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SUMMARY

OBJECTIVE

Develop a three-dimensional geoacoustic model for the Catalina Basin.

RESULTS

A three-dimensional database containing water depth, sediment thickness, surface and base-

ment rock type, and surface sediment mean grain size is provided, which, when combined with
generic sediment and rock geoacoustic properties (also provided) produces a geoacoustic
description of the Catalina Basin. Mean grain size is used as an index to acoustic properties.
The database is gridded at 15 seconds of latitude and longitude.

RECOMMENDATIONS

1. Incorporate refinements to existing information as they become available.

2. Incorporate thinly sedimented areas into the database. For instance, Emery Knoll and the
flanks of San Clemente and Catalina Islands are known to be sediment-covered. While prob-
ably acoustically significant, this cover is too thin to appear on standard sediment thickness
maps.

3. Investigate a way to accommodate fluctuations in mean values. Geoacoustic properties are
modeled as smooth functions of depth below the sea floor. This is a reasonably good approxi-
mation. However, fluctuations about the mean values exist in nature and are probably signif-
icant acoustically.

4. Resolve anomalies indicated in the database. Relatively thick deposits of coarse sediment are

indicated in the database (e.g., up to 0.4-s two-way travel time or about 350 m). It is doubt-
ful that sand has accumulated to such a thickness. These areas occur as small patches along
the flanks of Catalina and San Clemente Ridges.
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INTRODUCTION

GEOACOUSTIC MODELS

A geoacoustic model is a description of the sea floor detailing sediment and rock properties
of importance in sound propagation, including the variations of those properties with depth in the
seabed. The properties considered here are speed and attenuation of compressional and shear
waves, and density. Also required are true water depth and profiles of seawater sound speed and
density.

The first step in constructing a geoacoustic model is to assemble information on the physical
and eiastic properties and thickness of the sediments and rocks in the study area. Rarely is
enough information available, so recourse is made to predictive methods, generally those of
Hamilton (e.g., 1980). These techniques are discussed in appendix A.

CATALINA BASIN

Catalina Basin is an elongated, faulted trough, bordered by the abrupt escarpments of Catal-
ina Island and ridge to the north and northeast, and San Clemente Island and ridge to the south-
west. The basin floor itself is quite flat (see figure 1).

There are no drill holes in Catalina Basin, so what is known and believed about the geology
is based on samples of surface materials (sediment cores and rock dredge hauls), studies of
Catalina and San Clemente Islands, and seismic reflection profiles. Seismic reflection profiling
uses a high-energy, low-frequency sound source to image the sea floor and buried reflecting
horizons. Figure 2 shows a seismic reflection record from Catalina Basin. Depth to the sea floor
and buried reflectors is measured in terms of two-way sound travel (reflection) time.

Basin-fill consists of soft and semiconsolidated turbidite sediment over sedimentary rock
{mudstone and shale). The contact between the turbidites and sedimentary rock is an unconfor-
mity (a surface representing a period of nondeposition or erosion). The island ridges are sedi-
mentary, volcanic, and intrusive igneous rock (e.g., granite). The ridges and their flanks are
either barren of sediment or have a thin veneer of unconsolidated, relatively coarse material.
Figure 3 is a surface geologic map of the Catalina Basin area.

A gridding approach was adopted for organizing the data. The 2-ea bounded by 32°50'N,
33°35’'N, 118°W, and 119°W was divided into rectangular grid cells, each cell being 15 arc-
seconds on a side. The cells are centered on 7.5, 22.5, 37.5, and 52.5 seconds of latitude and
longitude. This results in a grid of 240 cells in the east-west direction by 180 cells in the north-
south direction. This became the framework for a geographic database containing cell indices,
true water depth, sediment thickness, basement rock type, sea floor rock type (if present), sea
floor sediment name (when used to estimate sediment properties), and surface sediment mean
grain size. The resulting database of water depth, sediment thickness, and surface geology is
used along with generic geoacoustic models discussed below to construct a model specific to
each grid cell.

The organization of the geographic database is discussed in appendix B. Sediment thickness
is discussed in appendix C, water depth in appendix D, and mean grain size in appendix E.
Appendix F gives literature data on sediment and rock samples. Appendix G gives temperature,
salinity, and sound speed data useful for constructing a geoacoustic model.




Figure 1. Catalina Basin and environs. Depth contours in meters from U.S. Coast and Geodetic
Survey chart 1206N-15. Latitude limits of the database and figure are 32°50'N and 33°35'N;
longitude limits are 118°W and 119°W.
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Figure 2. Seismic reflection profile running northwest (to the left) through Catalina
Basin. From Moore, 1969, plate 5. The interpretation is Moore’s. “A” points to
older, folded sedimentary rocks. “B” points to slightly folded sediments. “C” points
to recent sediment. “C” also marks a buried submarine channel, as does (probably)
“D.” The vertical scales are seconds of two-way sound travel time and fathoms
(assuming a seawater sound speed of 4800 feet per second).
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Sediments and sedimentary rocks of Quaternary and Tertiary (Pliocene and Miocene) age
Terrace deposits of Quaternary and late Tertiary (?) age

Sedimentary rocks of early Pliocene and late Miocene age

Sedimentary rocks of Miocene age

Volcanic rocks of Miocene age

Undifferentiated volcanic and sedimentary rocks of Miocene age

Plutonic rocks of Miocene age

Metamorphic rocks of pre-Late Cretaceous age

Figure 3. Geologic map of the Catalina Basin, generalized from Greene and Ken-
nedy (1986). In the explanation above, rock units are arranged from youngest at
the top to oldest at the bottom.




