AD-A285 357 W
LR ' @\)

JHU/APL
Sl TG 1386
%=<{V) SEPTEMBER 1994

Technical Memorandum

PROCEEDINGS OF THE
FOURTH SYSTEMS REENGINEERING
TECHNOLOGY WORKSHOP

BRUCE |. BLUM, editor

DTIC QUALITY INSPECTED 2

THE JOHNS HOPKINS UNIVERSITY B APPLIED PHYSICS LABORATORY

l Approved for public release; distribution is unlimited.—|

2

94-31
Ll il ’”lh h, il l"

JHU/APL
TG 1386
SEPTEMBER 1994

Technical Memorandum

PROCEEDINGS OF THE
FOURTH SYSTEMS REENGINEERING
TECHNOLOGY WORKSHOP

Monterey Marriot Hotel
Monterey, California
February 8-10, 1994

BRUCE 1. BLUM, editor

Sponsored by
NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION—WHITE OAK DETACHMENT

Silver Spring, MD 20903-5640

With the Cooperation of
JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY

Laurel, MD 20723-6099

lipproved for public release; distribution is unlimitecq

o

The Systems Reengineering Technology Workshop is sponsored by
the Navy Surface Warfare Center, Dahlgren Division, as part of the
Complex Systems Engineering Block Program. The organizers of this
workshop wish to express their appreciation to CDR Grace Thompson
and Dr. Harry Crisp for their continuing guidance and assistance. Mr.

Blum is supported by ONR tasks under contract N00039-91-C-0001
with SPAWAR.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ta. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

JHU/APL TG-1386

S. MONITORING ORGANIZATION REPORT NUMBER(S)

JHU/APL TG-1386

Laurel, Md. 20723-6099

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Johns Hopkins University (#f sppicabie) NAVTECHREP
Applied Physics Laboratory RCO Laurel, Maryland

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Clty, Stats, and ZIP Code)
Johns Hopkins Road Johns Hopkins Road

Laurel, Md. 20723-6099

8b. OFFICE SYMBOL
(If applicabie)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Naval Surface Warfare Center

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00039-91-C-0001

8c. ADDRESS (City, State. ana ZIP Code)

Dahlgren Division—White Oak Detachment
Silver Spring, MD 20903-5640

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Inciude Secunty Classification)

Proceedings of the Fourth Systems Reengineering Technology Workshop (U)

12. PERSONAL AUTHOR(S)
Bruce I. Blum. editor

13a. TYPE OF REPORT 13b. TIME COVERED
Technical Memorandum FROM TO

14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
September 1994 410

16. SUPPLEMENTARY NOTATION

Presented at Fourth Systems Reengineering Technology Workshop, Monterey, Calif., 8-10 Feb. 1994

17. COSATI CODES

FIELD GROUP SUB-GROUP

Reengineering

18. SUBJECT TERMS (Continue on raverse if necessary and identfy by block number

Software reengineering

Systems reengineering

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

The Navy has invested significant resources in the development of large and compiex systems that must be modified and
extended to respond to changing requirements. However, many of these systems are based on archaic automation technolo-
gies that do not support modern hardware and software engineering methodologies or maintenance strategies. Conse-
quently, system modification has become increasingly complex. To reduce the complexity, developers can empioy
reengineering techniques to create new systems. This report contains the papers presented at the Fourth Systems
Reengineering Technology Workshop sponsored by the Naval Surface Warfare Center. The papers discuss theoretical anc
applied techniques that can be used to facilitate systems reengineering efforts. Specific topics include design issues in
systems reengineering, reuse in reengineering and forward engineering, experience reports, reengineering translation and
transformation, evaluating a reengineering project, tools for reengineering, engineering science and reengineering, the
impact of object orientation, and approaches to reengineering.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
(X} UNCLASSIFIED/UNLIMITED (O SAME ASRPT. [J DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Inciude Arsa Code) 22¢. OFFICE SYMBO«
NAVTECHREP Security Officer (301) 953-5403 NAVTECHREP
DD FORM 1473, 64 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

UNCLASSIFIED

P

The Johns Hopkins University

Applied Physics Laboratory
Laurel, Maryland 20723-6099

ABSTRACT

The Navy has invested significant resources in the development of large and
complex systems that must be modified and extended to respond to changing require-
ments. However, many of these systems are based on archaic automation technologies
that do not support modern hardware and software engineering methodologies or
maintenance strategies. Consequently, system modification has become increasingly
complex. To reduce the complexity, developers can employ reengineering techniques
to create new systems. This report contains the papers presented at the Fourth Systems
Reengineering Technology Workshop sponsored by the Naval Surface Warfare
Center. The papers discuss theoretical and applied techniques that can be used to
facilitate systems reengineering efforts. Specific topics include design issues in
systems reengineering, reuse in reengineering and forward engineering, experience
reports, reengineering translation and transformation, evaluating a reengineering
project, tools for reengineering, engineering science and reengineering, the impact of
object orientation, and approaches to reengineering.

Accesion For
NTIS CRA&]J
DTIC TAB]
Una inoirzed .
Justi, dhoa
By ...
Dist.ib. lic .
i\v;iinbiii‘:; e
. V.Avmik :
Dist Special
A-(

The Johns Hopkins University

Applied Physics Laboratory
Laurel, Maryland 20723-6099

Foreword

This is the fourth of a series annual workshops sponsored by the Naval Surface Wartare
Center (NSWC). These Systems Reengineering Technology Workshops are motivated by the
fact that the Navy has invested billions of dollars in the development of systems that may be
modified and extended to respond to changing requirements. Systems reengineering technology
is necessary if the Navy (as well as the other users of large-scale, complex systems) are to benefit
from their extensive investments.

The workshop brings together representatives of government, industry, and academia to
address the issues confronting this technology. Although the principal interest of the sponsors
is the reegineering of embedded, real-time systems that include hardware, software, and human-
computer interaction, the workshop encourages the participation of all individuals and
organizations concerned with the reengineering of large-scale, complex systems.

These participant’s proceedings contain the papers accepted for presentation at the
workshop. They have been organized to according to the order of the program. The workshop
begins with a keynote address by Andrew P. Sage. His paper, “Systems Engineering and
Management for Reengineering,” provides an introduction to the issues to be discussed during
the workshop. The paper is abstracted from Systems Management for Information Technology
and Software Engineering, which will be published by Wiley later in 1994. This opening paper
is complemented by Robert S. Arnold, “A Road Map Guide to Software Reengineering
Technology,” which is included as an appendix. It is the introduction to R. Arnold (ed.),
Software Reengineering, IEEE Computer Science Press, 1993. Thus, this volume begins and ends
with two very important surveys that present a conceptual context for reengineering and this
workshop.

The papers in the volume have been grouped into units with common themes. The
commonality, of course, often is more apparent than real. With the decision not to have parallel
sessions and a commitment to accept all the relevant, quality papers that could be accommodated
in the time available, the workshop organizers were not always able to focus a session on a
central theme. We overcame this difficulty, in part, by structuring some of the workshop sessions
as panels rather than paper presentations. In those cases, the papers in these proceedings
constitute an extended discussion of concepts that may have been presented only briefly in the
workshop.

By the standards of most academic conferences, these proceedings are long. Because the
literature on systems (as opposed to software or organizational) reengineering is sparse, we
elected not to place any page limits on the papers. Thus, the papers are as long (or short) as
they needed to be to convey what the authors believe is important. As the organizers of this
workshop, we hope that those who read these proceedings will concur with this decision.

Mark Wilson, Workshop Chair
Bruce Blum, Program Co-Chair
Gilbert Myers. Program Co-Chair

The Johns Hoj .. 1s University

Applied Physics Laboratory
Laurel Maryland 20723-6099

Table of Contents

Foreword

..

Keynote Address

Systems Engineering and Management for Reengineering
Andrew P. Sage (George Mason University)

.............................

Design Issues in Systems Reengineering

Design Capture and Optimization Issues for System-Level Reengineering
Steven Howell, NgocDung Hoang, Cuong Nguyen (Naval Surface Warfare

Center, Dahlgren Division), and Nicholas Karangelen (Trident Systems,
Inc.)

...

Information Architecture, An Architectural Basis for Evolution of Large
Scale Software Systems

John Leary (SEI Washington Office)
A Framework for Automated Reengineering of Complex Computer Systems

Lonnie R. Welch (NJIT), Antonio L. Samuel, Michael W. Masters, Robert L.

Harrison (Naval Surface Warfare Center, Dahlgren Division), Alexander D.

Stoyenko (NJIT), and Joe Caruso (CSC)
Dynamic (Re)Generation of Software Documentation

W. Lewis Johnson (USC/Information Sciences Institute)

...................

Reuse in Reengineering and Forward Engineering

A Case Study of Software Reuse in Vertical Domain
Vaclav Rajlich and Jodo Silva (Wayne State University)
Reengineering to Increase Maintainability and Enable Reuse
Grady H. Campbell, Jr. (Software Productivity Consortium)
A Reuse Approach to Computer-Assisted Software Reengineering
Daniel E. Wilkening, Joseph P. Loyall (TASC), Marc J. Pitarys, and
Kenneth Littlejohn (USAF Wright Laboratory)
Formal Specification and Software Reuse in Reengineering Embedded
Real-Time Systems

Farnam Jahanian (University of Michigan)

The Johns Hopkins Unive.aity

"~ Applied Physics Laboratory
Laurel, Maryland 20723-6099

Experience Reports and Discussion (Panel)

MK 86/UYK-7 Enhanced Memory Unit Project: Jacking the Computer Up and
Putting a Powerful Engine Under 1t!
Joe S. Ganes, Richard W. Williams and Jay Roske (Naval Surtace

Warfare Center, Crane Division) i

Reengineering the LAMPS Mark III to Provide a LOS Ship-to-ship

Teleconferencing Mode
James P. Rahilly (Naval Command, Control and Ocean Surveillance Center) 107

A Successful Process Improvement Effort Using Cleanroom Software Engineering
S. Wayne Sherer (AMCCOM LCSEC), Paul Arnold (IBM), and Ara
Kouchakdjian (SET), 120

Design Capture Views Applied to the WAA System
Daniel J. Organ (Naval Undersea Warfare Center, Newport Division) 136

Reengineering Translation and Transformation (Panel)

Translating CMS-2 to Ada
Charles H. Sampson (Computer Sciences Corporation) 143

Reengineering Concurrent Software Into Ada
Noah Prywes, Giorgio Ingargiola, Insup Lee, and Moon Lee
(Computer Command and Control Company) 157

Software Migration and Reengineering (SMR): A Pilot Project in Reengineering
Stephen R. Mackey (MCC) and Lynn M. Meredith (Computing Devices
International) e e s

Reverse Engineering Complex Databases to Support Data Fusion
R. D. Semmel (Applied Physics Laboratory) and R. Winkler (U. S.
Army Research Laboratory) 192

VHDL Board-Level Modeling To Expedite Redesign
L. J. Ceder (Naval Research Laboratory), Charles Rogers, Louie Kitcott,
James Michaud (Naval Air Warfare Center, Aircraft Division), John Miles,

Gary Hout, Ed Woods, Darin York (Naval Surface Warfare Center, Crane
Division), and Peter Everitt (CACIL. Inc.) 200

Evaluating a Reengineering Project

Using the CIM Reengineering Process Model in Navy Reengineering Efforts
Tamra Moore (Defense Information Systems Agency) 205

Reengineering Assessment Handbook (MIL-HDBK-SRAH)

Vi

The Johns Hopkins University

Applied Physics Laboratory
Laurel, Maryland 20723-6099

John Clark, Barry Stevens (COMPTEK Federal Systems), John Donald
(Air Force Cost Analysis Agency), and Sherry Stukes (Management
Consulting & Research, Inc.) 216

System Reengineering Evaluation: A Design Dependent Parameter Approach
Wolter J. Fabrycky (Virginia Polytechnic Institute and State University) 224

Metrics for Reengineering of Software Systems
Annette R. Ashton and William H. Farr (Naval Surface Warfare Center,
Dahlgren Division) i 234

Tools for Reengineering

Customized Software Evaluation Tools: Application of an Enabling Technology
for Reengineering
Lawrence Markosian, Russell Brand, and Gordon Kotik
(Reasoning Systems, Inc.) e 248

Using Design Knowledge to Extract Real-Time Task Models
Lester Holzblatt, Richard Piazza, Howard Reubenstein. and Susan Roberts

(The MITRE Corporation)ciiiiuiuininerneneennnnn.. 256
Maintenance Process Reengineering: Toward a New Generation of CASE Technology

Judith Ahrens, Noah Prywes, and Evan Lock (Computer Command and

Control Company)ttt 263
A Syntax-Directed Tool for Program Understanding and Transtormation

William G. Griswold and Darren C. Atkinson (University of California,

San Diego) 274

Engineering Science and Reengineering

Software Reengineering in the SF Framework

A. T Berztiss (University of Pittsburgh) 283
Efficient Methods for Validating Timing Constraints in Multiprocessor and
Distributed Systems

Jane W. S. Liu and Rhan Ha (University of Illinois) 292
Massively Parallel Systems Design tor Real-Time Embedded Applications

Thomas C. Choinski (Naval Undersea Warfare Center, Newport Division) and

Chin-Hwa Lee (Naval Postgraduate School) 304

Knowledge-Based, Metalanguage-Based Object Abstraction for Automatic
Program Transformation
Romel Rivera (Xinotech Research) 319

The johns Hopkins University

Applied Physics Laboratory
Laurel, Maryland 20723-6099

The Impact of an Object Orientation

Issues in Re-engineering from Procedural to Object-Oriented Code
Ricky E. Sward and Robert A. Steigerwald (USAF Academy) 327

An Objeci-Based Framework for Reengineering Avionics Soltware
Noble N. Nkwocha and John J. Zenor (Naval Air Warfare Center Weapons
DiviSIOn) L334

An Object-Oriented Paradigm for Reengineering Complex Real-Time Systems
Kwei-Jay Lin (University of California, Irvine)342

Approaches to Reengineering (Panel)

The Next Generation Computer Resources Program: Strategic Direction
Rex Buddenberg (Naval Postgraduate School) 340

Reuse-based Reengineering: Notes From the Underground
Frank Svoboda (Unisys Government Systems Group)355

Reengineering as an Engineering Problem: Conceptual Framework and
Application to Community Problems
Peter Feiler, Walt Lamia, and Dennis Smith (Software Engineering
Institute) e L3061

Current STSC Reengineering Projects: MIL-HDBK-RAH Application Findings,
Reengineering Project Planning Process, and STSC Reengineering Survey
Results

Michael R. Olsem (SAIC) and Chris Sittenauer (USAF Software Technology

Support Center) e . 373

Appendix
A Road Map Guide to Software Reengineering Technology (From R. Arnold (ed.),
Software Reengineering, 1IEEE CS Press, 1993, reprinted with permission.)
Robert Arnold (SEVTEC) 38]

Author Index 401

viil

Systems Engineering and Management for Reengineering

Andrew P. Sage

School of Information Technology and Engineering
Goorge Mason University
Fairfax, VA 22030-4444

Abstract This paper presents and overview and perspective on
systems engineering and systems management for
reengineering and related approaches towards organizational
and technology revitalization. As we will sce, there are at least
three types of reengincering that can be considered:
reengineering at the levels of product, process, and systems
management. We claim that all three are generally needed and
an approach at one level only may not be satisfactory.

L INTRODUCTION

Responsiveness is very clearly a critical need today. By this, we
mean of course, organizational responsivencss in providing
products and services of demonstrable value to customers, and
thereby to the organizations own stakeholders. This must be
accomplished by efficiently and effectively employing leadership
and empowered people, such that systems management strategies,
organizational processes, human resources, and appropriate
technologies are brouglit tc bear on the production of high quality
and trustworthy goods and services. We also mean respornsiveness
in supplying appropriate technologies and systems to meet these
objectives. Figure 1 illustrates these ingredients and some of their
linkages in the production of products and services. It is a
composite representations that indicates some of the many
ingredients responsible for trustworthy and high quality products.

Many recent papers [1] have indicated the nced for continual
revitalization in the way in which we do things, such that they are
always done better. This is the case, even if the external

Fig. 1 Some of the Many Major Ingredients in Reengineering

envirolunent were stiic and unchanging. However, when we are
i a period of ligh veloaty envirowments, then continual
ofganizatond change and associated clunge in processes and
product must be considered as a fundamental rule of the game for
progress.

In many ways, past progress can act o unpede future progress.
This is especially the case when we become very accustomed to a
paricular way of doing things, and have allowed a very large
overhead situation to accumulate around what were once highly
successful efforts at the production of quality products and services.
It is especially difficult to change when what we are doing now is
done very well. Yet, it is entirely possible that a competitor may be
able to do it better, in any of a number of ways. Also, what we do
well now nuy well not be what we will noed to be doing in the
future.

In many if not most cascs, improvement needs come about not
because of human inattention to the tasks they perform. Rather, and
more ofien than not, it suggests that the tasks themschves are in
need of restudy and renovation. These tasks nuy be strategic in
nature. or they may be tactical, or they may be purely operational.
Most often, however, attempts at improvement through attention at
only operational levels will yicld very modest improverents for the
cffort invested. As many have indicated. & is the (strategic and
tactical. and not the operationi\l) system that is af fault.

Figure 2 indicates some improvement approaches, each of
which relate 1o reengineering. They are interrelated and our listing
is not complete. One of our objectives in this paper is to provide a
perspective and ovenview of somce of Uie nuiny reengineering

(=) --

Fig. 2 Some Approaches to Reengineering

approaches and methodologies Uit lunve been suggested. A nuich
more complete dissuasion is contained in |2}, and Yus paper is i
summary of Chapier 8 which discusses recngincenng.

Figure 3 represents a gencnic view of reenguxenng. The enuify
to be reengincered can be either systems management, process. or
product, or some appropritte combination of these. We will expaund
on this ilustration and its interpretation in owr discussions o

Implement
R N '_l
Defin
idantfy obmciives for
the reengneenng eftort
and obtain & sel of
raquirements for the Development
M‘T"’“‘“"—J Determune srchvtectursi
I needs, desgn the
i \ reengineered entty. and Y
o test and evaluate the
| T T new entty Deployment
‘ Implement he new

: reengneenng entty in
i an operatonal setung
~.] and amange for
- - =~ s eeees o cONBRURE MANtenance

Fig 3 A Three Phase Approich to Genenc Reengineering

We can approach a discussion of reengineering from several

perspectives. First, we can discuss the

& structural,

® functional, and

® purposeful
aspects of reenginecring. Altemately, or in addition, we can
examine reengineenng at the level of

8 systems management,

8 process, of

® product
We may examine reengineering issues at any, or all. of the three
fundamental systems engineering lifecycles:

8 research, development, test. and evaluation (RDT&E).

& systerns acquisition, procuremient, or production; or

& systems planning and marketing.
Within each of these lifecycles, we could consider reengincening at
any or all of the three generic phases of definition, development. or
deployment. At the level of systems management. we reenginecr
each of these phases and potentially all other processes within the
company for integrated unprovement At the level of process
reengineering only, as we define it. only a single process is
redesigned, and with no fundamental changes in the structure or
purpose of the crganization as a whole. Changes, when they ooaur,
may be radical and revolubionary, or incremental and evolutionary
at the ievels of systems management, processes, or products.

One fundamental notion of reengincering is, however. te
reality that it must be top down directed if it is to achieve the
significant and long-lasting effects that are possible. Thus, there
should be a strong purposeful and systems management oricntation
to reengineering. even though it may have well major implications

for such lower level concenms as structural facets of a partioukar
product.

Ow paper 15 orgiuizad as follows. We first provide sone
defiuons of reengincenng. Thein we discuss some five of the
nuuy perspecuves dut lave boen tiken relatve to reengineenng,
Then, we provide suilie WYY conunents.

IL PERSPECTIVES ON REENGINEERING

Inn this secuon. we provide definitions and perspectives on what
we oonsider o be three related but different types of systems
recnigineenng;: reengineering at the levels of

® product,

® process or product ke, and

® gysters management
There have been a nwmber of definution, fonnal and informal, of
reengueening. The word is occasionally spelled as re-engineenng
We choose the former spelling here; both are correct.

A. Product Reengineering

The 1enn reengineening could mean sonie sont of reworlar g or
revofit of an already enguwered product. This could well be
mterpreted as nuunieiiinee or refurbishinent. - As we have noted
previoushy 3] mauntenance cn be viewed from reactive or
corrective, interacuve or adaptive. and proactive or perfoctive
perspectives Or, reengineenng could be interpreted as reverse
engincening. n which the charactenistics of an alrendy engineered
product are idenufied. such that the product can perhaps be
modified or reused. Inherent in these notions are two major facets
of recngineenng,

1. It improves the pruduct or system delivered to the user for
enlunced reliability. neuntainability, or for an evohing user
need.

2. It increases understuding of the system or product itsclf.
Thus, this interpretaton of reengineenng is almost totally product
focused. We will call it product reengineening,

Thus, we nught s Uit

Product reengineering is the examination, study, capture,
und maodification of the intermal mechanisons or
Sunctionality of ar exdsing system or produc in order to
reconstitute it in a nev form and with new features, often to
take advantage of naly emerged technologies, but withowt
madjor change to the inherent functionality and purpose of
the syster,
This defimton indiciies Uut product reengincenng is basically
structural reenginecring witle at most, minor changes in purpose
and fQuctuonahty of the product that is reenginesred. Tlus
~cngineered product cowld be integrited with other products
huning rather different functionality than was the case in the initial
deployment. Thus. reengineered products could be used, together
with this a._mentaton, to provide new functionality and serve new
purposes. A mumber of synonyms for product reenginecning easily
comic to mind. Among these are: renewal, refurbishing, rework,
repair, nuunteicince, modemization, reuse, redevelopment, and
ret ofit.

A spexific example of a product recngineering effort might be
that of taking a legacy system written in Cobol or Fortran, reverse
engineering it 1o detenuine the system definiion, and then
reengineering it in C™ or Ada. Depending upon whether or not
any modifisd user requirements are to be incorporated into the
reengineered product, we would either reengineer the product,
through a forward engineering effort, just afler reverse engineering
had determined either the initial development (technical) system
specifications, or after reverse engineering far enough to determine
user requirements and user specifications, and then updating these.
This reverse engineering concept {4], in which salient aspect of
user requirements or technological specifications are recovered
fium examination of characteristics of the product, predates produict
reengincering,

Figure 4 illustrates product reengineering conceptually. An
IEEE software standards reference [5] states that "reengineering is
a complete process that encompasses an analysis of existing
applications, restructuring, reverse, and forward enginecring."
The IEEE standard for software maintenance {6] suggests that
reengineering is a subset of software engineering that is comprised
of reverse engineering and forward engineering. We have no
disagreement with the sort of definition at all, we prefer to call it
product reengineering for the reasons just stated. It is also
necessary 1o consider reengineering at the levels of processes and
systems management if we are to take full advantages of the major
oppurtunities offered. Thus, the qualifier “product” appears
appropriate and desirable in the context used here.

Development |

L__L_J_____Reendﬂe.efed
Deployment Product

Fig. 4 Representation of Product Reengineering

B. Process Reengineering

Reengineering can also be considercd at the levels of processes
and systems management. At the level of processes only, the effort
would be almost totally internal. It would consist of modifications
to whatever standard lifecycle processes are in use in a given
organization in order to better accommodate new and emerging
technologies or new customer requirements for a system. For
example, an explicit risk management capability might be
incorporated at several different phases of a given lifecycle and
accornmodated by a revised configuration management proocss.

This could be umplemented ito the processes for RDT&E,
acquisition, and systems planning and marketing. Basically,
reengineering at the level of processes would consist of the
deteninination, or synithesis, of an cflicacious process for ultimately
ficlding a product on the basis of a k.owledge of generic customer
requirciments, and the objectives and cntical capabilities of the
systems engineering organization. Our Figure §5 illustrates,
conceptually, some of the facets of process reengineering.

Organizational 0b|ec1|ves identify Customer
and Critical Capabnlmes Requirements
identify Ideal
P
tocess Actual Process

identify Actual of Product Line
process Product
Identify Process Change
Strategy Need

C identily/Impliment
P

rocess Change Amount

Fig. 5 Conceptual Hlustration of Process Reengineering

In accordance with this discussion, we offer the following
definition.
Process reengineering is the exantination, study, capture,
and modification of the internal mechanisms or
Sfunctionality of an existing process, or systems engineering
lifecycle, in order to reconstitute it in a new form and with
new features, often to take advantage of newly emerged
capabilities, but without changing the inherent functionality
and purpose of the process itself that is being reengineered
We could reengineer either the process for RDT&E, system
aoquisition or production, or systems planning and marketing,.
Among, the first discussions of this sort of effort at business process
reengineering, although the word redesign was used rather than
recngineeting, is in a contemporary paper by Davenport and Short
[7]. This was greatly expanded upon in a recent and seminal text
by Davenport [8] which docs make use of the term reengineering.
We will provide an overview of this major work in a later section.
These and other authors recognize, of course, that redesign of
processes only and without attention to recngineering at a higher
level than processes only may. in many instances, represent an
incomplete and not fully satisfactory way to improve organizational
capabilities. Thus, the process considered as candidates for
reengincering are high level managenial as well as operational
processes. Information technology is considered to be a major
cnabling catalyst for process reengineering. Continuous process
improvement and institutionalization is advocated.
Reengineering at the process level, and the resulting
improvement in product that results from improvement in the
product line, is cssentially what the AT&T Bell Laboratories has

used to identify a common taylorable systems acquusition process
for Federal Systems Advanced Technology (FSAT) use as a
deployment methodology for all Process Management Teams
(PMT5) at this organization {9). The indicated benefits to using a
corrumon and understood lifecycle include:

shorter development cycles,

fewer engineering change orders,

products that fulfilf customer expectations, and

reduoad program and product development costs throughout
the lifecycle.

Thus, the process improvement results ultimately in an increase in
effectiveness of product for the same cost, or a reduction in cost for
the same effectiveness, or some blend of these two.

Essentially what we call process reengineering here is termed
*domain engineering" by the Software Productivity Consortium
{10]. The combination of domain engineering with the
*application engineering," or lifecycle, effort needed to product the
actual product is termed "synthesis.” It is intended for use in the
systems acquisition, procurement, or production lifecycle. Figure 6
illustrates the synthesis concept which is intended, in part. to
fxcilitate the incorporation of reusable software products in new
software svstems. The synthesis process proceeds as follows.

- Synthesis -!
| =+~ Damain Engineering — =~ Application Engineering ~——~— - |

| Definition
L Development h /"{ Product Pm(otypmgn
Model Emvironment INcw Product Dwolopmm
| Prodoct iray 7 ~~JReuse Development| §

Integrate & Test

{ Deployed Product

Fig. 6 The Software Productivity Consortium Synthesis Process

1. A set of 6 domain engineering phases is used to develop the
product line. In the first phase, process, or product line,
planning is accomplished. This is presumably based on
knowledge of the organization and its critical oore
capabilities, and customer needs, as illustrated in Figure 5.

2. This is followed by a process definitional phase, called

product line analysis by SPC, in which the requirements for

the process or product line are specified.

This leads to product-line, or lifecycle process. development.

4. A modeling and simulation envirotment is next constructod
such that it will be possible to accomplish prototyping in the
actual lifecycle for production of the product.

5. A product library is next constructed. This is comprised of
reusable software modules and code generators which can

bl

prochice excautable code from a set of input technical
specifications. A code generator can be viewed as a special
type of reusable softwire product.

6. A process, or product line, test and evaluation facility is
constructed next. This has the capagcity for test and evaluation
of products from the product line. Following this phase, the
applications engineering lifecycle begins. This involves
actud definition, development, and deployment on the basis
of the just engincered product Line, or process, lifecycle.

7. Product definition is the first phase in actual production of the
software product. This is achieved by identifying the user
requirements for a sofiware product and translating them into
a set of specifications.

8. Product protolyping ocaws in the second phase of the
applications engineering lifecycle. Here, a prototype is built
and, with user interaction presumably, used to refine the
technical specifications for the software product. The
modcling and sumudation environment, built earlier in
domain engineering, is used for this purpose.

9. New product development occurs next. In this particular
instuce. this refers 10 the production of custom built
excecutable code for those portions of the software prodvt
that are not to be comprised of reusable code.

10. Reuse development oocurs next. In this phase, the
recngineered code that has become reusable code and code
produced by applications generators in phase 5 of domain
engineering is integrated in with the customized code to
result in a complete functioning product.

11. In the final phase, integration and test of this functional
software occurs. This generally involves use of the test suites
produced by the product line test and evaluation facility.

12. The deployed product results from this effort.

As indicated in Figure 6, there are several entry points from
domain engineering 0 application engineering as several of the
results of intenniediate pluises of domain engineering (at phases 5.
5, and 8) arc used in the actual lifecycie that is developed as a result
of domain enginecring,

C. Reengineering at the Level of Systems Management

At the level of sysiems management, reengineering is directed at
potential change in all business or organizational processes,
including the systcins acquisition process lifecycle itself. Many
authors have discussed reenginecring the corporation. Arguably,
the earlicst use of the term business reengineering was by Hammer
111}, in 1990, and more fully documented in a more recent work on
Reengineering the Corporation | 12]. There are a small plethora of
related works. as we will soon discuss.

Hanuner’s dcfinition of reengineening “"Reengineering is the
Sundeamental rethinking and radical redesign of business processes
to achieve dramatic improvements in critical, contemporary
measures of performance, such as cost, quality, service and speed”
is a definition of what we will call reengineering at the level of
systems management. There are four major tenms in this definition.

® Fundamental refers o a large scale and broad soope
exanunation of virnually evenything about an organization and

-l N N O AE B D A B BN B B e

how it operates. Thie purpose is to identify potential weakncss
that are in need of diagnosis and correction.

® Radical redesign suggests disregarding exasting
organizational processes and structures, and inventing totally
new ways of accomplishing work.

8 Dramatic improvements suggests that, in Hammer's view,
reengineering is not about making marginal and incremental
improvements in the status quo. It is about making "quantum"”
leaps in organizational perfonmance.

® Processes represent the collection of activities that are used to
take input materials, including intellectual inputs, and
transform them into outputs and services that have value to
the customer.

Hammer suggests that reengineering and revolution are almost
synonymous terms. His identification of the three types of firms that
atempt reengineering - those in trouble, those who see trouble
coming, and those who are ambitious and seck to avoid impending
troubles.

He indicates that one major catalyst for reengineering is the
creative use of information techniology. Reengineering, is not just
automation however, it is the ambitious and rule breaking study of
everything about the organization to enable more effective and
efficient organizational processes to be designed.

We essentially share this view of reengineering at the level of
systems management. Our definition is similar.

Systemns management reengineering is the examination,
study, capture, and miodification of the internal mechanisms
or functionality of existing system management processcs
and practices in an organization in order to reconstitute
them in a new form and with new features, often to take
advantage of newly emerged organizational competitiveness
requirements, bwt without changing the inherent
functionality and purpose of the organiyttion itsclf.
We make no representation that this definition, or the other two for
that matter, of reengineering is at all the same across the many
works that we discuss. Figure 7 represents this conception of
reengineering at the level of systems management.

{ Forecast Future Market
kNeeds and Requirements J

ﬁiy Ideal Organizational Identify Customer
Objectives and Cagatuluhe Requirements

Identify Ideal Systems

Management Process

Actual Systems
Management Process

Identify Actual Systems
Management Process Lifecycle Process
Reengineering Fl
Identity Process Change
(Strategy Need L' Produdt
Idenity/impliment §
Process Change Amount 3

Fig. 7 Reengineering at the Level of Systems Management

Lifecycle process recnginecning occurs as a natural byproduct of
reenginecring at the level of systems imanagement. This may or
may not result in the reengineenng of already exasting products.
Generally, it will as new products and competiive strategies are a
major underlying objective of reengineenng at the level of systems
management, or organizational reengineering as it is more
conunonly called.

D. Perspectives of Reengineering

This very brief discussion of reenginecring suggests that we can
oonsider reengineering at three levels: systems management,
lifecycle processes, and product. The major purpose of
reengineering, regardless of whether it is at the product level or the
process level or the level of systems management, is to enable us to
product a better product for the same cost, or a lower cost product at
a cost comparable to that for the initial product. Thus it improves
competitiveness of the organization in coping with changing
external situations and environments. We may approach
reengineering, at any or all of these levels, from either of three
perspoctives:

® readtive, bocause we realize that we are in trouble and perhaps
in a crisis situation, and reengineering is one way to bring
about needed change;
® interactive, because we wish to stay abreast of current changes
as they evolve; or
® proactive, because we wish to position our organization now
for changes that we believe will occur in the future, and to
emerge in the changed situation as a market leader.
In our next section, we examine some of the many contemporary
ideas that have been expressed about the subject of reengineering.

IL AN OVERVIEW OF REENGINEERING APPROACHES

As we have noted. it is possible to consider reengineering at the
levels of strategy and systems management, process or product line,
or product. In this section, we provide an expanded overview of
each by means of an overview of contemporary literature on
rechgineering,

Without question, more has been written about reengineering at
the levels of strategy or systems management that at the other
levels. This is not unreasonable since reengineering efforts at the
level of organizational strtegy have direct implications for
management at the levels of management control, and thence at
the levels of process to implement management controls, and
product.

It is difficult to trace the origins of recngineering in amy unique
manner. The notions of reengineering are very interrelated with
those of systems engineering, information technology, strategic
planning,. and many other subjects. The term systems
management reengineering is not at all common. Others have
used such related terms as systems reengineering, organizational
recnginecring, ocorporate reenginecting. and business process
improvement. These tenms can, however, be interpreted to mean
reengineering at the level of system or product, reengineering at

the level of lifecycle process, and of the structure and functionality
of the organization.

A. Business Process Improvement

In 1992, Harrington published a seminal work on business
process improvement [13]. The major thesis of the work is that it is
business and manufacturing processes that are the key to error-free
performance. His view, that the process is the problem and not the
employees, is essentially that of Deming and others in the TQM
areas. Harrington defines a process as a group of activities that
take inputs, adds vaiue to them, and produces an output that is in
support of an organization's objectives. Two generic types of
processes are identified Production processes are directly
concerned with yielding the output product or service. Business
processes support production processes. These include design of
production processes, payroll processes, and engineering change
processes.

Many works on reengineering recognize a dichotomy betwecn
organizational processes and organizational functionality. Most
organizations are structured into vertically functioning groups. or
hierarchies, and most processes are organized into horizontal
phases for work flow. The many waterfall lifecycle models we have
illustrated in our effort surely demonstrate this. Three desirable
attributes of Business Process Improvement (BPI) are:

" iency, in terms of minimizing the cost of the resources
used;
u effectiveness, in terms of producing desired results; and
% qdaptability, in tenms of flexibility in accommodatng
changing customer and organizational needs.
To do this requires processes with the following well defined
characteristics: ownership and acoountability, boundaries and
soope, interfaces and responsibilities, work tasks and training
requirements, measurement and feedback controls, customer
related measurements and targets, cycle times, and formalized
change procedures. Figure 8 illustrates the BPI process.

Initiate Business Process Improvement

l—— Organize for Improvement

ldentify and Understand
Present Processes

Streamline for Efficiency,
Effectiveness, and Adaptability

Feedback as an " Implemre;tr;t Przc(t;sstr |
Enabler of Learning easurements and Controls
and -
Continuous implement Continuous
improvement Effort
Improvement

Fig. 8 Interpretation of Business Process Reengineering

Hamington suggests five phases for business process
unprovement (BPI). These, represented in Figure 8, are as follows.
I. Organize for Improvement - This phase involves several
steps. First it is nocessary to establish an Executive
{mprovemert Teawn (EIT). Then a BPl champion is
appointed and executive training is provided An normative
improvement model is identified and BPI objectives are
corununicated to employecs. Next, it is necessary 10 review
business strategy and anticipated customer requirements.
This enables the organization to identify and select critical
processes for improvement and 1o appoint process owners.
Performance Improvement Tean members are selected.

2. Develop an Understanding of the Various Processes
Currently in Use - This phase includes defining the soope
and abjectives of current processes and the boundaries within
which they are functional. This includes a variety of analysis
functions, including structuring current processes and
detection and diagnosis of areas for potential improvement.

3. Streamline Orgunizational Processes for Enhanced
Efficiency, Effectiveness, and Adaptability - Current
processcs are oorrected through various streamlining
approaches that are responsive to the diagnosis performed in
the last phase. This includes eliminating bureaucracy,
reducing the opportunity for ermors, reducing
non-value-added activities, and otherwise simplifying
processes such as to reduce cost and increase effectiveness.

4. Implement a Program of Systematic Measurement and
Controfs - In this phase, a program of systematic
measurements is used as a quality oontrol and monitoring
system in order to both maintain the new process productivity
and to keep from regressing into poorer process
implementations only because they have been used in the
past. An extensive program of measurements, feedback and
action is suggested. This includes audits of what are denoted
as Poor Quality Cost (PQC) facets.

Continue the Evolutionary Improvement - Periodic reviews
of the cffort are used to enable detection, diagnosis, and
correction of difficulties as improvement continues. A formal
program of business process qualification is suggested
through use of a six level PBI scale for process matunity
status. The levels are unknown, understood, effective,
eflicient, error-free, and world class.

Harminglon's effort has much in conunon with those in strategic
quality nunagement {1} [14}. The work has much relevance to
benchnarking, a topic we will soon discuss, and to systematic
measurements. The author has had much experience in efforts of
this sort. and this is much in evidence in his high caliber writing,

N

B. Intcligent Enterprise

The efforts of Junes Brian Quinn are focused on knowledge
based scrvices as a necessary compliment to manufacturing efforts.
His view of an organization is basically that of a collection of
service activities and that both service and product onented
organizations will obtain their major competitive advantages not
from supcrior physical ficilities and materials alone, but from

knowledge and service based capabilities. In three recent works
[15] [16] [17] concerning technologies in services, the claim is set
forth that it is services and not manufacturing activities that provide
the major course of value to consumers. This does not suggest that
services replace manufacturing, but rather that if it were not for the
value added by the services that are associated with a manufactured
product, there will be far diminished value to the product itself.
Several characteristics of new organizations are cited:

“infinitely flat," or horizonta);

® “spider's web" like, or non-hierarchical and with highly

networked interoonnections;,

= “hollow corporations,” in which outsourcing of both products

and services beocomes an increasing reality;

8 demolished bureaucracies and vertical integration; and

® “intellectual holding companies” in which intellectual

technologies are critical.
It is represented that this will fead to precise and swift strategy
execution, the leveraging and retention of key people, and "creative
managerent for profits. *

A 1992 text by Quinn [18] represents a definitive integration
and synthesis of earlier efforts on this subject. It is much concermed
with concentrating organizational strategy on core intetlectual
competencies and core service competencies. He suggests four key
rules to follow in order to generate success in this regard.

1. Focus intemal organizational resources on those relatively
few basic sources of intellectual strength and service strength
that will create and sustain a real and meaningful
distinctiveness to the customer over the long term.

2. Approach the remaining capabilities as a non critical set of
services activities which may be supplied intemally or
outsourced from external suppliers who compete wel! in
functional activities related to these capabilities.

3. Sustain success by building entry barriers around those
selected critical core capabilities to prevent a competitor from
assuming a substantial market position.

4. Plan and control outsourcing such as never to become either
dependent upon, or dominated by, external suppliers.

Strategic sourcing, including outsourcing, is a major ingredient in
these maxims. we discuss it later. Appropriate interfaces between
production efforts and service efforts are also stressed as is the
management of knowledge based intellect and professional
intellect.

Seven types of innovative organizations are identified in this
work

1. Basic research organizations support large RDT&E units.
They select products for development on the basis of carcful
and conservative tradeoffs among risk and potential profit.

2. Large system producers develop large-scale systems that
generally cost a great deal and which must perform in a
reliable manner for a very long time.

3. Dominamt market share oriented conmpanies are ofien not
the first to introduce an emerging technology into the
marketplace. They often suppont large research units and
plan market entry and product evolution to obtain maximun

penctration, docreased nsk. great product reliability, and
lower overall costs.

1. State of the art technology development companies are
preciinent in their knowledge of a specific technology.
Oflecn they operate in markets in which technical
performance criteria are the nwajor drivers of demand and are
Uierefore able to sclf-define the charmctenstics of next
generation technology.

5. Discrete freestanding product line companies form strong
research divisions and act as entrepreneurial units. They
depend more on technology push for their initiatives than
demand pull, and will oflen introduce new products on a
small scale and obtain real time market test rather than pay
for very expensive marketing studies that may not be as
effective as small scale product introduction and intcractive
modification of the product to meet consumer nec:

6. Limited volume or fashion companies provide . ale
and limited quantity products to a specialized markci .che.

7. Job shop or custom design companies provide one of a kind
products that meet an individual customer’s requirements.
These muay often involve flexsble manufactuning or mass
customization approaches to enable highly specialized design
1o met an individual customer requirements.

Clearly. this is not a mutually exclusive listing. Nor is the listing
oollectively exhaustive. Each of the industry types may be
associated with an organizational strategy and configuration that is
tuned to providing maxinmum success opportunities. Each type will
have a different propensity for organizational growth, maturity,
decline, and rebirth as we discussed in our last chapter. In his effort,
Quinn discusses the typical product lifecycle for each
organizational characteristics, the mix of attributes that describe
typical innovations, and recominended organizational structures for
RDT&E, aoquisition or production, planning and marketing, and
interfaces between marketing and customers. Approaches for
managing the intelligent enterprise are also suggested These
involve eflorts that also encompass core capabilities, outsourcing,
tota) quality management. and benchmarking, as well as some of
the other ingredients illustrated in Figure 8.2

C. Process Innovation

In the aforenoted text by Davenpont [8), a careful distinction is
mide between process improvement and process innovation. His
fundamental distinctions are that improvement is continuous and
incremental in nature, deals with the existing process, can be
accomplished in a relatively short time, is a bottom-up activity, and
is a narrow scope cffont with relatively moderate attendant risks.
On the other hand. innovation is generally a discrete phenomenon
that is revolutionary and radical in nature. It starts with a zero base
as contrasted with the existing process, can only be accomplished
over a fong time, is a top-down activity, is a broad soope effort that
cuts across all of the functonal arcas and processes in the
organizaton. and is usually characterized by high associated risks.

Of course, there nuy exist questions of whether an innovation is
a major improvement and whether a set of incremental
improvernients docs not add up to an innovation. Rather than a

binary scale to separate these two, perhaps it would be best to
consider a continuous scale. This would enable us to consider
incremental improvement at one end and radical innovation at the
other. Obviously, either can be appropriate or inappropriite in
specific situations. Change increments may be so small that
centuries would be required to accomplish any change with
appreciable value added. On the other hand radical innovation iy
be so dramatic that the organization is culturally and othenvise
unable to adapt. Culture shock and customer revolt is ofien the
result

Information technology is suggested as a major enabler of
process innovation, together with the organizational and hwman
enabler, and an enabler based on measurements associated with
process information and management of the infornmation
environment. Essentially these three were suggested as enablers in
our Figure 1. The process innovation process itself is comprised of
S phases, and a number of activity steps within each phase, as
connoted by Figure 9. We note that there are opportunities both for
traditional incremental improvement and the more extreme
innovative unprovement. Presumably, the overall process is
iterative and this leads to continual innovation, as suggested by the
feedback from phase V to phase | in the illustration of Figure 9.

Begin Process Innovation —‘

L. Kentify Candidate Pr
1. idertily Processes and Thed Boundanes
2. Analyze Relevance and Value of each Process
3 wnd Select Pro fur innovel

. Woniify Roles for Crilical Enablers
Organs ang Human R

1
2. inkormation Techrology
3. Process inforrmation Menagement and Messurement

2. Benchmark inovation Objectives and Svalegy

| 3. \dertify Process Attribules, Critical Success Factors, snd implementslion Barriers
V. Und d and Improve Existing Pr

1. Anglyze and Doaument Existng Process Objectves e Resuls

2. Assess e Existing Process in Terrm of New Process Atibutes and Criscal Success Factors

3. Wdently Problems with Present Process and Short Term improvements for New Process

4. Assess Current Roles for Criscal Enablers

V. Prototype and implement the New Process snd Organizations! Changes
1. Formdate, Anslyze, and intarpret the Design Altemutves
2. Select he Praferred Process Oesgn
3. Probtype the New Process Design
4 \dertly & Stategy © Migrate fom the Old Process ©© the New
5. kmplemant the New Process Siructure and Functons

Fig. 9 The Process of Process Innovation

Not explicily shown in this figure is the organizational
communications that oocur at each phase of the effort and the
commitment building that is also needed. Davenport examines a
number of enablers of specific processes including: planning,
research, development, design, production, marketing. and sales.

Also considered briefly are the role of organizational culture in
shaping desirable innovation strategies. In a related work {19], this
is considered in greater detail. Five models of information aulture,
denoted as information politics in the paper, are defined.

1. Technocratic Utopianism is a formal analytical approach to
information management. It stresses highly quantitative
approaches, major reliance on emerging technologics. and
full information asscts. There is an underlying assumption

that technology wall resolve all problems. Organizational and
political issues are gencrally ignored, perhaps because tiey
are considered wuuageable. In readity, the major focus may
be on the technologies used to process data rather than on the
infornuton content in the data. The major objective is
modeling and use of organizational daia. Data engincening,
and somie aspects of ufonnation engineering, is considered
king. All that is really needed for organizational paradise is
the selection of e best hardware and software, and use of
the most appropriate CASE tools o assist in constructing the
1iost appropniate entty relationship diagrams and data flow
models.

. Feudalism was the mode! of information politics most often

encountered in this study. In this imodel, a number of people
in feudal depatments individually control information
acquisition, representation, storage, analysis, transmission,
and use. The Language used for information representation is
often different across the various departments. Crtical
information that affects the organization as a whole is often
not collected. When a subset of this is collected by an
individual departiment, it may not be passed on outside the
boundaries of the deparument. Making organizationally
informed decisions for the common good is often very
difficult, as a result of the information poor environment.
Somctimes, however, strategic alliances across departments
are possible and innovation within these units may be
possible.

. Monarchy is a pragmatic solution to the difficulties inherent

in the feudal model. Information management is centralized
and there is litle autonomy concerning information policies.
A benign monarch who is enlightened oconcemning
information technology and organizational needs for
information may set up, potentially through a Chief
Information Officer (Cl0), a very effective and efficient
system. A oonstitutional monarchy may well accomplish
this; a despotic monarchy scldom will perform satisfactorily.
An Executive Infomation System (EIS) or Executive
Support System (ESS) [20] may well be a beneficial product
of a oconstituional monarchy. One problem with a
coustitutionad information monarchy, however, is the
problem of succession when the monarch dies, retires, or is
overthrown. This can Jead to information anarchy.

. Anarchy is the result of complete absence of any information

policy. Usually this is not a willfully imposed model but a
result of a breakdown of one of the centralized approaches,
such as a monarchy. This results in individuals and units in
an organizaion managing their own information resources
and developing information reports that serve their own
needs rather than the organization as a whole. The major
shortcoming of an information anarchy is not the wasted
effort involved in the redundant information processing and
storage cffort across units. but the tower of Babel effect that
results in tenns of providing information that is usceful for the
cntirc organization. There will seldom exist any
interoperability across units, at the fevel of either data or

information. As a conscquence of tlus, the various wuts nuy
well present entirely different results from using the sune
data on the generally very diffcrent allemative model
management systems, including intuitive model
management systems, that will be in use.

S. Federalism involves the use of negotiations {21] (22] to bring
competing and noncooperative individuals and units into
consensus on infonnation related issues. Strong cenural
leadership and an organizational culture that encourages
learning, cooperation and consensus are required in order for
this model to work. Understanding by top organizational
management of both infonmation technologies and the value
of information is a need if a shared information vision is to be
created.

It seems quite clear that thesc models are neither mutually
exclusive nor collectively exhaustive. A given organization may
well function with a hybrid model, and the model that is in use at a
given time may evolve from one form to the other with changes in
organizational dynamics. Some of the models of organizational
cultures discussed in {1] and {2] seem also very plausible as
information cultures as well.

In a sudy of the information culture at 25 ocompanies,
Davenport and his colleaguss found that the feudal model was the
most common model in 12 companies. Federalist, monarchist, and
technocratic utopianist models were found with approximately
equal frequency in that 8, 7, and 9 companies were found
predominantly following the prescriptions of these models. Only 4
organizations followed the anarchist model. They also ranked these
five alternative models of information cultures according to their
scoring on four attributes of information value:

8 commonality of vocabulary,

® 3cvess to infonmation,

8 information quality, and

® information management efficiency.

Each of the four attributes had equal weight in this study. Their
conclusion, that the federalist and monarchist models are most
appropriate, in most situations, seems inescapable. The feudalist
and anarchist models, which actually seem to have a lot in
common, were the poorest performiers.

In order to determine a "best” model for a given organizatior,
we need to know the current model that is in use, and the
evolutionary or revolutionary model for the infonnation culture to
which the organization should be moving. Four suggestions are
given, our interpretation of these is a s follows.

1. Match information management strategies (o (he
organizational culture extant and the organizational cullure
the organization is desirous of adopting.

2. Practice technological realism, both in terms of information
technologies themselves. interoperability across potentially
different platforms, and the value of information that is not
always easily captured in electronic form.

3. Select appropriate information managers, both from the
standpoint of techinical skills and broad-scope organizational
understanding skills.

4 Avoid bulding informuton empires, such as tirough
creation of despolic moswrclues and information czars.
Explicit rocognition of infomuiuon management cultures and
maiging e construcuvely is suggested as the bottom line. In
confonuice to owr discussions in 1] and [2], we would prefer to
call these informaton nuuvigement styles, and information cultures
or information management cultures, rather than "information
politics” tenm used by these authors. As we have noted before, there
are semantic differences in use by the nuany workers in these areas.
In tenis of the vocabulary we use here, the organizational political
cultures identified by the authors are the anarchist and the feudalist
models. These are not to be encouraged. On this, of course, we

agree strongly with the authors of this excellent work.

D. Benchmarking

A benchmark is much like a breakpoint [23]. Actually, the
concept of a benchimark predates that of a breakpoint. Much further
discussion of benchmarking is available in [24] [25] [26]). A recent
and definitive work by Watson |27] provides an excellent overview
of many cumrent eflorts concerning benchimarking. He identifies
four types of benchnuwrking efforts.

1. Internal benchmarking involves observations taken entirely
within the same organization, generally of the best practices
that have resulted in one segment of the organization that are
desired 10 be wtansferred into anther segment of the
organizaion. Intemal benchmarking efforts at
Hewlett-Packard are described.

2. Competitive benchmarking involves targeted best practioes
in an external organization. These can be at the level of
syslems management, processes, or product. Often, much
secondaury research is used for competitive benchmarking.
The competitive benchmarking studies of the Ford Motor
Company, and their use of these in developing Ford Tarus,
are described.

3. Fundional benchmarking is concerned with performance
investigation within a specific functional area for an
industry-wide function. The results of functional
benchmarking are especially suited to identifying process
improvement related benchmarks. The efforts of the General
Motors Corporation in September 1994, which led to major
GM stndes 10 enhance product quality and reliability, are
described.

4. Generic benchmarking is concerned with studying the best
processes i actual use in practice in a given organization
such as to emable wudogous development of enhanced
processes by the organization(s) sponsoring the
benchmarking study. A generic benchmarking study by
Xerox. which ultimately led to understanding and analogous
miodification and adoption of facets of the shipping processes
activities of the catalog casual<clothing sales organization L.
L. Bean. are describod. This effort was so successful that it
led to establishment of the Benchmarking Effectiveness
Strategy Team (BEST) network to transfer lessons learned
throughout the Xcrox Corporation

In our terminology, we would use the term functionid product
benchmarking to refer to benclunarking of the directly measuruble
aspects of a product These serve to describe the operationl
capabilities that are supplied to the user of the product. or service.
The nonfunctional aftributes of a product are thosc constraints,
alterables, or limitations that relate to the structural or purposcfid
properties of the product that are not a part of the functional
properties. The nonfunctional attributes of a product relate to such
important characteristics of a product as reliability, maintainability,
quality, and availability. Thus what was accomplished here would
not be described, using our terminology, as functional product
benchmarking It is really nonfunctional product benchumarking,
The study conducted by GM was not restricted 1o automotive
products. It was a study of quality processes at 11 cooperating
organizations in a variety of product areas. They had established 10
hypotheses for empirical evaluation and these relate very closely to
quality processes. It would, therefore, be very appropriate to denote
this type of benchmarking as finctional process benchmarking.

Like a breakpoint, a benchmark involves a baseline comparison
of existing practices of an organization with those best practices as
used by one organization, or perhaps many other organizations.
These practices may be at the level of product, process, or systems
management. Breakpoints and benchmarks have the same ultimate
purpose, that of enabling and enhancing organizational
improvements for customer satisfaction. The use of a benchmark
can be reactive, in which case we desire to emulate the best
practices of others that have already been established, or perhaps
excel in these. In can be interactive or anticipative, in which case,
we desire to foresee efforts that are now occurring and adjust
organizational practices, more or less in real time, to kecp abreast
of the competition. We can use benchmarks for forecasting
purposes such that we evolve entirely new forms of organizational
results in the form of system management strategies, processes, and
products that are each world class in quality and trustworthiness. In
all cases, benchmarks are based on systematic measurements, both
internal and external measurements, and serve as a catalyst for
action and results. In this regard, benchmarks are aiso very much
related to Critical Success Factors (CSF) [28] [29].

We see that a benchmark is a standard of excellence or
achievement, or critical success factor that provides a bascline
against which to measure or evaluate, or othenwise judge. similar
entities. While the benchmarking notion may seem quite simple at
first, there are really a number of benchmarking features that need
1o be examined. There are at least seven important and interrelted
questions that need to be asked before we benchmark.

1. Why do we benchmark?
What do we benchmark?
Which benchmark measures do we need?
Who do we benchmark?
Where do we benchmark?
When do we benchmark?
7. How do we benchmark?
We can and should ask these questions of our organization, we can
and should ask these questions of those organizations that represent
corpetitors. We can and should ask these questions in the scarch

AR AN

for structural, functional, and purposcful answers. A similar set
needs to be asked after we benchimark. Benclunarking efforts can
be conducted relitive to issues at the level of systems management,
process, or product. Answers 10 these questions need to be obtained
in tens of implications for each of these levels.

There can be sottie obvious ethicl, moral, and legal concerns
relative to benchmarking. Some aspects of benchmarking may
seem (o wmount to spying, or espionage. Clearly, successful
benchmarking should and can not involve behavior that is either
imumoral, unethical, or illegal. One of the major activities of the
Intemational Benclhunarking Cleannghouse Committee of the
Anerican Productivity and Quality Center (APQC) have resulted
in a set of guidelines, known as a Code of Conduct, for
benchmarking that have been subscribed 10 by a considerable
number of companies and which are generally felt to be above
reproach [30). There are seven principles in the Benchmarking
Code of Conduct. They may be sunmarized as follows.

1. Legality - The aoquisition of trade secrets is proscribed, as is
doing benchmarking without first requesting approval by the
benchmarkee. All actions and intents should be legal ones.

2. Exchange - The samie type and level of information should
be provided both by the benchmarked organization and the
organization doing the benclunarking in an openly
communicated exchange.

3. Confudentiality - Benchmarking communications should be
considered as confidential to the organizations involved and
obtained information conceming benchmarking should not
be divulged outside the concemed organizations without
prior consent of all parties.

4. Use - Benchimarking information should only be used for
formulation of improvement options for processes or
products within organizations participating in the study.
Atnbution of benchmarking partner names requires prior
pennission, and benclunarking infonmation must not be used
for marketing or salcs purposes.

5. First-Party Contact - Benchmarking information ocontacts
with a partner organization should be made through the
point of contact established by the benchmarking partner.
Mutual agreement must be reached for delegation of
responsibility in this regard to other parties.

6. Third-Purty Contact - Prior pennission must be obtained
before divulging the name of the benchmarking point of
contact to a third party or in an open forum.

7. Prepardation - A benchmarking contact with the point of
contact At another organizaton should only be made after
proper planning and preparation of an interview guide, in
order to niike the encounter efficient and effective.

8. Completion - Each benchmasking study must be completed
to the satisfaction of all benchmurking partners in a timely
manner, as agreed (0 prior (0 the study.

9. Understanding and Action - All partners should be treated
with mutual respect and understanding, and information
shotild be used as mutually agreed.

Tt seems quite clear that these conduct codes are also applicable as
ethical codes of conduct, as well as being very useful standards for

10

benchmarking practice. We can obtain benchiarks at the levels of
systems management, process, and product.

E. Integrated Product Development

In many ways, integrated product development is an extension
of concurrent enginecring as discussed in [31] {32] {33]. It is also
closely related (o the other reengincering approaches we describe
here. The following definition seems appropriate.

Integrated product development is a systems management
Pphilosophy and approach that uses functional teams to
Produce a efficient and effective process for the ultimate
deployment of a product that sdtisfies customer needs
through concurremt application and integration of ull
necessary lifecycle processes.
Integrated Product Development, or IPD, involves systems
management, leadership, systems engineering processes, the
products of the process, concurrent engineering and integration of
all necessary functions and processes throughout the organization,
to result in a cost-effective product that provides total quality and
customer need satisfaction, generally in a just-in-time fashion.

Thus, IPD is an organization's product-development strategy. It
is focused on results. It also addresses the organizational need for
continual enhancement of efficiency and effectiveness in all of its
processes that lead to a product, or service. There are many focal
points for IPD. Twelve are particularly important,

L. A customer satisfaction focus is needed as a part of
competitive strategy and is the result of a successfl

2. A results focus and a product focus is needed in order to
bring about total customer satisfaction.

3. A process focus is needed as high quality competitive
products that satisfy customers and result in organizational
success come from efficient and effective processes. This
necessarily requires process understanding,

4. A strategic planning and marketing focus is needed to
insure that product and process lifecycles are fully integrated
throughout all organizational functions, external suppliers.
and customers.

5. A oconcurrent engineering focus is needed to insure that all
functions and structures associated with fulfilling custoter
requirements are applied throughout the lifecycle of the
product to insure correct people, comect place, ocorroct
product, and correct time deployment.

6. An integration engineering focus is needed to insure that
relevant processes and the resulting processes fit together in
a seamless manner.

7. A tearmnvork and communications focus is needed to insure
that all of the functional, or multifunctional, teams function
synergistically for the good of the customer and organization.

8. A people empowerment focus is needed such that all
decisions are made by qualified people at the lowest possible
level that is consistent with authority and responsibility.
Empowerment is a responsibility and not just an entitlement
and entails commitment and appropriate resource allocation
to support this commitment.

Y. A systems management reengineering focus is neaded, both
at . ¢ levels of radicl and revolutionary change, as well as
for evolutionary change, such as 1o also result in radical,
revolutionary, or evolutionary changes in processes and
product.

10. A organizational culture and leadership focus is needed in
order to successfully accommodate changed perspectives
relative to customers, total quality, results and products,
processes, employees, and organizational structures.

11. A methods, tools, and techniques focus is needed as they are
needed throughout all aspects o the IPD process even
through they alone will not bring about success.

12. A systematic measurements focus, primarily on proactive
measurements but also on interactive and reactive
micasurements, is needed as we need to know where to go
and where we are now. in order to make progress towards
getting there.

All of this showld bring about high quality, continual and
evolutionary, and perhups cven radical and revolutionary,
improvement for customer satisfaction. Each of these could be
expinded into a series of questions. or a checklist, and used to
evaluate the potential effectiveness of a proposed integrated product
developiment process and team. While our discussion of [PD may
make it seem as an approach uniquely suitable for system
acquisition, production, or procurement,; it is equally applicable to
the products of the RDT&E and marketing lifecycle.

We sce that IPD is a people, organizations, and technology
focuses effort as linked together through a number of lifecycle
processes by systems management. These are major ingredients
for all our efforts here, as we suggested in Figure 8.1. The major
result of IPD is the ability to make optimum decisions within
available resources and to execute them efficiently and effectively in
order to achieve three causally linked objectives:

® (o integrate poople, organizations, and technology into a set of

multifunctional and networked product development teams,

® (o increase the quality and timeliness of decisions through

centrally controlled. decentralized and networked operations,
and thercby

® 10 compietely satisfy customers through quality products and

services that fulfill their expectations and meet their needs.
The bottom line is clearly customer satisfaction through quality,
short product delivery Ume, reduced cost and improved
perfomuuice and functionality. Equally supported by IPD are
organizational objectives for enhanced profit, well-being of
management, and a decisive and clear focus on risk and risk
amelioration.

