REGION
C RXYNOLDS8 WHERE COOLBROOK BEGINS
C **************************************************************
c ****** network constants ************************************
c N the nuaver of junctions in the system

29



c NI the 0 junction - datum node (n-1)
c B the * branches in the system
C S the * of sources
c **e********************.*.e.*.

c ASSUMPTIONS
C 1. COOLBROOKE-WHITE FORMULAE FOR REYS) redge
C 2. VORK IN ENGLISH UNITS
C 3. FLUID IS INCOMPRESSIBLE
c 4. ALL PIPES ARE CIRCULAR IN SHAPE
c 5. THE CORRECT SOLUTION IS OBTAINED BY ITERATION
C ******************************

integer N.NlB.QBIS,DN
integer NT(40), NF(40),X, itest
real mu, rho, g. pi, C(40,40). d(40). .11(40), r(40),QS1.QS(40.1)
REAL RLAM(40) ,TURB(40) .Ct(40,40) .Cy(40,40) ,YLAM(40), Y(40,40)
REAL IS(40,1),YN(40.40),P(40,1), YH(40,i).VC40.1). REY(40,1)
REAL AREAC40),ISIC40,I).YNI(40,40),QC40,1),ERR(40),.p(40).rat(40)
REAL TURBF,NAIERR,QG(40) ,FCROS(40)
REAL REDGE. EPSH(40.1),HCLF
CHARACTER*20 FORM
CRARACTER*3 BR
CHARACTER*7 NAME(il)
BR' IBRI
NANE(7)- TBFI
NANE(4)u HEAD'
NAME(2-' PFI
NAME(S). PTI
NAMEC6)- ReI
NANE~i)-' Q)
NAM()-' Y
NAME(S-' ER'

4 FORMAT CA12)
OPEN (UNIT-? ,FILE-'tlowDIA.DAT' .STATUS-'NEW' ,ACCESS-'SEQUENTIAL')
OPEN (UNIT-aFILE- '1lowINP.DAT' * STATUS-'OLD' ACCESS- 'SEQUENTIAL')
OPEN (UNITw9,FLE'lflowOUT.DAT', STATUSs INEW' I,ACCESSw ISEQUENTIAL')

g=32.174
pi-3. 1415926
READ (8 *8)

S FORMAT (..,.....II
C write(*,13)

write (7.13)
13 format ('INPUT THE REYNOLDS SFOR RIGHT EDGE TRANSITION ')
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read(8,30) redge
VRITE(7,30) flEDGE

C writeC*.23)
writeC7.23)

23 format (I enter the amaimum error IN TURBULENCE FACTOR desired')
read(8,30) MAXERR
VRITE(7,30) MAX EM

C 1IRITE(*.21)
21 FORMAT ('ENTER THE AVERAGE HEADLOSS COUPLING FACTOR.TYPICAL #60')

READ(8,30) HLCF
write(7,21)
write(7,30) HLCF

C write(*,10)
write(7, 10)

10 format V' enter the number of nodes in the rack system N>100 )
read(8,15) N
NluN-1

15 format(I5)
write(7,15) N

C write(*.16) N

C writes*,20)
write(7,20)

20 format (I enter the number of branches in the rack system B>N
read(8,15) B

C write(*,15) B
write(7,15) B

C write(*,25)
write(7,26)

25 format (I input the viscosity X- 10--5 lb-SEC/ft-2')
read(8 30) mu
VRITE(7,30) mu

C VR2ITE(*,30) mu
mQ=uinme00001

30 format (f 10.4)
C writo(*,36)

write(7.35)
35 format( I input the specific weight lb/ft-3'

read(8,30) sw
rhoinsw/g

C write(*,30) si
writo(7,30) si
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c Node-branch matrix
c

c matrix initialization
C

do 40 1-1,11
do 40 J.1,B

40 C(ij)mO

do 42 iul,B
IF (1)-0

42 ITMi-0
C
C
C receive dat from the keybord to develop a,d and all matrices D
c for circular pasages

c start loop on branches to input node to node information
do 50 i-l,B
write(7,55) i

