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ABSTRACT

) Continuous and discrete wavelet transforms are discussed. Recursive generations of

L compactly supported wavelet time functions are described. Haar, Daubechies, and complex

B st

modulated Gaussian wavelets are utilized to analyze phase shifts in signals with noise.

Keywords:  Wavelet transform, multiresolution time~frequency anzlysis, phase—shift—key.

compactly supported wavelets, complex modulated Gaussian wavelets.
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1. INTRODUCTION

We have investigated several time—frequency decomposition techniques and their
applications in the detection and analysis of digitaliy modulated signals [10], (14], [13]. In this
report, we will specifically discuss wavelet decompositions and present a few preliminary results.

The ont oarticular digital modulation that we consider in here is binary phase-shift-key
(BPSK) signal, which is a sinusoid modulated by a baseband rectangular data waveform. Over a
duration of one binary data bit, the phase of a BPSK wave is either 0° or 180° depending on the
value of the data, which is either +1 or —1. For example, a wave with data rate 9600 bps can
change phase every 1/9600 seconds. In tactical communications using direct-sequence spread-
spectrum (DS/SS) [11], the corresponding spread BPSK wave can change phase N times faster,
where N is the spectrum spreading factor. Since BPSK and its extensions (such as QPSK and
OQPSK) are the most predominant modulation formats used in practice, there are interests in
developing efficient methods for detecting the phase shifts under various channel and noise
scenarios. Previous research efforts have used cyciostationarity [6] and ambiguity tunction with

specific kernel as the smoothing function [23], [13].

In Chapter 2, we will discuss the so-called continuous wavelet transform (CWT). In
Chapter 3, we will discuss the discrete wavelet transform (DWT) and the computations of
orthonormal compactly supported scaling and wavelet functions on the dyadic numbers. In
Chapter 4, we use the wavelet time-frequency decomposition techniques to detect +180° phase

shifts in noise. A few concluding remarks are given in Chapter 5.
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2. CONTINUOUS WAVELET TRANSFORM
The continuous wavelet transform (CWT) of a L2(IR) signal x(t) is defined as [8], [2], [3}:
)
X, a)=— x(u) \y*( )du
\’- 2.1y
where y(t) is the wavelet function, " * " denotes complex conjugation, and a > 0. The scaling
factor "a" in (2.1) is taken to be power of 2 in this report, i.e.,a=2"7, form=0,1,2.3, . .
The inverse transform is given by:
x(t)-—-J‘-“ X(v, a) )da;iv
a (2.2)
where the constant
J RLOT- df
(2.3)
must be finite. This implies that the wavelet function must satisfy
W =0, ie, |yi)d =0 (2.4)
Thus, the wavelet function is bandpass type with Fourier transform *W(f)=0atf=0;
equivalently, the area under the wavelei function is exactly 0. Note that we can rewrite (2.1) a-
X{t,a)=Va f X(f) W*(af) exp(j2nrft) Af (2.5)
in terms of the Fourier transforms. The CWT can be computeu via (2.1) or (2.5).
The CWT X(t, a) represents a decomposition of x(t) into a time-scale plane Usually,
X(t,a) is graphed against time t and the log scale log2(a). The CWT can be regarded as a constant-
Q bandpass filter since (2.1) is a convolution of two time functions. The linear bandpass filter
impulse response at level m is
Vm(t) = 22 y*(2my) (2.6)

If we define "fi," as the r.m.s. center frequency of the passband by

L2

J (f—£)° M, (D df =0
0

2.7)




then we have

where fg is the r.m.s. center frequency and 20y is the r.m.s. bandpass bandwidth of the basic
wavelet function y(t). The ratio of fp to Gy, is always equal to

£, fo

—— T
o e

Gm ’50 (29)

which is constant for all decomposition level m. As the level of decomposition (i.e., m) increases,

o

the filtering function iy (t) of (2.6) becemes narrower in time. The time resolution of the wavelct
decomposition therefor: increases with m. On the other hand, the r.m.s. bandpass bandwidth
(i.e., 20m ) of y,n(t) ir.creases exponentiaily with m, and therefore the frequency-resolution of the
wavelet decomposition is better for smaller m.  Unlike the classical time~frequency transforms
such as the sl.ort—time Fourier transform (STFT) or the Gabor transform (GT) [1], [9], which do
not scale the filtering function and and have constant time-resolution at all frequencies, the wavelet
transform has higher time—resolution at higher frequency. One can observe that for CWT, its
time-resolution is increasingly better at higher frequencies, while its frequency-resolution is

increasingly better at lower frequencies.
We will use the coniplex modulated Gaussian wavelet function:

W(t) = exp(j2nfyt) exp(—t'/202)
== cos 2ntfyt exp(~t2/202) + jsin 2nfyt exp(-12/202) (2.10)

Of course the Fourier transform of a Gaussian function is a Gaussian function, and the complex
exponential time function exp(j2ntiyt) will cause a shift by fy, in frequency in the Fourier
transform. It is then possible to choose fy, big enough so that for complex modulated Gaussian

wavelet we have

¥ f)=0 for f <0 (2.11)

Condition (2.11) is especially desirable when the wavelet is used to analyze sinusoids. For
example, let x(t) = cos 2mfct, for tin a very large, yet finite, window. Using (2.5), we have

X(, a) m%-z exp(j2nf.t) W*(af,) + -—2‘]5 exp(-j2nf.t) W*(~afe) (2.12)




If \W(f) satisfy (2.11), then the second term in (2.12), which is a contribution by the impulsc
S(f+f.), drops out. It follows that the phase of the resulting CWT X(t, a) wili nicely reveal the
center frequency of the caitier wave x(t) = cos 2nft. For other stationary or non-stationary
signals, magnitude and phase of X(t, a), with y(t) being the complex Gaussian wavelet, will reveal

the frequency as well as the time behaviors of the signal.