SEDIMENT GEOACOUSTIC PROPERTIES

Generic geoacoustic models for coarse and fine sediment follow. The division between
“coarse” (sand and coarse silt) and “fine” (fine silt and clay) sediment is a mean grain size of
4.5 phi units (grain size in phi units = -log; [grain size in millimeters}; this is roughly the mid-
way point between silty sand and sandy silt in table I of Hamilton and Bachman, 1982). The
models are modified according to the water depth and sediment thickness in a grid cell. The
model consists of sound speed, density, shear wave speed, sound attenuation, and shear wave
attenuation presented as functions of depth below the sea floor. As shown in appendix A,
smooth depth functions are only approximations to reality.

The functions for fine-grained sediment are valid to 950 m below the sea floor. This is
equivalent to a two-way sound travel time of 1 s, the greatest thickness of unlithified sediment
encountered in the basin. Coarse-grained sediment functions are valid to about 50 m at least: for
the present they must be extrapolated to accommodate anomalous areas of thick sand.

FINE-GRAINED SEDIMENT (MEAN SIZE = 4.5 PHI OR FINER)

Sound Speed
The equations for sounc speed are
R = 1.296 — 6.01e-2 Mz + 2.83¢e-3 Mz? (1
Vp(Z) = Vp(0) + 1.227 Z — 4.73e—4 Z° (2)

where Vp is in m/s and Z is depth below the sea floor in m (Hamilton, 1985, table II). Vp(0) is
the product of the sound speed ratio R and sound speed in the bottom water. R is computed
using mean grain size from the database. The utility of, and rational for, the ratio R is discussed
in appendix A.

Density
The equations for density are
rtho(0) = 2.38 — 1.725¢-1 Mz + 6.89¢-3 Mz (3)
rho(Z) = rho(0) + 1.395e-3 Z - 6.17e-7 22 (4)

where rho is in g/cm3, Z is depth below the sea floor in m, and Mz is mean grain size in phi
units. Equation 3 is from Bachman (1985, table I), and equation 4 is from Hamilton (1976a,
table 5).

Shear Wave Speed
The equations for shear wave speed are
Vs(Z) = Vp(Z) / K(Z),where 5)
K(Z) = 12.41-0.2316 Z (0 <=Z <=29.6) (6)
K(Z) = 6.02-0.0155 Z (29.7 <= Z <= 131.2) (7
K(Z) = 4.21-0.0017 Z (131.3 <= Z <= 1000) (8)




In these equations (derived from Hamilton, 1979, figures 1 and 2), Z is depth below the sea floor
in m, Vp is sound speed at Z, and Vs is shear speed in m/s.

Sound Attenuaticn

The equation for sound attenuation is

Z< 775m:
kp(Z) = 1.46e-2 + 9.088e-5 Z — 2.285e-7 Z? 9)
+ 1.336e-10 Z°

Z>= 775 m:
kp(Z) = 0.01 (10)

where kp is in dB/m/kHz, and Z is in m. This is the mean of the curves in Mitchell and Focke
(1980, figure 11). To obtain attenuation in dB per meter of travel, multiply kp by frequency in
kHz.

Shear Wave Attenuation

The equations for determining shear attenuation are

K = (17.3 dB/m/kHz) / kp(0) , and (11)
ks(z) = K kp(Z) (12)
where ks is in dB/kHz/m, kp is compressional attenuation, and 17.3 dB/m/kHz is a shear attenua-

tion value for mud published by Warrick (1974). The method follows Hamilton (1980, p. 1531-
1332). To obtain attenuation in dB per meter of travel, multiply ks by frequency in kHz.

COARSE-GRAINED SEDIMENT (MEAN SIZE COARSER THAN 4.5 PHI)

Sound Speed
The equations for sound speed (after Hamilton, 1976b) are
Vp(Z) = K 2%915, where (13)
X = Vp(0)/0.05%%15 (14)

Z is depth in the sediment in meters. Vp(0) is ~omputed as above (equation 1 and text). The
constant K is evaluated (equation 14) by assuming that a surface sediment sound speed is mea-
sured at a depth of 0.05 m (see Hamilton, 1975, p. 24).

Density

The density of sand is relatively insensitive to the burial depths considered here. Therefore,
sand density will be taken as constant with depth:

rho = 2.38 - 1.725¢-1 Mz + 6.89¢e—3 Mz? (15)

(see the remarks for equation 2 above).