Figure 10 illustrates a suggested sequences of steps and phases
to establish an integrated product development process. As with
olher cfforts, this embodies the definition, development, and
deployment triage we have used so often in this book. As the
ituplementation of the detailed steps in these phases is relatively
standard, we will not describe them further here,

Appropriate references to IPD include [34) and [35]. At this
point, [PD is a relatively new conoept and there are few available
references on the subject.

11

Wm—l

Definition }

1. Obtan lovel
convnitment M‘-:' and Development
understandng of 1PD

2. Formuiate IPO 1. Formulete IPD

Ao L Deployment
OIgANZaton struchse snd P ¥
team. and objectives measures.

3. idantly orgaruzationel 2. Anslyze development 1 Formulate treakpowts
missions end ges and ophons and benchmarks for IPD
needs. and delermine the impact implementation

4. Analyze orgarizational of hese on orgenizationsl | | 2. Analyze he impaais of
processes and products © prooesses and products. these and inttal
determine mpacts of IPD 3. Inlerpret oplons, sslect development results
implementation. development options and 3. Operatonaly lest,

5. inderpret options snd mmplemeni these in lerms evaluate and refine
select IPD development of documentstion, development tachcs as
svatagy, and oblain wichilechres, sysiematc the deployed iPD
JOR0UNCeS. messuements, and IPD phelosophy

mutiuncional teams. 4. Monitor and evaluate
results and terate for
‘ conpnual improvements

Fig. 10 Phases in Integrated Product Development Process
F. Product Reengineering

Reengineering at the level of product has received much
attention in recent times, especially in information technology and
software engineering areas. This is not a subject that is truly
independent of reengineering at the levels of either systems
management or of a single lifecycle process.

As we noled earlier, much of product reenginecring is very
closely associated with reverse engineering to recover either design
specifications or user requirements. This is then followed by
refinement of these requirements and/or specifications and the
forward engineering to result in an improved product. ‘The tenn
reverse engineering, rather than reengineering, we used in one of
the early seminal papers in this area [36]. In this work, as well as
in a more recent chapter on the subject [37], the following efforts
represent both the taxonomy of and phases for what we denote here
as product reengineering.

1. Forward engineering is the original process of defining,
developing, and deployment of a product, or realizing a
system conoept as a product.

2. Reverse enginecring, sometimes called inverse engineering,
is the process though which a given system or product is
examined in order to identify or specify the definition of the
product either at the level of technological design
specifications or system or user level requirements.

2.1 Redocumentation is a subset of reverse enginecring in
which a representation of the subject system or product is
recreated for the purpose of generating functional
explanations of original system behavior and, perhaps
more importantly, to aid the reverse engineering team in
better understanding the system both at a functional and
structural level. There are number of redocumentation tools
for software available and some of these are cited in [37).
One of the major purposes of redocumentation is producing
new documentation for an existing product where the

exisung docwmentaton is faulty, and perhaps virtually
absent.

22 Design Recovery is a subset of reverse engineenng in
which the redocumentation knowledge is combined with
other efforts, often invohang the personal expenences and
knowledge of others about the system, that lead to0
functional abstractions and enhanced product or sysiem
understanding at the level of function, structure, and even
purpose. We would prefer 10 call this deployment,
development (which would include design) recovery, and
definition recovery, depending upon the phase in the
reverse engineering lifecycle at which the recovery
knowledge is obtauned.

3. Restructuring unolves transfonnation of the reverse
engineering information concerning the oniginal system
structure into another representation form. This generally
preserves the initial functionality of the original system, or
modifies it shightly in a pusposefully manner that is in accord
with the user requirements for the reengineered system and
the way in which they differ from the requirements for the
iniial system. For our purposes, the terms deployment
restructuring, development restructuring, and definition
restructuring scem {0 be appropriate disaggregations of the
restructuring notion.

4. Reengineering is, as defined in these efforts, equivalent to
redevelopment enginecring, renovation engincering, and
reclamation engineering. Thus, it is more related to
naintenance and reuse than the other forms of systems
management and process reengineering that we have
discussed in this chapter. Reengineering is the recreation of
essentially the original system in a new form that has
improved structure but generally not imuch altered purpose
and function. The nonfunctional aspects of the new system
may be considerably different from those of the original
system, especially with respect to quality and reliability.

Figwe 4. which ilustrates product reengineering, involves

essentially these six activities.

We can recast this by considering a single phase for definition,
for development, and for deploymeent that is exercised three times.
We then see that there is a need for recovery, redocumentation, and
restructuring as a result of the reverse engineering product obtained
at each of the three basis pluscs. This leads us to suggest Figure 11
as an alternative way to represent Figure 4 and an interpretation of
the representations used in {36] and {37]. Their discussions
utilized a three phase generic lifecycle of requirements, design and
implementation. In this representation. implementation contains
some of the detailed design and production efforts of our
development phase and potentially less of the maintenance efforts
that follow initial fielding of the system. The restructuring effort,
based on recovery and redociumentation knowledge obtained in
reverse engineering, is used to effect deployment restructuring,
devclopment restructuring, and definition restructuring. To these
restructured products, which might well be considered as reusable
products, we augment the knowledge and results obtained by
detailed consideration of potentially augmented requirements,

12

These augmented requurements are translated, together with the
results of the restructuring efforts into the outputs of the
reengineering effort at the various phases to ultimately result in the

reengineered product.

Acquisiion Forw, "
Oecieion e E,,,,,:mw Forwarg .
Raverse _ st~ 2::,:””0
Reveise - Em Decision

g E ’

Augmerded ~ L“'Twwﬂ g

Reengineering

Decision

Definition Development Deployment

Fig. 11 Expanded Notion of Product Reengineering

For the most pan, this is also the perspective taken on
reengineering in a recent definitive reprint book on soflware
reengineering [38], especially in the lead article by the editor of this
work [39] that takes an inherently transformational view of product
reengineering. This reprint book is much concemed with the
major ingredients needed for software product reengineering as
surnmarized in Figure 12,

Reengineering Process
Reengineering Cost Effectiveness

Reengineering Risks

Reengineering o Reduce Software Maintenance

Technology and Tools for Reengineering

Data Reengineering

Source Code Analysis for Reengineering

Software Restructuring and Translation

Reverse Engineering and Design Recovery

Reengineering for Reuse

Reengineering 1o Object Oriented Architectures

Reengineering through Knowledge Based Program Analysis and Understanding

Fig. 12 Major Product Reenginecring Issues

Amold indicates that there are threc basic classes of

transformational views.

Y. Nonprocedural views are meta-level views, such as decision
tables, event trees, atiribute trees, data schemas, user
requirements, and system specifications. There do not
represent views of the actual entity but a view of a view of the

entty or, w other words, salient characteristics of the entity.
A non procedural view is a purposeful view.

2. Procedural views ocontun diret information about
procedures or represcntations, or information intimately
assoctated with tus infornution. Source code, and the objects
and enuucs of object onented languages are procedural
views. A prooedural view is a functional view.

3. Psucdoprocedural views, or architecturally oriented views,
conLan perspectives both of procedural and nonprocedural
views. Hierarchy charts, structural models, data flow
diagrams, entity-relationship diagrams, and Petri nets are
examples of psuedoprocedural views. A psuedoprocedural
view oould also be called a structural view.

We can also have views that are denived from analysis of one, of in
some other way derived from one, of the three basic view
categorics. Amold denotes these as analysis views. For the most
part, purposeful views or nonprocedural views are associated with
the definitional phases of the lifecycle for product acquisition. They
concern user requirements and technological specifications.
Functional or procedural views tend to be assoctated with the very
end of the development pluse of the lifecycle and the deployment
phase when systemis may be thought of in terms of their input
output claractenistics. Psuedoprocedural, or architectural or
structural, views tend (o be associated with the earlier phases of
system development One of the major purposes of both forward
and reverse engineering, and tools that support these, is to enable
transformation from one view to another such as to ultimately
obtain a functionally useful product

Amold [39] indicates several potential uses and characteristics

of product reengineering. These, which are neither mutually
exclusive nor collectively exhaustive, include the following,

I. Reenginecring may help reduce an organization's risk of
product evolution through what effectively amounts to reuse
of proven subproducts.

2. Reengineering may help and organization recoup its product
development expenses through constructing new products
that are based on existing products.

3. Recngineering may make products easier to modify for
purposes of acconumodaung evolving customer necds.

4. Reengineering may be a catalyst for automating product

maintenance.

Recnginoering muy be a catalyst for application of new
tochniologics, such as CASE tools and antificial intelligence,
to system acquisition.

Recngineening is big business, especially considering the
nuyjor investment in legacy systems that need to be updated
and maintained.

In short, reengincering provides a miechanism that enables us to
understand systems better, such that we are capable of extending
this knowledge 10 new and better systems. Thws, it enhances both
understinding and improvement abilitics. Reenginecring is
accompanied with a vaniely of nsks that are associated with
processes, people, tools, strategics, and the application area for
reengineering, These rnisks can be managed using the
methodologics and the metrics discussed (2] and [14].

w

13

A number of authors have suggested specific lifecycles that wall
lead 0 determination of a decision to, or not to. reengincer a
product and, in suppont of a positive decision, enable a product
reengineering lifecycle (40] (41]. There are a number of needed
acoomphshmems These include the following,

. Initially, there exists a need for formulation, assessinent, and
implementation of definitional issues associted with the
technical and organizational environment These issues
include organizational needs relative to the area under
consideration, and the extent to which technology and the
product or sysem under reengineering consideration
supports these organizational needs.

2. ldentification and evaluation of options for continued
development and maintenance of the product(s) under
consideration is a need, including an option for outsourcing
this activity.

3. Formulation and evaluation of options for composition of the
reengineering team, including insourcing and outsourcing
possibilities is a noed.

4. ldentificaion and selection of a program of systematic
measurements that will enable demonstration of cost
efficiency of the identified reengineering options and
selection of a chosen set of options is required.

5. The existing legacy systems in the organizations need to be
examined in order to detenmnine the extent to which these
existing systems are functionally uscless at present and in
need of total replacement, functionally useful but with
functional and nonfunctional defects that could potentialty be
remedied using product reengineering to create renovated
systems, or systems that are fully appropriate for the current
and intended future uses.

6. A suite of tools and methods to enable reengineering needs to
be established. Method and tool analysis and integration is a
need in order to provide for multiple perspective views across
the various abstraction levels (procedural, psuedoprocedural,
and nonproocedural) that will be encountered in reengineering
is needed.

7. A reengineering process for product reengineering needs (o
be created on the basis of the results of these earlier steps that
will provide for the reengineering of complete products, or
reengineering of systems, and for incremental reengineering
efforts that are phased in over time.

8. There must be major provisions for education and training
such that it becomes possible to implement whatever
reengineering process eventuates through education and
training,

This is more of a checklist of needed accomplishments for a
reengineering process than it is a specification of a lifecycle for the
process itself. Through pursual of this checklist, we should be able
to establish an appropnate process for produict reeiigineening in the
form of Figures 4 or [1.

There are several needs that must be considered if a product
reengineering process is {0 yield appropriate and useful results.

1. There is a need to consider organizational and technological

issues to develop useful product reenginecring strategy.

14

2. There is a noed to consider hunguy, leadership, and cultural
1ssucs. and liow these will be impacied by the development
and deploynment of a reengineered product as a pant of the
delinition of the specifications for the reengineered product

3. It must be possible to demonstrie that the reengineering
process and product wue, or will be, euch cost effective and of
high quality, and that they suppont contnued evolution of
future capabilitics.

4. Reengincered products mwust be considered withun a larger
framework Uit also considers U potential need for
reengineering at the levels of systems management and
organizational prooesses as it will generally be a mistake to
assume that technological fixes only will resolve
organizational difficultics at these levels.

5. Product reengincering for improved post deployment
maintainability must consider maintainability at the fevel of
process rather than at the Ievel of product only, such as would
result in the case of soflware through rewriting source code
statements. Use of model based management systems or code
generators should yicld much greater productivity, in this
connection, than rewniting code at the level of source code.

6. Product recnginecning must consider the need for
reintegration of the reengincered product in with existing
legacy systems that have not boen reengineered.

7. Product reengineenng should be such that increased
conformance to standards is a result of the reengineering
process.

8. Product reenginecring must consider legal issues associated
with reverse enginecring,

The importance of most of these issues is relatively self evident.
Issues surrounding legality are in a state of flux in much the same
way as for benchmarking,

It is clearly legal for an organization to reverse engineer a
product that it owns. Also, twere exists little debate at this time on
whether inferring purpose from thc analysis of existing
functionality of a product and without any attempt to exantine the
architectural structure or detailed componernts that comprise the
existing product, and then recapturing the functionality in terms of
a new development effort (the so called black box approach), is
legal. Doubtlessly, it is legal. Major questions surround the legality
of "white box" reverse enginecring in which the detailed
architectural structure and componenits of a system, including code
for software, are examined in order o reverse engincer and
roengineer it The major difficudty appears to surround the fair use
provisions in copyright law, and the fact that it is the use of trade
secrets for illicit gain. Copyrighted material cannot be trade secret
since the copynght law roquires disclosure of the material
copyrighted. In particular, soflwzire is copyright and not patented.
So, trade-secret restrictions do not apply. There is a pragmatist
group that says even blick box reengineering is legal and a
constrictionist group that says it is illegal [42] [43). These issues
will be the subjoct of much debate over the near term.

Amold {44} has identified nuny of these product reenginecring
nocds in the form of risks that must be managed during the
reengineering cffort. Thus, we soc Ut there are risks associated

|

with a vanety of factors for product reengincening, as suggested in
Figure 12

8 Integration risk is the nsk associated with hanving o
reengincered product that cumot be satisfactonly integrie
with, or interface to, existing legacy systems.

& Maintenance improvement risk is the nsk duat the
reengineered product will exacerbate, rather than ameliorale,
maintenance difficulties.

u Systens management risk is the risk that the reengineered
product attempts to impose a technological fix on a situation
where the major difficulties are not need for greater support,
but for organizational reengineenng at the level of systems
management.

® Process risk is that associated with having a reenginecred
product that might well represent an improvement in a
situation where the specific organizational process in which
the reengineered process is to be used is defective and in need
of reengineering.

® Cost risk is associated with having major cost overruns in
order to obtain a deployed reengineered product that mects
specifications.

8 Schedule risk is associated with having schedule delays in
order to obtain a deployed reengineered product that meets
specifications.

8 Human acceptance risk is the risk associated with obtaining
a reenginecred product that is not suwitable for human
interaction, or one that is unacceptable to the user organization
for other reasons.

8 Application supportability risk is that risk associated with
having a reengineered product that does not really support the
application or purpose it was interded to support.

& Tool and method availability risk is associated with
proceeding with reengineering a product based upon promiscs
for a method or tool, needed to complete the effort, which doe
not become available or which is faulty.

8 Leadership, strategy, and culture risk is that associated with
imposing a technological fix in the form of a reenginecred
product, in an organizational environment that cauwot adapt
to the reengineered product.

Integsation R

Maintenance Improvement Risk

Systems Management Risk

Process Risk

Cost Risk

Schedule Risk

Human Acceptance Risk

Application Supportability Risk

Tool, and Method Availability Risk
Leadership, Strateqy, and Cutture Risk

L Beengineering Risks

Figure 12 Some Product Reengineering Risks

15

Clearly, these risks are not mutiedhy exclusive, the nsk atnbutes
are not independent. and tie lisung 15 incomplete. For example, we
could surely include legal nsks. We can use tis as the basws for a
mulu attnbute type assessniet or for a decision support systein
{45] tat supports nisk managenient for product reusability.

G. Other Approaches and Considerations

There are a number of relited approaches. Many, as noted. are
discussed in [2]. Two of these are very worthy of further comment
here: sourcing and integration.

The principles supporting stralegic sourcing decisions are
conceptually simple and nicely stated by Venkatesan {46).

1. The organization should focus on those components and
subsystems that are crucial to the product itself and where the
organization has critical core capabilities [47] [48] that
support the efforts required and which the organization
desires 10 sustain. This enables an organization (0 exercise
Judgment conceming subsystems that are strategic and those
that are nonstrategic. It potentially elisninates difficulties that
result from conflicting priorities and sourcing decisions.

2. Components and subsystems should be outsourced where
there exist potential suppliers with a distinct competitive
advantage at producing these. These competitive advantages
could be either those of lower cost producers or higher
subsystemn differentiation.

3. Outsourcing should always be used in such a manner that it
supports conlinuing employee commitment and
empowenuent It is necessary (o outsource this in such a
manner that there is minimum opportunity for exploitation
and hollowing of the organization, including its people, by
the external supplier.

These principles lead to a process for strategic sourcing, Lacity and
Hirschheim have published two recent works on information
systems outsowscing {49} [50] in which they identify three genernic
types of outsourcing.

" Body shop outsourcing is a way 10 meet short term demands
that cannot be met by people intemal o the organization even
though the decision would otherwise be favorable to
insourcing.

8 Project management outsourcing involves the use of external
suppliers to fumnish a subsystem or service activity, such as
training. This would scein closely equivalent to product line
or subsystem outsourcing,

8 Total outsourcing exists whenever an external supplier is
responsible for all, or a very major portion of a complete
tumi-key like information system function.

The bottom line summary message of these authors is that one
really cannot outsource Ure nawagement of infonmation systems.
There scems to be much agreement with thus, especially as
concems infonmation support for the highest level managerial
decisions [51] [52]. Parucularly when there is considerable
outsourcing to external suppliers, there will be a major mandate for
very careful integration of all aspects of the supply chain and an
understanding of the relationships between the supply chain and
the value chain.

There are also a nwnber of urteresting discussions Uuit reke 0
integration at the level of methods and tools {53} {S4] |55]. Wlule
of interest prunanly for product reengineening, there 1s much
relevance 1o process and systeins nunagement reenguicening is
well.

IV. Summary

In thus paper, we have considered a number of issues relative to
systems reengineening. We indicated that reengineening can tike
place at either, or all, of the levels of

[] m

® process, of

8 systems management.

Reengincering at any of these levels is related to reengineening at
the other two levels. Reengineering can be viewed from the
perspective of the organization fielding a product as well as from
the perspective of the customer, individual or organizational
receiving the product. From the perspective of either of these. it
may well turn out to be the case that reengineering at the level of
product only may not be fully meaningful if this is not also
associated, and generally driven by, reengineering at the levels of
process and systems management. For an organization (0
reengineer a product when it is in need of reengineering at the
levels of systems management and/or process is almost a
guarantee of a reenginecred product that will not be fully
trustworthy and cost efficient. An organization that contracts for
product reengineering when it is in need of reengineering at the
levels of systems management and/or process is asking for a
technological fix and a symptomatic cure for difficulties that arc
institutionally and value related Such solutions are not really
solutions at all.

Figure 13 is a hypothetical representation of potential need for
reengineering at the levels of product, process, and systeins
management. While it may well be the case, as suggested in the
figure, that product reengineering may well ooccupy much
resources, the combined total of resources needed for systemns
management and process reengineering may be not insubstantial.
What the figure does not show is the fact that resources expended
upon product reengincening only, and with no investigation of
needs at the systems management and process levels, may well not
be wise expenditures - from either the perspective of the
organization producing the product or the one consuming it

In an insightful study [56]. it is indicated that organizations
often squander resources that look very promising but which fail to
produce long-lasting results of value for the organization. Four
major ways to fail are identified.

1. Assigning average perfonmers to the reengincering effort.
often because the more valuable people are needed for other
more important efforts, will guarantee mediocre performance
of the product of the reengineering effort

2. Measuring the recnginecring plan and activitics only, and not
the results, will often product deceptive measurcient results.

3. Allowing new and innovative ideas for reenginecring 1o be
squelched through opporunistic politics and extreme nisk

16

aversion will presene the stitus quo rather tun encourage

unplementauon of benefical activiues in the form or results.
4 Faling 10 commumcie wisely and widely during

unplcmentaton will adnost adway s frustrite success.

Fig 13 Resource Distithution to lmplement Systems
Reengineenng

To this list, we might add failure to oblain real commitment from
the highest levels of the organization for the reengineering effort. It
miglt be argues. of course. that this leads to such things as
assigunent of average and mediocre performers to the
reengineening cffort. These authors also offer five factors said to
enliuce success at reenginecring.

i. Saaggressive reengineering performance targets in terns of

results.

2. Commit a significun portion of the CEOs tune to the
reenginecring cffort, espocidly duning deployinent.

3. Assign a very scnior exccutive (o head the reengineering
cffort. especially during deploymeit.

4. Perform a comprehensive review and analysis of customer
needs, organizational realitics, strategic econormic issucs, and
auwrket trends as a prelude to reengineering.

5. Conduct a pilot study and prototype the reengincering effort
in order to obtain results useful both to refine the
reenginecring process and the enhance communications and
bui'd enthustasm.

while the study was based pnmanly on organizational
reengineering cfforts. there are clear implications in these
suggesuons for all three types of roengineering efforts

B gystems management,

® process, and

8 product.

And, as we have indicaited. there is every reason why duc
consideration needs to be given to all three of these efforts in an
itegrated fashion for the betienmient of ench effort.

V. REFERENCES

{l] Sage, A. P., "Systems Engineering and Information
Technology: Catalysts for Total Quality in Industry and
Education,” [EEE Transactions on Systems, Man, and
Cybemnetics, Vol. 22, No. 5, September 1992, pp. 833-864.

{2] Sage, A. P., Systems Management for Information
Technalogy and Software Engineering, John Wiley and Sons,
1994 (in press).

[3) Sage, A. P., and Palimer, J. D., Software Systems Engineering,
John Wiley and Sons, New York, 1990.

{4) Rekoff, Jr, M. G., "On Reverse Engineering" [EEE
Transactions on Systems, Man, and Cybemetics, Vol. SMC
15, No. 2, March 1985, pp. 244-252.

{5] "Software Engineering Glossary," IEEE Software Engineering
Standards, IEEE Press, New York, 1991.

{6] IEEE Standard for Software Maintenance, P1219/D14, IEEE
Standards Department, New York, 1992.

{7] Davenport, T. H. and Short, J. E., "The New Industrial
Engineering: Information Technology and Business Process
Redesign," Sloan Management Review, Vol. 31, No. 4,
Summer 1990, pp. 11-27.

[8] Davenport, T. H., Process Innovation: Reengineering Work
through Information Technology, Harvard Business School
Press, Boston MA, 1993.

(9] Hudak, G. J., "Reengineering the Systems Engineering
Process,” Proceedings of the National Council on Systens
Engineering Annual Meeting, Alexandria VA, August 1993,
pp- 105-112.

[10]Brackett, J. W., and Pyster, A. B., "High-Level Softwuare
Synthesis,” Proceedings of the National Council on Systems
Engineering Annual Meeting, Alexandria VA, August 1993.
pp. 207-214.

{11JHammer, M., Reengineering Work: Dont Automate,
Obliterate,” Harvard Business Review, Vol. 68, No. 4, July
1990, pp. 104-112.

{I2j]dammer, M., and Champy, J., Reengineering the
Corporation: A Manifesto for Business Revolution, Harper
Business, New York, 1993.

[13)Harrington, H. J., Business Process Improvement: The
Breakthrough Strategy for Total Quality, Productivity, and
Competitiveness, McGraw Hill Cook Co., New York, 1991.

{14]Sage, A. P., Systems Engineering, John Wiley and Sons, New
York, 1992.

{15]Quinn, J. B., Paquette, P. C., and Doorley, T., "Technology in
Services: Rethinking Strategic Focus," Sloan Management
Review, Winter 1990.

(16]Quinn, J. B., Paquette, P. C., and Doorley, T., "Technology in
Services: Creating Organizational Revolutions,” Sloan
Management Review, Winter 1990.

[17]Quinn, J. B., Paquette, P. C., and Doorley, T., "Beyond
Products: Service Based Strategies,” Harvard Business
Review, 68, No. 3, March 1990.

[18]Quinn, J. B., Intelligent Enterprise: A Knowledge and Service
Based Paradigm for Industry, Free Press, New York, 1992,

{19]Davenport, T. H., Eccles, R. G., and Prusak, L., “Information
Politics," Sloan Afanagement Review, Vol. 34, No. 1, Fall
1992, pp. 53-65.

(20jRockart, J. F., and DeLong, D. W., Executive Support
Systems: The Emergence of Top Management Computer Use,
Dow Jones-Irwin, Homewood IL, 1988.

(21 Raifla, H., The Art and Science of Negotiation, Belknap,
Cambnidge MA, 1982,

{22|Neule, M. A, and Buzermman, M. H., Cognition and
Rationality in Negotiation, Free Press, New York, 1991,

123]Strebel, P., Breakpoints: How Managers Exploit Radical
Business Change, Harvard Business School Press, Boston
MA, 1992

{24)Camp, R. C., Benchmarking: The Search for Industry Best
Practices That Lead to Superior Performance, Quality Press,
American Society for Quality Control, Milwaukee W1, 1989.

[25]Licbfried, K. H. J., and McNair, C. J., Benchmarking: A Tool
Jor Continuous Improvement, HarperCollins Publishers, New
York, 1992.

(26}Watson, G. H., The Beuchmarking Workbook: Adapting Best
Practices for Performance Improvement, Productivity Press,
Cambridge MA, 1992.

[27)Watson, G. H., Strategic Benchmarking: How to Rate Your
Company's Performance Against the World's Best, John
Wiley and Sons, New York, 1993.

[28]Rockant, J. F., "Chief Executives Define Their Own Data
Needs," Harvard Business Review, Vol. 57, No. 2, 1979, pp.
81-93.

(29IRockart, J. F., and Bullen, C. V. (Eds.), The Rise of
Managerial Computing, Dow Jones Irwin, Homewood I,
1986.

[30)Watson, G. H., Bookhart, S., et. al., "Applying Moral and
Legal Considerations to Benchmarking Protocols," Appendix
2 in Planning, Organizing, and Managing Benchmarking: A
User's Guide, American Productivity and Quality Center,
Houston TX, 1992.

[31|Nevins, J. L., and Whitney, D. E. (Eds.), Concurrent Design
of Products and Processes: A Strategy for the Next
Generation in Manufacturing, McGraw Hill Book Co., New
York, 1989.

(32}Shina, S. G., Cowcurrent Engincering and Design for
Manufucture of Electronics Products, Van Nostrand
Reinhold, New York, 1991.

[33)Carter, D. E., and Baker, B. S., Concurrent Engineering: The
Product Development Environment for the 1990s, Addison
Wesley, Reading MA, 1992,

{34)JHumt, V. D., Reengineering: Leveraging the Power of
Integrated Product Development, Oliver Wright Publications,
Essex Junction VT, 1993

135}4ir Force Material Command Guide on Integrated Product
Development, May 25, 1993,

(36{Chikofsky, E., and Cross, J. H., "Reverse Engineering and
Design Recovery," A Taxonomy, IEEE Software, Vol. 7, No.

1, Janmuary 1990, 99. pp. 13-17.

|37)Cross, J. H. 11, Chikofsky, . J., and May, C. H Jr., "Reverse
Lngineering," in Yovitz, M. C. (Ld.), 4dvances in Computers,
Vol. 35, Academic Press, San Diego CA, 1992, pp. 199-254.

{38jAmold, R. S. (Ed.), Software Reengineering, IEEE Computer
Society Press, Los Altos CA, 1993.

{39lAmold, R. S, "A Road Map Guide to Software
Reenginecring Technology, in Amold, R. S. (Ed.), Software
Reengineering, IEEE Computer Sociely Press, Los Altos CA,

1993, pp. 3-22.

17

{40]JUlrich, W. M., "Re-engineening: Detining an Integrated
Migration Framework," in Amold, R. S. (Ed.), Software
Reengineering, IEEE Computer Society Press, Los Altos CA,
1993, pp. 108-118.

{41]Olsem, M. R., "Preparing to Reengineer," JEEE Computer
Society Reverse Engineering Newsletter, December 1993, pp.
1-3.

{42]Samuelson, P., "Reverse Engineering Someone Else's
Software: Is it Legal?," IEEE Software, Vol. 7, No. |, January
1990, pp. 90-96.

[43]Sibor, V., "Interpreting Reverse Engineering Law,” [EEE
Software, Vol. 7, No. 4, July 1990, pp. 4-10.

{44)Amold, R. S, "Common Risks of Reengineering,” [EEE
Computer Society Reverse Engincering Newsletter, April
1992, pp. 1-2. Also in [38], pp. 119-120.

[45]Sage, A. P., Decision Support Systems Engineering, John
Wiley and Sons, New York, 1991.

[46]Venkatesan, R., "Strategic Sourcing: To Make or Not to
Make,” Harvard Business Review, Vol. 70, No. 6, November
1992, pp. 98-107.

{47)Prahalad, C. K., and Hamel, G., "The Core Competence of
the Corporation,” Harvard Business Review, Vol. 68, No. 3,
May 1990, pp. 60-74.

{48]Stalk, G., Evans, P, and Shulman, L. E., "Competing on
Capabilities: The New Rules of Corporate Strategy,” Harvard
Business Review, Vol. 70, No. 2, March 1992, pp. 57- 63.

[49]Lacity, M. C., and Hirschhieim, R., “The lnformation Systems
Outsourcing Bandwagon,” Sloan Management Review, Vol.
35, No. 1, Fall 1993, pp. 73-80

[50|Lacity, M. C., and Hirschheim, R., [nformation Systems
Qutsourcing: Mvihs, Metaphors, and Realities, John Wiley
and Sons, Chichester UK, 1993.

{51]|Benjamin, R. J, and Blunt, J, "Critical IT Issues: The Next
Ten Years, Stoan Afanagement Review, Vol. 33, No. 4,
Sununer 1992, pp. 7-19.

{52]Boynton, A. C.. Jacobs, Gi. C., and Zmud, R. W., Whose
Responsibility s 1T Managemeut," Sloan Management
Review, Vol. 33, No. 4, Summer 1992, pp. 32-38.

(53]Kronlof, K (Ed.), Afethod Integration: Concepts and Case
Studies, Johm Wiley and Sons, Chichester UK, 1993.

[54]Schefsttom, D., and van den Broek, G., Tool Integtration:
Environments and Frameworks, John Wiley and Sons,
Chichester UK, 1993.

{55]Audrews, D. C., and Leventhal, N. S., FUSION - Integrating
IE, CASE, and JAD: A Handbook for Reorganizing the
Svstents Organization, Prentice Hall, Englewood Cliffs NJ,
1993

[S6]Hall, G., Rosenthal, J., and Wade, J, "How to Make
Reengineering Really Work," Harvard Business Review, Vol.
71, No. 6, November 1993, pp. 119-131.

18

Design Capture and Optimization Issues for System-Level Reengineering

Steven Howell, NgocDung Hoang, Cuong Nguyen
Naval Surface Warfare Center, Dahligren Division
Nicholas Karangelen
Trident Systems Inc.

ABSTRACT

Given the increasing maturity of computer-based
systems, more and more systems are evolving from past
systems ratherthan being developed from scratch. However,
large and complex systems have put dramatic burdens on
the systems engineers in designing these applications. The
situation has become even more complicated by the
increased introduction of commercial off the shelf (COTS)
products into these systems. Additionally, many
reengineering efforts have only focused on software
reengineering,providing little insight into the other system
Sunctionality not embodied in the software. Today
reengineeringtechnology must be integrated into a system-
level forward engineering framework to effectively meet the
challenges of the future systems. Four critical issues that
reengineeringtechnology must address in order to effectively
Sacilitate the system-level design of evolution systems
include: (1) the ability to provide means to recapture not
only functional and control (behavioral) descriptions of the
system, but all necessary information at the system level;
(2) the ability to merge reengineered information with
Jorward engineeringinformation at the system level; (3) the
ability to separate 'required" functionality from ‘legacy”
Junctionality which was the result of design and architecture
decisions; (4) and the ability to maintain and reengineer
system level designs. Without these capabilities, future
systems engineer will face two critical shortcomings: (1) an
exceedingly restricted design space during system-level
optimization which will produce ineffective systems, and (2)
Jfragile implementations which are difficult to modify in
response to either requirements changes or technology
advancements. This paper describes a framework to support
both reengineeringand forward engineeringinformation and
provides a means to manage the information. The
Jframework provides for separation of concerns, systematic
capture of non-functional attributes, and integration of
system information. This framework can also be used to
assess the ability of current reengineeringtechnology to meet
the needs of system level design.

INTRODUCTION

For computer-based systems, optimizing a
reengineered static or semi-static software architecture to
fit a static or semi-static distributed computer hardware
implementation late in the application s implementation
provides marginal performance enhancements. Vastly
increased performance can be gained through proper
system engineering. The computer-based system

engineering of large and distributed applications involves
identifying the proper definition and structure of the
system functionality and allocating these functions to
proper resource architectures. Engineers must be able to
effectively trade-off between different types of resources
(i.e., bardware, software, and humanware) as well as
alternative resource architectures, to meet requiremeats
for real-time, cost, safety, etc.

A key issue in designing a real-time, large-sized,
complex system is to optimize and assess the design,
based on multiple competing requirements, early and
throughout the design process. However, ‘optimal "
solutions cannot be generated by addressing various
aspects of the system singularly. Non-functional issues,
including financial costs (development, production,
maintenance, logistics), physical constraints, timing,
security, dependability (reliability, safety), maintainability,
etc., will drive the system design as much as functionality
for most large, complex systems.

Many times, effective trade-offs cannot be
performed due to the lack of design descriptions.
Complete information about an application cannot be
specified in a single design model even for moderately
sized systems. At different stages of the design process,
the designer must decide which information is important
to capture and at what level of detail. Existing
reengineering technologies only focusses on certain types
of design information (i.e., the design of software
algorithms can be easily recapture). Reengineering at
other levels in the design process is usually a labor-
intensive and manual process. Existing design reflects a
specific implementation (i.e., a particular hardware
platform and/or a unique software language) that is
selected to performed the desired functions. In capturing
an existing system design, system engineers do not have
the capability to distinguish which part of the design is
driven by the original requirements and which part is
dependent on a particular design decision. Also, reverse-
engineering from code tends to lack non-functional
information.

For most computer-based evolutionary systems the
amount of the former system reengineered or reused may
vary tremendously. For instance, the reengineering may
facilitate a system upgrade where only a small percent (on
the order of 5-30%) of the operational code is modified.
In this case the system architecture and infrastructure is
not likely to change significantly. Therefore, the
reengineering efforts must integrate into the existing
system/software design.

On the other hand, if the evolution involves the

19

next generation of a system, some of the original system
level design might be reused; however, the system
architecture and infrastructure would likely differ vastly
from the original system. This appears to be the case for
the Next Attack Submarine (the follow-on to the
AN/BSY-2 Seawolf) and Combat System 2003 (the follow-
on to Aegis).

For the development of large and complex
systems, requirements derived from user needs are
defined. In turn, these requirements are captured and an
initial design is produced [Hoa91). Analysis is executed to
assure that the initial design is complete and coansistent
[BIF90]. This design is optimized iteratively until a
feasible or an optimal design is achieved [HNH91],
[HNH92]. Collected results are then passed through for
rapid prototyping, assessment, evaluation, test and
refinement to yield the final design [BoB85], {CYH91],
[JeY91}, {Kam91], [SvL76]. The design components are
then implemented, integrated and tested. This description
follows a waterfall approach. Other models used, such as
modified waterfall, rapid prototyping or spiral model,
follow the same steps in at different levels of details and
different orders. In actual system developments, a hybrid
of these approaches is typically used.

This paper describes a framework to support both
reengineering and forward engineering information and
provides & means to manage the information. The
framework provides for separation of concerns, systematic
capture of non-functional attributes and integration of
system information. This framework can also be used to
assess the ability of current reengineering technology to
meet the needs of system level design. First, a capture
framework is described. Next, additional annotation
capabilities are described which provide a basis for
engineering decisions. Optimization of system designs
using the annotation and capture methods in an
evolutionary environment are also addressed.

SPECIFICATION AND INTEGRATIONISSUES

Regardless of the process used to develop the
system, a lack of a cohesive and coherent engineering
discipline starts with a shortage of formal and cohesive
techniques for specifying the system under development.
This is especially true for system level design capture and
design analysis. Most large systems are reactive systems
that must respond to external stimuli; therefore, the
systems engineering must be able to predict the system’s
behavior in all scenarios and environments under which
the system will operate including planned mode of
operation and action, and reaction to failure to internal
system failure (fault tolerance) or external inflicted
damage (damage tolerance). In order to effectively design
these systems, definitions of the multiple design domains
or views which address the principal system design
perspectives are needed. We propose five Design Capture
Views (DCV) [Hoa%91] which as follows: 1)
Environmental, (2) Informational, (3) Functional, (4)

20

Behavioral, and (5) Implementation. The capture
approach for each design domain or capture view share a
common hierarchial structure which supports management
of the magnitude and complexity associated with a large
system design. Flat representations of complex system
designs rapidly become unwieldy as the design detail
unfolds. A hierarchial structure allows the system capture
views to be represented at various levels of detail from a
broad top level, which encompasses the breadth of the
system and its external interfaces, to very low levels, which
describe the details of a particular segment of the system
design.

The five system capture viewspartition the system
design into logical segments which correspond to key
perspectives of the system design. These five capture
views are distinct but related representations of key
aspects of the system. They are summarized in Table 1-1.
The design elemeat portion of the table describes current
generalized methods or techniques used to specify the
information. Specific methods exist for capturing the
Informational, Functional and Behavioral capture views
{DeM79], [HaP87], [WaMS85], ([ShM88] [Har86].
Implementation and Environmental capture views lack
mature methods for computer intensive real-time systems.
The following paragraphs describe each capture view
objective in more detail.

The Informational Capture View captures &
conceptual representation of the system under design in
abstract terms. This view captures all components that
make up the system and the interaction between these
components. This allows for a description of the intended
system concept of operations (use analysis) without
implying or constraining the physical implementation of
the system under design.

The Functional Capture View establishes the
functional structure of the system. It specifies how the
functions are decomposed and how the information is
transformed through these functions. This provides a
better understanding of the system’s functional
decomposition.

The Behavioral Capture View describes the
system’s attributes over time and describes the event or
time-~driven aspects of the system. This view allows for
specification of the system’s bebavior at different times
and under various conditions and situations. This provides
a mechanism for specific real-time and time-critical
aspects of the system. This also may include behavioral
descriptions of dependability, safety, and security.

The Implementation Capture View defines the
physical hardware, software and human resources which
comprise the system and its connectivity to external
systems [HoK92]. This is where alternative physical
system architectures are defined.

The Environmental Capture View captures the
system under design from an external viewpoint [Kar92].
This view describes the situation(s), environment(s),
expected events and other factors that make up the
conditions under which the system is operating. This

TABLE 1. SYSTEM CAPTURE VIEWS

design; environmental conditions including acoustic,
electromagnetic, and meteorological conditions; threat
types and locations (in a military application); operational
constraints; likely strategic and tactical considerations and
other pertinent items; and concept of operations. The
MOEs which characterize system performance and
establish the ‘success criteria” for the system are also
specified together with the conditions under which the
MOEs are measured. The Environmental Capture View
also specifies the guidance and constraint of the
environment which the design itself must face.

An attempt to address all of the issues associated
with these capture views simultaneously or without a
structured methodology is a multi-dimensional problem of
a magnitude which exceeds the capacity of most, if not all,
systems engineers. Each of these capture views provides
key information concerning particular aspects of the
system under design. Taken individually the capture views
allow the systems engineer to partition the design of a
proposed or existing system into manageable parts.

As systems increase in complexity and size, the
capturing design methods have to scale so that they are
able to capture different aspects of the system in a
complete and systematic manner. Deciding what aspect of
the system needs to be captured and to what level of detail
is a very difficult task. The group of descriptions used to
capture one type of system may be irrelevant or
incomplete for another system. Therefore, the ideal
situation is to define the capturing method for all aspects
of the system and, depending on the system requirements
or on the design phases, emphasize or deemphasize certain
system capture views.

21

DESIGN CAPTURE VIEW VIEW OBJECTIVES DESIGN METHODS
Informational Capture View Characlerizes sysiem concept of operstions Entity-relationship diagrams
Represents system components in abstract terms Attribute/method descriptions
Functional Capture View Defines system functions and decompositions & Function/data flow diagrams
Specifies data flow requirements 8 Process specifications
% Data dictionary
Behavioral Capture View Defines system states and trigger events ® Control flow diagrams
Specifies system behavior characteristics ® State transition diagrams
®» Control specifications
Implementation Capture View Defines the physical hardware, software, and & Hardware, software, and human resource
human resources which make up the system descriptions
® Specifies system physical interconnectivity ® Performance parameters and resource
characteristics
& Function-resource mapping
Eaviroamental Capture View s Establishes conditions and events constraining s Environmental conditions and event
system operations descriptions
® Specifies performance Measure Of Effectiveness s External system descriptions
(MOEs) and conditions of measurement ® System initial conditions
s MOEs
includes the following: initial state of the system under SYSTEM DESIGN ANNOTATION

One key to designing a real-time, large, complex
system is to optimize the design to meet the requirements
and desired MOEs. In order to achieve this, the system
engineer/analyst must have the capability to annotate the
system design with design goals/criteria that relate to the
requirements and MOEs. Whether the system design
emphasizes real-time, reliability, safety, security, cost,
physical constraints, or any specific criteria, a set of design
goals is required to describe the desired characteristics of
the system. This set of design goals provides a framework
for the specification of critical information from which
system’s qualities and performances can be measured.
The design goals also provide a basis for the trade-off
between design criteria and design alternatives. One
mechanism that allows these design goals to be specified
is System Design Factor (SDF) [NHL93]. SDFs are
“attributes " associated with any design element in the
design. A Design Element (DE) is a set of one or more
design components such as functions, dataflows, states,
objects, or relationships. Regardless of the employment
of any system development process, the SDFs can have
major influence in various design activities within the
process (i.e., design capture, design structure, design
allocation, and design trade-off). The SDFs not only
provide a mechanism to capture the system attributes but
also allow them to be related.

SDFs can also be viewed as a communication path
between customers and systems engineers. In general,
system engineers must be able to express and prioritize the
customers ’criteria. These criteria are, in turn, annotated
through the design factors and are used as a guideline for
the design team. By considering these factors early and

throughout the development process, the design team can
avoid both bad designs and design that does not meet the
requirement to reduce costs, and to optimize productivity
[HHN90a), [HHN90b).

Each SDF has one or more metrics defined. In
addition, when associated with a design element, an SDF
may have more than one measurement. The metric
describes manners in which the factor might be measured.
Metrics can be derived from (1) past experience, (2)
results of simulation/analysis/prototyping, (3) actual
system measurements, (4) other SDF measurements, or
(5) other SDF metrics. By using other SDF metrics or
measurements to define a SDF metric, SDFs are defined
in a hierarchical manner. For example, a higher level
Real-Time Performance (RTP) SDF can be derived from
two other SDFs: Deadline Success Rate (DSR), and
Deadline Criticality (DC). The metric for RTP might be
a mathematical formula related DSR and DC; e.g., the
product. Metrics may also be related to the hierarchical
specification. For example, in a functional decomposition,
the Total Real-Time Performance of some Design
Element, TRTP(de) may be the product of decomposition
components of de as shown in EQ 1.

EQ I: TRTP(de) = IIRTP(DDE)
such that DDE is the set of Design Elements
which are a decomposition of Design Element de.

It has been previously shown that based on the
design goal and design parameter, the engineer can tailor
the single criteria or multicriteria objective function for
optimization [NaF91].

SYSTEM LEVEL OPTIMIZATION ISSUES

A template of SDF is presented in Figure 1.
This is a super class definition of SDF. The purpose of
this template is to provide a general format to guide the
systems engineer or the customer in the application of the
SDF. 1t assists the engineer/customer in specifying the
goals/criteria to be measured. As a system design
matures, SDF class types are defined, a class hierarchy of
SDF is generated and instantiated SDF ‘objects " are used
to annotate particular design elements.

Currently, there are twelve items in the template.
(1) Name is an unambiguous name of the SDF. (2)
Type is a classification of the SDF. (3) Range is either
the minimum and maximum values or the cardinality of
the SDF. (4) Units is the unit of measurement of the
SDF. (5) Methods/Principle lists approaches or techniques
that the designer/customer considers to affect changes in
the factor’s value. (6) Rationale lists the reasons that this
factor applies to design elements and specifies which
design element types are appropriate. (7) Relationship
lists other SDFs that are closely associated. The
Relational Expression field in this item lists types of
associations for each Relationship. (8) Quantification is
divided into Type and Metrics fields. The Type field

22

describes value types of quantifications such as integer,
float, double, short, or long. The Metrics field describes
how measures are determined. Once instantiated, the
Metrics field also holds values measured. A description of
this aspect of the SDF is described in more detail in an
earlier section. (9) Consistency Rules list rules to
determine consistency of the SDF in various design
specifications. Rule types include By-Aggregation, By-
Type, By-Design Factors, By-View, and By-Component
rules. For example, the By-Aggregation field provides a
slot that holds the rule for governing this factor
consistency throughout the hierarchy (e.g., Use Rule X
and Rule Y). (10) Reference is the source or reference of
factor which may be a publication or simply the name of
the designer that formulated this SDF. (11) Definition
provides a text book style definition of the SDF. (12)
Annotation provides areas for free form commeats
relevant to the SDF. The Annotation may include further
SDF background information or provide warnings related
to the SDF.

) Name. Ch Text fog..

2 Type: SOF T'ype fo.g.. Frabeddity/

) Range: Range of Vaksms of Quendtication fe.g.. 0.0 te 1.04

L} Units: Units of Type fe.g.. Units of Prebebiity)

[3 Methode/Principle: One or More of Maecheds Thet Might be Used 1o
Suppert Fecter fe.g., Highty Ralieble Companent,
Fault Telarance)

) Astionale: Character Text Dascriding Need

Relagonahip: One or More of other S80Fs Typesie.g..

Avelablity). ...
One or More of reigtiensiip 16.g.. Posidve
Ps Manethve C. "

P

(0.9, fixed)
ACTUAL: Metric Type Speciication fe.g..
LUK IR RN]

Source: One of Sowrce Type te.g..
Caicudated)

Velue: Messured Vaiue of Type
“Type*

Mecric Type Specification fe.g.,
Scalwr Velus .989) entared
Sewrce: One of Sowce Type

fo.g. Entared)

Valva: Messured Valve of Type
“Typa*

Metdc: Type Specification (e.9.
1.01 * SOF {Requiced Valuel}
Sowce: One of Source Type le.g.,
Calculated)

Valse: Massured Yok o! Type
“Type*

BUDGETED:

9. Consistency fuses
8. By Aggregation Use Rule X and V.

Aude X: Ihe probetiity of the companent in saries

in the product of ks probeblliies. Aube ¥: The

probabiity of the component in parsliel use ene of

o1 YO schems.

b. By Type

¢. By Design Factor

d. By View

«. By component
10. R h Type of C
", o Ch Type from Rel
12. ch Type of Co

Figure 1 SYSTEM DESIGN FACTORS TEMPLATE

THE FRAMEWORKAND REENGINEERING

The framework proposed addresses many of the
critical issues described in the abstract. It provides the
ability to capture and maintain more complete system
information. Since the key issue in reengineering is the

ability to understand the functionality, the behavior, and
the implementation of the existing system, the design
capture views framework naturally supports this process.
Depending on the level of reengineering, information
about the existing system can be specified in the
appropriate capture views. Supporting various levels of
detailed descriptions as well as multi-levels of design
abstraction, the capture views provide a framework for the
whole spectrum of reengineering. For example, for the
reuse of existing software, the functionality of the existing
code can be captured in the software architecture of the
implementation view. This software architecture provides
a better understanding for the software function of the
existing code which can then be assessed for its use in new
required applications. For the reengineering at system or
subsystem level, the functionality, the behavior, and the
implementation of the existing subsystem (or system) can
be captured by the functional, behavioral and
implementation capture views.

With the support of the SDFs in describing
various DEs of the capture views,the design of an existing
systems can be evaluated for reuse and integrated into new
and evolutionary designs. Existing designs can be
evaluated independently or as part of a new design. The
capability to integrate old and new designs and analyze
them based on different criteria allows the employment of
reengineering to be properly evaluated and justified.

With these framework advantages, the design
space considered by system designers could be broadened.

In addition, systems will be more easily evolve from the

design, with modification alternatives quickly determined
and assessed. This should be true whether the changes
occur due to a top-level requirements change or an
implementation-level technology insertion.

SUMMARY OF CURRENT STATUS

Definitions and examples of usage of the multi-
domain system design capture methodology have been
documented in several reports [HKH91], [Hoa9%1],
{HoK92]. Much work still needs to be done in the
development of specific representations within each of the
capture views especially within the Behavior,
Implementation and Environmental Capture Views.
Currently, the study of the relationship and transition
between these capture views is only focused on the link
between the Functional/Behavioral and Implementation
Views [Hoa91]. Near-term goals also include the study of
the transition between design capture and design
evaluation. Transformation techniques must be able to
preserve all information from design capture such that
analysis results will reflect a correct system.

Automation support for the generation of the
capture views, transition between them, and transition
from design capture to design evaluation is a critical issue
for the success of the employment of this method. The

23

evaluation of current CASE tools (i.e., Teamwork,
Software Through Pictures, Statemate, RDD-100) and
simulation tools (i.e., ADAS, SES Workbench, Bones)
shows that they do not provide complete representation
and evaluation capabilities. One immediate solution is the
integration of various tools. However, more research is
needed to provide a seamless support environment for
system design.

The relationship between SDFs is not well
understood at the present time, but there are attempts to
correlate these factors as this effort progresses. SDFs for
security and dependability aspects of the system are being
developed by related efforts and the use of SDFs within a
multi-view specification of the system is ongoing. These
factors are intended to be used throughout and are critical
to the entire system engineering process. For instance,
they are used to specify in the requirements phase,
encapsulate in the capturing phase, quantify and evaluate
in the analysis phase, characterize in the optimization
phase and, justify in the design trade-off phase.

A software tool called DESTINATION (Design
Structuring and Allocation Optimization) has been
developed to explore issues described in this paper.
DESTINATION bhas been linked to commercial
specification tools and is being linked to simulation and
scheduleability assessment tools. In the future,
DESTINATION will be linked to reengineering tools.
DESTINATION provides SDF annotation and resource
allocation optimization. Design guidance capabilities are
in development.

The future plans include refining, restructuring
and streamlining (if necessary) the optimization of designs
using Multi-View Capture and SDFs. A dedicated
research effort is considering a small but widely used set
of design factors. Given formalisms are currently lacking
and single point solutions are being used for the
Environmental and Implementation Capture Views. In
addition, research into providing robust capture methods
for these areas will be explored. The formulation will be
incorporated into a sonar [Hoa91] and other applicable
examples.

Together, the multi-view capture and optimization
based on SDFs provide a framework for the results of
real-time system simulation/analysis to view and manage
a total system engineering process.

REFERENCES

(BiF90] Blanchard and Fabrycky, Systems Engineering
and_Analysis, 1990.

[BoB85] Bowen, B.,and A. Brown, W. R., System Design:

Volume II of System Design for Digital Signal Processing,
Prentice-Hall, Inc., 1985

[CYH91] Choi, D., Youngblood, J., and Hwang, P.,
"Modeling Technology for Dynamic Systems ", Proc. 1991
Systems Evaluation and Assessment _Technology

Workshop, Aug 1991.

[DeM79) DeMarco, T., Structured Analysis and System
Specification, Prentice-Hall, Inc. Yourdon Press,
Englewood Cliffs, NJ, 1979.

[HaP87) Hatley, D. and Pirbhai, 1., Strategies for Real-

Time System Specification, Dorset Publishing, New York,
NY, 1987.

[Har86] Harel, D., Statecharts: A Visual Formalism for
Complex_Systems, The Weizmann Institute of Sci. Tech.
Report, Israel, Jul 1986, (also in Science of Programming
8, 1987).

(HHN90a] Howell, S., Hwang, P., and Nguyen, C.,
"Expert Design Advisor," Proc. Sth Jerusalem Conference

on Information Technology (JCIT), IEEE Computer
Society Press, Los Alamistos, CA, Oct 1990, pp 743-756.

[HHN90b] Howell, S., Hwang, P., and Nguyea, C.,

‘Expert Design Advisor,” Naval Surface Warfare Center
Technical Report, TR-90-46, Oct 1990.

[HKH91] Hoang, N., Karangelen, N., and Howell, S.,

Mission Critical System Development: Design Views and
Their Integration , Technical Report, NAVSWC TR 91-586

[HNH92] Howell, S.,Nguyen, C.,and Hwang, P., Design
Structuring and Allocation Optimization (DeStinAtiOn):
A Front-end Methodology for Prototyping Large,
Complex, Real-Time Systems,” Hawaii International

Conference op System Sciences, IEEE Computer Society
Press, Los Alamistos, CA, Jan 1992, Vol. II, pp 517-528.

[HNH91] Howell, S.,Nguyen, C.,and Hwang, P., System
Design Structuring and Allocation Optimization

(DeStinAtiOn), “ Proc. 1991 Systems Design Synthesis
Technology Workshop, Sep 1991.

[{Hoa91] Hoang, N., 'Essential Views of Systems

Development, " Proc. 1991 Systems Design Synthesis
Technology Workshop, Sep 1991.

[HoK92] Hoang, N. and Karangelen N., "A View to an

Implementation, " Proc. Complex Systems Engineering

Synthesis and Assessment Technology Workshop, Silver
Spring, MD, July 1992, pp 223-233.

{JeY91] Jenkins, M. and Yeh, C., "An Approach to
Design of Processor Networks Based On Massively
Interconnected Models,” Proc. 1991 Systems Design

Synthesis Technology Workshop, Sep 1991.

[Kam91] Kamat, V., "Computer System Evaluation: Paths
and Pitfalls,” Proc. 1991 System s Evaluation and
Assessment _Technology Workshop, Aug 1991.

24

[Kar92] Karangelen, N., The Environmental Capture
View: Addressing Extemal Factors in Capture and
Analysis of Large Scale Complex System Design,” Proc.
Complex Systems Engineering Synthesis and Assessment

Technology Workshop, Silver Spring, MD, July 1992, pp
235-247.

[NaF91] Maasour, N. and Fox,G., Physical Optimization
Methods for Allocating Data to Multicomputer Nodes,*
Proc. 1991 Systems esi Synthesis _Technolo,

Workshop, Sep 1991.

[NHL93] Nguyen, C., Howell, S.,Lock, E., and Prasad B.,
"Employing System Design Factors for Optimization and
Trade-Off Analysis in Distributed Real-Time System
Software Design Structuring, " Proc. of the Workshop on
Parallel and Distributed Real-Time Systems, Apr. 1993,

[ShM88] Shlaar, S. and Mellor, S., _Object-Oriented

Systems Analysis: Modeling the World in Data, Prentice-
Hall, Inc. Yourdon Press, Englewood Cliffs, NJ, 1988.

[SvL76] Svobodova and Liba, Computer Performance
Measurement _and Evaluation Methods: Analysis and

Applications, 1976

[WaM85] Ward, P. and Mellor, S., Structured

Development of Real-Time Systems, Preatice-Hall, Inc,
Yourdan Press, Englewood Cliffs, NJ, 1988.

Information Architecture

An Architectural Basis for Evolution

of

Large Scale Software Systems

John R. Leary !
Software Engineering Institute
(SEI Washington Office)
801 N. Randolph St, Suite 405
Arlington VA, 22203
Tel: 703-908-8206; Email: jri@sei.cmu.edu

Abstract

The complexity and the volatility of requirements
for large scale software systems, and the vast in-place
investments, make evolution a necessity. With evolution
there is risk that critical user objectives will not be met
within schedule and funds budgeted for new capabilities.
To assure that mission needs are satisfied, evolutionary
process must be strongly influenced by users, but also
must be carefully controlled by buyers and efficiently
carried out by builders. This paper 2 discusses how
architectural approaches add value by providing, from
multiple perspectives, a vision of objectives that is
understandable to users, buyers, and builders alike. It then
describes how these same approaches also offer a means to
organize the evolutionary engineering activity around
information neceds for the target system. The paper
illustrates this and shows that use of an "information
architecture” helps to assure that results meet ultimate
mission needs by focusing engineering activities on the
needs of the end user.

1 Introduction

Continuing evolution of large-scale software-
intensive systems provides the context for this paper.
Even when precedents can be used to foster common
understanding of objectives and methods, large-scale
systems pose exponentially greater difficulty in
communication than is the case in smaller systems. We

1 This work is sponsored in part by the U. S. Department of Defense.
The views and conclusions contained in this document are solely those of
the author and should not be interpreted as representing official policies,
cither expressed or implied, of the Software Engineering Institute,
Camegie Mellon University, the U.S. Air Force, the U.S. Depatment of
Defense, or the U.S. Government.

2 The concepts presented in this r are based partly upon past
experience in maintaining large scale software systems for satellite
ground data processing, and based partly upon recent work at the SEI
relaied to a mission critical evolutionary development program.

25

introduce the notion of perspective as a means to mediate
this difficulty. In an, this allows appreciation of an artist's
viewpoint. Perspective in engineering also helps create
common viewpoints on which to optimize communication
among users, buyers, and builders.

Object-oriented views offer users of software
systems a means to deal with complex software
abstractions in familiar terms. In addition, object-
orientation provides builders a means to reuse artifacts
efficiently. Realizing Cook's [16] first principle of object
technology (i.e.: hiding the data behind the processing)
also requires an information structure within which useful
and feasibly produced implementation objects are
identified and elaborated. These differing aspects of
object orientation suggest the levels of architectural
information that are needed to successfully evolve
systems.

Evolutionary reengineering is iterative and
incremental. The continuing challenge is to determine
how to know, and when it is true, that the interim results
are proceding most rapidly toward the ultimate mission
needs of the user. Insight from consideration of the
object-oriented and architectural bases for software
evolution offers a model that provides the leverage needed
to answer these questions.

Software architectures are conceptual, intangible,
and abstract. Yet if they are to guide software engineers,
they must be concrete, visible, and as obvious as possible.
To achieve this goal, we apply the notion that one leamns
best while doing. From this comes the conclusion that
architecture is most effective in communicating vision
when it is thoroughly integrated into the evolutionary
process itself. Architectural insight clearly provides a
framework for that process. By inverting the title of Best's
article ("If They Built Buildings the Way They Build

Software") we suggest a way to define a practicable, and
pragmatic paradigm for applying architectural concepts
toward reengineering large scale software systems [11).

Evolutionary reengineering process mediates
problems in dealing with large-scale systems but fails (1)
without user-oriented direction and control, (2) without a
process framework that assures that mission needs are met,
and (3) without consistent engineering methods and
evaluation paradigms. Gelernter's insight that a different
way of viewing large scale systems (i.e.: that software
"shadow systems” are needed to track the evolution of
actual systems) is the beacon followed in this paper for
identifying technology needed to enable evolutionary
reengineering {23).

An architectural framework for evolution should
offer (1) direction based on vision clearly understood by
both users and builders; (2) controls that reflect knowledge
of both legacy systems and problem domain; and (3)
comrelated process framework, engineering methods, and
evaluation paradigms.

The thesis of this paper is that an information
architecture provides this framework. To develop this
position, the use of architectural concepts is discussed, and
hypotheses are offered regards applying them for
evolution. Architectural views, combined with object-
oriented concepts, prevent the failure modes identified for
evolutionary reengineering.

Terms of reference are offered to frame the
discussion. Architectural concepts that add value to the
evolutionary process are introduced in the context of
object oriented techniques. A set of five architectural
propositions for evolving systems suggest how
architectural approaches contribute to software
engineering activities.

Discussion of engineering activities then
illustrates how object-oriented considerations and levels of
architectural information help assure engineering results
that meet long-term mission needs. The value of
information architecture in guiding this activity is
summarized in a five-point conclusion.

