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PREFACE

As evidenced by the success of the first Working Conference on Architectures and Compilation
Techniques for Fine and Medium Grain Parallelism, last year in Orlando, and the superb pro-
gram of this year’s conference, fine and medium grain parallelism is a vital, vibrant recearch
topic. Within this area of research, new developments in superscalar and VLIW architectures,
and their associated compilation techniques, have provided exciting new avenues to extract per-
formance from a slowing technology curve.

The second conference in this series, the International Conference on Parallel Architectures and
Compilation Techniques- PACT ’94- has set as its goal to become the premier forum for resear-
chers, developers and practitioners in the fields of finre and medium grain parallelism. This will
establish the yearly conference as one of the main events in the field, and its proceedings as an
invaluable archival publication of important results in the area.

This year, the program consists of 28 full-length papers and and a number of short (poster)
papers, carefully selected by the Program Committee and external reviewers from among 101
submissions. A keynote speech by Arvind will open the conference, and Jack Dennis will also
address the banquet attendees. Bob Rau and Anoop Gupta will present invited talks to open
the second and third days of the conference, respectively. The panel session, on the subject
of programming multithreaded machines, has been organized by A.P. Wim Bohm. Preceding
the conference itself are three tutorial sessions, ”Parallelizing Compilers: How to Discover and
When to Exploit Parallelism Automatically,” by Constantine Polychronopoulos and Alex Ni-
colau, ”Data-Driven and Multithreaded Architectures for High-Performance Computing,” by
Jean-Luc Gaudiot, and ”"Mechanisms for Exploiting Instruction Level Parallelism,” by Yale
Patt. All these make up a high quality, exciting technical program, complemented by the loca-
tion of the conference in the beautiful city of Montreal.

We are grateful to all those who contributed their time and effort in making PACT 94 a reality.
QOur Steering Committee members, Michel Cosnard (also Publication chair), Kemal Ebcioglu
and Jean-Luc Gaudiot, provided a vital link to the original intent of the conference. Efforts by
Herbert Hum (Local Arrangements) Zary Segall (Publicity), Walid Najjar (Treasurer, Regis-
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tration) are greatly appreciated, as are those of Erik Altman (Graphics, PC Administration).
We also acknowledge the members of the Program Committee and reviewers, listed separately
in these proceedings.

Finally, we acknowledge the support of our sponsors, the International Federation of Infor-
mation Processing (IFIP) Working Group 10.3 (Concurrent Systems), and the Association for
Computing Machinery (ACM) Special Interest Group on Computer Architecture (SIGARCH),
in cooperation with Centre de Recherche Informatique de Montréal (CRIM), the Institute of
Electrical & Electronics Engineers (IEEE) Computer Society Technical Committees on Compu-
ter Architecture (TCCA) and Parallel Processing (TCPP), the ACM Special Interest Group on
Programming Languages (SIGPLAN), and financial support from the Office of Naval Research
(ONR), IBM Canada’s Center for Advanced Studies (CAS), and Hydro Québec.

Gabriel Silberman
IBM T.J. Watson Research Center
General Chairman

Guang Gao
Mc Gill University
Program Committee Chairman
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EM-C: Programming with Explicit Parallelism and
Locality for the EM-4 Multiprocessor

Mitsuhisa Sato®, Yuetsu Kodama?, Shuichi Sakai® and Yoshinori Yamaguchi?

a Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

brwC Tsukuba Research Center, Mitsui Bldg., Tsukuba, Ibaraki 305, Japan

Abstract: In this paper, we introduce the EM-C language, a parallel extension of C
to express parallelism and locality for efficient parallel programming in the EM-4 mul-
tiprocessor. The EM-4 is a distributed memory multiprocessor which has a dataflow
mechanism. The dataflow mechanism enables a fine-grain communication packet through
the network to invoke the thread of control dynamically with very small overhead, and
is extended to access remote memory in different processors. The EM-C provides the
notion of a global address space with remote memory access. It also provides new lan-
guage constructs to exploit medium-grain parallelism and tolerate several remote opera-
tion latencies. The EM-C compiler generates an optimal code in the presence of explicit
parallelism. We also demonstrate the EM-C concepts by some examples and report pr
formance results obtained by optimizing parallel programs with explicit parallelism a.a
locality.

Keyword Codes: C.1.2; C.4; D.1.3; D.3.3
Keywords: Multiprocessors; Performance of Systems; Language Constructs and Fea-
tures

1 Introduction

EM-C is a parallel extension of the C programming language designed for efficient parallel
programming in the EM-4 multiprocessor. The EM-4{7] is a distributed memory multi-
processor which has a datafiow mechanism. Dataflow processors are designed to directly
send and dispatch small fixed-size messages to and from the network. Those messages
are interpreted as “dataflow tokens”, which carry a word of data and a continuation to
synchronize and invoke the destination thread in other processors. The dataflow mech-
anism allows multiple threads of control to be created and efficiently interact. In the
EM-4, network messages can also be interpreted as fine-grain operations, such as remote
memory reads and writes in a distributed memory environment. Remote memory access
operations can be thought of as invoking a fine-grain thread to reference memory in a
different processor.

EM-C provides the notion of a global address space which spans the local memory of
all processors. The programmer can distribute data structures as single objects in the
global address space. Using remote read/write messages, the language supports direct




access to remote shared data in a different processor. Although it provides the illusion
of global shared memory, since it does not provide a hardware shared memory coherence
mechanism, frequent remote memory accesses cause large amounts of latency, resulting in
poor performance. If reference patterns are static or regular, EM-C allows the programmer
to convert them into coarse-grained communication in order to reference them in the local
space.

Tolerating the long and unpredictable latencies of remote operations is the key to high
processor utilization. Multithreading is an effective technique for hiding remote operation
latency. The dataflow mechanism supports very efficient multithreaded execution. The
programmer can decompose a program into medium-grain tasks to hide the remote oper-
ation latency with the computation of other tasks. We introduce the task block language
construct to express and control parallelism of tasks.

Given the failure of automatic parallelizing compilers, many programmers want to
explore writing explicit parallel programs. Some language and compiler researchers be-
lieve that explicit parallelism should be avoided, and implicitly parallel languages such
as functional languages should be used. Nevertheless, we desire language constructs for
expressing explicit parallelism and locality in parallel programs to achieve the best per-
formance for the underlying hardware. Then, the ability to exploit parallelism and to
manage locality of data is not limited by the compiler automatic transformation. The
compiler takes care to generate optimal code in the presence of explicit parallelism. EM-C
has been used extensively as a tool for EM-4 paralle! programming. It may be used as a
compilation target for higher level of parallel programming languages. Although the EM-
C execution model is based on the EM-4 architecture, the EM-C concept is not limited to
the EM-4. With software runtime systems, it can be applied to other modern distributed
memory multiprocessors such as Thinking Machine’s CM-5.

In Section 2, we summarize the EM-4 architecture, and introduce the EM-C language
constructs in Section 3. We illustrate how these are used in EM-4 parallel programming
in Section 4, and also report the performance results achieved in the EM-4 prototype.
Section 5 describes the EM-C compiler and some of its optimization techniques. We
compare EM-C and its execution model with related works in Section 6, and conclude
with a summary of our work in Section 7.

2 The EM-4 multiprocessor

The EM-4 is a parallel hybrid dataflow/von Neumann multiprocessor. The EM-4 consists
of a single chip processing element, EMC-R, which is connected via a Circular Omega
Network. The EMC-R is a RISC-style processor suitable for fine-grain parallel processing.
The EMC-R pipeline is designed to fuse register-based RISC execution with packet-based
dataflow execution for synchronization and message handling support.

All communication is done with small fixed-sized packets. The EMC-R can generate
and dispatch packets directly to and from the network, and it has hardware support to
handle the queuing and scheduling of these packets.

Packets arrive from the network and are buffered in the packet queue. As a packet
is read from the packet queue, a thread of computation specified by the address portion
of the packet is instantiated along with the one word data. The thread then runs to its
completion, and any live state in the thread may be saved to an activation frame associated
with the thread. The completion of a thread causes the next packet to be automatically
dequeued and interpreted from the packet queue. Thus, we call this an ezplicit-switch
thread. Network packets can be interpreted as dataflow tokens. Dataflow tokens have the




option of matching with another token on arrival — unless both tokens have arrived, the
token will save itself in memory and cause the next packet to be processed.

The current compiler compiles the program into several explicit-switch threads[9]. The
EM-4 recognizes two storage resources, namely, the template segments and the operand
segments. The compiled codes of functions are stored in template segments. Invoking
a function involves allocating an operand segment as the activation frame. The caller
allocates the activation frame, depositing the argument value into the frame, and sends
its continuation as a packet to invoke the caliee’s thread. Then it terminates, explicitly
causing a context-switch. The first instruction of a thread operates on input tokens, which
are loaded into two operand registers. The registers cannot be used to hold computation
state across threads. The caller saves any live registers to the current activation frame
before context-switch. The continuation sent from the caller is used for returning the
result, as the return address in a conventional call. The result from the called function
resumes the caller’s thread by this continuation.

This calling sequence can be easily extended to call a function in a different processor
remotely. When the caller forks a function as an independent thread, it is not suspended
after calling the function. When using the parallel extension in EM-C, an executing thread
may invoke several threads concurrently in other activation frames. Therefore, the set of
activation frames form a tree rather than a stack, reflecting the dynamic calling structure.

The interpretation of packets can also be defined in software. On the arrival of a
particular type of packet, the associated system-defined handler can be executed. For
remote memory access, the packet handlers are provided to perform remote memory
reads and writes. For a remote memory access packet, we use the packet address as a
global address rather than specifying a thread. A global address consists of the processor
number and the local address in the processor. The remote memory read generates a
remote memory read packet, and terminates the thread. The remote read packet contains
a continuation to return the value, as well as a global address. The result of the remote
memory read packet is sent containing the value at the global address to the continuation
which will receive the value. The remote memory write generates a remote memory write
packet, which contains a global address and the value to be written. The thread does not
terminate when the remote write message is sent.

In the EMC-R processor, incoming packets are queued and served in FIFO (first-in
first-out) order. Any communication does not interrupt the execution. Threads switch
explicitly at a function call and return. It is sometimes useful to form critical sections.

3 EM-C Parallel Programming Language

3.1 Global Address Space

EM-C provides a global address space and allows data in that space to be referenced
through global pointers. A global pointer contains a global address, and is declared by the
quantifier global to the pointer declaration:

int global *p;

A global pointer may be constructed by casting a local pointer to a global pointer. The
same object is referenced by different PEs through the global pointer. The processor
select operator @ is used to construct a global address as follows:

P = &xdpe.addr; or p = &x@[pe_id];
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where pe_addr is a processor address in the network, and pe_id is an unique processor
identifier starting from 0. The processor select operator evaluates the left side expression
within the processor given by the right side. Arithmetic on global pointers is performed
on its local address while the processor address remains unchanges.

EM-C allows an array object to be distributed in a global space. A global array object
is declared by the local declaration and processor mapping declaration separated by ¢.

data_t global A[N]@[M];

This corresponds to a cyclic layout of a two-dimensional N*M array. The data objects de-
clared by the local declaration are laid out according to the processor mapping dimensions
in a wrapped fashion starting with processor zero. If M is chosen equal to the number
of processors, this can be viewed as a blocked layout of a one-dimensional array of M*N
size. The element of the global array can be referenced by the processor select operator.
For example, the expression A[i)@[j] references the i-th element of j/(the number of
processors)-th A at the processor j¥%(the number of processors).

As the default, data objects are allocated at the same local address as private object in
each PE. Since all accesses to such objects are local, access can proceed without interfer-
ence or delay. Any object declared without a distribution guantifier is simply replicated
with one copy allocated to each PE.

3.2 Task Block for Medium Grain Parallelism

A task block is a block of code which can be executed by a thread with its own context.
The forkwith construct is used to create a thread which executes a task block.

forkwith(parameiers for task body){ ... task body ... }

The task body section contains the code executed when the thread runs. The programmer
gives a list of variables to reference the values of these variables from the enclosing context.
EM-C implementation allocates an activation frame for the task, and copies these values
into the task’s context when the task is created.

Threads may communicate and coordinate by leaving and removing data in the syn-
chronizing data structure. EM-C provides the I-siructure operation on any word in the
global address space as well as the conventional lock operations. This synchronizing data
structure may be used for split-phase operations to tolerate the latencies of remote oper-
ations.

The dowith construct blocks the parent thread until the execution of the task body
terminates.

dowith(parameters for task body) {
... task body ... } | update(update variable list))

The optional update reflects the values of specified variables into the parent’s environment
at termination. The task body may include any number of nested task blocks.

3.3 Data Oriented Task Block: Where
The where construct executes the task body in the PE where the data is allocated.

where (global pointer variable or expression) task block statement
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This construct is useful for handling complicated data structures linked by global pointers
among different PEs in an irregular application. Once a data structure has been built,
related computation tasks may be allocated using the global pointer.

For convenience, the processor select operator can be used to execute a function in the
specified processor. For example, the following code remotely calls foo at the processor
specified by pe_addr.

r = foo(iargs,...)0Ope.addr;

3.4 Constructs for Multithreading

The parallel sections construct, denoted by the parallel keyword, concurrently executes
each statement in a compound statement block as a fixed set of threads. It is similar to
the cobegin/coend or the Parallel Case statements, and is a block structured construct
used to specify parallel execution of the identified sections of code. A parallel sections
statement completes and control continues to the next statement only when all inside
statements have completed.

Parallel loops differ from their sequential counterparts in that variables must be de-
clared as private ia each iteration context. Instead of a high-level paraliel loop construct,
EM-C provides the iterate construct which spawns a fixed number of the same iteration
task blocks.

iterate(the number of threads) task block statement [reduction operation)

The optional reduction operation can be performed during the synchronization of threads
for dowsth task blocks. For example, a pre-schedule loop can be implemented as follows:

iterate(N_ITERATE) dowith(){
for(s = 0, i = iterate_id(); i < N; i += N_ITERATE) s += A[i];
} reductionsum(s);

Here, reductionsum performs a sum reduction operation on variable s. The construct
iterate_id () returns the identifier of the iteration task from 0 to N_.ITERATE - 1.

The parallel sections and iterate constructs are used to tolerate the remote operation
latency with other tasks by the multithreading technigue.

3.5 Parallelism over Global Data Object

The everywhere construct parallelizes the loop over distributed data structures. It spawns
the task block in every processor.

everywhere task block statement [reduction operation]
The following code shows an inner-product example using the everywhere construct.

data_t global A[N/N_PE]@[N_PE], global B[N/N_PE]C[N_PE);

everywhere dowith() {
for(s =0, i = 0; i < N/N_PE; i++)
s += A(i]*B[i];
} reductionsum(s);




#define BLK_N (N/N_PB}

global data_t A[BLK_N) [NJO[N_PE}; global data_t C[BLK_N][N]Q[N_PE];
global data_t B[BLK_N][N]J@[N_PE]l; /+ transposed »/

data_t localB[N];

matrix_multiply(){
everyvhere dowith(){
int i, j, k, 1, iter; data_t t;
j = my_id=N_BLK;
for(iter=0 ; iter < N; iter++,j++){
if(j >=N) j = 0;
mem_copyout (B{j%BLK_N], (global)localB,N*sizeof (data_t))@[j/BLK_N];
barrier();
for (i=0;i<BLK_N;i++){
tfor (t=0,k=0;k<N;k++) t += A[i] [k]*localB[k];
Clil(j1 = ¢;
}
} }
Figure 1: Matrix Multiply (Block Copy)
In the example, the global arrays A and B without & processor select operator are referenced
as local objects.

Within the context of an everywhere task block, the barrier synchronization can be
used to synchronize every processor. To implement the barrier synchronization on EM-4,
we use the packet exchange communication of a butterfly network. This allows reduction
operations such as sum to be performed during packet exchange.

4 Programming in EM-C

This section describes some examples and the performance actually achieved on the EM-
4 prototype. We also illustrate how to use the EM-C constructs to optimize parallel
programs.

4.1 Matrix multiplication

If program communication patterns are static, they can be converted into coarse-grained
block copy operation. This transformation reduces the frequency of remote operations in
a distributed memory environment. In the matrix multiply with column-oriented block
distribution (Fig. 1), each row in the transposed matrix B is copied into the local buffer
localB in the outermost loop. The block copy mem_copyout is remotely invoked to send
the block of data. To avoid remote access conflicts, the starting row is skewed according
to the processor number. Processors are distinguished by the value of my.id, and the
number of processors is given as a constant N_PE. Matrices A and C are referenced locally.

Figure 2 shows the performance of three versions of matrix multiply for square matrices
up to size 256. Unfortunately, the EM-4 has no floating point hardware, so we measured
the performance in the unit of integer operations. The lowest curve “Remote read” is for
the simplest version which accesses matrix B in the innermost loop by remote memory
read. This version only uses a single thread. Although the performance can be improved
by multithreading technique, it cannot exceed the block version due to the overhead of
fine-grain remote reads in this program. The curve labeled “Block Copy” is for the version
described above. The “Shift” version uses the cyclic shift algorithm, which is usually used
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Figure 2: Performance of matrix multiply (64 processors)

in conventional message passing model. In EM-C, the shift operation has the extra cost
to move data from message buffers to the program data structure.

4.2 Knapsack Problem

Given n objects with weights W; and profits F;, and a knapsack capacity M, the knapsack
problem is to determine the subset of objects which maximumize total profits. The
knapsack problem gives rise to a search space of 2" of objects, which can be depicted as
a binary tree, where the root represents an empty knapsack, and going down to level;
subtree represents the choice of object;.

We implemented the Branch and Bound algorithm presented in [1], as shown in Figure
3. Given a partial solution, a lower bound for the best total solution can be computed
by adding objects witn maximal profit weight ratio until an object exceeds the knapsack
capacity, while an upper bound can be computed by adding the part of the objects that
fill the capacity. Subtrees are cut by estimating the upper bound of a partial solution
and comparing it to a shared variable GLow containing the current best lower bound in
all the processors.

The array for weights and profits are replicated in each processor, and are referenced
locally. The variables nexti_pe and next2_pe contain the neighbor processor addresses
in the EM-4’s Omega network topology. Remote function calls for the subtrees are done
within parallel sections, and parallelism spreads in the form of tree in omega topology.
To avoid the exhaustion of resources, parallel remote calls are switched into sequential
local calls when the number of activations, counted by the variable thread_count, exceeds
the limit THREAD_LIMIT (50 in the current implementation). Since a thread is executed
exclusively, this variable is updated in a critical section. Figure 4 shows the speedups
of 30 random data from 20 objects to 60 objects with 80 processors. The trend seems
to be that the harder the problem becomes, the better performance the parallel program
obtains. For small problems, the speculative execution does not work effectively, and may
sometimes make them even slow. To manage the shared variable GLow, we implemented
two versions of Fetch_GLow and Update_GLow. The version “remote read/remote update”
always references and updates the GLow in processor 0. In “local read/broadcast update”,




e e ——— e

10

int W[N], P[N]; /* weight and property */
global int GLow; /*» shared variable »/

int knapbb(i,cp,M) int i,cp,M;
{ int lwb,upb,Opt, m,ii,curlow, 1,r;
static int thread_count = 0;

t = cp;
gg G<NEM>0) { /#* compute lover and upper bounds #*/
for(lwb=cp,ii = i,m = M; (ii < N && m >= W[ii]); ii++){
m -= Wliil; 1lwb += P[iil;  }
if(ii < N) upb = lgb + (m*P[1i})/W[ii); else upb = 1lwb;
curlow = Fetch_GLow(); /* fetch global variable #*/
if(curlow < lwb) Update_GLow(lwb);
else if (upb < curlow) return(Opt);
if (M >= Wlil){
if (thread_count < THREAD_LIMIT){
thread_count++;
parallel { /* parallel call */
1 = knapbb(i+1,cp+P(i],M-W[i])QOnextl_pe;
r = knapbb(i+1,cp,M)Onext2_pe;

thread_count--;

} else { /* sequential call */
1 = knapbb(i+1,cp+P[i] ,M-W[i]),0);
r = knapbb(i+1,cp,M,0);

}
Opt = MAX(1,1);
} else Opt = knapbb(i+l,cp,M,0);

}
return(Opt);
} . .
Figure 3: Knapsack problem in EM-C
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Figure 4: Performance of knapsack problem (80 processors)

GLow is replicated in every processor and referenced locally. The value of GLow is
updated by invoking a thread to broadcast the new value. This policy is better in the
harder problems, because reference occurs more frequently than update.
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Read wire data, and distribute them for all PEs.
for (repeat 2 times){
everywhere() dowith(){
/% this task block is ezeculed in every PE »/
iterate(#threads for wiring) dowith(){
pick a wire in the current PE.
rip up the previous route from the cost array.(if not first time)
make pin pairs by building minimum spanning tree
for(each generated pin pairs) {
iterate(#threads for routing)
dowith(){
pick one possible route.
celculate the route cost with the current cost array.

choose the best route with the minimum cost.
record the best routes, and update the cost array.