Shear Wave Speed

The equation for shear speed (after Hamilton, 1976b) is

Vs(Z) = KZ%% | where (16)
K = Vs(0)/0.05%% , and (17)
Vs(0) = Vp(0)/31.4. (18)

Z is depth in the sediment in meters. The constant K is evaluated (equation 17) by again assum-
ing that surface sediment shear speed is at a depth of 0.05 m. Shear speed at the sea floor (equa-
tion 18) follows Hamilton (1979, table II).

Sound Attenuation

Surface sediment sound attenuation as functions of mean grain size (Mz) are

0 < Mz<=2.5: kp(0) = 0.230 + 0.626 Mz (19)
2.5 < Mz<=4.1: kp(0) = —0.158 + 0.181 Mz (20)
41 < Mz<=45: kp(0) = 2.703 — 0.517 Mz Q1)

The variation of sound attenuation with depth is
kp(Z) = kp(0) 2"/ 22)
Equations 19 through 22 are from Hamilton (1980, figure 19, p. 1330).

Shear Attenuation

A value of 13.2 dB/m/kHz is assigned to surface shear attenuatior (ks(0), dB/m/kHz: Kudo
and Shima, 1970; see also Hamilton, 1980, p. 1331). At depth, a simple proportionality between
kp and ks is proposed (following Hamilton, 1980, p. 1332):

ks(Z) = 13.2 kp(Z) / kp(0) (23)




BASEMENT GEOACOUSTIC PROPERTIES

The rock types present in the Catalina Basin are

Tpr Undifferentiated sedimentary rocks of early
Pliocene and late Miocene age

Tm Undifferentiated sedimentary rocks of Miocene
age
Tmv Volcanic rocks of Miocene age
Tmu Undifferentiated volcanic and sedimentary rocks of

Miocene age
Tmp Plutonic and hypabyssal rocks of Miocene age
Mz Metamorphic rocks of pre-Late Cretaceous age
(see figure 3).
MIOCENE/PLIOCENE SEDIMENTARY ROCKS

Tpr, Tm, and Tmu, taken together, probably correlate with “Unit C” of Ridlon (1968).
Where sampled, Ridlon’s Unit C is finely crystalline limestone. On San Clemente Island, Mio-
cene sedimentary rocks are predominantly siltstone, shale, diatomite, and limestone (Olmsted,
1958). Following Ridlon (1968, p. 33), an average sound speed of 2300 m/s is assigned to the
Mio-Pliocene sedimentary rocks of the Catalina Basin area. The complete geoacoustic model for
Tpr, Tm, and Tmu is

Vp = 2300 m/s

Vs = 885m/s

rho = 221 g/em?

kp = 0.009 dB/m/kHz
ks = 3.4dB/m/kHz

Vs is from Hamilton (1979, table I), density is from Hamilton (1978, figure 1), kp is the average
of Mitchell and Focke (1980, figure 11, deep sediment), and ks is from McDonal et al., (1958).

IGNEOUS AND METAMORPHIC ROCKS

The igneous and metamorphic rock units present are Tmp, Tmv, and Mz. A single, generic
model is included for these (from an unpublished study of basalt acoustic basement in the west-
ern Atlantic Ocean).

Vp 4500 m/s

Vs = 2400 m/s

kp = 0.03dB/m/kHz
ks = 0.07 dB/m/kHz
rho 2.58 g/cm?




CONSTRUCTING A GEOACOUSTIC MODEL

The construction of a geoacoustic model for a specific Jocation proceeds as follows.

1. Obtain the water depth, surface sediment grain size, and sediment thickness for the
desired location from the database. If the sea floor is rock, then select the appropriate |
model above and skip the remainder of this section.

2. Using water depth, interpolate the appropriate table in appendix G to find the bottom
water sound speed and density.

3. Compute sound speed ratio (R) from mean grain size using equation 1.

4. Determine Vp(0) as the product of bottom water sound speed and the sound speed
ratio R.

5. Knowing the velocity-depth function (equation 2 or 13) and sediment thickness in
seconds of two-way travel time, integrate to find sediment thickness in meters.

6. Compute acoustic properties below the sea floor.

For example, assume that a winter-season model is required for 33°12'37.5’'N and 118°35’
07.5""W. From the database, the depth at this location is 1303 m, sediment thickness is 0.20 s,
and mean grain size is 6.39 phi.

Linearly interpolating the winter profile of appendix G, we obtain 1485.0 m/s and
1.0335 g/cm?3 for seawater sound speed and density at this depth.

The sound speed ratio (R) computed using equation 1 is 1.028. Multiplying R by 1485.0 m/s
yields 1526 m/s as sediment sound speed at the sea floor. The sound speed depth function (equa-
tion 2) is

Vp = 1526 + 1.227Z - 4.73e—4 72

Integrating until two-way travel time is 0.20 s yields a thickness of 162 m. Equations 3
through 12 yield density, shear speed, and attenuations. Table 1 is an example geoacoustic
model for the situation described above.
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Table 1. Example geoacoustic model.