We also remark that we can multiply a suitable baseband function b(t) with the complex
sinusoid exp(j2nfyt) to obtain a wavelet function:

Y(t) = exp(j2nfyt) b(t) (2.13)

so that its Fourier transform is zero on the negative frequency axis. The above construction yields
a large class of potentially useful wavelet functions. The preference to use the Gaussian envelope
exp(-12/262) is due to the fact that the Gaussian function achieves the lower bound ir. the
uncertainty principle:

At Af 2 —1—- 12.14)
4n

with equality, where At is the r.m.s. time-spread and Af is the r.m.s. frequency-spread of the
signal [20]. Note that two pulses in time can be discriminated only 1if they are more than At
seconds apart in time, and two sinusoids can be discriminated only if they are more than Af apart
in frequency. Equation (2.14) states that one can only trade time-resolution for frequency-

resolution, or vice versa.

Using CWT, the frequency-resolution Af is in the order of o, = 2M 6. Viewing the
CWT X{t, a) in a time—scale plane allow us to look at the signal at different scale (i.e., dif. <nt
frequencies in the passband of 26y, Hz wide around the center frequency f,). The CWT indeed
presents a multiresolutional analysis of the signal, as if the signal is being processed by a hank of
filters with logarithmically spaced centered frequency fm but constant bandtvidth to frequency ratio
of 20/fm = 200/fo. These relationships are best visualized by considering the complex modulated

sinc wavelet function:

W(t) = exp(2mfyt) \71;‘); sinc (2.15)




which has a rectangular passband with bandwidth eq. al to 265 = W. The center frequency of w(t)
is exactly equal to fy,. We also propose to use this complex modulated sinc wavelet to analyze our

signals.

Computation of X(t, a) could be lengthy and expensive. In practice, however, we only
have a finite-length sampled sequence: x(nT),n=0,1,2,......... , Ng—1, where Nj is the
sequence length and the sampling rate is at least equal to the Nyquist rate, which is twice the
highest frequency component 1n the signal x(t). We will only compute X(t, a) at the sampling
times i=nTand atlevelsm=0,1,2,. ..., [logzg Ng]. The integral of (2.1) is now reduced to a
finite summation and the computation burden is greatly relieved. In thic discrete—time
approximation of the CWT, we essentially perform a multiresolutional analysis of an auxiliary
-ignal x,(t), which is a piecewise linear function constructed by joining two consecutive sampled
points x(nT) and x((n+1)T) with a straight line. Towards this end, the CWT of (2.1) produces a
total of Nmax = [logz Ng] + 1 snap—shots of the auxiliary signal via bandpass filterings.

The complex modulated Gaussian wavelet of (2.10) is a nice analytical function. It is
continuous and differentiable everywhere. Perhaps one drawback is that it has an infinitely span
and therefore it is not a causal filter impulse response. In practice, however, this mishap can be
resolved by using a wavelet with sufficiently fast decay over the processing window so that it can
be regarded as of finite span. We select the Gaussian wavelet because of two additional reasons:
(a) tunability; and (b) bandwidth adjustability. Ry varying the modulating frequency fy,, we can
place the passband anywhere on the frequency axis. Second, by altering &, the bandwidth of the
wavelet function y(t) can be selected at will. Each (fy, o) selection will result in a
multiresolutional analysis that consists of Npax snap—shots of the signal. A systematic selection
of (fy, o) will allow a thorough analysis of th= signal at all possible time-resolution and

frequency-resolution levels.

We show an example of a complex modulated Gaussian wavelet function y(t) with fy, = 8
Hz and 6 =0.12 in Figure 2.1. This value is selected so that all the energy in the wavele: is
essentially contained in the compact time interval [-0.5, 0.5] for presentation purpose. In the left
cnlumn of Figure 2.1, the real part, imaginary part, magnitude, and phase of the wavelet are
dzpicted. In the right column, the energy spectral densities (which is magnitude square of the
Fourier transform) of the real part, imaginary part, and the wavelet function itself are shown. Note
that this complex wavelet has no spectral component in the negative frequency axis, a desirable
property as discussed previously. The spectrum is centered around f = fy, = 8 anc the r.m.s.
passband bandwidth of y(t) is 26 = 0.24. In processing a given signal x(t), the signal is first



normalized to be contained in the time interval {0, 1}; it is then decomposed by the analyzing
functions ym(t), with yo(t) = y(t) contained also in the interval [0, 1].



wave_real Pw_real

-1 0 : - ;
0.5 0 0.8 -40 -20 0 20 40
wave_imag Pw_imag
1 y 0.04 -~ ; "
o——"\, /\/\/\» — 0.02f /\ /\ :
0.5 0 0.5 -40 -20 0 20 40
wave_abs
1 s
0 i
0.5 0 0.5
wave_angle Pww
200 v 0.1 . .
WAV |
=200 - 0 “ . R
05 0 0.5 40 -20 0 20 40
time frequency
Fig. 2.1 Complex modulated Gaussian wavelet function y(t): time~domain functions and

energy spectral densities. fy, =8, 0 =0.12.
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3. DISCRETE WAVELET TRANSFORM

In this section we will discuss an orthonormal decomposition of a signal x(t) using a
scaling/wavelet function pair, ancC describe the so-called discrete wavelet transform (DWT)
algorithm using orthonorinal wav-let functiorns [4], [16], [17], [18]. We will also discuss the
multiple-rnase DWT, and generations of wavelet functions that have compact (i.e., closed and

bounded) support.
3.1 Orthonermal Wavelet Decomposition
Coneide; a nested sequence of closed subspaces {Viy; m € 2} in L2(R) such that

where M V_ ={0}and & V_ = L*(RR). One can find an unique scaling

meZ meZ
(or averaging) function ¢(t) such that {¢, ,(t); ne Z}

is an orthonormal basis of Vi, where

by normalizing, dilating or contracting, and time-shifting ¢(t). The value of T (>0) is arbitrary. As
is common in dyadic multiresolution analysis, we take o (#0,1) to be 2 in this repor®.