55 format (I at branch number 1, 2x, is)
C write(*,60)

WRLTE (7,60)
60 formatC'ENTER nM~i) ,nt(i) .length(ft) ,diaaeter~in) ,ROUGHNESS-mil')

read(S,*) IF(i) .NT(i) ,ell(i) ,d(i) ,ep(i)
ep(i)mep(i)* .001
rat(i)-ep(i)/d(i)

c convert from ails to inches
WRITE(7,*) 17(i) ,NT(i) ,ell(i) ,d(i) ,ep(i) ,rat~i)

C VRITE(*,*) NF(i) ,NT(i) ,ell~i) ,d(i) ,ep(i) ,rat(i)
C 70 format( i5,i6,f8.3,f8.3,f9.5)
c******* calculate the coolbrook crossing value at Ra 3600
c colebrook-white formula page 198 of fox, let f goto Vf

sqfw(64.0/2100.0)** .5
3100 savemsqf

sqfsl .0I(-2.0*loglO(2.51/(REDGE*save) + rat(i)/3.7))
IF (SAVE .EQ. SQF) GOTO 4000
error-abs (save-sqf) /sqf
if (error .gt. .001) Soto 3100

4000 fcros(I)nsqf**2
C VRITE(*.e) 'I.FCROS(I).RAT(I)'. Is FCROS(I), RAT(I)
s0 continue
C SECTION ON SOURCE INPUT
c INPUT SOURCES, S OF THEM
C qs nATiI OF FLO SOURCE
C GB SOURCE BRANCH
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C QSI SOURCE STRENGTH
C VRITE(*,90)

VRITE(7 990)
90 FORMAT( IINPUT THE NUMBER OF SOURCES '

READ(8,92) S
write(7,92) S

C write(*,92) S

92 FORMAT(IS)
DO 98 Im1,S

C VRITEC*,96) I
VRITE(7,96) I

95 FORMAT( 'INPUT THE SOURCE STRENGTH FOR THE'. I5, 'TH SOURCE')
READ(8,30) QS1
write(7,30) QSI

C write(*,30) QS1

QS1sQSl/460
C CONVERT FROM GAL/KIN TO FT-3/SEC CONVERSION FACTOR 1/450
C X GAL/KIN= (450)Y-1 FT-3/SEC

.WRITE(7 .93)
C VRITE(*,93)
93 FORNAT(' INPUT THE BRANCH NUMBER OF THE SOURCE 1)

READ(8.15) QB
write(7,15) QB

C write(*,15) QB
98 CONTINUE

DO 100 Kwl,B
IF (K .EQ. QB) THEN

QS(K.1)- QS1
ELSE
QS(K, 1)-0

ENDIF
100 CONTINUE
c Start setting up I C I matrix

do 120 iuliB
it (NF(i) .LT. N) than

C(NFW~i).)-i
endif

if( NT(i) .LT. N) then

endif
C convert diameter in inches to feet

d~i)dWi)12 .0
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aroa(i)upi*(d(i)*.2)/4
lengthsellCi)

c 60 diameters accounts for in/out head loss
addl=HLCF*d(i)

all(i)sl*nth* addl
C CALCULATE THE LAMINAR RESISTANCES FOR EACH BRANCH

RLAM(i)- 32.0* uu* ol(i)/(AREACI) * (d(i))**2)

YLAN C) l/RLN (I
120 CONTINUE

C WRITE "C" MATRIX TO SCREEN AND RECORD FOR CHECK
WRITE(7,123)

C WRITE(*,123)

123 FORMAT( ' THE C MATRIX BELOW, TRANSPOSED ' )
DO 126 I-1,B

C WRITE(*,.125) (C(JI),J-1.N1)
WRITE(7,125) (C(J.I) ,J-1,N1)