2 Concepts and Definitions
2.1 Architecture
The term "architecture” is used in this paper in

the context of abstract systems. Architecture reflects
many kinds of structure and is a basis for several kinds of

26

reasoning. ldeas presented are influenced heavily by
tutorials and presentations from M. Shaw {53], and J.
Zachman [64,65]) and by papers from D. Perry [44] and B.
Gaines [21). Saunders [49, 50) and Horowitz [28) offer
views of the nature of software architecture for use in
support of software acquisition. Anderson's ideas [5] that
architectural concepts are the structuring paradigms of
software systems, and that envisioning a product family
involves creating an appropriate architecture, are also
helpful in obtaining an operational understanding of what
the term architecture means to software engineering.
Jones' [31] definition of architecture offers the following
key points:

« a structure of elements of known properties,
+ which have rules of interaction and relations
« and provide a basis for reasoning

2.2 Evolution

The notion of "evolution” is used in a literal
sense. As a "series of changes”, evolution must have a
starting point (legacy). Having "a certain direction”,
evolution differs from an unconstrained series of
modifications that may have little direction over the long-
term. It also differs from development, which has both
direction and precisely specified results. Webster defines
evolution as

+ aseries of related changes in a certain direction
2.3 Object

In this paper, the literal definition of "object” is
broadened by the notion of "cognitive apprehension”,
versus the more literal "visible”, and extended by
including software engineering notions re object
capabilities. This produces the definition that follows:

« atangible or cognitively apprehensible thing, having
+ discrete boundaries, and having

* intrinsic information and state, and

« capabilities including communications

2.4 System

The idea of "large scale software system” is
central to this paper. In the literal definition of "system",
the key idea used is "aggregation of objects”. An extract
from Webster brings this out.

» acomplex unity of diverse parts
 serving a common purpose

« an aggregation of objects
+ joined in regular interaction or interdependence

3 Leverage for Reengineering

Using an object-oriented approach to identify,
claborate, and incrementally realize a software architecture
provides leverage for several aspects of rereengineering
large software systems. Both the object-oriented and the
software architectural approaches improve
communications about the system by reducing technical
and mission-oriented goals to familar aggregates of
computer processing, user functionality, and mission data.
Both approaches support evolution of new capabilities
versus specialized development of integral functions. The
combination of the two approaches facilitates efficient
integration of the improved system capabilities which
satisfy ultimate user needs.

3.1 Object-Orientation

The Farringdon Group report on systems
productivity with an object-oriented paradigm cites
disintegration of manual user functions, inability to
modify newly automated functions, and complications in

accessing and sharing data as the intransigent problems of
classical computer sysiems development. The object-
oriented approach to systems development is neither
object-oriented programming, nor object-oriented design,
nor object-oriented analysis. This approach applies the
concepts underlying these object-oriented disciplines so as
to realize systems that are designed for modification,
structured around real world objects, and composed of
self-organizing components. The underlying principles of
object-orientation, which are encapsulation, information
hiding, classification, inheritance, and polymorphism are
applied in this object-oriented systems approach to build
readily evolvable parcels of software whose functions and
data are localized; which intrinsically reflect real world
objects; which avoid artificial division of enterprise
activities into "automation functions"; which rely on
"intelligent data packages”; and which emphasize systems
development as a series of iteratively refined modeling
activities. This latter emphasis is inherently evolutionary
in that development of new applications is an implicit
result of continuing modeling of the attributes and
operations of new and refined objects of the mission or
enterprise. In the Farringdon Group's object-oriented
systems development paradigm, the associated
development environments and applications architectures

Human Computer Interface

Goals

Misslon Organization

PO—TO N~

adapted from B. Gaines

Figure 1 - A Layered Architectural View of Generic System Capabilities

27

are themselves similarly integrated elements (e.g.: class
browsers and debuggers, subsystem prototypes, and
federated platforms and information infrastructures) of the
large scale object oriented system [19).

Capretz examined methodological aspects of the
object-oriented paradigm. He cites instances of
jeopardized traceabilty of requirements when object-
oriented and structured methods are combined, and
strongly recommends use of object-oriented design and
analysis methods so as to assure realization of object-
oriented systems. However, he found need for more
experimentation before a large scale software system can
be developed without risk with use of an object-oriented
approach, and he strongly advocates the pursuit of
improved object-oriented analysis and design
methodologies [12].

Shelton reports the criticality of using an iterative
development approach to guide implementation of an
object-oriented methodology. He cites distinct needs for
enterprise (mission-oriented) models, for operational
models that have application independent components, and
for implementation models (blueprints for service layer
classes of objects), as well as for integration models that
are class level physical designs for object implementation.
Where legacy systems are available for integration, these
latter integration models deviate from implementation
models and become the means for integrating legacy
components and features [54).

Analysis techniques link the object-oriented
paradigm to architecture-based development approaches.
Coad details procedure for object-oriented analysis. It is
based upon recognition of three intuitive analytical
approaches: differentiation of experience into objects and
attributes; distinguishing between whole objects and their
component parts; and formation of and distinguishing
among classes of objects [15].

In the manufacturing domain, Coad’s object-
oriented modeling paradigms have been applied
successfully to develop process planning and assembly
control software applications. The generality of these
object-oriented applications has led to practical definition
of subsystem software architectures [4].

3.2 Architectural Leverage

The architectural approach for software
engineering of large scale systems is being researched by
the Advanced Research Project Agency (ARPA) program
in Domain Specific Software Architectures (DSSA).

28

Different approaches have been examined. One of these is
oriented toward exploiting domain expertise. This is
represented in a domain model that is independent of any
implementation. Another approach is based upon
representation of a particular architectural style associated
with a hierarchy of control devices. A third approach
relies upon formal engineering models of domain
dependent computations. However, all of these
approaches provide a basis for a software architecture that
supports both focus on and resolution of design decisions,
and which becomes a framework for development support
ols. As a result of this research, common languages for
evolution of domain-specific applications, and frameworks
for software reuse are becoming available (41].

Perry emphasizes that the three chief values
added by the architectural approach are significantly
greater support for software reuse, increased support for
generational reuse, and insight into the nature of principles
for composition of software systems {45]. Hayes-Roth et
al. report that their development of architectural
approaches for software systems development has
enhanced their ability to provide knowledge-based,
artificially intelligent tool support for the process of
developing controller applications [26]). Agrawala et al.
report that their research relies extensively on formal
models with which an open toolset and an layered
architecture are used to increase applications' reliablity,
real-time performance, and fault-tolerance [3].

In advancing the understandabilty of evolving
systems, architectural representations are of particular
value. Certain capabilities are common to nearly all
systems. These can be viewed as generic attributes of
typical system functions via a layered structure of related
generic capabilities. Figure 1 presents a set of layered
slices of system capability as concentric rings of
increasing relevance to user operations from the outer to
the innermost. These layers themselves are arbitrary; the
aim of the diagramming technique is to facilitate
understanding of the system [21]. The layering approach
to modeling cvolving systems is also applied to formal
representations that are well suited for development of
tools which can automatically provide a capability for
program restructuring [25).

3.3 Enabling Evolution

The layout of the concentric rings in Figure 1 also
suggests relationships within the system that will allow
isolation of locales in which technological upgrades can
proceed independently from changes in mission or
functionality. These locales are sites for technology

growth. Analyzing them identifies paths for technology
transition that are essential for successful evolution.

Evolution of system capabilities is further
advanced by definition of intra-object schemas.
Mittermeir proposes a semantic roadmap to an object's
subcomponents, and a service channel into an object.
Through these paths, high level modification operations on
aspects of the structure of the object can be performed
{42). Limited implementations of this kind of capability
currently exist in commercial software architectural
frameworks which enable development and operation of
object-oriented workstation applications [18].

Using life cycle products of previous
developments is the essence of evolution. Basili and
others have defined a reference architecture for a software
factory which enables the derivation of specific
architectural instances [7). The potential of this software
factory for supporting evolution of software system
artifacts is presented as a case study of a Toshiba
Corporation development organization which produces
application programs for manufacturing process control
systems. A high degree of productivity is reported to have
resulted from reuse of over 50% of code artifacts. The
lack of models of experience functions, such as result from
the object-oriented modeling paradigms described above,
is seen as the limiting factor in the productivity of this

Display
Transforms

Shell

Element

Functions Functions

WSSO0 —mBercOTIO0N

Object

Infrastructure
Methods

factory. Another aspect of enabling evolution involves
support for prototyping. Maxim et al. describe an object-
oriented design tool which permits non-programmers (o
construct high performance configuration design systems
graphically from a library of reusable mechanisms. His
experimental system also includes tools to support analysis
of the performance of the resulting code [{40).

The utility of an architecture for enabling
evolution of an acceptable systems design is greatly
enhanced if its perspectives completely span the range of
systems of interest (o the user. The smallest set of such
perspectives has members that are completely uncorrelated
with one another.

For software systems, basis architectural
perspectives should address topology, behavior, function,
and information. In the list that follows, these
perspectives are represented by models of varying
fineness. This fineness reflects composition relationships
among system elements, objects, data entities and
operations, and similar relations among system
components, processes, tasks, messages and calls. Shaw
[52] addresses the composition of systems from
subsystems in which codification of architectural features
becomes a similar basis for developing formal system
specifications.

Element
Interfaces

Network
Op Systems

Platform

Op Systems

Communications

Intra
Element

Inter Inter
Element System

adapted from Uenohare

Figure 2 -- A Sample Decomposition of System Components

Organizing, rationalizing, and rectifying systems
models from architectural perspectives helps assure
complete and consistent reflection of all key system
properties for an evolutionary software engineering
process. The following list of diagrams illustrates several
different perspectives from which a software architecture
can be modeled.

+ Generic Framework Model
(topology of elements)
¢ Ceoatrol Flow Model
(operations or activities)
« Data Flow Model
(data transformations)
* Dynamic Behavioral Model
(state transitions)
» Object Model
(element attributes; relations)
* Object Interaction Model
(messages, calls, callbacks, flags)
« Functional Flow Model
(vomponents, processes, tasks)

3.4 Understanding System Properties

The rules of interaction between elements of an
architectural model, and the properties of those elements,
are themselves captured in the abeve models of static and
dynamic aspects of a system. Software systems usually
have at least two kinds of properties: communications
properties and computational properties. In terms of these
two, a general decomposition of the component structure
of a system can be readily obtained with another layering
approach.

Computational layers may include a shell that
relates computations to the user, a functional layer, and a
supporting or infrastructural layer through which theory,
mechanisms, and operating environment are linked and
engaged. Communications layers may address
interchange within system elemen's, among those
elements and outside the system.

Figure 2 illustrates the decomposition of an
arbitrary system into categories of components that are
indicated by pairs of sysiem properties from within the
above layers [60). These categories of components are

Examples Of Four

Object-Orlented Systems Oblect Ditferent kinds of

Archltectural Integration oml‘; p objects in a system

Levels : n have different scope.

System This corresponds to
Architecture the architectural layer

at which they are
Integrated.

implementation Object Orlented
at Implementation
Code Level at Protoco!

Level

Software
Engineering

Inter-Application
Engineering

(oSt Levels 1-5 | OStLevel6 | OSitevel 7 |
|Communicationi Presentationl Application |

Object Orlented
Implementation

Portable
Graphic User
Interfaces

Object Oriented
implementation
at Domain
Level

at Interface
Level

Generic
Applications
Templates

Knowiedge about
Asystem applications,
A integrity constraints,

Layers Layer Layer operating modes, etc
e S QU |
Object Objact Object Object
Implementation Transport Accoss Behavior

adapted from B. Gaines

Figure 3 -- A View of Integration Levels of Object-Oriented Systems

30

inherently understandable to both builders and users. Lane
[35] identifies three other categories of components
(applications-specific, shared user-interface, and device-
dependent) which are useful in describing structural
alternatives. In his work [34] with architectures for user
interface software, he identifies a design space of 25
functional and 19 structural dimensions for which
alternative component designs can be selected to form a
user interface software architecture.

Characterization of systems components via this
sort of layered decomposition can help users and builders
uncover and prioritize required features and performance
factors in terms that are mutually intelligble.

An object-oriented system architecture uses
several different kinds of objects to convey system
properties, to describe the fine and coarse structure of
design, and to enable reasoning about various system

properties.
3.5 Integration Layers

Four kinds of objects are typically found in
software systems. Gaines [21] identifies these objects as
belonging to the four levels of integration depicted in
Figure 3. The most elementary or fine-grained objects
deal with typical code-level implementations such as for
device drivers. At the next higher level, protocol

standards may be reflected in objects that provide generic
processing interfaces for communications. Presentation of
systems outputs requires different kinds of protocols for
data bases and graphical user interfaces. Finally,
functional applications can be composed of objects whose
apprehensibility derives directly from the problem domain.

The Object Management Architecture (56]
represents one object-oriented means to facilitate efficient
integration of software objects. It defines means for inter
object communication and identifies operations that all
classes must support, and common objects that are useful
in wide ranges of applications.

Evolutionary integration of an object-oriented
system proceeds from the bottom up, providing an
integrated base of protocol and implementation objects
that can be used for testing higher level constructs. Lorin
{39] notes the necessity of design method that supports
instances of bottom up effort where super classes are
extruded from sets of smaller base objects. This is
effectively a way to discover the structure of a solution
from its basic components. At the same time a top down
integration provides system level capabilities for
prototyping and user evaluation.

3.6 Potential Value Added

From the foregoing discussion, several

 surfaci * exposing)
d::' :ctl?agde-off development * helping to
L alt a?nallv s assumptions, hYPO'hGS‘Z: p
E it ’ constraints usage paths
criteria, factors and activity R
thread
G « stimulating reads (o)
A re;q’:;;er;wems \ , « supporting B
tion requirements
C a i) ‘ ’
traceability validation L
YO Satistactory - E |
B | s Deployed oo | L\
r
J prozzss l System ‘ context: event S
E sufficlency & and usage
C redundancy ’ f \ scenarios |
. G
T « facilitating : * spotlighting H
S implementation helping to operational
of functional ~ POSe , g’""sd‘";’ T
prototype oundaries
prototypes evaluation of behavior
factors

Figure 4 -- Challenges to Achieving Evolutionary Success

31

observations can be made about the potential value to be
added to reengineering of large scale systems by using an
object-oriented and architecture-based approach.

Architectural views of generic system capabilities
improve user understanding of systems, and help builders
plan better technology growth paths. Garlan's experience
with a course in software architecture testifies that
architecture

» increases the shared understanding of high level
relathionships in systems,

« facilitates development of new variations of
previous systems, and

» allows the software engineer to make principled
choices among design alternatives. [22]

Zachman recognized the value of multiple views
for improving information system development [65]. His
model suggested a perspective-based architectural
approach for re-engineering of information systems [36).

Generalization and specialization of systems are
easier when systems knowledge is categorized and
organized in an architectural fashion.

Characterization of systems components via
layered decomposition helps uncover and prioritize
required features and performance factors.

Different kinds of objects in a system will have
different scope. This corresponds to the architectural layer
at which objects are integrated.

Organizing, rationalizing, and rectifying system
models from architectural perspectives helps assure
complete and consistent reflection of key system
properties for an evolutionary software engineering

process.

The above observations regarding the value
added by architectural approaches for evolving systems
can be summarized in the following propositions:

« Evolutionary direction is guided by architectural
vision and facilitated by robust legacy.

+ Representations of structure promote
understanding of generic capabilities.

» Architectural views frame both system specific
and system generic characteristics.

« Layering techniques help architectural models
to surface properties of system components.

32

» Object-oriented architecture aids in prototyping
user capabilities from the top down, and aids in integrating
systems platforms from the bottom up.

4 Challenges to Successful Evolution

Evolutionary reengineering must satisfy user
needs within limits that are posed by

(a) physical constraints

(b) allowable budgets for time and money,

(c) unknown problem domains

(d) volatile and poorly understood requirements
(e) current technology

Misjudgments of any of the above factors can
misdirect the course of evolutionary reengineering such
that resulting operational capabilities

(a) perform outside required tolerances,

(b) consume more budget (of time or dollars) than
is available,

(c) provide insufficient flexibility for planned
future enhancements,

(d) fail to include all required features or mis-
estimate priorities or other parameters of operations,

(e) constrain future adaptability or present
performance by adopting unswapable architectural
elements or underwhelming technologies.

Evolutionary reengineering needs to provide for
integrating future technology, and to expedite resolution of
physical and logical engineering decisions by building on
a base of objects synthesized from legacy systems. It also
needs to leverage a base of architectural and problem
domain knowledge. This must yield sufficient insight to
enable efficient model-based interaction with users to
validate operational requirements. It must also facilitate
evaluation of prototypes to derive system functions that
are acceptable to users.

In guiding the path of evolution, pre-resolution of
certain kinds of questions is essential. Especially in
Command, Control, and Communitations (C3) systems,
the chief need for evolutionary development is the fact that
not all requirements can be understood or known explicitly
at the outset of new development or reengineering effort
{10). Salasin and Waugh [47] observe that in order to
effectively reengineer systems, information is needed
about alternative processes, decompositions and data
structures individually and in terms of their relationships.
Both decisions to use a particular process and dependence

upon data and other processes must be explicitly visible if
they are to be used effectively in evolving systems.

These needs are the basis for the challenges that
are illustrated in Figure 4.

§ A Model for Systems Evolution

Systems evolution differs from systems
development and from systems modification. Small
modifications, over time, can create large system changes
that may not have had a single direction or unifying intent.
Systems development can start from scratch., However,
systems evolution is directed towards long term user
needs, and it operates on the legacy of existing systems.
This legacy includes the target system itself, and an
existing depth of knowledge about the problem domain.

To satisfy users, a systems evolution process
must assure that changes create enhanced operational
capabilities that meet long-term needs. Architecture
provides guidelines for the direction of evolution, and
enables development of constraints that organize the
evolutionary process.

Product - Line
Synthesis of Mechanisms

The consensus fostered by architectural
representations enables early identification of critical
issues regarding the use of existing technology and of both
hardware and software mechanisms and artifacts. This
consensus similarly helps to surface details of the problem
domain that require specialized analysis or that stress
system engineering or performance capacities.

Successful evolution results when concems {or
synthesis of mechanisms are separated from concemns for
analysis of problems, and when those concems are
handled in parallel activities. Legacy mechanisms are
inherited from legacy systems and from general purpose
design activities that fill needs of multiple products.
Problem knowledge acquired from domain analysis offers
specific insights that permit the tailoring of applications
solutions that uniquely meet user needs.

Figure 5 offers a model for evolving software
systems. It shows the stages of the evolutionary process
from conceptualization of the system through evaluation
of tentative implementations. It differentiates two distinct
aspects of the evolutionary process and the artifacts that

System: Specific
Analysis of Problems

System
Architecture

Element
Requirements
(all fon)
Software
Architecture

Software Subsystem Reqmts
(allocation)

Software SubSystem Specs

(derivation)

Interface Specifications
(synthesis)

S are
Evolution

(trade-off analyses)
It (3 (w' L 0y

(evaluations)

Incremental
Deployment

Figure 5 -- Evolution of software systems

33

comprise the evolving system. One aspect reflects
artifacts that are derived from the legacy of prior systems
s0 as to provide features of new or changed systems. The
other aspect reflects the sequence of analytical activity
through with fresh knowledge of a problem is iteratively
teased out of increasingly detailed problem specifics.

Rules of component composition and ways to
standardize component interfaces based upon common
units of avionics components were investigated by Batory
and others [8). Properly staged composition and flexible
hamessing of artifacts from both legacy sources and
domain knowledge are the essence of this model for
systems evolution.

6 Information Architecture Concepts

System evolution using an information
architecture to preserve a focus on user needs is
"converging evolution”. This use of an information
architecture leads to a refinement of system functions that
satisfy user needs. It also facilitates the identification of
generic interfaces between subsystems. These permit
reuse of software components and enable continuing
refinement of software mechanisms via a process of
successive replacement.

The ongoing evolutionary development of
Command, Control and Communications capabilities for
the Ballsistic Missile Defense Organization (BMDO) is an
evolutionary development that must consider the

reengineering of many existing systems in order 10
integrate the overall BMC3 capability. Figure 6
summarizies concepts for an Information Architecture as
they are viewed by contractor and government engineers
involved in this activity. Urban and others have
elaborated the underlying concepts for the BMC3
Information Architecture (61]. Their draft paper identifies
this information architecture as "an information model for
evolving the system.”

Information architecture content provides terms
of reference, guidance for defining and supporting
engineering process and organized abstractions in model
form that represent structural, process and behavioral
aspects of the system.

An essential starting point for developing an
information architecture is a representation of system
operating context in terms of user activities and the
external events that stimulate the system. Hufnagel and
Harbison propose a methodology which emphasizes these
user views of a system in their seamless, scenario-driven
object-oriented approach {29,30]. The key notion in their
work is that a meta-linguistic object-oriented approach can
be used efficiently to organize system objects. They
propose a domain independent and virtual specification of
systems based upon conceptual analysis of a systems'
requirements, specifications, and designs. Artifacts of
such scenario-based approaches are essential elements of
an information architecture.

Use

‘Domain
Knowiedge

System

'ancﬂom

Eiément
Interfaces

Figure 6 -- Information Architecture

34

Abstractions of attributes of system properties
and component features are essential when allocations are
made and derivations are worked out at each level of
legacy synthesis and at each level of problem analysis.
Abstractions of properties and features help surface the
constraints, assumptions, factors, and alternatives needed
for thorough analysis, specification, implementation and
evaluation. They thereby facilitate evolution that satisfies
long-term user needs.

7 Information Architecture Methods

Methods for applying information architectural
concepts address management, strategy, evolutionary
process and tools, modeling, representation and analysis,
and use of information architectures.

7.1 Management

The Air Force Science Advisory Board (SAB)
sponsored a 1993 summer study on Information
Architecture [17]). It recommended that the Air Force
develop of an enterprise wide information architecture.
This was characterized as an enterprise-wide building code
that is layered, open, and driven by commercial off-the-
shelf (COTS) considerations. A focus on common data
element definitions and on applications interface standards
and conventions was also recommended. A process for
managing architecture development was advocated as a
means to apply an information architecture to both
administrative corporate information management (CIM)
applications and to tactical warfare (mission critical)
applications. Four facets of this process are appropos for
implementation of any information architecture. These
facets are

(a) establishing a continuous process for
evolving the "building code” to meet changing needs
including compatibility with external organizations.

(b) involving users and developers in assessing
and evolving this building code.

(c) applying with accountability the concept of
"central direction and decentralized execution" to the
architecture development process.

(d) placing a priority focus on developing

« enterprise architecture and process,

« interoperability,

« use of COTS technology,

« continuing utility assessments of standards,
« tools for defining / analyzing architectures,
« tools for migrating legacy software

35

7.2 Strategy

Commercial tool vendors recommend technical
strategies for developing information architectures. Many
current commercial strategies address needs identified by
the Air Force SAB. Three of these were advocated by
Lock [37] at the 1993 CASE World Conference:

(a) aim the architectural building code at mission
functions and not at implementation technology by

e establishing internal /external exchange
protocols

« connecting to existing applications and data

» migrating first data, then functions

» adopting broad based external standards

(b) allow the architecture to guide the building
environment with layered designs, and equivalent
treatment of hardware and software entities, by requiring

« generalized application tool kits,

« widely usable application services,

« easily accessible production services, and
« pervasive infrastructure elements.

(c) developing tools for design engineering and
performance evaluation which support reverse
engineering, and integrated modeling of mission, network,
and data functions.

7.3 Evolutionary Process and Tools

Lockman and Salasin describe an object-oriented
approach to implementing a four phase evolutionary
reengineering process [38]. With these phases they
"appeal to intuition” in their advocacy for creating and
operating upon an object-oriented depiction of the current
system to realize new or extended features of a similarly
depicted target system. Their work identifies specific
steps are for each of these phases, and examines the needs
and opportunities for tool support. The intuition regards
both a transformation-oriented reengineering process and
the use of an object-oriented representation for an
information architecture, which they offer in their 1989
paper, is validated by three current architecture-based
software engineering environments, all of which support
an evolutionary reengineering process. These are SNAP
(18], ANSA (1], and DISCUS [20].

SNAP is targeted at rapid implementation of
client-server applications subsystems which operate upon
workstations and networks of distributed processors. It

m———

relies upon a standard architectural template to organize
and support the process of evolving new objects within
generic class libraries. These class libraries address
graphic user interfaces, communications, data base access,
external applications, internal storage, and knowledge
based support functions. SNAP has been applied
successfully with high productivity to developments of
decision, analysis support, and command and control
systems in such diverse applications as anti-submarine
warfare and air traffic control.

ANSA is a programming support environment
based upon an architecture that has been represented with
enterprise, information, computation, engineering, and
technology models of generic distributed systems. This
architecture makes the fact of distribution transparent to
" application builders and users, and produces distributed
applications subsystems which can be managed and
evolved as a coordinated whole, rather than as separate
black boxes with specialized, and potentially incompatible
development paths.

DISCUS is a generic reusable software
architecture which provides high levels of reusability
between tools and data sources. Its aim is realization of
seamless interoperability, particularly for the class of
workstation applications which involve significant image
manipulation. It represents one of several MITRE
Corporation sponsored efforts in the area of evolvable
systems development. Other similar systems /
architecture-based software engineering environments
include EXCITE (coordinated sharing of information for
intelligence analysis), DOMIS (distributed object
management system for integrating legacy data bases), and
systems for support of collaborative computing and for
support of distributed simulations [9].

The evolutionary reengineering process has an
intrinsic focus on design and on redesign. Few generic
tools have yet been developed to support generic design
activities. However, the nature of these activities is
becoming better understood to correlate well with the use
of architectural information. Studies of the design process
also suggest several information attributes that are needed
in architectural representations to support typical designer
behavior. Adelson and Solloway report that, in general,
designers exhibit six characteristic behaviors [2]. These
behaviors are as follows

(a) formulation of mental models

(b) simulation of mechanism behavior
(c) systematic expansion of level of detail
(d) representation of constraints

(e) recollection of prior plans and strategies
(f) annotation of intermediate artifacts

7.4 Modeling, Representation and Analysis

Computer Integrated Manufacturing (CIM) Open
Systems Architecture (OSA) documents {33] provide a
succinct explanation of concepts for modeling software
architectures and applying specific architectural concepts.
The CIMOSA modeling concept shows how to develop
enterprise models in an evolutionary mode, and illustrates
the impact of information architecture on the evolution of
information intensive systems. Requirements for
modeling languages which support integration of layered
models have been identified by Gielingh [24], whose work
also addressed evolutionary reengineering for CIM
applications. He argues that to support layered modeling,
information modeling languages must support definition
of modeling dimensions for specialization, discrimination,
and orthogonalization. Specialization expresses a
hierarchy of concepts, discrimination separates concepts,
and orthogonalization identifies concepts which are
independent of one another. Application of these
definitions helps realize abstract and layered architectures
which are truly evolvable.

Representation of information architectures
inherently involves both legacy and problem domain
information. Models can provide top-down
representations of architectural features. From a bottom-
up perspective, component attributes also must be
represented. Tracz reports on the structure of a design
record for Avionics Domain Application Generation
Environments (ADAGE) {59]. He details 18 distinct
elements of a design record for legacy avionics software.
These include the following dynamically changing aspects
of any potential software component:

(a) name / type

(b) description

(c) requirement specification fragment
(d) design structure

(e) design rationale

(f) interface specifications and dependencies
(g) program design language text

(h) implementation

(i) configuration and version data

(j) test cases

(k) metric data

(1) access rights

(m) search points

(n) catalog information

(o) library and architecture links

(p) hypertext paths
(Q) models
(r) constraints

Analysis of problem domain attributes is essential
for understanding and refining solutions which realize new
capacities, improve non-functional qualities, refine
existing functions, create interfaces to new or changed
external contexts, eic. The nature of problem domains has
been investigated using several techniques, many of which
are characterized as "domain analysis". Wartik and Prieto-
Diaz catalog and compare five differing approaches to
domain analysis [62). Brief synopses and references are
provided below. Each domain analysis method offers a
slightly different perspective on uncovering user needs and
understanding the legacy upon which evolutionary
reengineering must be based.

Prieto-Diaz' own analysis method is a hybrid of
problem and solution oriented approaches. He supports
bottom-up analysis with a classification approach and top-
down activities with systems analysis, and aims to provide
artifacts which can be reused. These range from problem

Product - Line

Information Architecture

features to solution mechanisms.

The FODA method of domain analysis and the
Synthesis method follow a top down, problem oriented
approach 1o analysis of a domain [43,14). Both of these
domain analysis methods focus on invariable, unique, and
commonly used features of elements of the domain. The
Synthesis technique is aimed at definition of a process
model for application development, while the FODA
method is focused on user decisions and views which can
become attributes of product architecture.

The KAPTUR method [6) for domain analysis
and Lubars’s method (62) both provide domain models
which can be more readily transformed by domain
engineers into implementations. Both of these methods
apply to the stepwise process of assessing legacy as well
as 1o the analysis of problem domain attributes.

Another domain analysis approach was
developed for the Joint Integrated Avionics Working
Group, and applies an analysis technique which is based
upon Coad and Yourdon techniques [27,15]. This

System - Specific

Synthesis of Mechanisms

Analysis of Problems

System
Archrcture

Eleflient
Requirements
(al on)

Software
Archl?ecture
Software Subsystem
Reqmts
(allocgtion)

Software Subsystem Specs
(deriyation)

Interface Specifications
(synthesis)

i 3]
Software \‘(\o“°°
Ev<$ntlon eao:\e‘,\\o

(trade-off analyses)
(trin) implementations)
(evaluations)

v

b

Figure 7 -- information Architecture Guides Domain and Applications Engineering

37

_——

technique is also implementation oriented, and produces
detail which facilitates generation of reusable artifacts.

7.5 Use of Information Architectures

Gelemnter's vision ("shadow programs” which
mirror the operation of existing systems so as (o facilitate
their evolution (23]) points to the goals of recent research
reported by Shaw {51} in which he investigates formal
methods and mechanisms for executable, universal,
formal, and scalable specifications. In specialized
instances [55], some success has been reported with
formal software development tools for automated
transformational development. However, in the
mainstream, information architectures must be developed
by careful analysis of legacy systems and problem
features. A process ("Implementing Model Based
Software Engineering (MBSE)") is described by Withey
which covers this more general range of applications [63).
MBSE consists of two parallel processes. One applies to
domain engineering - the process for creating software
models and other core assets; the other applies to
application engineering - the process for using models in
the construction of software systems. When software
architectures are sufficiently mature in terms of their
formal representations and in terms of the generality of
their abstractions, then it will be possible to automatically
generate components of applications. Presently, the
MBSE process is largely manual. Its effectiveness is
dependent upon careful use of modeling and
representational formalisms and upon an information
architecture to guide its convergence on long term user
needs.

An information framework, within which design,
behavioral, and engineering attributes of a system are
collected and stored, should be structured to facilitate each
level of synthesis and analysis that is needed to meet
reengineering objectives. It must preserve views of legacy
mechanisms and problem domain features which are
significant to successful reengineering. Provision for
defining design objects is needed within each of these
views.

Figure 7 «.epicts an information architecture as
such a framework, and separates the related but distinctly
different concepts of systems and software architecture.

In an evolutionary reengineering process,
abstractions of system properties and component relations
provide a basis for reasoning about the system. From this
reasoning, both legacy details and domain knowledge can
be used to create a system architecture. In the subsequent

38

increments of the process for evolving new capabilities,
allocations of requirements and derivations of
specifications are revisited afier evaluation of trial
implementations that prototype significant new parts.

When uradeoff analyses are posed for design
alternatives, independent technical factors must be scored
to make balanced decisions. On the other hand, when
quality is assessed, correlated assessment perspectives lead
to quality generalizations. The domain insight and legacy
detail within an information architecture lead to this
general balance.

When boundary conditions and limits are known,
evaluators can be assured of covering all cases of interest
completely. Similarly the precedence of required features
and the priority for behavioral options are derived from
system context detail. These in turn derive from user
consensus on domain features, which is facilitated by
elaboration of an information architecture.

In the object-oriented community, a kind of meta-
information architecture exists in the Object Management
Architecture (OMA) [57]. The OMA Guide provides a
general and an abstract framework for object-oriented
systems that outlines a single terminology, technical goals
(engineering process) and architectural goals (product
feature), and provides a reference model for integrating
distributed applications using object-oriented techniques.

8 Impact of An Information Architecture

Impact of an information architecture is seen in
the realization of systems performance and capability by
means of an efficient and cost-effective engineering
process, which provides required levels of functional and
non-functional quality.

An information architecture adds value to the
evolutionary reengineering process by :

« Illuminating with abstraction, e.g.: functions,
entity relationships, objects, object classes, processing
states, data events, operational modes;

» Decorrelating relationships to enable balanced
tradeoffs, e.g.: operational flexibility versus efficiency, or
modifiability versus seamless integration;

« Correlating perspectives to enable qualitative
assessment, e.g.. processing accessibility with
availability, or data persistence with redundancy;

+ Framing boundaries to enable thorough
functional evaluation, e.g.: event scenarios, process
threads, file schema;

« Providing context for seuing precedence and
prioritization, e.g.: operator scenarios, metadata,
theoretical models.

Information architecture has a positive impact on
acceptability, optimization, efficiency, and return on
investment (ROY) of evolutionary reengineering efforts. It
adds value to several aspects of an evolutionary system:
These are its:

The object-oriented aspects of an Information
Architecture offer the opportunity to assess the quality of a
proposed reengineering effort according to the techniques
proposed by Chidamber and Kemerer [13]. While these
techniques are aimed at the evaluation of object-oriented
design, they clearly apply to the envelope of object
oriented design altemnatives posed within an Information
Architecture. Implications from the use of these metrics
can include

« indications of design tradeoff opportunities
(e.g.: between inheritance and retated reusability on the

39

one hand and simplicity and ease of understanding on the
other);

» identifications of opportunity for optimizing the
allocation of testing resources (e.g.: by identifying classes
of error-prone interfaces); and

« assessments of the viability of the revised class
structure proposed for the system (e.g.: in terms of
numbers of object classes at the root level, and
interconnections between various parts of an application).

To forecast the impact of an evolutionary
reengineering effort, qualitative and quantitative metrics
are necessary. Kazman, Bass and others have
experimentally applied methods for evaluation of
architectures [32). Their approach applies a life cycle
perspective (which considers engineering process aspects
of an information architecture). It also relies upon a
common representational form to surface a common
understanding (which permits comparison of product
attributes contained in an information architecture).
Although present work has been limited to user interface
architectures, it permits comparison and ranking of
software architectures, and the approach promises to
extend to other software architectures.

In their analysis of non-functional factors in the
quality of large systems, Salasin and Waugh construct a

Figure 8 Facets of Quality of Information Architecture

chain of interlocking commitments and obligations to map
system level quality factors into indicators of non-
functional quality [46,48). Their technique permits
assessment of information architectural attributes so as o
forecast such system qualities as testability and
survivability. It enables an information architecture to
become a source of primary evidence for on-going
examination of non-functional quality characteristics of an
evolving system. The approach uses several categories of
reengineering scenario to stimulate analysis. The
categories are platform changes (e.g.: processors, displays,
software subsystems); performance improvements (e.g.:
response, latency, speed, capacity, throughput, accuracy,
precision); extensions of functionality (e.g.: updated
constraints and operating parameters); changes to
capabilities (¢.g.: new missions); quality improvements
(e.g.: modifiability); and new external interfaces (e.g.:
swapped out functionality).

In general two kinds of factors indicate the
quality of an information architecture: its intrinsic
leverage is a function of content and context factors; its
extrinsic leverage flows from its adequacy, usefulness and
usability. Figure 8 relates several facets of an information
architecture to four aspects of its quality.

Information architecture qualifies both behavior
and design characteristics, and identifies necessary
characteristics of the engineering process environment.
As a framework for evolutionary reengineering, the value
of an information architecture is indicated in its

(a) high-level, abstract models of the target
system from all perspectives that add to developer and
user insight (at least dynamic, functional, and structural).

(b) boundaries and definitions for both operating
and engineering environments.

9 Conclusion

Likelihood of satisfactory operations of large
scale systems increases with evolution by virtue of
increased iteration to refine implementation aspects that
meet long-term user needs.

Objects whose scope ranges from infrastructural
mechanisms to problem domain artifacts guide builders
and users toward efficient realization of systems
components. Architectures provide structure and form for
mediating this organization and understanding so as to
meet constraints of builders and needs of users.

40

User-functional capabilities that apty typify an
evolving system are uncovered by comprehensive top-
down analysis of its problem domain. This analysis also
helps decide which models are the best platforms for
evaluating prototypes of these capabilities.

Robust objects whose value has been proven in
legacy systems are the result of continuing, bottom-up
synthesis of previously successful products and systems.
Layersd organizations of proven objects enables rapid
realization of platforms for evolving and evaluating
prototypes of subsystems e¢lements that have potential
operational value.

Several conclusions about evolutionary
reengineering of large scale software systems follow:

« Converging evolution assures operational
success by realizing user goals incrementally and reducing
risk of cost or schedule overruns and technical shortfalls.

* Layered object organization facilitates evolution
by enabling efficient problem-oriented exploration and
product-domain tailoring.

* Information architecture leads to converging
evolution. Systems and software architectures frame the
target for evolution, and information architecture frames
the engineering activity.

« Analysis of problem domains is essential to
uncover typical functions for evolutionary prototypes, and
best models for evolving and evaluating prototype
capabilities.

« Synthesis from legacy systems speeds definition
of robust implementation objects from products that have
had proven success, and realistic platforms for evaluating

prototypes / initial operations.
10 Summary Observation

An analogy highlights the above conclusions.
Evolutionary reengineering using an information
architecture can be viewed as a problem of stabilizing the
dynamic behavior of a software system. Linear systems
models are used to approximate control solutions for such
problems. Solutions are obtained via an iterative process
of integration in which vector representations and matrix
organization of the known information about the problems
enable generation of parameters of the new stabilized
system state. In evolutionary reengineering using an
information architecture, the iterative process of
integration can be viewed as a series of incremental
changes to functionality and infrastructure through which
new states of behavior and capability are evolved for the
software system.

]

In this analogy, the system behavior of a software
system and the nature of its evolution relate to the
behavior and nature of a dynamic system. Information
representing the resulting state of software capability is
analogous to the state vector that represents the stabilized
system state in the dynamics model. The driving force of
user necds is comparable to the random noise vector that
perturbs a dynamic system (o cause a change in its state.
Coatrols provided via an architecture-based evolutionary

_ process derive from problem domain analysis and

synthesis of artifacts from legacy systems. These are
analogous to the control vector which constrains the
stabilization of the linear dynamics system.

Stabilization of a dynamics model is dependeat
upon integrating the information content of these
fundamental vector representations with a matrix of
information that represents the changing system state.
This matrix is analogous to an information architecture.
Just as determining the precise form and content of a
system state matrix is essential for developing a solution to
stabilize a mechanical linear dynamic system, elaborating
the content and understanding the necessary form of a
matrix of information architectural information are
essential to transforming a large-scale software system via
an evolutionary process into a system with significantly
enhanced, extended, or adapted capabilities. Controlling
the convergence (stabilizing stages) of evolutionary
reengineering requires that both the guiding architectural
vision and the evolutionary process be represented in the
same context and form.

An information architecture-based approach to
reengineering provides a pattern for representing the
evolutionary process itself, the control inputs provided by
domain analysis and synthesis of legacy, and the stimuli
provided by new user requirements.

In different terms, this analogy expresses the
insight presented by Srinivas and Smith in their recent
short paper on property preserving transformation of
programs [58]. When combined with Gelemter's notion of
"shadow programs", a path is clearly evident for realizing
system features which support self-sustained evolution .

References

f1] -, "Advanced Network Systems Architecture (ANSA)
Manual”, Architecture Projects Management Ltd, Poseidon
House, Cambridge, United Kingdom, 1989

41

(2] Adelson, B, and Solloway, E., “The Role of Domain
Experience in Software Design”, IEEE Transactions on Software
Engineering, 1985, Volume SE-11, pages 1351-1360

[3] Agrawala, A., Krause, J., and Vestal , S., “Domain-Specific
Software Architectures for Intelligent Guidance, Navigation, &
Control”, in Special Report CMU/SEI-92-SR-9, pages 63-71.
Software Engineering Institute (SEI), Carnegie Mellon
University, Pittsburgh, Pennsylvania, June 1992

{4] Almgren, R., and Hasson, A., , “Classification and Object
Modeling of Assembly Sysiem Architectures”, Proceedings of
the Intemational Conference on Object-Oriented Manufacturing
Systems, pages 320-325, University of Calgary, Calgary,
Alberta, Canada, May 1992

[S) Anderson, B., "Towards an Architecture Handbook" in
Proceedings of the ARPA Domain Specific Software
Architectures VI Workshop, Key West Florida, July 1993

(6] Bailin, S., "KAPTUR: Knowledge Acquisition for
Preservation of Tradeoffs and Underlying Rationales”,
unpublished paper, CTA Incorporated, Rockville MD, May 1992

[7) Basili, V. Caldiera, G, and Cantone, G., "A Reference
Architecture for the Software Factory”, pages 53-80 ACM
Transactions on Software Engineering and Methodology, Vol. 1,
No. 1, January 1992

(8] Batory, D., "A Process and Retrospection on Creating a
Domain Model for Avionics Software”, ADAGE-UT-93-04, in
Proceedings of the ARPA Domain Specific Software
Architectures VII Workshop, Key West Florida, July 1993

[9) Bayard, H, and Prelle, M.,, , “Evolvable Systems Initiatives"”
in Proceedings of AFCEA Symposium, on New Directions in
Software Acquisition, MITRE Corporation, Bedford
Massachusetts, November 1993

[10] Bersoff, E., et al., "A New Look at the C3] Software
Lifecycle”, Signal Magazine, pages 85-93, AFCEA, Fairfax
Virginia, April 1987

[11] Best, L., "If They Built Buildiny, the Way They Build
Software”, white paper, in AMS Special Topics, American
Management Systems, Fairfax Virginia, January 1991

{12] Capretz, L., and Lee, P., "Classification of Object-Oriented
Development Methodologies”, in Proceedings of the Sixth
Brazilian Symposium on Software, Engineering, Granado/RS,
Brazil, November 1992

[13] Chidamber, S., and Kemerer, C., "A Metrics Suite for
Object- Oriented Design”, MIT Center for Information Systems
Research Working Paper #249, MIT Sloan School, Cambridge
Massachusetts, July 1993

{14] Cohen, S., et al., "Application of Feature Oriented Domain
Analysis (FODA) to the Army Movement Control Domain”,
technical report, CMU/SEI TR-91-TR-28, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh
Pennsylvania, June 1992

[15) Coad, P., “Analysis and Design: New Advances in Object-
Oriented Analysis”, in The Intemational OOP Directory, SIGS
Publications Inc, 1992

[16] Cook, S. "The Three Ages of Objects”, in FIRST CLASS,
Vol 3, No 3, Object Management Group, Boulder Colorado,
September 1993

[17) Druffe], L., et al., , "Air Force 1993 Science Advisory Board
Summer Study on Information Architecture” in Proceedings of
AFCEA Symposium, on New Directions in Software
Acquisition, MITRE Corporation, Bedford Massachusetts,
November 1993

(18] Fox, J., "System Management with SNAP - Architecture
Overview”, in System Management Template intemnal technical
paper, TEMPLATE Software, Hemdon, Virginia, January 1993

(19] Feltham, P, and Dachuk, J., "Systems Productivity: The
Impact of Object Orienration”, The Farringdon Forum Club,
London, 1992

{20) Fleisher, J., Mowbray, T., "Integrating Tools and Data
Sources with the DISCUS Framework”, technical report for
DISCUS Working Group, Programmers Tutorial, MITRE
Corporation, McLean Virginia, August 1993

(21] Gaines, B.R., "Manufacturing in the Knowledge Economy",
Proceedings of the International Conference on Object-Oriented
Manufacturing Systems, pages 19-36, University of Calgary,
Calgary, Alberta, Canada, May 1993

{22] Garlan, D., Shaw, M., Okasaki, C., Scott C., Swonger, R.,
“Experience with a Course on Architectures for Software
Systems”, Technical Report CMU/SEI-92-TR-17, SEI, Camegie
Mellon University, Pittsburgh Pennsylvania, August 1992

[23]) Gelemter, D. "The Metamorphosis of Information
Management", pages 66-73, Scientific American, August 1989

[24) Gielingh, W., "Requirements for the Development of
Layered Information Models”, Proceedings of the First
International Conference on Enterprise Intrgration Modeling,
pages 269-277, MIT Press Cambridge Massachusetts, 1992

(25] Griswold, W., "An Architecture and Models for 8 Meaning-
Preserving Program Restructuring Tool ", in Proceedings of the
ARO/AFOSR/ONR Workshop on Increasing the Practical
Impact of Formal Methods for Computer-Aided Software
Development, pages pages 25-27, US Naval Post Graduate
School, Monterey California, October 1993

[26) Hayes-Roth, F, et al., "Domain Specific Software
Architectures for Distributed Intelligent Control and
Communications”, in Special Report CMU/SEI-92-SR-9, pages
27-62. Software Engineering Institute (SEI), Camegie Mellon
University, Pittsburgh, Pennsylvania, June 1992

{27] Holibaugh, R., "Joint Integrated Avionics Working Group
(JIAWG) Object-Oriented Domain Analysis Method (JODA), in
Special Report CMU/SEL-92-SR-3, Software Engineering
Institute (SEI), Camnegie Mellon University, Pittsburgh,
Pennsylvania, June 1992

(28] Horowitz, B., “The Importance of Architecture in DoD
Software”, Technical Paper, M91-35, The MITRE Corporation,
Bedford, Massachuseus, July 1991

[29] Hufnagel, S, Harbison, K, “Scenario -Based Engineering
Process: Computer-Aided Software Engineering(CASE) Tool
Specification”, draft paper in Proceedings of the ARPA Domain
Specific Software Architectures VII Workshop, Key West
Florida, July 1993

{30} Hufnagel, S, Harbison, K, and Hammons, C, "Seamless
Scenario Driven Object-Oriented Approach: Methodology
Notation and CASE Too! Integration for OOPSLA-93", draft
paper in Proceedings of the ARPA Domain Specific Sofiware
Architectures VII Workshop, Key West Florida, July 1993

(31] Jones, A., “The Mawring of Software Architecture”,
keynote presentation at 1993 Software Engineering Symposium,
Software Engineering Institute, (SEI) Carnegie Mellon
University, Piusburgh Pennsylvania, August 1993

{32]) Kazman, R., Bass, L., Abowd, G., Webb, M., "Analyzing
the Properties of User Interface Software Architetures”, draft
paper, SEI, Camegie Mellon University, Pittsburgh
Pennsylvania, August 1993

[33] Kosanke, K., "Computer Integrated Manufacturing Open
System Architecture (CIM-OSA)” in "Enterprise Integration
Modeling", Proceedings of the First International Conference,
pages 179-188, MIT Press Cambridge Massachusetts, 1992

{34] Lane, T., "A Design Space and Design Rules for User
Interface Software Architecture”, Technical Report CMU/SEI-
90-TR-22, SEI, Carnegie Mellon University, Pittsburgh
Pennsylvania, November 1990

[35] Lane, T., "Studying Software Architecture Through Design
Spaces and Rules”, Technical Report CMU/SEI-90-TR-18, SEI,
Carnegie Mellon University, Pittsburgh Pennsylvania, Nov 1990

{36] Leary, J., "Six Views of Any Informaton Architecture”,
technical presentation, Martin Marietta Corporation, Information
Systems Group (ISG), Chantilly, Virginia, May 1990

[37) Lock, E., and Shem, D., "Reengineering Principles for
Information System Evolution”, presentation at CASE WORLD,
Boston Massachuseits, October 1993

{38] Lockman, A. and Salasin J., "A Procedure and Tools for
Transition Engineering”, ACM SIGSOFT 90, Fourth Annual
Symposium on Software Development Environments, Irvine
California, December 1990

[39] Lorin, H., "Objects, I-CASE, and Architectures”, in FIRST
CLASS, Vol 3, No 3, Object Management Group(OMG),
Framingham Massachusets, September 1993

{40} Maxim, B., et al., "Prototyping Knowledge-based Design
Systems in an Object-Oriented Environment”, Proceedings of
International Conference on Object-Oriented Manufacturing
Systems, pages 55-59, University of Calgary, Calgary, Alberta,
Canada, May 1993

42

[41) Mettala, E., and Graham, M., "The Domain Specific
Software Architecture (DSSA) Program”, in Special Report
CMU/SEL-92-SR-9, pages 1-7. Software Engineering Institute
(SEl), Camegie Mellon University (CMU), Pitusburgh.
Pennsylvania, June 1992

[42] Mittermeir, R., and Kinzl, K., "Intra-Object Schemas to
Enhance the Evolution of Software Objects”, in Proceedings of
the ARO/AFOSR/ONR Workshop on Increasing the Practical
Impact of Formal Methods for Computer-Aided Software
Development”, pages 12-14, US Naval Post Graduate School,
Monterey California, October 1993

(43] O'Connor, J., “Introducing Systematic Reuse to the
Command and Control Systems Division of Rockwell
International”, technical report, SPC-92020, (DTIC: AD-A252-
271) Software Productivity Consortium (SPC), May 1992

{44] Perry, D., and Wolf, A., "Software Architecture”, technical
paper, ATT Bell Labs, Murray Hill New Jersey,, January 1991

{45) Perry, J., and Shaw, M., "The Role of Domain Independence
in Promoting Software Reuse: Architectural Analysis of
Systems”, in Position Papers of the Reuse in Practice Workshop,
SEI, Camegie Mellon University, Pittsburgh PA, July 1989

{46) Salasin, J. and Waugh, D. , "An Approach to Analyzing
Non-Functional Aspects During System Definition”, in
Procee:iings of the ARPA Domain Specific Software
Architectures VII Workshop, Key West Florida, July 1993

{47] Salasin, J., and Waugh, D. "The Design Record: Keystone
of Software Engineering”, annotated presentation in Proceedings
of the 3rd Reverse Engineering Forum, section 14, Northeastern
University, Burlington Massachussets, September 1992

{48] Salasin, J., and Waugh, D., "Analysis of Critical Non-
Functional Factors of Systems”, Proceedings of the
ARO/AFOSR/ONR Workshop on Increasing the Practical
Impact of Formal Methods for Computer-Aided Software
Development”, pages 64-66, US Naval Post Graduate School,
Monterey California, October 1993

[49] Saunders, T., “Architectures and Standards” in Proceedings
of AFCEA Symposium, on New Directions in Software
Acquisition, MITRE Corporation, Bedford Massachuseus,
November 1993

(50} Saunders, T., Horowitz, B., and Mleziva, M., "A New
Process for Acquiring Software Architecture”, Technical Paper
M92B0000126, The MITRE Corporation, Bedford,
Massachusetts, November 1992

[51] Shaw, A., "State-Based Specifications In-the-Large”,
Proceedings of the ARO/AFOSR/ONR Workshop on Increasing
the Practical Impact of Formal Methods for Computer-Aided
Software Development”, pages 47-50, US Naval Post Graduate
School, Monterey California, October 1993

{52] Shaw, M., "Larger Scale Systems Require Higher Level
Abstractions”, Proceedings of the Fifth International Workshop

43

on Software Specification and Design, ACM, New York, NY,
May 1989

{53} Shaw, M., “Sofiware Architecture”, tutorial notes at Sth
International Conference on Sofiware Engineering (ICSE-195).
IEEE, Baltimore, Maryland, May 1993

(54] Shelion, R., "Object-Oriented Business Engineering”, in
FIRST CLASS., Vol 3, No 3, Object Management Group.
Boulder Colorado, September 1993

{55] Smith, D., "Toward Practical Applications of Software
Synthesis”, Proceedings of the ARO/AFOSR/ONR Workshop on
Increasing the Practica! Impact of Formal Methods for
Computer-Aided Software Development”, pages 67-69, US
Naval Post Graduate School, Monterey California, October 1993

[56] Soley, R., (ed), "Object Management Arschitecture Guide”,
Rev 2.0, Object Management Group(OMG), Framingham
Massachusets, September 1992

[57) Soley. R., "Using Object Technology to Integrate
Distributed Applications” in “Enterprise Integration Modeling”,
Proceedings of the First Intemational Conference, pages 445-
454, MIT Press Cambridge Massachuseus, 1992

[58] Srinivas, Y., and Smith, D.R., "A Theoretical Basis for
Software Evolution”, in Proceedings of the ARO/AFOSR/ONR
Workshop on Increasing the Practical Impact of Formal Methods
for Computer-Aided Software Development”, pages 15-17, US
Naval Post Graduate School, Monterey California, October 1993

[59] Tracz, W., Shafer, S., and Coglianese, L. "DSSA_Avionics
Domain Generation Environment (ADAGE)", ADAGE-IBM-93-
05, in Proceedings of the ARPA Domain Specific Software
Architectures VII Workshop, Key West Florida, July 1993

[60] Uenohara, M., , "Flexible Automation in Japanese
Electronics Industry”, Proceedings of Japan - USA Symposium
on Flexible Automation, pages 5-12, Osaka, Japan, 1986

{61] Urban, M., et al., "Coinmand and Control (C2) Information
Architecture Concept Overview", draft paper, for ADPA
Symposium on Ballistic Missile Defense Command, Control, and
Communications, Colorado Springs, Colorado, March 1994

[62] Wartik, S., and Prieto-Diaz, R., "Criteria for Comparing
Reuse-Oriented Domain Analysis Approaches”, pages 403-431
in International Journal for Software Engineering and
Knowledge Engineering, Vol. 2, No. 3., 1992

(63) Withey, J., "Implementing Model Based Software
Engineering in your Organization: An Approach to Domain
Engineering”, draft technical report, pages 23-29, Software
Engineering Institute, Camegie Mellon University, Pitisburgh
Pennsylvania, November 1993

[64) Zachman, J., and Pyryamybida, S., "IDEF Framework",
presentation, version 1.2, Zachman & Associates, May 1990

[65) Zachman, J. "Information Architecture”, pages 87-113, IBM
Systems Journal, Vol 26, No 1, IBM Corporation, Armonk New
York, 1987

A Framework for Automated Reengineering
of Complex Computer Systems

Lonnie R. Welch *!
Antonio L. Samuel ?
Michael W. Masters
Robert D. Harrison

Alexander D. Stoyenko
Joe Caruso §

Abstract

The financial pressure to meet the need for change
in complex systems through evolution rather than
through revolution has spawned the discipline of
reengineering. One driving factor of reengineering
is thut it is increasingly becoming the case that en-
hanced requirements placed on compiex systems are
overstressing the processing resources of the systems.
Thus, the distribution of processing load over highly
parallel and distributed hardware architectures is be-
ing explored as part of the reengineering process.
Existing complex systems were developed originally
to exploit small scale concurrency in programming
paradigms that support little or no expression of con-
current execution. Therefore, several difficuit tasks
must be accomplished to reverse engineer, transform
and restructure systems so that they exploit signif-
icantly increased amounts of concurrency. In this
paper we present metrics for capturing features of
complex systems needed for a transformation ap-
proach for enhancing concurrency. The metrics not
only capture systems’ features necessary for concur-
rency analysis, but also are independent of any pro-
gramming language, operating system or hardware
architecture. Using the metrics, we define an ap-
proach for transforming complex systems that ex-
ploit modest amounts of concurrency into systems
that utilize large scale concurrency. The approach
includes the aggregation of concurrency information
across levels of abstraction hierarchies to enable con-

*Welch and Stoyenko are with The Real-Time Comput-
ing Laboratory, Department of Computer and Information
Science, Institute for Integrated Systems Research, New
Jersey Institute of Technology, Newark, NJ 07102, e-mail:
welch@vienna.njit.edu, phone: 201-596-5683, fax: 201-596-
5777.

1This work is supported in part by The U.S. NSWC
(N60921-93-M-1912), by the U.S. ONR (N00014-92-J-1367),
by AT&T (UEDP-91-134), and by the State of New Jersey
(SBR-421290).

{Samuel, Masters and Harrison are with The Naval Surface
Warfare Center, Dahlgren Division, Dahigren, VA.

SCaruso is with Computer Sciences Corporation. Dahlgren,
VA.

44

currency analysis at varying degrees of granularity,
ranging from the statement level, to the package in-
stance level, to the level of federated systems. In con-
junction with concusrency enhancement for the ac-
commodation of enhanced requirements, our reengi-
neering approach also employs software component
layering and reuse to reduce the costs of design, im-
plementation, testing, verification, and maintenance.

1 Introduction

A complex system has many characteristics, 1n-
cluding performance, timeliness, availability, de-
pendability, safety and security. Furthermore, such
a system typically performs many related functions
concurrently, interacts with the environment and
many human operators and/or clients simultane-
ously, consists of many interconnected processing el-
ements, contains many millions or tens of millions of
lines of code, takes years to develop from first con-
cept formulation to final deployment, and has devel-
opment costs of many tens or hundreds of millions of
dollars.

Complex systems generally address nontransient
requirements that simply cannot be addressed with
simpler solutions. Thus they tend to be character-
ized by long life cycles, often spanning decades. Dur-
ing such extended life cycles, change is inevitable
in many dimensions: operational environment, sys-
tem requirements, technology base, etc. Because of
the time and cost of development of complex sys-
tems, and because of the infrastructure needed for
their development and continued support ¢~ o« de-
ployed, infrastructure which includes highly cained
personnel, hardware and support tools, docu:nenta-
tion, test procedures, and many other components,
there is enormous financial pressure to meet the need
for change through evolution rather than revolution.

This need has spawned the discipline of reengi-
neering, the systematic application of methodology
and tools to managing the evolutionary transforma-
tion of existing complex systems to encompass new
or altered requirements and to transport such sys-
tems into new environments and onto new technol-
ogy bases.

While reengineering holds the promise of in-
creased efficiency in dealing with, and managing
change in, large, complex systems, it is not, and
probably can never be, a panacea. The act of chang-
ing (rather than rebuilding) a complex system in-
evitably introduces something akin to entropy into a
well ordered system. The accumulation of disorder
can be minimized to some degree by careful choice of
original design and by advancing and fully exploit-
ing reengineering technology. In particular, the cur-
rent trend toward so called open system designs is a
de facto recognition of the inevitability and cost of
change.

It should be added that because of the multicom-
ponent nature of complex systems, it is often the
case that old components must coexist harmoniously
with new components in a mature complex system.
Thus, forward engineering of complex system com-
ponents may occur simultaneously with reengineer-
ing of other components. Reengineering, along with
open system design, may properly be viewed as avail-
able techniques for optimizing the resources required
to extend the life cycles of complex systems.

It is increasingly becoming the case that the in-
creased requirements placed on complex systems are
overstressing the processing resources of the systems.
Thus, implementations that exploit highly paral-
lel and distributed hardware are being developed.
While complex systems of the previous generation
employed some parallel processing, they typically
used on the order of twenty-five processors. Func-
tionality enhancements in modern complex systems
may need more than one-thousand processors Since
complex systems were developed for small scale par-
allelism in programming paradigms that supported
little or no expression of parallelism, the exploita-
tion of the tremendously increased parallelism is a
challenge that must be addressed.

In conjunction with concurrency enhancement
for the accommodation of enhanced requirements,
reengineering should also consider the use of modern
software engineering principles to reduce the costs
of design, implementation, testing, verification, and
maintenance. Layering of software components is
one technique that addresses these concerns. When
a system is constructed by layering, the benefits
include encapsulation and information hiding (i.e.,
lo~se coupling of software components) [6], abstrac-
tioni (highly cohesive modules), ease of understand-
ability and simplification of analyses for concur-
rency [12, 14, 9], timing properties [12, 10], depend-
ability [2{1 and security. The reuse of software com-
ponents during system implementation and reimple-
mentation is another technique that addresses the
aforementioned concerns. When previously engi-
neered and validated components are reused, the
elapsed time from the initial phases of reengineer-
ing until system deployment can be reduced signifi-
cantly. Fortunately, modern programming languages
provide constructs which enable software to be im-
plemented by layering components and by reuse. For
example, Ada provides the generic package, which

45

can be used to implement abstract data type mmod-
ules which are parameterized by types and opera-
tions. Similarly, C++ allows the definition of generic
class templates, which can be instantiated with type
and operation parameters to obtain abstract data ob-
jects. The effective use of such language constructs
should be considered during reengineering.

