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Abstract

Design replay presents a possible enabling technology to the Knowledge-Based Soft-
ware Assistant’s specification maintenance and implementation rederivation approach
to software development. More generally, design replay can also be applied to deriva-
tions between a variety of different software description abstraction levels. Radical
changes to a software artifact cannot generally be addressed by design replay as they
require new design input. Evolutionary changes are more amenable to design replay
and often involve incremental changes to derived artifacts. This report describes: an
approach to rederivation that exploits the incrementality of evolutionary maintenance
changes, the state of our implementation, and what remains to be done to test .his

approach.

1 Introduction

The problem we are exploring is the insertion of a design replay capability into Rome
Lab’s Knowledge-Based Software Assistant (KBSA) [1]. The KBSA is composed of a number
of facets that roughly correspond to activities in a standard waterfall life-cycle model. These
facets include requirements, specification, and development. Note that the KBSA does not
force a waterfall development; in fact it is based on a new paradigm of software development
involving maintenance of specifications and rederivation of implementations. Each facet
assists in a design activity producing increasingly formal descriptions of a desired system.
Each facet can be viewed as taking a transformational design app-oach.

Our task is constrained by two important requirements. First, we wish to provide a
design replay utility that can be used by any and all of the facets. Thus. we are taking an
approach reminiscent of the Joshua system’s [2] “protocol of inference.” We are interested
in designing a protocol that a design tool can use to record the: decisions it is making,
alternatives it is considering, goal structure of its problem solving, and data dependencies




between actions it takes and artifacts created. This protocol should permit capture of the
information necessaty to permit application of incremental redesign techniques,

Second, we want to be able to use incremental replay from the current state of the code
artifact to reconstruct the code for a modified design. (In this context, the use of the word
code should be qualified as referring to the output artifact of a particular facet. This artifact
may be source code, but it could be specification, requirements or other descriptions.) We
do not want a strategy that requires replay of an entir- design.

To explain an important difference between software design problems and other areas
amenable to replay technology, planning for example, particularly with respect to this sec-
ond requirement, an analogy to the blocks world is helpful. In blocks world planning there are
two artifacts of particular concern: the plan to achieve the desired goal and the actual con-
figuration of the blocks (before and) after executing the plan. In software, the corcesponding
artifacts are the design (plan) to produce the code and the code itself (block configuration).
Incremental replanning techniques [3] assist in the creation of a new plan/design, but not
in the formation of a new block configuration/code from the state lefli by the original plan.
This latter capability is critical in software construction where the design has alicady been
applied to vield code.

Maintenance must proceed from this existing code for a number of reasons. The design
process is likely to have been quite long, e.g., 10,000 transformations [4] for a medium-sized
problem, and on average might only be 90% automated. Therefore, replay of an entire design
would require user assistance in remaking 10% of the design decisions, e.g., 1,000 decisions,
many of which may not even have been affected. Even if the process weie 99% automated,
100 decisions would still have to be remade by the user. Also, depending on the efficiency
of the transformation system, even fully automatic replay of 10,000 transformations may
be something to avoid. In essence, there are two incremental modification problems to
be considered simultaneously in suftware design, that of modifying the design and that of
modifying the source code.

The next section describes our approach to design replay. Following this are sections
describing related work and the state of our implementation.

2 Incremental Rederivation

A major complication in design replay is the “correspoudence problem™ [5, 6]: estab-
lishing a correspondence between the components of the original initial specification and the
changed initial specification. This problem is both difficvlt and necessary to solve for rep'
to occur: the original set of transformations need to be replayed on the components ¢
changed initial specification that correspond to the components of the criginal initial .
ification which the set of tiansiormations were originally applied to. An interesting aspce.
of the incremental rederivation approach is tnat it finesses this correspondence problem to a
large extent. The input to the replay capability consists of: an original initial specification,
a transformational development and its associated dependency information as described be-
low, a solution artifact, and a delta to the original specification. The required output is a
new solution artifact that reuses as much of the initial solution as possible and minimizes its
interaction with the underlying design performance system/agent. Correspondence is not a




significant issue under this problem definition because the change is localized to an area of
' the original specification and the dependency struciure identifies and propagates the other
correspondences in the transformational development.

To explore this further, we need to look at an initial simple definition for transformations
and a basic artifact representation. The transformation representation we are concerned
with is derivative from [7] and is meant to capture only the simplest syntactic properties of
a transforination. Similarly, the artifact representation, which must be facet independent to
a large extent, captures only basic syntactic propertices.

Artifacts will be represented as abstract syntax trees {AST). This provides a level of rep-
reseni ation above the purely textual but without facet specific semantic concepts.! Transfor-
mations, at this mitial level of description, consist of an input vattern that matches pieces of
the base AST and an output modification to the AST. The section of the AST to be modified
must be included in the input pattern. The parts of the AST matched by the input pattern
torm the input span of the transformation and the modified sections comprise the output

span.