125 FORMAT(8(IF8.4))
126 CONTINUE

C WRITE THE LAMINAR RESISTANCE AND ADMITTANCE VECTORS
WRITE(7,*) 'THE LAMINAR RESISTANCE AND ADMITTANCE VECTORS'

C WRITE(*,*) 'THE LAMINAR RESISTANCE AND ADMITTANCE VECTORS'
DO 130 I-1,B
WRITE(7 *) RLAM(I) ,YLAM(I)

C WRITE(*,*) RLAN(I),YLAN(I)
TURB(I)-1.0

130 CONTINUE
C MATRIX MULTIPLICATION OF MATRICES
C
C

DO 140 "I-,B
DO 140 K-l.B
Y(J.K),C,
IF (I .EQ. K) THEN

Y(J.J) w YLAM(J)
ENDIF

140 CONTINUE
C MATRIX MANIPULATION SECTION
c NI rows of C
c b colau of C
c CT transpose of C

CALL TRANSP(CCTNI1 .B)
C write(*,*) ' write transpose of matrix C
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write(7,*) ' write transpose of matrix C
call Warray(CTBNl)

C write(*,*) ' write matrix Y'
write(7,*) ' write matrix Y'
call Warray(YBB)

C PROPOSED ENTRY POINT FOR ITERATIVE SCHEME
250 call matml(CyCYN1B.B)
C write(*,*) ' write PRODUCT C*Y NIXB

writo(7,*) ' write PRODUCT C*Y NIXB
call Warray(Cy,Ii,B)

CALL MATMUL(YNCy,Ct,N1,BNl)
c node flow source vector CQs

call matmul( Is,C,QS,NI,B,i)
c cuented out artifact of old scheme

DO 200 I-1,N1
IS(I, i)-IS(I, 1)
ISI(I,1)SIS(I, 1)

200 CONTINUE
DO 295 I-1,i1
DO 295 J=l1l1

YNI(IJ)=YN(I,J)
295 CONTINUE

C SECTION ALSO WRITES THE ARRAY PRIOR TO BEING cHOLESKY PROCESSED
WRITE(7,O) 'YNI MATRIX PRIOR TO CHOLESKY

C VRITE(C,*) 'YNI MATRIX PRIOR TO CHOLESKY
call Warray(YNIN11.N1)
WRITE(7,*) 'ISI MATRIX PRIOR TO CHOLESKY

C WRITE(*,*) 'ISI MATRIX PRIOR TO CHOLESKY
call Warray(ISI , 1)
call CHOLESKY(YNII,ISI,NI)
WRITE(7,*) "YNI MATRIX FOLLOWING CHOLESKY

C WRITE(*,*) 'TYI MATRIX FOLLOWING CHOLESKY

call Varray(NI,N11,N1)
C P NODE MATRIX PYN- -l*IS
C H BRANCH PRESSURE CT*P
C Q BRANCH FLOv RATE
C YH MATRIX PRODUCT Y*H

DO 296 Im1,i1
P(IM t)ISI I11)

296 CONTINUE
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CALL KATNUL(H,CTIP.BI11.1)
CALL KATMUL(YHY,H.BSB.1)
DO 300 I1..

C DIVIDE PRESSURES IN LB/FT^2 BY 144 TO CONVERT TO PSI
300 CONTINUE

c REYNOLDS NUMBER REGIME DETERMINATION
DO 5000 Iw1,B
V(I,1)-ABS( Q(I.1)IAREA(I))
REY(I * )nrho*V(I. 1)*d(I)/au

REN=REYCI.*1)
C VRITE(*.e) 'REYNOLDS 8', REY(I,1)