The orthogonal projection « f a finite-energy deterministic function, x(t), onto the subspace
Vp, is an approximation of that functicn at resolution level m. We can write:

XD = D, B Opnn®)

ned
where

bm.n = < X(t), b 1(1) > zj X(t) b @) dt = (x % 7¢;m,o }n2™™"T) 33)
- (3.3

is a coefficient equal to the orthogonal projection of x(t) onto the basis function ¢ n(t). Here, X(t)
= x(-t). Since {Vp] is a sequence of densed and nested subspaces, we have xp,(t) — x(t) in
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L%(R) as m — . By dilating (when m<0} or contracting (m>0) the scaling function,
approximation for x(t) at any resolution level can be obtained by increasing the number of
coefficients exponentially with m. Although the set of functions {¢m n(t); (m, n) & &2} spans
the ontire space L2(R), it is not a minimal set “»ecause the subspaces {Vyn} are nested; in
particular, ¢m n(t) and ¢ 2 k(1) are correlated for m # £. For many applications, for exariple in
image processing and compact coding, it is desirable tc construct an orthonormal multiresolution
basis for L2(R). Towards this end, let Vi, = Vi1 ©® Wpy.1, where Wi 1 is the orthogonal
complement of V.1 in Vi, Consider Vg with {¢(t-nT); n & 2} as its orthonormal basis. One
can construct a wavelet function y(t) from ¢(t) so that {y(t-nT); n € 2} is an orthonormal basis
for W turthermore, {Wmn(t); n € 2} = {2m2y(2Mt - nT); n € Z} is an orthonormal basis for
W, and the entire set { Y n(t); (m,n) & Z2} is an orthonormal multiresolution basis for L2(IR).

The relationship between the subspaces Vs and Ws is depicted in Fig. 3.1.

Vnz V_] VO Vl Vm~] Vm
{O} XEEXE) > o D >3- P ceecse & *o.oooom2(m)

bt f

W, W Wo Won-i

Figure 3.1 Subspaces Vs and Ws.

The orthogonal projection of x(t) onio the subspace W, is the detail function at resolution

level m:
dy(t) = 2 dmn ‘Vm.n(t)'
ne?
= Xpne1 () = X,5(1), A= < X0, Y o0 > (3.4)
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This detail function constitutes the difference between the approxirnation function of x(i) at
resolution level m+1 and resolution level m. Thus, the coefficients {bm n: n € £} capture the
information about x(t) at resolution level m; while the coefficients {dm n; n € ) capture the detail

information going from resolution level m to resolution level m+1. Note that L2(R) = mfz Wi,

and the Ws are mutually orthogonal subspaces. The sequences {byn:n € Z} and {dpnne 2}
can be obtained directly through linear filtering of x(t) and then sample at time t = n2-™T (Fig.

* *
3.2). Note that f}'[¢m 0(-t)] yields a lowpass transfer function, while F[u!m O(-t)] is bandpass.

The wavelet decomposition filters w; O(-t) can be interpreted as a parallel bank of bandpass filters

(with overlapping passbands for adjacent resolution levels) that have constant size passband on the

logarithm scale.

t=n2MT
x(t)
| oy -0 t > by,
t=n Z_M T
> Yo (-0 » dy,
v
®
[ ]
t=n2"T
L] —
[
| S Ym0 (-t ———/ dm,n

Figure 3.2 Orthonormal wavelet decomposition of the signal x(t).
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3.2 Discrete Wavelet Transform

There exist recursive (pyramidal) algorithms that efficiently compute the lower resolution
level coelficients {bg q:n @ &} and {dg ,; n & &} from the higher resolution level coefficients
{bmn: n ® 2}, £ <m; couversely, the bs at the higher resolution level m can be computed from
«he bs at a base (lowest) resolution level M and all the ds at lower resolution levels £, M< £ <in .
These pyramidal algorithms are the so-called discrete wavelet transform (DWT) and they are
described by the block diagrams in Fig. 3.3.

(a) resolution

m,n m-1,n
-— hk) —— 12 V2 —
/
m-1.n
gky —» 12 N2 >

2x—downsample decimators
(keep every other samples)

(b) reconstruction
b ] b
m,n m+1,n
—p T2 e h(k) —D@-—D-——b

—® T2 b g(k)

2x—upsample interpelators
(insert "zero" between each sample)

Figure 3.3 Discrete wavelet transform.

In Fig. 3.3, h(k) is the impulse response of a discrete-time conjugate filter that satisfies

IH(0T) 2+ | H@T+m) 12 = (3.5)
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and g(k) is the impulse response of the mirror filter of H with
G(w) = exp(-jw) H*(w+n) (3.6a)
and HT)G*(oT) + H(wT + n)G*(wT +7) =0 (3.6b)

One common choice of g(n) that satisfies (3.6) is g(n) = (=1)!-" h(1-n). The scaling function and
the wavelet function are orthogonal to each other and they are related by

d(2m) = H{w) ¢(w)
Y(2w) = G(w) P(w) (3.7)

It follows that ®(w) = I'I:=1 H(2-M@); depending on the choice of H(w), it is possible to obtain

scaling function ¢(t) that has good localization properties in both the frequency and the spatial
domain. The properties of H and G in Mallat's pyramudal algorithms can be derived without

reference to the multiresolution analysis [2].