2.1 Example

An example of an AST for the Lisp file containing

(defun fact (x) (:input))

dummy
is shown in Figure 1.
S
; -’/‘L!l_le
——
list dummy
e R

| defun| [fact|{ tist | | tist]

X :input

Figure 1: AST for (defun fact (x) (:input)) dummy

An example transformation rule is:

rule fact-input (input, name, arg)
input = ‘(:input $existing-cond)’ & name = ‘fact’ —— > ,
input = ‘(:input (integer Q@(copy(arg))) (>= Q(copy(arg)) 0) $existing-cond)’

The rule’s name is fuct-input. The AST node that it may modify is called nput in the rule,
and the other AST nodes that it examines are called name and arg. The rule states that if

'Facet specific semai tic concepts can he helpful in rederivations but are excluded for now because their
use will vary from one facet and system to another.




1. tnput corresponds to an expression of the form (:input «), where « is zero or more
arbitrary expressions

2. and name corresponds to an expression of the form fact
then input gets changed to an AST corresponding to an expression of the form
(:input (integer args) (>= arg, 0) «)

where argy and arg, are copies of the AST bound by arg (the function copy makes a copy of
its argument). This rule’s input span is the union of the AST pieces bound by the variables
input, name and arg. The rule’s output span is the AST piece that input gets transformed
into.

An example transformation is applying the above rule to the example AST so that the
rule’s input parameter is bound to the part of the AST for (:input), name is bound to the
part for fact, and arg is bound to the part for x. These bound parts form the input span.
The transformation alters the AST for (:input) to an AST for
(:input (integer x) (>= x 0)). This latter piece forms the output span. So with this
transformation, the original AST is transformed into the AST for

(defun fact (x) (:input (integer x) (>= x 0)))
dummy

2.2 Representing Design Rationale

A factor in choosing an algorithm or data structure is often whether some condition
is true, e.g., “data access occurs at least ten times more frequently than data updates” or
“the number of data elements will not exceed one hundred.” With the above representation
of artifacts and transformations, such conditions can be represented as specification “com-
ments” (of a specific svntactic form) within the implementation. Then, any transformation
that depends on such a condition can have one of the transformation’s input parameter vari-
ables matched against a pattern of the appropriate form. For example, the second condition
instantiated for data of type brand-z could be represented with a specification comment of

the form
(:condition-of-world (maximum-number brand-x 100))

Then a transforrnation rule could test for the presence of such a condition by including the
following in its applicability tests:

numelements = ‘(:condition-of-world (maximum-number Qtype @maxnum))’
& (<= maxnum 100)

where numelements is a rule input parameter to be bound to the specification comment
describing the condition, type is a rule input parameter to be bound to the type of data
element, and maznum is a rule variable.



2.3 Macro-Level Rederivation

Given an input specification 50, a solution artifact Sf, and a transformational devel-
opment history with input and output span information preserved, changes to the input
specification can be propagated at a macro-level as follows: given® a change to a piece of S0
we can compute a partition of the transformations into two sets:

1. those transformations whose input span has definitely not been altered and <o are
definitely unaffected and can therefore be reused intact, and

2. those transformations which are possibly affected because their input span may have
been affected. The input span may be affected if it includes part of the piece of S0
that has been altered or it includes part of an output span of another transformation
that may have been affected.

This partition leads to a partition of Sf, where each componeunt is either

1. part of the output span of a transformation that is definitely unchanged or is directly
a piece of S0 that has remained unchanged, or is

2. part of the outpnut span of a transformation that may be affected or is directly a piece
of S0 that has been changed.

The first type of S f component is definitely unaltered and can be used as is, while the second
type may have been altered.

This macro-level rederivation is a form of impact analysis that in itself can be useful
in large systems under the assumption that many of the maintenance changes made to a
specification only have relatively local effects in the solution artifact. This assumption is
restrictive but consistent with the typical maintenance profile where the difficult problem 1s
reliably identifying the relatively small percentage of the code that needs to be changed to
respond to a maintenance request.

An example of macro-level rederivation is as follows. Start with the example transforma-
tion (that adds input conditions) described in Section 2.1. Let “dummy” in the original AST
he altered to be “useless”. Because dummy was not part of the input span for the trans-
formation, that transformation is not affected by the alteration and can be used as is. As
a result, the transformation’s output span, (:input (integer x) (>= x 0)) in the trans-
formed AST, is definitely unaltered and can be used as is. Also, the rest of the transformed
AST:

(cdefun fact (x)

comes directly from parts of the original AST that have not been altered and so is also defi-
nitely not affected by the alteration. However, since “dummy” in the transformed AST comes

2These various inputs are provided by a design tool interacting with the replay component through the
defined information and dependency protocol. This protocol defines the data a design tool must record about
its ongoing design process in order to make use of the replay facilities. The protocol will not be discussed
further in this paper.




directly from part of the original AST that has been altered, that part of the transformed
AST has been altered.

On the other hand, if x in the original AST, which is part of the input span for the
transformation, were altered to be y, then the transformation would possibly be affected
and the transformation’s output span, (:input (integer x) (>= x 0)) in the transformed
AST, would also possibly be altered.

Given the set of possibly affected transformations, we can attempt to replay the trans-
formational history to rederive new solution components. For each transformation that we
might consider replaying, however, there is a spectrum of possibilities from redo (and possible
reinvocation of the design system/agent) to extracting finer-grained transformation depen-
dencies that permit more precise control of reinvocation of a transformation. This finer level
of dependency information is discussed in the next section.

