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1. BACKGROUND

It is well known that explosive charges can only sustain detonation when their lateral dimensions are
sufficiently large (Campbell and Engelke 1976). When this condition is not met, incipient detonations fail
as a result of the effects of rarefactions which encroach upon their reaction zones. Thus, for a particular
explosive, a failure diameter may be determined for cylindrical charges and a failure thickness may be
determined for laminar charges. Mader (1979) has reported accurate predictions of failure diameter in
several explosives using the Forest Fire model in the 2DL and 2DE codes. More recently, Lundstrom
(1993) has produced less successful predictions of the failure diameter of Composition B using his
modified version of Forest Fire in the SMERF code.

In order to obtain a broader understanding of the utility of Forest Fire in predicting detonation failure,
we made computations using the 2DE code to predict failure diameter and thickness for Composition B
and cast TNT. These explosives were chosen because they have substantially different reaction rates and
failure diameters. Our original intention was to include PBX-9404, which has a very small failure
diameter, as well. This attempt was abandoned because we encountered too many computational failures.

It has been suggested that propellant grains having perforations, or perfs, might be designed such that
they could not sustain detonation even with grain diameters above the failure diameter. For negligibly
small perfs, the grain diameter is expected to control failure. However, for sufficiently large perfs in
sufficiently large grains, the thickness of the web of solid propellant between perfs may control failure.

In an attempt to shed some light on this question, we made 2DE computations of detonation failure
in singly perforated (axisymmetric) grains of Composition B and cast TNT modeled using Forest Fire.

2. DESCRIPTION OF 2DE AND FOREST FIRE

The 2DE Code is a two-dimensional Eulerian finite-difference solver for the continuum mechanics
conservation equations (Mader 1970; Kershner and Mader 1972). It was developed at the Los Alamos
Scientific National Laboratory for application to explosive initiation problems. It makes use of the HOM
equation of state, the C-J Volume Burn model for detonation propagation and the Forest Fire explosive
initiation model (Mader 1970, 1979; Mader and Forest 1976; Lundstrom 1988), which may also be used
for detonation propagation. Chemical reaction is described by a single reaction progress variable, the




unreacted mass fraction, which varies from one in the unreacted state to zero in the completely reacted
state. Shock and detonation waves are treated using thc method of antificial viscosity with 1 aear artificial
viscosity rather than the quadratic form commonly employed for shock stabilization.

The HOM equation of state gives pressure and temperature as functions of specific volume and
internal energy. The shock Hugoniot provides a set of reference states for solid materials while the
isentrope emanating from the Chapman-Jouget (C-J) state is used for explosive products. The reference
pressures, internal energies, and temperatures are approximated by polynomials of as many as fifteen terms
in the logarithm of volume. For two-phase mixtures of reactants and products, conditions of mechanical
and thermal equilibrium are enforced. That is, the equations of state are employed in iterative fashion
until the phase pressures and temperatures are equal. The thermal equilibrium condition is generally
considered inappropriate because of the short times required for explosive reaction. While the
consequences of this assumption have been reportcd to be negligible (Johnson, Tang, and Forest 1985;
Wackerle and Anderson 1984), we have recently shown that this is not generally true (Starkenberg 1993).

Forest Fire is a reaction rate model that predicts the response of explosives to loading by sustained
shock waves. The reaction rate is given as a function of the pressure. The model is empirical and relates
each explosive’s reaction rate to simple sensitivity data characterizing that explosive collected in the wedge
test. Wedge test data is typically summarized in a plot of distance of run to detonation as a function of
initial shock pressure known as the "Pop plot" (Ramsay and Popolato 1965). Forest Fire is derived so as
to reproduce this behavior. In spite of numerous limitations, Forest Fire, as implemented in 2DE, has been
shown to be applicable to a surprising variety of problems (Bowman et al. 1981; Cost et al. 1992;
Starkenberg et al. 1984). In this implementation, the linear reactive Hugoniot (which is a part of the
Forest Fire derivation) is abandoned and the reaction rate is simply integrated through the artificial time
scale associated with the viscous shock as well as in the more accurately represented downstream region.
For this reason, the level of artificial viscosity affects the accuracy with which 2DE predicts explosive
initiation. Reaction is forced to completion when the mass fraction falls below a specified level or when
C-J pressure is reached. In applying Forest Fire, it is important to remember that real explosives exhibit
modes of initiation in addition to that reflected in the model.