Knowing the approximation function xp(t) and all the detail functions d(t) at resolution
level £ = M, M+1, M+2, . . . ., m-2, m-1, is necessary and sufficient to construct the
approximation function xpy(t). The approximation of x(t) at resolution level m can be wnitten as

xm(t) = Z bm.n ¢m.n(t) = z bM,n ¢M.n(l) + Z 2 d,!.n Wl.n(t)

ne2 ne 2 M<t<mnel (3.8)

for any M € m. Without loss of generality (WLOG), one may set M =0 and ¢(t) = ¢0,0(t) (the
lowest resolution function physically realizable), and consider resolution level 0 £ m < mpax. In
this report, we leave M as an arbitrary integer. An example pair for ¢ and v is the indicator

function on [0, T) and the Haar wavelet on [0, T):

INT ,0<t<T INT ,0<t<T/2
¢(t)={ \v(t)={ (3.9)
ANT ,T/12<t<T

0 , otherwise




| oo oo

In generl, j¢(t) dt = ®(0) = VT, (1) = 0, and ] y(t) dt = ¥(0) = 0; the scaling

function ¢(t) can be interpreted as a lowpass function while (i) is bandpass. The Haar wavelet
forms the only orthonormal basis of compactly supported wavelets for which the associated
scaling function ¢ has a symmetry axis. Also note that the Haar wavelet is not continuous so a
small error in the coefficients may cause a large fluctuation in the representation. Continuous and
n times differentiable wavelets are known [2].

The two equivalences in (3.8) are valid for finite-energy deterministic functions in
L2(R); they also make sense for finite-power deterministic function in L2(I), compact ICR,
and for finite-energy and finite-power random processes w.p.1 on compact ICIR when compact
scaling function ¢(t) and compact wavelet function y(t) are employed [7], [12].

3.3 Wavelet Conditions and Generations

It is clear that one needs to obtain the wavelet filter sequences h and g in order to perform
the DWT. For the computation of the CWT in (2.1), however, one needs to know the wavelet
function y(t) explicitly. For compactly supported wavelets, knowing h and g can produce the
time-functions ¢(t) and y(t). In this section, we discuss the conditions for generating an
orthonormal scaling/wavelet pair, and give details for how to produce the time functions. This
section is important for the fact that it provides working knowledge for both the DWT and the

CWT.
3.3.1 Wavelet condition:s

| Consider the nested sequence of closed subspaces {Vi,; m € 2} as discussed in section

} 3.1. The scaling function (at level m) ¢m(t) is in Vi, which in turn is a proper subset of the

‘ closed space Vine1. The basis of V41 is given by {@m+1,n(1); n € 2} = {2m+D/24(2m+i ¢ _ p);
nea& Z}, where we have set T =1 WLOG. Since ¢p(t) is also in Vip41, we can represent it in

terms of the basis functions of Vipe1:

Om =, < Om(t), dme1.n(t) > Sma1.n(®) (3.10)
n

where the inner product < ¢y (t), dm+1,n(t) > is given by




- orin, Vi g o

k)
N
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< Om®). dma1,0(0) > = | Sin(V) G*ma1n(t) dt
= _,f 2m/2¢2m¢ ) 2(m+1)/2¢«(2m+1g _n) dt
=3 [ () 6(2t-n) du (3.11)
for real basic scaling function ¢(t}). Equation (3.11) describes exactly how two consecutive
subspaces Vi © Ve are correlated. Note that (3.11) depends only on the scaling function ¢(t),
but not on the individual levels m and m 1; it holds for any value of m. By defining h(n) via the
following dilation equation:
h(n) = [ 6(1) 6(2t -n) dt (3.12)
for all n, we can rewrite (3.10) as
Om() =2 Y h(n) dm+1,n(0) (3.13)
n
The dilation equation of (3.12) is the most fundamental equation in wavelet theory. One can
proceed along this line of argument and derive the DWT of Figure 3.3. For a scaling function ¢(t)
that has a finite support, the number of solutions to (3.12) is finite, and so h :s of finite length.
It can be shown that [16]:
o dt = constant (3.14)

and WLOG we can take the constant to be 1. This implies that ®(f) = 1 at f = 0, which means that
the scaling function is an impulse response of a lowpass type filter. Integrating both sides of
(3.13) with respect to (w.r.t.) time t and letting m = 0 yields:

1 =vZ Thin) [2172¢2t-n) dt
n
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= N h(n) (3.15)
n

Equation (3.15) is the first wavelet condition, which is a consequence of the nested nature of the
increasing subspace sequence {V,}. For orthonormal scaling function ¢(t), {¢(t-nT); n € 2} is

an orthonormal basis for Vg, and therefore,
&(n) = < (1. ¢(t~n) >
=<2 Z h{k) ¢(2t-k), 2 Z h(j-2n) ¢(2t-)) >

k J
=4 % z h(k) h(j-2n) % d(k-9)
J

=2 Z h(k) h(k--2n) (3.16)
k

Equation (3.16) is ithe second wavelet condition; it must hold if the scaling/wavelet system is
orthu.;ormal. Performing a discrete Fourier transform on both sides of (3.16) yields the conjugare
filter equation of (3.5). Note that as a corollary to (3.16), we get by setting n = 0 that

% = Z h2(k) (3.17)
k

One needs only to find h such that it satisfies the two wavelet conditions of (3.15) and (3.16).
Once b is known, the sequence g is given by g(n) = (-1)!1-" h(1-n). These two filter sequences

are all that are required to perform the DW'T.

3.3.2 Generation of wavelet function

In the previous section, we have shown that if the scaling function ¢(t) is known, then we

can determine fj and g and perform the DWT with ease. Conversely, if h is found by solving the
two wavelet conditions, then we can generate ¢(t) and y(t) recursively. The construction is as

follows. Using (3.13) with m = 0, we get the fundamental recursive equation for the scaling
function ¢(t):

o(t) = 22 h(n) ¢(2t-n) (3.18)
n




Assuming that h = [h(0), h(1), h(2), h(3),

..y
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h(M-1)], i.e., the 1 sequence has finite length,

so that ¢(t) has a compact support on [0, M-1]}, i.e., ¢(1) is non-zero on this compact interval. We
first find the values of ¢{t) on the integers; this is done by using (3.18) to set up the following
matrix equation:

¢(0)
o(1)
6(2)

_ oM-1)

for even M, and

0
h(0)
h(2)

0
0

h(1) h(0)

0
0

h(3) h(2)

h(5)

h(M-1) h(M-2) -

[h(0) O
h(2)  h(1)
h(4)  h(3)
. h(S)
=21 h(M-2) »
0
0 0
0 0
0 0
0 0

0
0
0
0

h(M-1) k(M-2)

0
0
0

h(4)

0
0
6

.