Z Vp Vs kp ks rho
Seawater 0 1485.0 1.0335
0 1526 123 0.0146 17.30 1.559
1 1527 125 0.0147 17.41 1.560
2 1528 128 0.0148 17.51 1.562
3 1530 131 0.0149 17.63 1.563
4 1531 134 0.0150 17.73 1.565
®
[ ]
100 1644 368 0.0215 25.43 1.693
101 1645 369 0.0215 25.49 1.694
Sediment 102 1646 3N 0.0216 25.54 1.695
103 1647 373 0.0216 25.60 1.696
[ ]
[ ]
159 1709 434 0.0237 28.06 1.765
160 1710 434 0.0237 28.10 1.766
161 1711 435 0.0237 28.13 1.768
162 1712 435 0.0238 28.16 1.769
Mudstone 162 2300 885 0.009 34 221
NOTES:
depth below sea floor, m

Z =
Vp =
Vs =
kp
ks
tho =

sound speed, m/s

shear wave speed, m/s

compressional wave attenuation factor, dB/m/kHz
shear wave attenuation factor, dB/m/kHz

density, g/cm3

12
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APPENDIX A: GEOACOUSTIC MODELING DETAILS

COMPRESSIONAL WAVE SPEED

Sea floor sediment sound speed is conveniently expressed as the ratio between surface sedi-
ment sound speed and seawater sound speed at the sea floor (Hamilton, 1971; Rajan and Frisk,
1992). For a given sediment type, this ratio is constant. Knowing sound speed ratio and the sea-
water sound speed profile enables a determination of surficial sediment sound speed at any water
depth. Sound speed ratio may be estimated from sediment type (Hamilton and Bachman, 1982)
or from empirical relationships with other sediment properties (Bachman, 1989; Richardson and
Briggs, 1993).

Average profiles of sound speed with depth below the sea floor have been determined for
various sediment types by Hamilton (1985). These velocity-depth functions are based mostly on
wide-angle seismic reflection methods (Le Pichon et al., 1968; Houtz et al., 1968; Bachman et
al., 1983). Seismic velocity-depth measurements from surface ships could not be independently
verified until subsurface logging methods were adapted to Deep Sea Drilling Project (DSDP)
and Ocean Drilling Project (ODP) drill holes.

Figure A-1 compares the seismic measurements of Bachman and Hamilton from the Ontong
Java Plateau (Johnson et al., 1978) with down-hole logging in the same area (Fulthorpe et al.,
1989). These results validate seismic sound speed determinations. Figure A-2 compares logging
results from the Labrador Sea (Jarrard et al., 1989) with Hamilton’s (1979a) prediction for the
same sediment type (deep-sea terrigenous turbidites; similar to the fill in Catalina Basin). Fig-
ure A-2 shows that Hamilton’s methods (based on seismic measurements) reliably predict the
average trend of in situ sound speed profiles. Figures A-1 and A-2 also show variations about
the trend, which are probably acoustically significant. These might be best modeled statistically
as in Gilbert (1980) or Holthusen and Vidmar (1982).

DENSITY

Lacking measurements, sediment density at the sea floor can be estimated from other mea-
sured parameters (e.g., Bachman, 1985; Richardson and Briggs, 1993), or from tables of aver-
ages for the various sediment types (Hamilton and Bachman, 1982).

Density-depth functions were discussed by Hamilton (1976). This work was based on labo-
ratory measurements, which were then corrected to in situ conditions using theory and consolida-
tion test results from the geotechnical literature. As with sound speed profiles, confirmation of
Hamilton’s approach had to await down-hole logging. Figure A-2 shows a sediment density log
from ODP hole 646 in the Labrador Sea (Jarrard et al., 1989, figure 1), along with Hamilton’s
prediction for that sediment type. The average trend is accurately predicted. Again, high-fre-
quency variations are seen.

SHEAR WAVE SPEED

Hamilton’s (1979b) methods of relating shear to compressional wave speeds are used. To
my knowledge, no down-hole data are available to test the results.

A-1
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Figure A-1. In situ and seismic measurements of sound speed. Down-hole log-
ging results from the Ontong Java Plateau compared with the seismic measure-
ments of Bachman and Hamilton (Johnson et al., 1978). From Fulthorpe et al.,
1989, figure 6.
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Figure A-2. In situ measurements of sound speed and density compared with pre-
dictions. Down-hole logging results from the Labrador Sea compared with Hamil-
ton’s average relationships for sound speed (1979a) and density (1976) in the
same sediment type. From Jarrard et al., 1989, figures 1 and 12. Logging began
at 206 m sub-bottom. Note different depth scales.

COMPRESSIONAL WAVE ATTENUATION

Attenuation is expressed in terms of dB/m/kHz which, when multiplied by the frequency of
sound in kHz, gives attenuation in dB/m of path length. This assumes that attenuation varies
roughly linearly with frequency. More precisely, the assumption is that log attenuation (dB/m),

A-3




when plotted against log frequency, results in a line with a slope of approximately 1 (i.e.,
attenuation in dB/m = kf", where k has units of dB/m/kHz, f is frequency in kHz, and n is
approximately 1). This relationship has been used to extrapolate attenuation measurements
made at high frequencies to the lower frequeiicies of interest in oceanic sound propagation. The
assumption that n is close enough to unity to ignore the difference has been misconstrued as a
claim that n is identically 1 (e.g., Kibblewhite, 1989) and has thus been criticized on theoretical
grounds (e.g., Stoll, 1980, 1985). Recently, Kibblewhite (1989) tried to reconcilc measurements
with theory.