Two goals in keeping this dependency information should be recalled here. First, we
have the goal of essentially performing impact analysis through the dependency structure.
This analysis gains us time efficiency by both not replaying or examining in detail entire
huge derivations (which is traded off in space required for the dependencies) and by not
interacting with a person for manual information extraction. Second, we wish to be able to
closely analyze those transformations that are possibly affected by new input requirements.
Many transformations will be unaffected and therefore not require replay. Those that are
affected and still applicable will often be modifiable through the dependency structure. If a
transformation is no longer applicable and the design program needs to be reinvoked, then it
is likely that rederivation of the entire subsolution will be necessary. If an appropriate impact
analysis i1s supported, then this will be more efficient as fewer valid solution components will
be needlessly rederived.

2.4 Micro-Level Rederivation

Before discussing finer-grained dependency information, we need to refine our represen-
tation of transformations. We have stated that transformations consist of an input pattern
and an output modification. Following Balzer in [7], a transformation also consists of a
set of local bindings (used to compute partial substructures) and a set of constraints to
be verified. All data accessed in the constraints, bindings, or output modification must be
accessed by the input pattern, i.e., the input span of a transformation must identify all data
dependencies.

An input pattern implicitly embodies two kinds of constraints, i.e., equality to a constant
and equality between substructures (use of the same named pattern variable).

Bindings can pe-form arbitrary computation but we make a few assumptions about them.
First, we assume all data accessed by the binding computation is functionally indicated
in the binding calculation call. This implies that a binding calculation is functional, 1.e.,
a calculation always returns the same result on the same arguments and does not access
internal state. Second, we assume none of the bindings are dead/unused. We could attempt
to compute this and, in fact, dead bindings should not affect the ultimate propagation
through the dependency structure.

Constraints may also perform arbitrary computation, perhaps accessing a reasoning sys-
tem to check properties of the input pattern. As with bindings, we assume all these compu-




tations are also functional.

Given this finer-grained transformation representation, it is now possible to either com-
pute the fact that 2 delta to a transformation’s input pattern actually has no effect on the
validity of the output modification or, more likely, that {he output modification can be up-
dated via an incremental recomputation not requiring reinvocation of the transformation.
To understand how this will work, we must look at the kinds of changes that can occur in
the input span of a transformation and how they propagate through the transformation.

2.4.1 Replay Delta Calculvs

To enumerate the space of deltas that can affect a transformation, we shall step through
the computation of whether a transformation is still applicable. A delta to a piece of an
AST is postulated and the macro-level dependency mechanism identifies a transformation as
having an input span that is possibly affected by the delta. First, the input pattern must
be matched against the changed AST and the delta localized to the affected portions of the
input pattern.’

If the change in the input pattern is in a constant portion of the pattern, then the
transformation is no longer applicable. If the transformation is to a variable portion of
the pattern then we continue examining the change. Next, we compute a delta set on the
local transformation variable bindings using the delta set of the input pattern. Then we
compute a possible delta set for the constraints (and any equality constraints implicit in the
input pattern) based on the delta sets for bindings and variables. For each possibly changed
constraint, we reevaluate its truth. If any constraint is false, the transformation is no longer
applicable. If all the constraints are still true, we move on to computaiion of the new output
pattern.

The output pattern of a transformation may not be changed if all deltas simply affect
triggering conditions. The output pattern is changed if it incorporates any of the changed
inputs or bindings. At this point, we could simply recompute the new output pattern by
recomputing the output modification of the transformation. However, in some cases it is
possible to propagate the deltas through the output pattern instead of performing a full
recompute. For example, two possible action types in an output pattern include: creating
a constant subcomponent (this is unaffected by deltas in the input) or copying a variable
binding in as a subcomponent. This has the advantage of not requiring reinvocation of the
transformation and permitting localization of the deltas to parts of the output pattern.

Two examples of this checking and propagation process are as follows. Again, start with
the example transformation described in Section 2.1.

1. If fact in the original AST were altered to not-fact, then the corresponding binding
to the transformation rule’s name variable would also be altered to not-fact. Since
the rule checks that name matches the constant pattern fact as a condition of its
applicability, this alteration would render the transformation inapplicable.

2. If instead, (:input) in the original AST were then to be altered to (:input z y),
then the corresponding binding to the transformation rule’s input variable would also

3The original match of the input pattern to the AST could be kept as part of the dependency structure
and then a delta to a piece of the AST could be mapped directly to the affected part of the input pattern.




be altered to be (:input z y). Then the rule would find that this would match against
the pattern (:input $existing-cond) when the variable existing-cond is bound to the
tist (z y) (ezxisting-cond was originally bound to a list of zero elements). Since the
rule has no constraints on ezisting-cond’s binding, the rule would still be applicable.
If, however, the rule had a constraint that existing-cond be bound to a list of less than
two elements, then the rule would no longer be applicable.

Given that the rule is still applicable, one will then look at how the alter~d bindings
for input and eristing-cond may affect the output. Input is not used to produce the
output and is “ignorad.” Eristing-cond’s binding on the other hand is copied into the
output after (>= 4 0), where 7 is x, so the transformation’s output would be updated
with this new binding to:

(:input (integer x) (>= x 0) z y)

The original output was (:input (integer x) (>= x 0)).