VRITE(7,*) 'REYNOLDS 1', REY(I.1)
if (REY(I,1) .LE. 2100.0) THEN
Y(II)w YLAN(I
TURB(I)w1 .0
TURBAVul.0
ERR (I) .0
F.64.0/2100.0

else
if CREY(I.1) .1E. flEDGE ) THEN

X1wREDGE-2 100.0
YlaFcron~i) - 64.0/2100.0
Fs 64.0/2100.0 + Yl*SIN(PI* (REN-2100)/(2*X1))
else

c colebrook-vhite formula
uqf=C64.0/2100.0)** .5

1310 save-uqf
sqf.1.0/(-2.0*loglO(2.51/(Ren*save) *rat(i)/3.7))

C IF (SAVE .EQ. SQF) COTO 1400
errormabs (save-sqf) /sqf
if (error .gt. .001) goto 1310

1400 fesqf**2
ezidif
TURBFwF*RenI64 .0
TURBAV=(TURB(I)+TURDF)/2 .0
Y(I ,I).1/(RLAIICI)*TURBAV)
ERR(I)-ABS(TURBAV-TURB(I) )/turb(i)
TURB (I) .TURBAV
ENDIF

C VRITE(*.*) I,'FRICTION FACTOR', FITHE TURB FACTOR' ,URBAV
VRITE(7.e) I,'FRICTION FACTOR', F,'THE TURB FACTOR' ,URBAV

5000 CONTINUE
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EPSUO
DO 5100 Jw1iB

C VRITE(*,*) 'THE ERROR FOR BRANCH'3,J' IS'.ERR(J)
VRITE(7,e') 'THE ERROR FOR BRANCH'.J,3, IS.,ERR(J)
IF (ERR(J) .GT. EPS ) EPSwERR(J)

5100 CONTINUE
IF (EPS GT. NkAERE) GOTO 250

C C CCCCCCC NOTE ERR DEFINED IN TERMS OF TURBF IS ALREADY NORMALIZED
VRITE(9,6900) DR,IAIIE(1) ,AME(2) ,NAME(3) NAME(4),

NAME(S) ,NAME(6) .NANEC7) ,NAME(8)
5900 FORMWAT(3,C1AM)
C
C READY TO BEGIN OUTPUT OF SOLUTION
C VRITE(e,*) 'BRANCHFLOV(Q),PF(HPSI),PT(NPSI), head, ERR,
C + REY#. TUEB FACTOR, FLOU(Q-QS),

1IRITE(7,*) 'BRANCEFLOU(Q). prOUURE F, pros T, head, ERR,
+ REY#, TURB FACTOR, FLOV(Q-Qa)'
DO 7000 3-lB

c Sources calculated in terms of effective pressure diff Cthevenin)
C NOTE THE FLOW VALUES ARE IN GAL/KIN
C CONVERT FLOW VALUES TO GAL/WIN
C DIVIDE PRESSURES IN LB/FT-2 BY 144 TO CONVERT TO PSI
C ADMITTANCE Y CONVERTED TO (GAL/WIN) /mPSI
c *1000 to convert to upsi

PFsPCNF(J),1)/144.0*100*3
PT-P(NT(3) ,1)/144.0O10ss3
H(J ,1)-H(J ,1)/144.O*l0**3
Y(J,J)wY(J,J)*460.0*144.0/10O*3
QS(J,1)-460.0*QS(J1I)
Q (3,1 )=Q(3,1)*450

C QG(J)-Q(J.1)-Qs(J,1)
C VRITE(*,6000)J,Q(3,1IXPF,PT,H(j,1),ERR(j),
C + REY(J,1),TURB(3),Y(J3J)

WRITE(7,6000)J.Q(3.1XPF.PT,H(J,1) .ERR(j),
"* REY(Jl1) TURB(J) ,Y(J 3)

VRITE(9,6000)J,Q(3,1) ,PF.PT,H(J .1).ERR(j).
"* REY(J.1) ,TURB(J) ,Y(3,J)