Figure A-3 is a compilation from Kibblewhite (1989, figure 8) for silts and clays. On the
basis of this figure and other considerations discussed in the text, Kibblewhite makes a case for
an f! attenuation-frequency relationship above about 10 kHz and below about 1 kHz (p. 729);
between these frequency regimes a nonlinear region is postulated. However, a line through the
middle of the “silts and clays” region with a slope of 1 passes through the mid-frequency data
cluster. An eye-fitted line has a slope of 1.2 over the range 1 to 10,000 Hz. Therefore, the
details of the variation of attenuation with frequency is ignored, and an approximate f! relation-
ship is used in this report.

The attenuation-depth curves of Mitchell and Focke (1980, figure 11) were used to establish
a mean attenuation profile. Kibblewhite (1989, p. 720-721) criticizes these measurements
because an f! dependence was assumed in the data reduction. However, Kibblewhite includes
them in his figure 8, and they fall within his mid-frequency cluster of data. Because the values
are reasonable when compared with other data, because they are based on in situ seismic mea-
surements, and because they include depth dependence, the results of Mitchell and Focke are
used in this report. In situ seismic measurements are especially useful because they include all
energy loss mechanisms: intrinsic attenuation, scattering, multiple reflection, shear-conversion,
etc.
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Figure A-3. Compilation of sound attenuation versus frequency measurements.
Compressional wave attenuation measurements in silt-clay sediment and sedi-
mentary rock compiled by Kibblewhite (1989, figure 8). The few mid-frequency
measurements available suggest to Kibblewhite that the relationship between fre-
quency and attenuation is nonlinear, as required by theory. To a first approxima-

tion, however, a line with a slope of 1 provides a reasonable fit to the existing
data.
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APPENDIX B: GRIDDED DATABASE

The geographic database is contained on the accompanying disk in the file CATLNADB.010.
Each 32-character record pertains to a grid cell, which is a rectangular area of s.de-length equal
to 15 seconds of latitude and longitude. Except along the periphery of the database area, each
grid cell includes its eastern and southern borders and excludes its northern and western borders.
Cells along the northern periphery include their northern border, and cells along the western
periphery include their western border. This is illustrated in figure B-1. The first record of the
file is for the northwest corner of the area, and the last record is for the southeast corner. In
between, the records progress from west to east while latitude is held constant, then latitude is
decremented, and the records progress from west to east again. The data format is shown in
table B-1.

Given the row and column indices of a grid cell, latitude (center of grid cell, degrees) =
33.58541667 — row_index * 4.16667¢~3, and longitude (center of grid cell, degrees) =
119.00208333 - col_index * 4.16667¢~3. Given latitude and longitude in decimal degrees (posi-
tive north and west), row_index = 180 — INT ((latitude —~ 32.833333) * 240), and col_index =
240 - INT ((longitude — 118.) * 240).

The data file does not contain records for grid cells for which depth is not available.
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Table B-1. Geographic database file format.

Columns Format Permissable Values Comments
1-3 13 1-180 Row index of grid cell
4-6 I3 1-240 Column index of grid cells
7-10 14 -999 True water depth, m. —999 indicates land.
0-9999
11-13 F3.2 0.00-1.00 Layer P2 thickness, 2-way s (1)
14-16 F3.2 0.00-1.00 Layer P1 thickness, 2-way s (1)
17-19 F3.2 0.00-1.00 P2 + P1 thickness, 2-way s 1)
20-22 A3 v Basement rock
Tmp Miocene plutonic & hypabyssal
Tmu Miocene volcanic & sedimentary
(undifferentiated)
Tm Miocene sedimentary
Tmv Miocene volcanic
Tpr Late Miocene — Early Pliocene sedimentary
(undifferentiated)
Mz Pre-Late Cretaceous metamorphic
23-25 A3 see basement rock  Sea floor rock
above
26-29 A4 Sea floor sediment name
csnd coarse sand
sand sand
fsnd fine sand
mud mud (assumed to be silt)
30-32 F3.2 Mean grain size, phi units

NOTE: (1) Teng, 1985 (see appendix C).




APPENDIX C: SEDIMENT THICKNESS

Sediment thickness was obtained from Teng (1985, figures 31 and 32). Teng subdivides the
soft sediment column into two units, which he refers to as “P2” (the upper unit) and “P1.” He
postulates an unconformity (a period of nondeposition) between the two units, and if that is the
case, there should be a discontinuity (probably slight) in the sediment property profiles at that
point. No information is available with which to quantify such a discontinuity, and the possibil-
ity was ignored. Figure C-1 is a composite, summing the thicknesses of P1 and P2. The thick-
ness data were gridded by assigning a uniform thickness to the region between contours equal to
the average of those contours. For instance, the region between 0.2 and 0.3 s was assigned a uni-
form thickness of 0.25 s. Greene and Kennedy (1986) point out that ridges and ridge flanks,
rather than being barren, are apt to have up to several meters of sediment cover.