/* for load balancing */
if a wire in other PEs is not routed yet, move the wires and route it.

Figure 5: Outline of Locus Route in EM-C
4.3 LocusRoute

LocusRoute[6] is a standard-cell routing program. The cost array is a main data struc-
ture in LocusRoute, which is referenced and updated by wiring processes. In the EM-C
implementation, the cost array is statically distributed in a global address space. Wire
data is distributed in round-robin fashion, and is referenced locally in wiring processes.

The outline of the EM-C implementation is illustrated in Figure 5. The major modifi-
cation from the original program is eliminating several global variables to expose parallel
loops. Parallel loops are executed inside everywhere sections. Since the cost array is dis-
tributed in each processor, its elements are accessed by remote memory operations. To
tolerate the latency of remote reference, multiple wires are routed in parallel even in the
same processor by the iterate construct. To find the best routes, a few threads are also
generated dynamically by iterate. At end of the loop, each routing process tries to move
unrouted wires in other processors for load balancing. With 64 processors, we achieved a
speedup of 31.5 for the input circuit (Primary2) which has 3817 wires in an 1920 grid by
20 channel area. Through careful experimentation, we found that four to eight threads
in each processor is sufficient to hide the remote operation latency in the EM-4 proto-
type. Since aggressive multithreading increases pressure on the network, it can have a
negative impact on performance as the number of processors increases. Detailed results
are reported in [8].

5 The EM-C Compiler

5.1 Intermediate Code

The compiler takes an expression tree generated by the front-end, and expands it into
the intermediate code. In the intermediate code of the EM-C compiler, we introduce the
following special operations to represent parallel programs.
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LFORK label, output-dir,break-or-continue,optional-operands, ...
LFORK invokes a new thread running from the specified label in the current acti-
vation frame. The operand break-or-continue indicates whether the current thread
terminates after this operation.

GFORK label, output-dir, break-or-continue, optional-operands, ...
This operation indicates an indirect control flow. GFORK sends the continuations
for the specified label to invoke a new thread in an external activation frame. The
thread is resumed by the return value sent from the external thread. The return
value is obtained at the destination of a GFORK operation by the INPUT (input-dir)
operation.

SEND data,destination,optional-operands, ...
Sends the data to the destination. This operation is used for remote asynchronous
write and forking independent threads.

The optional operands may specify the value carried across threads. The output-dir and
input-dir operands identify input and output for synchronization. The value may be either
1op, left, or right; lop invokes the destination thread immediately, and left and right
are used to join two threads. This synchronization is done by dataflow matching.

For example, the remote read is compiled into the following code:

GFORK CO,lop,break, "REMOTE_READ", global address
CO: wvariables = INPUT(1op)

The INPUT operations are removed by assigning the operand registers to the destination
variables in register allocation phase.

Every function call is converted into GFORK operations in the intermediate code, be-
cause each function is compiled as an individual thread.

In the intermeditate code, the task block code is surrounded by the TASK_BEGIN and
TASK_END code annotated with the type of control. These codes are directly translated
into the corresponding runtime assembly code in the code generation phase.

5.2 Extended Control Flow Graph

The EM-C compiler constructs the Control Flow Graph (CFG) as an intermidate data
structure. Our CFG is extended to introduce special edges associated with LFORK and
GFORK. In CFG, the following transformations are performed to optimize the program:

o Re-partitioning. — Maximizing the thread run length reduces the frequency of
saving and restoring context, and increases locality. We use the Dependence Set
algorithms[4] to recognize possible partitioning. The algorithm is modified for the
extended CFG because the program is represented by a control flow graph rather
than a data flow graph. When the nodes connected by a LFORK edge are in the same
dependence set of GFORK edges, these nodes can be executed in the same thread.

o Null thread elimination. — A null thread' is defined as a basic block which contains
no effective instructions except an LFORK operation to trigger other threads. For
example, suppose the fork operation in node A triggers the null thread of node B,
and B triggers C, then B can be eliminated by replacing the fork operation A as to
directly trigger C.

!This is the same as a Null Sequential Quatum in [4]
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5.3 Register Allocation

We use the register coloring algorithm for register allocation. In our execution model, the
live ranges of variables in concurrently executed nodes do not interface with each other.
Different spill locations must be assigned to these variables, however, because their order
of execution is unknown at compile time, and the live values of the variables are saved at
any thread boundary.

At the beginning of each thread, the destinations of INPUT are assigned to the operand
registers. Peep hole optimization may combine an instruction into dataflow matching if
possible. When dataflow matching is used only for synchronizing controls, a single live
value may be carried with the synchronization packet.

Code scheduling across basic blocks is not implemented in the current compiler.

6 Related Work

Eicken et. al. [10] presented Active Messages as an asynchronous communication mecha-
nism which directly invokes a user-level instruction sequence in the message. The perfor-
mance of Active Messages on CM-5 indicates that it takes a few tens of machine cycles
to create a thread in a different processor using hardware directly from the user program.
They proposed an extension of the C programming language, called Split-C[2], which
provides split-phase remote memory operations using Active Messages and can overlap
asynchronous communication with computation. Split-C also provides a global address
space. The major difference is that Split-C provides a set of operations for split-phase
assignment to allows computation and communication to be overlapped, rather than pro-
viding language constructs for multithreading as in the EM-C.

Recent works in dataflow research have adopted the ezplicit-switch thread. Culler[3]
proposed a software explicit-switch thread model, called a threaded abstract machine
(TAM) using Active Messages, which is similar to the EM-4 architecture. The TAM was
designed to compile the functional programming language 1d90 into it. Although our
EM-C is designed for the EM-4 architecture, we believe that the basic concept of EM-C
can be applied to conventional high performance multiprocessors with a similar approach.

Jade [5] is a data-oriented language for parallelizing programs written in a serial, im-
perative language. It supports coarse-grain tasks which are augmented with high-level
data usage information. Its compiler and runtime systems use this information to syn-
chronize tasks. EM-C task blocks can be used for the same style of parallel programming.

7 Summary

In this paper, we introduced EM-C, a parallel extension of C designed for efficient parallel
programming in the EM-4 multiprocessor. The EM-4 has a dataflow mechanism, which is
extended to fine-grain remote memory access and is able to support very efficient multi-
threading. EM-C allows programmers to exploit and control parallelism, and to enhance
locality for optimizing parallel programs. It provides the notion of a global address space
for remote data references, and simple data distribution in that space. EM-C’s task block
and parallel sections construct are used for multithreading to exploit medium-grain paral-
lelism and to hide remote memory access latencies. The where and everywhere task block
constructs allow data-oriented threads of task blocks to execute depending on the data




14

distribution in the global address space. We illustrated these language concepts with var-
ious sample programs. The EM-C programs are compiled into explicit-switch threads to
be invoked and synchron...d with the dataflow matching mechanism. The compiler upti-
mization eliminates redundant synchronizations and communications to generate optimal
code in the presence of explicit parallelism.
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Abstract: This paper presents an execution model for exploitation of fine-grain par-
allelism. It is described by means of an abstract machine, S-TAM, that offers flexibility
in the trade-off between static and dynamic methods for scheduling and allocation It is
based on multithreading as a means of providing flexible, compiler-controlled scheduling.
The allocation of processing resources is both static, requiring compile-time allocation of
a processor for each thread, and dynamic in the form of mulitiple, dynamically allocated
functional units in a processor.

Experimental results show that a system using mixed static and dynamic allocation
gives a performance which is comparable to that of a system based entirely on dynamic
allocation.

Keyword Codes: C.1.2; D.1.3
Keywords: Multiprocessors; Concurrent Programming

1 Introduction

Today the most common type of architecture for exploitation of very fine-grain parallelism
is the superscalar processor. Several researchers have studied the limitations of these
architectures ([9, 4]) and proposed variations based, for instance, on speculative ezecution
as a means for achieving a higher degree of parallelism. It seems, however, as though the
degree of parallelism that can be found and exploited by these architectures is limited by
their inherently sequential execution model.

Another type of fine-grain parallel architecture is the VLIW (Very Long Instruction
Word) architecture. In contrast to a superscalar architecture, a VLIW architecture makes
use of static scheduling and allocation of processing resources, to exploit parallelism. Since
superscalar architectures are based on dynamic scheduling and allocation, the primary
difference between VLIW and superscalar execution lies in how and when scheduling and
allocation of processing resources are performed.

The chief disadvantage of dynamic scheduling, compared with static scheduling, is
the overhead in both time and hardware that is incurred by the scheduling mechanism.
Furthermore, dynamic scheduling often becomes local in the sense that it only considers
a small portion of a program at a time. On the other hand, dynamic scheduling is
more general than static scheduling, which is best suited for regular computations with
a statically determined control flow. For irregular computations, it is often difficult to
perform efficient static scheduling and allocation.
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Figure 1: An S-TAM processor.

This vaper presents an execution model for very fine-grain parallelism that constitutes
a new and flexible trade-off with respect to static and dynamic methods for scheduling
and allocation. The execution model is described by means of an abstract machine called
S-TAM (Static Threaded Abstract Machine). Its name is chosen to reflect that some of
the underlying ideas are inspired by the TAM abstract machine [1]. For instance, one
important goal of S-TAM is to make scheduling and allocation ezplicit and visible to the
compiler.

The flexibility in scheduling offered by S-TAM comes primarily from the fact that it is
a multithreaded execution model, in which threads are dynamically scheduled in a data-
driven fashion, whereas the instructions constituting a thread are statically scheduled.
Threads are formed so as to avoid parallelism within threads, i.e. parallelism should be
expressed as parallelism between threads.

The flexibility in resource allocation comes from the fact that S-TAM is organized as
a number of statically allocated processors, consisting of dynamically allocated functional
units. The basis for the allocation is thus static, as each processor is assigned one or
several threads at compile-time. However, this allocation is not as critical as for a VLIW
architecture, and can be performed with a very simple allocation algorithm, owing to the
fact that each processor has several functional units to handle parallelism between threads
on the same processor.

2 S-TAM

A system based on S-TAM consists of a number of processing elements (PE), connected
via some interconnection network (see Figure 1). Each PE consists of some local memory
and an S-TAM processor with the following storage resources:

CM Code Memory

Holds threads of instructions and synchronization points.

RF Register file
A set of general purpose registers RO-Rn.

CB Continuation Buffer
A buffer holding thread continuation points in CM. A continuation point indicates an
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instruction or synchronization point from which execution of a thread may proceed.

BS Blocking Store
A memory holding blocked points in CM. A blocked point indicates an instruction
or synchronization point where execution of a thread has been blocked.

CT Current thread
Pointer to the currently executed instruction in CM. Functions as an ordinary pro-
gram counter.

A (CM,RF,CB,BS,CT) collection denotes an S-TAM processor with a single point of
execution. The registers in a register file can be accessed only by instructions stored in the
corresponding code memory, and are allocated globally for all threads in the code memory,
thereby allowing these threads to communicate via registers rather than messages.

Parallelism is introduced by the presence of multiple S~TAM processors, and by mul-
tiple functional units in a processor. In Figure 1 this is represented by multiple CT:s
served by a single CB and BS. The difference between the two forms of parallelism is
that threads are statically allocated to processors, but dynamically allocated to functional
units. This means that a thread may start executing on one functional unit until it
becomes suspended, and later resume execution on a different functional unit.

An S-TAM thread is a sequence of instructions from an instruction set, consisting
primarily of conventional instructions operating on register operands. There are also
instructions for memory operations, performed as split-phase transactions.

Communication between threads, and the associated synchronization, is embodied in
a SEND instruction. A SEND instruction and a synchronization point, represent a commu-
nication path between two threads:

Thl: Th2:

SEND R1,Th2.81 —————— ADD S1,R2,R3

avne
cosen

The SEND instruction creates and sends a message to the synchronization point (denoted
S1). When the message is received, the value is stored in the synchronization point, and
an acknowledgement message to the SEND instruction is generated as soon as the receiving
thread has read the value from the synchronization point.

For synchronization purposes, there is a state associated with each SEND instruc-
tion and synchronization point. A synchronization point can be in any of the states
BLOCKED, EMPTY or FULL, whereas an instruction can be either BLOCKED, UN-
ACK (UNACKnowledged) or ACK (ACKnowledged). A thread is executed sequentially
using the Current Thread pointer (CT) as a program counter. However, execution of
a thread cannot proceed beyond an EMPTY synchronization point or an UNACKnowl-
edged SEND instruction. In these cases, the currently executing thread is suspended and
placed in the Blocking Store (BS), and execution continues with some other thread from
the continuation buffer (CB). A thread is moved from BS to CB as soon as the processor
receives a message relating to the SEND instruction or synchronization point on which the
thread was suspended.
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Figure 2: Organization of an S~TAM system.

3 Organization of an S-TAM System

Figure 2(a) depicts a possible organization of an architecture based on the S-TAM exe-
cution model. This organization is similar to that of other parallel architectures, such as
iWarp [6], J-Machine [2] and *T [5]. The main difference lies in the granularity. As this
is meant to be a very fine-grained parallel architecture, the communication network and
the processing elements must be able to handle small messages with a low latency.

Each processing element (PE) has the following parts:

Fzecution Agent (EA): Implements the S-TAM execution model,
Memory Agent (MA): Serves as an interface to the memory system.
Communication Agent (CA): Performs message handling and routing.
Memory (M): Local memory associated with each processing element.

Memory is physically distributed in order to achieve good scalability. Whether the logical
organization of the memory should be a global shared address space or distributed local
address spaces is not directly implied by the organization of the architecture. Although
this is an important aspect, this question is not considered here. The reason is that neither
the organization nor the execution model represent a preference for one or the other.

The organization shown in Figure 2(b) has been used in the simulations described in
Section 5. It consists of 4 processors, sharing a single memory and memory agent. It is
expected that this organization could be realized as a single VLSI circuit, using a modern
CMOS technology.

4 Compiling for S-TAM

The process of compiling for a multithreaded execution model basically means transform-
ing a computation into a set of threads, each of which represents a separately schedulable
subcomputation. There are four main steps in compiling for S~TAM: Data flow graph
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generation, Clustering, Code generation, and Processor allocation. For the experiments
reported in Section 5, a compiler for semi-static data flow {8] has been used. Even though
the instruction set of S-TAM is tailored for this particular form of DFGs, it is general
enough to allow code generation from other forms of DFGs as well.

4.1 Clustering and Code Generation

The purpose of a clustering algorithm is to create clusters of fine-grain operations that
can be scheduled as sequential threads of instructions. Furthermore, the clustering should
minimize the synchronization overhead. For S-TAM it is important to use a clustering
algorithm which attempts to retain all of the fine-grain parallelism, as the execution of a
thread is entirely sequential. This is more important than creating long threads with a
minimum of synchronization overhead, even though these aspects are of interest as well.

When forming clusters for S-TAM, locality is of great importance, both because ex-
ploiting locality has the effect of reducing the number of synchronizations associated with
a thread and because locality implies dependency between operations, which prohibits
paraliel execution. If operation A depends directly on the result of operation B, then, by
placing these operations in the same cluster, this locality in communication can be taken
advantage of, and it is guaranteed at the same time that, as a result of this dependency,
no parallelism is lost.

The purpose of the code generation phase is to create a sequence of S-TAM instructions
for each cluster. Because the clusters are sequential, this is basically a matter of generating
the necessary instructions for each DFG node in the cluster in the order they were added
to the cluster. In most cases, a cluster gives rise to a single thread. There are, however,
exceptions from this in conjunction with nodes which are non-strict in their inputs.

See |7] for a more comprehensive description of the clustering and code generation.

4.2 Processor and Storage Allocation

The last step in compilation for S-TAM consists of allocation of processing and storage
resources. Allocation of processing resources means allocating an S-TAM processor for
each thread, i.e. for a multiprocessor S~TAM, to decide which CM should hold a specific
thread. The significant aspect of this is that it is statically decided which processor should
execute a thread.

The storage allocation, which is performed after the processor allocation, concerns
the allocation of physical storage such as registers and synchronization points. This is
performed individually for each thread, under the assumption that each thread needs a
distinct set of registers. The storage allocation issues will not be discussed any further.
For the experiments and measurements presented in Section 5, a compiler and simulator
were used, which assume that a sufficient number of registers and synchronization points
are available to make it possible to allocate a distinct set for each thread.

The following describes a simple processor allocation strategy, based on knowing which
subcomputations (threads) may not be executed in parallel. It is guided by the data de-
pendencies between subcomputations. If there is a dependency, such that one subcompu-
tation depends on the result of another subcomputation, parallel execution is, in principle,
not possible. However, since a thread can communicate with other threads at any point
during its execution, two threads may be partly parallel. To handle this situation, the
processor allocation strategy used for S~TAM is based on the notion of overlap between
threads, which serves as a measure of the potential for parallel execution of the threads.
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Figure 3: Measuring overlap between threads.

In practice, there are two distinct cases for which the overlap between a pair of threads
must be defined. Figure 3(a) shows the case in which there exists a dependency between
two threads. In this case, the overlap between the threads is marked t,urisp, and is
measured as the number of instructions, before and after the synchronization, that can
execute in parallel. Figure 3(b) shows the case in which there is no dependency between
the threads. Deciding the potential for parallel execution in this case is obviously difficult,
but a conservative approach is used and the overlap is taken to be the length of the
shortest thread, i.e. min(ly, ;).

The goal of the processor allocation algorithm is to minimize the sum of the overlaps
between all threads allocated to a processor. It does this by adding threads one by one
to the processors, selecting the processor that gives the smallest total overlap. However,
given that communication between threads is associated with a cost which is likely to
increase with the distance, locality is desirable, i.e. even though there is a potential for
parallelism between two threads, it may be more efficient to execute both at the same
processor. This corresponds to accepting a certain amount of overlap between threads
on the same processor. This is represented by a threshold in the definition of the overlap
between two threads:

tourlam if tourlap > Lihresh (a)
0, otherwise

overlap(tl, tg) = min(ll, 12) (b)

overlap(t;,t3) =

The overlap is thus set to 0 unless ¢,,,10p €xceeds tiresn. The following is an algorithm for
allocation of processors based on this notion of overlap:

FOR each processor P,
randomly choose a thread, and assign it to P,
END
FOR each remaining thread ¢
let proc_ovrlap(t,n) = > overlap(t, ti)
tyEthreads on Py
assign t to the processor P, with the smallest proc_ovrlap(t,n)

END
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This algorithm uses the overlap to select a processor on which a thread t should be
executed. For each processor P,, overlap(t,t,) is computed for each thread #; already
allocated to it. The sum of these overlaps, proc_overlap(t,n), is used as a measure of the
overlap between thread t and the processor P,. Thread ¢ is then assigned to the processor
for which proc_overlap(t, n) is smallest.

5 Experimental Results

This section presents and discusses some experimental results that serve as an evalua-
tion of S-TAM. It is important to note that the results primarily concern the ezecution
model, and do not relate to a specific implementation. However, in addition to being an
evaluation of the execution model, the results also give important information concerning
implementation of S-TAM.

The experiments have been performed using the compilation strategy described in the
previous section. Two simulators have been used: an ideal simulator, and a simulator
that models the organization shown in Figure 2(b).