We have developed an automated reengineering
framework that considers concurrency as well as lay-
ering and reuse of software (see Figure 1). To reengi-
neer a system so that the resulting system has en-
hanced concurrency and is implemented using mod-
ern software engineering principles, it is necessary
first to reverse engineer the existing system. That is,
it is necessary to capture in an intermediate represen-
tation (IR) the syntactic and semantic attributes and
interrelationships of the current system’s software,
hardware, and humanware (e.g., radar operator or
other tactical operators, manual entry of key to per-
form secure operations). Using the IR, concurrency
metrics are extracted. After capturing the syntac-
tic and semantic aspects, as well as the concurrency
metrics of the system to be reengineered, redesign
(transformation) and reimplementation (translation)
of the system are performed. Redesign (or design
transformation) performs a restructuring of the sys-
tem by formulating abstractions and exposing con-
currency, while considering serializability and dead-
lock. The new system design is translated into pro-
grams in one or more target languages. The gen-
eration of code from a design involves the defini-
tion of packages/templates/classes to implement the
design abstractions (employing genericity, reuse, en-
capsulation, and information hiding), the definition
of data structures (using types exported by, and/or
objects encapsulated within, package/template/class
instances), and the retrieval and reuse of previously
implemented components that are stored in a soft-
ware repository. Given the complete collection of
software components, they are clustered/partitioned
and assigned to a parallel and/or distributed hard-
ware platform in a manner that allows effective uti-
lization of concurrency and that also allows compli-
ance with timing, dependability, security and other
constraints.

The work described in this manuscript is inspired
by both the AEGIS and the HIPER-D projects,
which provided the impetus to consider the problems
addressed and which are among the potential recip-
ients of the research results. AEGIS [4, 5] is a com-
plex system engineered to protect a fleet of ships from
subsonic and supersonic threats such as manned air-
craft, air-to-surface missiles, surface-to-surface mis-
siles, and undersea missiles. The requirements of the
system include fast reaction (instant response to tar-
gets in specific sectors that match particular patterns
with respect to speed, course and altitude), accuracy,
resilience to faults and to overloads, and security. For
example, AEGIS may detect a sea-skimining missile
at a distance of 15 miles and traveling at Mach 1. To
avoid loss of lives and equipment due to impact of the
missile, the detection, classification, tracking, assign-
ment of threat priority, and firing of a counter-missile

H= |l

Figure 1: Reengineering framework for concur-
rency enhancement, software component layering
and reuse.

46

must occur within a very stringent deadline (3]. The
other motivator of this work, the HIPER-D project,
is an ARPA sponsored project that is exploring the
use of high-performance distributed (and parallel)
computer systems as platforms for complex systems.

The remainder of the paper is organized as fol-
lows. Section 2 illustrates typical software, hard-
ware and operating system characteristics of Navy
systems for which reengineering is being considered
presently. In Section 3, it is shown how contem-
porary programming languages, operating systems
and hardware platforms can be used as targets for
a reengineering process that enhances concurrency,
produces layered software components and applies
software reuse. In Section 4 we discuss an intermedi-
ate representation and metrics that capture the rele-
vant attributes of complex systems in a manner that
is independent of any programming language, hard-
ware architecture, or operating system. An overview
of our methodology for using our IR and metrics to
transform complex systems that have minimal soft-
ware layering and small-scale parallelism into sys-
tems with extensive layering of software components
and large-scale parallelism is also presented in Sec-
tion 4. The methodology is based in part on a model
of concurrent execution that we have defined called
asynchronous remote procedure call (ARPC) [15],
which aliows concurrency in amounts proportional
to the amount of layering in application software.
Since parallelism is not the only concern in complex
systems, our r-ethodology also considers timeliness,
dependability and security.

2 Typical Characteristics of Systems
to be Reengineered

Complex Navy systems built more than one
decade ago exhibit certain trends, reflecting the pre-
vious state-of-the-art in the areas of software, hard-
ware, and operating system technology. In this Sec-
tion we examine the past trends in each of these ar-
eas, with an emphasis on characterizing aspects of
such systems in paradigm-independent fashions.

A typical software paradigm observed during re-
verse engineering is one in which procedures are com-
bined to form a module (see Figure 2). A module
may contain exported operations (callable from with-
out the module) and internal operations (callable
only from within the modul?. In addition to con-
taining operations, each module may contain data
accessible only by its operations. Each exported op-
eration of a module is termed a module entry, and
serves as a means of manipulating the module’s in-
ternal state. A module may contain at most one
of each of several kinds of module entries, of which
the following are representative. An initialization
entry is scheduled when the tactical system is be-
ing 1nitialized or when a disabled module is enabled.
A message entry is scheduled to accept and process
messages from other modules. An error entrance is
scheduled when an error condition is detected. A
successor entrance is used for any general purpose,
nonperiodic task. Both a buffer complete entrance

m&xlsl(minbmlmnmy)

data

9;3

CSRs

e

ESRs

{periodic) (mage)

Figure 2: A typical model of previous generation

software.

47

and a channel complete entrance are scheduled in re-
sponse Lo user-controlled directions associated with a
completed 1/O process. A periodic entrance executes
functions that must be performed at regular inter-
vals. An important consideration during reengincer-
ing is that assembly language appears frequently in
the code bodies of entries, since module developiment
languages (such as CMS-2) provide no easy way to
control hardware device accesses. In addition to the
user-defined modules, a system may contain global
data (tables) that are accessible by the operations
of any module. There is also a set of common ser-
vice routines (CSRs) and executive service requests
(ESRs), callable from any operation.

In addition to functionality, modules exhibit other
characteristics. Concurrency and timing properties
are stated by defining periodic module entries. Each
of these executes once per period and may have a
deadline by which any particular execution of the
entry must complete. At most one entry may be ac-
tive within a module at any time (i.e., modules are
monitors). A complex system is composed of many
independent activities (or threads of control), which
are implemented via calls to module entries, ESRs
and CSRs, and which may directly access global ta-
bles. Due to the lack of layering, all modules, tables,
CSRs and ESRs are visible to each activity. Complex
systems must adapt to times of overload by shed-
ding less critical tasks in favor of more critical ones.
This shedding is termed throttling, and is specified
by associating a criticality with each module entry.
Throttling allows some degree of adaptability, but
the system must also be aile to function correctly
in the presence of hardware faults. This is normally
stated implicitly by designing redundancy into the
hardware.

In addition to concurrency, it is also necessary to
obey various security levels. A module entry or a
piece of data may have access restrictions, only per-
mitting users having the appropriate security level,
password, or key to use them. Security requirements
cannot be stated in the programming paradigm, but
are implicitly coded into systems.

Fault tolerance is provided in the previous genera-
tion of complex systems by repllcatmg CPUs, memo-
ries, and interprocessor communication links. A typ-
ical hardware system employs fewer than 10 nodes,
each consisting of a few CPUs with private memo-
ries, and a shared node memory (see Figure 3). The
execution paradigm is usually MIMD. An approach
frequently used to tolerate faults is to maintain dual
memories, one containing the current values of all
data and the other keeping current values of critical
data. In the event of a failure of the first memory, the
system automatically switches to the second mem-
ory. Both memories also contain complete copies of
the code assigned to the node. Normally, both CPUs
execute the instructions. Each instruction is stati-
cally tagged with the CPU which is to execute it,
and the instruction fetching mechanism insures that
each instruction is executed by the correct CPU. To
perform a “hot restart” when a node becomes over-

HARDWARE MODEL
o m
¢ (U ¢
m o
node 2 wde §
mem
NODE 1

Figure 3: A typical model of previous generation
hardware.

loaded, execution switches to the copy of code in the
backup memory. In that way, all noncritical data are
reset to their initial values. Additionally, a backup
node is installed. If one node crashes, its software
processes are restarted on the backup node. For se-
curity, there are hardware mechanisms (such as keys)
that must be switched on in order to execute secure
functions.

The execution model used in the previous gen-
eration of systems typically relies on an executive
that provides features to handle such things as hard-
ware interrupts, memory management, application
module scheduling, and fault tolerance. The applica-
tion programs use services provided by the executive
for module (re)initialization, intermodule and inter-
computer communication, scheduling of other mod-
ules, error processing, input/output channel commu-
nications, and periodic scheduling. These systems
are almost always non-portable and in most cases
are coded in high-level languages and assembly lan-
guages available only on a specific class of hardware.
The Aegis Tactical Executive System, ATES/43, is
such an executive, as described in the following quote
from [1}):

The ATES/43 is an interrupt-driven and
table-directed executive system designed to
meet a broad range of requirements speci-
fied for AEGIS DDG combat system com-
puter programs that run in AN/UYK-43
computers. It responds to all AN/UYK-43

48

interrupts on a real-time basis, determines
the processing to be performed, and per-
forms the processing or passes control of a
CPU either to firmware module Fault Tol-
erant System Reconfiguration Module or a
scheduled software module for processing.
ATES/43 supports user-controlled rapid re-
covery and online reconfiguration, and pro-
vides flexibility for the design of diverse
computers prograimns.

The executive restricts the execution to one en-
trance per module at any instant. In other words,
only one entrance of a module may be either exe-
cuting or in the execution queue at any time. A
secondary queue is provided to handle this restric-
tion. The user can also specify the CPU on which a
module entrance is to execute.

There are several reasons for migrating from the
aforementioned paradigm. As the functionality of
complex systems increases, it is desirable to increase
the concurrency in order to meet the timing require-
ments. Thus, systems should be portable to differ-
ent hardware platforms. The frequent use of assem-
bly language to implement entries significantly de-
creases portability. Furthermore, the lack of user-
defined concurrency in system designs makes it dif-
ficult to exploit a large parallel processor, and the
use of programming constructs like pointers makes
the automatic analysis of parallelism troublesome.
Also, the flat module hierarchy structure permits
the access of global data structures by every pro-
cedure, leading to inefficiencies due to synchroniza-
tion of accesses to such structures. Another defi-
ciency is the lack of usage of modern software en-
gineering concepts like abstract data types and ob-
Jjects, and generics (as can be implemented by Ada
packages and C++ classes). The use of such con-
structs increases layering, improves reusability, and
simplifies development, reengineering, timing analy-
sis, and parallelism extraction (6, 15, 8]. The hard-
ware model makes it impossible to achieve the large
scale parallelism necessitated by the massive capabil-
ities of modern software systems. Additionally, the
ATES-like executive systems are restrictive in terms
of portability and also in terms of services provided
to the application program. Additionally, there is
no clear distinction between services available for in-
terfacing with the hardware and those provided for
the application program. In other words, one major
portability issue is that the operating system func-
tions are not disjoint from the application run-time
type functions. Another issue is the limitation of
the memory management functions—the executives
often do not provide virtual memory. There is also
room for improvement in real-time scheduling tech-
niques. Additionally, the degree of parallelism man-
aged by the systems is very low, and modern paral-
lelism paradigms such as asynchronous remote pro-
cedure call [15} are not supported. Another void in
the systems is in the run-time support for modern
software engineering constructs such as abstract data
types and abstract data objects.

type

ecescsscscsccanas

Figure 4: An abstract data type (ADT) module.

3 Desired Characteristics of Reengi-
neered Systems

Many of the shortcomings of “yesterday’s” system
developmen’ paradigms have been overcome by mod-
ern paradigms. Layering, loose coupling, reuse [6, 7],
high cohesion, layering, encapsulation, and informa-
tion hiding are facilitated by the proper use of pro-
gramming constructs such as abstract data types and
abstract data objects. The ability to define generic
ADTs and ADOs enables the development of pa-
rameterized abstractions, resulting in increased reuse
and in a high payoff when such a component is pro-
duced by reengineering (since the cost of reengineer-
ing a component can be amortized over multiple uses
of the component). The specification of concurrency
can be performed in modern languages such as Ada
by defining tasks within ADT or ADO modules. The
ability to lexically nest modules reduces the visibil-
ity of uata structures to only those needing to ac-
cess them, thus lowering module coupling, simplify-
ing analysis of parallelism, and leading to systems
with fewer bugs. The amount of direct (assembly)
code is minimized in modern systems, leading to in-
creased portability.

Many modern software engineering paradigms (as
supported in Ada, Clu, Modula-2 and RESOLVE)
provide techniques supporting implementation of
templates. Normally, each template encapsulates an
abstract data type (ADT). A typical ADT (as illus-

name

type

Figure 5: A facility—an abstract data type (ADT)

module instance.

49

name

type

vl

v2

v3

vm

Figure 6: Variables managed by a facility.

Figure 7: A facility with state.

50

NAVAVAVAY

type

Figure 8: A generic abstract data type (ADT) mod-

ule.

Figure 9: An abstract data object (ADO) module.

trated in Figure 4) exports (1) a type that can be
used to declare variables and (2) operations to ma-
nipulate variables of the provided type. To use an
ADT module, it is instantiated by giving it a name
(see Figure 5). In Ada, for example, instantiation is
performed with the use and with clauses. Instanti-
ation creates a module instance, or a facility. With
ADTs, instantiation does not create a data value.
Instead, a variable must be explicitly declared to be
of a type exported by a facility, and may be accessed
by calling operations exported by the module. A set
of variables managed by a module instance is shown
in Figure 6. ADT instances may encapsulate state
that 1s accessible only by the operations of the mod-
ule, as shown in Figure 7. Tailorable templates can
be developed in languages permitting development
of generic modules (modules parameterized by types,
by operations, or by other modules). A generic mod-
ule is represented graphically in Figure 8 A generic
module is instantiated by fixing its parameters.

A template may also encapsulate an abstract data
object (ADO), the unit of reuse in languages such as
C++, DEAL, Eiffel, and Smalltalk. An ADO is a
special case of an ADT—one that exports no type
and that encapsulates state (the value of an object),
as illustrated 1n Figures 9 and 10. Thus, ADOs can
also be developed in ADT-based languages such as
Ada, Clu, Modula-2 and RESOLVE. An ADO is de-
fined using a template module (called a class in most
object-oriented languages) which exports a set of op-

name

51

et emasvencaaamseen

Figure 10: A facility—an abstract data object
(ADO) module instance.

fame

type
Figure 11: A task type. yp

erations, and defines the structure of objects created

from the class. task1

In the Ada programming paradigm, a template
may encapsulate tasks, in addition to either ex-
porting a type or encapsulating state. (See Fig-
ures 11 and 12. Each task represents a unit of
parallelism. When encapsulated in a template, a
task becomes active upon the creation of an instance task2
of the template. Tasks proceed independently and
may execute concurrently, except when synchroniz-
ing (tendezvousing? with other tasks at pciats called
entries. Entries allow tasks to exchange data syn-
chronously, and to provide mutually exclusive ac-
cess to shared state information, allowing clients to
cause synchronous execution of a specific poidion of
a task body. Exchanging and sharing of information opl
between two tasks can either be done conditionally
or unconditionally. Only one client may be active
within a task at any instant. Furthermore, a tem- :
plate may export one or more task types, allowing :
many copies of a task to be obtained from a single
task object. To obtain a task from such a template,
one declares a variable to be of the appropriate task
type and then invokes a task initiation operation on
the variable. When such an approach is used, mul-
tiple tasks may be active concurrently within an in-
stance. Tasks templates can be used to create fami-
lies of tasks by specifying a discrete range to indicate
the indices of the tasks in the family.

OO) 100

coonse

Figure 12: An ADT that exports task types in addi-
tion to a data type.

In addition to the explicit parallelism available in
a task-based system, an abundance of parallelism is
available when the asynchronous remote procedure
call model of parallel execution is applied to pro-
grams constructed from ADT and ADO modules.
Facilities (consisting of code and possibly state) are
statically assigned to PEs (multiple facilities may re-
side on the same PE). Facilities’ operations are in-
voked by sending call messages between PEs. To hide
the latency of a remote call, an operation is permit-
ted to continue execution until it attempts to access

52

a “locked” variable (this model of parallel execution
is termed asynchronous remote procedure call, or
ARPC [15]). A variable is automatically locked when
it is passed as a parameter to a call and is unlocked
upon return of the call. An operation attempting to
access a locked variable must wait for a remote call to
return before retrying the access. ARPC can achieve
parallel execution at multiple levels in the abstrac-
tion hierarchy. Thus, potential parallelism within a
program increases with the number of levels of ab-
straction, and the model encourages development of
highly cohesive, loosely coupled modules.

With the increase in potential concurrency comes
the added complexity of exploiting the concurrency.
Software components must be partitioned/clustered
according to some binding relationships (such as
communication, concurrency or shared data access),
and the clusters assigned to processors in a way that
causes efficient utilization of hardware resources and
si]multaneously obeys system constraints {11, 12, 13,
9.

The explicit concurrency available in task-based
systems, and the implicit concurrency available via
ARPC can be exploited on modern hardware plat-
forms, which are characterized by a large number of
interconnected processing elements (PEs). For ex-
ample, the Intel Paragon computer contains thou-
sands of computing nodes, running according to
the MIMD paradigm, and interconnected by a 2-
dimensional mesh network. Its computing nodes con-
tain multiple CPUs that share memory. Although
there is shared memory within a node, there is no
globally shared memory. Additionally, one CPU per
node is dedicated to communication processing and
the others are general-purpose processors.

The modern execution model provides greater
flexibility than the older execution model. Addi-
tionally, it provides the same services that the old
model provided, such as features to handle hard-
ware interrupts, memory management, application
module scheduling, and fault tolerance. Addition-
ally, the system provides real-time capabilities, which
provide the application programs with a guarantee
of resource availability for critical elements. Fur-
thermore, the execution model is capable of support-

ing a wide variety of computer architectures, includ-

in% uniprocessors, loosely and tightly coupled dis-
tributed architectures, and a heterogeneous mix of
systems. Also, the model aids portability and scal-
ability. Two execution models that partially satisfy
this group of requirements are the Mach Operating
and the OSF/1 operating system. These operating
systems provide the portability and scalability that is
desired, as well as the capability to operate on many
different architectures. These systems emphasize a
layered approach of providing services to the operat-
ing system. The operating systems are designed as
highly optimized microkernels in which functionality
can be added to create a complete operating system.

4 Transformation of Systems

(aEl
at

Globe! deta

53

Figure 13: A transformed system.

In our approach to reengineering, we increase con-
currency while maintaining consistency and serializ-
ability, and preventing deadlock. Figure 13 shows a
system following transformation.

The software modules described in Section 2 and
depicted in Figure 2 can be described using generic
packages encapsulating ADTs, ADOs and task types.
There at least two approachs which can be used to
model the module structures. In the first approach, a
modaule is represented by a single task whose task en-
tries correspond to the original module entries. With
this approach, obeisance is given to the semantic con-
straint which dictates that a single entry may be ac-
tive within a module at any instant. However, due to
subtleties in the Ada task rendezvous construct, the
periodic module entry cannot be accurately modeled.
Furthermore, this approach does not take advantage
of intramodule concurrency. In the second approacﬁ,
a module is represented by a packaage containing one
task for each module entry. Thus, the amount of
concurrency allowed is increased, but consistency of
module state is not guaranteed.

To maintain consistent values for module level
state variables as well as global variables, semaphores
are used to insure single access to each of them.
With the addition of the semaphores into the sys-
tem, the potential for deadlock is introduced. To
prevent deadlock, module managers are used to con-
trol accesses to module entries. For example, if two

entries a and b of the same module could enter a
circular wait state, the module manager may not al-
low a and b to execute concurrently. It may not al-
ways be necessary to be this strict with intramodule
concurrency, and the module manager could make
optimizations where appropriate to increase concur-
rency. For example, segments of entry a could per-
haps be executed concurrently with segments of en-
try b. To prevent deadlock when accessing global
variables, a system manager is used to control con-
currency among modules, ESRs and CSRs to avoid
circular waiting conditions.

It is the task of reengineering to:

o insert calls to semaphore operations before and
after shared variable access;

e partition global and module variables into seg-
ments that can be accessed concurrently;

e generate module managers that maximize in-
tramodule concurrency, subject to constraints
such as liveness and serializability;

o generate system managers that maximize inter-
module concurrency, subject to constraints such
as liveness and serializability;

e partition module entries into segments that can
execute concurrently; and

e replicate modules and procedures to maximize
concurrency.

Obviously, software reengineering of the nature
just described requires more than a translation of
source code written in one language into source code
written in another language. Instead, reengineer-
ing is a transformation of a software and hardware
system from one paradigm into another. To per-
form such a transformation, it is not enough to have
a syntactic knowledge of the system being reengi-
neered; a semantic knowledge must also be obtained.
Transformation of a system implementation from one
paradigm to another involves the initial task of re-
verse engineering, that is, capturing the intermedi-
ate representation, and collecting the metrics neces-
sary for assessment and optimization. Our language-
independent representation allows the redesign of a
system with the goals of employing modern software
engineering principles, exploiting parallelism safely,
and conforming to constraints re?ated to timing, de-
pendability and security. In this Section we discuss
the metrics that must be collected for concurrency
analysis and show how the metrics are used to ex-
ploit parallelism.

4.1 Characterizing Complex Systems

When reasoning about parallelism, it is necessary
first to analyze parallelism at a low level of granular-
ity, i.e., at the statement or the instruction level. To
obtain parallelism information units of larger granu-
larity, one successively synthesizes parallelism infor-
mation from lower levels. Our representation allows
parallelism to be exploited at the following levels:

m

54

amoung statements within an operation;
among operations within an instance;
among operations of different instances;
within a task entry;

among entries within a task;

I

among tasks and operations within a package
mstance;

N

among package instances;
8. among clusters of package instances; and

9. among systems.

We have defined language-independent interme-
diate forms (or metrics) for capturing the features
of complex systems that are essential for reasoning
about parallelism, encapsulation, information hid-
ing, reuse, real-time, fault tolerance, and security.
The intermediate representations presented in this
Section can be derived by a combination of compile-
time analysis tools and run-time monitoring tools.

Dependence graphs represent program statements
as nodes and use directed edges to denote state-
ment ordering implied by the dependences in a source
program. Different kinds of ordering requirements
are represented in different dependence graphs. The
classical data dependence graph (DDG) and control
dependence graph (CDG) are used, in addition to the
facility dependence graph (FDG) which was invented
for the purpose of clone analysis [14].

A directed acyclic graph (a DAG) is used to show
the call relationships among the facilities of a pro-
gram and to represent inter-module parallelism. A
program is modeled by a DAG, G = (V, E), where:

1. a vertex v in V denotes the operations of a fa-
cility, f(v);

2. an edge (x, y) in E indicates that the code of
facility f(x) calls some operation(s) provided by
facility f(y).

When assessing the timing properties of dis-
tributed/parallel, periodic, time-constrained pro-
cesses, it is important to capture several metrics [9).
Obviously, absolute timing constraints such as pe-
riods and deadlines must be determined. Addition-
ally, relative timing constraints can be identified. For
scheduling and assignment/allocation optimization,
it is useful to represent the system as a set of (au-
tonomous) activities, oud their constituents, which
we call beads.

The module call DAG is used to represent the
fault tolerance and security properties of systems.
The degree of redundancy is given for nodes and
edges of the graph, indicating the number of redun-
dant software modules and intermodule access paths,
respectively. Additionally, the reliability attributes

of modules and interconnections are specified as real-
numbers between zero and one. Security is repre-
sented as classification levels, which may be associ-
ated with DAG edges and nodes. When associated
with a node, a security level indicates the classifica-
tion level required to execute the code represented
by the node. Classification levels on edges indicate
the minimum degree of security that must be asso-
ciated with any transmission of the call parameters
represented by the edge.

4.2 Concurrency Analysis

Given the statement dependence graphs and the
module call DAG, concurrency information is ob-
tained first at the statement level. That information
is then aggregated to the procedure level, then to the
module level, and so on, until concurrency informa-
tion is obtained for the desired level of granularity.

Extraction of ARPC parallelism is achieved by
first augmenting the call DAG to indicate two kinds
of parallelism. An edge drawn using parallel lines in-
dicates parallelism between a client and an exporter.
The DAG is also used to indicate which co-exporters
of a client can execute in parallel with each other;
this type of parallelism is denoted by labeling edges
with sets of facilities. To enable one to determine
whether two arbitrary facilities can execute in par-
allel, we have defined theorems that state how the
parallelism information contained in the DAG can
be propagated among nodes of the graph (for details
see [11, 13]).

Frequently, an ADT module is needed simultane-
ously by multiple clients, thus causing contention.
To decrease queueing delays to execute module op-
erations, cloning of module instances (facilities) is
used in conjunction with the ARPC paradigm [14).
The detection of statements that contend for a facil-
ity is accomplished by considering the DDG, CDG
and FDG in conjunction. An edge in an FDG shows
where it is beneficial to clone a facility, assuming that
data and control dependences do not prohibit paral-
lelism between the statements involved in the facility
dependence.

To detect contention for a facility, the statements
of an operation are partitioned into units. A unit is
a sequence of statements that must execute in order,
due to the data dependences among them. (Hence,
the statements of a unit cannot contend for a facility,
but different units may contend for the same facility.)
For any statement S; in a unit, except the last state-
ment of the unit, S; must complete execution before
Si31 can begin execution. Thus, each unit can utilize
only one clone of each of the facilities that it uses.
However, if two units can execute in parallel, they
may contend for clones. Two units can execute in
parallel with each other as long as neither is an an-
cestor of the other (i.e., there is not a directed path
from one to the other). This notion can be used to
construct a matrix, P, showing which units can run
in parallel. The information in the matrix is used to
group units with others, such that each member of a
group can run in parallel with all others. Given the

groups, the parallelism matrix 1s used to determine
the maximum number of clones that can be used si-
multaneously among all groups.

After the software components of a complex sys-
tem have been reengineered, it is necessary o assign
them to the nodes of a parallel and/or distributed
computer [11, 13, 9]. Due to the large number of soft-
ware and hardware components in complex systems,
the cost of obtaining an optimal assignment of soft-
ware components to processors is quite high. Thus,
heuristics are used for assignment. Furthermore, it
is useful to cluster components before assignment in
order to reduce the problem size.

We have developed a technique to distribute the
facilities of a program over the processing elements
(PEs) of distributed memory parallel computers.
The technique uses a random neural network (RNN)
to assign facilities to PEs with the objectives of en-
abling maximum parallelism among facilities, and
achieving this level of parallelism with the minimum
number of PEs possible. We also incorporate mini-
mization of communication costs into the objective
function by using a prepass to the neural network.
The prepass forms clusters of heavily-communicating
software units. Following the formation of clusters,
the random neural network assigns clusters to PEs
using the objectives of maximum parallelism and PE
conservation.

To provide the required dependability and secu-
rity properties, one must insure that the specifica-
tion 1s heeded. To achieve redundancy, redundant
copies of a component are assigned to different phys-
ical processors. Similarly, redundancy in software
component connections is achieved by a careful as-
signment of components to processors. Reliability is
achieved by selecting, for each software component,
a hardware component with a sufficiently high de-
gree of reliability. Note that the communication links
must also be considered for reliability of messages
between software components. Security of message
flows can be achieved with either encryption or with
dedicated networks for each security class. For code
modules, security is attained by either run-time sys-
tem mechanisms or by dedicated code processors for
each security level.

5 Conclusions

We have described a framework for automated
reengineering of complex systems. Our intermediate
representation for complex systems is not linked with
any specific combination of programming, hardware
or execution paradigms. Furthermore, it allows the
capture of essential system metrics relating to par-
allelism, timing, fault tolerance, and security. The
representation enables the incorporation of object-
based software engineering techniques during reengi-
neering. Additionally, we describe how the repre-
sentation is used to enhance parallelism during the
reengineering process, to assess timing properties, to
achieve dependability and security, and to optimize
software-to-hardware assignments.

55

We continue to evolve our reengineering, analysis
tools, which drive the evolution of the metrics. Thus,
additional metrics for parallelism analysis continue
to be identified. We are also beginning to develop
reverse engineering tools to capture the metrics for
languages such as assembler, CMS-2, and Ada. Fur-
thermore, we plan to develop reengineering tools that
transform previous generation complex systems into
layered, highly concurrent designs and to feed these
designs to backend code generators for languages
such as Ada, C++, Smalitalk and Eiffel. Finally,
we plan to use parallel processors such as the In-
tcl Paragon to implement the synchronization and
deadlock avoidance techniques incorporated in the
module and system managers.

References

(1) AEGIS TACTICAL EXECUTIVE
SYSTEM (ATES/43) USER’S MANUAL, Volume
1—System Design Guide, July 1991, p. 3-1.

2] T. J. Marlowe, A. D. Stoyenko, S. P. Masticola,
and L. R. Welch, “Schedulability-Analyzable Excep-
tion Handling for Responsive Languages,” Journal
of Real-Time Systems, to appear.

[3] W. B. Scott, “Navy May Accelerate Missile De-
fense,” Aviation Week and Space Technology, pp.
283-284, May 30, 1983.

[4] K. J. Stein, “Aegis Fleet Defense Nearing Sea Test,”
Aviation Week and Space Technology, pp. 32-35,
August 13, 1973.

5] K. J. Stein, “Aegis System Tested Successfully,”
Aviation Week and Space Technology, pp. 36-40,
April 7, 1975.

(6] M. Sitaraman, L. R. Welch and D. E. Harms, “On
Specification of Reusable Software Components,”
The International Journal of Software Engineering
and Knowledge Engineering, volume 3, number 2,
1993.

[7) . R. A. Steigerwald and L. R. Welch, “Reusable
Component Retrieval for Real-Time Applications,”
Proceedings of the First IEEE Workshop on Real-
Time Applications, May 1993.

{8] A. D. Stoyenko, L. R. Welch, and B. C. Cheng, “Re-
sponse Time Prediction in Object-Based, Parallel
Embedded Systems,” to appear in Euromicro Jour-
nal, 1994, Special Issue on Parallel Processing in
Embedded Real-Time Systems.

(9] J. P. C. Verhoosel, L. R. Welch, D. K. Ham-
mer, and A. D. Stoyenko, “Assignment and Pre-
Runtime Scheduling of Object-Oriented, Hard Real-
Time Parallel Processes Using Bead Partitioning,”
New Jersey Institute of Technology Technical Re-
port CIS-93-16, December, 1993.

56

(10] J. P. C. Verhoosel. L. R. Weick, D. K. Hammer,
and A. D. Stoyenko, “A Model for Scheduling of
Object-Based, Hard Real-Time Parallel Processes,”
The Journal of Real-Tune Systems, (submitted).

[11] L. R. Welch, “Assignment of ADT Modules to Pro-
cessors,” Proceedings of the International Parallel
Processing Symposium. March, 1992

(12] L. R. Welch, A. D. Stoyenko, T. 1. Marlowe, “Mod-
eling Resource Contention among Distributed 1 cri-
odic Processes,” Fourth IEEE Symposium on Par-
allel and Distributed Computing (December 1992).

{13] L. R. Welch, A. D. Stoyenko and S. Chen, “Assign-
ment of ADT Modules with Random Neural Net-
works,” The Hawaisi International Conference on
System Sciences, IEEE, Jan. 1993.

[14] L. R. Welch, “Cloning ADT Modules to Increase
Parallelism: Rationale and Techniques,” Fifth IEEE
Symposium on Parallel and Distributed Computing,
December 1993.

(15] L. R. Welch, “A Parallel Virtual Machine for
Programs Composed of Abstract Data Types”,
IEEE Transactions on Compulers, accepted for
publication—to appear.

Dynamic (Re)Generation of Software Documentation

W. Lewis Johnson
USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
johnson@isi.edu

Abstract

We are developing an authoring tool called I-Doc
that will automate the process of generating docu-
mentation and user help for software systems. The
focus of the tool is on capture of the requirements
and design decisions that form the content of soft-
ware documentation. This information can then be
used to generate summaries and explanations of the
software on demand. The objective of this research
is to provide on-line assistance for software maintain-
ers and other software professionals that can take the
place of conventional bulk documents. I-Doc is de-
signed to support the reengineering of software sys-
tems, since some of the necessary design information
will have to be captured by annotating existing code.
Reengineering technology, specifically transformation
technology, is employed during the generation process
to simplify and reorganize design information when
describing software.

1 Introduction

Conventional documentation for software systems
has surprisingly little value, given the amount of time
and effort spent to create it. This is particularly true
for large, mature systems. Such systems typically have
voluminous design documents, i which it is difficult to
find information relevant to any specific maintenance
task. If the documentation is not maintained in lock
step with the code, it quickly becomes inaccurate, so
maintainers cannot rely upon it. There is an increas-
ing need for alternative technologies that can provide
maintainers and users of software systems with the
information that they need to operate and maintain
those systems.

We are developing a documentation authoring tool
that will automate the process of generating documen-

57

tation and user help for software systems. This tool
will result in dramatic improvements in the way doc-
umentation is developed, maintained, and used. If
the design, requirements, and assumptions underly-
ing code are made explicit, generation of documenta-
tion can be substantially automated. This underlying
knowledge can be acquired and formalized in a natu-
ral, incremental fashion that does not overly burden
developers.

Documentation will be generated dynamically, in
response to specific requests for user information.
When the user requests information, the documen-
tation system determines what information content
should be presented. It composes a response by com-
bining textual descriptions previously entered in a
database, and automatically generating natural lan-
guage output to fill in the rest. The content of the
generated output depends upon the level cf expertise
of the user, and the history of previous user dccu-
mentation requests. This fundamentally changes the
nature and role of documentation. There will be less
need for users to search through bulk documents in
order to obtain answers to specific questions. Instead,
the documentation system will search its own knowl-
edge base for the information that the user requires,
and compose explanations meeting the user’s needs.

Other CASE (computer-aided software engineer-
ing) tools have been developed to support the author-
ing of documentation. These tools differ in that they
tend to be oriented toward the generation of specific
reports, such as those mandated by Department of
Defense procurement standards. They make it eas-
jier to produce such reports, but that does not make
the reports themselves significantly more useful. The
I-Doc approach is designed to make such reports un-
necessary for most purposes, although it will still be
possible to generate bulk reports from I-Doc’s design
repository.

The approach employ- reengineering technology,

and is designed to be compatible with reengineering ef-
forts. Information required to support documentation
is entered in a reengineering knowledge basc. in the
form of annotations on source code parse trees. Tians-
formations are employed to generate simplified and re-
organized sections of code that highlight the aspects
of the system being documented. Design recov:ry ac-
tivities have the effect of bringir.g documentation up
to date, facilitating subsequent software maintenance.

2 The State of Current Documenta-
tion

Let us examine the problems associated with con-
ventional software documentation, to see how new
techniques can alleviate those problems.

The primary emphasis of conventional system doc-
umentation is on amassing information. Documenta-
tion standards, especially government standards such
as MIL-STD-2167A or SDD, require developers sys-
tematically to describe all details of a design. such as
the inputs and outputs of each function. The structure
of such documents is fixed and standardized.

The first problem with such system documentation
is that is not sufficiently activity-eriented, ic., it is
not designed to support the activities of the intended
readership. User manuals are activity-oriented in this
sense: such manuals are designed to help people whose
activity is to use the software system. System docu-
mentation is not, or if it is the set of activities being
supported is incomplete. System documentation can
potentialy support a number of activities, including
the following:

e review by the customer to check that all stated
requirements are met in the design,

o design reviews in which the quality and validity
of the design is evaluated, and

e maintenance activities, in which maintainers seek
to obtain information about the design so that
modifications and enhancements can be per-
formed correctly.

These activities are very different, yet documents
often must support more than one of them. The ac-
tivity that is least supported, of course, is mainte-
nance. Maintenance manuals are common for physical
devices, but are rare for software systems. Of course
it is harder to write maintenance manuals for soft-
ware than it is for devices, because maintenance tasks

change as the software evolves Nevertheless, main-
tenance activities in general are vastly different from
specification and design reviews. Maintainers rarely
perform methodical reviews of entire systems; rather,
tl.ey inspect specific modules in detail in order to de-
termine how they can be modified. Interrelationships
between modules can be extremely important. Doc-
uments ~uch as design documents, which describe all
components in a uniform way, are more suited to de-
sign activities than maintenance activities.

In addition to being activity-oriented, good docu-
mentation is task-oriented, i.e., designed to help read-
ers perform specific tasks. Tutorial user manuals are
frequently written in a task-oriented fashion. For ex-
ample, a word processor manual might hav. the user
work through sample tasks such as composing a busi-
ness letter or printing mailing labels.

A task-oriented approach centered on hypothetical
tasks is not necessarily the best way to design doc-
umentation in general. It requires the reader to take
the time to work through exercises, whereas document
users typically are impatient and skip through the doc-
umentation trying to find out what they need so they
can get on with their actual job. This is the motivation
for the new “minimalist” approach to documentation,
which uses overviews, structured exercises, and any
information that the user cannot discover through ex-
perimentation with the system [3]. However, the min-
imal approach is not a rejection of task orientaticn per
se, just of manuals that are oriented around lengthy
hypothetical exercises and that contain information
one can figure out on one’s own.

It is certainly true that system documentation can
be improved simply by learning lessons from other
types of documentation such as user documentation.
However, even well-written paper documents suffer
from basic limitations. A person writing a document
can only make rough guesses about what tasks the
reader might be performing, what information he or
she might want to know, and the level of expertise of
the reader. Detailed exercises can help eliminate the
guesswork—if the reader works through an exercise,
the writer can try to anticipate what kinds of ques-
tions the reader might want to ask at each point in
the exercise. This does not work if readers lack the
patience to work through the exercises, as the mini-
malists argue.

The key to a substantial improvement in documen-
tation is an on-line system that can construct presen-
tations dynamically, reducing the reliance on guess-
work. Interaction with the system should be in the
form of a question-answer dialog; that way, the reader

58

indicates to the system what he or she wants to know.
The system can present information in the context
of the reader’s activities, simply by asking the reader
questions about those activities. If the reader does
not understand the descriptions generated by the sys-
tem, the reader should be able to request a clarifica-
tion, and have the system adjust its estimate of the
reader’s level of expertise. The process of supporting
documentation then becomes less an activity of writ-
ing text and more an activity of providing the system
with the information that it needs to produce a range
of descriptions of the system.

Such a capability constitutes a clear advance of the
state of the art in documentation support. However,
the technologies needed to realize such a capability,
such as design repositories, hypertext, program analy-
sis and transformation, and natural language genera-
tion, are well developed and in a state where they can
be brought to bear effectively on the documentation
problem.

3 An Example from the Reader’s

Standpoint

The following example illustrates how I-Doc is in-
tended to function, from the viewpoint of the reader,
i.e., the person asking questions about the system.

The system in question is real-time embedded con-
trol software of a fighter aircraft radar system. This
example was studied by Hughes in a research effort
sponsored by Wright Patterson Air Force Base [4].
Hughes built a demonstration hypertext documenta-
tion system to support a hypothetical maintenance
task on this system. We have been using the same ex-
ample as an initial test case, to design I-Doc so that it
can generate descriptions automatically that ate sim-
ilar to what the Hughes group constructed manually
in their demonstration.

One of the functions of the radar system software
is a Range While Search function, which electronically
controls how the aircraft’s radar scans the airspace.
Normal Range While Search scans a volume of air
space that is wider in azimuth than it is in elevation,
say 60 degrees to the left and right of the aircraft, and
10 degrees above and below the horizon. The volume
is scanned by sweeping back and forth horizontally,
top to bottom. The hypothetical maintenance task is
to change the code so that it can scan volumes that
are wider in elevation than in azimuth, by scanning
vertically rather than horizontally.

Figure 1 shows the window that the user interacts

1-Dse fusry Hindon

File Edit New Question Foliow-On

Name of Component:

I range-while-scarf

Figure 1: I-Doc Query Window

with in order to initiate the query. The user types in
the name of the component that he or she is interested
in. Mechanisms for selecting components from a menu
of alternatives will also be provided.

Before I-Doc can accept a query, however, it first
requests information about the user and the task be-
ing performed. The user parameters are input via a
menu such as that shown in Figure 2. The user is
requested to indicate what role the user plays on the
project, and indicates Maintainer. I-Doc will there-
fore include in the system descriptions that it gener-
ates information relevant to maintenance, e.g., inputs,
outputs, and functional decomposition of each mod-
ule. If the user had chosen a different selection, such
as User, descriptions would be more functional in na-
ture, and limited to those aspects of functionality that
would be visible to the user (in this case the pilot or
radar intercept officer responsible for controlling and
monitoring the radar).

Additionally I-Doc requires an initial estimate of
the user’s degree of familiarity with the system. In
this case the user selects Low, which causes I-Doc to
limit the extent to which it refers to implementation
details such as data representations.

Next, I-Doc requests a characterization of the task
the user is performing. Four types of activities are
known relating to system maintenance: adding func-
tionality, fixing bugs, optimizing, and validating doc-
umentation. Add Functionality is the choice in this
case. In this context, it causes I-Doc to generate high-
level overviews of the functionality in question. If Fix
Bug or Optimize were chosen, the description would
focus more narrowly on those system components in-
volved in generating the behavior that must be opti-
mized. Validate Documentation is chosen when the
user (typically a developer) wishes to see a variety of
descriptions generated by I-Doc, to verify that the sys-
tem can generate valid documentation in each case.

59

Figure 2: User Parameter Window

Figure 3 shows a sample output, based upon the
parameters selected above. I-Doc cannot yet generate
this output, as the project is just getting started; this
is merely an illustration of the type of output that will
be generated. The figure is a display generated by the
Mosaic hypertext system {2], which is the hypertext
system used as an output interface by I-Doc. The fig-
ure contains a simplified decomposition diagram show-
ing the major components of Range-While-Scan: Scan
Generation and Output Processing. It summarizes the
function of each component, and the main inputs and
outputs of each.

Several points are illustrated by this output exam-
ple. First, the output is selective both in terms of
what components of Range-While-Scan are described,
and what properties of those components are men-
tioned. In this overview the major components of
Range-While-Scan are shown, but not those compo-
nents responsible for checking and reporting errors.
(For example, if Qutput Processing detects erroneous
radar input, an error is signaled.) It characterizes
the function of the components (e.g, Scan-Generation
creates a scan pattern), and the inputs and outputs
of each component. If the task or user parameters
were different, the summary would have changed ac-
cordingly, perhaps including more detailed informa-
tion about the system.

Because the presentation medium is hypertext, it is
not necessary to enumerate all relevant properties of
Range-While-Scan. It is sufficient to provide hyper-
text links which, if selected, will permit the reader to
obtain further information. Some of these buttonable
items are interspersed through the text, and appear
underlined in the figure. Other items appear at the
bottom. Because Range-While-Scan’s performance re-
quirements are particularly important for anyone at-
tempting to add functionality to it, a special hypertext
link is included to access this information. Other rel-
evant topics are included at the bottom. The links
named “electronically controlled radars” and “radar
data processing” provide background about the ap-
plication domain that might be useful to a main-
tainer who is unfamiliar with the application. Below
are listed links for obtaining more information about
Range-While-Scan’s components. Further down, be-
low the bottom of the scrolling window in this exam-
ple, are pointers that allow the reader to see the source
code from which this description is derived, either the
full text or a simplified version corresponding to what
appears in this hypertext description.

60

0

leu

Cretadfyyleees i l

Figure 3: Hypertext Description of Range-While-Scan

61

4 System Architecture

I-Doc contains the following major functions.

e An acquisition interface is used to input the anno-
tations necessary to generate system descriptions.

e This information is stored in a repository, and
in annotations embedded within the source code
itself.

e A query interface, as shown in Figure 1, is used
to input queries from the user.

o The source code and repository are processed to
extract the information to be presented.

o A presentation layout for the information is con-
structed.

o The presentation layout is displayed as hyper-
text. Requests to traverse hypertext links are in-
tercepted and passed back to the extraction and
layout subsystems to generate new presentations.

These components will be described in further detail
below, but first the information content that these
components operate on will be discussed.

5 Underlying Knowledge

In order to generate appropriate software descrip-
tions, I-Doc requires a variety of information about the
software and its design. Some of this information can
be extracted directly from the code and from CASE
repositories. Other information must be added to the
design in the form of annotations.

First, a hierarchical decomposition of the design
into functional components is required, .ogether with
the types of the components’ inputs and outputs. The
pattern of data flow among components is necessary
as well.

In order to present the information flow between
modules in natural language, some additional char-
acterizations of the data and the operations on the
data are required. First, it is useful to classify the
type of operation being performed by the component.
Classifications that have been identified so far as use-
ful include create, destroy, filter, insert, remove, re-
trieve, process, and validate. For example, the mod-
ule Scan-Generation is classified as creating scan pat-
terns. Modules whose function is to validate data were
omitted from the summary in Figure 3, under the as-
sumption that initial descriptions should assume that

62

all data is valid, and methods for handling exceptional
data will be described later. The content and use of
data structures is characterized as well. Data struc-
tures are categorized as to whether they represent ob-
jects, aggregates of objects (sets, sequences, etc.}, or
names of objects. This enables I-Doc to refer to the
output of Output-Processing as a set of contacts, re-
gardless of the actual data representation (e.g., an ar-
ray of pointers to contact objects).

Function categorizations can be applied to seg-
ments of components or groups of components, as well
as to individual components. For example, a set of
routines may be employed to process radar data, or
n set of statements may be employed to validate the
data.

Another type of information that plays a prominent
role in I-Doc descriptions is information about require-
ments, particularly nonfunctional requirements. A set
of attributes such as speed requirements or accuracy
requirements may be associated with functional com-
ponents and data.

In order to determine how to render data dictionary
elements most effectively in natural language, I-Doc
uses grammatical annotations. The annotations used
in I-Doc are based on those used in the ARIES require-
ments acquisition system for annotating specifications
[7]. Data expressing relationships between objects are
categorized as to whether they are attributes, actions,
circumstances, classes, or relations. Attributes de-
scribe properties of the object, actions describe actions
that involve the object, circumstances describe states
of the object, classes identify categories to which the
object belongs, and relations are default data relation-
ships. Objects participating in such relationships can
assume one of several grammatical categories, e.g., ac-
tor, goal, location, or beneficiary. These categories are
drawn from case grammars for natural language [5].

Finally, descriptions of classes of behavior, called
scenarios, are useful in the description process. Sce-
narios are useful for defining system requirements, as
a way of describing types of behavior that a system
should or should not exhibit [1}], which can be used to
validate system specifications. They are intended to
serve two roles within I-Doc. First, scenarios can be
used to illustrate system behavior. Second, scenarios
provide the context in which to describe systems. If
the I-Doc user is trying to fix a bug, for example, then
if a scenario illustrating the bug is available it can be
used by I-Doc to focus on describing those components
of the system that are relevant to the bug.

6 Knowledge Acquisition

The information described above is acquired from a
variety of sources. These sources will be described be-
low. It is important to emphasize, though, that I-Doc
can still generate comprehensible system descriptions
without much of this information. The added design
information is used to improve the quality of system
descriptions, and can be acquired when and as appro-
priate.

Some information is available in front-end CASE
tools such as Software through Pictures [6]. I-Doc
will have the ability to query one or more such CASE
repositories in order to extract such information if
available.

Another means of acquiring the documentary in-
formation is through a special acquisition interface.
This method is used especially for inputting grammat-
ical annotations and design component classifications.
These annotations need not be selected directly; in-
stead, the person entering the information can request
that I-Doc attempt to provide the annotations au-
tomatically, and present samples of natural language
output based upon those annotations. Although the
grammatical annotations are based on linguistic con-
cepts that may be unfamiliar to software engineers,
it is easy to see when the generated natural language
is awkward or incorrect. Once the user has selected
from among alternative descriptions generated by I-
Doc, I-Doc saves the annotations used to produce that
sample output.

There are three other ways in which information
for constructing system descriptions is obtained. One
means is through the use of object hierarchies. If an
object class has a particular set of attributes, its spe-
cializations are likely to have similar attributes. A
second approach is to annotate the models used in
automated program synthesis systems. The knowl-
edge bases of specialized knowledge-based synthesis
systems, such as user interface development systems,
can be augmented to support the generation of docu-
mentation and help as well [12]. Integration of I-Doc
with one or more such systems is an option being con-
sidered for future development.

The third source of design information for docu-
mentation is code analysis. Analysis routines can de-
tect components that appear to be creating objects,
inserting into or removing from data aggregates, val-
idating data, etc. Such analysis is further facilitated
when some design components are already annotated;
e.g., when data is designated as an aggregate, it makes
sense to look for routines that add and remove el-
ements from that aggregate. The analysis capabili-

ties of Reasoning Systems’ reengineering technology,
in particular Refine/Ada, are being used as the basis
for such analysis capability.

Use of the above capabilities for extracting rele-
vant design annotations is one way in which reengi-
neering technology plays a prominent role in the con-
struction of documentation in I-Doc. In fact, in order
for automated generation of documentation to suc-
ceed it must be viewed at least partly as a reverse
engineering enterprise. Preparing a design for doc-
ument generation involves adding design information
that is not present in the original design. Front-end
CASE tools, executable specification languages, and
other advanced forward engineering technologies can
reduce the amount of information that must be recap-
tured, but even then some information must be made
explicit that is implicit in the design. Thus a combina-
tion of interactive design capture and design recovery
techniques appear to be essential.

7 Repository Storage and Mainte-
nance

As design information is acquired it must be associ-
ated with the code and maintained. The basic mecha-
nism being used to achieve this is to add attributes to
the Refine representation of program parse trees. In
order to permanently associate these attributes with
the code, the following techniques are planned. First,
Ada pragmas will be used to insert the information di-
rectly into the code. Pragmas were originally intended
to record information to guide compilers in generating
object code. In an analogous fashion they can be used
to guide the generation of system descriptions.

In the longer term, it may be appropriate to ex-
tend the data model of a CASE tool such as Software
through Picturec in order to record the design infor-
mation. However, that should not be a substitute for
inserting design information directly into the source
code. In order for the captured design information to
be useful, it must continue to be associated with the
code as it is maintained over time. At the present time
the best way of ensuring this is to integrate the design
information into the source code, so that maintenaxnce
using a front-end CASE tool is not required. For lan-
guages that do not have constructs similar to pragmas,
the approach will be to add grammatical extensions to
the source language to provide such constructs, which
can then be removed from the source code via trans-
formations, using a tool such as Refine.

63

—‘—

8 Inputting User Queries

If the design knowledge associated with a design is
sufficiently rich, it can be used as the basis for answer-
ing a variety of queries. Following the approach taken
in Lehnert’s original work on question answering (8]
and further developed by research in expert system
explanation, such as the work of Moore and Swartout
{10], common questions about software have been cate-
gorized into types. In the initial version of I-Doc, these
question types will be available to the user as explicit
choices from which the user can choose. Examples
of question types include Describe Function, Describe
Design, Describe Interface, and Describe Use. In sub-
sequent versions these choices will be automated to
a greater extent, so that the user can simply request
“Describe” and the system will construct a combined
description appropriate to the context.

The main difference between question input in I-
Doc and question input in expert system explanation
is the use of hypertext as a medium for posing ques-
tions. Question-answering systems such as Moore and
Swartout’s facility in the Explainable Expert System
(EES) system allow the user to point to an element
of 2 description and ask one of several follow-up ques-
tions about .. In hypertext, the interaction is more
limited——tke user clicks on a <ection of text where a
link begi.s, causing the system to jump to the other
end of iink. The user does not have the option of
selectiag one of several operations to perform on the
link. In order to overcome this difficulty, we are ex-
peri'nenting with making choices explicit as lists of se-
lecti.ble items at the bottom of the hypertext display,
as s1own in Figure 3. It remains to be seen how effec-
tive this technique is in -omparison to more ordinary
menu-based approaches.

9 Extracting Relevant Information

Once the type and the otject of the query have
been chosen, the information suitable for inclusion
in the presentation must be retrieved and presented.
Retrieval of relevant information can be easily ac-
complished using the retrieval and query mechanisms
available in Refine, Software through Pictures, and
other tools. Difficulties arise, though, when the
amount of retrieved information is too much to present
in such a way that the reader can assimilate it. In
such cases filtering techniques may be employed to fo-
cus on the information of greatest potential interest to
the reader.

The fiitering procedures in I-Doc¢ proceed by mark-
ing code as either central, interesting, or ignored. Cen-
tral components are the primary focus of the descrip-
tion, and consist of all code satisfying a particular cri-
terion, such as code matching steps a scenario. Com-
ponents are designated interesting because of their in-
teractions with the central components. Ignored com-
ponents are removed because they can be explicitly
filtered out, or because they are not found to be cen-
tral or interesting. The following are some criteria that
have been found in pencil-and-paper studies to be use-
ful in determining code to be central or ignored; others
are expected to be identified.

e Exceptional case handling. In some descriptions,
such as the one shown in Figure 3, code for han-
dling exceptional cases is unimportant; in other
cases (such as when fixing bugs) such code may
be central. Either way, such can be detected in
a significant number of cases. Ada has explicit
constructs for raising exceptions. Additionally, if
a variable is being used as an error flag, tests of
the variable can be detected automatically, and
branches of the code marked accordingly.

e Code that sets and/or reads a variable or at-
tribute.

o Code thut assigns an attribute or variable to a
specific value, or checks that the attribute or vari-
able has a specific value.

Once components are found be central, surround-
ing code is often marked as interesting and is therefore
included. The motivat.on for this is to provide some
context so that the focussed operations are more eas-
ily understood. For example, if a routine sets an in-
teresting attribute of an object, assignments to other
attributes of the same object in the same procedure
may be included as well.

The transformation facilities in Refine are to be em-
ployed to implement this filtering process. The trans-
formation pattern language can be used in some cases
to detect the code that is of interest. In other cases,
transformations can be used to perform simple ex-
pression simplifications in order to facilitate pattern
matching. A tool that could recognize all instances
of potentially interesting code would require a more
powerful simplifier than is envisioned for I-Doc. In-
stead, [-Doc will either inform the reader when the
view being piesented is possibly incomplete, or sim-
ply provide a view that is somewhat broader than is
strictly necessary.

64

10 Presentation Layout

Once relevant information has been identified, I-
Doc must determine what media to use to present the
information, and how to present tne information using
those media. In the long term, we hope to be able to
employ a variety of presentation media, including mix-
tures of text and diagrams. At first, .hough, the focus
will be on natural language generation. Such gener-
ated text may be supplemented with diagrams if such
diagrams have already been constructed and are avail-
able, as is currently the case with CASE-generated
documents.

The overall structure of each description that is gen-
erated will be determined by a presentation template,
a library of which will be included in I-Doc’s knowl-
edge base. These templates provide standard ways of
presenting different aspects of a system. Each tem-
plate will have a set of selection criteria, based upon
the amount of various types of information that is to
be presented, and the assumed level of expertise of
the user. Slots within the template are then filled out
using a natural language generator.

The natural language generator consists of two
components. The basic generation work is performed
by a Functional Unification Generator, which can
construct arbitrary sentences from attribute-value de-
scriptions of the content to be expressed. A second
phrase selection component constructs attribute-value
patterns in a form suitable for input to the Functional
Unification Generator, according to directives con-
tained within the system description templates. This
architecture was used successfully in ARIES and the
KBSA Concept Demonstration [11] to generate text
descriptions rapidly. Functional Unification Gram-
mar has been evaluated against competing methods
for natural language generation, and has Lren found
to be both flexible and efficient [9].

11 Presentation Delivery

As indicated in Section 3, Mosaic is being employed
as the hypertext delivery mechanism for I-Doc. Al-
though there are various commercial products avail-
able that provide hypertext capability, Mosaic has a
set of features that make it particularly suitable to
dynamic documentation generation.

o Mosaic provides interfaces to external programs,
so that the user buttoning on a hypertext link can
cause a program to be invoked.

65

¢ It interprets hypertext formatting commands dy-
namically, as needed; this makes it possible to
construct a hypertext document dynamically and
display it.

e It runs on a variety of platforms, including X
Windows, Microsoft Windows, and Macintosh.

e It is public domain, and the source code is read-
ily available, making it possible to customize the
system for use within I-Doc.

12 Further Plans and Prospectus

The I-Doc project has just begun; it is expected to
continue for another three years. The project plans to
make available intermediate versions of the system on
a periodic basis. In the near term, the capability will
be demonstrated on a military application selected in
collaboration with the US Air Force’s Wright Labora-
tory.

If resources are available, I-Doc will be extended
so that it can describe systems to other classes of
users besides maintainers, such as clients and end-
users. This will further enhance *he value of documen-
tation generation technology t¢ -.ftware development
projects.

In the long run, dynamic generation of documen-
tation will prove successful if the perceived benefits
outweigh the costs of additional design capture. The
benefits will be particularly apparent in projects that
undergo periodic design reviews, since automated doc-
umentation should prove to be a great benefit to the
design review process. Reengineering and program
synthesis technology will gradually reduce the amount
of interaction between developers and I-Doc necessary
for design capture. In the near term, making enhanced
hypertext capabilities available to developers is likely
to bring benefits in itself. Hypertext is gradually being
adopted in software development practice, and the ac-
tivities of the I-Doc project will aim to help accelerate
this trend.

13 Acknowledgements

The author wishes to thank Bill Swartout and
Richard Angros for their contributions to this effort,
and John Salasin and Marc Pitarys for their support.
Sheila Coyazo assisted with preparation of the arti-
cle. This work is sponsored by the Advanced Research

Projects Agency and administered by Wright Labora-
tory, Air Force Materiel Command, under Contract
No. F33615-94-1-1402. Views and conclusions con-
tained in this paper are the author’s and should not
be inter- . ~ted as representing the official opinion or
policy of the U.S. Government or any agency thereof.

References

(1] K. Benner, M.S. Feather, W.L. Johnson, and
L. Zorman. The role of scenarios in the software
development process. In Proceedings of the IFIP
W8.1 Working Conference on Information Sys-
tem Development Process, 1993. To appear.

[2) E. Bina and M. Andreessen. NCSA mosaic home
page. Available from World Wide Web server
www.ncsa.uiuc.edu.

(3] 3.M. Carroll. The minimal manual. Human-
Compuler Interaction, 3(3):123-153, 1988.

[4] R.A. Falcioni and R.L. Buvel. Modular embed-
ded computer software (MECS): Interim report.
Technical Report WL-TR-92-1113, Wright Labo-
ratory, Wright Patterson AFB, OH, 1990.

(6] CJ. Fillmore. The case for case. In Universals
in Linguistic Theory, pages 1-88. Holt, Reinhart
and Winston, New York, NY, 1968.

(6] Interactive Development Environments. Software
through Pictures: Fundamentals of StP, 1993.

{7} W.L. Johnson, M.S. Feather, and D.R. Harris.
Representation and presentation of requirements
knowledge. [EEE Trans. on Software Engtneer-
ing, 18(10):853-869, October 1992.

(8] W.G. Lehnert. The Process of Question An-
swering. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1978.

[9] K.R. McKeown and M. Elhadad. A Contrastive
Evaluation of Functional Unification Grammar
for Surface Language Generation: A Case Study
in the Choice of Connectives, pages 351-392.
Kluwer Academic Publishers, Norwell, MA, 1991.

(10} J.D. Moore and W.R. Swartout. A Reactive Ap-
proach to Ezplanation: Taking the User’s Feed-
back into Accounl, pages 3-44. Kluwer Academic
Publishers, Norwell, MA, 1991].

66

[11) J.J. Myers and G. Williams. Exploiting meta-
model correspondences to provide paraphrasing
capabilities for the concept demonstration. In
Proceedings of the 5th KBSA Conference, pages
331-345, Syracuse, NY, September 1990. Defense
Technical Information Center.

[12] P. Szekely, P. Luo, and R. Neches. Facilitating
the exploration of interface design alternatives:
The HUMANOID model of interface design. In
Proceedings of CHI’'92, The National Conference
on Computer- Human Interaction, pages 507-515,
May 1992.

A Case Study of Software Reuse in Vertical Domain

Viclav Rajlich and Jodo Silva

Department of Computer Science
Wayne State University
Detroit, MI 48202

vir@cs.wayne.edu

Abstract

This paper presents a case study of domain
specific software reuse, also called vertical reuse, where
both the architecture and individual classes are reused.
The applications domain we deal with is the domain of
visual interactive software tools. The paper describes the
architecture itself, the reverse engineering process by
which it was obtained, and the forward engineering
process by which it was reused. The architecture is called
orthogonal architecture, and it consists of classes
organized into layers and threads.