In the case where a change occurs to a pattern that appears multiple times in the input,
it may be the case that there is an unintentional violation of an implicit program design
equality constraint between the multiple subcomponent occurrences. Before continuing with
replay, we may want to consult the user to verify the intentions. A simple example of such
a pattern (for the C language) is

for (Qx = 0; @y < N; @z++) Qstatement

where the variables (marked with a @) r, y and z are explicitedly constrained to bind to
references to the same variable, as in for (i = 0; i < N; i++) a[i]++;. This pattern is
of an iterative construct where the index variable (1 in the example) is initialized to 0, the
iterations continue as long as the index variable is < N, and the index vaabie is incremented
at the end of each iteraticn. If a user altered

for (i = 0; 1 < N; i++) a[il++; into for (k = 0; i < N; i++) alil++;

so that z now refers to a different variable from y and :, one might wonder if the user was
just trying to rename i with k and forgot to update all the occurrences of 1.

In the case where a change occurs in multiple output subcomponents versus a single
subcomponent, we have an indication of where a change has an expanding impact.

The output deltas identified from one stage of propagation now form the input deltas for
the next stage of propagation which continues until all affected transformations are processed.

2.5 A Larger Example

The best example of how these techniques work would involve a large derivation and a
typical maintenance change affecting only a small part of the implementation artifact. For
example, in a database access system consisting of data storage and retrieva! routines, data
indexes, report generators, and other functions, a user might make a change to an output
specification that simply resulted in the alteration of a few constants in the report generation




routines. For illustrative purposes, we will consider a sinaller example that is an expanded
version of the example given in Section 2.1.
The inpat specification for this example is:

(DEFUN FACT (X)
(:DESIGN RECURSIVE) (:DESIGN CACHE-RESULTS) (:DES1GN INDUCTIVE)
(:INPUT) (:OUTPUT) (:IMPLEMENTATION) (:COMMENT))

This input is transformed into an output artifact by the application of eight transfor-
mation rules. The first rule is the fact-input rule described in Section 2.1. The other rules
are written in a similar fashion. The details are given in Appendix A. Applying these rules
transforms the specification into the result shown in Figure 2. In the results, the (L1s?) code

(DEFUN FACT (X)
(:DESIGN RECURSIVE) (:DESIGN CACHE-RESULTS) ::DESIGN INDUCTIVE)
(.INPUT (INTEGER X) (>= X 0))
(:0UTPUT (INTEGER (FACT X)))
(: IMPLEMENTATION

(LET ((RET-7375
(COND ((FACT-VAL-CACHED?-7375 X) (FACT-CACHED-VAL-7375 X))

((NOT (AND (INTEGER X) (>= X 0))) :ERROR)
((> X 0) (*x X (FACT (- X 1))))
(=X 0) 1))
(CACHE-FACT-VAL-7375 X RET-7375)
RET-7375))
(: COMMENT) )

(DEFVAR *FACT-CACHE*-7375 (MAKE-HASH-TABLE) "cache for FACT")

(DEFUN FACT-~VAL-CACHED?7-7375 (X) "check to see if value cached for FACT"
(GETHASH X *FACT-CACHE*-7375))

(DEFUN FACT-CACHED-VAL-7375 (X) "return cached value for FACT"
(GETHASH X *FACT-CACHE*-7375))

(DEFUN CACHE-FACT-VAL-7375 (X VAL) "cache a value for FACT"
(SETF (GETHASH X *FACT-CACHE*-7375) VAL))

Figure 2: Result of Applying the Eight Transformat'on Rules

for the main FACTorial function is given in the part marked by : IMPLEMENTATION, and the
code for the associated functions and variable for caching is given in the DEFUNs and DEFVAR.

Suppose that one wants to delete (: COMMENT) from the original specification. How much
of the transformational history will need to be replayed? First, looking at the macro-level,

b —



it Lturns out that the input span for each of the first five transformations is limited to one or
more of the following parts (or transformations of those parts): FACT, X,

(:DESIGN RECURSIVE), (:DESIGN INDUCTIVE), (:INPUT), (:OUTPUT), (: IMPLEMENT." [ON).
So (:COMMENT) is not part of the input span of these transformations and the transt ,rmations
can be reused as is from the original transformation development. However, transformation
6 (see Appendix A) needs the entire develo,.ment produced so far in order to be able to
attach the caching variable and functions to the development. So ¢ :COMMENT) is part of
transformation 6’s input span and one will have to go to the micro-level to see how much of
the transformation can be reused. Transformations 7 and 8 use part of transformation 6's
output span for their input spans, so they too will need :xamining at the micro-level. As
a result, using macro-level rederivation, the first five transformations can be reused without
alteration or detailed examinatici.

Next, we look at the effects of deleting (:COMMENT) from the original specification on
transformation 6 at the micro-level. It turns out that all transformation 6 does with
(:COMMENT) is copy it, without any checking, from 6’s input span to one location in 6’s
output span. So updating transformation 6 does not require replaying the entire transfor-
mation, but just deleting (:COMMENT) from the output span. After this update, examining
transformation 7’s input span reveals that it does not include the altered part of transforma-
tion 6’s output span, so transformation 7 can be reused as is from the original transformation
development. The same holds true of transformation 8. The final result of this rederivation
process is the same as the original result (Figure 2) with (:COMMENT) removed.