L)

*

0 0 0
0 0 0
0 0 0
0 0 0
h(1) h{®) 0

h(3) h{2) h(1)
h(5) h(4) h(3)

h(M-1) h(M-2) -
0 0 hM-1)

[ 6(0)
6(1)
0(2)

® @& & ® & @ B

| 6(M-1)

(3.19a)
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["h(O) 0 0 0 0 0 . 0 0 0
h(?) h(1) hO) O 0 0 . 0 0 0
~ - h(4) h@) h(Z) h(i) hO) © . 0 0 0 — -
(0) \ $(0)
¢(l) ® h(S) h(4} h(3) h(2) .‘!(l) b 0 0 0 ¢(1)
o(2) . . s h(5) h(4) h@3) - 20 O 0 o(2)
: . . . . . . . h(2) h(1) Ko :
: =2| hM-Dh(M-2) -« ¢ o e h(4) h(3) h(2) :
. 0 0 h(M-1) h(M=2) o o . . . hi4) .
. 0 0 0 0 h(M-1) h(M-2) » . . . .
° 0 0 O 0 0 o ° ™ ™ . ¢
_ d(M-1) L 6(M-1)
0 0 0 0 0 . e h(M-1) h(M-2) -
.0 0 0 0 0 . . 0 0 hM-1;

(3.19b)
forodd M. In general, solving (3.19a) or (3.19b) 1s equivalent to finding the eigenvector
corresponding to the eigenvalue A = 1 of the matrix A given in below:

d=A¢ (3.20)

We may impose the additional condition on ¢ that 2 ¢o(n) = 1. When the matrix A has zero
n

determinant there can be multiple A = 1 solutions to (3.20). Once we know the values of ¢(t) on

: . 1. , :
the integers, we car. compute its values on the 5-integers by using the fundamental recursion of

(3.18) as follows:

o) = 2 2 hm d(c-n) (3.21)
n
11 1 1 . . . . ,
and so-forth for on the 78 16 330 - - —integers, recursively. Thus, the scaling function ¢(t),

which has support on the compact time interval [0, M—-1], can be determined explicitly for t being a

dyadic number. Since the dyadic numbers (i.e., multiples of 2-k for all k 2 0) are dense in R, the
function ¢(t) can be determined at all times t in the limit.
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The wavelet function y(t) is similarly computed as follows. Since y(t) € Wo € Vy, we
can represent W(t) as a linear combination of the basis functions of Vy:
v = 3 < (), 212 ¢(2i-n) > 2172 ¢(2t-n)
n
=2 Z g(n) ¢(2t-n) (3.22)
n

which is a recursion similar to (3.18). Since we already know ¢(t) on the dyadic numbers, it
follows that y(t) can be computed using (3.22). The filter sequence g is a flip—alternate—negation
of h, and we can set g = [g(0), g(1), g(2), ... ... .. , 2(M-1)] so that y(t) also has a compact
support on the time interval [0, M-1].

At this point we have shown how to generate y(t) for the CWT. The question is: How do
we find h(n) in the first place? Although one may guess or even trial and error to finda h
sequence that satisfy the two wavelet conditions. in reality it is a difficult task to find a
scaling/wavelet pair that has nice analytical properties. Nonetheless, several researchers have
succeeded in systematically generating wavelet functions. We show some of their work in the

following.
3.3.3 Compactly supported wavelets examples

First of all, the simplcst compactly supported wavelet is the Haar wavelet. It has a compact
suppoiton [0, 1], with h = [1/2, 1/2] and g = [1/2, -1/2). The Haar scaling/wavelet pair is shown

in Figure 3.4.a. Note that the functions are not continuous.

Daubechies [2] has proposed a class of conpactly supported orthonormal wavelets and she
gave the hs for M = 4,6,8,10,12,14,16,18,20. For example, the Daubechies 4—coefficient wavelet

has h = [h(0), h(1), h(2), h(3)] given by:

noy = S hy = 2403
- 3
b =230 ne = 158 (323)
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Note that h(0)+h(1)+h(2)+h(3) = 1, and h2(0)+h2(1)+h2(2)+h2(3) = 1/2. Substituting h into
(3 19) we find the eigenvector forA=1to be

[6(0), &(1), ¢(2), ¢(3)] = [0, 1.366, —0.366, 0] (3.24)

The corresponding scaling function ¢(t) and the wavelet function y(t) (D4) are recursively
computed, using (3.18) and (3.22), respectively, ard they are plotted in Figure 3.4.b We also

show he Daubechies 10—coefficient scaling/wavelet (Do) pair in Figure 3.4.c and the 20—

coetficient scaling/wavelet (Dyp) pair in Figure 3.4.d Observe that Dyg looks like a modulated
Gaussian. Also note that the Daubechies wavelets are increasingly smoother in time and better—
contained in the frequency spectrum.