Key Words

Software reuse, vertical domain, object-oriented
programming, visual graphical tools, layers, threads,
program families, process of reuse, reengineering.

1. Introduction

The reuse in vertical domain is characterized by
areuse of the whole software architecture, which is being
adjusted to satisfy a new set of requirements. In this
respect, reuse in vertical domain, software evolution, and
perfective maintenance overlap 1o a large extent. In our
case study, we studied a process of reuse in vertical
domain of visual interactive software tools. We
developed an orthogonal architecture for that domain,
which is particularly suitable for vertical reuse.
Evolutionary domain life cycle was the process used in

67

the case study. The architecture was obtained through
reengineering of an earlier tool.

The major difference between the evolutionary
domain life cycle and the waterfall model are the
activities that span the whole application domain. These
are domain analysis [21, 22, 23, 24], and domain design
[8]. Domain analysis examines the requirements of a
family of systems. The end result of the domain analysis
phase is a document called the domain specifications.
Domain design includes definition of the data structures,
file formats, and important algorithm descriptions for a
specific domain of applications. The final product of the
domain analysis phase is a domain architecture that
describes the architecture of a family of systems. This
domain architecture reflects the design of all software
systems that constitute the domain.

We studied the domain of visual interactive
tools. Our experience in building these systems dates to
1986 when we developed a prototype of VIC: Visual
Interactive C [25, 26). Other visual interactive editors
developed in our group were VIFOR [26], and EDG
(described here -- see Appendix A). We defined a set of
classes -- some of them general, others specialized -- and
all interactions among them, In this model classes may
evolve, but the overall architecture remains unchanged.

2. Previous Work

The concept of "program families" originates
with Pamas [16, 17, 18, 19, 20]. Program families are

defined as sets of programs whose common properties are
s0 extensive that it becomes advantageous to study the
common properties of these programs before analyzing
individual differences. Since then, other researchers such
as Neighbors [13, 14, 15], Barstow {6], Lubars {10, 11,
12], Bailin [4, 5], Kant [9], Arango [1, 2, 3], and Pricto-
Diaz [21] have associated the concept of a "family of
programs” with the idea of application domain.

Barstow [6) investigated the issue of domain
specific automatic programming in the context of the
two application domains, both related to oil well
logging. Similar studies have been concluded by other
rescarchers for other domains of knowledge. Exampies of
such studies includes those of Kant et al. [9], Bailin [4,
5], and Dunn {7]. Our work, is in a sense, related to
these works because we also performed domain analysis
and domain design studies within a specific domain.

Prieto-Diaz {21] proposed a methodology for
domain analysis. He described three distinct steps: pre-
domain analysis, domain analysis, and pos-domain
analysis. Pre-domain analysis comprised the definition
and scope of the domain, the identification of sources of
knowledge, and infarmation about the domain.

Barstow and Kant [6, 9], among others,
performed domain analysis and domain design studies that
led to code generation within well defined domains of
applications. These domains, quite different in nature,
possessed a high degree of cohesiveness, a well
understood variability, and a low complexity level. Code
generation is advocated for such cases. For more
complex systems with a higher degree of variability and a
lower degree of cohesiveness, code generation is not
recommended. Instead, a knowledge-base that captures
important aspects that characterizes the family of systems
can facilitate its development. The knowledge-base
consists of : (1) well defined code components, (2) a
generalized systems' architecture for the family of
systems that constitute the domain, and (3) a set of
domain rules (i.e., domain knowledge). The domain
knowledge includes relationships among different
components that make up the system.

3. Orthogonal architecture for
interactive software tools.

We performed the domain analysis and design
study for an experimental and reusable software system
known as "The Environment for Decomposition and
Generalization (EDG -- pronounced "edge”). EDG

A3

supports the OODG methodology of design [22). The
EDG system has an architecture, which can be easily
adapted for other systems within the domain of visual
interactive editors. Qur goal was not to show that the
architecture of EDG is the best possible, but we were
satisfied with an architecture that possessed the following
attributes:

(1) reusable: The architecture can be
transformed to perform the functions
expected of other visual interactive tools.

(2) Understandable: The architecture is
simple. Domain users who have a
minimum knowledge of visual interactive
tools are capable of understanding what
each class does and what the roles are
within the domain, by reading the classes
specifications.

(3) adaptable: The classes are capable of
evolving. This capability involves the
mechanics of changing specific members
within a class while it still preserves the
structural relationships between classes
(i.e., maintaining the overall generic
architecture for the whole system).

In order to accomplish these objectives, EDG
system is partitioned both horizontally and vertically.
Horizontal partitioning represents layers or levels of
abstraction. On layer 1, function "main” controls the
application. Layer 2 implements the menu interface, and
triggers callback functions chosen from the menu. Layer
3 encapsulates the interfaces for all operations supported
by EDG. At this layer, we defined a standard dialogue for
each operation. For example, if the operation is "Save
As,” we know that there is a standard dialogue between
the user and the system. First, after this operation is
selected, a panel is presented and the user is asked to enter
a file name. Then if the file name is valid and the user
hits the return key or presses the "ok™ button, the file is
saved. In any other sequence of events, this "Save As"
operation is aborted.

The actual functionality of the operations was
defined at layer 4. Some of the classes which were
defined at this layer include: a class to draw graphs on
canvas, a class with algorithms for representing graphs, a
class with functions to scan C++ source code and to
extract relationships between objects, etc.

Finally, most operations in EDG need services
of a database. The fifth and sixth layers perform these
services. Layer 5 encapsulates the specific data model
and database interface, while layer 6 is the database itself.
They are both custom made specifically for EDG.
Database is resident in the main memory, and is stored
on the disk in a flat file. The efficiency was not of a
concern, and hence relatively simple data representations
and search algorithms were employed.

Vertical partitioning of the EDG system
involves the division of the system into threads that are
orthogonal to layers. Threads are sets of classes related
to each other by relationship of "use”. Threads in our
architecture are largely independent of each other, with
very few classes from one thread using services of the
classes in other thread. Only layers 1 ¢highest) and 6
(lowest) are shared among the threads. The threads of
EDG are:

(1) Project, supporting commands that
operate on entire projects and its files.

(2) Graph, which supports graph display
and editing.

(3) Views, which selects information to be
presented in a window.,

(4) Browser, which supports navigation
through the database.

(5) Analyzer, which extracts architectural
information from programs.

(6) Run, which interfaces EDG with other
tools (compilers, debuggers, etc.).

These six threads are truly universal within the
domain of visual interactive software environments.
Examples of software development environments that use
one or more of these threads include: Software through
Pictures, Powertools from Iconix, and Teamwork from
Cadre.

Taken together, these two orthogonal system
partitionings provide an interesting map of the EDG
system. For each specific layer and thread, there is at
least one class implementing the required functionality.
This orthogonality substantially improves the
understanding of software, and therefore facilitates its
reuse.

A9

4. Reverse engineering: Creating
EDG.

EDG was created from earlier projects, which had
the same or overlapping functionalities but did not
possess the orthogonal architecture described above. The
reverse engineering was applied to a code written partially
in C and partially in C++. The effort involved domain
analysis, which had to be done for the whole domain of
visual interactive tools. That was followed by a domain
design, where the threads, layers, and individual classes of
EDG were defined. Finally the existing code was analyzed
and reengincered into the new code, fitting the new
architecture. The classes of the new code fall into the
following categories: Classes transfered from the
previous projects with modifications, and classes written
from scratch. There were no classes which could be
reused from the previous project without any change.

Of the total 11,558 lines of the code of EDG, total
of 4,360 belongs to the classes written from the scratch.
These classes belong mostly to top and bottom layers,
where the impact of the new architecture was most felt.
The rest belonged to the classes that were modified to a
larger or lesser degree. As far as the effort is concerned,
the effort to reengineer old code into EDG was
approximately 40% of the estimated effort it would take
to implement EDG from scratch. For more detailed
numbers, see {29].

5. Forward engineering: From

EDG to EDFD.

The reusability of orthogonal architecture of
EDG was tested in a case study where it was reused for a
new visual interactive tool: Environment for Data Flow
Diagrams (EDFD) which partially supports the
methodology described in [27). A more detailed
description of both EDG and EDFD is included in
Appendices A and B. As the first step, we identified the
set of operations required by the new system, and
organized them into a top-menu.

Via the second step, "assign operations,” we
mapped the set of operations identified in the previous
step on the pre-existing set of threads. For example, the
operation "Hide Object” is mapped to thread "graph.”
After this phase, when all operations for a new system
are assigned to a thread, all unnecessary threads are

removed from the system. In our case EDFD required
three threads: the Data-Flow Editor, the Data Dictionary
Editor, and the Defining Functions Editor. The first
thread was mapped on Graph Editor thread of EDG, while
both remaining threads were mapped on Project thread of

25.8 % of code was used with some
modification.

Unnecessary to introduce new
functions.

EDG. Hence the project thread is modified in two Layer3 Very easy adaptation.
different ways, once to serve as Data Dictionary thread 94.6 % of code was used without
and a second time as Defining Functions thread. The rest adaptations.
of the threads of EDG were no longer needed, and 4.5 % of code was used with
therefore were discarded. adaptations.
0.9 % of code was implemented from
The next step consists of modification of the "scraich.”
classes in the threads. When modifying a class, we Unnecessary to introduce new
mapped the new specifications of the class on the old functions.
one, and compared the new requirements with the
existing code. For "Add an Object," we identified the set Layer4 Refers to "graph_editor”™ (our worst
of functions in "graph” associated with that operation. case scenario).
First we searched the interface of class "graph™ and Very easy adaptation for already
checked whether or not that function exists. If so, we existing functions.
considered that function and all functions called by it for 73.5 % of code was used without
possible modifications. adaptations.
22 % of code was used with
Function modifications were effected "top-down” adaptations.
until all of the selected functions were completely 24.3 % of code was implemented
defined. Three different scenarios have occurred: from "scrach.”
Necessary to introduce new
(1) The function can be reused "as is." No functions.
changes were required.
Layer5 Very easy to modify.
(2) The function needs to be "adjusted” to 88.3 % of code was used without
conform to a new set of requirements. adaptations.
Here, we would isolate the portion of the 3.8 % of code was used with
function which can be reused without other adaptations.
changes, and then we would add code to 1.9 % of code was implemented from
perform the new required functionality. "scratch.”
Unnecessary to introduce new
(3) The function does not exist. Here, we functions.
implement the new function to
accommodate a new set of requirements. Layer6 Very easy to modify.
784 % of code was used without
The whole architecture was scanned through this tations

process, and adapted for the new set of requirements.

The following statistics on the extent of
modifications were gathered:

Layer1 Reused without adaptations.

Layer2 Very easy adaptation

2.3 % of code was used with
modifications

19.3 % of code was implemented
from "scratch.”

Unnecessary to introduce new
functions

Analyzing this data, the classes requiring least

74.2 % of code was used without
adaptations

amount of work were either high in the class hierarchy
(layer one) or low (layers five and six). Classes in the
middle of the hierarchy required more work.

70

The total size of EDFD is 4,606 lines. The total
effort of the reuse represents 37% of the estimated effort
1o build the system from scratch. For more detailed
numbers, see (29)].

6. Conclusions.

We found that building the "perfect architecture”
is a step by step process, very similar to exploratory
programming. As we coped with the new requirements
of EDFD, we werc able to perfect the existing
architecture of EDG and improve its classes, thus making
the architecture more universal and adaptable. We believe
that the architecture of EDG developed in the case study
is suitable for most visual interactive tools, and future
reuse and retroactive improvement will make it even
more reusable.

We developed a process of three steps to adapt a
generic orthogonal architecture to perform a new set of
requirements. Please note that the process is domain
independent. Hence we are expecting to be able to use
this process in other domains as well.

We conjecture that the orthogonal architecture
can be developed for domains other than visua! interactive
tools. We did some preliminary studies of nucleus of
operating system, and found the same methodology and
architecture ideas applicable there.

In our case study, we found encouraging
productivity figures. To reengineer an unconstrained
architecture into an orthogonal one, we spent
approximately 40% of the time compared to
implementation from the scratch. Adapting this
architecture to a new set of requirements, we spent
approximately 37% of the time compared to building the
system from the scratch. Hence to reengineer a system
into orthogonal architecture, and then forward engineer it
to a new set of requirements, was cost effective already
on the first system, where it cost 77% of the estimated
original cost. We conjecture that each subsequent system
within that domain should cost again approximately 40%
of the original cost to build. We find these preliminary
figures to be very encouraging, and hope to verify them
by studies in other domains.

Bibliography

(1

(2

31

{4]

[6)

(8

©l

[101

71

Guilhermo F. Arango, "Evaluation of a Reuse-
Based Software Construction Technology,” Proc. of
the Second IEE/BCS Conference: Soft. Engineering
88, pp. 85-92. IEE, London, UK, July, 1988.

Guilhermo F. Arango, "Domain Analysis-From Arn
to Engineering Discipline.” IEEE Computer
Society Press, pp. 81-88. 1991,

Guillermo Arango , Josiah Hoskins, and Eric
Schoen, "Product Modelling for Software Re-
engineering." Proceedings of the 13th Int.
Conference on Software Engineering, pp. 14-17,
May 13-17, 1991 Austin, Texas, USA.

Sidney C. Bailin, "Generic POCC Architectures,”

Report prepared for NASA Goddard Space Flight
Center.” Associates, Laurel, MD, April, 1989,

Sidney C. Bailin, "The KAPTUR Environment: An
Operations Concept.” Report prepared for NASA
Goddard Space Flight Center, Associates, Laurel,
MD, June, 1989.

David R. Barstow, "Domain-Specific Automatic
Programming.” IEEE Transactions on Software
Engineering, vol. SE-11, no.11, pp. 1321-1336,
November, 1985.

Michael F. Dunn and John C. Knight, "Software
Reuse in an Industrial Setting: A Case Study.”
IEEE Computer Society Press, CH2982-7/91,
Pp. 329-337, July 1991.

Hassan Gomaa and Larry Kerschberg, "An
Evolutionary Domain Life Cycle for Domain
Modeling and Target System Generation.”
Proceedings of the 13th Int. Conference on
Software Engineering, pp. 65-71, May 13-17,
1991-Austin, Texas, USA.

Elaine Kant and Ira Baxter, "Domain Modeling in
SINAPSE for Synthesizing Mathematical Modeling
Programs.” Proceedings of the 13th Int.
Conference on Software Engineering, pp. 23-25,
May 13-17, 1991-Austin, Texas, USA.

Mitchell D. Lubars, "A Knowledge-based Design
Aid for the Construction of Software Systems.

(1]

[12)

(13]

(14

s

(16]

(17

(18]

(191

PhD. Thesis, University of Illinois, Urbana-
Champaign, 1987.

Mitchell D. Lubars, "A Domain Modeling
Representation.” Technical report STP-366-88,
Microelectronics and Computer Technology
Corporation, Austin, TX, November, 1988.

Mitchell D. Lubars, "Domain Analysis and Domain
Engineering in IDeA.” Technical report
STP-295-88, Microelectronics and Computer
Technology Corporation, Austin, TX, September,
1988.

James M. Neighbors, "Software Construction
Using Components.” PhD. Thesis, University of
California at Irvine, 1980.

James M. Neighbors, "The Draco Approach to
Constructing Software from Reusable
Components.” IEEE Transactions on Software
Engineering, Software Engineering, vol. 10, no. §,
Pp.564-74, September 1934,

James M. Neighbors, "Report on the Domain
Analysis Working Group Session.” Proceedings of
the Workshop on Software Reuse, Rocky
Mountains Institute of Software Engineering,
Boulder, CO, October 1987.

David L. Parnas, "On the Design and Development
of Program Families." IEEE Transactions on
Software Engineering, vol. 2, no. 1, pp.1-9, March
1976.

David L. Parnas, "The Influence of Software
Structure on Reliability.” Current Trents in
Programming Methodology: Software Specification
and Design vol. 1. ed. R. Yeh, Englewood Cliffs,
NIJ: Prentice-Hall.

David L. Pamas, "Designing Software for Ease of
Extension and Contraction.” IEEE Transactions on
Software Engineering, vol. S, no. 2, pp.128-138,
March 1979.

David L. Pamas, Paul C. Clemens and David M
Weiss, "Enhancing Reusability with Information
Hiding." Proceedings of the Workshop on
Reusability in Programming, Stratford , CT: ITT
Programing.

[20]

(21]

22)

(23]

[24]

(25]

(26]

(27]

(28]

David L. Pamas, Paul C. Clemens, and David M
Weiss, "The Modular structure of Complex
Systems." IEEE Transactior.. on Software
Engineering, vol. 11, no. 3, pp.259-266, March
1985.

Ruben Prieto-Diaz and Peter Freeman, "Domain
Analysis for Reusability.” Proceedings of
COMPSAC 87: The Eleventh Annual International
Computer Software & Applications Conference,
pp. 23-29. IEEE Computer Society, Washington,
DC, October 1987.

Ruben Prieto-Diaz, "A Domain Analysis
Methodology." Proceedings of the 13th Int.
Conference on Software Engineering, pp. 138-140,
May 13-17, 1991-Austin, Texas, USA.

Ruben Prieto-Diaz, "A Domain Analysis: An
introduction.” ACM Software Engineering Notes
vol. 15, no. 2, pp. 47-54.

Ruben Prieto-Diaz, "A Doma’a Analysis
Methodology.” Proceedings of the 13th Int.
Conference on Software Engineering, pp. 138-140,
May 13-17, 1991-Austin, Texas, USA.

Vaclav Rajlich, Nicholas Damaskinos, Wafa
Korshid, Panagiotis Linos, and Jo3o Silva, "Visual
Support for Programming in the Large." IEEE
Conference on Software Maintenance, 1988.

Vaclav Rajlich, Nicholas Damaskinos, Wafa
Korshid, Panagiotis Linos, and Jodo Silva, "An
Environment for Maintaining C Programs.”
CASE'88 Second International Workshop on
Computer-Aided Software Engineering July 12-15,
1988, Cambridge, Massachuseits, USA.

Vaclav Rajlich, "Decomposition/Generalization
Methodology for Object-Oriented Programming.”
To be published in the Journal of Systems and
Software.

James Rumbaugh, Michael Blaha, William
Premerlani, Frederick Eddy, William Lorensen,
"Object-Oriented Modeling and Design.”
Prentice hall, Englewod Cliffs, New Jersey 07632,
1991.

{29] Joao Silva, "Vertical Reuse in Software Tools: A
Case Study, PhD Dissrtation, Department of
Computer Science, Wayne State University, 1993.

Appendix A

EDG Requirements

EDG is an experimental software tool used in
the development of C++ programs; it enforces the use of
the Object-Oriented Decomposition and Generalization
methodology (27). With EDG, C++ programs can be
displayed and edited in two forms: class diagrams and
code. A more detailed dcscription of the EDG follows.

Six major threads constitute EDG:

« the project manager thread
« the graph editor thread

« the view manager thread
« the code analyzer thread

» the browser thread

+ the code generator thread

The Project Manager

The project manager subsystem implements the
commands which operate on entire projects (project
descriptions and files). A bdef description of each
commands follows.

Open: Opens an existing project or
starts a new project.

Close: Resumes the currently loaded
project.

Add File: Adds a new file to the project
description.

Remove File: Removes a file from the project
description.

Save: Updates the current project
description in a file.

Save As: Updates the current project

description in a new file
-- possibly the same.

The Graph Editor

Graph operations are used to build and
manipulate the architecture of a program. By using these
operations, graphs may be created, deleted, and modified.
Specially designed canvas windows are used to display
these graphs. In association with the graph editor, we
implemented Sugiyama's algorithm to display
hierarchical graphs.

New: Starts a new graph editor
window and initializes the
graph database.

Adt Adds objects to the graph

database. In EDG, objects can
be of two kinds: classes and
relationships between classes
- use or inheritance

relationships.

Delete: Removes objects form the
database,

Rename: Changes the name of an
object.

Select: Changes the active object.

Color: Changes colors of objects.

Hide: Removes an object and
associated relationships from a

graph. These objects are not
displayed, but are kept in the
database.

Move: Changes object positions in a
displayed graph.

Load Graph: Reads and displays the
information from a file which
contains the description of a
graph.

Save Graph: Writes the graph description
in a named file for future
retrieval.

The View Manager

"View" operations are used to control and
display the information in text and canvas windows.
However, "view” operations do not affect data itself.
The view manager implements commands which control
the presentation of the information within a canvas

window and/or a text window.
New: Creates a new instance for the
view manager.

Show File: Displays a named file in a text
window. This file cannot be

73

modified using the view
manager.

Show Graph: Displays a named graph on a
canvas. This graph cannot
be modified using the view

manager.
Text Editor: Starts a text window that can
be used for documentation.
Print File: Sends a text file to the printer.
Snapshot: Retrieves information of some
portion of a displayed graph,

saves it in a named file, and
displays that portion
enlarged.

The Code Analyzer

This thread contains commands used in the
extraction of architectural and procedural information of
C++ programs. The analyzer uses a parser to scan C++
code files and identify C++ code components. In
addition, the analyzer searches for relationships between
C++ code components. Examples of these code
components include classes and functions. While
examples of relationships between code components
include: “use” and “inheritance.”

The menu interface to this thread includes the
following operations:

New: Create a new instance of the analyzer.
Initialize the analyzer database.
Analyze: Start the interface template for the

user to type the filename(s), activate
the parser, and populate the analyzer
database.

Display: Invoke the Sugiyama's algorithm to
compute object positions and display
the graph.

The Browser

The browser, helps programmers to understand
object oriented software systems written in C++. To
achieve this goal, this thread provides information about
the set of classes and files comprising the system and
relationships among them. With the set of operations
described below, users of this thread may "browse”
through the system based on relationships among
classes, files, and identifiers. Useful cross-reference

74

information about class methods and variables may also
be found.
New: Create a new instance of the
browser and initialize the browser
database.
Reads all classes from the
database and shows all
classes in a panel. When any one
of the project classes is selected,
its declaration file is opened
and displayed on a text-window.
The selected class becomes the
"active class.”
Select Class: Changes the current "active
class." The selected class text is
validated against class names
stored in the database. If the class
name is valid, then the active-
class is changed. Otherwise, an
error message box is shown
to the user.
Returns information about the
"active class.” This information
is shown on the information
panel and includes:
-- class name
-- "uses” relationship
— "used-by" relationship
-- "is_a_subclass” relationship
-- is_a_superclass” relationship
-- inheritance path
— header file
-- number of "use”
relationships
-- number of "used-by"
relationships
A text window is shown, which
opens the declaration file for the
active class. To select the active
class one may use the mouse and
highlight a class identifier or may
highlight a function identifier.
Either way, the declaration file for
that class or function is shown in
a text window,
Similar to "declarations.” Instead
of displaying the header file, it
displays the definition file for the
This operation is used to give a
summary of information about an

Show Class:

Class Info:

Declarations:

Definitions:

Show Info:

identifier. Identifiers may be
classes or functions. The
following information related to
identifiers is preserved in the
database and displayed when this
operation is selected:

- identifier_name

— is_overloaded

- variable_or_function

- type

- declaration_file

-- definition_file

— parameter_types

-- declaration_file_index

— definition_file_index

-- comments

-- call_relationships

- called_from_relationships

-- total_number_of_calls

-- number_of_calls_from

The Run Project

The run project contains the set of commands
used to interface EDG with other tools (eg: compilers,

debuggers, and code generators).

Generate: Generates C++ code skeletons for
classes.

Make: Generates a Makefile for an entire
project based on project

Compile: Executes the make file.

Execute: Executes the object code for the
project.

Debug: Invokes a symbolic debugger -- For
example dbxtool.

Appendix B

EDFD Requirements

EDFD supports:

1. Identifying input and output values.
2. Using data Flow Diagrams as needed to show
3. Describing what each function does.

75

4. Identifying constraints.
5. Specifying optimization criteria.

To provide support for 1 and 2, we provide a
data flow diagram editor. To provide support to 1 and 4,
we provide a data dictionary editor. To support 3 and 5
we provide a describing functions editor. We continue
this discussion with a description of the operations
required to support each one of the editors.

The Data Flow Diagram Editor

Data elements flow from one process node to
another process node where they are processed. Data flow
diagrams consist of four graphical components:
Processes, data flows, data stores, and actors. Processes
denote functions of the system. Data Flows represent
data elements flowing between process nodes. Data
stores represent places where data elements are stored.
And, actors are independent objects that produce and
consume values -- source or sink of data.

Data flow diagrams depict a system from the
data's point of view. Using data flow diagrams, the
analyst is able to show how data flows in a system, how
data is transformed by the system, and where to store data
in the system. To help us with this data flow
description, we provide the following data flow diagram
editor.

New: Starts a new graph editor window
and initializes the data flow
diagram database.

Adds objects to the graph database.
In EDFD, objects can be of four
kinds: processes, data stores or
file objects, and actor objects. In
addition, there are association
objects: data flow between
processes, data flow that results in
a data store, and control flow. We
should also provide the possibility
of having composition of data
values, decomposition of data
values, duplication of data values,
and access and update of data
values.
Delete: Removes objects from
database.
Rename: Changes the name of an object.
Select: Changes the active object.

Add:

the

Color:

Changes colors of objects in a

specific data flow diagram.

Hide: Removes an object and associated
associations from a data flow
diagram. These objects are not
displayed, but are kept in the
database.

Move:

Changes object positions in a

displayed graph.

Load Graph:

Reads the information

from & file which contains
the description of a data flow
diagram, and displays it.

Save Graph:

Writes the data flow

diagram description in a named file
for future retrieval.

The Data Dictionary Editor

Data flow diagrams are documented by a data
dictionary. The data dictionary defines the meaning of
each data flow, and data elements. To support this
activity we provide the following data dictionary editor:

New:
Add Entry:
Delete Entry:

Show DD:

Load DD:
Save DD:

Print DD:

Starts a new data dictionary.
Inserts a new object in the
data dictionary database.
Removes an existing object
from the data dictionary
database.

Displays the data dictionary
on a text window.

Copies a specified data
dictionary into main
storage.

Stores an existing data
dictionary in a file for
future retrieval.

Generates a file with a copy
of an existing data
dictionary and sends that file
to the printer.

The Describing Functions Editor

Ultimately, leaf processes in the data flow
diagrams must be specified directly as operations. The
use of structured English, pseudocode, and/or any other
form of textual documentation is recommended. To
support this activity, we provide the following describing

76

New:
Add Function:
Delete Function:

Show Functions:

Load Functions:

Save Function:

Print Function:

Print All:

Starts a new describing
functions instance.

Inserts a new function
description in the database.
Removes an existing
function from the database.
Displays a specific
function in read-only text
window.

Copies a specified set of
function descriptions into
main storage.

Stores an existing set of
function descriptions in a
file(s) for future retrieval.
Generate a file with a copy
of an existing function
description and sends that
file to the printer.
Generate a file with a copy
of all function
descriptions existing in the
database, sorts them, and
sends that file to the
default system printer,

Reengineering to Increase Maintainability and Enable Reuse

Grady H. Campbell, Jr.

Software Productivity Consortium
2214 Rock Hill Road
Herndon, Virginia 22070

As existing systems are changed to keep up with
changing needs, their structure becomes less coherent and
cohesive making it difficult and increasingly expensive to
make further changes. In addition, as the legacy of
complex automated systems grows while the available
resources for upgrading or replacing them shrink, there is
increasing concern for finding ways to leverage these
systems as a base for new or improved existing systems.
Reengineering is the concept of creating an improved
system by judiciously reorganizing, revising, and extend-
ing an existing system. Reuse is a related concept in which
a set of existing similar systems provide the basis for a
product line of new systems. The Consortium’s Synthesis
methodology integrates reengineering within the frame-
work of a systematic reuse-driven process that promises
more cost-effective development and maintenance of
software and systems in the future.

Motivations for reengineering

Reengineering is commonly viewed as a variant of
system maintenance. Maintenance differs from other
phases of system engineering in that its focus is an
operational system that requires modifications to correct
errors, to support customer needs more effectively, or to
satisfy changed needs. Over its useful lifetime, a system
must be repeatedly modified to stay responsive to the
needs of the customers it is intended to serve, However,
modifying a system in response to changing needs
inevitably undermines the conceptual and structural
integrity and subsequent modifiability of the system as
needs continue to change. Reengineering is distinguished
from other forms of maintenance because it presumes the
need for a redesign of the existing system to make current
and future changes more cost-effective and less error-
prone, It is a type of maintenance because the system is
not rebuilt from scratch but is derived in large part from
the artifacts of the existing system.

This material is based in part upon work funded by the Virginia
Center of Excellence for Software Reuse and Technology Transfer,
sponsored by the Advanced Research Projects Agency under Grant
MDA972-92-1-1018. The content does not necessarily reflect the
position or the policy of the U.S. Government, and no official
endorsement should be inferred

77

Reengineering of a system involves first the analysis
of the existing system, referred to as reverse engineering,
and then reformulation, restructuring, and modification of
the system so that required changes are easier to make
reliably. Reengineering may be needed for several
Feasons:

* Documentation of the system’s requirements, design,
and implementation has either been lost or become
unreliable because of subsequent changes to the im-
plementation. Original needs may not be well under-
stood. This makes it difficult and risky to change the
system because of uncertainties in how parts of the
system interact or why certain functions behave as
they do.

e The needs served by the system have changed
sufficiently that the original design is no longer a
good solution. Aredesign is required for the system to
continue to be acceptable to its users.

* The technology upon which the system is based has
become obsolete. To accommodate improved
technology and better serve user needs, the system
must be substantially redesigned.

In the worst case, a system inay have all of these
problems. Although reengineering can accomplish its
intended purpose of creating a better structured, more
maintainable system in the short run, it may do nothing to
avoid recurrence of the problems that led to the need for
reengineering in the first place. If recurrence of these
problems is not somehow prevented by the reengineering
or avoided in subsequent maintenance of the system, then
after some time reengineering will again be necessary.
Taking a different view of reengineering can reduce
recurrence of these problems.

A framework for reengineering

The driving concemn for reengineering is the ability to
create a system that can be easily changed as customer
needs change. The driving concern for reuse is the need to
field multiple systems or system versions that satisfy
similar yet differing needs, of one or several customers,
without having to repeatedly develop similar software
from scratch. In reality, these two concerns are the same:

the ability to produce similar systems, whether serially or
concurrently, to satisfy similar needs.

Looking more closely at the possible motivations for
reengineering a system reveals scveral alternative
objectives:

* To make changes in the functioning or operational
properties (e.g., reliability, performance) of an
existing system

¢ To make it easier or safer to make current and future
changes in an existing system

e To use existing systems as a foundation for similar
future systems

When reengineering is motivated only by the first of
these objectives, the situation is not particularly different
from that of conventional development and maintenance.
In this case, the objective is most likely addressed
adequately by traditional approaches to maintenance in
which the architecture of a system is upgraded or
particular data structures or algorithms are replaced by
improved alternatives. The other two objectives warrant a
different approach based, the Consortium believes, on the
concept of program families [1, 2}.

When the objective of reengineering is either to make
a system easier to change or to use legacy systems as a
foundation for future systems, Dijkstra’s and Parnas’
concept of orienting development to a family of systems
provides significant opportunities for Ieverage in compar-
ison to a traditional, single-system orientation. Even a
single system inevitably evolves through multiple ver-
sions because of poorly understood requirements or to
accommodate changing requirements or technology. The
Consortium’s approach to reengineering is based on
families of systems, within the framework of the
Synthesis methodology for reuse-driven software pro-
cesses [3]. Reengineering within a Synthesis process
comprises conventional reverse engineering capabilities
for the analysis of existing artifacts combined with an
innovative reuse-driven approach to creating and using
families of systems as a basis for both the development
and maintenance of systems.

A reuse-driven software process

An organization’s primary motivation for instituting a
Synthesis process is that the organization perceives itself
as having expertise in and serving the market for a
cohesive business area. The market has the need for cither
asingle evolving system or several similar systems, which
in either case offers a basis for conceiving a family of
systems.

7%

The essence of our approach is that development
should result in a family of similar systems from which it
is possible to mechanically derive alternative members of
the family for rapid delivery to customers. A family is not
just an abstract conception but a concrete formulation. It
is designed and constructed as the means for systematic
production and modification of systems to satisfy diverse
or changing needs.

A Synthesis process, as depicted in Figure 1, consists
of two major activities: domain engineering and applica-
tion engineering. These activities, described briefly here,
are defined fully and in detail in [4], along with extensive
practical guidance.

Application engineering is concerned entirely with
the needs of a particular customer and with producing a
system that effectively addresses those needs. Applica-
tion engineering prototypically consists of four
subactivities:

* Project management. Planning, monitoring, and
controlling an application engincering project to
respond to customer needs.

e Application modeling. Formalizing customer nceds
and analyzing alternative solutions in terms of a set of
decisions that are sufficient to distinguish a particular
instance of a supported family of systems.

¢ Application production. Producing a system by
means of a prescribed mechanical selection, adapta-
tion, and composition of reusable components, di-
rected by the decisions made in application
modeling.

¢ Delivery and operation support. Installing a system in
its operational environment, training users, assisting
them in effective system operation, and identifying
changes that will make the system a better fit to
customer neceds.

Domain engineering focuses on how to make
application engineering most effective in meeting both
the objectives of the business and the needs of the targeted
market. To achieve this, domain engineering formalizes a
family of systems as a domain by identifying the common
and varying features of the type of systems that the market
requires. Typically, domain engineering supports mult;-
ple application engincering projects. Domain engineering
consists of five subactivities:

* Domain management. The planning, monitoring, and
control of the domain engineering effort. This en-
compasses coordination with application enginecr-
ing project management 2nd concern for all facets of
process management including configuration
management and quality assurance disciplines.

¢ Domain definition. Establishing the scope and extent
of the domain and formalizing the variabilities that
differentiate instances of the targeted family of
systems.

e Product family engineering. Formalizing standard-
ized (adaptable) requirements, design, and imple-
mentation for the family of systems and all associated
deliverable and supporting work products.

* Process enginecring. Formalizing a definition of a
standardized application engincering process and
creating automated support for its performance. The
prototypical description of application engineering
described above is tailored to suit the specific needs
of the domain and associated projects.

e Project support. Assisting application engincering
projects to make effective use of the domain. This in-
cludes validating whether the domain is responsive to
project needs and identifying needed improvements
and changes.

A domain is a formalization of a family of systems and
an associated process for producing members of the
family. A system is represented by a set of artifacts (i.e.,
work products). A system is not just a collection of
implemented (i.c., code) components but includes
associated requirements/design/user documentation, test
materials, management plans, and any other artifacts that
result from development or support the use or
maintenance of the system. Synthesis is concerned with

Business Obiectives:

¥

producing all of these when a system is needed. Creating a
family of systems means creating a representation of each
type of relevant artifact as a family in its own right.
Furthermore, artifacts may be made up of components
which are in turn instances of component families. An
essential objective of a Synthesis process is to create a
material representation of all necessary system, artifact,
and component families.

The essence of a family in this sense is that it represent
a set of ‘similar’ individuals, by which we mean
individual things that are identical relative to a specified
set of traits. A family is formulated as an abstraction that
denotes a set of similar individuals and identifies the
particular traits that determine membership in the family.
Materially representing a family requires expressing not
only the substance of similarity but, equally important,
the details of variation (out of which come distinct
individuals). Variations are additional traits that together
make each of the individual members of a family unique
and correspond to decisions that are necessarily deferred
until a particular family member (i.c., individual system,
artifact, or component) is needed. Production of an
individual then reduces to resolving these deferred
decisions as needed to designate and mechanically derive
the corresponding member of the family.

Methods for creating and using component families
are referred to as metaprogramming {5]. A metaprogram-
ming technique specifies how to create a component
family and subsequently transform it into concrete

Domain Knowledge

Oomain Engineering M4¢—————— |

i
|
|
Application | Feedback
Engineering Process | (Customer and
Support | Project
I Needs)
1
Customer [|
Requirements J—oouuo--—— 1| _ _ __ _ -
Customer — — — ———— ¥ Application Engineering
Key
T3 Activity
Application Product > Product
~— Product flow

—— % Information flow

Figure 1. A Synthesis Process

79

instances. Mechanisms such as C preprocessor constructs,
Ada generics, and form-letter capabilities of word
processing software have proven sufficient for a viable
Synthesis process. Other, special-purpose mechanisms,
which are more complete but experimental, may provide
additional leverage.

Experience with Synthesis

The Synthesis approach, until now emphasizing reuse
with only limited concemn for reengineering, has been
used extensively by several industrial organizations. Two
organizations, in particular, have contributed significant-
ly to understanding Synthesis and how to achieve
cffective reuse:

* Rockwell Command and Control Systems Division.
Rockwell began using Synthesis experimentally in
1990. They have now progressed to the point that
they are evaluating its use in support of a substantial
business area. Their experience is described in [6].

e Boeing/NAVAIR STARS® demonstration project.
Boeing evaluated and selected the Synthesis method-
ology as the basis for its demonstration of megapro-
gramming and reuse [7]. This experience is now
being transferred into trial use of Synthesis by the
Naval Training Systems Command of NAVAIR.

In addition to these two examples, Synthesis is in
experimental use on projects in Martin-Marietta,
Lockheed, and other organizations. Based on this experi-
ence, Synthesis is proving to be a viable and sound
approach for systematic reuse-driven software engineer-
ing. The experience so far in all of these is that a Synthesis
process provides an effective capability for rapidly
building multiple systems or system versions and subse-
quently modifying them as customer needs change. We
believe that Synthesis also provides an effective frame-
work for systematic reengineering as an aid to leveraging
existing systems in producing new or improved software
and systems.

Reengineering within a Synthesis process

An organization institutes a Synthesis process because
it has expertise in a targeted business area and intends to
serve the associated market. As a rule, requisite evidence
of sufficient expertise to justify such a business commit-
ment is that the organization has produced systems for this
market in the past. Such legacy systems are a good initial
source from which to create a domain as the formalization
of a family. For effective use of legacy systems,
reengineering is an integral element of the Synthesis
process.

° STARS is the Software Technology for Adaptable Reliable Systems
program of the Advanced Research Projects Agency.

80

Just as the emphasis in Synthesis is on creating a
family of similar systems, the result of reengineering
within Synthesis should be not just an ‘improved’ variant
of the legacy system(s) but a family of similar systems
from which alternative instances of the family can be
derived. Derivable instances include alternative systems
that are equivalent to an initial legacy system but
improved in some way as well as systems that are useful
bybrids or modifications of initial legacy systems.

Within Synthesis, reengineering is not viewed as a
separate activity. Since a Synthesis process is meant to be
a comprehensive engineering process, many of the
necessary aspects of reengineering are already a part of
the process. Currently, whenever a Synthesis activity
involves the creation of a work product, it accommodates
the analysis of existing systems as one source of the
information in that work product. For example, require-
ments specifications of legacy systems can be a source for
determining how best to express the requirements for the
family as a whole. Similarly, test cases used in regression
testing of those systems can be a source for creating test
cases to be used in testing future systems. Only the use of
reverse engineering capabilities need further elaboration
as integral elements of Synthesis activities. In large part,
this means the enbancement of the product family
engineering activity of domain engineering to describe
and explain the use of such capabilities.

A family of systems can be derived initially from
either a single or several similar legacy systems. Reengi-
neering may be concerned with any and all of the work
products associated with a system. When a system is
modified, changes are rarely limited to code components;
reengincering should facilitate coordinated change across
the entire set of artifacts associated with a system,
including requirements, design, code, documentation,
and test support.

One aspect of a Synthesis process is the design and
implementation of component families. This takes the
form of reengineering when components are available
from legacy systems. Reengineering of legacy compo-
nentsto create a family can start with a bottom-up analys’s
of similarities among existing components. However, in a
Synthesis process, analysis is guided by a top-down
specification of component families based on an orga-
nization’s business objectives. The challenges in creating
a viable family by reengineering are to identify compo-
nents that fit sufficiently within the scope of the
envisioned family and to distinguish essential variations
among identified components (i.e., driven by sound
customer requirements or engineering concerns) from
incidental (and therefore unneeded) variations. The
leverage from this approach to reengineering comes from

recognizing that distinguishable instances can be derived
from the unificd abstraction of a family.

System reengineering as a generalization of
software reengineering

System engineering is concerned with hardware,
software, and manual procedures and the intcractions
among them. Much of the interest in reengineering has
focused on software because of the increasing cost of
maintenance associated with software changes. However,
as defense spending shrinks, the useful life of individual
systems grows longer. To respond to new and changing
neceds, there is a corresponding need and benefit in
reengineering complete systems comprising hardware,
software, and manual procedures. Reengineering a sys-
tem can involve coordinated changes to any of:

* The system architecture, including physical and
informational connections and the number, identity,
and capabilities of the system’s hardware and
software components

* The design and implementations of individual
hardware and softwarec components

* The business/organizational and user processes
within which the hardware/software system operates

Another dimension of reengineering at the system
Jevel, in contrast with the software level, is that the
tradeoff between hardware, software, and manual proce-
dures can be reconsidered. As technology advances, it
becomes easier to move software functions into custom
bardware. Alternatively, moving a hardware function into
software can increase flexibility for modifying it in
response to changing needs. Similarly, as system usage
matures and manual procedures become more standard-
ized, it becomes feasible to implement more of them in
software.

As with software-oriented reengineering, the goal of
system reengineering should not be narrowly to recon-
struct a system to meet current needs but also to facilitate
and reduce the costs of future changes as well. From this
perspective, significant leverage arises from considering
overall system concerns, as well as those related to each
hardware, software, and procedural component of a
system, within a reengineering approach. Furthermore,
the similarity of motivations for reuse and reengineering
justifies a unified approach for systems as well as for
software.

Issues in reengineering

Most of the same issues that make system engincering
a complex task, such as:

81

* Understanding the real requirements for a system so
that cffort is not wasted solving the wrong problem

* Evaluating alternative solutions and making
engineering tradeoffs to attain a proper balance
among system properties such as performance,
reliability, development costs, and operating costs

* Verifying process performance and intermediate
work products and validating the final product to en-
sure that the problem has been solved properly and
correctly

are similarly a concern for reengineering. In addition 10
these common concerns, reengineering raises additional
issues, specifically an extended verification problem and
a deoptimization problem in reverse engineering. These
problems are inherent to reengincering, regardless of
approach.

Whenever a system is constructed, it must be
validated to determine whether it satisfies the customer’s
actual needs. Because in the context of reenginecring an
operational system already exists, it is reasonable to
expect that validation reduces to a problem of verifying
the replacement system as the equivalent of the existing
system. When the replacement system is supposed to have
identical functionality to the current system, this equates
to a total regression test of the replacement system.
However, creating a replacement system with identical
functionality is seldom feasible or necessary; creating
only near-identical functionality is usually sufficient and
less costly. Unfortunately, a divergence from identical
functionality makes regression testing much more diffi-
cult. When, as is often the case because of changed needs,
the replacement system also must differ in certain
functionality from that of the current system, the problem
takes on the characteristics to a greater or lesser degree of
a complete revalidation. For reengineering to be practical,
the effort of not only development but of verification and
validation as well must be significantly reduced as
compared to that of completing the system from scratch.

Reengincering generally requires the reverse
engineering of a system for recovery of missing or
obsolete design information or to establish precise,
as-implemented requirements. Unfortunately, particular-
ly in the case of software, the as-implemented structure is
often an optimized equivalent of the intended design. For
cxample, real-time embedded software usually cntails
responding to asynchronous events in the environment;
logically, this corresponds to an architecture consisting of
multiple concurrent processes. However, to satisfy strin-
gent performance constraints, such an architecture has
traditionally been implemented in a cyclic exccutive in
which the logic of the processes is interleaved in a
nonobvious fashion. Trivial reverse engincering would

not reveal the true logical structure of the software but
instead would describe a much more complex linear
structure. Reverse engineering techniques must be devel-
oped that help discover the original requirements and
design while recognizing that the implementation is
actually an optimization.

Conclusions

The Synthesis methodology for domain-specific
software development offers a comprehensive framework
for a reuse- and reengineering-based approach to revital-
izing existing operational systems and producing new,
more maintainable systems. Issues remain in the specific
methods and technologies of reengineering, reuse-driven
product lines, and process automation. However, based on
extensive trial use by industry and government, the
essential process framework is sound. Further work will
demonstrate the benefits of taking such a product line
perspective whether the motivation is to reduce the costs
of new development or the costs of maintenance and
whether the focus is on software or on systems.

Acknowledgments

RichMcCabe, Steve Wartik, and Roger Williams each
provided helpful comments that greatly improved this
paper.

82

References

[1] E.W. Dijkstra. “Notes on Structured Programming.”
Structured Programming, O.J. Dahl, E.-W. Dijkstra,
and C.A.R. Hoare, Eds. Academic Press, London,
1972, pp. 1-82.

[2] DavidL.Pamas.“Onthe Design and Development of
Program Families.” IEEE Trans. Sofiware Eng.,
SE-2, 1976, pp. 1-9.

(3] Grady Campbell, Stuart Faulk, and David Weiss.
Introduction to Synthesis, INTRO_SYNTHE-
SIS_PROCESS-90019-N. Software Productivity
Consortium, Herndon, Va., 1990.

[4] Software Productivity Consortium. Reuse-Driven
Software Processes Guidebook, SPC-92019-CMC.
Software Productivity Consortium, Herndon, Va.,
1993.

[5] Grady Campbell. “Abstraction-Based Reuse Reposi-
tories.” AIAA Computers in Aerospace VII Confer-
ence, Monterey, Ca., 1989, pp. 368-373.

[6] James O’Connor, Catharine Mansour, Jerry
Turner-Harris, and Grady Campbell. Exploring Sys-
tematic Reuse for Command and Control Systems,
SPC-92020-CMC. Software Productivity Consor-
tium, Herndon, Va., 1993,

[7] B. Freemon. STARS PSA S0I Experience Report,
D495-20154-1. The Boeing Company. 1993.

A Reuse Approach To Computer-Assisted Software Reengineering*

Daniel E. Wilkening
Joseph P. Loyall

TASC
Reading, Massachusetts 01867

Abstract

The United States Air Force’s Wright Laboralory
and TASC are developing an environment for the
reengineering of software from one language to an-
other. Our approach engineers a program in the new
language by reusing portions of the original implemen-
tatton and design. We use reverse engineering lo fa-
cilitate understanding, design recovery, viewing, and
navigating of the subject system. We use computer-
asststed restructuring to aid the engineer in developing
a program using design and implementation informa-
tion recovered from the subject system. We use au-
tomatic translation of low-level program statements lo
free the engineer from the ledium associated with syn-
tactic differences between languages. This paper de-
scribes our reengineering process model, the design of
our reengineering environment, and the current state
of the implementation.

1 Introduction

The reengineering of software from one language
to another is becoming a necessity as Department of
Defense organizations strive to modernize and improve
the maintainability of their systems while avoiding the
excessive costs of new development. Systems thatiave
been in use for years often incur large maintenance
costs [6] for a number of reasons, including:

e Continual maintenance has made the current im-
plementation and original design inconsistent,
made the code harder to understand and error-
prone, and made the documentation out-of-date.

e They are written in languages that, while once
popular, have fallen out of favor. The limited se-
lection of support tools for these languages, the
corresponding expense of these tools, and the
shrinking pool of qualified programmers to main-
tain the software adds to the expense of mainte-
nance.

o They were developed without modern software
engineering practices, resulting in code that, by

*This work is sponsored by the Avionics Directorate of
Wright Laboratory under Contract #: F33615-92-D-1052.

83

Marc J. Pitarys
Kenneth Littlejohn

USAF Wright Laboratory
Wright Patterson AFB, Ohio 45433

today’s standards, lacks structure and is difficult
to understand.

¢ Employee turnover has reduced the amount of un-
derstanding and “intimate” knowledge of the sys-
tem.

TASC, under the auspices of Wright Laboratory, is
currently developing an environment for reengineer-
ing software from one language to another as part of
the Avionics Software Reengineering Technology (AS-
RET) project. We are initially concentrating on the
reengineering of avionics simulation software written
in FORTRAN to Ada, but the environment is designed
so that additional languages can be supported in the
future.

Under the ASRET project, we have performed an
extensive investigation of existing reengineering ind
reverse engineering processes, techniques, and tools
[23]). Based upon this study, we have developed a pro-
cess model that defines reengineering in terms of (non-
destructively) engineering a new program by reusing
the design and implementation of the original pro-
gram. The process model is consistent with well-
accepted reengineering models [4, 5], and improves
on them by dividing automated restructuring from re-
structuring that requires human insight and by defin-
ing restructuring tasks in terms of modern software
engineering practices.

We have designed and are currently implementing
a reengineering tool (RET) that automates portions
of the process model an” incorporates selected tech-
niques from the study. With our system, the engi-
neer non-destructively develops a new Ada program
by reusing parts of the original FORTRAN design
and implementation, as opposed to changing the orig-
inal FORTRAN into Ada. For example, an engineer
can run an automatic packaging routine that extracts
FORTRAN subprograms, translates their declarations
into Ada, and arranges them into packages based upon
their data usage. The engineer can then rearrange the
resulting Ada subprograms interactively. When satis-
fied with the package structure, the engineer can di-
rect the system to automatically translate statements
in the bodies of the subprograms. We are currently
implementing the RET.

Most existing reengineering tools fall into one of
two categories:

e Reverse engineering and redocumentation tools
(8,23, 20] that present different views of the struc-
ture of a program, such as control flow and data
flow graphs, to aid in program understanding and
manual reengineering.

e Other tools [18, 24] support automatic transla-
tion from one language to another or forms of
automated restructuring, such as the removal of
GOTOs. These tools require little human inter-
action but, because of this, provide little support
for design recovery or improvement.

Our approach can be described as computer-assisted
reengineering. It provides automated reverse engineer-
ing, redocumentation, and translation of low-level pro-
gram entities, but also provides a combination of user
interaction and automated analysis to reorganize pro-
gram statements and data into new modules. The
RET will relieve the tedium associated with syntactic
minutia, i.e., differences between the source and target
programming language syntax, and allow the engineer
to concentrate on the more important design and im-
plementation decisions that will make the reengineered
system more maintainable.

The rest of this paper is structured as follows: Sec-
tion 2 introduces our reengineering process model and
compares it with existing reengineering process mod-
els. Section 3 describes the RET design. Section 4
describes the current state of the RET implementa-
tion. Section 5 presents some concluding remarks.

2 The Reuse-Based Reengineering
Process

Our reengineering process model as applied to the
RET domain is illustrated in Figure 1. Steps in the
process label the boxes in the figure and inputs and
outputs for each step label the icons between boxes.
The process model specifies a set of tasks (the steps
of the process) that should be performed and the se-
quence in which they should be performed to reengi-
neer a program in one language, e.g., FORTRAN, to
another language, e.g., Ada. The source and target
languages can be the same if the goal of reengineering
is simply to improve the structure of the program with-
out moving to a different language. The process model
also specifies the information necessary and desirable
to support these tasks. The process model does not
specify how the tasks are to be performed, i.e., they
might be automated (as many are in the RET) or they
might be performed manually.

The first step in the process model is to perform
some preliminary restructuring of the source code of
the original implementation. Preliminary restructur-
ing improves the layout of the source code by remov-
ing unstructured program constructs, such as GOTO
statements, dead code, and implicit types. Prelimi-
nary restructuring is separated from the later restruc-
turing step because it can be completely automated by
commercial tools, and placed first in the process model
because the structured version of the source program
is usually easier to analyze, understand, and restruc-
ture.

After preliminary restructuring is complete, the im-
proved source code is analyzed and representations of
the program are constructed. Some of the representa-
tions, e.g., abstract syntax graphs (ASGs) and sym-
bol tables, are machine-readable representations used
only by automated restructuring and redesign tasks.
Others, e.g., flow graphs and structure charts, aid in
program understanding, redocumentation, and man-
ual restructuring. For manual restructuring, the set
of representations will certainly contain a source code
listing.

The restructuring, redesign, and redocumentalion
steps of the process model are performed multiple
times, each time building upon the results of the previ-
ous pass. A multi-pass approach is necessary because,
ir programs of reasonable size, it is easier and less
error-prone to reengineer a program in stages, verify-
ing the program after each pass. Restrucluring, ie.,
changing the structure of the program without chang-
ing its functionality, should be performed first, possi-
bly in several passes. These passes should perform the
following steps:

e Macro control restructuring - Grouping state-
ments and control structures of the program
into modules, such as procedures, functions, and
packages. This includes recovering modules of
the original program, generating new modules,
and specifying a declaration nesting structure for
modules.

e Macro data restructuring - Grouping of data
items, such as types, variables, and constants, and
associating them with modules created during
macro control restructuring. This includes recov-
ering data groupings of the original program, cre-
ating new groupings, and creating abstract data
types and records.

e Micro control restructuring - Manipulation of
individual control structures. This includes
the translation of individual statements and
functionality-maintaining alterations, such as
code lifting [1].

e Micro data restructuring - Manipulation of indi-
vidual data items. This includes actions such as
translation, changing names, changing types, cre-
ating symbolic constants, and changing the scope
of variables.

Macro control and data restructuring should be per-
formed first to develop a modular structure for the
target system, followed by micro control and data re-
structuring to restructure individual components of
the program.

After restructuring is complete, code in the target
language should be generated and the program should
be tested to ensure that the restructuring did not in-
troduce any errors or undesired functional changes.
The test data of the original program can be used and
the results compared with the results of testing the
original program. In many cases, the test data will
need to be reengineered to work with the reengineered
program. Any differences in the results of testing will

34

G WelA
$-24-84
[e e =
I |
: Restructuring :
l 3@%) i ‘
| Redesian |
: (Later Passes) :
i |
: Redocumentation {
|
Representation New Represaniations I
of Program FoTT T ! of Program :
| f | === i ‘ i
N - - |
Generate Code
tames, bl [s |
(Reverse | ! Engineering) f | roinoenind) !
Enginesring) |] | } |
| o | i
] (| | |
= : i {) |
| Addessed 1 { Beyond the Scope : ! '
oy RET i of the Current | |
! | ASRET Projoct { i |
| | : | Target !
(Structured | : H : :
Source Code : Lo ——— —d N W, —d
. e e s e e J |l' —————————————————————————————————— a
o ———— ——te e K T !
| i Test !
Restructurin | : Sute :
ko |

;) |
| | : Test . O Testing :
} me } i Results {]
| wo Lo {
e N .

! ! | Coverage
| P information |
i Source | | J !
1 Code i | - !
L e e e e e e o e e e e i e e e 4 { Test !
D e e e — d Results !
| —— V= =5
| Supponted by Commercl ok, Bu Not {
| Provided in the RET Configuration Management i
e e e e e e e e e e et e e e o e e e e o o e e e e o e 2 o e e e e o e o S i e e o o -

Figure 1: The reengineering process model.

indicate the introduction of an unexpected functional
change during restructuring. Coverage analysis should
be performed during the testing of the target code be-
cause restructuring could have introduced or altered
control and data characteristics of the program. When
an error in the target program is indicated, the pro-
gram can be corrected by amending the target code
directly or by restructuring the representations and
regenerating the target code.

Once the program has been restructured and a func-
tionally equivalent program in the target language
has been created, the engineer can perform additional
restructuring and redesign actions on the program.
These steps use the same set of actions, i.e., macro

control, macro data, micro control, and micro data,
but have different goals. Further restructuring is per-
formed to further improve the structure of the pro-
gram. Redesign has the goal of changing the func-
tionality of the program, e.g., to correct design flaws
or improve the design. If the target program code
was edited to correct errors indicated during testing,
the code is analyzed to generate representations before
subsequent restructuring and redesign is performed.

Redocumentation is performed simultaneously with
the restructuring and redesign steps, e.g.,

o The generated representations can be saved and
serve as documentation of the program structure
and design.

85

o The engineer can add comments and annotations
during restructuring and redesign as he gains in-
sights about the code or design.

The RET reengineering process model includes
modern software development processes, such as con-
tinuous testing, iterative restructuring and redesign,
and configuration management. The process model is
a spectalization of the Chikofsky-Cross process model
[5, 8]. The entire Chikofsky-Cross model is repre-
sented, althcugh there are the following changes:

¢ Inclusion of program management extensions to
the process model [4], such as configuration man-
ageme=nt and testing.

¢ Separation of easily automated steps, such as pre-
liminary restructuring, so they can be addressed
by commercial tools.

e Decomposition of Chikofsky-Cross steps, such as
restructuring being decomposed into macro con-
tro!, macro data, micro control, and micro data
restructuring.

o Explicit introduction of the iteration steps that
are implicit in the Chikofsky-Cross process.

3 RET Design Overview

The Rzengineering Tool (RET) assists the software
engineer in understanding and improving the structure
of an avionics software support system while translat-
ing its source code from the source programming fan-
guage (FORTRAN) to the target programming lan-
guage (Ada).

The RET comprises two distinct logical parts called
the Left-Hand Side (LHS) and the Right-Hand Side
(RHS). The LHS provides views of the original FOR-
TRAN program, or subject system. The RHS provides
views of the Ada program being developeg, i.e., the
target system. The LHS allows the engineer to navi-
gate and view aspects of the subject system, but does
not support changing the subject system. The RHS
supports constructing, refining, viewing, and navigat-
ing the target system. The engineer constructs a ba-
sic structure for the RHS (macro restructuring) using
information extracted from the LHS. Once the basic
structure of the RHS is established, the engineer re-
{i{v}z{eg the target system (micro restructuring) on the

Semi-automated RET comnponents support con-
struction activities; they suggest larg-scale reorgani-
zations of the subject system and populate the RHS
with the basic structure of the target system. The
components that support refinement allow the engi-
neer to apply knowledge, which 1s beyond the RET,
and human insight, which is lacking in the semi-
automated support provided by the RET, to modify
and improve the RHS representations.

3.1 Representations

The RET provides two primary internal representa-
tions (PIRs): the Abstract Syntax Graph (ASG) and

the Symbol Table (ST). Secondary internal represen-
tations (SIRs) are derived from the PIRs. The SIRs
are the underlying data structures for the views pre-
sented to the engineer. The RET provides six views
for each side:

e Source Code Listing (SCL) - displays the FOR-
TRAN or Ada source code

e Declaration Diagram (DED) - displays the pro-
gram declaration nesting structure

e Call Diagram (CD) - displays the subprogram
calling structure

e Data Flow Diagram (DFD) - displays how data
flows through the program

e Hypertext Annotlations (HA) - displays trees and
networks of textual commentary provided by the
engineer

e Data Dictionary (DD) - displays various cross ref-
erences

3.2 The RET Architecture

Figure 2 shows the RET architecture. It depicts
the organization of major RET ccmponents, and in-
dicates the data flow relationships among them. The
Preliminary Restruciurer (PR) performs control flow
restructuring. The Source Code Processor (SCP) gen-
erates the LHS PIRs.

The engineer constructs the RHS PIRs using the
Packager (PACK) and Transformer (TRAN). The
Representation Generator (RG) creates the SIRs on
both sides from the PIRs. The User Interface and
Display (UID) creates the corresponding views, and
provides the means by which the engineer interacts
with the views on both sides and alters the views on
the RHS. The Transformer implements the changes
by transforming the RHS PIRs, and the Representa-
tion Generator propagates the changes to the RHS
SIRs. The User Interface and Display refreshes the
RHS views in response to the changes.

The File System Interface (FSI) manages external
persistent data and the Object Base (OB) manages
nternal data.

The views, PIRs, and SIRs are thus interdependent,
but the engineer need not be aware that the PIRs and
SIRs exist. Any changes that the engineer makes to
the target system through the views provided by the
User Interface and Display may appear to affect the
views exclusively. The components are described in
more detail below.