3. SIMULATION DESCRIPTIONS AND TYPICAL RESULTS

We made computations simulating detonation propagation in solid cylindrical, laminar and hollow
cylindrical Composition B and cast TNT charges using Forest Fire calibrations obtained some years ago
at the Los Alamos Scientific Laboratory. A number of numerical issues pertinent to these computations
are discussed in the appendix. The length of the charges was fixed in all computations at 10 mm for
Composition B and 100 mm for cast TNT. In each computation, the explosive was initiated using a "hot
spot” (a region in which the density and internal energy of the explosive are initialized above the C-J
values) extending radially across the charge and comprising approximately the first 5% of its length.
Initially, the detonation emanating from the hot spot is somewhat overdriven. Its persistence when the
appropriate charge dimension is less than the failure value is a function of the amount by which it is
overdriven. We have assumed that the modeled charges are sufficiendy long and that the hot spot is
sufficiently weak that detonation failure generally occurs within the available run.

Visualization of the results is facilitated by plotting contours of reactant mass fraction at various times.
These plots also show the interfaces between the air, solid explosive and reaction products. Detonation
is identified where mass fraction contours corresponding to complete reaction lie close together. When
detonation fails, the mass fraction contours spread.

In order to determine failure diameters, we made axisymmetric computations of a cylindrica! region
in space having equal radius and length. The configuration is illustrated in Figure 1. The explosive lies
in the central portion of the region along the horizontal axis, while the outer portion is filled with air.

Sequences of mass fraction contour plots for typical cases showing propagation and failure are shown
in Figures 2 through 5. Figure 2 shows detonation failure in a 4.1-mm-diameter Composition B charge.
As the wave propagates, the diameter of the core detonation region decreases and the mass fraction
contours spread. Figure 3 shows marginal detonation failure in a 4.2-mm-diameter Composition B charge.
The detonation diameter decreases in an oscillatory fashion as evidenced by the shape of the interface
between the reacting solid explosive and its products. The frequency of the oscillations increases as the
detonation fails. Spreading of the mass fraction contours occurs outside the core region. Figure 4 shows
marginal detonation propagation in a 4.4-mm-diameter Composition B charge. The detonation diameter
first decreases and then increases. Figure 5 shows detonation propagation in a 5.0-mm Composition B

charge. The detonation diameter increases and then remains steady.
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Figure 1. Cylindrical charge computational configuration.
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For failure thickness determination, we made plane strain computations of a region in space having
equal lateral dimensions. The configuration is illustrated in Figure 6. The explosive layer is situated
adjacent to a reflective boundary, and the rest of the region is filled with air. Because of the reflective
boundary conditions, the reported failure thicknesses are twice the thickness of the computational explosive
layer.

Sequences of mass fraction contour plots for typical cases showing propagation and failure are shown
in Figures 7 through 9. Figure 7 shows detonation failure in a 2.0-mm-thick Composition B charge.
There is some evidence of oscillation of the detonation thickness prior to failure, which occurs after a
shorter distance of run than in the axisymmetric case. At late times, propagation of the interface
essentially stops. Figure 8 shows marginal detonation propagation for a 2.1-mm-thick Composition B
charge. The detonation thickness initially increases, remains constant for a time, and then decreases with
evidence of oscillation. This case might fail in a longer charge. Figure 9 shows detonation propagation
in a 2.4-mm-thick Composition B charge. The detonation propagates along the charge essentially
unchanged.

We represented perforated grains by modifying the axisymmetric configurations used in the failure
diameter computations, replacing explosive in the central portion of the cylindrical charge with air. The
configuration is illustrated in Figure 10. The radial thickness of the explosive crudely corresponds to the
web thickness of more complex grain designs

Sequences of mass fraction contour plots for typical cases showing propagation and failure are shown
in Figures 11 and 12. Figure 11 shows detonation failure in a 6.0-mm-diameter Composition B grain with
a 1.6-mm-diameter perf. Figure 12 shows marginal detonation propagation with the perf diameter reduced
to 1.4 mm. Some oscillation in the detonation is evident.