The ideal simulator has been used as a reference, and all execution times have been
normalized with respect to this simulator which has infinitely many, dynamically sched-
uled functional units. There are no overhead or latency associated with communication
and synchronization, and all instructions execute in one cycle.

The second simulator models a more realistic S-TAM system, with the following char-
acteristics:

o Deterministic routing between processors. All messages between two processors are
routed along the same communication links.

e One-cycle latency for EA-CA communication. Transferring a message generated by
the execution agent (EA) to the communication agent requires one cycle.

e One-cycle latency for CA-CA communication. Transferring messages between two
communication agents requires one cycle.

o Infinitely many registers and synchronization points. No actual allocation of regis-
ters or synchronization points is performed.

o One-cycle latency for local messages. Messages between threads on the same pro-
cessor have a latency of one cycle.

o One suspension without penalty per cycle. If a processor has multiple functional
units, one of these may suspend execution of a thread and continue the execution
of another thread within a single cycle.

o Single-cycle instruction ezecution. All instructions require one cycle to execute.

o One memory request per cycle. The memory system accepts only a single memory
request per cycle.

As the simulator is parameterized with respect to the number of functional units, it is
possible to simulate a range of different configurations. The number of processors can
also be varied from 1 to 4 simply by performing the processor allocation for the desired
number of processors. In the following, the configurations will be named PzFy, where z
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Program P1 | P2 ]| P3| P4 P2F2 P1F4
F1 | F1 | F1 | F1 | 100% | 95% | 90% | 100% | 95% | 90%
Isort 1721138 1139|147 1.14 | 150|181 | 1.00 | 142 1.69

Convolution | 2.11 {1.63 1150 ] 1.52 | 1.23 | 1.74 ] 2.19 ] 1.06 ]| 1.69 | 2.11
Matmult 2931190156 |1.47( 1.30 | 1.69]|195| 1.17 | 1.54 | 1.79
Matmult9 8.38 ] 4.46 | 3.15 | 2.71 | 2.45 1 2.95 | 3.14 | 2.51 | 3.02 | 3.27
Find 3171217 ]1.86]1.75} 1.47 | 1.95 231 ] 1.34 ] 1.93 ] 2.23
Simple 8.09 | 4.23 [ 3.06 | 2.46 | 2.35 | 3.03 | 3.19 [ 2.34 | 3.00 | 3.36

Table 1: Relative Performance.

is the number of processors (1 ...4) and y is the number of functional units per processor
(1 ...4). For example, P2F4 denotes a configuration with 2 processors and 4 functional
units per processor.

5.1 Benchmarks
The following benchmarks have been used:
isort 1: Insertion sort applied to the list [20...1].

convolution 11 12: Convolution of two vectors, represented as lists. Applied to the
lists [1..5] and [1..15].

matmult ml m2: Multiplication of n x n matrices. Applied to matrices of size 9 x 9.

matmult9 ml m2: Multiplication of 9 x 9 matrices. Derived from the matmult benchmark
by unfolding the inner loop.

find p s: String search program. Searches for pattern p in string s. "230501" is used
as pattern wearched for in string "12123454512316789". The character '0/ in the
pattern functions as a wildcard character, matching any sequence of characters of
at least length 1.

simple: Hydrodynamics simulation of the flow velocity for a fluid in a cross-section of a
sphere.

5.2 Results

Table 1 shows the relative performance of a number of S-TAM configurations with varying
number of processors and functional units. For P2F2 and P1F4 three different numbers
are given that corresponds to different memory system behavior. The execution time has
been measured for a memory system with hit-rates of 100%, 95% and 90%. A cache hit is
assumed to have a latency of 1 cycle, and cache misses have a latency which is randomly
distributed between 20 and 100 cycles.

The first four columns show the performance of statically allocated configurations, i.e.
configurations with varying number of processors but only a single functional unit per
processor. A comparison of these configurations indicates how well static allocation scales
when the number of processors is increased.
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The find and matmult benchmarks scale reasonably well up to 3 processors, whereas
the two smallest ones, isort and convolution, scale poorly and, in fact, reach a point at
which negative speed-up is obtained. The situation is better for matmult9 and simple,
which is explained by the higher degree of parallelism (8-9 with ideal execution) in these
programs.

It can be seen from the results presented here that good scalability under static allo-
cation requires that the parallelism of the computation is larger than the number of pro-
cessors in the architecture. Efficient exploitation of lower degrees of parallelism requires
either more elaborate allocation methods or the dynamic allocation used in configurations
with multiple functional units per processor.

A comparison of the P4F'1, P2F2 and P1F4 configurations, which represent different
trade-offs between static and dynamic allocation, shows that execution time for P4F1
is 25-45% higher than P1F4 for the benchmarks that have the lowest parallelism. FKor
matmult9 and simple, the difference is smaller. However the difference between P1F4
and P2F2 is generally smaller than the difference between P1F4 and P4F1, showing that
it is not necessary to resort to completely dynamic allocation to get good performance.
In fact, for the larger benchmarks P2F2 gives as good, or even better, performance than
P1F4.

An important aspect of a multithreaded execution model is its potential for hiding
long latencies in communication between processors and memory. Table 1 shows the
effect that varying memory system latencies has on the execution time for P2F2 and
P1F4. For 95% hit-rate, the relative increase in execution time ranges from 20%, for
the benchmarks with the highest degree of paralielism, up to 58%. The corresponding
numbers for 90% hit-rate are 30% up to 100%. The variation between configurations
with the same total number of functional units is small, indicating that the capability to
tolerate these latencies is relatively independent of whether static or dynamic allocation
is used.

6 Related Work

Many aspects of S~TAM are similar to an execution model called Processor Coupling,
proposed by Keckler and Dally [3]. Processor coupling attempts to combine static and
dynamic scheduling to efficiently exploit fine-grain parallelism in a multithreaded exe-
cution model. In processor coupling, a thread can be viewed as a sequence of VLIW
instructions. The processing resources for an instruction are statically allocated among
a number of functional units organized into clusters. Such a cluster is comparable to an
S-TAM processor with multiple functional units.

Keckler and Dally reports a number of experimental results from simulations of a
processor implementing processor coupling. Regarding such as issues as functional unit
utilization and memory system latency, the numbers are similar to the corresponding
numbers for S-TAM.

7 Conclusions

S-TAM is an abstract machine that offers a flexible trade-off between static and dynamic
methods for scheduling and allocation. It is based on multithreading as a means of
providing flexibility in scheduling. The dynamic scheduling is based on mechanisms that
can be implemented with relatively simple hardware. Flexibility in allocation of processing
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resources is achieved by multiple, statically allocated, processors consisting of multiple,
dynamically allocated, functional units.

Experimental results show that a system using mixed static and dynamic allocation
in this way gives a performance which is comparable to that of a system based entirely on
dynamic allocation. Furthermore, these results are obtained using a very simple algorithm
for processor allocation, which does not rely on any global analysis of programs.

Although the overall results are encouraging, a more detailed analysis of an actual
implementation is needed in order to give definite results regarding the usefulness of the
S-TAM approach. This would make a detailed comparison between S-TAM, superscalar
and VLIW architectures possible. For instance, it is not yet clear whether the cost of an
S-TAM implementation is comparable to a superscalar processor with the same number
of functional units.
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Abstract: By the end of the decade, as VLSI integration levels continue to increase,
building a multiprocessor system on a single chip will become feasible. In this paper, we
propose to analyze the tradeoffs involved in designing such a chip, and specifically address
whether to allocate available chip area to larger caches or to large numbers of processors.
Using the dimensions of the Alpha 21064 microprocessor as a basis, we determine several
candidate configurations which vary in cacke size and number of processors, and evaluate
them in terms of both processing power and cycle time. We then investigate fine tuning
the architecture in order to further improve performance, by trading off the number of
processors for a larger TLB size. OQur results show that for a coarse-grain execution
environment, adding processors at the expense of cache size improves performance up
to a point. We then show that increasing TLB size at the expense of the number of
processors can further improve performance.

Keyword Codes: C.1.2; C.4; C.5.4
Keywords: Multiprocessors; Performance of Systems; VLSI Systems

1 Introduction

VLSI integration levels continue to rapidly increase, so much so that it has been predicted
that by the end of the decade, a one inch square chip with 0.25 micron technology will be
available[17]. At this level of integration, it will become possible to build a multiprocessor
system with several of today’s microprocessors on a single chip. Microprocessor designers
will have a wide design space to explore, and many tradeoffs to make between processor
architecture, cache hierarchy and TLB organization, interconnect strategies, and incor-
porating multiple processors on the chip. In this paper, we begin to address the design
of such high integration microprocessor architectures. In particular, we evaluate perfor-
mance tradeoffs in allocating chip resources to larger caches versus more processors. We
also investigate how elements of the processor architecture (in particular TLB size) affect
design decisions.

The rest of this paper is organized as follows. First we discuss the multiprocessor or-
ganization and establish performance metrics. We then calculate fixed area overheads for
I/0 logic/pads and the system bus. Next, we determine candidate system organizations
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and discuss our modeling approach. We then determine processing power, cycle time, and
total system performance for each configuration. Lastly, we present our conclusions and
discuss possible future extensions tc our work.

2 System Organization and Performance Metrics

The overall architecture that we consider is a shared memory multiprocessor system con-
taining n processors, each of which has a private cache. A system bus is used as the
interconnect structure between the caches and the main memory, which may consist of
several interleaved modules. With the technology predicted to be available at the end of
this decade, designers will be able to place this entire structure (for a limited number of
processors and with the exception of the main memory DRAMs), onto a single chip'.

The execution environment that we assume is a coarse-grain, throughput-oriented,
parallel environment. The system might be for example a server running Unix with
many X terminals connected to it. Each of these X sessions runs separate user tasks
and applications, and shares primarily operating system code and data structures and
common application code. Thus the amount of shared data is minimal, and the vast
majority of the time the processors are accessing private data.

The performance metric that we wish to maximize is total system performance which
can be expressed as processing power/cycle time where processing power is defined by
n/(CPI - tnstr). Here n is the number of processors in the system, CPI is the cycles
per instruction rating for each processor, and instr is the number of instructions executed
in the running of the program. This last parameter is a function of the instruction set
architecture. Since this paper does not focus on instruction set architecture design issues,
we eliminate this term and thus obtain n/CPI for processing power.

3 Tradeoffs Between Cache Size and Number of
Processors and the Effect of TLB Size

Having established the general system organization, execution model, and performance
evaluation criteria, we now examine some of the tradeoffs involved in designing single
chip multiprocessors. We consider the problem of whether to use the available chip area
for enlarging the caches or for adding additional processors. We focus on these two
architectural parameters (the size of the caches and the number of processors) since they
have such a great impact on performance. Once we have made area tradeoffs for these
parameters and have a region of the design space narrowed down, we can then address
parameters which have less impact on performance. In this paper, we address the size of
the TLB.

The physical aspects of our study are based on the dimensions of the Alpha 21064
microprocessor{5, 13]. We scale the processor core and cache dimensions of the 21064
to 0.25 micron technology, and assume the use of a one inch square die. We then use
this data to obtain candidate multiprocessor configurations which vary in cache size and
number of processors.

'An experimental version of such a chip has already been designed and fabricated in 0.30 micron
technology{10].
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3.1 Bus and I/O Overhead

We use an aggressive bus design, consisting of separate 64-bit wide address and 128-bit
wide data buses distributed to all the caches as well as the main memory controller on
the chip. Based on previous implementations of bus-based multiprocessors, an aggressive
bus design is necessary for a moderately large (8-16) number of processors. We allocate
roughly 20% of the chip area for the bus, external interface, and I/O pads. Based on
empirical measurements, approximately 17% of the area of the 21064 is allocated to
external control and I/Q pads. Due to the large number of 1/O and power signals expected
on our chip, and because I/O pad size may not scale as well as transistor sizes, we assume
the same overhead on our chip. To determine the area consumed by the bus, we scale
the dimensions of the second layer of metal (Metal 2) on the Alpha chip, since this is the
wider of two metal layers used for general signal distribution. (The third layer is primarily
used for power and clock disiribution.) Metal 2 has a width of 0.75pm and a pitch of
2.625um. We consider two means of scaling for comparison purposes: ideal scaling and
/3. scaling where S, is the scaling factor. The latter has been suggested in (1] in order
to reduce propagation delays as technology is scaled. In our case, since we are scaling a
0.75 micron technology to 0.25 microns, S, has a value of 3. We assume an additional 15
signals beyond those for address and data for arbitration, signaling of operations on the
bus, and acknowledgements. Thus our total bus signal count is 207. We obtain for the
width of the bus using ideal scaling (0.75- 1073 +2.625.1072).207/3 = 0.23mm and using
V3. scaling (0.75 - 1072 + 2.625 - 107%) - 207/v/3 = 0.40mm.

Assuming the bus runs almost the entire length (20mm) of the chip, it consumes 0.7%
and 1.2% of the chip area with ideal and /5. scaling, respectively. Scaling the metal
dimensions for the bus by /5. instead of ideally has a negligible impact on the overall
chip area. Adding the area for I/O gives us 17.7% and 18.2% for ideal and /S, scaling,
respectively. In order to account for additional area lost due to the routing problems
inherent in such a wide bus, we boost our overall figure for the area consumed by the I/O
interface and bus to 20%.

3.2 Candidate Configurations

To determine candidate configurations, we proceed as follows. First, we empirically de-
termine the area of the caches (16kB total) and processor core (the chip minus the caches
and I/O pads) of the 21064, We scale (using ideal scaling) these dimensions to 0.25 mi-
cron technology, and then determine the fraction of a 0.25 micron, one inch square die
consumed by the scaled processor and caches. The area of 32kB, 64kB, and larger caches
is determined by using multiples of the base 16kB cache area. This is to a first order,
consistent with area models described in [14, 15), especially for large caches where the
size of the data area dominates the overall size.

We combine the dimensions of these caches with the dimension of the processor core to
construct candidate processor/cache organizations. We then determine how many of these
can be placed on the chip. For smaller configurations, we determine this by dividing 80%
of the total chip area by the processor/cache area. As the number of processors grows, we
assume more area overhead (a few additional percent of the total chip area) is required
for routing.

Based on this method, we obtain the candidate system organizations shown in Table
1. These provide a good range of design points for an initial analysis. Once we have
analyzed these design points, we can make further refinements to arrive at alternative
organizations.
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[ Configuration | Number of Processors | Cache Size
1 7 | 256kB
2 11 128kB
3 16 64kB
4 20 32kB

Table 1: Candidate System Organizations

Cache Size | Miss Rate | Misses Causing Displacements | Displacement Buffer Hits
32kB 2.05% 23.44% 3.96%
64kR 1.33% 27.54% 3.92%
128kB 0.89% 30.85% 4.37%
256kB 0.55% 33.91% 3.711%

Table 2: Cache Simulation Results

We choose to bound the cache sizes at 256kB and 32kB. For our benchmarks, caches
larger than 256kB produce diminishing returns in terms of miss rate; further increasing
the size of the cache beyond 256kB at the expense of the number of processors clearly
results in worse overall performance. Caclies of size iess than 32kB on the other hand,
have high enough miss rates to saturate even a very wide data bus. Even the 256kB
and 32kB caches are suspect in terms of these criteria; we include them in order to avoid
inadvertently excluding the optimum configuration.

3.3 Modeling Approach

Due to our execution model assumptions, we use uniprocessor trace driven simulation to
analyze the various cache options, and apply the results to our multiprocessor analyti-
cal models. The traces we use are of the SPEC KENBUS program running on an i486
processor under the MACH 3.0 operating system. These traces are from the BYU Ad-
dress Collection Hardware (BACH) system(8] and include both user and operating system
references. Qur trace length is approximately 80 million references, and we ignore cold
start effects. The results of our simulations are given in Table 2. Besides miss rate, we
also gather information on the fraction of misses that cause a dirty block to be displaced
from the cache, and the fraction of cache misses that hit in the four entry displacement
buffer. This buffer operates as a FIFO and holds recently displaced blocks to reduce
thrashing effects in our direct-mapped caches as described in [11]; our hit rate results are
in agreement with this previcus work.

The results from Table 2 are used as inputs to analytical models of our candidate
organizations. We use Mean-Value-Analysis (MVA), an analytical modeling technique
which has been used extensively to study shared memory multiprocessors[4, 18, 19]. Our
model assumptions are given in Table 3. CPL,,. is the CPI rate of the processor with nv
cache misses. Our block size choice has been shown in {6] to be a reasonable choice for
the KENBUS benchmark for caches in our range. The bus penalties assume that a “dead
cycle” is needed to switch bus masters to avoid driver clashing.
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Parameter Value
CPL.oc 1.5
% loads 25%
% stores 10%
Block size 32 bytes
Disp buffer hit penalty | 2 cycles
Bus read penalty 2 cycles

Bus writeback penalty | 3 cycles
Bus data return penalty | 3 cycles
Bus arbitration time 2 cycles
Memory access time 15 cycles

Table 3: MVA Model Parameters
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Figure 1: Average Bus Waiting Time and Processing Power for Candidate Configurations

3.4 Processing Power Results

Figure 1 shows the average bus waiting time and processing power for each of the candi-
date organizations. The larger cache (fewer processor) configurations as expected display
very low waiting times, while the waiting time increases quickly for the smaller cache
configurations. Thus we conclude that up to a point, adding processors at the expense of
cache size is a good tradeoff. We see however that the 20 processor, 32kB cache configu-
ration is clearly not a good design point to consider. The drop in processing power from
the 16 processor, 64kB configuration is due to system bus saturation, and the resulting
increase in waiting time cancels out the benefits received from adding processors.

The 16 processor, 64kB design point is suspect as well, although it provides the highest
processing power. The increase in bus waiting time in this configuratior as compared to
the 11 processor, 128kB configuration suggests that this design point may not be optimal.
It may be beneficial to reduce the number of processors in order to alter the processor
organization. One option would be to increase the size of each processor’s TLB while
reducing the number of processors by an amount commensurate with the resulting area
increase. This would result in fewer cache misses and a subsequent reduction in bus
waiting time. In order to assess this impact, we use the results of area models developed




. mt ——— e

30
[ Cache Size | Miss Rate | Misses Causing Displacements | Displacement Buffer Hits
32kB 1.72% 24.24% 4.00%
64kB 1.12% 29.50% 4.34%
128kB 0.77% 33.21% 4.68%
256kB 0.49% 35.90% 3.94%

Table 4: Results of Cache Simulations with 512 Entry TLB

for TLBs and caches[14, 15] to assess the relative area of a 32 entry TLB (used in the i486
from which the traces were gathered) and a 64kB cache. From [15], these area estimates
are roughly 2500 and 375000 rbes (register bit equivalents), respectively. A 512 entry TLB
costs roughly 24000 rbes. Thus, the cost incurred in increasing the TLB from 32 entries
to 512 entries is roughly 21500 rbes per processor. For a 1§ processor configuration, this
amounts to 322500 rbe or less than the cost of one 64kB cache. Thus, we see that by
removing one processor and its cache, we can increase the TLB in each of the remaining
15 processors to 512 entries. This should reduce the amount of TLB misses by over 50%
from that of a 32 entry TLB(3].

In order to get a lower bound on the impact of this architectural change on perfor-
mance, we use a technique called trace modification to conservatively modify the trace to
emulate a trace taken from a processor with a 512 entry TLB. To accomplish this, we
use & program that marks the TLB misses in the trace[7]. We then make a conservative
estimate as to the number of memory references in the TLB miss code. Our estimate is
35 references, a low estimate based on results of Mach TLB miss behavior[16]. We then
insert a filtering program into our simulator that causes the simulator to ignore every
other TLB miss in the trace. If a second TLB miss is encountered within 35 references of
a filtered TLB miss, we filter it out as well since it results from the first TLB miss. Table
4 shows the results with the larger TLB. Comparing this table with Table 2, we see that
for each cache configuration, the miss rate is lower with the larger TLB as expected.