Preliminary Restructurer. The Preliminary Re-
structurer (PR) restructures the control flow of
the original FORTRAN source code by eliminating
branches into or out of loops and decisions It elim-
inates all GOTO statements, leaving only the pure
structured programming constructs: sequence, selec-
tion, and iteration. We refer to this specialized form

36

G- 15408
* User inputs 10-28 93
[) * User
————————————
uIp
P DE——
. 1]
« Prompts « User e User * User * User * View or Session
Input Input Input Input identifier
* Response ¢ User inputa * Refrash + Export Command
* User Options Command + Storalcad
Command
- « Transform * Refresh
Structured Request Request
PR FORTRAN scp PACK TRAN RG
Source
Code
s LHS o LHS * AHS * Trane- * RHS * LHS * LKS o LHS
PiRe PiRe PiRs formation PiRs and and and
Rules RHS RHS RHS
« LHS PiRs SiRs S$iRs
and o« HA
RNS SR
PiRe
Origiral
FORTRAN
Source
Code o8

Figure 2: The RET architecture.

of restructuring as control flow restructuring to distin-
suish it from the more general concept of restructuring
escribed in Section 2.

The Preliminary Restructurer is applied as a pre-
processing step and the RET assumes, but does not
require, that the FORTRAN source code has already
undergone control flow restructuring. There are two
reasons for this design. The first is that the subject
system is not always poorly structured with respect
to control flow, so the step should be optional. The
second reason is that the design allows any control flow
restructuring product to be used without integrating
it into the RET.

Source Code Processor. The Source Code Pro-
cessor (SCP) reads the FORTRAN source code, per-
forms analyses, and generates the PIRs. The PIRs
represent the structure of the program, semantic in-
formation about program components, and data flow
information.

The Source Code Processor will also detect ap-
parent undefined-reference (U-R) data flow anomalies
(DFA) on the LHS by static analysis of the LHS. A U-
R/DFA is an occurrence of a variable binding which is
referenced before it is assigned a value. An instance of
this involving some local VAX/FORTRAN variable in
a subprogram is called an apparent U-R/DFA because
it is not necessarily a data flow anomaly, even though
it may be detected as such by the static analysis. The
(VAX/FORTRAN) variable enjoys static extent R2I],
and may have been assigned a value on a prior call of
the subprogram. Ada variables have automatic extent
[21], so it 1s important for the RET to identify these
situations and promote the variables to an appropriate
enclosing scope.

Representation Generator. The Representation
Generator (RG) creates the LHS and RHS SIRs. The

Representation Generator generates each SIR when its
corresponding view is requested by the engineer. Once
the RHS SIRs are created, they may become inconsis-
tent with the PIRs as the latter are restructured. The
engineer can request a refresh, which regenerates the
SIRs from the current PIRs or an environment vari-
able can be set so that SIRs are refreshed periodically.

The Representation Generator creates SIRs for the
DFD, CD, and DED views. The Representation Gen-
erator produces the DFD according to a method for
creating Hierarchical Data Flow Diagrams given in [2].
It generates the CD in a straightforward manner from
information in the ST. The DED is a canonical orga-
nization of information in the ST.

The Representation Generator does not create SIRs
for the SRC or HA views. The SRC view is produced
by the DIALECT [12] printer. Hypertext annotations
are provided by the engineer during use of the RET.
The RET allows the engineer to enter textual com-
ments, i.e., annolations, describing insights, recovered
design information, or any other information. The en-
gineer can associate each annotation with any part
of the views, PIRs, or SIRs in a hypertext network.
The HA is maintained by the Representation Gener-
ator and can be incorporated as in-line comments or
notes during code generation or redocumentation by
the File System Interface.

Restructurer. The Restructurer (SRES) component
comprises the Packager (PACK) and the Transformer
(TRAN). The Restructurer helps the engineer develop
an Ada program on the RHS by transforming and
reusing components of the original FORTRAN pro-
gram from the LHS. The Packager assists the engineer
with macro restructuring. The Transformer supports
both macro and micro restructuring.

All restructuring activities performed by the engi-
neer using the Restructurer manipulate the PIRs ex-

87

clusively, by initially creating RHS symbol tables and
abstract syntax graphs and then by populating and
transforming them. The information is entered by the
engineer through the views and, once the PIRs have
been transformed, the SIRs are regenerated and the
views are refreshed. Thus, the underlying PIRs and
SIRs are hidden from the engineer and it appears as
if the views are being transformed directly.

Packager. The Packager constructs or initializes the
RHS ASG. It recognizes subprogram, object, and type
entities from the LHS PIR and requests the Trans-
former to transform them from the LHS domain model
to the RHS domain model, and to insert them into the
RHS ASG. (A domain model lL3] is a kind of objzct-
based database schema.? The Packager builds an Ada
ASG on the RHS and calls upon REFINE/Ada [15, 16]
for semantic analysis.

The Packager groups the entities into Ada pack-
ages on the RHS by applying an interactive clustering
technique based upon (7, 9, 10, 19). The clustering
technique provides only a first approximation to a rea-
sonable Ada package structure. We expect that the
engineer will need to interactively refine the generated

grouping.

Transformer. The Transformer assists the Pack-
ager with both macro and micro restructuring. For
macro restructuring, the Transformer automatically
transforms low-level entities from the FORTRAN do-
main model to the Ada domain model by applying
rules that insert subgraphs and other information into
the Ada PIRs corresponding to subgraphs and infor-
mation in the FORTRAN PIRs. For micro restruc-
turing, the Transformer implements changes to low-
level Ada entities by allowing the engineer to select a
portion of the Ada program under gevelopment and
change it by applying a rule or by editing, deleting, or
inserting text.

The engineer may indirectly provide input to the
Transformer by selecting portions of a view and then
interacting with the view to change its SIR. The Trans-
former implements the change by transforming corre-
sponding portions of the PIRs while the Representa-
tion Generator propagates the results of the transfor-
mation to the other SIRs. The User Interface and
Display updates the views so that it may appear to
the engineer that the change was made directly to the
selected view.

User Interface and Display, File System Inter-
face, Object Base. The RET provides two external
interfaces. The engineer communicates with the RET
throngh the User Interface and Display (UID). The
UID shows the views, prompts the engineer for input,
receives commands and selections from the engineer,
and delivers them to the other components.

The File System Interface (FSI) is responsible for
the storage and retrieval of persistent data. The FSI
inputs the (FORTRAN) source code of the subject sys-
tem, reads and writes intermediate data, and outputs
the (Ada) source code for the target system and other

88

subject and target system views. The intermediate
data is stored in the Object Base (OB).

4 Implementation
4.1 RET Development Environment

We are developing the RET on a SPARCstation
10/40 under Sun OS 4.1.3. The RET utilizes several
commercial tools, including the following tools by Rea-
soning Systems:

e The REFINE language [14] - a high-level lan-
guage that includes object-oriented, rule-based,
and iterative characteristics. It includes an ob-
ject database and an environment that facilitates
interactive development and testing.

e DIALECT [12] - A tool for building parsers and
code generators.

¢ INTERVISTA (13] - A tool for building user in-
terfaces, including mouse-sensitive windows and
menus.

o REFINE/FORTRAN [17] - A tool that parses and
analyzes FORTRAN code. It includes a printer
for FORTRAN that generates source code from a
symbol table and abstract syntax graph.

e REFINE/Ada [16] - A tool that parses and ana-
lyzes Ada code. It includes a printer for Ada that
generates source code from a symbol table and
abstract syntax graph.

e A number of unsupported systems that can be
used in the RET development, such as hypertext
and fast dump/load facilities.

4.2 Implementation of RET Components

We are implementing the components of the RET
as follows:

e Preliminary Restructurer ~ The SPAG com-
ponent of the plusFORT product [11] will provide
the entire Preliminary Restructurer.

e Source Code Processor - REFINE/FOR-
TRAN provides most of the functionahty for
the Source Code Processor component of the
RET. We have made slight extensions to RE-
FINE/FORTRAN to gather and summarize infor-
mation needed by other RET components. RE-
FINE/FORTRAN also provides most of the LHS
PIRs.

¢ Representation Generator - We are imple-
menting the RG component in the REFINE lan-
guage, using the REFINE Object Base for the
SIR structures. REFINE/FORTRAN and RE-
FINE/Ada provide the Source Code Listing SIRs
for the LHS and RHS, respectively.

o Restructurer - \We are developing the RES com-
ponent using the REFINE language. The Re-
structurer will extract information from the LHS
PIRs either interactively or automatically, and
apply REFINE transformations to generate the
RHS PIRs.

o User Interface and Display - We are develop-
ing the UID using INTERVISTA. INTERVISTA
provides support for developing mouse-sensitive
windows, menus, and diagrams. It is based upon
Allegro Common Windows.

¢ File System Interface - REFINE provides fa-
cilities for saving the state of a session and for
storing some of the representations to disk. We
are developing additional code to save the SIRs
to disk.

e Object Base — The object base is provided by
the REFINE Object Base.

4.3 Status of the RET Implementation

We have developed and tested most of the Source
Code Processor, Representation Generator, and File
System Interface components. We are developing the
associated User Interface and Display facilities along
with each component. We have just begun to im-
plement the Restructurer component. We expect to
complete the first prototype/demonstraiion system by
mid-Spring 1994, after which development will con-
tinue.

5 Conclusions

We discovered during a literature and tool survey
that most existing reengineering tools are limited to
reverse engineering and redocumentation. Language
translation tools have been around for some time, but
they are not adequate for reengineering [22]. Few vools
provide automated help with restructuring and for-
ward engineering, although techniques for these exist.

" We have developed a reengineering process model
that:

¢ Is consistent with previous reengineering process
models

¢ Considers software life cycle issues such as config-
uration management and testing

o Separates completely automated restructuring
?i.e., control flow restructuring) that can be per-
ormed as preprocessing from restructuring and
redesign that requires human intervention and in-
put

¢ Promotes structured programming techniques,
i.e., macro restructuring preceding micro restruc-
turing

e Promotes development and testing of a function-
ally equivalent program before undertaking de-
sign changes that might introduce errors, i.e., re-
structuring preceding redesign.

We are developing a reengincering tool (RET) that
implements parts of the process model. The RET
will assist in reengineering avionics simulation support
software written in FORTRAN to Ada. The RET em-
phasizes increasing the maintainability of the software,
preserving its functionahty, and improving the struc-
ture of the code. The RET does not concentrate on
configuration management, testing, or preliminary re-
structuring because there are many commercial tools
that can be used in conjunction with the RET to pro-
vide those capabilities.

The RET will relieve the engineer from syntacti-
cal minutia, i.e., differences between the source and
target programming language syntax, that divert at-
tention from the more important design and imple-
mentation decisions requiring human judgement. We
believe that by concentrating on tasks that are well-
suited to automated support, the RET will reduce the
resources needed to reengineer avionics support soft-
ware and will help the human engineer produce a more
maintainable system.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers
- Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1988.

[2] P. Benedusi, A. Cimitile, and U. De Carlini. A re-
verse engineering methodology to reconstruct hi-
erarchical data flow diagrams for software main-
tenance. In Proceedings of the Conference on
Software Maintenance, pages 180-189, Miami,
Florida, October 1989.

(3] S. Burson, G.B. Kotik, and L.Z. Markosian. A
program transformation approach to automat-
ing software re-engineering. In Proceedings of
the IEEE Computer Sociely’s International Soft-

warc and Applications Conference, pages 314-
322, 1990.

[4] E.J. Byrne and D.A. Gustafson. A formal process
model for software re-engineering: The analysis
phase. Technical Report TR-CS-91-12, Kansas
State University, November 12 1991.

[5) E.J. Chikofsky and J.H. Cross II. Reverse engi-
neering and design recovery: A taxonomy. IEEF
Software, pages 13-17, January 1990.

[6] T.A. Corbi. Program understanding: Challenge
for the 1990s. /BM Systems Journal, 28(2):294-
306, 1989.

[7] D. Hutchens and V.R. Basili. System struc-
ture analysis: Clustering with data bindings.
IEEE Transactions on Software Engineering, SE-
11(8):749-757, August 1985.

(8] J.H. Cross II, E.J. Chikofsky, and C.H. May Jr.

Reverse engineering. Advances in Compulers,
35:199-254, 1992.

89

[9] H.A. Muller, M.A. Orgun, S.R. Tilley, and J.S.
Uhl. A reverse engineering approach to subsys-
tem structure identification. Submitted for pub-
lication.

(10] H.A. Muller and J.S. Uhl. Composing subsystem
structures using (K,2)-partite graphs. In Proceed-
ings of the Conference on Software Mainlenance,
San Diego, California, November 26-29 1990.

(11] Polyhedron Software, Oxfordshire, UK. plus-
FORT Reference Manual, Revision B. U.S. Dis-
tributor: OTG Systems, Inc., Clifford, PA.

[12] Reasoning Systems, Inc., Palo Alto, CA. DI-
ALECT User’s Guide.

{13] Reasoning Systems, Inc., Palo Alto, CA. INTER-
VISTA User's Guide.

[14] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE User’s Guide.

[15] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE/Ada Programmer’s Guide.

[16] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE/Ada User’s Guide.

(17] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE/FORTRAN User’s Guide.

(18] J.M. Scandura. Cognitive approach to systems
engineering and re-engineering: Integrating new
desigus with old systems. Sofftware Maintenance:
Research and Practice, 2:145-156, 1990.

[19] R.W. Schwanke. An intelligent tool for re-
engineering software modularity. In Proceedings
of the 18th International Conference on Software
Enggz;ering, pages 83-92, Austin, Texas, May 13-
17 1991.

[20] C. Sittenauer, M. Olsem, and D. Murdock. Re-
engineering tools report. Technical report, Soft-
ware Technology Support Center (STSC), Hill
Air Force Base, Utah, July 15 1992.

[21] William M. Waite and Gerhard Goos. Compiler
Construction. Springer-Verlag, New York, 1984.

[22] Richard C. Waters. Program translation via ab-
straction and reimplementation. /[EEE Transac-
tions on Software Reengineering, SE-14(8):1207-
1228, August 1988.

[23] D.E. Wilkening, R.J. Kreutzfeld, and J.P. Loyall.
Avionics software re-engineering technology (AS-
RET) software re—engineerini study report. Tech-
nical Report TR-6661-1, TASC, Reading, Mas-
sachusetts, February 17 1993.

[24] Xinotech Research, Inc., Minneapolis, Minnesota.
The Design of the Xinotech Language Translator
- Jovial to Ada, second revision edition. Xinotech
Technical report XRI 8911.04.

20

Formal Specification and Software Reuse in Reengineering
Embedded Real-Time Systems

Farnam Jahanian
Department of EECS
University of Michigan
Ann Arbor, MI 48109-2122
e-mail: farnam@eecs.umich.edu

Abstract

With the increasing reliance on computer control
of embedded real-time systems in diverse civilian and
military applications such as avionics, air-traffic con-
trol, patient monitoring, and automated manufactur-
ing, the problem of re-engineering an aging software
base will confront a growing number of organizations
in this decade. Facing this challenge is particularly
important because of the economic and security ram-
ifications of maintaining complex embedded systems
that operate under increasingly strict dependability
and timing requirements. After discussing some of
the trends in the field of computing that have di-
rectly influenced the changing requirements on the
existing systems, this paper presents a re-engineering
approach based on the formal specification of a sys-
tem through decomposition into a collection of ser-
vices with well-defined interfaces. An approach based
on formal specification nicely complements the devel-
opment of a toolkit of common services that can be
reused in re-engineering multiple embedded systems.
Precise specification of re-engineered components also
supports automated tools for testing, fault-injection,
verification and run-time monitoring.

1 Introduction

Complex embedded real-time systems are being
used in diverse applications such as avionics, air-traffic
control, automated manufacturing, and patient mon-
itoring. With the increasing reliance on digital com-
puters in monitoring and controlling embedded real-
time systems, both industry and government organi-
zations are faced with the problem of extending and
modifying an “aging software” base. Many software

systems that are pivotal to the operations of commer-
cial and defense systems are becoming more and more
costly to operate {7]. Each change to the software re-
sults in one or more patches that contribute to a sys-
tem that is often less efficient, less reliable, and more
difficult to maintain. Consequently, re-engineering ex-
isting software is a significant growing challenge that
confronts us in the 1990s and beyond.

Re-engineering, also called renovation or reclama-
tion in tlie literature [1), refers to the recovery of de-
sign information and its uses to alter or reconstitute
the existing system to improve its quality or to meet
new requirements. The increasing importance of re-
engineering has several economic, security and tech-
nological ramifications:

e The economic competitive in a global market is
directly linked to the thousands of aging infor-
mation system and engineering applications that
are being used across large and small companies.

o Embedded real-time systems often have strict de-
pendability and timing requirements. They often
control and monitor defense systems as well as
commercial safety-critical operations. Interrup-
tions in a timely delivery of services may have
significant national security or economic implica-
tions.

e The existing software base is the infrastructure
on which future technology is built. Achieving a
technological edge in the next decade is depen-
dent on the strength of this infrastructure.

This position paper argues that the decomposition
of a system into a collection of services (or building
blocks) with precise specifications and well-defined in-

al

terfaces may be the key to re-engineering complex em-
bedded systems. ! The paper further advocates a
toolkit approach to re-engineering of these systems:
By identifying a collection of distributed services com-
mon to a large class of embedded real-time systems,
these building blocks can be reused to reduce the com-
plexity and the cost of modifying and extending large
systems. We illustrate one such toolkit that was de-
veloped at IBM Research to support distributed fault-
tolerant systems. Finally, the paper argues that an
approach based on formal specification and precise
interface definitions also facilitates the development
of automated tools that aid in demonstrating that a
re-engineered system meets the new requirements. A
brief discussion of a suite of tools, currently under de-
velopment, for testing,fault-injections, verification and
run-time monitoring of embedded real-time systems is
also presented.

2 Distinguishing Characteristics of Em-
bedded Real-Time Systems

Embedded real-time systems often interact with the
external environment and operate under strict timing
and dependability requirements. As shown in Figure
1, an embedded real-time system can be decomposed
into three components: the controlled object, the com-
puter system, and the operator. The controlled ob-
ject and the operator are the environment of the sys-
tem. The interface between the real-time computer
system and the controlled object is called the instru-
mentation interface, consisting of sensors and actua-
tors. The interface between the computer system and
the operator is called the man-machine (or the oper-
ator) interface. The operator monitors and controls
the object via this interface to the computer system.
Embedded real-time systems are in essence responsive:
they often interact with the environment by “reacting
to stimuli of external events and producing results,
within specified timing constraints” [3]. To guarantee
this responsiveness, the system must be able to tol-
erate failures. Hence, a fundamental requirement of
fault-tolerant real-time systems is that they provide
the expected service in a timely manner even in the
presence of faults.

The above description depicts a real-time computer
system as a single entity. With the introduction of in-
expensive microprocessors and dense memories in re-

' A more detailed version of this paper can be found in

[4].

92

cent years, a rapid shift from large centralized com-
puter systems to clusters of closely-coupled nodes has
taken place. In fact, most real-time computer control
systems are now distributed (Figure 2) in the sense
that they consist of a set of nodes interconnected by a
real-time communication subsystem. Conceptually, a
real-time computer system is providing a set of well-
defined services to the environment. These services
must be made fault-tolerant to meet the availability
and reliability requirements on the entire system.

In summary, re-engineering embedded software is
complicated by three characteristics of real-time sys-
tems:

1. Timing Constraints: The system must provide
timely service even in the presence of faults. The
correctness of a computation is dependent not
only on the correctness of its results, but also on
meeting stringent timing requirements.

2. Dependability Requtrements: Embedded real-
time systems often have strict availability and
reliability requirements. Failure of a system may
result in catastrophic loss of life or property.

3. Interaction with Environmeni: A real-time com-
puter system reacts to stimuli from the external
environment. The interaction with the external
world makes the goal of meeting strict timing and
dependability requirements more difficult.

3 Changing Requirements and the Search
for a Silver Bullet

The ever-changing requirements on the existing sys-
tems is often mentioned as a source of continuing mod-
ifications and extensions to a software system. These
changes are sometimes needed because the original de-
sign was not robust enough or because new software
bugs (or features) are discovered. However, as sug-
gested in the previous paragraph, several technological
trends in the computing field have contributed to the
changing requirements on our existing software-based
applications. These trends include:

o Shift from centralized systems to distributed
computing,

o Shift from monolithic operating systems to mi-
crokernels,

R
Real-Time
* Computer System
Instrumentation ' : | Man-Machine
Interface —— L 2 (2

Figure 1: An Embedded Real-Time System.

Redundant Communication Subsystem

Y

Replicated Server 1
Figure 2: A Distributed Real-Time Computer System.

Replicated Server 2

Replicated Server 3

e Shift from proprietary hardware/software com-
ponents to inter-operability of systems.

o Significant improvement in cost/performance ra-
tio for processors, memory, and storage devices,
and

o Shift from human-control to computer-control of
embedded systems.

These dramatic trends in the computing filed have
contributed significantly to the increasing changes of
the requirements on the existing embedded systems.
Hence, we are faced with an aging software base
that must be modified, extended, or in some cases
completely redesigned and re-implemented. However,
there is no silver bullet. The cost of re-engineering
is often very high and the existing tools are in most
cases very primitive: tools for extracting syntactic or
structural information are available where as tools for
capturing semantic information are rare.

Re-engineering a complex embedded system be-
comes manageable only by a careful decomposition of
the system into a collection of services with precise

93

interfaces that are preserved from one version to an-
other. Decomposition of a system into a collection of
formally specified services also lends itself to the reuse
of software in different systems: by building toolkits of
services that capture common functions in a range of
embedded real-time systems, one can reduce the cost
of re-engineering through the reuse of software. We
elaborate on this point in the following sections.

4 Precise Specification and Well-Defined
Interfaces

A key to re-engineering complex embedded software
systems is the capturing of important attributes of a
system at an appropriate level of abstraction. This
includes capturing both the requirements specification
and the key design attributes of the system. At one ex-
treme, an existing implementation itself can be viewed
as a concrete specification of the system. However,
this information is far too detailed and it exposes much
of the implementation that may not carry over to the
re-engineered system. At the other extreme, an infor-
mal (English) requirements specification of the system
can be viewed as a high-level description. The prob-

lem here is the informality of the specification and the
lack of precise semantics. Hence, spccification tools
are needed that aid the software engineer in capturing
system requirements and key features of an existing
design.

An issue related to the specification of requirements
and design attributes is the precise definition of inter-
nal and external interfaces for a system that is being
re-engineered. A complete or a partial re-engineering
of a system is feasible if we view an embedded sys-
tem as a collection of building blocks (or services)
with well-defined external interfaces. Each service, in
turn, may be implemented using other services. This
model naturally supports composition of more prim-
itive building blocks so that more complex services
are constructed. This is the same philosophy that
guided the initial design of the new generation of the
air-traffic control system [2]. Localizing the modifica-
tions or extensions becomes manageable if there is a
precise functional specification of each building block
with well-defined interfaces. As discussed in the sec-
tion 6, a precise and formal specification is also helpful
in supporting automated tools for testing, verification
and run-time monitoring of a re-engineered system.

5 Reuse of Building Blocks in Re-
Engineering Embedded Systems

The reuse of software can provide additional lever-
age in re-engineering embedded systems. Since we will
be faced with an increasing number of complex sys-
tems that will require partial or complete redesign and
re-implemented, it makes sense to develop a collection
of building blocks that are reused in different systems.
By capturing some of the changing requirements that
are common to a large collection embedded real-time
systems, one can develop a set of services with well-
defined interfaces that are used in re-engineering large
systems. One can view this approach as a toolkit ap-
proach to re-engineering.

As mentioned earlier, the shift toward distributed
computing and the emphasis on open systems are
among the most important factors contributing to
the changing requirements on the existing software
base. Hence, a collection of distributed fault-tolerant
services that can be used as building blocks in re-
engineering real-time systems may prove to be a logi-
cal first step. In the following subsection, we introduce
a testbed that was built in IBM Research for devel-
oping fault-tolerant servers(6]. A new version of this

architecture specifically designed for real-time systems
is currently under development at the University of
Michigan.

5.1 Toolkit of Services: An Example

The testbed consists of a collection of protocols
for managing replicated and distributed resources in
a system. It consists of six software layers, each ex-
porting a well-defined interface to the other layers or
to applications that are built on top of the testbed.
Figure 3 illustrates the software layers in the testbed.
Each software layer, referred to as a service, supports
one or more protocols. A brief description of each
service layer follows:

o mullicast communication service: provides a reli-
able datagram communication service for sending
a message to a collection of destinations. This
service allows the exploitation of available com-
munication protocols (e.g., Netbios vs. UDP)
and possible hardware support (e.g., hardware
broadcast facility) on a given system without ex-
posing the implementation to the higher layer
services.

o processor membership and monitoring service:
provides a consistent view of the operational sta-
tus of a group of processors in the presence of
processor/process failures/joins and communica-
tion failures. Three membership protocols with
varying degrees of consistency in the views of the
members are supported.

o clock synchronization service: provides a bound
on the deviation between logical clocks on pro-
cessors in the presence of hardware clock drifts
and failures.

o reliable naming service: provides a reliable ser-
vice mapping the name of an object to a list of
processors in the system. This layer supports
multiple namespaces.

o distributed cache service: pro-
vides shared/exclusive access to remote objects
with local caching. This layer supports multiple
coherency protocols including cache invalidation
and write-through policies.

o replication service: provides a mechanism for
maintaining multiple copies of objects in a clus-

94

ter. This layer supports several replication proto-
cols with different consistency semantics for up-
dating replicas.

o distributed synchronization service: provides
fault-tolerant and scalable synchronization pro-
tocols for serializing access to shared/exclusive
resources. The distributed synchronization ser-
vice can recover from the failure of a lock
holder/coordinator and communication failures.

o service failure detector: provides notifica-
tion/query service for monitoring status changes
of a collection of subsystems grouped together as
a server. A status change to a group can occur
because of a subsystemn failure or an update to
an application-defined status field.

The above software services are the building blocks
from which much larger systems can be developed.
These building blocks can be used to replace partially
or completely a system component that is being re-
engineered. The objective is to develop sufficiently
general building blocks once and to reuse them in ex-
tending and modifying existing software systems.

6 Testing, Verification, and Monitoring
Tools

One can view the re-engineering of existing soft-
ware as a magic Irick. The existing system and the
new requirements are fed into this complicated pro-
cess, and the output is a new system that meets these
requirements. However, ensuring that the new sys-
tem meets the imposed requirements is an important
problem that must be addressed. Embedded real-time
systems have strict timing and dependability require-
ments. Rigorous methods must be applied to demon-
strate that the system meets these constraints.

Decomposition of a system into a set of services
with precise specifications and clean interfaces pro-
vides an advantage in achieving this. We advocate
a three-way approach in demonstrating that a re-
engineered system meets its specification:

1. Testing and faull-injection methods
2. Formal verification methods

3. Run-time monitoring techniques

a5

Testing and fault-injection techniques exercise nu-
merous execution paths in the new system to de-
tect design and implementation faults. Fault-injection
techniques are used to test the fault-tolerance capa-
bilities of the new protocols and the robustness of
the system with respect to failures. Formal verifica-
tion techniques are effective in proving the correctness
of an implementation with respect to a specification.
These techniques wili be effective in ensuring the cor-
rectness of certain critical tasks in a system. Formal
verification complements testing and fault-injection by
demonstrating that critical operations, for example,
meet certain safety assertions. Testing and formal ver-
ification techniques may not guarantee against viola-
tion of design assumptions and unpredictable behav-
ior of the external environment. Hence, monitoring
of a system is necessary to detect violation of safety
properties and design assumptions at run-time[5, 8].
It should be noted that a formal specification of a
system and the interfaces of its building blocks are
important for developing automated tools for testing,
verification, and monitoring. We are currently inves-
tigating a collection of automated tools for testing,
fault-injection, verification and monitoring that aid a
software engineer in modifying and extending existing
software.

7 Conclusion

Re-engineering embedded real-time systems is an
important challenge that confronts us in the com-
ing decade. With the increasing reliance on digi-
tal computers for monitoring and controlling embed-
ded systems, the problem of modifying and extend-
ing an existing software base that meets new require-
ments is a key issue. The changing requirements on
the existing systems have been influenced by several
trends in the computing field including the shift to dis-
tributed computing, the need for inter-operability of
hardware/software coinponents, and the exploitation
microkernel based O.S. Strict timing and dependabil-
ity requirements introduce additional complexity in
the re-engineering of embedded real-time systems.

This paper advocated that the decomposition of a
system into a collection of services with precise spec-
ification and well-defined interfaces is crucial in re-
ducing the complexity of re-engineering large systems.
Furthermore, by developing a collection of building
blocks (or services) that can be reused in different
systems, the cost of extending and modifying exist-
ing systems may become more acceptable. However,

Replication | Cache

Service Service

Service

Failure

Detector

Fault-Tolerant

Synchronization

Service

Reliable Naming Service

Processor Membership & Monitoring

Multicast Communication Service

Clock Sync
Service

Figure 3: The Software Layers of the Testbed.

these building blocks must contain a common collec-
tion of services that may be needed when addressing
the changing requirements of a large subset of em-

bedded real-time systems.

Finally, this approach is

amenable to the development of a collection of tools
for ensuring that the new requirements are satisfied
by a re-engineered system.

References

1)

2]

(3]

[4]

E. Chikofsky and J. Cross III. Reverse engineering
and design recovery: A taxonomy. I[EEFE Software,
pages 13-17, January 1990.

F. Cristian, R. Dancey, and J. Dehn. Fault-
tolerance in the advanced automation system. In
Proceedings of the 20th Annual Sumposium on
Fault-Tolerant Computing, pages 1-12, 1990.

H. Hopetz and P. Verissimo. Real time and
dependability concepts. In Distributed Systems,
2nd Edition, S. Mullender(editor), pages 411-46
{Chapter 16). Addison-Wesley, 1993.

F. Jahanian. Formal specification and software
reuse in reengineering embedded real-time sys-
tems. Technical Report Technical Report, Depart-
ment of EECS, University of Michigan, 1994.

(5]

(6]

(7]

(8]

96

F. Jahanian and A. Goyal. A formalism for mon-
itoring real-time constraints at run-time. In Proc.
of Fault-Tolerant Computing Symposium (FTCS-
20), June 1990.

F. Jahanian, R. Rajkumar, and J. Turek. A
testbed for prototyping distributed and fault-
tolerant protocols. In Proc. of Complex Sys-
tems Engineering and Synthesis Workshop, Sil-
ver Spring, MD, July 1993. Naval Surface Warfare
Center.

R. Pressman. Software Engiaeering A practi-
tioner’s Approach. McGraw Hill, New York, 3rd
edition edition, 1992.

S. Raju, R. Rajkumar, and F. Jahanian. Moni-
toring timing constraints in distributed real-time
systems. In Proc. of Real-Time Systems Sympo-
stum, December 1992.

MK 86/UYK-7 Enhanced Memory Unit Project
Jacking the Computer Up and Putting a Powerful New Engine Under it!

Joe S. Gaines, Richard W. Williams and Jay Roske

Authors

Joe Gaines serves as the Project Manager for the
MK 86/UYK-7 Enhanced Memory Unit (EMU)
development effort at Naval Surface Warfare Center
Crane Division, Crane Indiana. He is an electrical
engineer by profession with over 12 years combined
experience at both Crane and the Northrop Corporation.

Richard Williams serves as the Project Engineer
for the EMU development at Naval Surface Warfare
Center Crane Division, Crane Indiana. He is an
electrical engineer by profession with over 25 years in
systems engineering experience at Crane.

Jay Roske serves as the Technical Direction
Agent for the EMU development. He is employed at the
Naval Surface Warfare Center Port Hueneme Division,
Port Hueneme, California as the MK 86 Software Support
Agent. An electrical engineer by profession, he has over
20 years experience with shipboard systems.

Background

The AN/UYK-7 Computer Set is a Navy
standard computer originally fielded in the late 1970’s and
manufactured by Unisys. The computer set is configured
with a variety of modules such as the memory module or
the Central Processing Unit (CPU) module. AN/UYK-7
computers are used across a wide array of platforms with
a population of hundreds of units.

The MK 86 Gun Fire Control System (GFCS)
uses the AN/UYK-7(V) Computer Set for a variety of
functions. The MK 86/UYK-7 computer as it exists
today faces several memory problems. Planned upgrades
in targeting radar systems require more memory and
faster access to provide a performance increase in
computer execution of new application software. The
existing memory units available for use in the AN/UYK-
7(V) Computer Set are inadequate for these upgrades.
Additionally, the existing memory units face severe
obsolescence problems. The mated film technology
which forms the basis of the Double Density Mated Film
Memory Unit (DDMFM) is no longer in production. The

97

day is rapidly approaching when the UYK-7 as it exists
will not support MK 86 GFCS requirements. The MK 86
GFCS In Service Engineering Agent (ISEA) at Port
Hueneme Division (PHD) of the Naval Surface Warfare
Center (NSWC) recognized the approaching problem in
1991 and took steps to counter it. NSWC Crane Division
was enlisted to provide product engineering support to
develop a technology upgrade for the MK 86 UYK-7
Computer Set. In an age of ever-decreasing defense
budgets, there is more and more pressure to keep existing
equipments upgraded and fielded. This paper describes
the project to develop an Enhanced Memory Unit (EMU)
for use in the AN/UYK-7(V) Computer Set and the
features of said unit. The EMU contains an embedded
state-of-the-art processor which essentially gives the
AN/UYK-7 computer access to new found powers. In
other words, we’ve jacked the computer up and put a
powerful new engine under it.

Teaming Arrangement

The project is a teaming arrangement between
NSWC Port flueneme Division (PHD), NSWC Crane
Division and PMS-412 UYK-7 Program Office. NSWC
Crane is developing the MK 86/UYK-7 Enhanced
Memory Unit (EMU) and will undertake the MK 86
production run of the EMU. PHD is writing the
application software for use with the MK 86 upgrades and
will perform the ORDALT to install the EMU into MK
86/UYK-7 computer sets. PHD is also responsible for
overall project direction. PMS-412 is providing physical
assets for refurbishment and effecting the field change to
the UYK-7 computer set.

Goals & Objectives

The original goal of the project was to develop
a semiconductor memory replacement for the UYK-7
Double Density Mated Film Memory (CDMFM). The
Enhanced Memory Unit was to have 4 times the memory
and 30% performance enhancement. A further goal was
to provide units to meet the scheduled ship installation of

other MK 86 upgrades. During the course of the project,
the goals changed to attempt to develop a unit which
could provide a solution for MK 86/UYK-7 requirements
into the next century.

Accomplishments

All of the original design goals will be met or
exceeded by the EMU which has been developed with
major improvements in power consumption and MTBF.
More significantly, the EMU will provide performance
enhancements of approximately 1000% or better through
a technology insertion. The technology insertion is the
use of an embedded state-of-the-art processor, the
M68040. A simple drawer replacement (slide out the old
unit and slide in the new EMU) will give the UYK-7
state-of-the-art processing capabilities.

The project is currently on schedule and within
budget. The first Engineering Developmental Model
(EDM) was delivered in November 1993. According to
a study by PHD, it is anticipated that this systems re-
engineering technological solution will result in a $60M
cost avoidance.

Finally, it is anticipated that the EMU will
provide an excellent option for other UYK-7 users faced
with the same DDMFM obsolescence, lack of memory
and needed performance enhancements which prompted
MK 86 to initiate this project. PMS-412 estimates that as
many as 800 EMU’s could be needed by the UYK-7
community.

Technical Features

The Enhanced Memory Unit (EMU) had many
design goals. The first was to remain form, fit, and
functionally equivalent to the current Double Density
Mated Film Memory (DDMFM) which is a 32K x 32
memory module used in the UYK-7 Coinputer Set. This
would lead to easy installation of the EMU on board
ships. The second goal was to increase memory capacity
to 128K x 32 in a memory module so that single and dual
bay configurations of the UYK-7 could reach full memory
capacity without adding more cabinets. The third goal
was to increase the performance of the UYK-7 by
decreasing the memory access time. Early tests showed
that only marginal performance increases could be
obtained with decreased access time, so a processor was
added to the memory module to offload computational
processing tasks from the UYK-7 CPU.

The choice of the processor was quickly
narrowed to the Motorola 68000 family since the current
compiler for the UYK-7, CMS2K, presently supports the
Motorola 68000 series processors. Since most of the

ag

computational tasks 10 be offloaded and future upgrades
require floating point calcuiations, an integral floating
point processor was desired. With these considerations,
the Motorola 68040 became the choice.

The Enhanced Memory Unit (EMU) is composed
of 5 main functional areas: 128K x 32 non-volatile
memory array, 8 access channels, control section, power
distribution, and EMU Processor unit. The block
diagram for the EMU is shown in Figure 1.

The memory array is formed of 8K x 8 non-
volatile static RAM microcircuits. These microcircuits
consist of a fast static RAM section with a shadow
EEPROM section. During normal operation, the memory
operates from the static RAM section providing fast
access for both read and write operations. The contents
of the static RAM ave stored in EEPROM when the input
power is detected 1o be below normal operating voltage.
The time required to make this transfer is 12
milliseconds. Therefore, the internal voltages generated
in the EMU must be maintained during this time. This is
accomplished by having a large diode isolated capacitor
on the input of the EMU power converter. On power up,
the contents of the EEPROM are transferred to the static
RAM section. The iime required to do this is 25
microseconds which owars after the EMU power
converter reaches normal operating voltage and while the
UYK-7 master reset is still active. This gives the
memory unit its non-volatile appearance and does not
affect any of the normal operating time of the UYK-7.
The EEPROM section has the same characteristics of any
other EEPROM which has a minimum of 10,000 write
cycles. Since writes to the EEPROM only occur during
power removal, this will provide several years of failure
free non-volatile operation.

Eight access channels are provided to interface
the memory unit to the UYK-7 CPU and Input Output
Controller (I0C). The CPU requires two interface
channels; one to fetch instructions and one to obtain
operands. The iGC requires only one interface channel.
Any combinztion of CPUs and I0Cs can be interfaced to
a memory unit within the limits of 8 channels. The eight
access channels share the memory array through a simple
channel ranking priority arbitration scheme. This means
the highest ranking channel with an active channel request
will get the next available memory cycle. The EMU
contains 4 times the available memory of the DDMFM
which means that the EMU must provide faster access
time to provide equivalent performance of the DDMFM
in certain configurations. The DDMFM provided a single
cycle read access time of 1!00 nanoseconds with a
memory cycle time of 750 nanoseconds. The EMU was
designed with a single read access time of 750
nanoseconds with a memory cycle time of 150
nanoseconds. The 750 nanosecond single cycle access

time approaches the limit of the UYK-7 CPU. A single
EMU provides better performance than two DDMFMs
used in a software interleaved configuration.

The control section manages the data flow
through the memory unit. The control unit is divided into
three functional blocks. The first is the local controller.
The local controlle: handles all the control signals from
the UYK-7 required for the transfer of information over
one channel. There is one local controller for each
channel. The second functional block is the priority
arbiter which cetermines which of the requesting channels
will get the next memory cycle. The memory controller
is the third major control function. The memory
controller provides the timing and the decoding required
to access the memory array.

The power distribution section generates the S
volt power required by the EMU logic from the -90 volt
DC provided from the UYK-7 power supply. Detection
logic determines when the incoming power is going out
of tolerance and generates the timing control signals
required to perform the store from static RAM to
EEPROM. A diode isolated capacitor provides the energy
required to perform the store after incoming power has
been removed. After the store operation is complete, the
EMU power converter is shut off to prevent undesired
store operation as the capacitor slowly discharges.

The EMU Processor unit was designed to offload
processing tasks from the UYK-7 CPU. Independent
processing tasks can be downloaded from the UYK-7
CPU to the EMU Processor. The UYK-7 CPU initiates
tasks providing input parameters and receives processed
results. Communication from the UYK-7 CPU to the
EMU processor is accompiished through shared memory
which is the EMU Memory Array. The EMU Processor
has no access to any external peripherals of the
AN/UYK-7.

The EMU processor unit consists of a 68040 that
has local memory which is 128K x 32 words of volatile
static RAM and 64K x 32 words of EEPROM as shown
in Figure 2. The static RAM section is used to store
tasks loaded from the UYK-7 CPU and to set up data
buffers to be used during the processing of tasks. The
EEPROM section contains three program functions; the
floating point code provided by Motorola to provide full
function floating point processor, built-in-test routine for
checking the EMU Processor module, and a monitor
routine to allow for initial download and start of tasks.
The EMU processor module is connected to the address
and data buses of the EMU memory array which gives
the 68040 access to the entire EMU memory array as
shown in Figure 1.

The upper eight memory locations of the EMU
Memory Array are reserved for control of the EMU
Processor. These memory locations are called the EMU

99

Processor Control Registers although they are dedicated
memory locations with additional decoding circuitry for
special functions. These registers provide a Control
Register, a Status Register, a Software Reset Register, a
UYK-7 Interrupt Register, and a Built-in-Test Register.

The Control Register allows the UYK-7 CPU 10
send commands to the EMU Processor Monitor Software.
When the UYK-7 CPU writes to this register, an interrupt
is generated to the 68040. The 68040 can read the
register and perform the required function.

The Status Register is used by the EMU
Processor to provide status information to the UYK-7
CPU. The infcrmation passed in the Status Register can
indicate such things as the EMU Processor being
initialized, a valid command being received, and the
status of a completed task.

The Software Reset Register allows the UYK-7
CPU to reset the EMU Processor. The reset performed
is equivalent to a power-up reset.

The UYK-7 Interrupt Register provides a means
of signalling the UYK-7 CPU when the EMU Processor
completes a task. When the EMU Processor writes to the
UYK-7 Interrupt Register, a Class Il Interprocessor
interrupt is generated on the UYK-7 CPU. This feature
requires that a wire be added on the UYK-7 backplane
from the EMU module to the UYK-7 CPU module.

The Built-in-Test Register is reserved for use
with the EMU Processor built-in-test software. The built-
in-test software uses this register to test the interface from
the EMU Processor to the EMU Memory Array. The
built-in-test software on the EMU Processor tests the
68040 functions, the RAM and EEPROM on the EMU
Processor module, and the interface to the EMU Memory
Array. The built-in-test does not test any other function
of the EMU. This check out is performed with the
standard UYK-7 Diagnostics.

To allow the UYK-7 Diagnostics to be executed
without change, an enable feature was designed into the
EMU Processor. When the EMU is powered up, the
EMU Processor is not enabled. The EMU Processor can
not access the EMU Memory Array and will not respond
to commands from the EMU Processor Control Registers.
Therefore the EMU Processor Control Registers respond
the same as normal memory locations. This allows the
UYK-7 Diagnostics to run unchanged. The EMU
Processor is enabled by writing a coded sequence to the
Status Register memory location. This enables all the
functions of the EMU Processor. The EMU Processor is
disabled by any reset including the software reset.

As a result of the redesign effort, two other
improvements were obtained for the UYK-7 Computer
Set: decreased power consumption and an increased
reliability over the DDMFM. The present UYK-7 system
has marginal cooling capacity. Some long term failure

problems have been attributed to inadequate cooling. The
present DDMFM dissipates 250 Watts. In a single bay
configuration, there can be up to three DDMFMs. One
EMU has the memory capacity of four DDMFMs and has
a measured power dissipation of 80 Watts. If no memory
capacity increase is desired, this offers up to a 670 Wau
power dissipation saving in this one cabinet and provides
additional cooling capacity for the remaining modules in
the cabinet.

The DDMFM has one of the highest failure rates
of the modules in the UYK-7 Computer Sct with the
primary failures being the mated film stack and the
associated drivers. The EMU is designed with all solid
state devices which have inherently lower failure rates.
The calculated MTBF per MIL-STD-217E is 8600 hours
which is approximately 4 times better than the actual
failure rate of the DDMFM. With the fact that fewer
modules are required for the same memory capacity, this
offers a considerable reliability improvement for the
UYK-7 Coniputer Set.

Software Re-engineering

In the late 1960’s, the original MK 86
operational program was written in assembly language
and hosted in a MK 152 (UNIVAC 1219B) computer with
32k of 18 bit memory. In the early 1970's, as MK 86
outgrew the MK 152 computer, efforts began to translate
the program into UYK-7 code. The product that resulted
was very much like the MK 152 program with changes
made to utilize the UYK-7 features and new system
hardware. The significant computer improvements of that
era included the faster CPU, memory, and an independent
Input/Output Controller. In accordance with U.S. Navy
policy to use standardized "high order languages,” MK 86
began coding system improvements in CMS-2. Developed
in the late 1960's, CMS-2Y was a "Compiler Monitor
System” for the 32 bit instruction set architecture
machines. Compilations were performed on the UYK-7
itself.

As a language, CMS-2 has continued to be
updated, and is now supported on platforms other than the
UYK-7 system. MK 86 now uses the Navy’s standard set
of support software tools called "Machine Transferrable
And Support Software (MTASS)" hosted on a VAX to
perform life cycle software support activities.

In order to discuss the re-engineering of our
product, the structure of the current MK 86 operational
program is depicted in Figure 3. There is a basic one
second cycle of events that must be completed to effect
system operation. The one second window is broken
down into 16 segments, each having specific functions to
complete which support other "sixteenths” tasks. When

100

four identical tasks are performed during each sixteenth,
the task is said to be a "64 hz" task. 64 Hz processing is
initiated by the 10C Monitor Clock. While the major
Executive cycle executes at a 16 Hz rate, there are also
a number of tasks which execute at rates of 8 Hz, 4Hz,
2 Hz, and 1 Hz. These are referred to as "Variable
Sequences” and consist of a number of MK 86 functions
which must complete during an allocated amount of time,
but need not be executed at a 16 Hz rate.

Looking forward to operational software
integration with the EMU, the basic program cycle will
not change. The 64 hz, 16 hz, etc. processing will
continue. Qur challenge is to off-load tasks that the
UYK-7 struggles with onto the EMU Processor. The
EMU drawer will function as a two port UYK-7 memory
with the M68040 processor providing high speed
execution and "mathpac” capabilities. The M68040
integer and floating point capabilities are extensive. In
anticipation, we have begun recoding mathematically
intense operations such as coordinate conversion routines,
various predictors, and stabilization subprograms to utilize
the EMU processor’s power. It will be very interesting to
compare M68040 performance with UYK-7 and MK 152
data where trigonometric functions were computed
utilizing look-up tables. For example, early MK 86
project notes indicate that a MK 152-hosted sine or cosine
function, with "14 1/2 bit accuracy” could be
accomplished in as little as 400 microseconds! Recent
investigations measure the same basic MK 86 algorithm,
executing in the UYK-7, at 87 microseconds. Given the
EMU processor’s integer and floating point computational
power, we fully expect to reduce our math execution
times by an order of magnitude.

A depiction of the new structure is shown in
Figure 4. All standard processes will be shared with the
processor to the greatest extent possible. This will allow
Variable Sequence processes to be performed earlier (as
required). The UYK-7 will have more time available to
perform additional background processes. This will allow
for improvements in on-line data reduction and analysis,
for example. Certain, rigid processes will remain
unchanged.

With regard to language, a major factor in
selecting the EMU processor was the ability to compile
existing CMS-2 code with a new target in mind. The
MTASS CMS-2K compiler supports the M68030 target
processor as utilized in the AN/UYK-43's "Time Critical
Subfunction (TCS)". Therefore, we felt secure in
selecting the M68040 which fully supports the repertoires
of the M68030 and M68882 coprocessor - only faster and
more efficiently. In the development of a computer
program which could be executed by the EMU processor,
we discovered a problem. We could not, using our
MTASS tools, build a bootable object tape containing

M68040 code that could be loaded into the UYK-7 and
executed in the processor’s upper 128k of memory. That
upper 128k space is where the EMU processor’s high
speed RAM is located. The reason for this problem is
mainly due to the fact that the UYK-7 and the EMU
processor have two separate memory maps for the same
physical memory space. In these maps, the EMU
processor has read/write access to the UYK-7 memory,
but the UYK-7 cannot access the "non-shared™ processor
memory. This is depicted in Figure 5. The UYK-7’s
lower 128k memory space is represented by locations O
to 377,777 (octal), while the same space represents
locations 2,000,000 to 4,000,000 (octal) to the EMU
processor (its second 128k space).

Due to the difference in memory mapping, and
the fact that the UYK-7 does not have access to the EMU
processor’s upper memory, no programs can be loaded
directly into the EMU processor’s upper memory via the
UYK-7's NDRO bootstrap. This problem can be
overcome by loading the EMU processor code into
UYK-7 memory via the bootstrap and "downloading" the
code from UYK-7 memory to EMU processor memory
via the EMU’s Download command.

The download method would seem to be the
answer to the loading problem, however, this method
unveils another problem. In order to execute a program
somewhere in memory, the program must be linked to
that particular memory area so that instruction operands
can evaluate correct absolute addresses for data movement
and branches. On the other hand, when building a
bootable tape using MTASS, the Tape Builder program
(TBL) uses the absolute start address of the program
calculated during link time as the address at which to load
that program. In other words, a program which is
compiled and linked to execute in EMU processor
memory, cannot be loaded into UYK-7 memory.

Until a more elegant solution is found, a
temporary "loader” program is being created for the
processor program which ignores the starting address
associated with the NTDS boot record and, instead, loads
the EMU Processor program into a predetermined
location in UYK-7 memory. This allows the EMU
processor program to be linked relative to an area of
EMU processor memory, and loaded into UYK-7
memory for downloading.

While the overall implementation of changes in
the MK 86 project will be incremental, the processes
governing each upgrade remain the same over the next 3
years: identify candidate tasks to be off loaded to the
EMU processor, recode whatever assembly
language exists, recompile under CMS-2K, and recertify
performance. This method supports our existing
maintenance philosophy, requires no additional personnel,
and is supported by our existing standard test procedures.

101

Lessons Learned & Conclusions

Perhaps the most difficult part of a design is
accurately defining the interface specifications from the
unit to be designed and the rest of the system. Most of
the requirements of the design were derived from the
technical manuals and specifications in the fabrication
drawing package. When trying to duplicate the exact
functions of a device, measured data defines the interface
requirements accurately. But when increased
performance is desired, minimum and maximum timing
requirements and relationships are required. In over three
cases during the design, timing relationships defined or
implied in the available data sources were found to be
incorrect which resulted in design changes during testing.

Another problem was noted when attempting to
change device types. The UYK-7 channel busses were
implemented with open collected devices. An attempt
was made to use tri-state drivers to perform the same
function. Early testing showed that every thing would
work properly with tri-state drivers, but when the full
system was tested, intermittent problems occurred due to
decreased noise margins introduced by the tri-state
drivers. This caused a design change to open collector
drivers which are not as readily available in certain
functional type devices.

These examples emphasize the advantage of
performing early confidence testing to help define design
requirements and parameters.

Finally, this project demonstrates the advantage
of providing technology insertions for existing systems.
Benefits are derived in system capabilities and
performance as well as substantial cost advantages.

References
AN/UYK-7 Technical Manual
SE610-AW-MMA-010 Maintenance Manual

Enhanced Memory Unit Critical Item Development
Specification, 53711-6891400, Rev B.

Product Fabrication Specification, Memory Module,
Double Density Mated Film, SB-12857

CMS-2 Compiler, Users Handbook, 0967-LP-598-8020
Linkage Editor, Users Handbook, 0967-LP-598-8060

SDEX/7, SDEX/43, & SHARE/43 Tape Builder, Users
Handbook, 0967-LP-598-8070

Figure 1
102

AN/UYK-7 EMU BLOCK DIAGRAM

Snd vivd Sng SS3yaav INVAD LdNAY3INI

AYEY ANOW3N N3 OL AGHIY ANOW3W NW3 0L N0 NW3 ~153n03Y Sng OIAN
= _ 2 82 _ 1 T
y1y0 SS3300Y
J3IAIIISNUAL ¥3AI3ISNUAL 207 J04INOD W
O
ﬁ :
IHH Br/@2 A
5
o
vivd m o -
Ay S
3
5o
2€ X g2l 0
HodS = @
o]
&,
¥}
2
¢t X b9 k 2r089
W0dd3 SO0y ¥0553204d

SNOLLON SONINDTV TRIVIKVA M

ONIGSIO0N SO NNO // SNOLLONNI ZH Bt -

(D) SNOLLONIS GNNOUEXVE SNOLLONN ZH 99 z
— mM» §

1/18 QGBOOND CYOLE

UYK PRODESS0R TASKB

%

—i_

70000

LT

§

g
NN
NN I

Al N N BN A BN BN B AE B BN BN BN D R B B B e
|
i

0,500,000
000, 2,000,000 v
EMU PROCESSOR
UYK-7
MEMORY IEIDRY‘?PAG
ST
4,000,000
6,000,000

ADORESS SPACES VISIBLE TO UYK-7 AND EMU PROCESSORS
FIGURE &

106

Reengineering the LAMPS M. I to
Provide a LOS Ship-to-Ship Teleconferencing Mode

James P. Rahilly

Naval Command, Control and Ocean Surveillance Center RDT&E Division
San Diego, CA 92152-5000

ABSTRACT

This paper describes the reengincering of the
NAVY's LAMPS MK 1II to provide a new high data
rate (HDR) ship-to-ship LOS commamication capability.
The application of present LAMPS MK III, with added
capability, permits ship-to-ship LOS data
commmmication rates in excess of near three times the
T1 rate of 1.544 Mbps. A cooperative effort is
underway to demonstrate this capability with the
support and resources of CINCLANTFLT. This
demonstration will consist of a HDR LAMPS MK HI
extension of the existing USS Mount Whitney Satcom
Video Teleconferencing (VIC) to an HDR modified
LAMPS MK HI ship. Since the VIC extension will
only operate at a 386 Kbps rate, other Multimedia
loading of the link will be used to more fully load the
communication link. This VIC demonstration using
LAMPS MK HI will be discussed in in this paper.

1. INTRODUCTION

The LAMPS MK Il reengineering challenge is largely
related to the achlevemmt of this new HDR

mission of ASW and ASST (anti-ship surveillance and
targeting). The exploitation of this system's design
features has been done in order to satisfy the R&D
program's HDR of T-1 or 1.544 Mbps objective. The
use of LAMPS MK IIl is the most viable and cost
effective way for the Navy to provide a large number
of combatant ships with LOS HDR ship-to-ship
commmumnications. Navy R&D program plans for FY 95
call for creating an even higher data rate
communication system. This new system only uses the
LAMPS MK III waveguide and high gain antenna
system. These LAMPS MK III elements are coupled,

M. Rahilly's work is sponsored under 62 block funding by the
Office of Naval Research, contract N00014-94-WX-350384AD

when required, to a new wideband receive-and-
transmit system to achieve a ship-to-ship or ship-to-
shore communication data rate of T 3 or 44.7 Mbps.
This capability would be particularly useful to satisfy
the shoreto-ship theater extension (TENET)
requirements of Global Grid. Figure 1.1 provides a
photograph of the present shipboard LAMPS MK I
system (SRQ-4) and Figure 1.2 shows the LAMPS MK
I (SH60R) helicopter, with it's LAMPS MK III system
on-board; just after its takeoff from FF 8 of the Fast
Frigate Class. ASW and ASST data that the LAMPS
MK I helicopter collects while on station, up to 100
Nmi from its mother ship, is transmitted at a HDR back
to the ship. The Navy has in excess of 80 ships with
the LAMPS MK IIl. The LAMPS MK Il antenna
installation is shown high up on the ship's mast of a
DD 963 in figure 1.3.

2. DISCUSSION

In the early phases of the R&D investigation,
technical issues were examined and conclusions
reached that led to the belief that LAMPS MK IIl was
the optimum way to achieve a HDR ship-to-ship
commumication capability. For example, the scope of
the investigation required the consideration of the entire
SHF band. However, as a result of a review of the
allowable electromagnetic frequency regions in the SHF
band, where nonsatellite shi ip commumications
is permitted by intemational agreement, it was found
that only the spectral region from 4.4 to 5.0 GHz was
allocated for this purpose. Therefore, this is the
operating frequency band used by LAMPS MK I to
establish a communication link between a ship and a
helicopter.

Another issue relates to the assessment of the
electromagnetic compatibility of any newly created
communication with the existing LAMPS
MK Il shipboard transmitter and receiver operating
environment. For example, any newly created system

107

e —
R R B N OGS O G O Nl S G =R AN N e B N = s

135 [eUILLIA) OIpeS p-OYS/NV 171 2n8id

108

-8 paddinba T JAVT © wosy Jjoayes soyye sadooyay YO9HS M SANVT “T'1 3In3ig

109

-siyoad preoqreig €96ad ‘€'T N3

’
LY \838!!-&!!!!-.L ,,ko.-ox.l.looco-ol\o.-;oloﬂl.l..c-
v o9) ; =—_J[5 [

.-s g
/o290 . A A

..... ¢. :-Lri. iy il‘u‘hll — -ry

sl | i o

Il._ —_Il.

l "
N A

G
‘l‘ -
NS
i
Sy
[k
110

(VNNILNVY INWO ‘Uil XN SNV

°
S-6

(VNNILNV NIVO-HOIH ‘ill WN SNV

L
r-6

would be operating in the same 44 to 50 GHz
frequency band as the LAMPS MK III system and
must not interfere with the high priority communication
linkage between the ship and the SH-60B helicopter.
The approach taken in this new ship-to-ship
communication concept is to not create a new system
that might interfere with LAMPS MK HI but rather to
use the LAMPS MK III system itself to provide the
ship-to-ship comnmunications when it is not performing
its operational role with the LAMPS MK I helicopter.

Another advantage to using the existing LAMP
MK I system to achieve a ship-to-ship HDR
capability includes the fact that the LAMPS MK III
high gain antenna system, because of its high
operational priority, is located very high up on the
ship's mast, thus maximizing the LOS range. Real
estate is very scarce at these heights and a new system
would find it difficult to get a location as high as
LAMPS MK I currently has.

Also, by using the LAMPS' antenna system, there
are no major developmental or procurement costs to
obtain a high gain, stabilized antenna that provides
monopulse azimuth tracking, has passed mil-spec shock
and vibration testing, and has demonstrated highly
successful operational reliability while providing
mission support in conjunction with the LAMPS
MK I helicopter system.

It is the system goal, in this proposed use of the
LAMPS MK III shipboard assets, to not only use the
above-deck assets but also to use to a maximum degree
all the below-deck subsystems. These subsystems
include the frequency synthesizers, modulation,
demodulation subsystem transmit and receive
subsystems, mux and demultiplex subsystems, and
KGH45 crypto systems. However, variations from the
present LAMPS MK HI must carefully consider the
requirement to be able to rapidly reconfigure the
system from a posture that supports ship-to-ship
commumnication to one that can immediately support the
LAMPS MK HI mission. The LAMPS MK I mission
must always be the primary operational mode, and any
design changes must always be evaluated from this
perspective.

3. DESCRIPTION OF LAMPS MK III HDR
COMMUNICATION CONCEPTS

In order to most effectively discuss this new
concept, it is best to first examine how LAMPS MK II

communications presently operates. Figure 3.1 shows
the basic facets of LAMPS MK I ship-helicopter
communications. The shipboard Lamps transmit-and-
receive equipment is below-deck and is connected by
waveguide through the waveguide switch shown in
figure 3.1 to either the high gain or omni antennas,
mounted high on the mast. This figure shows the high
gain antenna in use. This occurs when the helicopter is
a significant distance from the ship. The uplink requires
less than 10% of the bandwidth required by the
helicopter-to-ship downlink. The term wideband (WB)
is used for the downlink and narrowband (NB) is used
for the uplink.

The WB downlink includes the NB response data,
since it is multiplexed in with the wideband downlink
data stream. Thus, a full duplex communication is
achieved relative to the narmowband data
commumication. The wideband link is simplex in
nature, since there has been no need for WB
transmission from the LAMPS MK I ship until now.

31LAMPS MK I COOMMUNICATION
OONCEPT: BASELINE SYSTEM WITH
MAXIMUM CAPABILITY.