Pollen [19] has shown that it is possible to parametrize compactly supported wavelets. In

particular, for M = 6, using a pinched torus, he was able to give a parametriztion of the h sequence

as follows:

h(0) = [(1 + cos a + sin a)(1 — cos B - sin B) + 2 sin B cos « }/8

h(1) = [(1 — cos a + sin a)(1 + cos B - sin B) - 2 sin B cos a }/8

h(2) = {1 + cos (a-P) + sin (a-P))/4

h(3) = [1 + cos (a-B) ~ sin (0—P)1/4

h(4) = [1 - h(0) - h(2))/2

h(5) = [1 - h(1) - h(3)])/2 (3.25)

where -1 < &, § < 7 are the two parametrizing angles. It is indeed a very nice and important
result. As an example, the Haar waveiet has parametrization a = 3, for any . As another
example, we randomly generate a = 0.2172 and B = 0.3359 and use (3.25) to obtain

h = [0.0055, -0.0322, 0.4686, 0.5278, 0.0259, 0.0044]. (3.26)

It turns out that this is a valid wavelet sequence; we carry out the recursive generation and we piot
the resulting scaling function and wavelet function in Figure 3.4.e. This wavelet has dual

passbands. Note that the scaling function and the wavelet function are orthonormal basis
functions. One can experiment with (3.26) to generate very crazy looking wavelet functions.
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Figure 3.4.a The Haar scaling function and wavelet function.
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Figure 3.4.b Daubechies 4—coefficient (D4) scaling function and wavelet function,
ard their energy spectra.
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Figure 3.4.c Daubechies 10—coefticient (D10) scaling funciion and wavelet function,
and their energy spectra.
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Figure 3.4.d Daubechies 20—coefficient (D2p) scaling function and wavelet function,
and their energy spectra.
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Figure 3.4.e A 6-coefficient scaling function and wavelet function with Pollen
parametrization a = 0.2172, B = 0.3359, and their energy spectra.
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3.4 Multiple-Phase Discrete Wavelet Transform

In digital signal analysis, what one has at hand is a sequence of M samples, x(nT), where T
is the sampling perind andn =0, 1, 2, . . . Ng-i. Itis convenient to consider an auxiliary function
xo(t) in Vo xg(t) = Z bo,n $0,n(t) by setting bg n = x(nT) at resolution level O, which is the

n

highest level available. Using a recursive filtering algorithm, the sc-called discrete wavelet
transform (DWT) of section 3.2, one can compute the lower-level resolution coefficients as (Fig.

3.3):

bm-1() = 3, V2 h(k) by(2i + k)
k

dma()= 3, N2 g(k) bm(2i + k) (2.27)
k
foom=0,-1,-2,-3,.... Here, h = [ h(-M+2), h(-M+3), ..., h(0), h(1) ] and g = [ g(-M+2),
g(-M+3), ..., g(0), g(1) ] are the appropriate conjugate-quadrature d:screte-time filter responses.

The h coefficients are obtained by the dilation equation h(k) = jtb(t) ¢(2t - k) dt. We have set

g(k) = (=1)-M+3-k h(-M+3-k) so that the time indexes for the b’s and d's are always non-negative.
We also assumed that both ¢ and y have compact supports so that h and g have only finite number
of filter taps ( = M). Roughly speaking, the approximation coefficients by,  capture the
approximate information in the signal sequence at resoiution level m, while the difference
coefficients dm , retain the detail information going from resolution 'eveim - 1 tom. The DWT
has important applications in signal analysis, particularly in compression, detection, and
classification. The choice of ¢ and y (hence h and g) is such that the signal is localized as much as
possible in both time and frequency. Unfortunately, the DWT is not time invariant. If the signal
sequence is time-shifted by one unit to become b =[ 0, by o, bo,1, b2, ... ... , bo,N-1 ] then the
corresponding DWT is not time-shifted and it will be completely different from the old DWT. This
will not present a problem to the reconstruction of the signal sequence; however, the merits of
DWT for signal detection and classification may be diminished.

We note that for dyadic DWT, there are two different sets of DWT 2t each level; we name
them as “phase-0" and “phase- 1"’ decompositions. Referring to Fig. 3.5, for phase-0
decomposition, the 0-th coefficient at resolution level m - 1 is [h(1)] » [bm o, the 1-st coefficient is
[h(-1), h(0), h(1)}] * [bym.0, bm,1. bm 2] Where “»”" denotes dot-product, the 2-nd coefficient is
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[P(2), h(-1), h(0), h(1)] * [b. . 1. %.4; 2, Bm 3, bm 4], and su forth. On the other hand, the phase-1
coefficients will read as [h(0), h{1)] * [bm 0, bm.1], [h(-2), h(-1), h(D), h(1)] « [byy 0, bm,1. bm 2,
bm.3), [h(-2), h(-1), h(0), h(1)] * [bm 2, bm 3, bm.a. bms]. .. ..

bno [bm1 | Bn2 | bm3 | bmd | Bus | b | Bu?

"phase-0"

h(-2) | h(-D{ h0) | h(1) | ————&  shift two units each time

thase_l "

h(-2) | h(-D)| h(0) | h(1) | ~—————— shift two units each time

Figure 3.5  Two phases of wavelet decomposition.

We have proposed a multiple-phase DWT (MP/DWT) for signal analysis {10], [14], [13]. The key
to this MP/DWT is to construct new filter sequences hy, and g, (m < -1) at each decomposition
level by inserting 2-(M+1) — 1 number of zeros between every two subsequent filter coefficients.
The MP approximation coefficients at level m - 1, time indexed i, is given by the dot product of hpy,
and bm where Qﬂ is the MP approximation coefficient sequence at level m denoted by bm =

1) A} )

(b b b ., . ..... ). Specifically, we have

m0 m,l° "m2°
1
O™ E , V2 hm(k) b ikl
k= -M+2-(M-1)(2™-1)

and
1

= Z VE gm(k) bl.n,i#-k—! (328)

m-1,i
k= -M+2-(M-1)(2™-1)

The manner that the phase-0 and phase-1 : »fficients are interleaved at each level rnay be described
by the tree diagram shown in Fig. 3.6. For a k-level decomposition, there are altogether 2k
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possible phases of decomposition. Each path in the tree of Fig. 3.6 represents an unique phase-
sequence. One may choose to decompose the signal along any one of these 2K phase-sequences
and obtain a different DWT. Interleaving all of them yields our MP/DWT. Note that knowing the
phase-sequence, one can trace back in the tree and reconstruct the signal from the DWT. Note that
MP/DWT is a redundant transformation. It may be regarded as a di-crete approximation of the
continuous wavelet transform for xo(t). Its time-invariant property may be useful for some signal
detection problems. The MP/DWT can be used to detect PSK signals, but we shall report the
results elsewhere. For data compression applications, one can maximize the data compression
ratio by optimizing over the 2k phase-sequences.