We now use this data to evaluate the impact the larger TLB has on the bus waiting
time. We look at various design points for the 64kB cache, with the number of processors
ranging from 12 to 16. The larger TLB has a significant effect on the average bus waiting
time, reducing it by 17-19%. When viewed from the perspective of equivalent multipro-
cessor configurations, that is, the number of processors with the larger TLB is one less
than that with the 32 entry TLB, the impact is even greater, around a 28% reduction.
Looking at these equivalent configurations in terms of processing power (Figure 2), we see
that for the smaller configurations, those with the smaller TLB may still provide the best
design points. However, we see that the 14 processor, 512 entry TLB and the 15 processor,
32 entry TLB configurations have roughly equivalent performance, and the 15 processor,
512 entry TLB configuration outperforms the 16 processor, 32 entry TLB configuration.
Because we have obtained a lower bound on the increase in performance due to enlarging
the TLB, the difference in performance may actually be larger than that shown.

3.5 Cycle Time Results

To examine cache access times, we make use of the model developed in [20] which is
based on a 0.8 micron, 5V process. We use a voltage of 3.3V for our analysis, and
scale the capacitance, resistance, and current parameters of this model to produce a 0.25
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Figure 3: Cache Access Times for Various Sizes and Geometries

micron technology model?. We examine 4 (the same as the 21064), 8, and 16 subarray
{SA) caches. Our results (Figure 3) indicate that caches larger than 64kB require more
aggressive geometric design to achieve reasonable cycle times. This may result in more
area overhead and less layout flexibility.

We now examine the effecis of the number of processor nodes on bus performance.
We assume equal space loading and since the total propagation delay is longer than
the driver rise time, we use transmission line analysis. The loaded propagation delay of a
transmission line is{2] To-1/1 + Cp/Cy where Ty and C; are the unloaded transmission line
propagation delay and capacitance, respectively, and Cp is the distributed capacitance
due to each processor node. Cp can be expressed as Cy - s/l where Cy is the node
capacitance, s is the rumber of line segments (one less than the number of nodes), and [
is the length of the bus (20mm in our example). Following (2], we use Cy = 5{F, G =
2pF/cm, and Ty = 0.067ns/cm, and obtain the results shown in Figure 4. We conclude
that shared buses can still achieve good cycle time performance for moderate numbers of
processors. However, to achieve aggressive clock rates with large numbers of processors,

2 We note that these models are highly dependent on technology parameters, and thus our method
should only be used to study general trends and not exact cycle time analysis.




32
g
5 20 é
-
= 1.8F -
- 1.6 F 3
§° 14F 3
E 1.2, ]
- 10b. . . e 3
a 7 8 91011121314151617 181920
Number of Processors
Figure 4: Bus Propagation Delay Variation with Number of Processors
Configuration PP Cycle Time Total System Performance
(Proc, Cache, TLB) Cache Bus Cache Bus
Constrained | Constrained | Constrained | Constrained
7, 256kB, 32 entry | 1.00 1.00 1.00 1.00 1.00
11, 128kB, 32 entry | 1.47 0.80 1.28 1.84 1.15
15, 64kB, 512 entry | 1.85 0.68 1.52 2.72 1.22
16, 64kB, 32 entry | 1.84 0.68 1.57 2.7 1.17

Table 5: Performance Data for Candidate Configurations

interconnect alternatives such as ring-based schemes[9] need to be considered.

3.6 Overall Performance

We now bring together the processing power and cycle time results and compare the overall
performance of our candidate configurations. We use the 7 processor, 256kB configuration
as our base system (and thus assign it unity performance values), and calculate processing
power, cycle time, and total system performance for the other configurations relative to
this organization. We look at two different cycle time scenarios: & cache constrained cycle
time chip, and a bus constrained cycle time chip. In the former, the cache access time
determines the cycle time of the chip; in the latter, the bus propagation delay determines
this.

Table 5 shows the relative processing power (PP), cycle time, and total system perfor-
mance for each of the candidate configurations. Due to their superior processing power
performance, the 15 and 16 processor configurations achieve the best overall performance
in both the cache and bus constrained cases. The 15 processor configuration is overall
the best choice, as it provides the highest processing power, and an equal or faster cycle
time than the 16 processor configuration. We note, however, that for a bus constrained
cycle time chip, the performance of the 11 processor configuration closely matches that of
the 15 and 16 processor configurations. For applications that consume more of the cache,
this configuration may be the best choice. If an even number of processors (or a power
of two) is more beneficial for the application software, then the number of processors can
be reduced accordingly. This may require the designer to allocate more area to TLBs,
interconnect, or other resources.
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4 Conclusions and Future Work

The complexity of microprocessor design is growing rapidly as VLSI integration levels
continue to increase. With the technology expected to be available at the end of this
decade, microprocessor architects will be faced with a wide range of design decisions.
An analysis of tradeoffs between the size of the caches and the number of processors in
the system was presented. Our results show that trading off cache size for the number
of processors improves performance up to the point of bus saturation. At this point,
alternatives such as reducing the number of processors in order to increase TLB size,
need to be considered in order to arrive at the optimal design point.

This work can be extended in several different ways. First of all, we assumed an in-
dependent execution model, whereby processors are accessing private code and data and
negligible sharing takes place. We also looked at a single benchmark program. Examining
the effect of a wider range of execution models (e.g., fine-grain parallel processing) and
application programs on the design choices made would be insightful. Secondly, an exam-
ination of the sensitivity of our results to our model parameters (such as memory access
time) should be made. Lastly, we only considered a single level of cache hierarchy. Multi-
level cache hierarchies can be examined as well. The incorporation of multiple processors
on a chip allows the designer to consider other cache options, such as private first level
caches and multiported second level caches shared by two or more processors. Such an
arrangement may make more efficient use of the available chip area than a conventional
organization, and thus should be evaluated as well.
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Abstract: Multithreaded architectures hold many promises: the exploitation of intra-thread
locality and the latency tolerance of multithreaded synchronization can result in a more efficient
processor utilization and higher scalability. The challenge for a code generation scheme is to
make effective use of the underlying hardware by generating large threads with a large degree
of internal locality without limiting the program level parallelism. Top-down code generation,
where threads are created directly from the compiler’s intermediate form, is effective at creating
a relatively large thread. However, having only a limited view of the code at any one time
limits the thread size. These top-down generated threads can therefore be optimized by global,
bottom-up optimization techniques. In this paper, we present such bottom-up optimizations and
evaluate their effectiveness in terms of overall performance and specific thread characteristics
such as size, length, instruction level parallelism, number of inputs and synchronization costs.
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1 Introduction

Multithreading has been proposed as an execution model for large scale parallel machines.
The multithreaded architectures are based on the execution of threads of sequential code
which are asynchronously scheduled based on the availability of data. This model relies
on each processor being endowed, at any given time, with a number of ready-to-execute
threads to switch amongst them at relatively cheap cost. The objective is to mask the
latencies of remote references and processor communication with useful computation and
thus yielding high processor utilization. In many respects, the multithreaded model can
be seen as combining the advantages of both the von Neumann and dataflow models:
efficient exploitation of instruction level locality of the former and the latency tolerance
and efficient synchronization of the later.

Thread behavior is determined by the firing rule. In a strict firing rule, all the inputs
necessary to execute a thread to completion are required before the execution begins. On
the other hand, a non-strict firing rule allows a thread to start executing when some of its
inputs are available. In the latter case, threads can become larger, but the architecture
must handle threads that block, with greater hardware complexity using pools of “waiting”
and “ready” threads; examples include the HEP (1] and Tera machines [2]. The strict

This work is supported by NSF Grant MIP-9113268.
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firing can be efficiently implemented by a matching mechanism using explicit token storage
and presence bits; examples include MIT/Motorola Monsoon [3] and *T [4], and the ETL
EM-4 and EM-5 [5].

A challenge lies in generating code that can effectively utilize the resources of multi-
threaded machines. There is a strong relationship between the design of a multithreaded
processor and the code generation strategies, especially since the multithreaded processor
affords a wide array of design parameters such as hardware support for synchronization
and matching, register files, code and data caches, multiple functional units, direct feed-
back loops within a processing element and vector support. Machine design can benefit
from careful quantitative analysis of different code generation schemes. The goal for
most code generation schemes for nonblocking threads is to generate as large a thread as
possible [6], on the premise that the thread is not going to be too large, due to several
constraints imposed by the execution model. Two approaches to thread generation have
been proposed: the bottom up method (7, 8, 9, 10] starts with a fine-grain dataflow graph
and then coalesce instructions into clusters (threads), the top down method [11, 12, 13]
generates threads directly from the compiler’s intermediate data dependence graph form.
In this study, we have combined the two approaches in which we initially generate threads
top-down and then optimize these threads via bottom-up method. The top down design
which suffers from working on one section of code at a time limits the thread size; on the
other hand, the bottom up approach, with its need to be conservative, suffers from lack
of knowledge of program structures thereby limiting the thread size.

In this paper, we compare the performance of our hybrid scheme with a top-down only
scheme and measure the code characteristics and run-time performance. The remainder of
this paper details the hybrid code generation scheme and the measurements and analysis
of their execution. Due to space limitations, related work is not discussed in this paper.
The reader is referred to {14, 15] for some background. In Section 2, we describe the code
generation scheme. The performance evaluation is described in Section 3. Results are
discussed in Section 4.

2 Thread Generation and Optimizations

In this section we describe the computation model underlying thread execution (section
2.1) and code generation (section 2.2). In Section 2.3 we describe the various optimizations
techniques.

2.1 The Model of Computation

In our model, threads execute strictly, that is, a thread is enabled only when all the input
tokens to the thread are available. Once it starts executing, it runs to completion without
blocking and with a bounded execution time. This implies that an instruction that issues
a split-phase memory request cannot be in the same thread as the instructions that use the
value returned by the split-phase read. However, conditionals and simple loops can reside
within a thread. The instructions within a thread are RISC-style instructions operating
on registers. Input data to a thread is available in input registers which are read-only. The
output data from a thread is written to output registers which are write-only. The order
of instruction execution within a thread is constrained only by true data dependencies
(dataflow dependencies) and therefore instruction level parallelism can be easily exploited
by superscalar or VLIW processor. The construction of threads is guided by the following
objectives: (1) Minimize synchronization overhead; (2) Maximize intra-thread locality; (3)
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Threads are nonblocking; and (4) Preserve functional and loop parallelism in programs.
The first two objectives seem to call for very large threads that would maximize the
locality within a thread and decrease the relative effect of synchronization overhead. The
thread size, however, is limited by the last two objectives. In fact, it was reported in [10}
that blind efforts to increase the thread size, even when they satisfy the nonblocking and
parallelism objectives, can result in a decrease in overall performance. Larger threads
tend to have larger number of inputs which can result in a larger input latency {input
latency, in this paper, refers to the time delay between the arrival of the first input to a
thread instance and that of the last input, at which time the thread can start executing

[16]).

2.2 Top Down Code Generation

Sisal is a pure, first order, functional programming language with loops and arrays. We
have designed a Sisal compiler for multithreaded/medium-grain dataflow machines by
targeting to machine independent dataflow clusters (MIDC). Sisal programs are initially
compiled into a functional, block-structured, acyclic, data dependence graph form, called
IF1, which closely follows the source code. The functional semantics of IF1 prohibits the
expression of copy-avoiding optimizations.

IF2, an extension of IF1, allows operations that explicitly allocate and manipulate
memory in a machine independent way through the use of buffers. A buffer comprises of
a buffer pointer into a contiguous block of memory and an element descriptor that defines
the constituent type. All scalar values are operated by value and therefore copied to
wherever they are needed. On the other hand, all of the fanout edges of a structured type
are assumed to reference the same buffer; that is, each edge is not assumed to represent
a distinct copy of the data. 1F2 edges are augmented with pragmas to indicate when an
operation such as “update-in-place” can be done safely which dramatically improve the
run time performance of the system.

The top down cluster generation process transforms IF2 into a flat MIDC where the
nodes are clusters of straight line von Neumann code, and the edges represent data paths.
Data travelling through the edges are tagged with an activation name, which can be
interpreted as a stack frame pointer as in {17] or as a color in a classical dataflow sense.

The first step in the IF2 to MIDC translation process is the graph analysis and splitting
phase. This phase breaks up the hierarchical, complex IF2 graphs so that threads can
be generated. Threads terminate at control graph interfaces for loops and conditionals,
and at nodes for which the execution time is not statically determinable. For instance,
a function call does not complete in fixed time, neither does a memory access. Terminal
nodes are identified and the IF2 graphs are split along this seam.

A function call is translated in code that connects the call site to the function interface,
where the input values and return contexts are given a new activation name. The return
contexts combine the caller’s activation name and the return destination, and are tagged
(as are the input values) with the new activation name. For an if-then-else graph, code
for the then and else graphs is generated, and their inputs are wired up using conditional
outputs. Iterative loops with loop carried dependences and termination tests, contain four
IF2 subgraphs: initialize, test, body and returns. The returns graph produces the results
of the loop. They are generated and connected sequentially, such that activation names
and other resources for these loops can be kept to a minimum. Forall loops with data
independent body graphs consist of a generator, a body, and a returns [F2 graphs. They
are generated so that all parallelism in these loops can be exploited including out-of-order
reduction. This is valid as Sisal reduction operators are commutative and associative.
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Figure 1: Purdue benchmark 4: Sisal code and MIDC graph

2.3 Bottom-up Optimizations

Even though the IF2 optimizer performs an extensive set of optimizations at the IF2 level
including many traditional optimizations techniques such as function in-lining, the thread
generation creates opportunities for more optimizations. We have applied optimizations
at both the intra-thread and inter-thread levels. These optimizations are by no means
exhaustive, with many more techniques that can be applied further. However, they do
demonstrate its effectiveness.

Local Optimizations. These are traditional compiler optimizations whose main purpose
is to reduce the number of instructions in a thread. They include: Local dead code
elimination, Constant folding/copy propagation, Redundant instruction eliminations and
Instruction scheduling to exploit the insiruction level parallelism which is accomplished
by ranking instructions according to dependencies such that dependent instructions are
as far from each other as possible. The data and control flow representation allows this
to be accomplished relatively easily.

Global Optimizations. The objectives of these optimizations are threefold: (1) Re-
duce the amount of data communication among threads; (2) Increase the thread size
without limiting inter-thread parallelism; (3) Reduce the total number of threads. These
optimizations consist of:

o Global dead code and dead edge elimination: typically applied after other global
optimizations which could reduce the arcs or even the entire thread.

o Global copy propagation/constant folding: works to reduce unnecessary token traffic
by bypassing intermediate threads.

¢ Merging: operations attempt to form larger threads by combining two neighboring
ones while preserving the semantics of strict execution. This results in reduced
synchronization cost. The merge up/merge down phases have been described in
{7] and in [10]. In order to ensure that functional parallelism is preserved and
bounded thread execution time is retained, merging is not performed across: remote
memory access operations, function call interface and the generation of parallel loop
iterations.

e Redundant arc elimination: opportunities typically arise after merging operation
when arcs carrying the same data could be eliminated.

Even though the local optimizations could be performed during the thread generation, we
have performed both local and global optimizations as a separate bottom-up pass which
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Figure 2: MIDC thread code for Purdue benchmark 4

does extensive graph traversal and analysis. To support these operations, the optimizer
pass reads MIDC and internally builds a mini-dataflow graph for each thread along with
the global inter-thread interconnections. At this point, we have the complete, equivalent
dataflow graph that a pure bottom-up compiler would generate but retains the additional
top-down structural informations. When the optimized code is generated, each thread is
generated from these mini-dataflow graphs. The global view enables various optimization
steps to take place and enable redrawing of “boundaries” to easily recast threads.

A simple Sisal source and its compiled, optimized MIDC code is shown in Figures 1 and
2. Each node in MIDC has a header followed by the thread of instructions. The header
has the form “N n r { < destination list >” where n specifies the unique thread number,
r the number of registers the thread uses, and i specifies the number of inputs'. Each
destination in the destination list corresponds to an output port to which the result is sent.
The example code is taken from Purdue benchmark 4 which inverts each nonzero element
of an array and and sums them. Figure 1 shows the thread level graph descriptions. Nodes
1 and 2 are the main function input and output interfaces, respectively. Node 100 reads
the structure pointer and size information. Node 101 is the loop initializer/generator.
Node 102 and 103 comprises the loop body and Node 104 handles the array reduction.

3 Evaluation
In this section we evaluate the dynamic properties of our top-down code after applying

various bottom-up optimizations and using a multi-threaded machine simulator. The
following set of dynamic intra-thread statistics have been collected: (1) S;: average thread

!Complete details of the MIDC syntax are described in [15].
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Linpack Purdue Loops Average
no local full no local  full no local  full no local  full
S, 950 8.73 7831252 1185 11.08 |23.09 2101 19.71 [ 14.73 1366 1252
£ 247 247 248 299 298 3.09 | 3.69 3.63 3.92 | 3.07 3.05 3.17
n 370 345 3.01] 444 424 3.67 7.08 6.68 548 | 4.99 4.73 3.98
Input | 488 488 373 ]| 578 5.78 445 | 1216 12,16 9.63 7.29 7.29 5.59
MPI [044 047 040 046 049 0.40 | 0.51 0.56 0.47 0.48 052 043

Table 1: Intra-Thread Characteristics

size; (2) Seo: average critical path length of threads (in instructions; {3) I1: average
internal parallelism of threads (II = ES:), (4) Inputs: average number of inputs of threads;
(5) M PI: number of matches (synchronizations) per instruction (computed by dividing
the total number of matches by the total number of instructions executed).

Also, the following set of inter-thread (program-wide) statistics have been collected:
(1) Matches: total number of matches performed; (2) Instructions: total number of in-
structions executed; (3) Threads: total number of threads executed; and (4) CPL: critical
path length of programs (in threads). Values of these inter-thread parameters are pre-
sented in normalized form with respect to the un-optimized code.

The set of benchmarks includes: Lawrence Livermore Loops (LL 1 to 24), Purdue
benchmarks (PB 1 to 15), and several Linpack benchmarks (LB). We use three levels
of optimization: (1) No optimization: code generated by the MIDC compiler; (2) Local
optimization: only at the intra-thread level; and (3) Full optimization: both intra-thread
and global optimizations.

3.1 Intra-thread Results

Table 1 shows the thread characteristics for the three classes of benchmarks and the
cumulative of all the benchmarks. The values shown are weighted average values for a
given class of benchmarks.

Thread Size. Results show a steady reduction of the average size of threads as we go from
no optimization to local to full optimizations. The reduction occurs despite the merging
operations. This is due to large reduction in the total number of instructions executed.
The distribution of S, (Fig. 3) shows that 34% of all threads have six instructions.
Threads with S; > 10 account for 23% of total.

Thread Critical Path Length. A slight reduction in S,, occurs in going from no
optimization to local optimization. However, there is a nontrivial increase in in the path
length from un-optimized code to fully optimized code. This is especially true for LL and
PB. The distribution of S, (Fig. 4) shows a strong dominance of thread lengths of two,
three and four accounting for 85% of all threads. This indicates that when the instruction
level parallelism within a thread is exploited, the thread execution time could be very
short.

Thread Parallelism. The trend for II is similar to S; in that parallelism decreases as
more optimizations are applied in all benchmarks. Overall, due to the reduction of thread
size, II decreases even though S, increases as more optimizations are applied. In fully
optimized cases, average parallelism range from about 3.0 to 5.5 with the average of 4.
There is a relatively wide variances in the parallelism. The intra-thread parallelism is
large enough to justify a highly superscalar processor implementation. The distribution
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of IT (Fig. 5) is dominated by I = 2. An instruction level parallelism of four within a
processor is sufficient for 92% of all threads executed.

Thread Inputs. Intra-thread optimizations do not affect the number of inputs per
thread. However, there is a significant reduction of about 24% in the number of inputs
after global optimizations. The average number of inputs varies widely between different
benchmarks: LL has the largest number of inputs (9 to 12) and LB the smallest (4 to 5).
With full optimizations, the cumulative average is about 5.6 inputs. In the distribution of
the number of inputs per thread (Fig. 6), the dominant value is three inputs per thread.
Threads with eight or less inputs account for 86.5% of all executed threads across all
benchmarks.

