Properties of Alfvén Waves with Transverse Scale on the Order of Skin-Depth

G.J. Morales, R.S. Loritsch and J.E. Maggs

October 1994 PPG-1525

Affiliated with the Departments of:
Astronomy
Earth and Space Sciences
Electrical Engineering
Materials Science and Engineering
Mechanical, Aerospace and Nuclear Engineering
Physics
and
Center for Advanced Accelerators
Institute of Geophysics and Planetary Physics

Reproduced From Best Available Copy
Properties of Alfven Waves with Transverse Scale on the Order of Skin-Depth

G.J. Morales, R.S. Loritsch and J.E. Maggs

October 1994 PPG-1525

University of California at Los Angeles
Department of Physics
Los Angeles, CA 90024-1547

Presented at the International Conference on Plasma Physics
Foz do Iguaçu, Brazil, 31 Oct-4 Nov, 1994

94-32724
Properties of Alfven Waves with Transverse Scale on the Order of the Skin-Depth

G.J. Morales, R.S. Loritsch, and J.E. Maggs
Physics Department, University of California, Los Angeles
Los Angeles, CA 90024-1547 USA

OVERVIEW

It is widely perceived that shear Alfven waves propagate electromagnetic disturbances strictly along the ambient magnetic field. This feature is a consequence of the neglect of the parallel electric field, an approximation appropriate for large perpendicular wavelengths \((k_\perp \to 0)\). However, for small transverse scales, the parallel electron currents cannot be neglected.

This analytical study examines shear Alfven waves whose scale across the magnetic field is on the order of the electron skin-depth \(c/\omega_{pe} = k_s^{-1}\). This physical situation is motivated by the interest in spontaneous filamentation in magnetized plasmas, studies of axial relaxation of transport currents, and models of electron acceleration in space plasmas. At the basic level, this study addresses how a microscopic current channel spreads.

It is found that Alfven wave patterns exhibit a collisionless divergence determined by propagation cones that emanate from the edges of the exciting structures. The spreading cones follow an angle \(\theta\) relative to the magnetic field given by \(\tan \theta = (\omega/\Omega_i) (m/M)^{1/2} [1-(\omega/\Omega_i)^2]^{-1/2}\), where \(\omega\) is the wave frequency, \(\Omega_i\) is the ion gyrofrequency, \(m\) and \(M\) are the electron and ion mass. Within a few wavelengths of the exciter, a radial diffraction pattern develops due to coaxial currents induced by the skin effect. The transition from collisionless divergence along cone trajectories to radial diffusion occurs for values of \(v_e/\omega\) slightly larger than unity, where \(v_e\) is the electron collision frequency.

Recent experiments [1] in the LAPD facility at UCLA have verified several of the theoretical predictions of this study.

FORMULATION

Using the simplest model of excitation consisting of a disk of radius \(a\), with the ambient magnetic field perpendicular to the disk plane and pointing along the \(z\) direction, results in a wave magnetic field

\[
\vec{B}_\theta (r,z,\omega) = \frac{2I_0}{ca} \int_0^\infty dk \frac{\sin k a}{k} J_1(kr) \exp [i k_\parallel(k)a] , \tag{1}
\]

where \(k_\parallel(k) = k_A [1 + (k/k_A)^2]^{1/2}\) with \(k_A\) the Alfven wavenumber at frequency \(\omega\), and \(I_0\) is the AC current to the disk. The corresponding scaled pattern is shown in Figs. 1 and 2. Collisions are incorporated by including the complex components of the dielectric tensor in \(k_A\). An example of the effects produced is shown in Fig. 3. The diffusive pattern \((\Gamma = 5)\) is analogous to the cases investigated by Borg, et al [2].

The effects caused by bulk plasma flow at speed \(v_D\) on a shear Alfven wave excited by a strip antenna, infinitely long in the \(y\) direction and of width \(a\) along \(x\), are described by

\[
\vec{B}_y (x,z,\omega) = \frac{2I_0}{ica} \int_{-\infty}^{\infty} dk \frac{\sin (ka/2)}{k^2} \exp \{i [kx + k_\parallel(k)a]z\} , \tag{2}
\]

in which \(k_\parallel(k) = k_A [1 + (k/k_A)^2]^{1/2} (1 - k v_D/\omega)\), and \(I_0'\) is the current per unit length delivered to the strip. As seen in Fig. 4 the plasma flow causes a convection of the center of the current channel and induces oscillations that extend beyond the cone trajectories. These features may be of relevance to magnetic turbulence at the edge of magnetized plasmas.
As has been recently emphasized by P.M. Bellan of Caltech, shear Alfvén waves have a cut-off at the points \(\omega = k_{\parallel} \nu_A \), and not a resonance. Consequently, it is possible to encounter various interesting features determined by their reflection properties, which are summarized in Fig. 5. A jump in density in the \(x \) direction acts as a high-pass filter for small density increases. However, for \(\nu_{\parallel} > 6 \), an effective ducting of shear modes occurs. The axial density jump acts as a partial reflector.

The axial electric field of a shear mode propagating in the \(x-z \) plane in a plasma whose density varies along the \(x \) direction is given by \(E_z(x) \exp(ik_xz) \) with \(E_z \) determined by

\[
\frac{d}{dx} \left(\frac{\varepsilon_\perp}{\varepsilon - n_z^2} \frac{d}{dx} E_z \right) + k_0^2 \varepsilon_\parallel E_z = 0 ,
\]

where \(\varepsilon_\perp, \varepsilon_\parallel \) are the perpendicular and parallel components of the cold plasma dielectric tensor, \(k_0 = \omega/c, n_z = k_{\parallel}/k_0 \). Near the reflection layer at \(\varepsilon_\perp = n_z^2 \) the waveform obtained from Eq. (3) is the derivative of the Airy function, i.e., \(E_z = \text{Ai}'(\xi) \) with \(\xi = (M/m)^{1/3} (\Omega_i L/c)^{2/3} (x/L) \), and \(L \) the scale length. Thus, yielding a field structure whose width is independent of density and frequency.

SUMMARY

The propagation of small scale shear waves exhibits new features, amenable to experimental study, which may have important consequences for energy transport and particle acceleration.

This work is sponsored by ONR.

References

Fig. 1. Radial dependence of scaled magnetic field for different axial positions \(z \). Radius of disk is \(c/\omega_{pe} \). Axial current channel spreads up to the cone trajectories. Resistive diffusion allows expansion beyond cones, as shown in Fig. 3.
Fig. 2. Axial dependence of the real and imaginary parts of the scaled magnetic field for two radial positions outside the disk shadow. Axial decay at \(r/a = 3 \) corresponds to radial spreading seen in Fig. 1.

Fig. 3. Transition from collisionless divergence set by cone trajectory to diffusive spread as collision frequency increases. \(\Gamma = \nu_e/\omega, k_Az = 3\pi/2. \)
Fig. 4. Transverse dependence of magnitude of scaled magnetic field at axial position $k_A z = \pi$ for two values of scaled drift $u = 2v_D/a_0$ along x. B_y is constant outside axial current channel for this geometry. Antenna width is $a = c/\omega_{pe}$.

Fig. 5. Dependence of reflection coefficient on scaled transverse wave number $\kappa = k_L/k_s$, for a density jump n'/n transverse to the ambient field, R_x, and along the field, R_z.