leve]
/\ :
0 1 ]
/></\
00 10 01 1 2
m\\m
000 100 010 110 001 101 o1t 1l 3

Figure 3.6 Different phases of wavelet decomposition.
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4. DETECTION OF PSK SIGNALS

We now use the CWT of (2.1) to analyze PSK signals. Viewing the CWT in a ime-scale
plane, we attempt to identify qualitative and quantitative features that would reveal the exact
occasions of the phase shifts. First, we consider a basebad rectangular wave and its noisy
versions. Next, we analyze a 180" phase shift in a sinusoid and its noisy versions. Haar,
Daubechies, and complex modulated Gaussian wavelets will be employed in the decompositiuns,

4.1 Rectangular Wave

4.1.1 Haar wavelet

A baseband rectangular wave and its CWTs using the Haar wavelet are shown in Figure
4.1.a. The rectangular wave signal has a normalized duration of 1 second. The signal sequence
x(nT) has length equal to 65 and it changes sign at n = 9, 25, 41, and 57, which corresponds to t =
nT = 9/64, 25/64, 41/64 and 57/64 seconds, respectively. The Haar wavelet y(t) = yo(t) was
shown in Figure 4.1.a. The transforms CW(nT, 2-™) is computed using (2.1) forn=0,1, . .. .
.64, andm = 0, 1, 2,. ... 6; they are shown in sequential order in Figure 4.1.a. Note that
there are some end effects due to the finite signal window and we wouvld ignore these end effects.
At low level of decomposition, i.e., m = 0,1, or 2, the CWT has good frequency resolution and
we see that the oscillating frequency of the signal is revealed. At higher level of decomposition,
the time resolution is getting better and the CWT reveals the sign change instances with increasing
accuracy. Specifically, at m = 6, a positive "spike" in the CWT shows a +1 to -1 sign change,
and a negative "spike” shows a ~1 to +1 sign change. The Haar wavelet is matched to the sign
change so the good time resolution is expected. However, at high time resolution, the wavelet
filter has large bandwidth. When there is noise, a lot of 1:0ise energy will be collected and the
signal CWT will be smeared, as we will show in the next figure.

We add noise to the rectanguiar wave and show the CWTs in Figure 4.1.b and 4.1.c.
Power of the signal sequence is E(x2(nT)) = 1. The random noise sequence is Gaussian with
mean zero and variance s2. Define the signal-power to noise-power ratio as:

signal sequence power 4.1

SNR =

noise sequence power




In Figure 4.1.b, the SNR is 10 dB and in Figure 4.1.c the SNR is 5 dB. We see that the 'ow level
CWTs are not severely affected so we still have gnod frequency resolution. At higher level, th~
CWTs are increasingly smeared by the noise, especially at m = 6. This is because the output
signal—-power to noise—power ratio, SNR,,, defined by:

_ FEltered signal sequence power
SNR, = filtered noise sequence power (4.2)

is decreasing exponentially with m. Note that the wavelet filter (with impulse response Y, (t)) has
bandwidth B = 2¢2™ ¢ and so the filtered nois¢ power is increasing exponentialty with m for
wideband noise. The filtered signal power, however, will decrease with m cince the r.m.s. center
frequency of the wavelet filter is moving towards f = 4o and smaller and smaller amount of signal
energy will be collected. If the signal is a wideband spread—spectrum signal instead ot a
narrowband signal, then it is possible that SNR,, will remain large for many levels of
decompositions. This suggests that WT is suitable for detecting spread—spectrum signals.

For SNR = 10 dB as in Figure 4.1.b, one can observe from the CWT at m = 4 and m =6
that there are 4 sign changes. However, when one attempts to pinpoint the exact times of
occurrence by viewing the CWT at m = 6, only the changes at i = 9/64 and 41/64 can be located

with confidence.

For SNR = 5 dB in Figure 4.1.c, the noise power is too much for the CWT to reveal good
time-resolutions. Only the oscillating frequency of the rectangular wave can be revealed. The
Haar wavelet does not work well in noise because its poor spectral properties, i.e., its spectrum

decays too slow and has too many sidelobes.
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Figure 4.1.c  CWT of rectangular wave with Haar wavelet. SNR = 5 dB.
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4.1.2 Daubechies wavelet

Daubechies wavelets have better frequency properties than the Haar wavelet. However,
they are not matched (in time) to the sign change in the rectangular wave. We show the CWTs for
the rectangular wave with Daubechies 10—coefficient wavelet (Do) in Figures 4.2.a, 4.2.b, and
4.2.c for the noiseless, SNR = 10 dB, and SNR = 5 dB cases, respectively. The wavelet is first
normalized in time so that it is confined to the interval [0, 1] at level m = 0.

When there is no noise, the Daubechies wavelet is also capable in locating the sign changes
with high time-resolution as shown in Figure 4.2.a. Furthermore, because its frequency spectrum
is more confined than the Haar wavelet, the CWT at low level reveals the oscillating frequency of
the rectangular wave with greater resolution.

When SNR = 10 dB, the performance is worse, as shown in Figure 4.2.b. Atlevelsm =3
and m =4, it is possible to iden:ify the first and the third sign changes correctly, just as in the Haar
case. But there is a false indication aroundt =(0.4. When SNR = 5dB, this Daubechies wavelet
is seen tc perform not much better than the Haar wavelet, as shown in Figure 4.2.c.