Matches Per Instruction. For a given optimization level, the matches per instructions
are confined within a narrow range for all classes of benchmarks. The MPI goes up
when local optimizations are applied; M PI goes down by 8 to 13% when fully optimized.
This implies that there are more significant reduction in the number of matches than the

reduction in the number of instructions, resulting in a smaller M P1I for the fully optimized
code.
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Linpack Purdue Loops Average
local full | local full | local full | local full
Match 1 0.76 1 0.68 1 0.67 | 1.00 0.69
Instruction | 093 0.82 | 09 0.78]| 091 0.73]| 0.93 0.77
Thread 1 0.99 1 0.88 1 0.85| 1.00 0.89
CPL 1 0.99 1 0.81 1 0.77 ] 1.00 0.83

Table 2: Program Characteristics (Normalized to Un-optimized Code)

3.2 Program-wide Characteristics

In Table 2, the inter-thread characteristics of programs are shown. The values shown
are normalized with respect to the un-optimized code.
Matches. As would be expected, the number of matches remain unchanged when only
local optimizations are applied. When global optimizations are also applied, there is a
significant reduction in the number of matches performed, typically 24% to 33%.
Instructions. There is on the average a 7% reduction in the total number of instructions
executed when local optimizations are performed. After applying global optimizations,
the average reduction is about 23%.
Threads. The number of threads executed remain unchanged for locally optimized code.
When full optimizations are applied, there is a 10% reduction in the number of threads
on the average. The reduction for the LL and PB are 12 to 15% but the reduction for the
LB are very small, a little more than 1%.
Critical Path Length. The characteristics of critical path lengths of programs are very
similar to the number of threads executed. The path lengths are reduced by about 20%
for the LL and PB but for the LB, the reduction is very small. While the CPL is reduced
by 17% the total number of threads is reduced by only 11%: this implies that, on average,
more threads on the critical path length are eliminated than otherwise. This implies an
increase in the inter-thread parallelism.

3.3 Run-time Performance

The results of simulated real time performance applied to different optimization levels are
used to measure the effects of these optimizations on the actual overall performance.

The results are obtained with the following architectural settings: instruction level
parallelism that a processor can utilize is 4, the output bandwidth, which is the number
of tokens that a processor node can put on the network in a single cycle is 2, and a
memory access latency of 5 cycles. We use the Motorola 88110 timing for instruction
execution times. All the tokens go through the network at a cost of 50 cycles except in
the uniprocessor setting. We obtained results for 1, 100, and infinite number of processors.
These architectural features are not meant to model an existing system exactly, but rather
approximate it to give us an empirical idea on what we can expect. In each case, the run
time performances for both locally and fully optimized codes are compared with respect
to the un-optimized code.

Table 3 shows the percentage improvement in speedup over the un-optimized code.
The improvement in speed is significant with most improvement occurring when global
optimizations are applied. With local optimization, only a single digit percentage speedup
is achieved in most cases. Global optimizations can achieve up to 35% speedup in the
case of LL. For LB and LL, the speedup remains relatively independent of the number of
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P=1 P=100 =00
Benchmarks | local global | local global | local global
Linpack 6.0 228 | 165 217 173 216
Purdue 2.0 19.6 4.8 26.3 5.5 27.6
Loops 3.4 35.1 8.2 33.7 8.7 34.8
[ Average 31 284 [ 79 299 ] 84 309

Table 3: Percent Speedup over Un-optimized Code

processors. However, for PB, the speedup rises as the number of processors increase, this
is due to their larger average program parallelism.

4 Discussion and Conclusion

In this paper we have described and evaluated a top-down thread generation method and
a set of local and global code optimizations. The effects of these on the intra-thread
(local) and inter-thread (global) characteristics have been evaluated. The initial threaded
code is generated from Sisal via its intermediate form IF2. While the statistics on intra-
thread and program level parameters are important to understand the behavior of the
thread generation and on the expected resource requirements, the bottom-line of any
performance measure is the overall program execution time. In this respect, the local
optimizations had a relatively small but meaningful effect while the global ones had close
to a 30% reduction in execution time.

Overall, the average size of threads is relatively large compared to some of the values
reported for bottom-up thread generation techniques {7, 14]. The threads in LL are
in general much larger than the other classes of benchmarks. This is due to compact
loop kernels whose inner loops consist of only a few threads. For the LB, the global
optimization only minimally affects the number of threads executed or the critical path
length of programs. This is due to the small size of these benchmarks which does not
give much opportunities for the merge operations. Nevertheless, some speed-up is still
observed.

The internal thread parallelism achieved is surprisingly large compared with our pre-
vious work on the evaluation of the bottom-up Manchester cluster generations which only
achieved parallelism of about 1.15-1.20. We observe that the number of inputs required
are relatively large, on the order of 4 to 10. This implies a need fcr handling these variable
number of inputs efficiently.

In general, we observe that even though there is some improvement in various mea-
sures when local-only optimizations are applied, the biggest improvement comes from
global optimizations. The results of the bottom-up optimizations indicate that they have
achieved our objectives in code generation: (1) Synchronization overhead (e.g. number of
matches) has been reduced significantly. The total number of matches has been reduced
by 25-30% and MPI has been reduced by about 10%, thus reducing the required syn-
chronization bandwidth. (2) Number of inputs to a thread has been reduced by about
24%, thus reducing the input latency. (3) Internal parallelism has been reduced by about
25%, meaning that processor requirements are not as great as befare.

It should be noted there are many other techniques such as loop un-rolling that could
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be incorporated. For example, loop un-rolling can be applied either within a thread
or across threads. The expected effects of loop un-rolling are: (1) an increase in the
average thread size, (2) a decrease in the relative cost of synchronizations {matches per
instruction), (3) a decrease in the total dynamic thread count. This would translate in an
increased ability to mask latency and a reduced synchronization overhead albeit at the
cost of increased demands on the instruction level parallelism within a processor.
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Abstract:

We implement the NAS parallel benchmark FT, which numerically solves a three
dimensional partial differential equation using forward and inverse FFTs, in the dataflow
language Id and run it on a one node monsoon machine. 1d is a layered language with a
purely functional kernel, a deterministic layer with I-structures, and a non-deterministic
layer with M-structures. We compare the performance of versions of our code written in
these three layers of Id. We measure instruction counts and critical path length using
the Monsoon Interpreter Mint. We measure the space requirements of our codes by
determining the largest possible problem size fitting on a one node monsoon machine. The
purely functional code provides the highest average parallelism, but this parallelism turns
out to be superfluous. The I-structure code executes the minimal number of instructions
and as it has a similar critical path length as the functional code, runs the fastest. The
M-structure code allows the largest problem sizes to be run at the cost of about 20%
increase in instruction count, and 75% to 100% increase in critical path length, compared
to the I-structure code.

Keyword Codes: D.1.1.; D.3.3.; E.2
Keywords: Applicative Programming, Language Constructs and Features, Data Storage
Representations

1 Introduction

In this paper we study the design of efficient declarative programs by implementing the
NAS three dimensional FFT PDE benchmark FT [2] in Id [8]. This study is part of a
larger project where we try to assess which declarative language features are of importance
to write efficient scientific codes. A declarative programming language allows expressing
what is to be done, without specifying too much of how it is to be done. As an example,
declarative programming languages are implicitly parallel, i.e., allocation of tasks and
data on processors are not expressed in the program. This frees the programmer from
this level of complexity in the design of parallel programs.

The declarative programming language Id has a functional kernel. Arrays in this func-
tional kernel are created using monolithic array constructors called array comprehensions.
In (1], Arvind and others argue that these array comprehensions lack expressiveness, and
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that for certain problems a lower level of constructs, manipulating the elements of 1-
structures, is necessary. An I-structure is a single assignment array with element-level
synchronization for reads and writes. Because of their single assigninent nature, Id pro-
grams with I-structures are deterministic, even though pure functional referential trans-
parency has been lost. In [3] it is shown that for certain problems I-structures are again
not powerful enough and that the more expressive M-structures are needed. M-structures
are also arrays with element-level synchronization, but do not have the single assignment
property anymore. M-structures allow “put” operations to write in an empty array slot,
and “get” operations read and empty an array slot. Therefore, with interleaved puts
and gets, M-structures allow destructive updates to express potentially non-deterministic
producer-consumer relationships.

The above papers argue convincingly that the Id language gets increasingly more
expressive when [-structures and M-structures are added. In this paper, we are interested
in the time and space efficiency of realistic programs, when written in these various
layers of the language. We therefore analyse three Id implementations of the NAS FT
benchmark: a functional version, a version using I-structures, and a version using M-
structures. We measure the time complexity of our programs by running small problems
on the Monsoon Interpreter MINT, which reports on the number of instructions executed
and the critical path length and provides parallelism profiles. We measure the space
complexity of our programs by determining the maximal problem size that fits in our
one node Monsoon machine {7], which has a 4 Megaword data memory. In this case, the
goal is to run a 64 x 64 x 64 problem, given in the NAS benchmark specification as the
minimal sized problem, on a one node Monscon machine. One 3-D 64% object contains
half a Megaword of floating point numbers.

It turns out that the purely functional code provides the highest parallelism, but at the
cost of high instruction counts and high space usage. The I-structure code executes the
minimal number of instructions and runs the fastest on the one node Monsoon machine,
which provides 8-fold parallelism. The M-structure code allows the largest problem sizes
to be run and turns out to be the only code that allows us to run the 64 x 64 x 64 problem.

The rest of this paper is organized as follows. Section 2 defines the FT NAS benchmark
solver. Section 3 first discusses the representation of 3-D objects, and then highlights the
differences in programming styles in the functional, I-structure, and M-structure codes.
In section 4 we analyse the time and space performance of our three codes. Section 5
mentions related work and concludes.

2 Problem specification

In the NAS benchmark FT, the following three dimensional heat equation is solved nu-
merically:

Su(x,t

—32,_—2 = aVu(z,t)
where z is a position in three dimensional space and « a constant describing conductivity.
When a Fourier transform is applied to each side, this equation becomes:

fu(z,t) _ ~dan’|z[*v(z,t)

8t
where v(z,t) is the Fourier transform of u(x,t). This equation has the solution:

v(z,t) = e_‘aletlztv(z,())
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Figure I: Flow diagram of top level of NAS beuchmark FT

The discrete version of the above problem can be solved using Discrete Fourier Trans-
forms (DFT) instead of continuous ones. First, a 3-D DFT is performed on the original
state array u(z,0), then the results are multiplied by certain exponentials and lastly an
inverse 3-D DFT is performed (see Figure 1.} The forward and inverse DFTs of the ny x
ng x ng array u are defined respectively as:

nz—1nz~1n3-1

Fq . ,(u) = E 2 E u; kla—?m'jq/-m e-Z‘n'kr/'nz e—21rila/n3

=0 k=0 ;=0

1 na=1nz—1n3~1

2 E Z uj'k'ICZ«ijq/me21rt'kf/w3621rila/n3
17203 1op k=0 j=0

Fl(w) =

In the FT benchmark, the complex array U is initialized using a pseudo-random
number generator. Setting V equal to the 3-D DFT of U, o = 107® and t = 1, the
intermediate value W is computed:

w’j.k,l = e—daw’(}’+k’+P)tvj'k“
where j is defined as j for 0 < j < n;/2 and j — n; for n;/2 < j < n;. The indices k and
{ are similarly defined with n, an. a3. X, the 3-D inverse DFT of W, is then computed.
Finally, a checksum T}%% X, . , is computed where ¢ = j (mod n,), r = 3j (mod n3) and
s = 5j (mod n3). The computation of W, X and the checksum, is repeated for values ¢
from 2 to 6. V needs only to be computed once. The array of exponential terms for ¢t > 1
can be obtained as the t-th power of the array for t = 1.
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The benchmark allows any algorithm be used for the computation of the 3-D FFTs.
The algorithm we implement takes a complex array of size n; X n; x n3 and performs
ng X ng ny-point 1-D FFTs in the nl direction, followed by n3 x n, nz-point 1-D FFTs in
the n2 direction, followed by n;, X ny na-point 1-D FFTs in the n3 direction yielding the
final result. The benchmark also allows any algorithm to be used for the individual 1-D
complex FFTs. We use a straight-forward iterative algorithm which reorders the array
using bit-reversal of the index, and performs butterfly group recombinations, where the
smallest group is 4, and the group size doubles in each iteration. Using a bottom case of
4 instead of 1 or 2 cuts out the bottom-most branches of the FFT tree making it much
more space and time efficient. It also makes resource management simpler as pointers
and objects are not interchanged [4]. We use iterative FFTs instead of recursive ones,
because in the iterative codes all the intermediate arrays can be deallocated immediately
after they are no longer required. Details about this can also be found in [4].

3 Implementation

3.1 Data Representation

The first choice for the data representation that comes to mind is a 3-D array of complex
numbers represented by tuples of two real numbers. However, Id does not treat, for in-
stance, a 1-D sub-array of such an array (e.g. Ali,j,*]) as an independent data structure.
Ideally we would like a 1-D FFT function to be able to generate its result directly in a
1-D sub-array of our 3-D array in anv of the 3 directions. As this is impossible, it is just
as simple and more efficient to have a linear data structure representing the 3-D object.
Selecting a vector in a certain direction now becomes stepping through the array with the
appropriate stride. Having the complex numbers represented by tuples introduces consid-
erable inefficiency because of the extra indirection introduced by the tuples. Moreover,
deallocating an array of tuples can cause complications, if the array elements are some-
times copies (in which case only a new pointer is created) and sometimes new values (in
which case a new tuple and a new pointer is created) [4). We therefore opt for the simplest
data representation possible: a linear array of 2n;nqn; floating point numbers. To get the
input array, 2nyngn3 pseudo-random floating point values are generated as specified in
the FT benchmark, and then used to fill the complex array U, 0 < j < n1, 0 £ k < ny,
0 < I < ng, where the first dimension varies most rapidly as in the ordering of a 3-D
Fortran array. A single complex entry of U consists of two consecutive pseudorandomly
generated results and is stored such that the real and imaginary parts are a distance of
nynynj apart.

3.2 Purely functional implementation

In the functional version of the program, arrays are created using array comprehensions.
An array comprehension creating an n-dimensional array consisting of m regions is of the
form:

nD-array((ll, ul), e ‘7(1111 uu)) of
VAN, .. S2(0)) = expry || gen} ;...; gend!

| fmlm)s - s fr(Im)) = ezprms || geny, ;...; gendr
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where each generator gen’ , is of the form: ¥ — I¥ to uf. Zero or more generator
expressions define a region using a cross product of nested loops. I; is the vector of
loop variables for region j. Array comprehensions allow for elegant concise definitions of

arrays. There are, however, a number of problems:

e No Sharing. When the computation of a number of array elements can share sub-
computations, this cannot be expressed in an array comprehension, as each array
element is defined independently.

¢ No sub-array target. We cannot create a substructure and scatter it over a larger
whole array as array comprehensions work on element level.

¢ More intermediate arrays. As an array comprekension does not allow the ex-
pression of loop carried dependencies, extra intermediate arrays often need to be
created.

The consequence of this lack of expressiveness of purely functional code is a high
instruction count as well as a high storage use, as we shall see in the Results and Analysis
section.

3.3 I-structure Implementation

An I-structure can be created empty somewhere in the code, and partly or completely
filled throughout the program. An l-structure allows array elements to be defined by
array element assignments, but still retains determinacy by allowing each element to be
defined at most once. The I-structure implementation of this benchmark is the closest to
the problem definition. Also almost nowhere were we forced to over-specify intermediate
array details introduced by the purely functional style. This makes the I-structure ap-
proach in certain circumstances more declarative than the purely functional approach [3].
Array elements are now defined in loop constructs and nothing prevents us from defining
more than one element in one loop body, thus avoiding the sharing problem of array
comprehensions. In I-stucture code we can use loop carried dependencies to avoid the
creation of unnecessary intermediate structures. As we shall see, this makes I-structure
codes more efficient in instruction counts as well as space usage.

3.4 M-structure Implementation

The problem with the I-structure implementation still is that, when performing a 1-D
FFT on a sub-array of the 3-D object, we need two versions of the object: the one that
is read, and the one that is written. When inspecting the FFT algorithm, it is clear
that exactly the same elements that are being read, need to be rewritten. An imperative
algorithm would use only one data structure. M-structures allow us to do the same thing
in a declarative context. It should be noted that M-structures are not needed here for
expressiveness reasons: the algorithm can be expressed very naturally using I-structures.
The only reason to go to an M-structure implementation of FT is space efficiency.
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As was mentioned in the introduction, M-structures allow elements to be “put” into
an empty location: A!(i] = expression. A put cannot overwrite a value, i.e. a put to a full
location will result in a run-time error. Elements can be extracted, i.e. read and emptied,
by a “get” operation: z = A![¢]. A third operation x = A!![{] reads (or extracts and puts
back) an M-structure element. A fourth operation A![i] = z replaces (extracts and puts
a new value) an element of an M-structure. Notice that the operations with one ! change
the full/empty state of the elements, whereas the operations with the double !! take a full
element and leave it full.

M-structures in a parallel model of computation, such as the Id model of computation,
give rise to non-determinism: if a number of threads try to get an M-structure element,
only one can have it, and which one that will be depends on the arrival t..ne of the
particular get operation.

We found that there are two styles of M-structure programming. The imperative style
uses reads and replaces to ensure that M-structure elements are always full, and provides
explicit synchronization using barriers (notation - - -). This style mimics imperative
programming closely. Of the M-structure implementations of the FT benchmark, this
is the easiest to write, simply because use of replace operations on M-arrays can closely
imitate imperative programming style. Use of barriers for explicit synchronization can
also emulate close to sequential programming style, extending the ease of programming
(to people who are more familiar with sequential thought process). This style gives us the
maximum space efficiency we are after. However, the use of barriers combined with the
reads and replaces, which are more expensive than gets and puts, makes this style almost
as inefficient as the purely functional style!

The second style of M-structure programming, the data driven style, uses puts and gets
for both communication and synchronization and avoids barriers as much as possible. Now
the puts and gets need to be perfectly balanced, which makes this style much harder and
more error prone. However, inspecting the behavior of FFT algorithms, it is clear that the
butterfly data dependences in the recombination phases allow extracting two elements,
performing some shared computation on these and putting two elements back in exactly
the same place. Therefore, puts and gets without extra batriers work for FFTs.