In this example, incremental rederivation saved one from having to replay any of the ejght
transformations after a minor change in the original specification. Five transformations could
be reused as is after just a cursory examination. Two more transformations could be reused
as i1s after a more detailed examination. Just one transformation neceded alteration, and
this alteration was a minor one which was analogous to the change made in the original
specification. For larger derivation histories, or those where individual transformations are
time consuming or ones with manual interactions, this incremental strategy will produce
even larger gains in savings in the amount of work required to obtain a new artifact.

2.6 The Dependency Structure

Each transformation in a derivation sequence causes a delta to part of the software
artifact under construction. The AST for an artifact consists of a set of attributes and
keywords organized according to the syntax of the relevant artifact source language.

In recording the transformational development, two views of the artifact are maintained:
the original base artifact and the current transformed version. The current version is simply
a caching of the results of tracing the transformational development from the original artifact
through to the current time. The derivation history is captured as a set of extra-linguistic
annotations on the AST rocted initially at the original AST. These annotatious capture
transformation applications as a tuple of [ input-span, output-span, transform, time-stamp |
(aud necessary cross-references). The input-span and output-span are identified as sub-trees
in the AST. The derivation history annotations include copies of the output-span results of
each transformation. The current transformation dependency structure can be traversed by
starting at the original base artifact and following the transformation annotations through

10




History AST Current Version AST
file |1 file |

lis? o | dummy

integer| | x >= X 0 integer| | x >= b O:l

Figure 3: AST’s for History and Current Verusion after epplying a transformation
g Pr g

the structure as ordered by the time-stamp attribute.

An example of AST’s that record a transformational history and display the current
version are partially shown in Figures 1 and 3. Figure 1 shows the ASTs that record the
transformational history and display the current version (the two locl: the came) before the
“fact-input” transformation described in Section 2.1 takes effect. Figure 3 shows the AST’s
after the “fact-input” transformation takes effect. As before, the lines without arrowheads
show the sub-expression/parent-expression relationships among the nodes. The line with an
arrowhead shows the rule’s transformation of (:input) into

(:input (integer x) (>= x 0)).

The numbers 1 through 4 indicate the correspondences between some of the nodes (to the
left of the number) in the history AST and the nodes in tie current version AST.

The history AST permits tracing through the impacts of the transformational develop-
ment process. The current version AST caches the result of the process up to the current
time. Using this dependency structure, the rederivation process can occur after a change to
the original specification/artifact as follows:

1. mark which parts of the history might be altered by changing part of the original
artifact

2. find the version of the artifact that is produced as a result of applying all the unaffected
transformations (macro-level rederivation)

3. find the possibly affected transformations’

4. perform micro-level rederivation on the possibly affected transformations for which
micro-level rederivation is known to be sufficient to update the transformation
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5. replay the possibly affected transforuations which micro-level rederivation may not be
able to handle

Currently, all steps excepl for micro-level rederivation and the generation of new artifact
fragments for altering an input specification by insertion have been implemented and tested,
The examples (outside of the parts involving micro-level rederivation) have been run suc-
cessfully on the implementation. Details of the current implementation can be found in
.

Storing a dependency structure will take an amount of memory p-eportional to how large
the input and output components of individual transformations are and the actual number of
applied transformations. It is clear that this structure can grow quite large. It can also stay of
manageable size, e.g., imagine a 10,000 line program and a 10,000 transformation derivation
each of which touches on average 1/10% of the code, 10 lines. This will result in an overhead
proportional to 10 times program size.! It is clear, however, that the dependency structure
will continue to grow as the design process proceeds and thas strategies for compressing this
structure must be considered. Use of these strategies will be driven by experiments regarding
the actual memory overhead.

A drastic compression strategy would involve discarding the current start state S0 and
creating a new start state from some intermediate point in the derivation. Essentially this
would discard the ability to roll back a derivation to the original input artifact state. A more
moderate strategy would involve keeping the dependency trail for macro-level rederivation,
but eliding information necessary for micro-level recomputation. A compromise strategy
would involve computing the transitive closure of a sequence of transformations and thus
compress the information about that sequence into a single virtual transformation.

3 Related Work

Concentrating on rederivation in maintenance applications is an interesting simplification
to adopt since it finesses the correspondence problem that occurs in other reuse strategies
such as applications of derivational analogy. Adopting a dependency-directed impact anal-
ysis approach obtains the benefits of typical serial replay approaches without incurring the
overhead of manual requerying and dead-end derivation adaptation while trading the serial
replay time cost for a memory cost.

The replay work in the KIDS system [5] emphasizes a derivational analogy approach [10]
to reuse concentrating on the correspondence problem. This approach is particularly useful
in reusing a previous solution to solve a new but similar (analogical) problem. In our work,
we are assuming the problem is more than similar. In fact, we are assuming that the problem
is substantially identical except for a defined delta corresponding to a maintenance update.