Figure C-1. Sediment thickness in the Catalina Basin (from Teng, 1985, fig-

ures 31 and 32). Contours are in tenths of seconds of two-way sound travel time.
Areas mapped as devoid of sediment may have thicknesses up to 3 m according to
Greene and Kennedy, 1986).
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APPENDIX D: WATER DEPTH

Gridded bathymetric data for the area were obtained from the National Geophysical Data
Center (NGDC; NGDC data announcement 87-MGG-12). These data were collected by the
National Ocean Service (NOS) and predecessor organizations and are the basic data NOS uses to
chart U.S. coastal waters. The data are gridded at a spacing of 15 seconds of latitude and longi-
tude. Depths are referred to mean lower low water.

The gridding process used by NOS consisted of averaging all soundings occurring within a
grid square and assigning the mean as the depth at the center of the square. If no soundings for a
square were available, no depth was assigned (i.e., interpolation was not used). Figure D-1 illus-
trates the depth grid for the area as obtained from NGDC; whitespace indicates land or grid
points lacking a depth.

As a quality-check, east-west profiles were plotted and compared with NOS bathymetric
charts NI 11-7 and NI 11-10. On the basis of these comparisons, eight data points were identi-
fied as suspect and were not incorporated into the database.

Planar interpolation was then used to fill those empty grid squares of figure D-1 that are
within Catalina Basin or or: the San Clemente and Catalina Island ridges. For isolated empty
squares and isolated clusters of a few empty squares, roughly equilateral triangles with data
points as vertices and centered on the empty square were used. When a relatively large area
lacked depth values, Delauney triangles were constructed and used for interpolations. These
triangularize the data points in such a way that any measurement shares vertices with each of its
immediate neighbors, any two adjacent measurements are linked by an edge, and all triangles are
as equilateral as possible (see Watson, 1983, 1985, 1988; Watson and Philip, 1987). Interpola-
tion was applied recursively, so that a given interpolation may be based on prior interpolations.

The resulting data set (illustrated in figures D-2 and D-3), was checked by again plotting
east-west profiles to compare the interpolations with the original NOS data. No anomalies were
noted. And finally, the data were computer-contoured and compared with a SeaBeam survey of
Emery Knoll. The results are shown in figures D-4 and D-5. The SeaBeam survey was con-
ducted by J.M. Stevenson (NRaD, Code 541, 30 September 1992), who also performed the con-
touring. In figure D-4 (SeaBeam data), peripheral contours should be ignored because the sur-
vey did not obtain sufficient data in these areas for reliable contouring. The interpolated NOS
data agree quite well with the SeaBeam data for Emery Knoll proper.




Figure D-1. Gridded National Ocean Service depth data. Whitespace indicates
land or grid locations that lack depths.
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Figure D-3. Bathymetry of Catalina Basin constructed from final gridded bathy-
metry.
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Figure D-4. SeaBeam survey of Emery Knoll. The soundings were gridded at a
spacing of 100 m and computer-contoured. The survey concentrated on Emery
Knoll, and contours away from the knoll are unreliable. The soundings assume a
seawater sound speed of 1500 m/s.
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Figure D-5. Bathymetry of Emery Knoll based on gridded depths. Contoured
from NOS data and interpolations. Compare with figure D-4, but keep in mind
that NOS depth data are corrected for sound speed in seawater.
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APPENDIX E: MEAN GRAIN SIZE

Mean grain size is a commonly available index property from which acoustic and other sedi-
ment parameters may be computed. In this study, it is used to compute sound speed ratio and
density and as the criterion separating “fine” from “coarse” sediment for geoacoustic modeling.
Mean grain size as used herein includes both mean and median (see Folk and Ward, 1957).

Literature values of surface sediment mean grain size (appendix F) were assembled and used
to generate Delauney triangles. This triangulation (see appendix D) was in turn used to interpo-
late for mean grain size in grid cells lacking measurements. Interpolations in the vicinity of
Catalina Island were considered tenuous, so the surface geology of Welday and Williams (1975)
was used as a guide to mean size as follows.

SEDIMENT NAME MEAN SIZE, PHI UNITS

Coarse sand 0.5
Sand 1.5
Fine sand 3.0
Mud 54

Figure E-1 is the resulting contour map of mean grain size.

E-1




Figure E-1. Mean grain size contours in phi units. Black areas are rock outcrops.
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APPENDIX F: SEDIMENT AND ROCK SAMPLES

Literature data on sediment and rock samples are assembled in tables F-1 (surface sediment
samples) and F-2 (rock sampies). Figures F-1 and F-2 show the sample locations.