3.5 Code Example

We consider the function that performs n2 one dimensional FFTs each of size nl from
an array which is nl1 x n2 long. This essentially requires partitioning the input vector
in slices, performing a 1-D FFT on each such slice and gluing the resulting together to
obtain the resulting array. An I-structure implementation of the function is as follows:

def cffts IS nl n2 x ro = {
stride = ni#n2; size = ni1#*2; typeof v = I_vector(F); v= I_vector(1, 2#ni»n2);
{for j<-1 to n2 do
y = slice j n1 stride x; z = fft y ro IS;
{tor i<-1 to m1 do
vl(j-1)*n1 +iJ = z[i];
vi(j-1)*n1 +i +stride] = z[n1+i); >}

in v};
% 1-D FFT on a slice: I-Structure Code
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In the above code the function slice copies a slice of values from z, and the vector
ro contains roots of unity. When the function is implemented in imperative M-structure
style, we need to sequentialize the problem using explicit barriers before every stage,
because the arrays y and z will be reused. The function read_slice reads a slice of values
from z and updates y with these values. The function fft updates 2. Again, ro contains
roots of unity.

def cffts IS ni n2 x ro = {
typeof x = M_vector(F); typeof ro = I_vector(F);
stride = ni*n2; size = ni*2;

z = {M_array (1,size) ot | [j] =0.0]}
y = {M_array (1,size) of | (j} = 0.0 ||

<- 1 to size};
<- 1 to size};

et s

{tor j<-1 to n2 do
_ = read_slice j nl stride x y;
- = 1ft y ro IS z;
{for i<-1 to ni do
2 [(j-1)*m1 +i] = z11[i];
x!1[(j-1)*n1 +i +stride] = z!!(n1+il; } }
in x};
% 1-D FFT on a slice: Imperative M-Structure Code

When writing the same code in a data-driven M-structure style, we get rid off all the
explicit barriers except one. Lack of this barrier causes writing on the same location of
x (within the ¢ loop), before it is extracted (by function get_y). The function get_slice
extracts values out of x and puts them in y. The function fft extracts the values out of y
and puts them in z, which is emptied agan in the code that rewrites the slice of x that
was emptied by get_slice.

def cffts IS ni m2 x ro = {
typeof x = M_vector(F); typeof ro = I_vector(F);
stride = nisn2; size = ni*2;
2z = 1d_X_array(1,size); y = 1d_X_array(i,size);
{tor j<-1 to n2 do
% fn get_y fills y and empties a section of x
- = get_y j nl stride x y;
- =tft y ro IS z;
{for i<-1 to ni do
x![(j~1)*n1 +i] = z![il;
xt[(j-1)*n1 +i +stride] = z![n1+il; } }
in x};
% 1-D FFT on a slice: Data-driven M-Structure Code

Building an array out of a variable number of variable sized sub-arrays turns out to be
quite hard to implement in the purely functional style. The problem here is that the
output value of one element of a slice is not known independently, as for one input slice,
all the elements of the resulting slice are evaluated. It would be too expensive to evaluate
a whole slice of elements just to get the value of one element. To get around this problem,
we create an intermediate vector of vectors, each vector representing a slice,
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def cffts IS nl a2 x yo = {
stride = nisn2; size = n1s2; length = 2¢stride;
typeot tv = vector(vector(F));
tv = { vector (1,n2) ot
| [j] = get1d j ni stride x 1| j <- 1 to n2};

defsubst getid j nl stride x = {
y = get_y j ni stride x;
z = fft y ro IS;

in z};

v = { vector (1,length) ot

1 [(j-1)*n1 +i] = tv[310i] || j <- 1 to n2; i <~ 1 to m1

| [(j-1)*n1 +i +stride] = tv[j)li+n1) (I j <- 1 to mn2; i <- 1 to ni1};
in v};
% 1-D FFT on a slice: Functional Code

4 Results and Analysis

In this section we measure instruction counts and critical path length using the Monsoon
Interpreter Mint. Two time related measures are recorded: S,, the total number of
instructions executed, and the critical path length S, the number of parallel time steps
required, when tb - availability of an unbounded number of processors is assumed. We
measure the space zquirements of our codes by determining the largest possible problem
size that fits on a one node Monsoon Machine.

4.1 Time Analysis

Table 1 summarizes the instruction counts (S;) and critical path lengths S, for some
problem sizes. The functional code has the maximum instruction count. This is caused
by the inability to share computation in array comprehensions, and by the need to create
intermediate data structures, as shown in the slice example. The I-structure code has the
lowest instruction count, and a critical path length close to the functional code, which
indicates that the higher parallelism of the functional code is superfluous. The data-driven
M-structure code requires about 20% more instructions than the I-structure code. Also,
the M-structure code has a 75% tc 100% longer critical path length. This is caused by
the need for explicit synchronization, and by the fact that the M-structure X, after the
checksum has been computed, needs to be completely emptied before it can be reused
in (producer-consumer style) in a next stage. This occurs after the checksum operation.
Also, the code performing the checksum needs to use the more expensive reads in order
to simplify the emptying of the array.

4.2 Space Analysis

To reach the goal of running a 64 X 64 x 64 size problem on the one node Monsoon machine, we
first need to determine how many such arrays can be stored before we run out of heap memory.
Running just the random vector generator (generating U in Figure 1), we establish that the
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[ Method | Functional I-structure | M-structure
S1 | S S| S Sh Soo
4x4x4 3,241 | 220 {| 1,025} 230 | 1,257 340
8x4x4 6,403 | 300 J| 1,556 | 300 || 1,902 520
8x8x4 13,729 | 480 || 2,665 | 480 {| 3,211 840
8x8x8 || 32,3031 800 {{ 4,973 { 800 || 5,877 | 1,600

Table 1: 5; and Sy for FT benchmark (x 1000)

maximum size of 2 3-D object that can be generated on our machine is 128 x 128 x 80, and
that at most 4 64 X 64 x 64 arrays can exist at the same time. According to the benchmark
specification (see Figure 1), Ezp needs to be created once and remains needed throughout the
program. In the first stage of the program U and V coexist. After that, only V will be needed.
In the cycle for t from 1 to 6, W and X coexist. Therefore at least 4 3-D objects must coexist.
In the M-structure implementations we can over-write V on U and X on W, which brings the
requirement down to 3 3-D objects. From this we conclude that on a one node Monscon, we
can never run any larger than 64% problem.

To establish the space usage of our 1-D FFT codes, we ran these independently of the rest
of the FT benchmark. The functional code without resource management allows problem sizes
of up to 2'%, whereas with resource management it allows problem sizes of up to 2'%. The
corresponding numbers for the I-structure implementation are 2'7 and 2'®. The M-structure
code does not require explicit resource management as it reuses its data structures. It allows
problem sizes up to 2!%. The double capacity of the M-structure code is explained by the fact
that it writes the resulting fft back on its input array.

The maximal FT benchmark problem sizes we could run were 163 for the resource managed
functional code, 323 for the I-structure code, and 64 for the M-structure code. This phenomenon
corroborates our discussion in the implementation section. The functional implementation cre-
ates, even when resource managed, intermediate structures. The I-structure implementation
requires independent structures for input and output, whereas the M-structure implementation
can write results back into the input structure.

5 Conclusion

I-Structures and M-structures are introduced in [1} and [3], respectively. Id implementations
of the 1D FFT are discussed in [4]. Sisal implementations of the 1D FFT are discussed in
{5]. A high performance 1D FFT algorithm in Sisal for a vector computer is presented in
[6]. The contribution of this paper is the quantitative comparison of the different declarative
programming styles using a realistic, well-known benchmark.

In this paper we have studied certain declarative language features and their effect on the
time and space efficiency of our programs. More specifically, we have studied three declara-
tive implementations of the NAS FT benchmark: a purely functional, an I-structure, and an
M-structure implementation, all written in the programming language Id and executed on the
Monsoon Interpreter and Monsoon hardware. The purely functional code provides the most
parallelism, but at the cost of a high instruction count. I-structures provides the fastest im-
plementation: the lowest instruction count and a critical path length very close to that of
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the functional code. However, I-structure code is less space efficient than M-structure code.
Only the M-structure code allows the 643 problem specified in the FT benchmark to be run.
Therefore, we have the ability to trade space for time between the M-structure and I-structure
implementations of this benchmark.
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Abstract: Plas-do compilation technique is a new, advanced compilation framework
for eager data transfer on distributed-memc:y parallel architectures. The technique is
especially effective for a recent breed of low-latency architectures by realizing a high-
throughput low-latency communication scheme, pipelined sends. The compilation of high-
level, plan-do style code into low-level, eager data transfer code is achieved via straight-
forward application of a set of translation rules. Preliminary low-level benchmark results
on a real parallel architecture, EM-4, exhibit good speedups.
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1 Introduction

Distributed-Memory Massively Parallel Processors (DM-MPPs) have attractive features
for scalability. There are many types of DM-MPPs; but, irrespective of their architectures,
the basic abstract execution models of such machines would be those of esynchronously
communicating (multiple) threads. Such an abstract machine could be naively realized by
adding message-passing routines to the thread-based abstract machines; the collection of
those routines is usually called a message-passing library.

However, such a library-based approach prevents us from exploiting advanced im-
plementation techniques for communication; such techniques can be exploited only by
compilation-based approaches. They include, for example, a technique of compiling mes-
sage interpretations, known as active messages|6], in which a message omits the runtime
tags for the message format and carries the address of a compiled message handler. There
are further advanced implementation techniques enabled by compiling communications.

In this paper, we concentrate on an implementation technique, eager data transfer,
and describe its compilation framework. The idea of eager data transfer originates from
the dataflow execution model, but we employ it in the context of thread-based execution
models. Eager data transfer can be (re)stated as “eagerly sending a datum to the location
where the datum will be used,” which improves both throughput and latency by reducing
local buffering of messages on both sender and receiver nodes. Of course, there is a
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tradeoff for the excessive use of eager data transfer; it increases the number of messages
and matchings of the messages, but we demonstrate the effectiveness when employed with
compiled pipelined sends, via performance measurements on a fine-grained hybrid parallel
architecture EM-4(4, 3].

There are many different levels of abstraction, even for the same general notion of ‘di-
rectly communicating threads.” For example, Concurrent Object-Oriented Programming
(COOP) languages, such as ABCL[10], provide high-level abstraction, while distributed
memory machines themselves provide the lowest-level of abstraction. In this paper, we
regard the compilation process as shifting down the abstraction levels within the directly
communicating threads model, and discuss the necessary compiler supports.

In order to realize eager data transfer, dataflow information is indispensable. The
compiler must provide additional dataflow information at every level of the abstraction;
i.e., every intermediate representation must embody dataflow information to maintain
modularity (clear separation of layers), even at the levels where optimization techniques
based on dataflow information are not applied. This requirement causes a difficulty in
combining several compilation phases into one pass. The plan-do style intermediate code
solves this problem by representing the combination of control-flow information and data-
flow information in a stream form. Furthermore, it has an additional benefit of serving as
a convenient intermediate representation when pipelined parallelization of the compilation
phases themselves is desired.

2 Eager Data Transfer

In order to clarify our motivation, this section presents several examples of eager data
transfer, which can be used at various abstraction levels.

2.1 A Fine-Grained Example — Pipelined Sends

A (remote) message passing implementation scheme which overlaps computation and com-
munication, a pipelined send, has been proposed for ABCL/EM-4(8, 9] (a COOP language
system ABCL on EM-4). This scheme overlaps the evaluation of message arguments and
their sending in a pipelined way; it improves both throughput and latency by eliminating
local buffering of messages on both sender and receiver nodes. The scheme is realized by
(1) remote code invocation, (2) remote write, and (3) FIFOness of network, which are
efficiently supported by EM-4.

The packet exchange protocol for the pipelined message passing proceeds as follows
(See Figure 1): (1) The sender reserves a message box on the receiver node, by invoking a
proper code block to return the allocated message box address. (2) The sender evaluates
the arguments of the message. As each argument is evaluated, its packet is eagerly sent
to the proper location in the message box on the receiver node. The evaluation and
sending are pipelined in a fine-grained manner. (3) The message box address is sent to
the receiver. It may enqueue the message until it can process the message.

Although packet transmissions to reserve a message box may result in a round-trip
latency, multi-threading at the sender node effectively hides the latency. Moreover, the
reservation provides us the following significant advantages: (1) It allows us to manage
the message queue efficiently at the receiver node, just by pointer manipulation rather
than copying all thc contents of the message. (2) The knowledge of the target message
box address makes pipelined send possible, which reduces (a) the communication latency
by eager data transfer before the complete evaluation of the message and (b) the cost of
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Figure 1: Packet Exchange for a Pipelined Request Message Send

local memory access for local buffering at the sender node. Moreover, pipelined sends can
be interruptible, namely, multiple sends can be interleaved with one another.

2.2 Coarser-Grained Examples
Eager data transfer can also be exploited at coarser levels of granularity:
[0bj1 <= [:Msgl [:coms 1 [:coms 2 [:nil]l111]

This program fragment in a COOP language, ABCL, denotes a request message send
to Dbj1, whose message consists of a message tag :Msgl and a list of integers 1 and 2.
Suppose that this is a remote message send and cons cells are used to implement the list.
We would like the compiler to generate the code for remote cons at the node where the

Obj1 resides, rather than local cons plus remote copy.
This kind of eager data transfer is not limited to COOP languages. The corresponding

example in a {thread-based) functional language would be as follows:

(Funl [:cons 1 [:comns 2 [:nill]])
Here, we would like the compiler to generate the code for remote cons at the node where
the function invocation frame for Fun1 resides.

3 Compilation Framework for Eager Data Transfer

The high-level code should contain certain amount of dataflow information to realize
eager data transfer at the lower-level. The dataflow information is actually needed for
code conversion (generating lower-level code from higher-level code), rather than for mere
code optimization. The information includes (when fixing a value v): (1) whether or not
v is used eventually, (2) which thread (node) will use v, (3) to which location on memory
v will be finaily stored, etc. Both (2) and (3) are especially indispensable for realizing the
pipelined sends described in Section 2.1.
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3.1 Inlining Dataflow Information in Plan-Do Style

The plan-do style intermediate code satisfies the 1. wescribed above and also
provides additional benefits for the compilation process itself. This subsection briefly
describes the plan-do style code; the important effect of using the plan-do style (i.e.,
realizing eager data transfer) is demonstrated when the plan-do style code is interpreted
by the lower-level part of the compiler, which is presented in Section 3.2.

The basic idea behind plan-do style is that (1) the plan-part (i.e., plan declaration part)
provides dataflow information, and (2) the do-part (i.e., plan execution part) provides
control-flow information. The benefits of the plan-do style are: (1) it takes a stream form
instead of an arbitrary graph structure, and (2) interleaving of plan declaration and plan
execution is possible. Thus, it allows combining of several compilation phases into one
pass, or alternatively, pipelined paralielization of the compilation phases.

There are compilation targets for which the plan-do style code is specially suitable,
which are the ezpressions representing natural dataflow information; using the plan-do
style code makes it possible to extract and represent the information without costly flow
analysis. The plan-do style code embodies the semantics of the source program in terms of
sequential execution of a single thread of control, and also provides dataflow information
without loss of machine independence of high-level code.

Let us take a simple message send example:

[obj1 <= [(+ i 1) (+ j 2)]]

This program fragment in ABCL denotes a request message passing to object obj1, whose
message is a tuple of an integer i+1 and an integer j+2. This source program is converted
into the following plan-do style code via the high-level parse tree:

(newplan (pi d1 d2) (request-send))
(throw obji d1)

(newplan (p2 d3 d4) (make-tuple d2))
(newplan (p3 d5 d6) (arith3-+ d3))
gthrov i as)

throw 1 d6)

do p3)

(newplan (p4 47 d8) (arith3-+ d4))
(throw j d7)

§throv 2 ds)

do p4 p2 p1)

(newplan (pl di d2) (request-send)) declares plan p1 together with destinations
d1 and d2. By ‘destination,” we mean an argument of the plan (which corresponds to a
dataflow arc to the plan node in terms of dataflow model). The plan is to send a request
message to a target object. The target object’s name is given by ‘throwing’ the name to
di. By ‘throwing,’ we mean that a value is passed as an argument for a plan. (throw
obj1 di) throws the value of obj1 to d1. (do p1) carries out the plan p1. Similarly, the
actual parameter of the request message is provided by throwing the obtained value (i.e.,
a tuple consisting of i+1 and j+2) to d2 in a subsequent execution of another plan.

Accordingly, (newplan (p2 d3 d4) (make-tuple d2)) declares plan p2 to (1) make
a tuple of values thrown to d3 and d4 then (2) throw the tuple to d42. (newplan (p3 d5
dé) (arith3~+ d3)) declares plan p3 to (1) add values thrown to d5 and d6 then (2)
throw their sum to d3.

The translation of the parse tree into the plan-do style code is straightforward: When
the (recursive) translation function reaches a certain tree node, before the translation of
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the subtrees, it declares the plan for the current tree node, and after the translation of
the subtrees, it ‘executes’ the plan.

The standard (trivial) interpretation of the plan-do style code (which is not employed
for eager data transfer) is as follows: (1) A plan declaration is interpreted just as declara-
tion and no actions are performed. A destination is interpreted as a temporary variable.
(2) A ‘throw’ is interpreted as an assignment of the value to the corresponding tempo-
rary variable. (3) A plan execution is interpreted as an actual execution of the plan. In
Section 3.2, an alternative interpretation developed for eager data transfer is presented.

3.2 Interpreting Plan-Do Style Code to Generate Eager Data
Transfer Code

This section describes the compilation process for realizing eager data transfer, by inter-
preting the high-level plan-do style code. We exemplify the process for pipelined sends
described in Section 2.1 with the simple message send example in the previous section.

Figure 2 shows the translation function Tr from the high-level code into the lower-level
code. Here, when hcode is high-level plan-do style code, Tr [kcode] (penv, denv) returns
the lower-level code in the context of the plan environment penv and the destination
environment denv. penv is a function from a set of plan identifiers (ranged over by p) to
plan definitions (p corresponds to a dataflow node in terms of the dataflow model). denv is
a function from a set of destination identifiers (ranged over by d) to pairs of p and integers
(ranged over by :). (d stands for i-th dataflow arc to p in terms of the dataflow model.)
Trasfr[v, fl, d] (penv, denv) returns a fragment of lower-level code which transfers a value
vy to the fl-field of destination d. The results of Trnsfr are significantly influenced by the
dataflow context of (penv,denv) in order to select the eager data transfer instructions
under certain conditions. For a function f, “f{z — y}” denotes the function f’ such that
Dom(f') = Dom(f), f'(z) = y and f'(z') = f(z") for all 2’ € Dom(f) — {«}. By “h ::
“:” denotes consing of the head k and list r, and “[a, b, c]” denotes the list consisting of
a, b, and ¢. By “l; @ [3,” “@” denotes the concatena.tlon of two lists [, and I,.

The translation function basically translates the high-level code in the following way:

o For a plan declaration, it memorizes the plan and the destinations in environments
penv and denv. Fresh lower-level variable identifiers will be introduced if necessary.

e For a plan execution, it generates code for finishing the plan, then if the result
value has not been eagerly sent, it generates data transfer instructions by calling
the Trnsfr function.

o For throwing a value to a destination, it decomposes the (possibly) nested higher-
level tuple value into a set of pairs of lower-level values and the field number lists
by calling Decomp, and generates data transfer instructions by calling Trnsfr.

Tr and Trnsfr embody the translation into eager data transfer; i.e., they realize the
pipelined sends. For this purpose, Tr translates the high-level code in the following way:

e For request message passings, it prepares pointers for a request message box to
realize a pipelined send, and it only generates instructions for pointer manipulation.

¢ For tuple construction, it eagerly transfers the tuple elements without buffering.

o For simple arithmetic operations, it simply prepares three temporary variables for
the operation, and the result of the operation is transferred by Trasfr.
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Tr{(newplan p, d; d; (req-send)) : r](penv,denv) =
Tr[r] {(penv{p) — reqg-send(t,,t;,t3)}, denv{d, — (p1,1),d2 — (p1,2)})
(tl, tg, ts new)
Tr[(newplan p, d; d, (make-tuple d3)) :: r] (penv,denv) =
Trir] (penv{p, — make-tuple(ds)}, denv{d, = (ps,1),d2 — (p1,2)})
Tr((newplan p, d; d, (arith3-+ d3)) :: 7] (penv, denv) =
Trr] (penv{p; — arith3-+(ds, (t1,t2,13))}, denv{dy — (p1,1),d2 — (p1,2)})
(tl, t;), ts new)
Tr[(do py) == r] (penv, denv) =
(get-read-pointer ¢; #3) :: (req-send {3 t;) :: Tr[r] (penv, denv)
if penv(p;) = req-send(t,,t,,13)
Tr{(do p) =: ] (penv, denv) = Tr[r] (penv, denv) if penv(p,) = make-tuple(d,)
Tr(do p1) = r] (penv, denv) =
(arith3-+ ¢, ¢ t3) :: (Trnsfr{ts, nil, d;] (penv, denv)@ Tr [r] (penv, denv))
if penv(p) = arith3-4(d;, (11,12, 13))
Tr[(throw v, dy) = v} (penv, denv) =
(Trnsfroy, fly, di] (penv, denv)@ - - - @ Trusfr (v, fl,, di] (penv, denv))@
Tr[r] (penv, denv)
where Decomp(un) = {(v11, fl)s - (vtms i)}

Trasfr[vi, nil, d,] (penv, denv) = [(assign v t;), (get-rgst-mbox-on t; t,)]
if denv(d,) = {(p1,1) and penv(p,) = req-send(t,, t3,13)
Trusfru, fl, di] (penv, denv) = [(setarg-remote v; t; f)]
if denv(d;) = (p, 2) and penv(p1) = req-send(ty, ¢z, ts)
Trusfru, fl, di]) (penv, denv) = Trasfrv, (2 ~ 1) 2 fl, &3]} (penv, denv)
if denv(d,) = (p;,¢) and penv(p;) = make-tuple(d,)
Trasfr v, nil, d,] (penv, denv) = [(assign v t;))
if denv(d;) = (py,¢) and penv(p) = arith3-+(ds, (1,83, ¢3)) (for 1 <i < 2)

Figure 2: Tianslation Function from Plan-Do Style Code into Lower-Level Code for
Pipelined Sends.