Baxter takes an approach to reusing lengthy design histories [4] that involves propagating
maintenance deltas through the design history to obtain a reordering of the history into a
prefix sequence that is unaffected by the maintenance delta (or at least reusable) and the
bzlance of the history that is no longer appropriate. The reusable prefix is then rerun
and problem solving proceeds from that point. This is done taking the goal structure of

“This is the samc size as the estimate given by Neighbors for DRACO[9].
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the design history into account. We take a maintenance delta approach, like Baxter, but
propagate a delta through a transformation dependency structure instead of the design
history. The advantage of our approach is that it just needs to trace through dependencies
at a syntactic level, while Baxter’s approach will, in general, need proofs involving program
semantics. Such proofs will involve general theorem proving and/or enumerations of large
numbers of possibilitics, both of which are hard to perform. One way to view our work is
that it is finding useful cases of reuse where checks on the semantics can actually be done
by performing simple tests at the syntactic level. PRIAR [11, 12] also takes into account the
dependency structure of a derivation, in this case a plan, to find a maximally reusable plan.
As in Baxter’s work, the unnecessary parts of a reused plan are removed and new parts are
added to establish unmet goals. Other approaches for reusing maximal parts of a design
history and then reinvoking a performance program include the REMAID [13] experiments.

Feather’s work on parallel elaboration via evolution transformations and merging [14,
15, 16] points to a transformational development methodology that should yield highly
replayable derivation histories. Elaboration of parallel design considerations allows non-
interfering parts of a development to emerge separately. Where the parallel paths need to
be merged, the merge process will identify dependencies. Feather assumes a serial replay
process as one mechanism to achieve merging. Our dependency-directed approach does not
seem initially applicable to achieving merge via replay since the nature of the merge process
is to resolve undocumented dependencies. However, the dependency-driven approach should
be highly effective on the resvlting replayable derivation histories.

4 Status and Conclusions

We have defined the requirements for our replay capability and have designed the sup-
porting representations and some of the algorithms. As was mentioned in Section 2.6, except
for micro-level rederivation and some types of input specification alterations, an implementa-
tion of our approach to rederivation has been built and tested. If we continue implementing,
we would limit micro-level rederivations to ones that either just determine the applicability of
a transform or propagate the same alteration to the output of a transformation as was made
to the input of that transformation. This limitation will make implementing micro-level
rederivations more tractable while providing enough power to handle many of the micro-
level rederivations that one will want to perform, including all the micro-level rederivations
needed for the examples.

The incremental dependency-directed rederivation approach we have described is an ex-
cellent match to maintenance type artifact modifications in which the most difficult part of
the problem is identifying impacted areas. Having performed this impact analysis, mainte-
nance can proceed on only those areas aifected. Micro-level rederivation strategies will allow
us to linnt those areas even further. The replay delta calculus approach defines the possible
impacts of a maintenance delta.

The KBSA style of program development via rederivation is different. than today’s code-
based maintenance approach. This style will pose new requirements on software development
tools, a replay capability being just one of those requirements. Another area to be addressed
is a new form of complexity metric beyond, for example, the McCabe metrics [17], to assess
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program complexity. The replay delta calculus may permit the assessment of the modifia-
bility of a derivation history which could serve as just the metric required, measuring the
modifiability of the program via the modifiability of its design.
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A Transformations Used in “A Larger Example”

This appendix gives the transformations used in the example described in Section 2.5. The
transformations are given in the rrder that they are applied. For each transformation, the
rule for that transformation is given, followed by the input to that rule and the effects of
running that rule. Section 2.1 gives a description of running a sample rule to produce a
transformation. Note that the system is case insensitive, so that input looks the same as

INPUT and so on.
Due to implementation details, each transformation rule actually ends with a clause of

the form
L (*xformed-node* < — parml)

where perii! is the first input parameter (input in the rule fact-input below, and so on) in

the rule. These clauses are not shown.

1. The rule is called fact-input. It adds input conditions to the program.

rule fact-input (input, name, arg)
input = ‘(:input $existing-cond)’ & name = ‘fact’ —— >
input = ‘(:input (integer @(copy(arg))) (>= @(copy(arg)) 0) $existing-cond)’

This rule is called with the bindings input= (:INPUT), name= FACT, and arg= X. The
rule alters the input binding to be (:INPUT (INTEGER X) (>= X 0)).

2. The rule is called fact-output. It adds output conditions to the program:
rule fact-output (output, name, arg)
output = ‘(:output $existing-cond)’ & namec = ‘fact’ —— >
output = ‘(:output (integjer (fact Q(copy(arg)))) S$existing cond)’

This rule is called with the bindings input= (:0UTPUT), name= FACT, and arg= X.
The rule alters the output binding to be (:0UTPUT (INTEGER (FACT X))).
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The rule is called fact-base. It adds the base case for finding factorials:

rule fact-base (implement, name, arg, design)
implement = ‘(:implementation $already-imp)’ & name = ‘fact’
& design = ‘(:design .. inductive ..)’ -—— >
implement = ‘(:implementation
(vhen (= @(copy(arg)) 9) (return-from fact 1)) 3already-imp)’

This rule is called with the bindings implement= (:IMPLEMENTATION), name= FACT,
arg= X, and design= (:DESIGN INDUCTIVE). The rule alters the implement binding to

be (:IMPLEMENTATION (WHEN (= X 0) (RETURN-FROM FACT 1))).