4. FAILURE RADIUS AND FAILURE THICKNESS

As we shall demonstrate, failure radius is a more convenient parameter than failure diameter for
discussion purposes. The computed values of failure radius, rg, and thickness, h;, for Composition B and
cast TNT are given in Table 1. The computed results are consistent with the simple condition in which
the failure radius equals the failure thickness (r, = hy). The reaction rate is a function of pressure only,
and the functional form of the pressure dependence for each explosive is similar. Thus, the ratio of failure
radius to failure thickness is govemed primarily by hydrodynamic effects.

9




Table 1. Computed Failure Radii and Thicknesses

Failure Radius, r; | Failure Thickness, h;
(mm) (mm)

2.10-2.20 2.00-2.20 |

Lsast TNT 16.0-17.0 14.0-16.0 ﬂ

Experimental values of failure radius and thickness for a number of explosives are presented in
Table 2. The values for failure radius are taken from Dobratz and Crawford (1985) (where the original
source of data for all explosives except Pentolite and cast TNT is Campbell and Engelke [1976]) and for
failure thickness from Gibbs and Popolato (1980) (where the original source is Urizar, Peterson, and Smith
(1978]). In each case (except for Pentolite), a range of values for failure radius is given. The range for

cast TNT is quite large, as data from several sources was used. In contrast, a single value for failure
thickness results from the extrapolation used in its determination. We have doubled the values given in
the reference to approximate the response of an unconfined layer. Also presented in the table are the
ratios of failure radius to failure thickness (which, for Cyclotol, is computed from values for slightly
dissimilar formulations). No experimentally determined failure thickness for cast TNT appears to be
available.

Table 2. Experimental Failure Radii and Thicknesses

Failure Radius, r, | Failure Thickness, hy | Ratio, r¢hy ﬂ
, (mm) (mm)
Comp B-3 1.87-2.12 0.99-1.13
| Cast TNT 6.30-13.7 — —
Pressed TNT 1.03-1.59 3.84 027-0.41
Cyclowl 7723 | 2.40-3.60 — 0.79-1.19
Cyclotol 75/25 — 3.02 —
Pentolite 335 2.78 121
| PBx-9404 0.58-0.60 0.92 0.63-0.65

10
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The computed values for Composition B are close to the experimental values. For cast TNT, the
failure radius prediction is reasonably close to the upper limit of the experimental range.

Since the failure radius and failure thickness measurements were made in different places at different
times with different batches of explosive, care should be taken in comparing the data. Furthermore, failure
thickness is determined by a method which tends to overestimate its value. This is due to the presence
of a less than perfectly rigid boundary. Nonetheless, the data indicate that the simple relationship between
failure radius and thickness may not be generally applicable. The condition appears to apply to
Composition B-3 and, perhaps, Cyclotol, but not to the other explosives listed. Notably, for pressed TNT
(if the data are correct), the failure radius is less than half the failure thickness. Consideration of smaller
failure thicknesses (to compensate for the overestimation) improves the comparison between failure radius
and failure thickness for pressed TNT and PBX-9404, but not for Composition B-3, Cyclotol, or Pentolite.

5. DETONATION FAILURE IN SINGLY PERFORATED GRAINS

Results of computations in which the perf and grain radii of Composition B and cast TNT were varied
to determine the critical perf radius as a function of grain radius are shown in Figures 13 and 14. Only
results closest to the critical conditions are plotted. In each case, the failure/propagation threshold is
defined by the condition, = I= he. That is, the radial ("web") thickness of the explosive layer must
exceed the failure thickness in order to sustain detonation. Detonation propagates whenever L-5n> he
and fails wheneverr, - I, <h. No significant effect of layer curvature, even at the smallest diameters,

g
is evident.

This relationship defines "ideal" detonation failure behavior in perfed grains. It is applicable only to
materials for which r; = h. It is interesting to consider the expected qualitative behavior prevailing for
explosives in which the failure radius and failure thickness are not equal. This is illustrated in Figure 15.
Here, two curves indicate the critical boundaries associated with failure radii which are respectively greater
than and less than the corresponding failure thickness. At large diameters, the failure thickness still
controls detonation failure. The shift of the critical boundary associated with energetic materials for which
1 > hy (if such materials exist) suggests a lower propensity to sustain detonation in perfed grains of these
materials.