The references below are keyed to the tables. Several of the references were obtained from
the National Geophysical Data Center (NGDC). These are noted, along with the NGDC refer-
ence file number.

001

002
003

004

005

006

007

Vedder, J.G., L.A. Beyer, A. Junger, G.W. Moore, A.E. Roberts, J.C. Taylor, and H.C.
Wagner, 1974, Preliminary Report on the Geology of the Continental Borderland of
Southern California; U.S. Geological Survey Miscellaneous Field Studies Map MF-624
and accompanying report.

NGDC MGG file number 06055001.

Gaal, R AP, 1966, Marine Geology of the Santa Catalina Basin Area, California;
unpubl. Ph.D. thesis, Univ. of Southern California.

Bockman, P., D.S. Hill, and E. Achstetter, 1966, A Summary of Sediment Size, Composi-
tion, and Engineering Properties for PMR Project 121/02; September - October 1965;
Naval Oceanographic Office, Geological Laboratory Branch Laboratory Item 277.
NGDC MGG file number 09005011.

Ridlon, J.B., 1969, San Clemente Island Rocksite Project: Offshore Geology Part 2.
Reconnaissance Survey Around the Island; Naval Undersea Research and Development
Center Technical Paper NUC TP 156.

Emery, (K.O., ?), (date not provided), Submarine Canyons of Southern California; Alan
Hancock Pacific Expeditions, v. 27, pt. 1. NGDC MGG file number 27025001.

Oser, R,, J. Coleman, E. Achstetter, D. Hill, W. Johnson, C. Ross, J. Knoop, and V. Wil-
liams, 1967, A Summary of Engineering Properties, Sediment Size, and Composition
Analyses of Cores from the Continental Borderland near San Clemente Island; October
1966 - December 1966. Deep Submergence System Project. U.S. Nzval Oceanographic
Office, Laboratory Branch Laboratory Item 303. NGDC MGG file number 09595003.
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Figure F-1. Sediment sample locations, Catalina Basin.
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Figure F-2. Rock sample locations. Crystalline and volcanic (1 - 10) and sedi-
mentary rock samples (11 - 16).
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APPENDIX G: SEAWATER SOUND SPEED AND DENSITY

The temperature, salinity, and sound speed data in tables G-1 through G-4 were provided
by A. Fisher, NRaD Code 742 (5 November 1992). I computed density from temperature, salin-
ity, and depth. Sound speed profiles are illustrated in figure G-1. Tables G-1 through G-4 are
reproduced as ASCII files on the accompanying disk (SSP.WIN, SSP.SPR, SSP.SMR, and

SSPFAL).

Table G-1. Winter seawater data: sound speed, temperature, salinity, and density.

TEMPERATURE, SALINITY, SOUND SPEED,
°C ppt m/s

DEPTH, DENSITY,
m n | MEAN | SIGMA | MEAN | SIGMA | MEAN | SIGMA | g/cm3
0 2485 14.46 1.28 33.39 0.19 15036 4.1 1.0249
10 2485 14.36 1.28 33.39 0.18  1503.5 4.1 1.0249
20 2485 14.22 1.34 33.39 0.18 1503.2 43 1.0250
30 2485 14.01 1.45 33.40 0.18 15027 4.6 1.0251
50 2485 13.32 1.64 33.41 0.18 15007 5.3 1.0253
75 2484  11.98 1.65 33.46 020 14966 5.4 1.0258
100 2479 10.83 1.32 33.57 021 14932 43 1.0262
125 2455  10.05 0.99 33.72 020 14910 3.2 1.0265
150 2435  9.49 0.76 33.85 0.17  1489.5 2.5 1.0268
200 2361 871 0.58 34.02 0.11  1487.7 1.9 1.0273
250 2302 812 0.56 34.11 0.09  1486.4 1.9 1.0277
300 2249  7.58 0.57 34.15 009 14852 20 1.0281
400 2154  6.68 0.50 34.21 0.07 14834 1.8 1.0287
500 2026  6.00 0.42 34.27 006 14824 1.6 1.0293
600 957  5.39 0.37 34.33 006  1481.8 1.2 1.0299
800 524 453 0.27 34.42 004 14818 09 1.0310
1000 402 393 0.20 34.48 004 14826 09 1.0320
1200 132 342 0.31 34.52 0.04 14845 2.0 1.0330
1500 41 289 0.30 34.56 0.02  1486.5 1.3 1.0345
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Table G-2. Spring seawater data: sound speed, temperature, salinity, and density.