6000 FORMAT(I3,1Z,F7.23(lXF7.1),IX,F7.4,2C11,F7.1)1IX,F7.4)
7000 CONTINUE

VRITE(*, is)
WRITE(*,*)
WRITE(*,*) 'SEE FILE flowOUT.DAT FOR OUTPUT
WRITE(*,*) 'SEE FILE floDIA.DAT FOR CHECKING INPUTS
VRITECOC*)

37



WRITE•$.*)
STOP
END

subroutine cholesky(a,b,n)

C SOLVES THE PROBLEM AX=B

C X UNKNOWN N TUPLE
C A KNOW RANK 2 MATRIX OF ORDER N
C B KNOWN N TUPLE ( UPON ENTRY )
C B-X ( UPON EXIT)

real b(40,1)
real a(40,40)
write(7*,) I in choleuky routine, matrix order n follows
call Warray(a~nn)
call decomp(an)
b(1.1)=b(1.1)/a(1,1)
do 10 1=2,n
d-b( i1)
il-i-i
do 5 1-1,il

5 d-d-a(li)*b(l,1)
10 b(i,1)=d/a(ii)

b(n.1)=b(n. 1)/a(n.n)
ni-n-1
do 30 l=mni
ken-1
klk+l
do 20 jnklin

20 b(k.1)=b(k,1)-a(k.j)*b(j.1)
30 b(ki1)=b(k,1)/a(kk)

return
and

subroutine matuul(ca.b.nm.l)
C SOLVES THE PROBLEM C=A*B

c C UNKNOVN MATRIX lxn
c A KNOVN MATRIX xKN

C b KNOWN MATRIX UKm

real a(40,40), b(40.40). c(40.40)
C n # column of a and c
c a trous of a and col•os of b
c 1 # rows of b and c

do 26 im-ln
do 26 J-l,l
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c(i.J)u0
do 25 kul..

25 c(i.j)s c(i.j)* a(i,k)*b(k~j)
return
end

subroutine decoup (a,ni)
real a(40,40)
i-I
write(7,*) I now in decamp routine
write(7e*) 'the order of matrix a is', n
do 410 iia1,n
writo(7,35) (a(ii~jj) ,jju1,n)

410 continue
it ( a(1,I) ) 1, 1, 3

1 write(7.2)
write(7.*) i~a~i~i)

2 formnat( I zero or negative radicand 1)
goto 200

3 a(1,1)usqrt(a(1,1))
do 10 J.2,n

10 a(1,J)Ma(1,j)Ia(1,1)
do 40 i=2,n
il-i-i
d-a(i~i)
do 20 l.1,il
dholdad

20 dad-a(1,i)*a(1~i)
if ( d .eq. 0) then

VRUTE(7,) d is zero
write(7,*) i,a~l~i), dhold

endif
write(7,*) I i, matrix(ii) follow

writo(7.*) i. a(ii)
if (ai,i)) 1,1,21

21 a(i~i)-sqrt(d)
if ( i eq. n) goto 45
i2ui41

do 40 J=12,n
d-a(i,j)
do 30 lal,il

30 dmd-a(l,i)*a(l.J)
40 a(i~j)md/a(i.i)
45 do 50 io2,n
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c zero out lower part of matrix
il-i-1
do 50 J-lil

50 a(ij)-O
write(7,*) 'made it through decomp , atrix follows
do 400 ii*l,n
write(7,35) (a(ii,jj) ,jj-l,n)
format (8(2x.8 8.4) )

400 continue
200 return

end
SUBROUTINE TRANSP (,AT., IRC)
REAL A(40,40). AT(40,40)
DO 20 J-1,NC
DO 20 K-1,NR

20 AT(JK)-A(K,J)
RETURN
END

subroutine warray(ann,m)
c writes array to screen and to diagnostic file

real a(40,40)
c n rows of a
c a columns of a

do 20 J-1,n
write(7,30) (a(j ,i) ,il,)

C write(*,30) (a(j,i),i-lm)
20 continue
30 format (8(1xf8.4))

return
end
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