The rule is called fact-recur. It adds the recursive case for finding factorials:

rule fact-recur (implement, name, arg, designl, design2)
implement = ‘(:implementation $already-inp)’ & name = ‘fact’

& designl = ‘(:design .. recursive ..)’
& design2 = ‘(:design .. inductive ..)’ —— >
implement =

‘(:implementation
(when (> @(copy(arg)) 0) (return-from fact
(* @(copy(arg)) (fact (- ©(copy(arg)) 1)))))

$already-imp)’

This rule is called with the bindings name= FACT, arg= X, designl= (:DESIGN RECURSIVE),
design2= (:DESIGN INDUCTIVE), and implement=

(:IMPLEMENTATION (WHEN (= X 0) (RETURN-FROM FACT 1))

The rule alters the implement binding to be

(: IMPLEMENTATION {(WHEN (> X 0) (RETURN-FROM FACT (* X (FACT (- X 1)))))

(WHEN (= X 0) (RETURN-FROM FACT 1)))

The rule is called test-input-conditions. It adds “code” to test the given input condi-

tions:

rule test-input-conditions (implement, name, input-cond)
implement = ‘(:implementation $already-imp)’ & lisp-atom(name)
& input-cond = ‘(:input $i-¢)’ —— >
implement = ‘(: implementation
(vhen (not (and $(copy-sequence(i-c))))

(return-from @(copy(name)) :error)) S$already-imp)’

This rule is called with the bindings name= FACT, input-cond=
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(:INPUT (INTEGER X) (>= X 0))

and implement=

(: IMPLEMENTATION (WHEN (> X 0) (RETURN-FROM FACT (* X (FACT (- X 1)))))
(WHEN (= X 0) (RETURN-FROM FACT 1)))

The rule alters the implernent binding to be

(: IMPLEMENTATION

(WHEN (NOT (AND (INTEGER X) (»= X 0))) (RETURN-FROM FACT :ERROR))
(WHEN (> X 0) (RETURN-FROM FACT (* X (FACT (- X 1)))))

(WHEN (= X 0) (RETURN-FROM FACT 1)))

. The rule is called add-cache. It adds the data structures and procedures to cache a

function’s value:

rule add-cache (top-level, name, design)
top-level = ‘@existing-form! $existing-forms’
& lisp-atom(name) & design = ‘(:design .. cache-results ..)’
_
str-value(cache-doc) =
concat("cache for ", symbol-to-string(atom-value(name))) &
atori, value(cache-name) =
gentemp(concat("*", symbol-to-string(atom-value(name)),
"~CACHE*-"), "REPLAY")
& string-const(cache-doc) & lisp-atom(cache-name) &
str-value(cache-check-doc) =
concat("check to see if value cached for ",
symbol-to-string(atom-value(name))) &
atom-value(cache-check-name) =
gentemp(concat(symbol-to-string(atom-value(name)),
"-VAL-CACHED?-"), "REPLAY")
& string-const(cache-check-doc) & lisp-atom(cache-check-name) &
str-value(cache-val-doc) =
concat("return cached value for ",
symbol-to-string(atom-value(name))) &
atom-value(cache-val-name) =
gentemp(concat(symbol-to-string(atom-value(name)),
"~CACHED-VAL-"), "REPLAY")
& string-const(cache-val-doc) & lisp-atom(cache-val-name) &
str-value(cache-store-doc) =
concat(''cache a value for ", symbol-to-string(atom-value(name))) &
atom-value(cache-store-name) =
gentemp(concat (" CACHE-", symbol-to-string(atom-value(name)),
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"-VAL-"), "REPLAY")
& string-const(cache-store-doc) & lisp-atom(cache-store-name) &
top-level =
‘Qexisting-forml
(defvar @cache-name (make-hash-table) Q@cache-doc)
(defun @cache-check-name (x) @cache-check-doc
(gethash x @(copy(cache-name))))
(defun Qcache-val-name (x) @cache-val-doc
(gethash x @(copy(cache-name))))
(defun @cache-store-name (x val) @cache-store-doc
(setf (gethash x @(copy(cache-name))) val))
$existing-forms’

This rule is called with the bindings name= FACT, design = (:DESIGN CACHE-RESULTS),
and top-level=

(DEFUN FACT (X)
(:DESIGN RECURSIVE) (:DESIGN CACHE-RESULTS) (:DESIGN INDUCTIVE)

(: INPUT (INTEGER X) (>= X 0))

(:OUTPUT (INTEGER (FACT X)))

(: IMPLEMENTATION

(WHEN (NOT (AND (INTEGER X) (>= X 0))) (RETURN-FROM FACT :ERROR))

(WHEN (> X 0) (RETURN-FROM FACT (* X (FACT (- X 1)))))

(WHEN (= X 0) (RETURN-FROM FACT 1))))

(: COMMENT))
The function gentemp is used to insure new symbol names for generated symbols. The
rule alters the fop-level binding to be