Trnsfr realizes data transfer to the destination d in the following way :

o Ifd is for a target of request message send, the value is simply assigned to the tem-
porary variables for the target, but, immediately after that, it allocates a message
box for the pipelined send.

o If d is for an argument of a message, it generates a “remote write” instruction for
the pipelined send.

o If d is for a tuple construction, it eagerly transfers the value to the more specific
field of d by recursively calling Trnsfr.

o If d is just for an arithmetic operation, the value is simply assigned to the corre-
sponding temporary variable.

Figure 3 shows the result of the conversion from the high-level code into lower-level
code for [obj1 <= [(+ i 1) (+ j 2)]11. The high-level code is also shown on the left




Plan-Do Style Code
(newplan (p1 di d2) (request-send))
(throw objl d1)

(newplan (p2 d3 d4) (make-tuple d2))
(newplan (p3 d5 d6) (arith3-+ d3))
(throv i d5)

(throw 1 d6)

(do p3)

(newplan (p4 d7 d8) (arith3-+ d4))
(throw j d7)
(throw 2 d8)

Lower-Level Code

(assign obji-0 t1)

{get-rqst-mbox-on t1 t2) [#*1]

(assign i-0 t4)

(assign 1 t5)

(arith3-+ t4 t5 t6)
(setarg-remote t6 t2 (0)) [2]

(assign j-0 t7)
(assign 2 t8)
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(do p4) (arith3-+ t7 t8 t9)
(setarg-remote t9 t2 (1)) [»3)]

(do p2)

(do p1) (get-read-pointer t2 t3) [«4]
(request-send t3 t1) [»s]

[+1] allocate a message Fox t2 on the node of t1, [#2] pipelined remote write of i+1,
[+3] pipelined remote write of j+2, [¥4] complete the initialization of the message box,
[+5] send the message box address.

Figure 3: Generated Lower Level Code for [obj1 <= [(+ i 1) (+ j 2)]]

hand side. Eager data transfers become manifest at (do p3) and (do p4), where the
elements of the tuple are eagerly sent to the pre-allocated message box on a remote node.
Note tLat (do p2) does nothing because the tuple elements are already sent cagerly.

4 Performance Measurements

In this section, we demonstrate the effect of eager data transfer, especially pipelined sends,
via performance mecarurements on a COOP language system ABCL/EM-4(8, 9}.

The source langvage of ABCL/EM-4 is ABCI,/ST, a statically-typed ABCL language.
An ABCL/ST compiler for EM-4 has already been developed [7]. The compiler adopts the
following language hierarchy for each level of the abstraction of ‘directly communicating
thread’: (1) the source language, (2) high-level language (embodying the semantics of
the source language in terms of sequential execution of a single thread of control), (3)
middle-level language (introducing pointers for the purpose of implementation), (4) low-
level language (introducing the notion of data size and memory addresses), (5) I-language
(for optimization based on flow analysis), and (6) assembly language. The plan-do style
is mainly unsed for the high-level code to provide dataflow information without loss of
machine independence of the high-level code.

The compiler generates assembly code for a fine-grained hybrid parallel architecture
EM-4[4, 3], which was developed and built at Electrotechnical Laborarories. EM-4 consists
of 80 processing elements and runs at 12.5 MHz clock speed, and facilitates a fine-grained
communication mechanism; for example, it provides a two-words size packet-output in-
struction which directly sends data from registers into its fast omega network. EM-4
hardware also provides basic scheduling mechanism for multiple threads, coupled with
its data-driven (packet-driven) feature. The term “hybrid” ind’ '« the combination of
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Figure 4: Latency Comparison Between Pipelined /Non-Pipelined Sends

control-flow architecture and the data-driven architecture.

In this measurement, we compare the two implementation schemes of remote mess. . e
passing: (1) the pipelined sends {see Section 2.1) and (2) the non-pipelined sends, in
which the communication is not initiated until all the message arguments are evaluated.

In order to measure the latency of remote message sends, our benchmark program
creates objects along a closed Hamilton path among the 80 nodes of EM-4, and sends
messages through the path. When an object O; is activated by a message M; from O;_,,
0; sends M;,; to O;4, at the adjacent node along the path.

We measured the average activation interval of adjacent objects O; and O,4, for var-
ious sizes of messages. Figure 4 shows the results of the benchmark. As we can see, the
pipelined sends are always superior to the non-pipelined sends. The main reason is be-
cause the non-pipelined sends require additional memory accesses to buffer the message
arguments at the sender node; this Luffering is not necessary for the pipelined sends,
where the evaluated value on a register is sent directly into the network.

The latency given in Figure 4 includes not only the communication latency but also the
execution time of computation perforined by objects. Nevertheless, the minimum latency
is approximately 6.7 s (83 clock cycles) for 4-word message size in pipelined sends, while
the difference between the latency in non-pipelined sends and the latency in pipelined
sends for 16-word message size is approximately 5.8 us (73 clock cycles). These values
show that the impact of pipelined sends becomes relatively significant on architectures
where the remote communication is very fast.

5 Discussion

5.1 Moderate Eagerness

The idea of eager data transfer originates from the dataflow execution model. In the
dataflow execution model (the eager evaluation model), a large number of fine-grained
concurrency can be exploited, ideally resulting in perfect speed up of the execution. In
practice, however, the explosion of concurrency frequently causes problems, such as the
resource exhaustion and the network contention.
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In the thread-based execution model, concurrency can be easily bounded by the num-
ber of threads. Moreover, each thread execution can be efficiently performed by the use of
pipelines and registers. Recent approaches, such as TAM[2], attempt to take advantage of
this fact by resorting to compiler-assisted, highly-efficient thread-based execution model,
even for languages which have fine-grained lenient semantics.

Our approach introduces eagerness in the compilation of communication in the directly-
communicating threads model to exploit the fine-grained capabilities of recent architec-
tures. We note, however, this does not cause the same problem (explosion of concurrency)
as eager evaluation: in our approach, the eagerness appears only in the form of eager data
transfer, which does not include “fire” as in dataflow execution (which consists of eager
data transfer + matching + fire). The eagerness in our approach is still well moderated
by the thread-based execution model.

5.2 Scheduling

Our abstract machine model employs a simple hierarchy of scheduling, namely (1) schedul-
ing of threads and (2) scheduling of instructions. In ABCL/EM-4, scheduling of threads
is basically performed by the hardware at runtime, because EM-4 quite efficiently sup-
ports the scheduling of threads, including creation and termination of threads, with its
data-driven features. Instruction scheduling within a thread is the responsibility of the
compiler, and the plan-do style is employed for this purpose. But plan-do style actually
plays a more important role in instruction conversion between different abstraction levels.

5.3 Combining with Other Optimization Techniques

When an optimization based on dataflow information is already required at the higher-
level, generation of plan-do style code described in Section 3.1 is not necessary. In such
cases, only the conversion into the lower-level code described in Section 3.2 needs to be
applied for realizing eager data transfer.

For example, in array computations, {1] generates optimized code of ‘directly commu-
nicating threads,” where the optimization is based on dataflow information (rather than
data dependency). In non-strict computations, [5] generates optimized code of ‘directly
communicating threads,” by partitioning the dataflow graph. In both cases, by keeping
the dataflow information in the threads, our compilation scheme described in Section 3.2
would be extended to serve as a backend which supports their communication, when com-
piling into further fine-grained communication is desired for architectures such as EM-4.

6 Conclusion

We have presented a novel compilation-based approach to realizing high-throughput low-
latency communication for the execution models based on directly communicating threads.
We employed a compilation-based approach rather than a library-based one, exploiting
advanced implementation techniques for communication. In particular, we concentrated
on eager data transfer and described its compilation framework. We demonstrated the
effectiveness of eager data transfer when employed with compiled pipelined sends, via
performance measurements on a fine-grained hybrid parallel architecture EM-4.

In order to realize eager data transfer, dataflow information is indispensable to code
conversion. The compiler must provide additional datafiow information even at the levels
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where optimization techniques based on dataflow information are not applied. This re-
quirement causes a difficulty in combining several compilation phases into one pass. Our
plan-do style intermediate code solves this problem by representing the combination of
control-flow information and data-flow information in a stream form.
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Abstract: Cache coherence mechanisms in shared-memory multiprocessors typically use
either updating or invalidating to prevent access to stale data, but neither enforcement
strategy is the best choice for all programs. We present a compile-time optimization
that uses the look-ahead capability of the compiler to select updating, invalidating, or
neither for each write reference in a program to thereby produce the best overall memory
performance. We implement this optimization in the Parafrase-2 compiler for memory
references to scalar variables and use trace-driven simulations to compare the performance
of this compiler-assisted adaptive coherence enforcement to hardware-only mechanisms.
We find that this compiler optimization can produce miss ratios comparable to those
produced by an updating-only mechanism while frequently reducing the total network
traffic to below that produced by any of the hardware-only mechanisms.
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Keywords: Performance Analyis and Design Aids; Multiple Data Stream Architectures
{Multiprocessors); Large and Medium (“Mainframe”) Computers

1 Introduction

In a shared-memory multiprocessor with private data caches, each processor may have
a copy of the same memory location resident in its cache. To ensure correct program
execution in such an environment, some coherence mechanism, such as invalidating or
updating, is required to prevent access to stale data. An invalidating mechanism maintains
coherence by requesting exclusive access to a shared memory location before a write
operation. This exclusive access request causes all other cached copies of the memory
location to be marked as invalid in each processor’s cache. Any references to an invalid
copy cause a cache miss and thereby force the processor to access the most recent copy
of the memory location from the globally shared memory. The updating strategy, on the
other hand, ensures coherence by distributing the newly written value of a cached memory
location to all other caches with a valid copy every time the location is written.

Several studies [11, 1, 19, 13} have shown that, in general, neither an updating mech-
anism nor an invalidating mechanism alone can produce the best overall performance.

This work was supported in part by National Science Foundation grants CCR-9209458 and CCR-
9210913.
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For some programs, updating will produce the lowest average memory delay, while for
other programs, invalidating produces the best result. In fact, updating may produce
better performance during some phases of a program’s execution while invalidating may
be preferable in other sections of the same program.

Hybrid adaptive schemes attempt to combine the best aspects of both strategies. Most
of these schemes, supported by different types of hardware mechanisms, switch between
updating and invalidating at run-time based on the program’s memory referencing behav-
ior (3, 15, 21, 12, 5, 6]. Some researchers acknowledge the potential of using the compiler
to choose between updating and invalidating [16, 2], but they have not developed algo-
rithms for performing this switching. We have recently proposed an adaptive scheme [18]
that utilizes compile-time information to identify write references that require coherence
enforcement and to select updating or invalidating for each of these references.

In this paper we present specific compiler algorithms to perform the type of coherence
enforcement marking mentioned above. We implement these algorithms in the Parafrase-
2 parallelizing compiler (20]. Trace-driven simulations are used to determine the perfor-
mance improvement of this compiler-assisted scheme compared to nonadaptive schemes
and to adaptive schemes that use only run-time information. The ideas in this paper
apply to both scalar and array references. However, due to the lack of precise array data
flow analysis in the compiler used for the experiments, we focus on scalar references only.
We always use write invalidation for array references. Currently, we are developing a
compiler that will include exact array dependence analysis allowing us to handle array
references in our future work.

1.1 Program Model and System Assumptions

In this work, we consider the parallel execution of programs in the form of DOALL
loops. A DOALL loop cannot have any data dependences between different iterations. In
addition, it will terminate only when all iterations are completed. Due to the complexity
of nested DOALL loops, we consider only singly-nested DOALL loops. If several nested
loops are parallelizable, we make the outermost one a DOALL loop. Processors may
be assigned at the entry and the exit of a DOALL loop, which we will call a boundary.
All synchronizations occur at these boundary points. We assume that the hardware will
provide the necessary support for synchronization.

For our simulations, we assume a system of multiprocessors that are connected to the
shared memory via a packet-switched multistage interconnection network. Each proces-
sor has a private data cache. Sequential regions of a program (i.e. those that are not
DOALL loops) are always executed by the same processor. The system has a directory
to monitor which processors have a valid copy of each block. There are several variations
of directories [8, 4, 9, 14], any of which can be used with this compiler optimization.
Here we adopt a directory structure similar to Censier and Feautrier’s [8] in which each
memory module is associated with its own directory. We also assume that each processor
may issue three types of writes: wrt-up, wrt-inv, and wrt-only. The wrt-up and wrt-inv
instructions are used to write a shared-writable block and invoke either an updating or
an invalidating coherence enforcement strategy, respectively. The wrt-only instruction is
used for references which cannot cause incoherence. The compiler’s task is to identify how
each write reference should be marked, and then generate the corresponding instruction
to perform the necessary type of write operation.
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(1) y=a+b

(2) y=y*y — last write to y

(3) IF (x> 5) THEN

(4) y=x+y — last write to y

(5) ELSE

(6) x=0 — last write to x — coherence write to x
(7) ENDIF

—< boundary >—
(8) DOALL i=1, 10
9 Afl=x+i
(10) END DOALL

—< boundary >—
(11) ..=x+y

Figure 1: An example of a program segment showing how the writes are marked.

2 Compiler Analysis

The algorithm in this work applies to individual routines separately, although it can also be
extended to an interprocedural analysis. The analysis consists of two primary components:
1) marking those writes that may require coherence enforcement by calling functions
find_last_writes and identify_write_only, and 2) choosing the appropriate cohergnce action
(updating or invalidating) for these writes by calling functions estimate.degree_of_sharing
and determine_write_type.

2.1 Marking last writes and recognizing wrt-only

Not all write references need to incur coherence enforcement actions. For example, if the
value written by a processor will be overwritten by the same processor, and thus will not
be used by any other processors, then the coherence enforcement can be delayed until the
last write which can potentially be followed by a read of that block by a different processor.
The first part of our analysis is to recognize these last writes. The remaining writes cannot
produce values used by other processors and, therefore, cannot create incoherence. These
writes can be safely marked as wrt-only.

The function find_last.writes identifies the writes that can reach the end of a parallel
or sequential region. These last writes can potentially cause cache incoherence. First, the
function finds all boundaries in a routine. Next, for each boundary node, B, a control
flow subgraph (CFS), F(B), is constructed. F(B) contains all program segments that are
reachable from B without crossing another boundary. After the CFS is built, the friction
mark_last_write is called to mark the last writes. This function is a simple variation of the
iterative algorithm commonly used to find the reaching definitions. The reach sets of all
leaf nodes in the CFS contain the last writes. Any other writes are marked as wrt-only.
Figure 1 shows an example of how the last writes are marked. In this segment of code,
the write to y on line 4 and the write to x on line 6 will be marked as last writes since
they are the last writes before the boundary is crossed. We must also mark the write to
y on line 2 as a last write since the path taken at the if-statement cannot be determined
at compile-time. The write to y on line 1 is not a last write so it can be marked wrt-only.
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Not all of the last writes marked by the function find_last_writes will cause cache inco-
herence, however. Some of these writes may never reach a read by a different processor.
The ones that will not be read by another processor are marked as wrt-only in function
identify_write_only. The remaining last writes are called coherence writes. In our example
in Figure 1, if we assume that the analyzed routine ends on line 11, the values of y written
on lines 2 and 4 will never be used by a different processor and, hence, those writes are
not coherence writes and will also be marked as wrt-only. We determine that a write can
reach a read by another processor by computing upward exposed uses [10, 17]. Since this
is a familiar subject, we omit the details.

2.2 Determining coherence actions for the coherence writes

Any writes that are not marked as wrt-only in the previous step are writes which may
cause cache coherence problems. To choose between write-update and write-invalidate,
the compiler must consider the cost of using each strategy for each write reference. In
this paper, we define the cost to be the total network traffic. For instance, for a given
write reference, the cost of using invalidating depends on the network traffic produced
by the invalidation messages, plus the traffic produced by the cache misses generated by
those processors which reference the block after the write. The cost of using updating,
however, depends on the number of processors that have a copy of the block cached when
the write occurs since each of these processors must receive an update message.

To approximate the required numbe. of update or invalidate messages we estimate
the degree of sharing, which is the number of processors that have a cached copy of the
referenced block, before and after the write. For updating, the degree of sharing before
the write is a good estimate of the number of update messages that must be sent. This
sharing then can be used to estimate the cost of using updating. The degree of sharing
before the write also is used to estimate the cost of sending the invalidation messages.
In addition, the number of misses expected to be generated by processors reading the
block after the write is estimated by the degree of sharing after the write. The cost of
invalidating is then the sum of the cost of sending the invalidation messages and the
read misses. After estimating the cost of each strategy, the compiler marks the write
reference as wrt-up if the cost of updating is lower than invalidating. Otherwise, the write
is marked as wrt-inv. Note that the actual cost of these operations is a function of the
implementation details of the specific multiprocessor.

For scalar variables, the cost estimation can be simplified even further. The degree of
sharing before or after a scalar write can be one of only three cases:

¢ 0, if the variable is not referenced before or after the write;

o 1, if the variable is referenced only in sequential regions before or after the write;

¢ p, if the variable is referenced in one or more parallel regions, where p is the number

of processors.

We use p to denote the degree of sharing of scalar variables referenced in a parallel
region since in a parallel region, a referenced scalar is usually shared by all or most of
the processors. If a scalar is written in a sequential region and later is read in a parallel
region, we say the degree of sharing after the write is p. In this case, the cost of the read
misses after the write plus the invalidating cost during the write would exceed the cost of
updating, no matter how many processors have a copy of the variable before the write.
This is becanse reading copies of the missing data incurs at least the same amount of
network traffic as sending copies of the data. In addition, a write-invalidate requires some
invalidating traffic. Therefore, in this case, we mark the write as wrt-up.
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If the degree of sharing after a write is 0 or 1, we cannot be sure of the exact degree
of sharing without interprocedural analysis. We do know, however, that a degree of 1
means that the writing processor reads the variable again and that a degree of 0 means
that the writing processor will not reference the variable again within this routine. In the
latter case, the variable will most likely be referenced again outside the routine by all p
processors. Hence, we can mark those writes with a degree of sharing of 0 after the writes
as wrt-up (again because the read miss and invalidating cost woi'd outweigh the updating
cost). Similarly, if the degree of sharing after a write is 1, the variable will likely not be
referenced by other processors. Therefore, we can mark such writes as wri-inv. Hence,
for scalar variables, the calculation of the costs is simplified to determining the degree of
sharing after the write.

We denote the degree of sharing of each variable by a 2-tuple < var, count” >, where
count*" is the degree of sharing of the variable var. We estimate the degree of future
sharing by using an accumulating operator defined as follows.

Definition of the accumulating operator: Let VAR be the set of all scalar variables
in the analyzed routine. Suppose s; is a set of variables and their estimated degrees of
sharing such that s; = {< var, count?®" >|,srevan} wherei = 1,2,..., k. Then,

O(s1, 82, ...y 5k) = {< var,max(count}™, count’s®" ..., count;®) >|uerevan}

The accumulating operator, ©, is used to accumulate the degree of future sharing
through an execution path which does not contain any branching points and to estimate
the degree of future sharing at any branching point of several potential execution paths.
When accumulating the degree of sharing through an execution path, we take the maxi-
mum degree of sharing of each scalar variable since this number represents the number of
processors that may have a copy of the variable during the execution of this path. Like-
wise, at the branching point of several potential execution paths, we select the maximum
degree of sharing of a variable in these paths to represent the potential degree of future
sharing of the variable. We make this selection because it represents the best choice in
many frequent cases. For example, since the number of iterations of a DOALL loop typ-
ically will be far greater than the number of processors, a processor will execute many
iterations. If a scalar is referenced in any potential execution path, then by executing
several iterations, a processor will very likely reference the scalar at run time. If a scalar
is read in a serial loop, its reference in any potential execution path makes it even more
likely to be referenced at run time.