The baseline LAMPS MK III HDR commumication
concept consists of using the shipboard LAMPS MK 1Tl
(SRQ4) and integrating these assets together with the
LAMPS MK III transmit, receive and mux/demux
assets that are used on the SH-60B helicopter
(ARQ-44). Figure 3.2 illustrates this concept. As may
be seen in this sketch, a new dual rotary waveguide
switch now replaces the present single action switch.
With the waveguide switch position shown, the SRQ4
receive-and-transmit system is connected to the high
gain antenna, while the ARQ-44 is connected to the
omni antenna. This is the ship A configuration. Ship B
is at the other end of the link and its connectivity is
just reversed. Therefore, it can be seen from figure 3.2
that the high gain antennas are transmitting on the
narrowband (NB) data links and the zero db gain omni
antennas are transmitting the wideband (WB) data
links. It should also be noted that by rotating the SMA
switches the NB or WB operation can be conducted in
either LB (lower band) or in the UB (upper band)
This is required in order to achieve sufficient frequency
separation to afford the needed isolation between the
transmitted energy from a given antenna and the low
level signals that are being simultaneously received by
the other. This signal isolation is presently obtained
using two broadband RF bandpass filters in the lower

————

't 44NDI4

WIIIIK»IIIIJ

| S/S XY p-OdSINY _
aMm
_ s[auuey) x4 gM w “
| , spauuey) XL gN
| |
| |
| |
[SIS XL [~
aN o
_ ddd _ _ _ ddd | | -
| 91 / \\A 4n |
| SYALTId SSVdaNvd |
_ WIXAdIA 44 m
R . I
sjaLuRy) 91 (Jo duo Aue) gN - LIASNVIL
EMMW spauuey) 91 (Jo suo Aue) gM - FAIFOTY
o Y PUE YT SNOANVITIATS
Youmg apIinSanem
1avdostpay > > >
g 09-HS (HO9D (8D x4 gM
uo pp-OUV/INY |~ —l} -}
SdAVT (HD 91 (dn) XL 8N

-OdS/NV - WHLSAS AYVOLdIHS III IN SANV'T

¢t HANOH

pr-OdVINY

WALl M3N K * r-OdV/NV « « «

*
- »- S/S XL
X4/am XL/9M aMm

*®
o Saueud 8N \ﬁ sjauuey) M
SIas unsixg uo xy Y Bunsixg uo xI,
ot
HOLIMS /
VIS

X1/9N XA/dN S/S mm
ﬁ 4dd Jdd

an ﬁ« « a1

Y311 SSVd ANV = ddd
ANVd ddddn = 49N
ANVE dIMOT=491

113

spauuey) 91 (JO auo Aue) gN
s[auuey)) £ (JO duo Aue) gm

X4%® X1 SNOANVLINNIS
XT1dnd Timnd

(HD 91) (&) X4 AN g IIIII A

(HO L) (A XL 8M youms 9pmSarepm reng MAN
*

@ S — Y JHS

e I I CMETTT
-+ Bl CRIDICO R

INHLSAS NOILLVOINNIWINOD III N SdINV'T N X31d01d T1Nd
® M XJ'1dNAd TINA -ALI'TdVdVD XVIN

and upper frequency bands in each system. This
arrangement provides a diplexer with as much as 90 dB
of isolation between the receive and transmit signals
when the ship is using either the high gain antenna or
the omnni antenna. From Figure 3.2 we can sce that
the ARQ-44 is transmitting WB in the LB filter and the
SRQ4 is receiving WB in the UB to achieve the
needed transmit to receive isolation. Therefore, on
each of the platforms the separation between the
diplexer bandpass filters, located in the UB and LB, is
the same and is sufficiently great that transmission and
reception can occur simultaneously without causing
corruption of the quality of the received data.

For this test system the UB bandpass RF filter used
for the WB transmit and receive functions and LB RF
filter used for NB transmit and receive functions have
not been tailored for this test application. It has been
found by testing the LAMPS MK III diplexer filters
that the bandpass characteristics of the UB filter was
about an order of magnitude larger than was expected.
Consequently, it will be possible to allow operation of
the WB transmit through it in about seven channel
locations. For this reason, it is estimated that full
duplex operation could occur in seven channels. In the
foregoing example we have proceeded, using the
present LAMPS MK III communication architecture, to
create two simultaneous full duplex loops; one for
narrowband and the other for wideband commumnication.
Whether the present 90 db isolation can be achieved or
not remains to be determined. If the isolation level is
unsatisfactory for simultaneous full duplex WB and NB
operation, then nonsimultaneous WB or NB full duplex
communication mode could solve the resulting
interference problem. To achieve the WB/NB capability
shown in figure 3.2, the following would be added to
the basic HDR LAMPS MK III capability in order to
equip two ships with a maximum capability:

1. (2) dual waveguide switches
2. (2) SMA type switches at input to the R/T

subsystems.

3. (2) mods to Voltage Tuneable Signal Sources
(VTSS) to pemit shifting frequency
references in accordance with the new WB
UB and NB LB operation while still being
able to meet LAMPS transmit and receive
bands and channelization in the normal
mode (1).

(1) Note: The mods of this new VISS subsystem
have been now built and tested.

4. SHIP TO SHIP HDR LAMPS MK 11l
COVMMUNICATION DEMONSTRATION
SYSTEM

Operational demonstrations that might be
associated with the evolution of this new ship-to-ship
high data rate communication capability can take many
forms. The first of these demonstrations begins with
tests in the laboratory. At the next level we will make
a bridge between the laboratory and the world of the
Navy combatant ship that already has a LAMPS
MK HI system on-board. 'The specifics of the areas of
investigation, in each of the above categories, is
contained below.

4.1 NAVY LABORATORY TESTING

The work in this area was begun last year because of
the support provided by NESEA, St. Inigoes, MD.
Although the documentation supporting the LAMPS
system is quite extensive, there are still many areas
where documentation deficiencies were noted. Where
information deficiencies occurred detailed design
information and data on subsystem characteristics were
derived by NESEA. In these situations NESEA
conducted various measurements on the LAMPS
equipment to reveal this needed design information.
Because of security classification issues, some of these
results cannot be presented.

The laboratory testing in preparation for the at-sea
demonstration has been conducted at NAVSEA. To
date, testing has shown that the new frequency
references for upper band WB and lower band NB
operation are functioning properly. A considerable
effort has been devoted to the data interface for the test
system. The LAMPS MK III WB downlink has
evolved along telemetry lines, and the transmitted data
words are commuttated into specific data-framing
locations. Therefore, along with the WB data which
may be in either the LAMPS Radar or ASW channels,
there are also discrete data frame locations that are
used concurrently to carry 26-bit blocks of data plus
6 bits of EDAC. These slots are used to carry computer
data, voice, and DME data. The computer channel is
used for command and control information between the
ship and the helicopter. The other two framing slots are
available for the data block transmission that results in
an independent 56 Kbps digital voice link and a 26-bit
data block that is used for distance measuring
equipment (DME) between the ship and the helicopter.
The HDR data interface challenge develops from the

114

- S o

fact that the LAMPS MK Il data flow is not a
continuous flow of one type of data as occurs in the
nomal commercial T-1 communications world. Data
buffering using a PC-based FIFO (first-in, first-out)
buffering system and a special serial /O card plus
strict timing controls have been developed by the Navy
to achieve this interface compatibility. This required
data interface has been developed jointly by NRaD and
NESEA.

The next phase is the laboratory testing of the
system which includes all the VTC equipment,
Timeplexer multiplexers, data interfaces, HDR SRQ-4
and HDR ARQ-44 temminals, including the Cesium and
Rubidium time standards and cryptos that would
represent video data to RF interconnection of the two
HDR LAMPS equipped ships. This would duplicate full
duplex VTC at-sea testing using the HDR LAMPS that
is to take place before the end of February 1994.

42 AT-SFA VITC DEMONSTRATION TESTING
OF THE HDR 1AMPS MK Il
COMMUNICATIONS SYSTEMS

Figure 4.1 presents a pictorial representation of the
at-sea VTC testing with the USS Mount Whitney that
is planned for the April/May 1994. Prior to this test
there will be an at-sea test using only two LAMPS
MK I ships operating on a point-to-point basis. In this
carly at-sea test there will be no requirement to
interface with the Satcom VTC. The April/May testing
will require the Satcom interface that will pemnit video
teleconferencing between the CINCLANTFLT

rs and the HDR LAMPS MK I ship. The
USS Mount Whitney does not currently have a LAMPS
MK I installation, so it is being equipped with a
shelter to house the HDR LAMPS MK III capability
and will use an omni antenna that is telescopically
mounted to the roof of the shelter.

Ship-to-ship VTC tests will be conducted at sea at
various ranges and shipboard EMI (electromagnetic
interference) conditions. This demonstration will reveal
the level of electromagnetic interference that will be
experienced by the HDR LAMPS MK III receive
system in the WB mode. Also, the level of RF
interference with other ship systems that will be created
by LAMPS transmitter emitting a WB signal, using
either the omni or the high gain directional antenna at
SHF, will be examined.

115

43 MINIMUM COOST HDR LAMPS MK
VTC DEMONSTRATION SYSTEM

Figure 4.2 presents the HDR LAMPS MK Il
minimum-cost system to be used in at-sea VTC tests.
This system will allow full duplex WB data
communications between two ships to support the
VTC. As in the HDR configurations discussed, it is
necessary to integrate an ARQ-44 with the shipboard
SRQ4 to achieve this WB capability. Figure 4.2 shows
that, since this is a test, simplification of the system is
possible. It can be noted that ship A and ship B have
particular connections of the bandpass filter to the WB
receiving and WB transmitting subsystems. Both of
these connections are manually made via SMA lines
within the SRQ4 and the ARQ-44. The restriction to
WB operation removes the need for the dual waveguide
switches shown in figure 3.2. When both ship A and
ship B are LAMPS MK 111 ships, then either one could
be ship A or ship B, since they both have the same
antenna systems. In this drawing it can be noted that in
the ship B configurations the ARQ44 would be
configured as it normally is in that it transmits WB on
the LB/BPF. On the SRQ-4 side, we can see that the
shipboard system, which normally receives WB on the
LB/BPF, is now to receive it from ship A in the
UB/BPF. When the Satcom VTC testing occurs, the
shelter that contains the HDR LAMPS MK IN
equipment will be represented by the configuration
shown as ship A since it will use the 0 db omni
antenna. The data interface developed for this system
is as shown and for a number of reasons will operate
only at twice the T-1 rate or about 3 Mbps. Other than
the SMA switching shown and the VTSS changes, the
rest of the ARQ44 and SRQ4 radio terminal
equipment will remain the same as it is today.

50 PREDICTED COMMUNICATION
PERFORMANCE

Using a Navy computer program (PC) called
SLAM that allows a parametric examination of the
comnumication performance of any particular system,
including the effects of multipath, propagation
diffraction, and ducting, the plot shown in Figure 5.1
was developed. The actual characteristics of the present
LAMPS system were utilized including the system
losses that affected both the transmitted signal as well
as the received signal. These losses were provided in
the engineering documentation in the Navy files on the
LAMPS MK III. The term on the ordinate in Figure 5.1
is called margin and stands for the signal power level,

'y H4NOH

dIHS I N SdNVTIAH

INALSAS ONIONHIFANODHTAL OddIA WODLVS L'TALNVIONIO
d0 NOISNA.LXH I 3N SdNVT 4dH 40 LS4L VAS-LV

¢y TANOI

-OYV/NV
s/s &m -
159] vIs-@
01 soud A[enusw 43
195 ame saduwy> uoteiyuco u-o:.ﬂum a_wuuﬂm
JAIID] pUB JUUUSURI] Ac
TAION gduys v dys S1ds
440
(/ \\ oM
YOd HLVd SAIIDAY
V1vd ANVEIAM
ddd 4dd 4dd . 4dd
an q71 an 11
S SYLLTH YALTH e
L XTI] | AEAXT1dId T
©,
Uonmg 85»“3‘
0ds Sunsrxy
42\
wo\ "5 OT @ XITA :oo:mexmma
-
HO 01 (4D X4 M :oo:mex._.ma
STANNVHD S 0T XX TINA T
Y JIHS @l JMHS

LSHL ONIONHIHANOODATAL OHdIA
VAS-1V 304 NOLLVINOIANOD LSAL ddH III 1IN SdAV'T

117

'S FANOIA

(INN) 3ONVA

¢C € 1T 61 LT ST €1 11 6 L S
J

118

a
(4Q) NIDYVIN

sdqNy = ALV

V1vd X31dnd TInd
ZHD §'v = ADNANOTY
LNV NIVO IH SANV'T
OL INJNO 9d 0 SdINV'T

\ — 0C

LSHL HONFIHANOD-HTH.L OHdIA VAS-LV
ONRINA I AN SJAVT IAH ONIS1 HONVINIOJddd
ANIT SNOLLVOINNININOD dIHS OL dIHS d4.LOIAdH¥d

in db, greater than that level which will just allow
achieving the desired data bit error rate (BER).

For the link computations that resulted in
Figure 5.1, it was assumed that the antenna on each
ship was at 100 ft above sea level, and this results in a
maximum line-of-sight range of about 20 nmi. When
sufficient excess power is available range values will
be in excess of the LOS limit out to a diffraction loss
limit. Figure 5.1 shows the expected performance of
the LAMPS communication link between the high gain
LAMPS antenna and the LAMPS "0" db antenna as a
function of range assuming a commumnication data rate
of 4 Mbps with a Eb/No = 12 db. The sharp downward
spikes in figure 5.1 are due to multipath signal

ion effects. The worst of these can be scen to
be about 5 db above the level which would create
signal degradation. This is regarded as the multipath
safety margin that exists in this link. The received
signal power is sufficiently strong as to allow
communication out to ranges of about 25 nmi including
the link diffraction losses.

6.0 CONCLUSIONS

The US Navy has a valuable resource in the
LAMPS MK III system and this has been demonstrated
in its remarkable operational performance. It has been
operational in the fleet for at least 10 years. It is a well
engineered system that in many ways is still very
sophisticated. Its excellent performance results fromthe
soundness of its engineering. It is an example of what
is possible in operational fleet electronics. For these
reasons it represents a very sound foundation upon
which to create another remarkable level of LAMPS
MK III uscfulness to the Navy. It presently has an
operational role which it performs efficiently and
effectively. Therefore, variations fromits present design
have to be very carefully evaluated to be sure that no
reduction in present operational capability will occur if
any design changes are to be implemented.

This paper has touched on some specific
communication and operational scenarios. Others being
examined, but not discussed, includes networking of an
cthemet type between HDR LAMPS MK III ship's
that uses the high gain to omni link between ships to
achieve a 4 Mbps network trunk. In another version
networking is achieved only between the HDR LAMPS
MK I omni antennas at a NB rate. What the HDR
mode offers to the Navy is a communication trunk that
can serve many forms of data communication

119

simultancously. It is, in fact, ideally suited to serving
the new world of multimedia including large file
transfers, digital interactive video, high resolution
image transmission and digital voice. There are also a
variety of possible operational military configurations,
that appear to have very desirable features. At this
juncture the technical investigations and operational
testing will continue so that greater insight will be
developed as to its most desirable and achievable
operational capability.

Biography

Mr. Rahilly originated the concepts presented in
this paper and is the Program Manager over the HDR
LAMPS MK I development. The program is being
conducted in the RDT&E Division, Comnmunication
Technology and Systems Branch. After graduation from
what is now New York Polytechnic University in 1951
he was a systems engineer at Westinghouse Air Arm
Division, Raytheon Missile Division, General Electric
Technical Military Planning Operation, and Philco Ford
Westem Development Laboratories. He joined the
NAVY laboratory on Pt Loma, San Diego Ca, that has
now become the RDT&E Division, in 1968 and has
been employed there on a variety of commumnications

SUCCESSFUL PROCESS IMPROVEMENT
EFFORT USING
CLEANROOM SOFTWARE ENGINEERING

S. Wayne Sherer, AMCCOM LCSEC
Paul G. Arnold, IBM
Ara Kouchakdjian, SET

Abstract

The results and lessons learned
from a STARS (Software Technology for
Adaptable Reliable System) sponsored
process technology transfer
demonstration are presented in this paper.
The Armament, Munitions and Chemical
Command (AMCCOM) Life Cycle
Software Engineering Center (LCSEC) at
Picatinny Arsenal was selected to
demonstrate that Cleanroom Software
Engineering (CSE) and Process-Guided
Project Management (PGPM) could be
successfully applied in a typical DoD
Software Support Activity (SSA).
Results indicate that:

e CSE practices and PGPM can be
successfully transferred to a typical
DoD SSA,

e engineering staff productivity and
quality was increased while
simultaneously increasing job
satisfaction, and a

e return on investment of at least 5.9:1
has been realized on the first project
to which CSE and PGPM techniques
were applied.

Technology Transfer Goal

The goal for the technology
transfer effort for the AMCCOM LCSEC
at Picatinny Arsenal was to conduct a
demonstration of CSE practices and
process-guided project management at a
typical DoD SSA.

120

AMCCOM LCSEC was selected
in response to their expressed interest in
improving the process by which they
maintain software in general and,
specifically, in wusing the CSE
technology. Additionally, as a typical
DoD SSA, it was deemed important to
improve the means by which the
government spends their largest portion
of software money; i.e., in software
maintenance and re-engineering (as
opposed to new software development).
The demonstration was to be facilitated
by IBM and SET (Software Engineering
Technology, Inc.).

The LCSEC at Picatinny Arsenal
is a representative DoD Software Support
Center that wants to apply a more formal
approach to software support. The
current state of software re-engineering at
the AMCCOM LCSEC varies from
project to project but the majority have
not achieved the desired level of
productivity and quality. A major goal of
AMCCOM LCSEC is to achieve an
Software Engineering Institute Capability
Maturity Model (SEI CMM) Level 3
rating by adopting an evolutionary
process improvement approach to
software re-engineering. Currently
AMCCOM LCSEC is receiving support,
under STARS Task IA02 from IBM and
SET, in applying the Cleanroom
approach on the re-engineering of the
Mortar Ballistic Computer (MBC). Initial
results have been successful in terms of
the projects employing the Cleanroom
engineering practices and adopting a
process driven tcam organization.

Organization Overview

DoD Software Support Centers
(S§SCs) provide important opportunities
to demonstrate STARS efforts to improve
software quality and productivity. SSC
activities represent a major portion of the
DoD software budget and the proportion
is expected to be increased during the
next decade. This will occur as the many
systems in the DoD development pipeline
are turned over to SSCs for support. It is
likely that, as fewer new systems come
into the inventory, DoD managers will
attempt to extend the useful life of old
systems through software enhancements
and re-engineering..

The AMCCOM LCSEC provides
a number of services including: software
acquisition support to program managers,
computer resource life cycle management
plans, pre-planning for software support,
manage contracted post deployment
suitware support efforts, software
configuration management, and design
and implement software changes. The
types of battlefield automated systems
supported include air defense, cannon
and tank gun systems, smart mines and
munitions, ballistics computers, gunnery
simulators, trainers, and nuclear
biological chemical detection systems.

The MBC project was a re-
engineering of the current system used by
the US Army to aim Mortars for combat
support. The existing MBC was
implemented in DTL (Display Terminal
Language) and Z-80 Assembler that is not
easily upgraded for new requirements.
The re-engineered system was
implemented in Ada and as a result can be
moved to new updated hardware
platforms.

The STARS program is a DoD
funded research and development effort
funded under ARPA (Advanced Research
Projects Agency). The main thrust of this
effort is that software development is
process-driven, domain-specific, reuse-
based, and supported by an integrated

121

software engineering environment. This
concept is called Megaprogramming and
the STARS program is currently engaged
in several demonstration projects of the
technologies developed earlier in the
program. Picatinny MBC effort is the
first demonstration project to use STARS
concepts. IBM is one of the prime
contractors for this effort and SET is a
principal subcontractor for the
IBM/STARS effort.

The desire for process-driven
technology was the result of a Software
Process Assessment (SPA) conducted by
a team of representatives from the AMC
LCSECs with coaching from the
Software Engineering Institute (SEI).
AMCCOM LCSEC management has
developed a close relationship with the
SEI because they desired help with
identifying areas to achieve uie desired
level of productivity and quality. Review
of the SPA findings lead AMCCOM
LCSEC management to realized that the
software engineering process was not
under intellectual control. Each new
software project, whether performed by
contractors or civil servants, was treated
largely as new activity that did not
necessarily draw on prior experience for
process improvement. The only factor
that perpetuated experience was people,
be it government or contractor, who
participated in the same projects time after
time. Documentation received by
Picatinny, when they were given systems
to maintain, was poor or not up to date
and no defined process existed for
maintaining continual project control. In
other words, the state-of-the-practice
consisted of traditional software
engineering practices that are ad-hoc in
nature, as opposed to a disciplined,
defined software engineering process.
These realizations and the results from the
SPA were the basis for their move to
enhance their software engineering
capabilities.

Typical DoD SSA organizations
have immature processes and are subject
to morale problems among software
engineers due to the combination of an

undefined manner of doing work, along
with a lack of task-oriented scheduling.
The software engineers at the AMCCOM
LCSEC did their work well because of
individual skills, but often seemed to be
stuck in the same "groove," where the
same situations, in terms of schedule,
would arise year after year. A general
lack of enthusiasm pervaded our initial
discussions with project teams.

Despite these difficulties,
however, the customers (various users
within the US Army) indicate that they
are basically content with the quality of
the products. Not many field reports of
failures are submitted by their customers,
due to extensive, pre-release user testing.
Unfortunately, evidence suggests that this
may also result from the absence of
formal failure observation and reporting
mechanisms, making the field quality of
AMCCOM LCSEC developed products
difficult to ascertain.

AMCCOM LCSEC management
recognized the problems with their state
of the practice and took the initiative to
recognize Cleanroom Software
Engineering (CSE) and Process-Guided
Project Management (PGPM) as the
mechanisms with which to facilitate the
desired cultural, technical and process
changes.

Cleanroom Software
Engineering (CSE)

CSE was chosen as the process
driven technology because it addresses
the deficiencies identified during the
LCSEC Software Process Assessment
(SPA). CSE's management and
development team approach was
consistent with quality management
philosophy, e.g. workforce
empowerment, process focus, and
quantitative orientation. It provides for
the transition of process technology to the
project staff and integrates several proven
software engineering practices into one
methodology. LCSEC management

122

anticipated productivity gains and morale
enhancement from the introduction of the
technology.

CSE consists of a body of
practical and theoretically sound
engineering principles applied to the
activity of software engineering.
Cleanroom consists of a thorough
specification phase; resulting in a six part
specification, including a precise, black
box description of the software part of a
system. Software development proceeds
from the black box specification via a
step-wise refinement procedure using
box-structured design concepts. This
process focuses on defect prevention,
effectively eliminating costly error
removal phases (i.e., debugging) and
produces verifiably correct software
parts. Development of software proceeds
in parallel with a usage specification
of the software. This usage profile
becomes the basis for a statistical test
of the software, resulting in a scientific
certification of the quality of the software
part of the system.

A quick high level comparison
between the typical development and CSE
philosophy of software development is
summarized in Table I. The typical
development environment can be
characterized by craft based techniques
which are highly dependent upon the
skills of the individuals involved whcreas
CSE is an engineering discipline with
associated rigor and formality.

Table I: Comparison between Typical Development and CSE

Typicl Develment

" CSE

| Programs regarded as

Lines of Instructions

Correct rule for a function.

| Specification focus

Incomplete description of
external behavior and
internal design details.

Complete, precise
description of external
behavior; design details left
for development.

verify code.

Informal, debugging to

Stepwise refinement and
verification using Box
Structures.

Expected and accepted.

Unacceptable.

reliability.

Futile attempt for coverage
and little insight on field

Transfer of CSE Technology The
transfer of CSE technology was achieved
through formal, classroom-style training
courses and follow-on coaching of
demonstration team members. The
courses involved instruction on the
underlying specification, development,
and certification methods of CSE and
included in-class workshops so that
students gained experience applying the
technology. As often as possible,
workshops were supplemented with
examples extracted from the MBC
project. Training provided the
introduction to and initial experience with
the tools that would help enhance
individual and team performance.

Project support was given to the
team members through repeated on-site
coaching visits by CSE experts from IBM
and SET. This activity helped to solidify
the new ideas as team members saw how
the techniques were applied to their
specific problems.

The major intent of the training
and coaching was to establish the human
behavioral changes necessary to develop
better software. Implementing CSE is an
intellectually challenging process that

123

Random sample based on
usage model that predicts
field reliability.

instills specific values into its
participants. For example, the focus on
product quality, a major Cleanroom
theme, instills a "get it right the first time"
attitude into the members of CSE teams.
As successes were made and milestones
conquered, the CSE teams reported
significant improvements in job
satisfaction, team spirit, and the desire to
continue quality improvements. A
significant focus of the coaching effort
was to positively reinforce each project
success in order to create a stronger
identity with the project.

Such behavioral changes within a
project are improved by active
participation from all levels of the
organizational hierarchy from
contributing technical leads to engineering
management. The initial plan was for the
project staffs to work closely as teams,
rather than as individuals. Additionally,
the intention was for the staffs to be
motivated and excited about what they
were doing; that is, have a strong identity
with the process and project. Thus,
coaching contained a “cheer leading"”
aspect, designed to create a healthy
Cleanroom environment.

Reinforcement of CSE was
provided through the availability of a six
volume sct of process manuals to the
demonstration groups. These process
manuals were an integral part of the
training program and were discussed in
detail, both during the formal training
sessions and off-line as a part of the
follow-on coaching activities. Their
purpose was to augment the training by
providing reference information to
AMCCOM LCSEC engineers using
Cleanroom concepts. They serve as a
single reference source for resolving
questions about specific issues
concerning process adherence. The
process manuals are organized as
follows:

Volume 1: Cleanroom Engineering
Process Introduction and
Overview

Volume 2: Organization and Project
Formation in the
Cleanroom Environment

Volume 3: Project Execution in the
Cleanroom Environment

Volume 4: Specification Team
Practices

Volume 5: Development Team
Practices

Volume 6: Certification Team
Practices

The division of the volumes represents a
separation of concerns for the various
project stakeholders.

Process-Guided Project
Management (PGPM)

CSE is a formal process that
clearly defines the tasks necessary for the
engineering effort to progress, the
completion conditions for each task, and
the control flow that dictates the order of
work on each task. Process-guided
project management entails the use of a
clearly defined process as the approach to
be used to complete the particular project.
The intent with process-guided project
management is to give engineers a clear
and understandable road map which they

124

can follow and by which they may track
progress towards project completion.

Transfer of PGPM methods :
Awarencss of software process is a key
issue in successfully transferring
technology to an organization and to an
organization's long term success with
applying CSE. The project staffs at
AMCCOM LCSEC received an
introduction to process definition and
process-guided engineering in the context
of CSE. Coaching also reinforced the
importance of following the defined
process and using the process definition,
which defines the possible project
alternatives, to support the selection of
correct project choices.

In addition to training and
coaching, the engineering handbooks
provide a key reinforcement of the
concents of process-guided engineering.
Each volume defines the tasks and the
control flow between the tasks necessary
to conduct the specific process which is
the focus of the manual. Engineering
processes are defined as formal control-
flow procedures with specific completion
conditions. Collections of engineering
processes also have the same level of
formalized control flow and completion
conditions. Thus, each engineer,
manager or other staff member has well
defined roles and tasks that exist as a part
of a larger software process.

The application of the process is
supported by formal enactment of the
tasks defined in the handbook. For the
MBC team, this enactment was automated
in the Cleanroom Engineering Process
Assistant (CEPA), an automated process
support system which had the following
mission:

1. To minimize time lost because
supporting activities are not
properly coordinated. CEPA was
to significantly improve the
probability that all of the pre-
requisites, tools and data that an
cngineer needs to do a task are
available with no wasted timce on
his or her part.

2. To enable enginecrs to follow the
Cleanroom process and thereby
obtain all of its benefits.

3. To enforce the Cleanroom process
in the most unobtrusive way
possible by being user-friendly.

4. To enable all levels of
management to plan, schedule and
control project tasks and to ensure
that the required reviews and
verifications take place.

5. To facilitate the collection of all
required metrics for providing
statistical control of the process
and for providing better estimates
of development time and cost.

6. To update on-line state data, the
data needed to develop the
product, and make it immediately
available to all members of the
project team.

7. To improve formal and informal
communication between the
members of the group.

The engineering handbooks, and
the automated enactment gave project
staff a way to use a project framework
(the process model for the project) that
facilitates scheduling, task dispatching
and task statusing.

Technology Transfer
Description

To conduct the demonstration,
both control and demonstration groups
were identified. The control group
consisted of a sample set of ongoing and
completed software projects at the
AMCCOM LCSEC. These projects
represent the use of "typical” software
engineering methods at the AMCCOM
LCSEC. Enhancement projects at
Picatinny typically include the correction
of observed problems, the addition of
new capabilities, and in some cases, re-
engineering of software. The
demonstration project was the Mortar
Ballistics Computer (MBC) re-
engineering effort. The demonstration
aspect of this project was the adoption of

125

the CSE technology and PGPM
techniques as provided by the
participation of IBM and SET. The
hypothesis to be confirmed or rejected in
this demonstration was: The use of
CSE practices and process-driven
project management improves the
effectiveness (quality and
productivity) of the AMCCOM
LCSEC software support mission.

The technology transfer package
was implemented as follows:

(1) the transfer of Cleanroom
Engineering practices to give tcam
members the technical tools that
provide the human behavioral
changes necessary to create high
quality software with increased
productivity, and

(2) the transfer of process-guided
project management to orient both
individuals and teams to thinking
and working within a PGPM
environment.

In order to transfer the
technology, process and culture for a
Cleanroom environment, four different
tools were employed:

(1) training, in a formal classroom
setting which integrated lecture
material and numerous hands-on
workshops (tailored for this
effort),

(2) coaching, both for project
planning and execution as well as
a medium to promote ongoing
education,

(3) process handbooks (evolved for
this effort), which act as a written
source of education material and
as a reference during project
execution, and

(4) an automated process support
system (developed for this effort),
that helps c¢nforce process
adherence and monitors task
complction, by automating non
creative tasks.

Baseline Metrics for
Control Group Projects

The control groups represent the
state-of-the-practice at the AMCCOM
LCSEC. Baseline metrics were collected
in order to gain insight into project
practices and to establish a basis of
comparison to the demonstration
Cleanroom groups. Table II presents the

baseline metrics tor the control group.
These metrics are presented with the
caution that somce data collection
mechanisms are unrclhiable, resulting in
inaccuracies. The numbers in Table 11 are
similar to results reported by Mosemann
l()r other pmjuts wnlhln lhp DoD l__gl,;
B

July 1991).

Table II: Baseline Metrics for Control Group Projects

Project / Measure

Control Group Projecis

Number of Projects 5
Range of Effort - Staff Months 21-58
Total Technical Staff Months 192

Total KLOC (*)

23.14

DERIVED METRIC:
Productivity - LOC/Staff Month
(*) KL

computed using NASA/Goddard formula of:

121

(New Lines of Code + 0.2 * Modified Lines of Code)/ 1000

Observations

The following observations are a
compilation of IBM and SET experiences
with the MBC tecams. These observations
are in the context of IBM's and SET's
other experiences with replacing craft-
based practices with engineering-based
practices, both in the private sector and
with government organizations. One
must ke¢p in mind these observations are
preliminary since the project has not been
completed.

1. The assigned project teams
were able 1o assimilate and even adapt the
Cleanroom Software Engineering
practices and process-guided project
management.

A common worry among
managers when hearing about Cleanroom
is that it is too hard or too mathematical
for their staff. At Picatinny, cngincers
were able to apply and adapt the

Cleanroom practices to the needs of their
project. Engineers lcarned, used and
extended the ideas successfully for their
project. The evidence of this observation
is the products they have produced.

Disciplined engineering in a team
environment requires rigor, cooperation
of individuals, and the creativity to apply
theory to rcal world problems. This
crcates a challenging work environment
that tends to bring out the best in both
individuals and teams.

A prime cxample of the
accomplishments of the MBC tcam was
the tailoring of the box structures
algorithm to meet both their application
environment and the target programming
language, Ada. MBC tcam members
have made original contributions to the
expression of box structure constructs in
Ada, which will have applicability across
many Cleanroom projects. This has
benefited both the project, in terms of

constructive methods, and the individual
team membeis, in terms of a sense of
accomplishment. The team has enjoyed
using the various Cleanroom techniques
and have seen many real
accomplishments. The specification team
is convinced that this is the most complete
and precise specification they have ever
written. The step-wise refinement and
verification, which drives engineers to
define one small step to take at a time,
take that step, and then confirm its
correctness, has also been successful.
The development team is convinced that
they have a great design and have
minimized the amount of code they need
to develop.

Furthermore, as the MBC team
has almost completed their second
increment, it has already shown major
gains in productivity. Early estimates
show that productivity has tripled despite
the learning curve of working with a new
methodology. Moreover, this measure
includes time spent toward an entire
product specification, which will make
future increments less time consuming.
Thus, team members are optimistic about
continued increases in their productivity
(although future predictions can only be
assertions and remain to be confirmed at
project completion).

2. Staff morale has improved on
the project teams.

Another common fear of
managers when hearing about Cleanroom
is that their staff members will not like it
due to the rigor of the process and the
absence of positive feedback through
debugging. This has not been our
experience at other places where we have
introduced Cleanroom. Picatinny is no
excuotion. When an organization
replaces craft-based practices with
engineering-based practices, morale
improves. The reason seems to be that
people now know what to do, when to do
it, and how it should be done. This
eliminates the uncertainty and anxiety for
project teams that now have a good
knowledge of exactly what has been done

a.d what is remaining to be completed.
When engineers learn to use the
Cleanroom practices, they know they can
do the high quality job they have been
striving to achieve. Engineers are
convinced that they are producing a better
product. As a result, they arc excited
about it.

At the AMCCOM LCSEC, all the
engineers, both in informal contacts and
in a questionnaire distributed to the
engineering staff, reported morale
improvements. The AMCCOM LCSEC
management has also confirmed the
existence of the improved morale and, of
course, is favorably impressed.

3. Facilitation of work effort is
greatly enhanced through process-guided
project management.

Team leaders managed by process
definition and task lists which allowed
more visibility of project status by
management. CEPA was the tool used to
clearly define the tasks necessary for the
software development process to continue
including completion conditions for each
task and the control flow that dictated the
order of work on each task. The intent
with process-guided project management
is to give engineers a clear and
understandable road map which they can
follow and by which they may track
progress towards project completion.
Awareness of software process is a key
issue in successfully transferring
technology to an organization and to an
organization's long term success with
applying a given process-driven approach
to project management. PGPM must
provide for:

* the reduction of time lost because
supporting activities are not properly
coordinated,

* enable engineers to follow the defined
process and thereby obtain all of its
benefits

» enforce the defined process in the
most unobtrusive way possible by
being user-friendly

e enable all levels of management to
plan, schedule and control project
tasks

» facilitate the collection of all required
metrics for providing statistical
control of the process and for
providing better estimates of
development time and cost.

e update on-line state data, the data
needed to develop the product, and
make it immediately available to all
members of the project team.

* improve formal and informal
communication between the members
of the group.

4. The team-oriented approach of
CSE saw immediate acceptance and
realized both tangible and intangible
benefits.

A key ingredient of Cleanroom is
that a team amplifies human performance.
People took advantage of the insight of
others in order to bring the best possible
project result. Good people working
together brought in better results. The
simple idea that many minds are better
than one makes the outlook for quality
good. However, some less tangible
benefits were realized as well. The fact
that the entire team is responsible for
quality, in a series of checks and reviews,
puts pressure on the team and not on
individuals. This pressure creates a
reliance on team activity over individual
performance. Furthermore, as successes
are encountered, the entire team takes
credit, not a single individual, thus,
cementing the teamwork concepts. The
bottom line is that teamwork improves
individual performance.

QOur observation is that the MBC
team now works within an effective team-
oriented environment. We believe that
further use of Cleanroom will establish a
strong team mentality that will serve to
further improve the initial good results.

5. Coaching is a key ingredient of
technology transfer success.

Although the training was
rigorous with a mixwre of theory and
workshops, students learn at different
rates. Coaching allowed IBM and SET
staff to re-educate the slower-to-adopt
project staff members and keep the entire
tcam on a common level of knowledge
and expertise. IBM and SET technical
presence at project inception and during
project execution helped solidify the
transfer of the technology and ensured
that the project got started in the most
efficient manner.

Furthermore, there was a gap
between the end of training and the start
of the project and some of the education
was forgotten. Coaching became the
mechanism to re-educate and supplement
the original training. Further, as good
ideas were conceived by some team
members, it was possible to see that all
members were supplied with the new
ideas.

As the project progressed, the
CSE ideas needed to be adapted to the
specific Picatinny environment. Coaches
were used to discuss design alternatives
and to help in refining the technology to
best serve the application.

Perhaps the most unnoticed but
effective use of coaching was in the
positive reinforcement the CSE trainers
were able to give to the team members
and the team as a whole. Coaches are
recognized as experts. When experts
comment positively on original ideas by a
team member, the effect can be enormous
in terms of self-esteem and sense of
accomplishment and contribution. The
CSE trainers tried to positively reinforce
the behavior of those making such
contributions and encourage others to
seek answers beyond the limits of current
knowledge. The "cheer leading”
approach increased project satisfaction,
which motivated greater project
performance.

The idea of coaching with positive
reinforcement was first formally tried out
by IBM and SET on the Picatinny project

based on the hypothesis that it would be
helpful in technology transfer. The
realized benefits far exceeded our
expectations. Based on this experience, it
is now believed that coaching should be a
formal part of any technology transfer
effort.

6. Communication among teams
(and between team members) is greatly
enhanced through process-guided project
management.

An important ingredient of any
proccss-guided activity is communication
among contributing teams and
individuals. One aspect of this was that
no team culture existed at the AMCCOM
LCSEC; meaning that no real notion
existed of how teams are supposed to
behave during project execution. This
problem manifested itself in many
different ways. Testing teams often did
not receive specification updates (and
failed to ask for them). Also, work
tended to be duplicated by multiple team
members because the division of tasks
was unclear and communication among
members occurred too seldom.

There were two aspects of solving
this problem at Picatinny. The first was
to establish effective communication
among team members and the second was
to establish communication among the
different departments involved in the
project. The adoption of a well defined
process includes a vocabulary that is of
great help to the understanding and
discussion of the process. This well
defined vocabulary makes communication
between team members much more
effective and productive. Our
observation indicates that communication
among team members significantly
improved via the team approach and
strengthened through the use of CEPA.
The improved communication also started
a shift in the culture of the teams. Team
members report that they readily use each
other as information sources, quality
checks, etc. Team reviews are effective
and informative. However, the second
aspect, communication between

129

departments, continues to be a problem.
The MBC certification team members
work for a different department than the
specification and development teams.
Resulting problems are that the
certification team finds themselves
working from outdated specifications.
Furthermore, the certification team seems
to duplicate each other's work. A future
goal is to be able to duplicate the success
of the specification and development
teams in the certification team, primarily
by improving communications. A more
concerted effort should have been made
by the coaches to minimize these
communications problems.

7. Process-guided project
management supports engineers in
mastering a new technology.

Process-driven, now referred to
as "Process-guided,” project management
is one of the two basic technologies being
advanced by the STARS program. The
Picatinny project was the first project on
which this key idea has been employed.

The reason process-guided project
management seems to support technology
transfer can be summarized as follows.
When doing something for the first time,
one often asks, "What do I do next?" or
"When will I be done?" This indicates a
lack of understanding the big picture,
where engineers can clearly place their
efforts in a project context. This is not
only an attribute of first time usage of
techniques or a process, but also an
indication that a clearly defined process
does not exist or is not effectively
managed.

By placing the Cleanroom
techniques within a fully defined process,
AMCCOM LCSEC engineers knew
precisely what step they were currently
on, as well as what had been completed
and what remained to be done. Giving
each individual the foresight that showed
where they were in the context of the
entire project strengthened project identity
and boosted morale.

The results of this project also
indicate that experienced engineers will
also gain productivity benefits by
employing a process support system but
that can only be tested by comparing the
performance of experienced teams which
was not possible at Picatinny.

8. CEPA, the Cleanroom
Engineering Process Assistant, despite
some shortcomings, provided valuable
process-guidance support for the project.

There were a number of known,
as well as discovered, shortcomings in
developing and using CEPA. It was an
enhancement of a prototype system
developed during a previous STARS
Phase. The enhanced system was to
provide support to engineers using a
specific Cleanroom process model. This
approach was known to be somewhat
limiting, but was used in order to
determine the level of constraint
necessary for engineers to easily adopt
process-guided engineering. Although the
engineers did report finding the product
constraining, CEPA did allow engineers
to identify the tasks assigned to them and
locate all files necessary to complete the
tasks. Team leaders could also focus
their management effort based on
assigned/outstanding and completed
tasks. This status reporting feature
allowed team leaders to manage project
tasks at a more reasonable level of
granularity, which permitted them to
maintain the project under greater
intellectual control.

CEPA was viewed as being
tightly coupled with the process. As a
result, formal training in using it was not
given, which would have also made its
use more effective. The lack of CEPA
training was a significant shortcoming
that needs to be rectified in future
technology transfer efforts. Additionally,
formal training in using the underlying
tools in CEPA would have been useful.
Other problems with the CEPA
implementation used at Picatinny included
a clumsy user interface and difficulties in
using the software on a network.

130

It was observed that automated
process support 1s quite helpful in
supporting technology transfer. This is in
spite of some of the shortcomings of the
system that the MBC staff was asked to
use. The developers of CEPA learned a
great deal about how people use such a
system; and consequently, requirements
for an enhanced process support system
were identified and modified. The
automated process support system that is
to be transferred to Peterson Air Force
Base has been improved as a result of this
usage.

9. Specific technological aspects
of the Cleanroom Software Engineering
practices were easily and successfully
used.

Using specific techniques are
means by which engineers change their
behavior and improve their performance.
Three techniques in specific were
discussed by project staff as being major
sources of their improved performance.
These techniques are team reviews,
Cleanroom specifications and box
structured design, and are described in
greater detail below:

Team reviews, although
experiencing a slow, awkward start, were
cited by team members as one of the most
successful aspects of the new activity.
Members report that the team shared
responsibility eased misgivings about
participating in such a big project. This
negated "finger pointing" that existed in
previous projects and allowed even
difficult personality combinations to work
together. The result was that everyone
participated and worked as a team toward
project success and completion. Morale
increased sharply as groups of
individuals transformed into an effective
software team.

Cleanroom specification,
most notably black box documentation,
was citcd as being responsible for gains
in productivity. Many talented engineers
cxisted on the project and their

productivity was significantly enhanced
when working from a well defined
problem statement. The completeness of
the specification was the main reason
cited for the team's confidence that they
were producing a high quality product.

Box structured design is
credited with focusing the code
generation process and with making team
reviews more effective. The team
enjoyed the orderly process of developing
software. It got them started more
quickly on solving a particular problem
and they were able to measure the
progress of the development activity with
more precision than in the past. Since the
process relies a great deal on logical
thinking as opposed to programming
skill, less experienced programmers are
able to take a bigger share of the
development burden. Therefore software
engineers can make the most of their
software engineering skills without
having to develop in-depth programming
language expertise.

Results

The most important result noted
by this effort, even in its preliminary
form, is that the motivation to continue to
use Cleanroom practices and PGPM at
Picatinny has been established. This
demonstration effort was sponsored by
STARS and the continued effort is being
sponsored by the AMCCOM LCSEC.
This result is an instance of the STARS
program fulfilling its mission by being
the catalyst for introducing improvements
to the software engineering capabilities in
the DoD. In one sense, the effort is to be
expanded across the entire organization,

131

is the most definitive conclusion of this
effort.

In addition to the above
mentioned conclusion to this effort, the
following conclusions can be drawn
based on the current status of the MBC
project.

1. It is possible to transfer CSE
and PGPM practices to project teams
operating within a typical immature DoD
SSA organization.

This was shown by the fact that
the MBC project has progressed to a
point where CSE and PGPM are being
successfully applied. This result shows
that a specific maturity rating is not
necessary in order to benefit from
Cleanroom Software Engineering or
Process-Guided Project Management.
The engineering staff also enjoyed using
the ideas, and all were interested in using
the ideas again. Additionally, nearly all
were interested in supporting and
participating in the establishment of a
"Cleanroom Competency Center” at the
Picatinny Arsenal.

2. Typical immature DoD SSA
organizations can realize important
benefits, in terms of improved process
productivity, product quality, and staff
morale, from the application of CSE and
PGPM.

This conclusion is supported by
the apparent tripling of productivity of the
MBC team. Table III shows the results
for productivity for increments 1 and 2.
The productivity increases because the
training and learning curve are not
required for successive increments.
Future increments should show additional
improvement.

Table 11I: Productivity Change for MBC Re-engineering

Increment

Change in Productivity

based on Picatinny
Baseline Metrics

3.06:1

Two important observations from
the MBC project are that (1) PGPM has
aided the learning process and helped
ease the transfer and application of the
CSE technology and (2) following a well
defined process significantly improves
team productivity and morale.

Early indication are that quality
has appeared to have improved over
previous product quality according to
Picatinny's customers. The quality of the

3.54:1

software developed during the first
increment is very high when compared to
quality for traditional software
development. The MBC team is excited
about the prospect of the upcoming test of
their second increment. Thus, the result
achieved will be viewed by the MBC
team as the mark to better on the next
increment of this project. The incentive
and motivation for continual improvement
is firmly in place among MBC team
members.

Table IV: Quality: Number of First Increment Failures

Failure | Number of Description
Type Failures
Process Approved improvements made to design but not reflected
in updates to the specifications.
Spelling Misspellings on displays.
Behavior Coding Errors, did not work as specified.
First Increment Failure Rate = 2 Behavior Failures = 0.24 Failures/KLOC
8500 LOC

3. The return on investment at
Picatinny cannot be definitively
calculated, but indications are that there is
a significant return on investment.

Since the project is not yet
complete, a preliminary estimate of return

on investment can only be based on
estimates from the information currently
available. The resulting return on
investment (ROI) calculations appear on
the next page in Table V.

|

Table V: Return on Investment for MBC Re-engineering

LOC Staff Months MBC

| Increment per would have taken ROI ROI ROl

Staff without CSE Base with with
Month Coaching| Training
8500 LOC/121 LOC/SM =
1 370 70.3 5.9:1 8.9:1 14.1:1

18200 LOC/121 LOC/SM =

20.4:1 17.1:1

SM = Staff Months

ROI Base = would hav n-
Staff Months of Coaching Effort + Staff Months spent in Training
ROI with Coaching = (SM MBC would have taken - SM MBC took - SM of Coaching Effort
Staff Months spent in Training
ROI with Training = M MB k - SM

Staff Months of Coaching Effort

If these assertions are correct, one S. Based on this demonstration
must also realize that productivity will we now believe that a technology transfer
increase with the later increments because program to support individual projects at
specifications are comp!zte for the entire a typical DoD SSA organization must
system. Once again, the final calculation begin with a defined process for the
of return on investment awaits project project and should consist of the
completion. following five components:

(1) formal CSE training,

4. An Automated Process (2) training in PGPM,

Support System (PSS), that is consistent (3) the availability of engineering

with the process defined for the project, handbooks,

facilitates technology transfer (4) the use of a PSS (e.g., CEPA
and its successor), and

Automating the non-creative tasks (5) the availability of qualified
of a new technology, such as file access coaching.
and simple process flow facilitates the
adoption of the new technology. This The combination of technology
was true even for a system with transfer components created a series of
limitations known and subsequently successes at Picatinny; including
observed in CEPA. CEPA's successor productivity gains, expected quality
system (being developed for deployment gains, and the increased motivation of the
on the STARS Air Force demonstration engineering staff.
project) applies many of the lessons
learned from observing CEPA use at The MBC project has realized
Picatinny. significant gains from the CSE ideas.

Once the learning curve had been

completed;, initial successes in creating

133

)

the Black Box specification served to
cement commitment to CSE.

The resulting conclusions from
the overall evaluation are preliminary
because the demonstration project is still
in its early stages. However, the original
hypothesis that Cleanroom improves the
effectiveness of the software re-
engineering activities at Picatinny looks
very promising. Indeed, management
and staff agree that morale and motivation
is extremely high, that teamwork is now
the normal mode of operation, and that
people are excited about the software
process being established and are
motivated to produce high quality
products.

A good technical road map is in
place at Picatinny; the technical personnel
are developing the skills that appear to
show significant gains in productivity.
Even more promising is the fact that these
gains were made with minimal exposure
to CSE. Future gains are likely to be of
greater magnitude as projects are carried
out by experienced teams of Cleanroom
engineers well advanced on the learning
curve.

Future Directions

The next steps for
LCSEC/STARS cooperation have been
defined. The impressive results to date in
the areas of productivity, quality, return
on investment and moral have convinced
AMCCOM LSCEC management to
continue the work begun under this
demonstration project and to expand it
further throughout the organization and
this will include the following:

Complete remaining phases of
MBC project of which there are three
increments in the initial plan. This will
result in a completely re-engineered
system.

Gain insight from a sccond
experimental project, the Bradley

134

Institutional Conduct of Fire Trainer, a
software block update of a FORTRAN
system. This project is a maintenance
software block update for the aiming
system on the Bradley fighting vehicle.
CSE and PGPM techniques are being
adapted for use in this important area.
Much needs to be lcarned in adopting the
successful techniques used on the MBC
to the area of software maintenance.

Creating a Cleanroom Process
Team to build CSE and process expertise
in house. This group is responsible for
continuous review and study of the
application of Cleanroom and PGPM at
Picatinny. This group's charter is to
internalize and refine CSE and PGPM to
the software practices at Picatinny.

Planning to use CSE for all future
development and re-engineering projects
internal to the LCSEC. It s cost effective
to use these techniques for any
maintenance project that requires effort
equal to changing one third or more of the
original code. Since productivity
increases are three times conventional
methods, a whole system can be re-
engineered for the same cost or less of a
maintenance update. The technology
transfer package developed by IBM and
SET can be used by the trained staff to
support these projects. The MBC team is
fortunate to have talented team members
who can carry this out.

Evolve the Process Support
System. The understood and observed
shortcomings in CEPA are primarily
addressed by the PSS being developed by
the IBM STARS team for use on the
STARS Air Force Demonstration Project
at Peterson Air Force Base. The major
source that provided input to the
specification process for the PSS was the
experience gained by using CEPA at
Picatinny. As a result, many of the
improvements desired by Picatinny are
being developed as a part of the PSS.
The PSS needs to be delivered to
Picatinny, as well as to Peterson Air
Force Basc. As a result, Picatinny will
receive their desired functionality and will

help provide a second test bed for the
PSS.

Evolve Cleanroom Software
Engineering into a complete life cycle
process as far as is feasible using
standard Cleanroom techniques. Work is
currently underway to perform a mapping
of the evolved Cleanroom Software
Engineering process, as used at
Picatinny, against SEI developed
Software Process Frameworks (SPF) for
the SEI CMM Level 2 and 3. The results
of this mapping will provide Picatinny
with a road map of all areas that are either
not covered or are poorly covered by the
CSE process. These results will be used
to identify areas for Cleanroom process
definition as far as is practical. Areas that
are not practical for Cleanroom extension
will be defined with non Cleanroom
extensions. The results will be a
complete life cycle process definition for
Picatinny to support their move to SEI
CMM level 3. Additional work is being
done in the area of Metrics to determine a
baseline of measures to support a level 3
organization.

135

Design Capture Views Applied to the WAA System

Daniel J. Organ

Naval Undersea Warfare Center
Newport Division
New London, CT 06320

Abstract

This paper illustrates two system definition
methodologies developed by the Engineering of Complex
Systems (ECS) project. The methodologies are the
System Design Views and the System Design Factors.
These methodologies are used to provide a detailed
characterization of the hardware components of the
AN/BQG-5 Wide Aperture Array (WAA) system. The
system hardware components are characterized using the
Informational, Functional and Implementational System
Design Views. Properties including performance,
physical attributes and future needs of the system are
presented using the hierarchical System Design Factors
approach. The benefits and utility of the information in a
system reengineering environment are discussed.

1: Introduction

One area of evolving system engineering
methodologies for complex systems focuses on providing
a comprehensive system definition early in the design
cycle. Commercially available system engineering tools
such as RDD-100 allow system designers the facility to
generate various design capture views. The views provide
the mechanism to completely define system requirements,
notional architectures and system behavior. The goal is
to mitigate risk by validating candidate architectures and
identifying potential problems prior to building a
prototype of the system.

When beginning to specify the requirements for a
complex military system replacement or upgrade, it is
important to characterize the existing system. The
designer uses the information obtained from the
characterization of the baseline system in two valuable
ways:

1. To identify areas which are candidates for
improvement in the new system design.

2. To provide a basis of comparison between
the existing system and the new system.

For example, cost versus performance may be the
primary tradeoff in design of the new system. The
baseline characterization of the existing system may
reveal that the ratio of cost to throughput is high. In this
case the designer must ensure that the cost to throughput
ratio for the new system does not exceed that of the
existing system,

The preceding example illustrates how specific
information obtained from a characterization of a baseline
system can be used to define and evaluate a new system
design. The example focused on a specific aspect (cost vs.
performance) of the system definition. It is clear that the
consideration of only this aspect provides a narrow and
incomplete definition of the system.

As part of the Engineering of Complex Systems
(ECS) project, scientists at the Naval Surface Warfare
Center (NSWC) are actively pursuing research in the
areas of system definition using several design capture
views. The following design capture views and objectives
of each view have been defined by N. T. Hoangl:

1. Informational
» Characterizes system concept of operations
« Represents system in abstract terms

2. Functional
* Defines system functions and decompositions
» Defines data flow requirements

3. Behavioral
* Defines system critical paths
* Specifies system real-time characteristics

4. Implementational

* Define physical hardware, software, and human
resources

136

« Specifies system physical interconnectivity

5. Environmental
* Establishes conditions and events constraining
system operations
« Specifies performance MOEs and conditions of
measurement

Within these design capture views NSWC researchers
have defined a set of System Design Factors2(SDF). The
SDF represent a proposed standard methodology to
describe the properties, attributes and characteristics of the
system. The SDF can also be used to quantify specific
aspects of the design and to perform trade-off analysis.

This report presents a baseline characterization of the
AN/BQG-5 Wide Aperture Array (WAA) system
bardware. The goal of this effort in an overall
reengineering environment is to provide a detailed
baseline to be used for comparison and trade off analysis
between relevant aspects of the existing system and the
proposed system. In the following case study the
characterization of an existing system will be represented
using the Informational, Functional, and
Implementational design capture views. In addition,
System Design Factors in the areas of performance,
physical attributes, and future needs will be used to
describe the baseline system hardware.

2: System Design Views

The following three System Design Views are the
Informational, Functional and Implementational views.
The views focus on the hardware components of the
system. Each view contributes a different aspect of the
overall system description. Collectively the design
capture views provide a detailed characterization of the
AN/BQG-5 WAA system hardware. However, the
system hardware definition provides an illustration of
only one aspect of the research being conducted by the
ECS project.

2.1: Informational

This design view provides a textual description of the
overall system functions and simple concept of
operations. In addition some hardware specific
information is included. The information in this view is
intended to familiarize the designer with the functionality
and use of the baseline system.

The AN/BQG-5 WAA is a stand alone acoustic
sensing and tracking system designed to augment the
combat system in 688 class attack submarines. The

(s

WAA system provides the capability to acquire, track and
rapidly analyze an acoustic contact and conduct Target
Motion Analysis (TMA) without maneuvering the ship.
The inboard system hardware consists of 3 Common
Electronic Equipment Enclosures (CEEE). The units are
the WAA Receiver (1306), WAA Beamformer (1307) and
WAA Processor (1308). A brief description of each unit
and the unit resident firnware follows.

The WAA Receiver cabinet receives multiplexed
Manchester coded serial-bit format data transmitted via
twisted shielded pairs of wire from the canisters in the
WAA Passive Receive Outboard Electronics (OBE). The
WAA Receiver receives, demultiplexes, and reformats
data signals for output to the WAA Beamformer.
Required DC power and control signals for the WAA
OBE are carried down twisted shielded pairs of wire from
the WAA Receiver.

Firmware resident in the WAA Receiver provides
control and performance monitoring of data that is input
from the WAA OBE and formats the data for output to
the WAA Beamformer. The firmware receives OBE
controls and parameters from other system software and
formats these for transfer to the OBE. The firmware
includes control of a Pseudo Random Noise Generation
(PRNG)/Cal generation function which can generate a
single bit of Pseudo Random Noise (PRN) or calibration
signal to be passed to the OBE for generation of a test
signal. The firmware performs a gain calculation to be
used for OBE gain control. The finnware also performs
Digital ACINT Data Acquisition System
(DADAS)/ACINT Calibration injection upon command.

The WAA Beamformer cabinet receives WAA
bydrophone data from the WAA Receiver; provides
required acquisition and track beamforming; implements a
post beamformer correlation function; provides selectable
beam data output for recording, audio, and calibration;
performs integration and requantization of correlogram for
display; provides post beamforming AOBT signal
injection, and provides resources for tracking,
localization, performance monitoring and unit control.

The resident firmware receives DIMUS hydrophone
data and linear hydrophone data and the necessary controls
to manage the track and acquisition beamforming and
signal processing.

The acquisition processing provides DIMUS
beamforming; post beamformer AOBT signal injection;
post beamformer filtering and correlation processing;
selectable digital beam output for recording; stabilization,
integration, normalization, and requantization of
correlation data for display; PM/FL and processing
control.

BCM ASICS 68000 56001 TMS320C30 TOTAL
@25 MIPS @75 MIPS @20 MIPS @25 MFLOPS MIPS/MELOPS

BCM 900 900/0
GCM 9 9/0
CFM 300 300/0
SPM 3120 31200
FPM 1400 0/1400
GCA 300 300/0
EEM 100 100/0
TOTAL 900 9 3820 1400 4729/1400

Table 1. MIPS/MFLOPS Calculations for Unit 1307

The track processing consists of linear beamforming;
post beamformer filtering and correlation processing;
DEMON classification processing; selectable digital
beam and hydrophone data output for recording and audio;
stabilization, integration, normalization, and
requantization of correlation and DEMON data for
display; noise estimation; PM/FL; and processing
control.

The WAA processor supports functional processing
for acoustic data, On-Board Training, Input/Output (/O)
processing, Database Management processing, disk
storage and Workstation processing. The unit
functionality is not provided by firmware but by
application software executing in processor nodes
connected by a LAN called FLEXNET. FLEXNET
supports data transfer and communication between nodes
within the unit.

2.2: Functional

The functional design view of the WAA subsystem
is represented by characterizing system throughput and
resource utilization. Information describing the functional
partition is also presented. The information presented in
this view provides insight into the computational
allocation of the baseline system. When beginning to
develop a strategy for allocation of processing resources
for a system upgrade it is belpful to first examine the
baseline system allocation as a starting point. By
characterizing the throughput of existing system the
designer gains some insight into the overall processing
requirements of the system as well as specific functional
partitions.

The system throughput is represented in MIPs and
MFLOPs. The example unit calculation listed in Table [
for unit 1307 are based on analysis of the number and
types of processors resident in the unit3. The modules
which contain processors are listed on the left side of the

table. The various processors resident on the modules are
listed on the top of the table along with the specific
MIP/MFLOP rating for each module type. Modules based
on two microprocessors, two Digital Signal Processing
(DSP) chips and one Application Specific Integrated
Circuit (ASIC) provide the system processing. The DSPs
are the Motorola 56001 and Texas Instruments
TMS320C30. The microprocessors are the Motorola
68000 and 68030. The ASIC is a special purpose chip
called the Beamformer Computational ASIC,

For the throughput characterizations the processor
ratings are estimated to be 2 MIPs for the 68030, 0.75
MIP for the 68000, 20 MIPs for the 56001, 25
MFLOPS for the TMS32C30 and 25 MIPs for the BCM.
The ratings for the ASIC and DSPs are estimates and are
based on published benchmarks, clock speed and have
been derated to estimate actual sustained throughput rather
than peak throughput. The MIP rating for the 68030 is
based on specified CPU module performance.

In unit 1306, a combination of 68000 and 56001
provide a total of 486 MIPs. The 56001 support the
demultiplexing of data received from the OBE. The
68000 support unit control functions.

Table I shows that a combination of all processor
types contribute to the total 1307 unmit throughput
capacity of 4729 MIPs and 1400 MFlops. The primary
functions performed in this unit are beamforming,
detection and tracking. The majority of the processing is
performed by the DSPs and the ASIC. Again, the 68000
supports unit control functions and does not contribute
significantly to the overall unit computational capacity.