TEMPERATURE, | SALINITY, ppt | SOUND SPEED,
°C m/s

DEPTH, DENSITY,
m n MEAN | SIGMA | MEAN | SIGMA | MEAN | SIGMA g/cm3
0 3008 15.12 1.69 33.44 0.21 1505.8 53 1.0248
10 3008 14.82 1.63 3343 0.21 1505.0 51 1.0249
20 3008 14.27 1.60 33.43 0.20 1503.4 5.1 1.0250
30 3008 13.68 1.74 33.44 0.21 1501.6 5.6 1.0252
50 3008 12.61 1.91 33.47 0.23 1498.3 6.2 1.0255
75 3008 11.43 1.76 33.54 0.26 1494.8 5. 1.0259
100 3008 10.45 1.41 33.65 0.27 1491.9 4.6 1.0263
125 2965 9.74 1.01 33.77 0.24 1489.9 34 1.0266
150 2940 9.21 0.72 33.89 0.21 1488.5 2.4 1.0269
200 2860 8.50 0.51 34.04 0.13 1486.9 1.7 1.0274
250 2768 7.94 0.50 34.12 0.10 1485.7 1.8 1.0278
300 2711 7.43 0.51 34.16 0.09 1484.6 1.9 1.0281
400 2579 6.59 0.43 34.22 0.08 1483.0 1.6 1.0287
500 2392 5.95 0.35 34.28 0.06 1482.2 1.3 1.0293
600 907 5.36 0.31 34.33 0.05 1481.6 1.1 1.0299
800 408 4.50 0.24 34.41 0.04 1481.5 0.9 1.0310
1000 304 3.89 0.18 34.47 0.03 1482.3 0.9 1.0320
1200 120 3.39 0.28 34.52 0.03 1483.9 1.5 1.0330
1500 44 2.76 0.37 34.57 0.03 1487.1 3.0 1.0345




Table G-3. Summer seawater data: sound speed, temperature, salinity, and density.

TEMPERATURE, | SALINITY, ppt | SOUND SPEED,
°C m/s
DEPTH, DENSITY,
m n | MEAN | SIGMA | MEAN | SIGMA | MEAN | SIGMA g/cm3
0 1922 17.79 1.98 33.47 020 1513.9 5.9 1.0242
10 1922 1726 1.95 33.46 020 15125 59 1.0243
20 1922  16.15 1.99 33.44 0.19 15092 6.2 1.0246
30 1922 15.00 2.18 33.43 0.19  1505.7 6.9 1.0249
50 1922 13.01 2.04 33.43 0.21 1499.6 6.7 1.0254
75 1922 11.52 1.74 33.51 024 14950 5.8 1.0259
100 1922  10.55 1.40 33.63 0.25 14922 4.7 1.0263
125 1882  9.84 1.03 33.75 023  1490.2 35 1.0266
150 1859  9.31 0.77 33.87 0.20 14889 2.6 1.0269
200 1816  8.62 0.61 34.04 0.13 14873 2.1 1.0274
250 1767  8.07 0.64 34.12 0.11  1486.2 2.2 1.0277
300 1727 156 0.68 34.17 0.10 14852 2.3 1.0281
400 1628  6.69 0.61 34.23 0.08  1483.5 2.1 1.0287
500 1507  6.03 0.47 34.28 0.06 14826 1.7 1.0293
600 594 543 0.42 34.34 0.06 14820 1.4 1.0299
800 327 454 0.30 34.42 0.05 14818 1.2 1.0310
1000 237 392 0.22 34.48 0.05 14825 1.0 1.0320
1200 73 344 0.22 34.53 0.05 14839 1.0 1.0330
1500 17 290 0.40 34.55 ¢.03  1486.5 1.7 1.0345
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Table G-4. Autumn seawater data: sound speed, temperature, salinity, and density.

TEMPERATURE, SALINITY, SOUND SPEED,
°C ppt m/s
DEPTH, DENSITY,
m n MEAN | SIGMA | MEAN | SIGMA | MEAN | SIGMA | g/cm?3
0 1566  17.10 1.93 33.47 0.18 15119 5.6 1.0243
10 1566  16.94 1.96 33.47 0.18 15116 5.7 1.0244
20 1566  16.40 2.04 33.46 0.17  1510.1 6.0 1.0246
30 1566  15.64 2.25 33.44 0.17  1507.8 6.8 1.0248
50 1566  13.53 2.23 33.40 0.18  1501.4 7.0 1.0253
75 1566  11.70 1.69 33.48 020  1495.7 5.4 1.0258
100 1566  10.63 1.39 33.61 0.20 14926 4.4 1.0262
125 1543  9.90 1.11 33.75 0.18  1490.6 34 1.0266
150 1532 9.37 0.90 33.87 0.16  1489.2 2.7 1.0269
200 1494  8.64 0.76 34.04 0.1 1487.5 22 1.0274
250 1456  8.08 0.74 34.12 0.10  1486.4 2.3 1.0277
300 1417 7.58 0.68 34.16 0.09 14853 25 1.0281
400 1311 671 0.57 34.23 0.07 14836 2.1 1.0287
500 1237 6.02 0.45 34.28 0.06 14825 1.6 1.0293
600 481  5.40 0.45 34.34 0.06 14819 1.5 1.0299
800 267  4.50 0.39 34.42 0.05 14819 1.7 1.0310
1000 203  3.86 0.33 34.48 0.05 14827 2.3 1.0320
1200 72 3.37 0.39 34.53 0.04 14844 2.4 1.0331
1500 30 276 0.44 34.57 0.04  1487.6 53 1.0345
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Figure G-1. Seasonal sound speed profiles.
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