The problem with both Haar and Daubechies, as well as other unmodulated wavelets is that
they are not turnable. It is difficult to select or "customize" the passband center frequency for a
specific signal, thereby the wavelet filter may miss most of the signal energy. It is also not
possible to have a relatively narrow bandwidth at high frequencies. The complex modulatea

Gaussian wavelet is capable to alleviate these shortcomings.
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Figure 4.2.a CWT of rectangular wave with Daubechies 10-coefficient wavelet.
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Figure 4.2.c CWT of rectangular wave with Daubechies 10—coefficient wavelet.
SNR =5 dB.




4.1.3 Complex moduiated Gaussian wavelet

By changing the modulating frequency, fy, of the complex modulated Gaussian wavelet,
one can place the wavelet passband center frequency practically anywhere on the positive
frequency axis. Changing fy, as well as ¢, in (2.10) gives us two extra dimensions to expose the
signal features. Although there may be a lot of redundancy, this approach essentially gives us a
tunable, variable-bandwidth multiresolutional analysis of the signal. It is also possible to adapt the
analysis to different types of signal and noise.

For simpler presentation, we fix ¢ = 0.12 and only vary fy to be 4, 8, and 16 Hz. FFor the
noiseless case, we show the corresponding time~scale decompositions (which are complex valued)
in Figures 4.3.a - 4.3.f. The first three figures depict the magnitudes of the CWTs, while the last
three figures show the phases of the CWTs. Consider the magnitude plots in Figures 4.3.a, 4.3.b,
and 4.3.c. There are altogether 3x7 = 21 snapshots of the wavelet filtered rectangular wave. Each
set of 7 snapshots start with a different center frequency fy and the filter banks scan the frequency
axis as m increases from 0 to 6. Most of these 21 magnitude plots do correctly reveal the sign
change times (with different time-resolutions) and would be useful in the ncisy cases. The phase
plots in Figures 4.3.d, 4.3.¢, and 4.3.f confirm the sign change times, and in addition they also
reveal the polarity (+ to — or — to +) of each cha.ige. Note that when there is noise and the
magnitude plots are not conclusive, we can consult the phase plois for a confirmation. This
alternative source of information is not available in decompositions using real wavelets.

For the case when SNR = 10 dB, we show the magnitude plots for fy = 4, 8, 16 in
Figures 4.4.a, 4.4.b, and 4.4.c. In Figure 4.4.b at m = 6, the magnitude plot of the CWT clearly
indicate that there are sign changes at the four correct instance, although it addition there is a
possible false indication at t = 0.4. Figure 4.4.a at m = 3, 4, and 5 confirm that the findings are
due to the signal but not the noise. Note that in Figure 4.4.c, the magnitude plots are not
informative and certainly are rot conclusive; the choice of fy, = 16 is too large for this particular

signal.

When SNR = 5 dB, we show one set of magnitude plots of the CWT in Figure 4.5 with fy,
=8. Atlevel m = 6, the CWT reveals correctly the first, second, and the third sign change,
probably misses the forth one and falsely add one at t = 0.4. The results can then be referenced
with other magnitude plots using a different modulating frequency. Comparing with the Haar ard
the Daubechies wavelets, the performance of the complex modulated Gaussian is better, especially

in the noisy cases.
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4.2 180" phase shift

The signal (0 be analyzed is now changed to a sinusoid with a 130° phase shift at t = 0, as
shown in the first subplot of Figure 4.6. We use the Haar, Daubechies 10-coefficient, and the
complex modulated Gaussian wavelets tc analyze this signal and plot their CWTs in Figures 4.6,
4.7, and 4.8, rspectively. For the Haar wavclet, the phase change also appears as a phase change
in most of the CWTs as shown in Figure 4.6. The Daubechies wavelet does a better job in
identitying the phase change, as shown in Figrre 4.7. The complex modulated Gaussian wavelet
also reveals clearly the phase shift in the magnitude plots of the CWT at m = 4 and m =5, in
addition a phase change is confirmed by m = | and m =2 plots, as shown in Figure 4.8.

When ihere is noise., we found that boti: the Haar and Daubechies wavelets failed to

perform.

When SNR = 10 dB (note that the signal power is equal to 0.5), we choose ¢ = 0.12 and
fy = 12 for the complex modulated Gaussian and show the magnitude and phase plots in Figures
4.9.a and 4.9.b. In Figure 4.9.2, the magnitude plot of the CWT at m = 2 reveals a phase shift
activity somewhere on or before t = 0.5. (Note that there is an end—effect in the DWT due to finite
signal window.) But the rest of the magnitude plots fail to pinpoint a better time location. When
we consult the phase plots as shown in Figure 4.9.b, the m = 6 plot suggests that there is an
atrupt change of phase at t = 0.5. This is confirmed by the m r: 3 and m = 6 phase plots in Figure
4.9.c, where we use a different fy, = 16.

When SNR = 5 dB, we cnoose 6 = 0.12, f; = 8. The magnitude subplot for m = 2 of
Figure 4.10.a reveals some phase activities; however, the other magnitude subplots and the phase
plots of Figure 4.10.b yield no confirmative information. T'2tection of a single phase shift is very
sensitive to the noise. However, when the signal window is much longer and more phase shifts
are present, the complex modulated Gaussian would perform due to a larger output signal-power to

noise power ratio (SNRy, see (4.2) ).
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5. CONCLUDING REMARKS

) Wavelet decompositions have better time-resclution at higher frequencies. They have
better frequency-resolution at lower frequencies. Wavelet decompositions are suitable for
analyzing signals that have high—frequency short pulses and/or low--frequency iong pulses. The
discrete wavelet transform (DWT) is primarily useful for data compaciion, although we have found
some of its potentials in signal detection. The continuous wavelet transform (CWT) can be used in
signal detection. We have shown that by using complex modulated Gaussian wavelets, the time
and frequency features of a signal can be revealed via a tunable, variable~-bandwidth,
multiresolution analysis. We have shown that CWT can be used in deiecting PSK signals.

However, the performance is sensitive to the leve! of noise.
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