Although a table is not presented for unit 1308, the
processing is provided entirely by 68030 processors for a
total unit throughput capacity of 95.2 MIPs3. The 68030
resident on the CPU module and the NSU module which
performs FLEXNET processing have measured
throughput of 2 MIPs. Other 68030 are resident on 1/O
modules (FST, NTDSE, SCSI, SIOC, CSIO) and have

133

5% "
ASICS 225

14%
TMS320C

Processors/Function

Throughput/Function

Figure 1. Functional and Processor Partitioning

measured throughput of 1.6 MIPs.

The pie charts in Figure 1 provide an overall system
summary which illustrates how the throughput is
partitioned between system functions and processors. The
figure shows that the DSPs form the majority both in
number of processors and in throughput. In particular the
56001 provides 55% of the number of processors in the
system and 64% of the total system throughput.
Functionally, the majority of processors and throughput
are allocated to Beamforming and Detection. As seen in
Figure 1, 23% of the total number of processors and 30%
of the system throughput are allocated to Beamforming.
For Detection 31% of the processors and 38% of the
throughput are allocated to this function.

While the throughput data presented above illustrates
the available computational capacity of the system and
some indication of the partitioning, it does not show how
much of the capacity is being utilized by the application
software. Table II contains resource utilization for the
A3 drawer in unit 13074. Both processor and memory
utilization as well as available memory metrics are listed
for each individual processor or processor group. Because
the available memory and memory utilization in unit
1307 are generally relatively low, the data indicates that
the resident functions are more processing intensive than
memory intensive. With a few exceptions the majority of
the processors are below the system TADSTAND

139

requirement of less than 80% processor and memory
utilization.

2.3: Implementational

The implementational design view of the WAA
subsystem is represented by describing each hardware
unit. The description will include the drawer types,
module populations, and finally overall unit metrics for
power, weight, volume and available space3. The
importance of this view is that it provides a detailed
characterization of the physical aspects of the baseline
hardware.

Three units comprise the WAA subsystem. All the
units are nine drawer CEEE populated by SEM-D format
modules. The units are water cooled and are powered by
155 VDC. Each unit contains one Power Control drawer
which provides EMI filtering, unit and drawer controls
and status monitoring and distribution of 155 VDC
power. Unit 1306 and 1307 each contain an Interface and
Control drawer which acts as a unit controller for
synchronization and timing control.

As described earlier, unit 1306 contains nine drawers.
In addition to the power drawer(A2) and the interface and
control drawer(AS) , Unit 1306 contains six
demultiplexor drawers(A1l, A3, A4, A6, A7, A9) and onc
unpopulated drawer(A8). Each drawer, except for A2,

MODULE PROC MEM(RAM) MEM(RAM)
DRAWER # PROC IYPE UTIL(%) UTIL(%) AVAIL(KB)
A3
CHANNEL BEAMFORMER 18 BCM 68.0 37.0 32
TIME DELAY CALC. 3 GCA 5.0 13.0 96
CHANNEL CONTROLLER 3 GCA 450 210 96
DRAWER CONTROLLER 1 GCM 450 200 128
FILTERING 6 SPM 79.0 7.0 192
SPECIAL OUTPUT COLLECT 3 SPM 65.0 10.0 192
SPECIAL OUTPUT 1 EFM 89.0 10.0 192
FULLBEAM CORRELATOR 6 SPM 71.0 78.0 192
HALFBEAM CORRELATOR 6 SPM 78.0 78.0 192
DEMON) SPM 37.0 94.0 192
ACOUS. FORM/ T/OUTPUT 3 CFM 15.0 10.0 384

Table lI. Unit 1307 Resource Utilization

contains 66 module slots. The module populations of the SPM modules which contain 2 56001 DSP, perform: the
demultiplexor drawers are identical. GCM modules which majority of the demultiplexing. Unit 1306 contains 192
contain 68000 processors, perform control functions. The WPR modules which provide DC power to the OBE.

Al A2 Al A4 A5 A6 A1 A8 A9 TOTAL
BCM 18 18 36
GCM 1 1 1 7 1 1 12
CFM 3 3 3 3 3 15
CT™ 1 1 1 3 1 1 8
DRM 3 6 3 6 3 21
DDM 3 3
SPM 18 12 18 12 18 78
PSM 1 2 1 7
CDM 3 3 3 7 3 3 22
FPM 28 28
ROM 6 6
WM 3 3 3 9
wCM 9 9 9 27
GCA 3 3 3 3 3 15
DRD 1 1 1 1 1 5
CcM S 5
EFM 1 1 1 1 1 5
DAC 2 2 4
KLM 1 2
TOTAL _ 47 0 53 47 61 53 47 0 0 308

Table lll. Unit 1307 Module Population

140

----------T

POWER VOLUME PROC. SPARE PROC.
THROUGHPUT ~ SLOTS DENSITY
UNIT KW) FT3) (MIPS/MFLOPS) (%) (MIPS/FT3)
1306 59 24 486/0 38 20
1307 3.6 24 4729/1400 41 197
1308 2 24 95/0 77 4

Table IV. Summary of Unit Metrics

The module population of unit 1307 is listed in
Table IIT3. In addition to the power (A2) and interface and
control (AS) drawers, this unit contains three identical
Acquisition/Beamformer drawers (A1, A4, A7) and two
identical Track/Beamformer drawers (A3, A6). Drawers
A8 and A9 are empty. The primary computational
modules contained in the unit are the BCM (ASIC),
GCM (68000), CFM (56001), SPM (2/56001), FPM
(2/TMS320C30), GCA (68000/56001) and EFM
(56001). The WCM module performs 1 bit DIMUS
processing.

Unit 1308 contains two Data Management drawers
(A3, Ad), a disk drawer (A6) and an EMSP /O drawer
(A1) as well as the power control drawer (A2). Drawers
AS, A7, A8, A9 are empty. The modules in the
functional drawers (Al, A3, A4) are configured in
processing nodes to perform specific functions. Each node
contains 1 CPU, 1 or 2 GM16, 1 NSU and various
interface cards (FST, NTDSE, SCSI, CSIO).

PROPERTIES @ ATTRIBUTES

Throughput

1. Performance

Utilization
Power
I1. Physical Weight
Volume
[11. Future Needs Expandability

Table IV summarizes several unit metrics for the
WAA subsystem. The percentages of spare slots for each
unit was computed by dividing the number of occupied
module slots by the number of available module slots.
All the units contain available space for additional
modules. The processing density for each unit was
computed by dividing the unit MIPS by the volume and
indicates that the majority of the system processing is
performed in unit 1307.

3: System Design Factors

One of the primary objectives of System Design
Factors is " to provide a mechanism to quantify and
identify a large, complex real-time system's strengths and
weaknesses so that effective comparison of different
systems is achievable"2. By defining a set of SDF,
specific system characteristics are more easily compared.
The information is presented as a hierarchy in which each

METRICS QUANTITATIVE VALUES
1306 1307 1308

MFLOPS 0 1400 0
MIPS 486 4729 95

percent (%) 43 50 34

kilowatts kW) 5.9 3.6 2
pounds (Ibs) 1120 1240 1060

cubic feet (f13) 24 24 24

spare slots (%) 38 41 71

Table V. System Design Factors

141

level provides increasingly specific descriptions of the
properties listed in the left hand column of the table.
Table V contains a list of SDF defined for the WAA
subsystem. The properties listed in Table 9 are only a
small subset of the SDF identified by Nguyen and
Howell2.

4: Summary

This paper provides a characterization of the WAA
subsystem. The information is presented using two
system definition approaches developed by researchers at
NSWC. The approaches are the System Design Views
and the System Design Factors methodologies.

The System Design Views approach uses 5 unique
design views to describe the system. They are the
behavioral, environmental, functional, informational and
implementational view. Each view provides specific
information which can be used separately to define
specific system characteristics. When taken together, the
set of views provide a comprehensive description of the
system.

The System Design Factors approach involves
creating a hierarchy of system properties. Each successive
layer of the hierarchy provides additional detail to define
the property. By presenting the information in a
hierarchical format, it allows the designer to compare and
contrast the relevant properties of various systems.

System definition methodologies such as System
Design Views and System Design Factors are being
developed to improve complex system engineering. The

goal of these methodologies is to improve the system
definition early in the design cycle. The hope is that these
methodologies will aid the system designer in the
conceptualization and development of complex systems.
When considering system upgrades or improvements
it is important to evaluate characteristics of the new
system against the existing system. This report has
attempted to characterize the WAA subsystem by
applying currently evolving system definition
methodologies to present the pertinent information. The
information presented will be used to perform trade off
analysis and evaluate relevant aspects of the proposed

system upgrade.
References

1. Hoang, N. , "The Essential Views of the
System”, 1991 System Design Synthesis Technology
Workshop, Silver Spring, MD, September 1991.

2. Nguyen, C.M,, Howell S. L., "System Design
Factors", 1992 Comglex Systems Engineering Synthesis
and Assessment Technology Workshop, Silver Spring,
MD, July 1992.

3. General Electric Company, "AN/BQG-5 Hardware
Notebooks", 9 March 1992,

4. General Electric Company, "AN/BQG-5 System
Metric Reports”, March 1993.

142

Translating CMS-2 to Ada

Charles H. Sampson
Computer Sciences Corporation

Abstract

The goal of this paper is a description of TRADA, a
CMS-2 to Ada translator that is being developed by Com-
puter Sciences Corporation under the auspices of the
Naval Command, Control and Ocean Surveillance Center
(NCCOSC) Research, Development, Test and Evaluation
Division (NRaD) in San Diego.

This paper begins with a discussion of the translation
philosophy behind TRADA and an overview of the trans-
lator. Then follow three sections that sketch CMS-2.
Those familiar with CMS-2 might be tempted to skip
these sections, but they do contain some subtle points that
a user might be unaware of. A discussion of CMS-2
features that cause translation problems and several of the
translation strategies used in TRADA are next. The paper
concludes with a brief discussion of the one known case
of inadequate translation and a summary.

1. Philasophy of Translation

What should be the goal of a CMS-2 to Ada translator?
There is no single answer to that question. From the
user’s viewpoint a translator (from any language to any
other) should ideally translate all code with 100% accura-
cy; if the ideal cannot be achieved then at least it should
translate the hard parts that the user doesn’t want to do
himself.

In practice, it is often impossible to achieve either of
these goals, particularly when the language being translat-
ed is as undisciplined as CMS-2. It is often precisely the
parts that the user finds hard that are very difficult or
impossible for a translator. Nonetheless, a translator can
have a significant impact in transitioning a project from
CMS-2 to Ada. It can take care of many of the mind-
numbing details, leaving the humans involved free to
devote their energies to important parts of the task.

The design and implementation of TRADA is driven
by three goals: to produce translated code that is trans-
portable and at least as easy to maintain as the original
CMS-2; to translate with 100% accuracy when translation
is possible; and to clearly indicate the problem when
translation is not possible. Even these goals are not al-
ways attainable, but the cases when they are not attained

are expected to be very rare or, in the case of inaccurate
translation, detectable by some other means.

The desire for transportable, maintainable, Ada code
comes from the belief that there is no particular virtue in
exercising an Ada compiler. That is, the primary, per-
haps unstated, purpose of the translation is to reap the
benefits of the Ada language and two of those benefits are
transportability and maintainability. While there might be
some argument on the issue of transportability, particular-
ly for a specific system targeted to a particular Navy
computer, it is hard to justify ever producing code that is
harder to maintain than the CMS-2 original, as has been
seen from time to time.

Fully accurate translation is required because of the
carefully tuned algorithms in much deployed CMS-2 code,
particularly fixed-point calculations. If the translation
output inefficiently but accurately captures the algorithm,
the maintenance programmer can look at the Ada code
and decide how to improve the efficiency. This is a much
easier process than attempting to determine why a previ-
ously correct algorithm is no longer producing correct
results.

Clear indication of translation problems is a counter-
part of the desire for fully accurate translation. When an
accurate translation is not possible, it is necessary to call
out to the maintenance programmer that intervention is
required.

2. TRADA Overview

TRADA is viewed as a one-shot tool. That is, any
CMS-2 program is expected to be translated only once.
After that, any modifications will be made to the output
Ada code. Because of this one-shot aspect, the emphasis
in TRADA has been on the translation process, with
minimal regard for execution speed. If a program is only
going to be used once per project and only a few times in
a single shop, very long execution times can be accepted.

It has been suggested that some might want to translate
using TRADA, investigate the translation output, modify
the CMS-2 source, translate again, and repeat this process
through several cycles. This approach seems to be based

143

on the belief that a slight tweak of the CMS-2 would
result in successfully translating many previously untrans-
latable statements. While this might be true, in these
times of limited resources it was decided to carefully
document the kind of changes that should be made to the
code before translation and reduce costs by implementing
with minimum consideration of throughput.

The implementation of TRADA is in progress as this
paper is being written. Rather than freezing the descrip-
tion of TRADA at this time, it is described as though it is
complete, with all specified features implemented.

TRADA is being developed on a VAX/VMS, using
DECAda. It has been designed to simplify transporting
to other hosts. In particular, its design does not take
advantage of the virtual memory of the VAX; all major
data structures have a spill-to-disk capability. (However,
TRADA is not a sequence of independently loaded phas-
es. Therefore a reasonable amount of memory will be
required to hold the executing code.)

In the following subsections a number of terms are
used that might be unfamiliar to those who do not know
CMS-2. They are explained in section 3.

2.1 Inputs

TRADA is an unusual translator in that it only trans-
lates entire programs. Certain of its translation decisions
require knowledge of all uses of the item being translated.
Therefore, translation of less than an entire program
would conflict with the goal of fully accurate translation.

As a result, one required input to TRADA is the entire
source of the program to be translated. TRADA does
support the include capability of the MTASS CMS-2
compilation system, so it is not necessary to gather all of
the source into a single file. On the other hand, TRADA
does not support compools, so the source of the system
data blocks that make up compools must be presented as
part of the source to be translated. (Compools cannot be
used in TRADA because of the need to see all uses of
items before their translation can be determined. Even if
this were not an issue, compools are not cost-effective
because they would be used only once. Thus the cost of
implementing compools in TRADA would not be paid
back as it is for a CMS-2 compiler by the reduction in
resource usage gained when they are input to multiple
compilations.)

The presented source program must also be correct
CMS-2; if any syntax or semantic error is found, no

144

translation is produced. The potential for chaos that could
result from translating an incorrect CMS-2 program is too
great. The requirement of a complete, correct, source
program means that the user must fix the problems dis-
cussed in sections 3.2 and 5.3. Without these fixes,
proper translation is impossible.

TRADA must also be told the name of the main proce-
dure. This information is used solely to generate the Ada
main procedure, which does nothing but call the transla-
tion of the CMS-2 main procedure.

TRADA optionally accepts the input of a scripr file,
which directs certain aspects of the translation. Examples
of the kind of thing controllable through the script file are
whether the use clause or fully qualified names should be
used, whether fixed-point conversions should be by trun-
cation or left to the Ada fixed-point accuracy specifica-
tions, and whether between-statement comments are at-
tached to the preceding construct or the following one.

2.2 Qutputs

TRADA creates one package corresponding to each
CMS-2 module of the program being translated. For
system data blocks, the package usually consists of a
specification only, although there are cases in which the
package will have a body. For system procedure blocks
the package specification contains the declarations of the
module’s entry subprograms and any other exported dec-
larations. Each of these compilation units is created in a
separate file.

The output also contains a package (specification only)
corresponding to the major header and a "main" proce-
dure that calls the translation of the CMS-2 program’s
startup procedure.

In addition, a number of packages are created that do
not correspond to any single construct of the program
being translated. One of these contains the Ada transla-
tions of all of the CMS-2 types used, along with a number
of functions needed to support those types (mostly conver-
sion functions that truncate). This package is tailored to
the specific translation; there are too many valid CMS-2
fixed-point types (32,130) to use a canned package that
contains translations of all of them. To minimize the
number of explicit conversions needed in translated ex-
pressions, this package makes heavy use of subtypes. (As
an aside, the ranges and deltas used to define these types
are expressed in octal, which corresponds clearly to the
way the types are expressed in CMS-2.)

The specification of another generated package contains
the translations of everything whose definition was incom-
plete. If any of those items are subprograms, the body of
this package is generated to contain their stubbed defini-
tions. The existence of this package is a warning that the
requirement of a complete program has not been met. It
does, however, permit the translated output to be com-
piled and linked. The careful user of TRADA might be
able to flesh out this package and get working Ada code,
rather than fixing the CMS-2 and retranslating.

Other generated packages, generated as needed, contain
Ada versions of subprograms predefined in CMS-2 and
code to simulate the hardware switches of the Navy com-
puters. The latter will ultimately be replaced, of course,
but it is useful in the initial post-translation stages when
the translated code is being verified, augmented, and
cleaned up.

2.3 Assumptions

TRADA assumes very little about the Ada compiler to
be used on the translated code. It assumes that the com-
piler supports a 32-bit integer, as suggested by the Uni-
formity Rapporteur Group, but does not assume that it is
Standard.Integer. It implicitly assumes that the compiler
has enough capacity to compile the translated code. It
assumes that binary fixed-point deltas are supported for
some reasonable set of values. (l.e., it will properly
compile statements of the form

FOR Xyz'Small USE 2.0 ** N;
for a reasonable range of values of N.)

3. Description of CMS-2

CMS-2 is a closely related family of languages. By
standards of the 1990’s, these languages lie at the low end
of the spectrum of high order languages. Indeed, when
I first became familiar with CMS-2 almost 20 years ago,
I characterized them as "disguised assembly languages”.
I have had no reason to change that characterization since.
Of the well-known languages, the CMS-2 dialects are
probably closest to C in strengths and weaknesses, al-
though certainly not in syntax.

In this paper I use the term CMS-2 as though it were
a single language rather than a family. When I write
about a particular dialect, I make that clear.

CMS-2 uses a bit of non-standard terminology, both in
its keywords and in the description of features. To mini-

mize the jolt to the sensibilities of the uninitiated, I will
describe CMS-2 using Ada terminology as much as possi-
ble. For the benefit of those who know CMS-2, and who
might be confused by what they consider non-standard
terminology, I will put the corresponding CMS-2 term in
parentheses.

One Ada term that will be used in the following has
not yet received wide acceptance. It is regional data,
meaning data declared in a package body but outside any
subunit of the package.

3.1 Gross Program Structure

There are two structures for modularization in CMS-2:
the system data block and the system procedure block,
commonly called SYS-DD and SYS-PROC respectively,
after their defining keywords. (CMS-2 keywords often
contain embedded hyphens. Unlike COBOL, when the
hyphen is used as a minus sign it is not necessary to set
it off from identifiers in any fashion. This is only one of
the unusual problems imposed on compiler writers by the
language.) The system data block is a module that con-
tains declarations of global data. A system procedure
block contains executing code, along with data whose
scope is global, local to that module, or local to a subpro-
gram within that module. Each of these modules can be
preceded by a minor header, which essentially parameter-
izes the module. The purpose of a system procedure
block appears to have been to afford a mechanism fo.
encapsulating a subprogram of the system along with any
auxiliary subprograms needed to assist it in carrying out
its function. In practice, it is often used as a simple
collection of more or less related subprograms.

A CMS-2 program consists of a number of these mod-
ules. There is no CMS-2 construct for indicating the
"main program”. The means for transferring control
from the operating system to the program depends on that
operating system, which is often special-purpose.

A compilation (compile-time system) consists of the
source code for one or more modules, preceded by a
major header, which conceptually is used to parameterize
the entire program. A compilation can also make use of
compools, which are previously compiled system data
blocks. As far as the semantics of a compilation are
concerned, the use of a compool has the same effect as
including the source of those system data blocks. What
is gained by using compools is the cost of repeatedly
parsing and semantic checking the data blocks. CMS-2
compilers also typically support some form of source file
inclusion.

145

Two distinct forms for source code documentation are
afforded. A comment is free-form non-executable text
that can only appear between statements and declarations.
A note can appear between any two tokens of the pro-
gram.

3.2 Declarations

The basic data types of CMS-2 comprise integer, fixed-
point, floating-point, boolean, fixed length string (charac-
ter or Hollerith type), and enumeration (status types).
The integer and fixed-point types are specified in terms of
the number of bits required to hold their values (size); for
fixed-point the fractional part (scaling) is also specified in
number of bits. The floating-point types are specified in
terms of the floating-point formats available on the target
machine. Enumeration literals are delimited by apostro-
phes. The actual enumeration literal values are thus not
restricted to be identifiers; any character from the CMS-2
character set can be used.

CMS-2 contains constructs for declaring typeless nu-
meric constants (ntags) and typed variables, of either the
basic data types (simple variables) or composite
types—records (item-areas or structured variables) and
arrays (tables). However, the components (fields) of a
record type are restricted to be of the basic types. It is
possible to specify an initial value for most objects (vari-
ables and tables). The declaration of an array object
specifies how it is to be laid out in memory (similar to
row major vs. column major). This is an execution effi-
ciency issue and does not affect the program semantics,
although use of one of the forms does impose some re-
strictions.

Only very late in the evolution of CMS-2 did it obtain
an explicit type declaration. A number of unusual syntax-
es and concepts were used to compensate for this lack.
Specifically, the declaration of an array uses a block
syntax. Within that block, the structure of the array’s
components (items) is declared. Within that block it is
also possible to declare other arrays whose components
have the same structure (like-tables), variables having the
same structure (item-areas), and sub-arrays (subtables),
whose components are a contiguous subset of components
of the array being declared. Even with these mecha-
nisms, restrictions in the language made it necessary to
replicate component declarations in different array decla-
rations. This occurs quite often in old CMS-2 code, in
spite of the obvious maintenance problems it engenders.

A switch is a CMS-2 construct not found in many other
languages. A label switch specifies a number of labels;

control is transferred to one of those labels when a partic-
ular form of goto statement is executed. A procedure
switch specifies a number of procedures; one of those
procedures is executed when the switch is invoked, with
a syntax very similar to that of a procedure invocation.
In both cases the choice depends either on the value of an
integer expression (indexed switch) or the value of a
specified variable (item switch) at the moment of execu-
tion/invocation. Thus, executing a goto using an indexed
label switch has an effect quite similar to FORTRAN's
computed goto.

It is possible to elevate the scope of many identifiers.
Identifiers declared in a system procedure block whose
scope would ordinarily be local to that block can often be
given global scope.

CMS-2 does not have a project library similar to that
of Ada. In order to support building large systems out of
a number of small compilations, most of the declarations
can be modified (EXTREFed) to indicate that the datum
1s not to be allocated as a result of the declaration—only
its attributes are being specified in order to give the com-
piler the information it needs to generate the proper code
sequences. The code is tied to the proper memory loca-
tion—allocated as a consequence of an unmodified decla-
ration elsewhere—when the system is linked.

3.3 Subprograms

Subprograms consist of procedures and functions.
Procedures can optionally have input and output parame-
ters. Functions can have only input parameters and can
return values of only the basic types. It is not possible to
nest subprograms. Subprograms are not recursive, but
they are compiled with code that permits reentrancy, if
the requisite executive support is available.

In some of the dialects of CMS-2, procedures can also
have exit parameters, similar to the abnormal exit of
FORTRAN. At the point of invocation, the exit parame-
ters are matched with labels. If the invocation is termi-
nated by executing an "abnormal” return, control is trans-
ferred to the corresponding label. In this case, the assign-
ment of values to actual output parameters is not per-
formed. (See section 4.3.)

3.4 Expressions

The operands of numeric expressions can be of any
numeric type. The rules of the language specify the
implicit type conversions that will be performed in order
to evaluate a numeric expression. In particular, an ex-

146

pression involving fixed-point values is evaluated accord-
ing to an elaborate set of fixed-point scaling rules, which
are highly machine dependent. Generally, these rules
prevent loss of significant data, specifying when values
are to be shifted right internally to avoid overflow.
(There are a few exceptions that are intentionally in the
language!) When type conversion results in the loss of
information, it is by truncation rather than rounding.

The usual numeric operations are available for data up
to 32 bits long (counting the sign bit). These operations
can be written for quantities in the 33-64 bit range. Addi-
tion and subtraction of such quantities are performed
efficiently and accurately. Whea such quantities are
multiplied or divided, the operation is performed in float-
ing-point. (The conversion of a 64-bit value to floating-
point is inexact in all dialects of CMS-2.)

Boolean expressions are usually evaluated by short-
circuit. This is always the case in conditional statements
and is now the case for some compilers in boolean assign-
ment statements. This evaluation is an artifact of the
compiler implementations; it is not specified as part of the
language definition.

3.5 Statements

Although their syntaxes can be quite non-standard,
CMS-2 has the expected collection of statements: assign-
ment, if-elsif-else, loops, case, goto, etc. Many of these
have unusual features. There are also a few non-standard
statements.

Loops (vary statements) have the usual three forms:
FOR-loop (controlled by an index), WHILE-loop (con-
trolled by a boolean expression evaluated at the top of the
loop), and loop-UNTIL (controlled by a boolean expres-
sion evaluated at the bottom of the loop). A loop index
can be of either & numeric or an enumeration type.

One unusual feature of loops is that numeric loop
indexes are not required to be integer; a numeric loop
index is initialized, incremented on each iteration, and
tested for equaling or exceeding its terminal value, re-
gardless of its type. Another is that any combination of
the loop controls can be used in a single loop, including
multiple indexes; the loop terminates as soon as any one
of its controls satisfies its termination condition.

Related to loops is the resume statement. When it is
executed inside a loop, it terminates execution of the
current iteration. (It causes bottom-of-loop processing to
occur.) It can also be executed outside of the loop it

147

specifies. In this case, the loop resumes execution at its
bottom-of-loop processing.

A special form of loop (find statement) is supplied for
performing a linear search of any array. The search
terminates when a component satisfying specified criteria
is found. The search can be continued by the resume
statement.

The selector of a case statement can be of any basic
type. The semantics specify that a search is made for a
matching case value, clearly dangerous if the selector’s
type is an approximate type, such as fixed-point or float-
ing-point.

There is no restriction on the relative locations of a
goto statement and its label. Free transfer of control into
and out of arbitrary statement blocks is permitted. One
dialect even permits transfer of control across subprogram
boundaries.

As mentioned in 3.2, there are forms of the goto state-
ment for executing a multi-way branch through a label
switch and there are procedure-call-like statements for
invoking procedure switches. These statements also allow
specification of a label to be transferred to if the value on
which the switching decision is to be made is invalid
(invalid specification).

4. Unusual and Problematic Features

The above description of CMS-2 concentrated on con-
cepts that it shares, more or less, with other high-level
languages. It has however a number of features that are
rare, if not unique. In preparing this paper I easily devel-
oped a list of 48 of them. In the following, I discuss only
those that give particular problems in translating, omitting
those that might cause headaches for compiler and transla-
tor writers but whose actual translation is simple.

4.1 Static Aliasing

CMS-2 affords an astonishing variety of ways to stati-
cally alias objects. (By this I mean causing two objects to
share memory. 1 am not discussing dynamic aliasing,
such as the aliasing that occurs in many languages when
a global object is used as an actual parameter of a subpro-
gram invocation, for example.)

First among these is the overlay statement, which
specifies that the bit string allocated to an object is to also
be used for the bit strings allocated to some other objects.
Notice that this is much finer than simply specifying that

two objects are to use the same memory location. As an
example, for an 18-bit object it is possible to specify that
bits 1-6 are to be used for another object and bits 9-17 are
to be used for a third. This overlaying can be specified
for directly allocatable objects (those that hold the values
of variables) or for the components of a record type.

This effect can be obtained a second way for the com-
poneats of a record type, because CMS-2 allows user-
packing, similar to Ada’s record representation clause.
Unlike the Ada construct, user-packing permits overlap-
ping of components.

Finally, there is a means for specifying the relative
allocations of variable objects. This relative allocation is
expressed in words of the target machine; the programmer
can specify that XYZ is to be allocated 23 words beyond
the place where ABC is allocated. Notice that if ABC is
an array, then XYZ might be allocated in the middle of
one of ABC's components.

4.2 Bit-Twiddling

By bit-twiddling I mean working with bit substrings of
values. The problem with bit-twiddling is that the lan-
guage-defined semantics of the substrings are incomplete
at best. While the language specifies which bits of the
value are to be extracted or replaced, the meaning of
those bits and the relation of them to the larger value is
known only to the programmer. It is the ease with which
one can bit-twiddle in CMS-2 that caused me to character-
ize it as a disguised assembly language.

Overlaying, either through the overlay statement or
implicitly through user-packing, is a heavily used means
for bit-twiddling. In addition, CMS-2 supplies a parame-
terized operator or pseudo-function (the BIT operator or
function) for accessing an anonymous bit substring.
There is another parameterized operator or pseudo-func-
tion (the CHAR operator or function) for accessing char-
acter substrings within a value; the value is not required
to be of character type.

It is also possible to access individua! target-computer
words of an object (word reference). The particular word
accessed might be only one of several making up the
object or it might contain several components of the ob-
ject. Again, the exact meaning of such an access is
known only by the programmer.

Bit strings can be manipulated by the conventional set
of bit operations;: AND, OR, NOT, and XOR. Typed
operands of these operators become temporarily typeless.

143

The result regains a type dependent on the context of the
operation.

4.3 Subprogram Parameter Passage

Subprogram formal parameters are very unusual in that
rather than serving as surrogates for the actual parameters
during execution of an invocation, they are variables
external to the subprogram. At the point of invocation,
the values of the actual input parameters are copied to the
corresponding formal input parameter prior to transfer of
control. Following the invocation, the values of any
formal output parameters are copied to the corresponding
actual output parameters.

The semantics of parameter assignment, coupled with
the parameters being varnables external to the subpro-
gram, can give rise to cross-parameter interference: as-
signing a value to one parameter in the list can affect the
value assigned to another. An example is a formal pa-
rameter that is an integer variable, with that variable
being used as a subscript of a later actual parameter.
Different dialects of CMS-2 assign the formal parameters
in different orders.

There is no restriction on the use of formal parameters;
they can be used at any time like ordinary variables.
Furthermore, the same variable can be used as a formal
parameter of more than one subprogrem.

4.4 Indirect Arrays

There is no heap/pointer mechanism in CMS-2, but an
undisciplined approximation is available through the indi-
rect array (indirect table). When an array is declared to
be indirect it functions as a surrogate for other, "real”,
arrays during execution. Thus it is very much like a
pointer.

Specifying a designated object is accomplished by
using the CORAD pseudo-function. When a value is
assigned to this pseudo-function its argument can only be
the name of an indirect array. That value then becomes
the memory address of the designated object for subse-
quent references to the indirect array.

When the CORAD pseudo-function is used in other
contexts, its argument must be a name that has an as-
signed memory address; it generates that address as its
value. Thus the statement

SET CORAD(XYZ) TO CORAD(ABC) $

means that for subsequent references, XYZ is to be used
as a surrogate for ABC.

There is no requirement that the structure of the desig-
nated object be at all related to the structure specified in
the indirect armay’s declaration. It is not even necessary
that the designated object be an array. It could be a
simple variable, the "tail® of an array (by specifying the
address of one of that array’s components), a switch, or
even code! In all these cases of mismatch the indirect
array’s structure rules; the designated object is accessed
as though its structure were that of the indirect array.

One use of indirect arrays is to effect call-by-reference
semantics in subprogram invocation. Because the CMS-2
parameter passage mechanism is call-by-value (section
4.3), if a formal parameter is an array then the entire
array must be copied as part of the invocation. It is
possible to specify a formal parameter as the address of
an indirect array (using the CORAD pseudo-function).
By doing this, only the address of the actual parameter is
copied.

Because this pointer mechanism is specified as imple-
mented using addresses, an executive could implement a
heap. Calls to its allocator would simply return the ad-
dress of the newly allocated memory area.

4.5 Array Initial Value

In specifying an initial value of an array, it is not
necessary that the array be fully initialized. The array’s
components must be of a record structure and the initial
value is specified in terms of values to be assigned to the
record’s components in successive array components. If
fewer values are specified than array components, only
the "first" array components are initialized; the values
assigned to the remainder are not defined by the language.
(However, see section 5.1.) This initialization can be
ragged; different numbers of values can be specified for
different record components.

4.6 Multi-Receptacle Assignment

An assignment statement can contain multiple recepta-
cles, the objects that receive the value. If the receptacles
are of different numeric types, implicit conversion of the
value being assigned is required. The semantics of a
multi-receptacle assignment specify that the value is as-
signed to the first receptacle, converted if necessary.
That possibly converted value is then assigned to the
second receptacle, where another conversion might be
needed. This value is then used for the third receptacle,

149

and so on. While these semantics could produce some
surprising results for the unwary, in practice the over-
whelming use of this feature is to assign zero.

Different dialects of CMS-2 order the receptacle list
differently, some from left to right and others from right
to left.

4.7 Array Assignment

Array assignment is accomplished by transferring
target machine words, without regard to the structures of
the two arrays. If the receptacle array is shorter (in
words) it is filled with the corresponding words from the
beginning of the source array. If the receptacle array is
ionger only the words at its beginning that correspond to
tie words of source array receive those mew values.
Thus, if the arrays have ideatical structures the right thing
happens, and if their components have ideatical structures
but their sizes are different something understandable
happens. However, when their components have different
structures, an insidious form of bit-twiudling occurs.

4.8 String Manipulation

In general, string assignment and string comparisons
are accomplished through blank-padding and truncation.
String literals are handled specially. If the source of a
string assignment is a literal, it is not padded when too
short (the value is sliced into the beginning of the recepta-
cle) and it is not permitted to be too long.

4.9 Typed Records

A record type in CMS-2 can be declared to have an
associated basic data type. When a variable of such a
type is referenced as a whole, it has the semantics of a
variable of the associated type. As a benign example, a
record type could be declared to have components corre-
sponding to the characteristic and mantissa of a floating-
point value, positioned appropriately, and the floating-
point type as its associated type. For a variable of this
type, the components could be used to create a floating-
point value, which could thereafter be used by referencing
the variable itself.

Ada has no corresponding capability.
4.10 Boolean Constants
The boolean constants true and false are not defined in

CMS-2; their functions are served by the numeric literals
1 and O, respectively. In practice, named number decla-

rations are often used to define the identifiers True and
False, as well as other convenient identifiers with boolean
overtones.

Because of the dual use of 0 and 1, it is possible to
have both boolean and numeric receptacles in a single
multi-receptacle assignment statement.

4.11 Enumeration Assignment and Comparison

All enumeration types are considered compatible.
Assignment and comparison of enumeration values is
based solely on the compiler-generated encoding of the
symbolic values (O for the first value, 1 for the second,
etc.)

4.12 Data Local to Subprograms

CMS-2 is not a stack-oriented language; data local to
subprograms are statically allocated. Thus the values of
these data at the end of execution of one invocation are
present at the beginning of execution of the next invoca-
tion. Any initial values given to such data are only the
values at the beginning of execution of the program.

4.13 Conditional Compilation

Conditional compilation is achieved through a blocking
construct, where the block’s header specifies a flag
(CSWITCH) whose value controls the compilation of the
code in the block. The blocks can appear among both
statements and declarations.

If the flag setting is such that a block is not to be
compiled, the code in that block is ignored, other than
some minimal checking to detect the end of the block.
Minimal checking has a number of implications, principal
among them being that the code being checked does not
have to be syntactically or semantically correct. It also
means that an identifier can be declared in any number of
blocks, provided that only one of those blocks is com-
piled.

4.14 Direct Code

Assembly language statements can be included in a
CMS-2 program by enclosing them in a special block
(direct code block). The programmer is given almost the
full freedom (license) available to an assembly language
programmer: executing instructions can be placed among
high-level data declarations, assembly data declarations
can be placed among high-level statements, and the in-

150

structions and declarations can be intermixed in any or-
der.

S. Usage of CMS-2

In addition to the official semantics of CMS-2,
sketched above, there are facts about the language that
might be called "informal semantics”. These facts are
known and relied on by many users of the language, even
though they have no official sanction.

5.1 Initialization to Zero

All of the CMS-2 linkers set all data values to zero
unless they are explicitly initialized to some other value.
Some CMS-2 programs make use of this to avoid expend-
ing memory, which is often limited, on code that zeros
some uninitialized data.

5.2 Linking by Name

CMS-2 linkers link by name; no semantic information
is passed from the compiler to the linker. Occasionally
this is "exploited” in creating a program from independent
compilations, when a name is given different attributes in
two or more of those compilations.

5.3 Reuse of Named Numbers

The names of named numbers are not passed to the
linkers by the compilers. Therefore it is possible—and it
does occasionally occur—for “"the same named number”
to have different values in two independent compilations
of a program.

6. Intractabie Translation Problems

Certain of the features of CMS-2 give rise to transla-
tion problems that cannot be solved by any translator, at
least not when the goals of the translation include main-
tainability and transportability, as they do for TRADA.

6.1 Bit-twiddling

Any attempt to mechanically translate the various bit-
twiddling features of CMS-2 is doomed to fail for one of
several reasons. The common thread to these reasons is
that the exact meaning of the bit-twiddling cannot be
discerned from the CMS-2 source, as noted previously.
As an example, suppose that a bit string is being extracted
from some datum (typically a machine word) to be used
in a numeric context and that the numeric value being
extracted might possibly be negative. If the extraction of

the bit string is “correctly” translated, but the negative
representation of the target computer changes (the
AN/UYK-7 family of Navy computers uses 1's-comple-
ment, while 2’s-complement is currently the most popular
representation), the meaning of the program has been
changed by the translation. As a second example, sup-
pose that bit-twiddling is being used in a utility routine to
create a floating-point value by building up its component
parts. Even if the translated code could mimic these
manipulations, the result is meaningless if the target ma-
chine for the translated code does not support the same
floating point format.

"Doomed to fail" is too harsh a statement, of course.
It might be possible to specify some relatively well-be-
haved bit-twiddles that could be translated. In that case
the issue of cost-effectiveness arises: is it worthwhile to
design an algorithm to detect and translate these cases,
which are expected to be few, or would it be better to
allocate resources to other, more promising areas, and
leave all bit-twiddling for human intervention?

6.2 Overlays

Perhaps the greatest single benefit that could be ob-
tained from a CMS-2 to Ada translator would be the
analysis of the rat’s nest of overlays that are so typical of
CMS-2 code and translation into clean Ada. Unfortunate-
ly, that benefit is not to be had.

To begin with, overlays are potentially bit-twiddles, as
has been noted, and suffer from all of the problems of bit-
twiddling. For example, the creation of a floating-point
value by constructing its components, mentioned above,
can be accomplished using overlays.

There are other uses of overlays that are not, strictly
speaking, bit-twiddling. One such is to simulate a multi-
level record structure—records within records within
records—which is not directly achievable in CMS-2. An
algorithm to detect such a use of overlays is possible, but
then a second translation problem arises. If overlays are
used in CMS-2 to simulate a record within a record, the
larger record (the overlay parenr) has a simple CMS-2
type, usually numeric. Since there is nothing correspond-
ing to this in Ada (a record type does not have an associ-
ated scalar type), it would be necessary to check all uses
of the larger record to see if it is truly being used as a
value of that type or if the type is simply a hook to hang
the simulation on. Translation would be possible in the
later case, but again the cost-effectiveness question must
be asked.

151

Finally, overlays can be used to create structures some-
what like an Ada record with variant part. The key char-
acteristic of this kind of structure is that no component is
ever read without first being explicitly written. While this
is perhaps the most benign use of overlays, detecting it is
very difficult. At the least an algonthm built on top of a
global data flow analysis is required. Even if such an
algorithm is implemented, there is no guarantee that a
particular structure of this kind can be translated into an
Ada record with variant parts. Consider the following
“variant record”: it has a discriminant and three ordinary
components; the discriminant can take on values 1, 2, and
3; component 1 is valid when the discriminant has value
1 or 2; component 2 is valid when the discriminant has
value | or 3; and component 3 is valid when the discrimi-
nant has value 2 or 3. This structure cannot be translated
into an Ada record with variant part. The symbo! table
of the CMS-2Y compiler is this kind of structure; it has
been carefully constructed to allow common components
to be shared between almost random values of the dis-
criminant.

6.3 Direct Code

There seems to be a hope among those interested in
using a translator to assist them in transitioning from
CMS-2 to Ada that it can figure out what the direct code
is doing and translate it into Ada. This simply cannot be
done. One example should suffice: how can a translator
determine the meaning of an instruction that loads a regis-
ter using indirection, where the indirect word used is
constructed during execution?

The only approach that has any hope of success is to
simulate the direct code as part of execution of the trans-
lated Ada. Basically, this means outputting—as part of
the translation—a simulator for the original target ma-
chine. Even this is not foolproof, because much direct
code depends on the way the program’s data are allocated
by the CMS-2 compiler. A more fundamental challenge
to this approach is: what is the point? Execution of an
ISA simulator, albeit written in Ada, is not the purpose of
translating CMS-2 to Ada.

7. TRADA Translation Strategies

Most of the translations used by TRADA are straight-
forward: procedures are translated into procedures, func-
tions into functions, assignment statements into assignment
statements (usually), etc. There are also a number of
special translations used to overcome dissimilarities of the
two languages.

Even some of the problematic arcas have relatively
straightforward translations. String manipulations (section
4.8) are handled through slicing and concatenating with
blanks. A multi-receptacle assignment (section 4.6) is
translated into a sequence of assignments with the appro-
priate conversions, the only complication—and a very
minor one at that—occurring when the receptacles are a
mixture of numeric and boolean.

Among the straightforward translations are an exact
duplication of the CMS-2 fixed-point scaling rules. Con-
version between fixed-point types is by truncation by
default, which means through the use of a TRADA-gener-
ated, inefficient, truncation function. The user can speci-
fy that a simple Ada type conversion is to be employed
instead. It is hoped that this option will be used only if
the user verifies that the algorithms being translated are
not so finely tuned that a one-bit discrepancy would cause
problems or if it is known that the Ada compiler being
used generates code that does (always) convert by trunca-
tion.

7.1 Untranslatable Constructs

As is common with translators, when TRADA encoun-
ters a construct it cannot translate, it outputs the construct
as a comment, along with a special comment indicating
that user intervention is required. The format of the
comment makes it easy to locate using an editor.

To follow this approach slavishly would reduce the
effectiveness of a translation of CMS-2 because of the
untranslatability of bit-twiddles. Many expressions, and
thus the statements in which they appear, would be
marked as untranslatable.

When TRADA encounters a bit-twiddle while translat-
ing an expression, it is translated into a generated object
with the appropriate type. For example, a word reference
is translated into an object named Word_reference of a
type that is appropriate for the original target computer.
Similarly, a reference to the BIT pseudo-function is trans-
lated as Bit_reference_len, where len is the length of the
specified bit string. Through this technique, the other
semantics of the expression, such as any implicit type
conversions, and the statement in which the expression
appears, are translated. The comment that user interven-
tion is required is also output, of course.

The declarations of these generated objects are gath-
ered into a single package.

7.2 Array Assignments

The translation of a CMS-2 array is, in general, fairly
straightforward. A type is generated to translate the
array's component structure. A second type is generated
to declare the array type itself. (This type is uncon-
strained.) This second type is then used to declare the
translated array object.

Following this simple approach would result in trans-
lating many otherwise acceptable CMS-2 array assign-
ments into invalid Ada, because the corresponding Ada
array types would have different names. In order to
translate array assignments whose CMS-2 semantics
match those of Ada, TRADA analyzes the structure of all
array components and record type specifications in the
program being translated to determine common structures.
Using the information from this analysis, arrays that have
common component structures are translated using a
common array type and array assignments involving
arrays whose components’ structures are different are
flagged as being untranslatable.

This analysis also uncovers assignments of arrays
whose components’ structures are not identical. These
assignments are flagged as untranslatable.

The "smallest controls” semantics of CMS-2 array
assignment (section 4.7) requires some array assignnients
to be translated using slicing or loops.

7.3 Indirect Arrays

Because the indirect array of CMS-2 has so many of
the properties of a pointer in other languages, it is trans-
lated as an object of an access type whose designated
object is the corresponding array type. The only transla-
tion difficulty arises when an indirect array is set to point
to a "real” array, one that is not indirect.

TRADA's solution to this problem is to note all "real”
arrays that are pointed to at any point in the program
being translated. They are then also translated into the
designated objects of an appropriate constant access ob-
ject. The object declaration includes the allocator to
create the designated object. If the real array includes
initial values for some components, this inttial value is
supplied either as a qualified expression in the creating
allocator or by code in the initialization block of the ap-
propriate package body. (The choice is user selectable.)

This translation strategy illustrates why it is necessary
to translate an entire program rather than a program

fragment. A program fragment might contain the declara-
tion of a "real” array but no instances of its being pointed
to. It would therefore be translated into a static object
and this translation could not be used with other parts of
the program where its access value is needed.

(When translating into Ada 9X, the same analyses must
be done but the actual translation is somewhat simpler
because of the aliased attribute.)

7.4 Common Enumeration Types

Because of the very loose semantics of the CMS-2
enumeration types, TRADA must detect enumeration type
specifications that specify the same set of values in order
to effectively translate assignment and comparison of
enumeration values. (This is quite similar to, but much
casier than, the problem of detecting common array com-
ponent structures.) Common enumeration type declara-
tions are then used in the translated code.

If assignments or comparisons involve CMS-2 enumer-
ation types that do not specify the same set of values,
TRADA translates by forcing a conversion of the Ada
encoding, using code of the form

To_type’'Val (From type'’Pos(Value)).

If the source type has more values than the destination
type, execution of this expression could raise a
Constraint_error exception. This is an example of a
translation that is possibly inaccurate, but the inaccurate
translation is detectable by other means.

7.5 Named Numbers

CMS-2 named numbers are translated to Ada named
numbers, in general. For the most part, expressions
using named numbers are left as expressions; they are not
folded by TRADA into static values. This allows the
named number to continue being used in Ada as a source
code parameter.

The primary exception to this strategy arises when a
named number is used to specify an attribute of a numeric
type, such as the number of fractional bits of a fixed-point
type. To leave the type parameterizable in the Ada code
would require an elaborate translation. One aspect of this
translation would be an execution-time interpretation of
the CMS-2 scaling rules. For this reason, the attributes
of numeric types are fixed at translation time, even if they
are parameterized in the CMS-2 code. (Often this param-
eterizing of numeric types comes from an ill-considered

153

adherence to the rule that no hard-coded constants should
appear in a program.)

7.6 Boolean 0 and 1

All uses of CMS-2 named numbers are analyzed to see
if they are ever used in a boolean context. If so, they are
translated as boolean constants, rather than named num-
bers. The cases

TRUE EQUALS 1 §
FALSE EQUALS 0 §

are handled specially. They are not translated at all and
references are translated into True and False from pack-
age Standard.

In the unlikely but not impossible case that such a
named number is also used as an integer, the form

Boolean’Val (Value)

is employed. Other, more elegant, translations are possi-
ble, but the circumstance is so unlikely that is seems
inappropriate to expend effort on it. (Code that uses the
same identifier in both numeric and boolean contexts
should probably be rethought.)

7.7 Subprogram Parameter Passing

Initially TRADA intended to mimic the CMS-2 param-
eter passage faithfully: each CMS-2 subprogram would be
translated into a parameterless Ada subprogram, each
invocation of a subprogram would be preceded by assign-
ment statements mimicking the assignment of the input
parameters and followed by assignment statement mimick-
ing the assignment of the output parameters. This ap-
proach would solve the problem of cross-parameter inter-
ference. However, it was recognized early on that it
would clutter the Ada code quite a bit. This was particu-
larly true in evaluating an expression that contained more
than one function reference, when it would be necessary
to evaluate the function references in the proper order into
temporary locations (which would need largely meaning-
less TRADA-generated names), each evaluation being
preceded by the parameter assignment statements. This
clutter would conflict with the goal of producing code that
is at least as maintainable as the original CMS-2.

The strategy settled on is to have formal parameters of
mode IN corresponding to the CMS-2 input parameters
and formal parameters of mode OUT corresponding to the
CMS-2 output parameters. Subprogram invocations are
then translated in the straightforward manner. Execution

of the body of the subprogram begins with assigning the
formal input parameters to the external objects that are the
translations of the CMS-2 formal input parameters.
Thereafter, those external objects are referenced rather
than the Ada formal paiameteis. For procedures, the
values of the external objects that are the translations of
the CMS-2 formal output paiameters are assigned to the
corresponding Ada formal output parameters immediately
before returning.

This strategy translates the semantics of the CMS-2
subprogram invocation except in the case of cross-parame-
ter interference. TRADA analyzes all invocations for
such interference and outputs a waming inessage when it
is detected, calling for post-translation analysis and modi-
fication. Cross-parameter interference occurs rarely and
is a poor programming practice when it is used. It is
better to handle it this way than to faithfully simulate it
with elaborate code sequences that are difficult to main-
tain.

7.8 Procedure Abnormal Exits

Procedures with exit parameters are translaied into
procedures with an "extra” parameter of mode OUT.
This parameter is of an enumeration type which has one
value corresponding to each exit parameter and one value
corresponding to a "normal” return. In the body of the
translated procedure this parameter is set appropriately
depending on the return statement executed. The param-
eter’s value is then tested following each invocation to
determine the next statement to be executed.

In order to avoid changing the values of the actual
output parameters when an "abnormal” exit is taken, the
mode of the formal output parameters is made IN OUT
and the assignment of the external objects to the corre-
sponding formal output parameters, described above, is
not done when an abnormal exit is translated. The mode
ensures that the values are not changed for parameters
that use the copy in/copy back mechanism. (If the mode
were left as OUT, the uninitialized bit pattem that fills the
stack location allocated to a formal output parameter
would be copied to its corresponding actual parameter at
the conclusion of execution. When the mode is IN OUT,
that stack location is filled with the value of the actual
parameter at the beginning of execution.)

7.8 Procedure Switches

A procedure switch is translated into a procedure,
whose name is the switch name. The formal parameters
of this procedure correspond to the switch's formal pa-

rameters, a~cording to the same scheme as for translating
procedure formal parameters. The body of the procedure
contains a case statement or an if-elsif-else sequence to
accomplish the switch. The form of the body is deter-
mined by such considerations as switch value density, but
in general indexed switches give rise to case statements
and item switches give nse to if-elsif-else sequences.

For an indexed procedure switch, the corresponding
procedure has an “extra® input parameter, which is the
value to be used in making the switch.

If the switch is ever invoked using an invalid clause,
the corresponding procedure has an "extra® boolean out-
put parameter, which is set according *o the validity of the
switch value.

7.10 Loops

Because of the free use that can be made of a loop
index in CMS-2, a simple indexing loop cannot be easily
translated into a FOR-loop in Ada, where the use of the
index is very restricted. Before such a translation could
be made, a heavy analysis of all uses of the index would
have to be done, checking for such things as updating the
index, accessing the index from within a subprogram that
is invoked (directly or indirectly) in the loop, use of the
loop value after loop termination, etc. Rather than invest
in this analysis, TRADA translates such loops into "infi-
mte" loops, with explicit incrementation and termination
testing at the bottom.

A simple WHILE-loop in CMS-2 is translated into a
WHILE-loop in the obvious fashion. However, a loop-
UNTIL must be translated into an "infinite” loop with an
explicit test at the bottom. The "infinite” loop with ex-
plicit termination tests must also be used when the CMS-2
loop has a combination of termination conditions, such as
multiple indexes, an index and an UNTIL-condition, etc.

Even the "infinite" loop is too restrictive when the
CMS-2 loop is resumed from outside. In this case the
looping structure is controlled by goto statements, to
allow the translation of the resume statement to branch
into the loop.

7.11 Labels, Goto Statements, and Label Switches

Labels and goto statements are translated directly.
Because of the free transfer of control allowed in CMS-2,
this can result in illegal Ada goto statements. The error
messages produced by the Ada compiler will be an ade-
quate signal that human intervention is required.

154

e

In general, a label switch 1s translated as a case state-
ment or if-elsif-else statement with a goto statement in
each alternative. Whenever TRADA can verify that a
code sequence can only be reached by a transfer through
a label switch, that sequence is moved into the appropriate
alternative of the case statement.

7.12 Data Local to Subprograms

In general, data local to subprograms are translated
into regional data in the subprogram’s package, in order
to preserve their staticness. Such a datum’s name is
modified by appending the subprogram’s name in order to
avoid name clashes, if necessary.

To avoid this cluttering of names and to make effective
use of the Ada stack, TRADA identifies local data that
are always assigned before they are referenced. In the
translation, these data remain local to their subprogram.

7.13 Initial Values

Data that are given initial values in CMS-2 are given
those values in the TRADA output. For a variable of the
basic types, the initial value is specified as part of the
corresponding object declaration. This technique can also
be used for an array, where the object declaration in-
cludes an aggregate specifying the initial value. For a
large array, the aggregate might well exceed the capacity
of the Ada compiler being used. To avoid this problem,
a TRADA option allows the user to specify that arrays
should be given their initial values through the execution
of assignment statements. For a global or regional array,
these executable statements are placed in the initialization
block of the array’s package and are thus executed only
at program startup.

The user can specify whether data that are not given
initial values should be left indeterminate or "zeroed”, to
mimic the de facto zeroing of the CMS-2 linkers. If
"zeroing" is chosen, numeric data are given the value
zero, character data are given ASCII.NUL, and enumera-
tion data are given their type’s first value.

When aggregates are used to initialize array compo-
nents, the above "zeroing” technique is used for compo-
nents that have no specified initial value.

7.14 Typed Records

A record type that has an associated basic type is trans-
lated into an Ada record type. When translating an object
of this type, a "shadow" object of the translated basic type

is also created, and a comment calling for user interven-
tion is also output. References to the whole object are
then translated as references to the "shadow” object.

7.15 Conditional Compilation

Two features of the CMS-2 conditional compilation
feature make translation into “parameterized” Ada impos-
sible: the fact that the code in a block being ignored might
not be correct and the possibility of declaring an identifier
multin'e times in distinct blocks. For this reason,
TRADA translates only one configuration of the program,
the one corresponding to the settings of the compilation
flags at the time of translation.

8. A TRADA Shortcoming

The unusual nature of subprogram formal parameters
gives rise to one tractable problem that TRADA does not
attempt to handle. If an expression contains two or more
function references, then the execution of one of those
references could affect the parameter passage of a subse-
quent one. This can happen two ways: during the param-
eter passage stage of the earlier function reference or
during execution of its body. At either of these times, a
value could be changed that plays a role in the actual
parameters of the later reference, either by changing an
actual parameter or by changing a value that is used to
select an actual parameter, such as a value that occurs in
a subscript expression.

Although it is not possible to detect this inter-function
parameter interference with 100% certainty, the problem
could be solved by breaking the expression apart to make
certain that the translated function references occur in the
same order as in the CMS-2 code. As was discussed in
section 7.7, this can result in obscure code that is difficult
to maintain. Since using this "feature” is an unconsciona-
ble programming practice and its uses are extremely rare,
it was decided to aim for the readability/maintainability
goal rather than bulletproof translation in this case, even
though it is not possible to give the usual warning that
intervention is required.

This is the only known case in which TRADA will
generate possibly incorrect Ada without either a wamning
message, an Ada compiler error, or an exception during
execution of the translated code.

9. Summary

TRADA is a translator driven by the goals of conser-
vative translation (either faithfully reproducing the seman-

155

tics of a construct or marking it as untranslatable, requir-
ing user intervention), producing maintainable code, and
producing transportable code. Of the three goals, conser-
vative translation is the most important. With it, the
user’s part of the translation effort can be attacked without
worrying about the part done by TRADA.

TRADA achieves its goals to a high degree. It often
uses full knowledge of the entire program being translated
in order to chose its translation strategy, where relying on
only local knowledge might lead to an incorrect transla-
tion. Choices between alternative translation strategies
have been made on the basis of maintainability and know!-
edge of the de facto uses of the construct being translated.
Lastly, it refuses to translate into non-portable Ada or to
translate CMS-2 constructs whose semantics are not fully
known,

Bibliography

The following documents define the various CMS-2
dialects and describe their compilers.

CM2Y-MAN-PGR-M5049-R04C0, CMS-2Y Pro-
grammer’s Reference Manual for the AN/UYK-7
and AN/UYK-43 Computers, FCDSSA, San Diego,
1 October 1986.

CM2Y-MAN-PGR-MS045-R05C0, CMS-2Y Pro-
grammer’s Reference Manual for the AN/UYK-20
and AN/AYK-14 Computers, FCDSSA, San Diego,
1 December 1986.

CM2Y-MAN-PGR-M5047-R01C0, CMS-2Y Pro-
grammer’s Reference Manual for the CP642 Com-
puter, FCDSSA, San Diego, 1 October 1986.

CM2Y-MAN-PGR-M5044-R01C0, CMS-2Y Pro-
grammer’s Reference Manual for the Transferrable
Subset, FCDSSA, San Diego, 1 October 1986.

NAVSEA 0965-LP-598-8020, User Handbook for
CMS-2 Compiler, Revision 4, Change 1, Depart-
ment of Navy, Washington, D. C., 30 November
1993.

The San Diego FCDSSA (Fleet Combat Direction Sys-
tems Support Activity) was the U. S. Navy organization
responsible for the first four of the above documents when
they were created and is cited on their covers. The duties
of FCDSSA are now part of those of NRaD.

Ada is defined in

ANSI/MIL-STD-1815A-1983, Ada Programming
Language, Department of Defense, Washington, D.
C., January 1983.

156

Reengineering Concurrent Software
Into Adaf

Noah Prywes*, G. Ingargiola,** 1. Lee*, and M. Lee*
Computer Command and Control Company
2300 Chestnut St.
Philadelphia, PA 19103

Abstract

The paper describes a methodology for translating
concurrent software into Ada, where the concurrency is ex-
pressed in Operating Systems calls embedded in the source
software. There are two important advantages to such a
translation. First, the understanding and analysis of concur-
rency expressed through Operating System calls is very
complex and difficult. Translating these calls (as well as the
sequential portions) into Ada greatly simplifies the analy-
sis, and understanding of the software by providing the op-
erational semantics of the calls. Second, the translation to
Ada eliminates dependence on Operating Systems.

The focus of the paper is on translation of concurrency
related software portions of the source software into Ada. It
is part of a larger system for translating both sequential and
concurrent aspects of real-time applications software.
Translating the sequential portions of the source code into
Ada has been documented separately in previous reports [4,
13]. These reports provide background to the presently re-
ported work.

The immediate motivation for the work described
here is due to the need to automatically translate Navy soft-
ware in CMS-2 into Ada, where the concurrency is ex-
pressed by calls to the SDEX-20 or ATES Operating Sys-
tems. Much of the Navy mission—critical systems use these
languages. The translation to Ada is needed to modernize
these systems.

The methodology we propose for replacing Operating
System calls by equivalent Ada code uses a standard mes-
sage—based kernel oriented architecture. This architecture
is specialized for each Operating System and modularly ex-
tended to represent the individual features (concurrency
control, input/output, etc.) supported by that Operating Sys-
tem. Within this architecture the determination of a generic
method for translating into Ada a new Operating System
call, though non-elementary, is not overly time consuming
(we estimate less than one week of programming for each
additional Operating System call). The use in the transla-
tion of a standard message—based architecture has a cost in

lost performance with respect to the performance attainable
in an optimal ad hoc translation using a shared memory
model. Upper bounds on this performance cost can be de-
termined, and can be used to establish the characteristics of
the hardware required to achieve specific real-time dead-
lines.

T .aslation is based on the notion of func-

“tional equivalence of the source and target software. It is

attained by adhering closely in the target Ada software to
the data, data layouts, software units and data transforma-
tions in the source software. In some cases, additional in-
formation, typically found in a software specification, is
needed to achieve programs that are free of hardware and
scheduling dependencies.

The translation uses an intermediate entity-relation—
attribute graphic model of the target Ada software which is
created and progressively enriched. It serves as a repository
for all the information extracted from the source software
and the software specification. The graphic software model
is then used as a basis for generating the target Ada soft-
ware, for analysis and abstracting of the software and for
generating an up—to—date software specification.

The concurrency translation to Ada is described in this
paper in sufficient detail for executing it manually, or im-
plementing it automatically. The methodology utilizes
templates for data structures, tasks and procedures for trans-
lating into Ada of multiple Operating Systems. Additional-
ly, for each Operating System call, it is necessary to com-
pose templates of procedures that execute the respective
protocols. The templates are placed in the Ada library, pro-
vided in [6]. It includes the generic templates and, as an ex-
ample, templates for seven Unix calls. These templates
provide a