19
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6. SUMMARY AND CONCLUSIONS

2DE predictions of failure diameter and thickness are accurate for Composition B and reasonably close
for cast TNT. The computations reveal oscillatory detonations near the failure dimension. The computed
failure radius is nearly equal to the corresponding failure thickness. In general, this condition does not
appear to hold experimentally.

For perfed grains, detonation fails when the failure thickness exceeds the difference between the grain
and perf radii (or radial thickness). If the radial thickness is identified with the web thickness of a more
complex grain design, it might be concluded that a sufficient condition for detonation failure in perfed
grains is that the failure thickness exceed the web thickness. Consideration of the expected behavior when
failure radius and thickness are not equal leads to the conclusion that sensitivity of perfed grains is lowest
when failure radius exceeds failure thickness.

While these results are interesting, two problems remain. It is not clear whether energetic materials
really exhibit behavior in which the failure radius differs substantially from the failure thickness and, if
so, why. Further, the axisymmetric single-perf configuration bears too little resemblance to actual
multiple-perf designs to provide useful insight into their behavior. Study of more representative
configurations is required for validation of conditions for detonation failure in perfed grains.
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EFFECTS OF ARTIFICIAL VISCOSITY

Artificial viscosity provides a method for representing a thin shock wave in a computational grid
which is much too coarse to resolve the shock on its actual scale. When too little antificial viscosity is
prescribed, large overshoots in the shock pressure result. Since the Forest Fire rate is pressure dependent,
these overshoots may have a substantial effect on the tendency of a detonation to fail. The 2DE input
instruction manual recommends artificial viscosity coefficients between 0.001 and 0.1 with lower values
preferred! These values are quite low and generally produce significant overshoots. We ran computations
of detonation propagation using Forest Fire in cylindrical Composition B charges with various viscosity
coefficients. Square zones, which are essential when viscous shocks are present, were employed. The
detonation pressures produced are summarized in Table A-1. The nominal Chapman-Jouget pressure for
Composition B is 29.5 GPa. Therefore, an artificial viscosity coefficient of 1.5 was used in all reported
computations.

Table A-1. Effect of Antificial Viscosity on Detonation Pressure

Viscosity Coefficient | Detonation Pressure
(GPa)
! 0.1 50 |
0.10 45 Il
0.50 37
1.00 34
1.50 31

CONVERGENCE

The stability of the solutions obtained depend on the computational zone size used. Solutions are
expected to converge as the zone size gets smaller, However, Lundstrom (1993)! did not observe such
convergence in his computations using a modified version of Forest Fire. We determined the failure
radius of Composition B in computations with zone sizes ranging from 0.0125 10 0.1000 mm square. For

' Lundstrom, E. A. "A Numerical Study of Fragment Impact on Bare Explosive.” Proceedings of the 1993 JANNAF Propulsion
Systems Hazards Subcomittee Meeting, 1993.
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cast TNT, we used zone sizes ranging from 0.250 to 1.000 mm square. The results are summarized in
Table A-2. In each case, detonation failure occurred at the smaller of the two radii given while
propagation occurred at the larger. We have plotted the results for Composition B along with those of
Lundstrom in Figure A-1. We did not observe the rapid divergence of the solution with decreasing z. ¢
size that he did. Our results are substantially the same for all but the coarsest zoning. For TNT the
results drift slowly toward smaller failure radii as the zone size decreases. Based on these results, zone
sizes of 0.050 mm for Composition B and 0.500 mm for cast TNT were used in all reported computations.

Table A-2. Effect of Zone Size on Failure Diameter

II Composition B Cast TNT
Zone Failure Zone Failure
Size Radius Size Radius
(mm) (mm) (mm) (mm)

R Ry
I 0.0125 2.0-2.1 —_ — II

0.0250 2.0-2.2 0.250 14.0-15.0
0.0333 2022 0.333 15.0-16.0
0.0500 2122 0.500 16.0-17.0

0.1000 2530 1.000 21.0-22.0
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Figure A-1. Convergence of failure diameter solutions for Composition B as a function of zone size.
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