(DEFUN FACT (X)
(:DESIGN RECURSIVE) (:DESIGN CACHE-RESULTS) (:DESIGN INDUCTIVE)
(: INPUT (INTEGER X) (= X 0))
(:QUTPUT (INTEGER (FACT X)))
(: IMPLEMENTATION
(WHEN (NOT (AND (INTEGER X) (>= X 0))) (RETURN-FROM FACT :ERROR))
(WHEN (> X 0) (RETURN-FROM FACT (* X (FACT (- X 1)))))
(WHEN (= X 0) (RETURN-FROM FACT 1))))
(: COMMENT)) ,
(DEFVAR *FACT-CACHE#*-7375 (MAKZ-HASH-TABLE) “"cache for FACT")
(DEFUN FACT-VAL-CACHED?-7375 (X) "check to see if value cached for FACT"
(GETHASH X *FACT-CACHE*-7375))
(DEFUN FACT-CACHED-VAL-7375 (X) "return cached value for FACT"
(GETHASH X *FACT-CACHE*-7375))
(DEFUN CACHE-FACT-VAL-7375 (X VAL) "cache a value for FACT"
(SETF (GETHASH X *FACT-CACHE#*-~7375) VAL))
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. The rule is called add-cache-look-up. It performs 3 actions. The first action is to check
that the implementation part of a program are clauses in a certain format. The second
action is to alter that format, and the third action is to have the program look for
cached values before computing a new value:

rule add-cache-look-up (implement, name, arg, design, cache-check, cache-value)
implement = ‘(:implementation $already-imp)’ & lisp-atom(name)
& (fa (clause) (clause in already-imp =>
(clause = ‘(wvhen Q@ .. (return-from Q@ ©@))’
& term-equal?(elements(last(elements(clause)))(2), name))))
& design = ‘(:design .. cache-results ..)’
& cache-check = ‘(defun @cache-check-name @@ @cache-check-doc ..)’ ,
& lisp-atom(cache-check-name) & string-const(cache-check-doc)
& str-value(cache-check-doc) =
concat('"check to see if value cached for ",
symbol-to-string(atom-value(name)))
& cache-value = ‘(defun ©@cache-value-name Q@ @cache-value-doc ..)’
& lisp-atom(cache-value-name) & string-const(cache-value-doc)
& str-value(cache-value-doc) =
concat("return cached value for ",
symbol-to-string(atom-value(name)))
- >
(enumerate clause over already-imp do
clause = ‘(when $main-body (return-from Q@ @result))’
- >
clause = *($main-body Qresult)’)
& implement =
‘(:implementation (cond ((@(copy(cache-check-name)) Q(copy(arg)))
(@(copy(cache-value-name)) @(copy(arg))))
$already-imp))’

This rule is called with the bindings name= FACT, arg= X,

design= (:DESIGN CACHE-RESULTS)
cache-check=
(DEFUN FACT-VAL-CACHED?-7375 (X)
"check to see if value cached for FACT"
(GETHASH X *FACT-CACHE*-7375))
cache-value=
(DEFUN FACT-CACHED-VAL-7375 (X) '"return cached value for FACT"
(GETHASH X *FACT-CACHE*-7375))

and implement=

(: IMPLEMENTATION
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(WHEN (NOT (AND (INTEGER X) (>= X 0))) (RETURN-FROM FACT :ERROR))
(WHEN (> X 0) (RETURN-FROM FACT (* X (FACT (- X 1)))))
(WHEN (= X 0) (RETURN-FROM FACT 1)))

The rule alters the implement binding to be

(: IMPLEMENTATION
(COND ((FACT-VAL-CACHED?-7375 X) (FACT-CACHED-VAL-7375 X))
((NOT (AND (INTEGER X) (>= X 0))) :ERROR)
((> X 0) (* X (FACT (- X 1))))
((= X 0) 1)))

. The rule is called add-cache-save-out. It alters a program to save into the cache the

results of any computation:

rule add-cache-save-out (implement, name, arg, design, cache-save-fcn)
implement = ‘(:implementation (cond $cond-clauses))’
& lisp-atom(name) & design = ‘(:design .. cache-results ..)’
& cache-save-fcn = ‘(defun Qcache-save-name Q@ @Qcache-save-doc ..)’
& lisp-atom{cache-save-name) & string-const(cache-save-doc)
& str-value(cache-save-doc) = concat(''cache a value for ",
symbol-to-string(atom-value(name)))

_—
atom-value(ret-var) = gentemp{"RET-", "REPLAY") & lisp-atom(ret-var) &
implement = ‘(:implementation

(let ((@ret-var (cond $cond-clauses)))
(@(copy(cache-save-name)) @Q(copy(arg)) Q(copy(ret-var)))
@(copy(ret-var))))’

This rule is called with the bindings name= FACT, arg= X, design=
(:design cache-results), cache-save-fun=

(DEFUN CACHE-FACT-VAL-7375 (X VAL) "cache a value for FACT"
(SETF (GETHASH X *FACT-CACHE*-7375) VAL))

and implement=
(: IMPLEMENTATION
(COND ((FACT-VAL-CACHED?-7375 X) (FACT-CACHED-VAL-7375 X))
((NOT (AND (INTEGER X) (»= X 0))) :ERROR)

((> X 0) (* X (FACT (- X 1))))
((= X 0) 1))

The rule alters the implement binding to be
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(: IMPLEMENTATION

(LET ((RET-7375
(COND ((FACT-VAL-CACHED?-7375 X) (FACT-CACHED-VAL-7375 X))

((NOT (AND (INTEGER X) (>= X 0))) :ERROR)
((> X 0) (* X (FACT (- X 1))))
((=x0) 1N

(CACHE-FACT-VAL-7375 X RET-7375)

RET-7375))
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