To estimate the degree of sharing for all scalar variables, we propagate two sets,
RA_n and RA_out in the backward order and we iterate until these two sets become
stable. The function estimate_degree_of_sharing estimates such sharing information. To
make the explanation of this function clearer, the sets involved in the estimation of the
degree of sharing are described here:

e rb - a set of < var,count'™ > tuples for a basic block. If there is no coherence
write to var in the basic block, b, then

0, if var is not referenced in b;
1, if var is refercnced in b in a sequential region;
p, otherwise,

count® =
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If there is a coherence write to var, then

0, if var is not referenced before the write in &
count™ = ¢ 1, if var is referenced before the write in b in a sequential region;
p, otherwise.

e RA.n - the set of < var,count*®” > tuples accumulated at the bottom of a basic
block during the backward propagation.

» RA_out - the set of < var, count®™” > tuples that will be propagated outside a basic
block.

The set RA_in of each flowgraph node contains the degree of sharing information given
by the successors of the node. When a node has more than one successor (i.e. a branching
point), we estimate the degree of future sharing by using the accumulating operator ©
defined earlier. To obtain the RA_in set, we need the set RA_out, which contains the
degree of sharing information for variables which are not killed by the coherence writes in
the node. We must also include the degree of sharing information local to a node, the set
b, that can be live outside the node in the RA_out set. When accumulating the degree
of sharing information, we again use the © operator.

After obtaining the necessary degree of sharing information, we can determine the cost
of updating and invalidating for a coherence write reference. As discussed earlier in this
section, the costs for scalar writes are simplified to exainining the degree of sharing after
the writes. The function determine.wrile_type uses the degree of sharing obtained from
function estimate_degree_of_sharing to mark the coherence writes as wri-up or wrt-inv. In
the example in Figure 1, for instance, the coherence write to = on line 6 will have an RA
count (degree of sharing after the write) of p. Note that after this coherence write, z is
referenced in the DOALL loop on line 9 and, therefore, will have a degree of sharing of
p. It is referenced again in the serial section on line 11 with a degree of sharing of 1.
When estimating the degree of sharing, the accumulating operator yields p as the degree
of sharing of z after the write on line 6. Since the RA count for z at this poiut is p, the
coherence write to z will be marked as wrt-up.

3 Simulation Methodology and Results

We compare the relative effectiveness of invalidating-only [8], updating-only, a dynamic
adaptive scheme that uses only run-time information, and our compiler-a=sisted adaptive
scheme with respect to the miss traffic and the coherence traffic on several of the Perfect
Club benchmark programs [7]. The miss traffic is the miss ratio times the number of bytes
requi’ ed to service a miss. The coherence traffic includes the invalidating, updating, write-
back, and write-through traffic necessary to maintain coherence among the caches and
the shared memory. The updating scheme uses write-update instead of write-invalidate
to enforce coherence. The dynamic adaptive scheme enforces coherence similar to the
updating protocol as long as the number of consecutive writes to the same block with
no intervening cache misses (read or write) is less than a predefined threshold value.
When the number of consecutive writes to a block reaches this threshold value, all cached
copies of the block. except for the writing processor’s copy, are invalidated. This dynamic
adaptive scheme is our directory-based variation of the bus-based adaptive schemes [3, 15].
A detailed discussion of these protocols can be found in {18].




75

Separate forward and reverse networks with 32-bit data paths connect the 16 proces-
sors to the shared memory. Each packet requires a minimum of two words: one word
for the source and destination module numbers plus a code for the operation type, and
another word for the actual memory block address. One or more additional words are
used for fetching and writing data, or for sending data updates to other processors.

The Parafrase-2 compiler is instrumented to generate a trace of the memory addresses
produced by each of the 16 processors. These traces are randomly interleaved into a
single trace following the fork—join parallelism model. To simulate the compiler-assisted
adaptive scheme, the Parafrase-2 compiler marks the memory references using the marking
algorithm described in Section 2. The marked trace then drives a cache simulator to
determine the miss and coherence traffic.

To focus on the performance of only the compiler optimizations, an infinite size, fully
associative cache with a block size of one~word is used in each of the processors. To
evaluate the performance of this scheme in a more realistic environment, we varied the
block size of a 2 Kword cache from 1 to 2 and 4 words using three different block placement
policies: direct-mapped, 4-way set-associative, and fully associative. However, since the
simulations with different placement policies showed no significant difference, only the
simulation results of the set-associative cache is included in this paper. All instruction
references are ignored since they can never cause any coherence problems. Since we are
interested in the effect of coherence enforcement only on data references, synchronization
variables are not considered in these simulations.

Figure 2(a) shows both the miss and the coherence network traffic for scalar refer-
ences only. The ideal compiler result uses the traces to simulate a compiler capable of
performing perfect memory address disambiguation, perfect interprocedural analysis and
perfect branch prediction. The real (Parafrase-2) compiler, on the other hand, must be
conservative when a branch, an array reference, or a procedure call is encountered. While
the ideal case optimizes both array and scalar references, the real compiler optimizes only
the scalar references.

As shown in Figure 2(a), the compiler-assisted scheme is quite effective in reducing
the total network traffic. In fact, the miss traffic and, therefore, the miss ratio, generated
by the ideal compiler and the real compiler is up to 99 percent lower than the invalidating
scheme and the dynamic adaptive scheme. This improvement in misses is due to the
frequent selection of an updating protocol at comnpile-time. While the miss traffic of the
compiler-assisted scheme is almost the same as the miss traffic generated by the updating
scheme, the coherence traffic is 49 to 98 percent lower than the updating scheme. It
also is up to 98 percent lower than the dynamic adaptive scheme. The coherence traffic
of the three hardware-only coherence schemes is mainly due to the unnecessary block
updates and invalidates. A comparison of the ideal and the real compilers indicates that
the analysis described in Section 2 is marking most of the write references as well as the
ideal compiler can mark them. The performance difference between the two compilers is
primarily due to procedure calls and branches that are ignored in the ideal case.

While the previous discussion considered only scalar references, Figure 2(b) shows the
simulation results with both array and scalar references. As shown in this figure, the miss
traffic generated by the real compiler is higher than the dynamic adaptive scheme due to
the marking of all array references as wrf-inv at compile-time. Nontheless, the ideal case
indicates that the total network traffic can be potentially lower than that generated by
the dynamic adaptive scheme,

As shown in Figure 3, a cache block size greater than a single word increases the total
network traffic due to the false sharing effect. A comparison of the real compiler-assisted
scheme with the invalidating scheme indicates that the total network traffic is comparable
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Figure 2: Total network traffic.

to that generated by the invalidating scheme while reducing the miss traffic and, therefore,
the miss ratio. The lower miss traffic produced by the real compiler-assisted scheme is
primarily due to the switching between updating and invalidating.

4 Conclusion

The compiler-assisted adaptive scheme can generate 1.wer miss traffic and, thus, lower
miss ratios, than the invalidating scheme while reducing the total network traffic to below
that generated by the updating scheme, in all of the test programs. As a result, we
conclude that the performance of a multiprocessor system can be improved by using the
predictive ability of the compiler to select the best cache coherence protocol for each
memory reference.
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The Impact of Cache Coherence Protocols on Sys-
tems Using Fine-Grain Data Synchronization
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Abstract: In this paper, the performance of a fine-grain data synchronization scheme is
examined for both invalidate-based and update-based cache coherent systems. The work
first reviews coarse-gain and fine-grain synchronization schemes and discusses their ad-
vantages and disadvantages. Next, the actions required by each class of cache coherence
protocols are examined for both synchronization schemes. This discussion demonstrates
how invalidate-based cache coherence protocols are not well matched to fine-grain syn-
chronization schemes while update-based protocol are.

To quantify these observations, five scientific applications are simulated. The results
demonstrate that fine-grain synchronization always improves the performance of the appli-
cations compared to coarse-grain synchronization when update-based protocols are used,
but the results vary for invalidate-based protocols. In the invalidate-based systems, the
consumers of data may interfere with the producer. This interference results in an in-
crease in invalidations and network traffic. These increases limit the possible gains in
performance from a fine-grain synchronization scheme.

Keyword Codes: B.3.3; C.1.2
Keywords: Performance Analysis and Design Aids; Multiple Data Stream Architectures
(Multiprocessors)

1 Introduction

In shared-memory multiprocessors, data is of'en shared between a producer and one
or more consumers. To prevent the consumers from using stale or incorrect data, the
consumers must not access the data until the producer notifies them that it is available.
Typically, such systems use a coarse-grain synchronization scheme to synchronize this
production and consumption of data.

In such schemes, simple flags can be usea to indicate that a given block of data has
been produced. For example, the producer of a data block first writes the data to a
shared buffer and then issues a fence instruction that stalls the processor until all writes
have been performed. Finally, the producer sets the synchronization flag. The consumers,
who have been waiting for the synchronization flag to be set, see the flag set and begin
consuming the data. Coarse-grain schemes may also use other synchronization methods
such as barriers. The coarse-grain synchronization schemes examined assume a release
consistency memory model [2].

A coarse-grain synchror‘zation scheme has two basic disadvantages. First, the scheme
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requires an expensive synchronization operation such as a flag or barrier to synchronize
the production and consumption of data. Second, the consumers are forced to wait until
the entire data block has been produced before they are able to begin consuming the data.

An alternative to the coarse-grain synchronization scheme discussed above is a fine-
grain scheme. In such a scheme, the synchronization information for each data word is
combined with the word. In this case, the producer creates the data and writes it to a
shared buffer. The consumers wait for the desired word to become available and then
consume it.

Fine-grain synchronization has several advantages. First, the consumers are able to
consume data as soon as it is available. This allows the consumption time of the available
data to overlap the production time of the subsequent words. Moreover, no expensive
synchronization operation is required; this means that the producer never needs to wait
for the writes to be performed.

In this work, we are interested in studying the performance gains from a fine-grain
synchronization scheme on scalable, cache coherent shared-memory multiprocessors. We
will show that fine-grain synchronization may improve performance of applications run-
ning on systems with either invalidate-based or update-based cache coherence protocols,
but that fine-grain synchronization is not a robust solution for invalidate-based systems
while it is for update-based systems.

The paper is organized as follows. Section 2 describes a typical coarse-grain syn-
chronization schen.e and demonstrates the resulting work required by each class of cache
coherence protocols. Next, section 3 describes a fine-grain synchronization scheme and
demonstrates how the scheme overcomes the disadvantages of the coarse-grain scheme.
Section 4 describes the simulated architecture, the scientific applications and the cache co-
herence protocols examined in this work. Section 5 presents the simulation results. These
results compare the performance of fine-grain synchronization to coarse-grain synchro-
nization, and they also compare the relative performance of the cache coherence protocols
when fine-grain synchronization is used. Finally, section 6 concludes the paper.

Our work is the first to examine the performance of fine-grain synchronization on
both update-based and invalidate-based cache coherent multiprocessors. The work on
the Alewife [6] system examines the implementation details of a fine-grain synchroniza-
tion scheme, and their work gives an excellent description of the software and hardware
requirements for such a scheme. In their work, they demonstrate that a fine-grain syn-
chronization scheme may improve the performance of the given applications running on an
invalidate-based cache coherent system. Our work does not contradict their findings, but
rather expands them to demonstrate the instability of the combination of invalidate-based
cache coherence protocols and fine-grain data synchronization.

2 Coarse-grain data synchronization

Figure la shows the actions required for invalidate-based protocols using a coarse-grain
synchronization scheme. After producing the data, the producer writes it to a shared
buffer and waits for the writes to be performed. The writes are considered performed
when the producer’s cache has obtained exclusive ownership of the line (all necessary
invalidations have been performed) and the data has been written into the cache. The
figure assumes that the producer has already obtained exclusive ownership of the data
lines. After the writes have been performed, the producer sets the synchronization flag. If
the consumers have already read the flag, then this write must invalidate the consumers’
copies of the flag. The consumers, who are still waiting for the flag to be set, will imme-
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diately reread the flag after it is invalidated, but the producer cannot release the flag’s
line until all the invalidations have been performed. Once the consumers see the flag set,
they can begin reading and consuming the data.

Producer Producer Consumer(s)  Producer Consumer(s)
N -
ta
4
Write
\
Fance
un '\S‘F‘*\.
n
Time
l Y
Network Transactions
———————e
a) Invalidate-based protocols b) Update-based protocols ) Update-based protocols
Single word updates Grouped updates

Figure 1: Coarse-grain synchronization

Figure la illustrates the cost of a coarse-grain synchronization scheme using a simple
flag. The invalidation and reread of the flag by each consumer requires four network
transactions and the transfer of a line of data. The work to transfer the synchronization
information is more than the work to transfer one line of data. The size of the data block
could be increased to reduce this synchronization overhead, but the larger block size also
increases the waiting time of the consumers.

Figure 1b shows the actions required for update-based protocols. In this case, all
of the consumers have prefetched the synchronization flag and data block before the
data is written. When the producer writes the data, the consumers’ caches are updated.
The producer must wait for the writes to be performed (all updates acknowledged) before
setting the synchronization flag. The producer’s write of the flag results in the consumers’
caches being updated. When the consumers see the flag updated, they can begin using the
data, which is already in their caches. Figure lc shows the resulting network transactions
if a write-grouping scheme, as described in our earlier work [5, 4], is used. In this case,
the data updates are grouped into larger, more efficient updates.

As in the invalidate-based case, the coarse-grain synchronization scheme has disad-
vantages. First, the cost of the coarse-grain synchronization operation is high. But the
cost is not in transferring the synchronization information itself, it is in waiting for the
updates to be performed (acknowledged). This synchronization scheme also forces the
consumers to wait until the synchronization point is reached before accessing the data,
but, unlike the invalidate-based case, the desired data is already in the consumers’ caches
as a result of the earlier updates. The coarse-grain synchronization scheme does not allow
the system to take advantage of these fine-grain updates.
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3 Fine-grain data synchronization

A fine-grain synchronization scheme would overcome many of the disadvantages of the
coarse-grain scheme described in the last section. In a fine-grain synchronization scheme,
the synchronization information is combined with the data. Such a scheme may be im-
plemented in either hardware or software. In a hardware-based scheme, a full/empty bit
is associated with each memory word [8]. Alternatively, a software-based scheme may be
used in which an invalid code, such as NaN in a floating point application, is used to
indicate an empty word. Currently, all the applications under study use a software-based
scheme.

Figure 2 demonstrates how a producer and consumer interaction might be coded for
both coarse-grain and fine-grain (using a software-based scheme) data synchronization.
For the coarse-grain case, a simple flag, initialized to false, is used to synchronize the
production and consumption of data. For the fine-grain case, the data is initialized to an
invalid code. The consumer waits for each word to become valid and then consumes it.
For iterative applications, the data must be set to the invalid code between iterations.

Coarse-Grain: Fine-Grain:
Producer: Producer:
shared alCount]; shared a]Count} = INVALID;
shared flag = false;
/* Produce Data */
/* Produce data */ for (i = G; i < Count; i++)
for (i = 0; i < Count; i++) ali) = €Q;
afil = f(;
/* Wait for writes to complete ¥/
fence();
/* Set Flag */
flag = true;
Consumer: Consumer:
shared alCount}; shared aiCount);
/* Wait for flag */ /* Consume ali) */
while (flag == false) ; for (i = 0; i < Count; i++) {
/* Consume ali] */ /* Spin waiting for data*/
for (i = 0; i < Count; i++) while @afil == INVALID) ;

blil = flafil); ) bii} = falil);

Figure 2: Code examples for coarse-grain and fine-grain synchronization

By their very nature, invalidate-based protocols are not well matched to fine-grain
synchronization schemes. The protocols do not allow consumers to maintain copies of a
data line while a producer writes to the line. This results in a very unstable solution.
Figure 3a shows the ideal timing diagram for invalidate-based protocols when a fine-grain
synchronization scheme is used. First, all the consumers read the first word of the data
block. When the producer writes this word, all the consumers’ copies must be invalidated.
But since the consumers are eagerly waiting for the data, they will immediately reread the
data line once it is invalidated. The invalidate-based protocols studied allow the producer
to continue writing into the cache line while invalidations are pending. This prevents the
producer from observing any write delay as the consumers read and reread the line. In
the ideal case, the invalidation latency is greater than the producer’s write time for the
line. When the consumers reread the line, they will find the line completely written. The
producer will not invalidate the line again; this gives the consumers all the time they need
to consume the line’s data for this ideal case.
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Figure 3: Fine-grain synchronization

However, figure 3b demonstrates the problem with invalidate-based protocols and
fine-grain synchronization schemes. In this case, the consumers have reread the line after
the initial invalidation but before the producer has completed writing the data. Now
the producer is required to invalidate the consumers’ copies of the line again, and the
consumers are forced to reread the line. The producer is able to release the line again
only after all the pending invalidations have been performed.

The relative timing of the writes and reads will have an enormous impact on the
performance of the system. If the writes occur in bursts, as they often do, the producer
will usually be able to produce many words of data between each reread by the consumers.
But the consumers, who will reread the line immediately after it is invalidated, will only
receive the data after all the consumers’ copies of the line have been invalidated. The
consumers will then be able to consume data only until the producer invalidates the line
again, which may occur soon after the consumer receives the data if the write rate is high.

The frequency with which these invalidations and rereads occur depends on two char-
acteristics of the application. First, the probability that the producer finishes writing the
line before the consumers attempt to reread it depends on the number of words written
to the line. This measure, known as the line utilization, will be used to classify the appli-
cation space. The other characteristic is the number of consumers. The more consumers,
the higher the probability that consumers will interfere with the producer’s writing of the
data.

The definition of update-based protocols offer a better match to fine-grain synchro-
nization schemes. Unlike the invalidate-based protocols, update-based protocols allow
consumers to maintain a copy of the data line while a producer writes to the line. Also,
the producer’s write of the data results in an update of all the consumers’ caches: a
proactive distribution of data rather that a reactive approach as in the invalidate-based
protocols in which each consumer is responsible for refetching an invalidated line. For
example, figure 3¢ shows the actions required for update-based protocols using fine-grain
data synchronization and write grouping. First, all the consumers prefetch the desired
data lines. As the producer writes the data, the writes are grouped and sent to the
consumers, and the consumers can consume the data as soon as it arrives.
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Update-based protocols can also take advantage of the fine-grain synchronization
scheme in another way. Update-based protocols using a coarse-grain synchronization
scheme require that updates be acknowledged before the synchronization flag is set, but
in a fine-grain synchronization scheme, no update acknowledgment is needed because
the producer is never required to wait for the updates to be performed. This has the
largest impact on the distributed-directory update-based (DD-UP) protocol described in
our earlier work [4].

The update-based protocols offer a much more robust solution. The data prefetch
cannot degrade the performance of the fine-grain synchronization scheme as it can with
the invalidate-based protocols [4]). The prefetch can be issued as early as desired by the
consumers. Also, the relative timing of the producer’s writes and consumers’ reads can
not affect performance as in the invalidate-based protocols. The amount of work is fized
regardless of any variations in the timing of reads or writes.

4 Simulation methodology

The Care/Simple simulation environment [1] was used to simulate a set of scientific appli-
cations running on a shared-memory multiprocessor. The simulated architecture consists
of 64 nodes arranged in an 8 by 8 mesh. Each node consists of a processor/memory
element (PME) connected to its four nearest neighbors through a set of network queues.
A PME consists of a processor, cache, directory/memory and network interface. The
processor is a 100 MHz superscalar processor that is assumed to be load/store limited,
and the cache is a fully associative cache with infinite size. The cache has a single cycle
access time and a line size of 16 words. Each memory consists of a single bank of 100 MHz
synchronous DRAMs supporting page mode operation. The SDRAMs have 30 ns access
time for a page access with a page miss penalty of an additional 60 ns. The directory
consists of a 10 ns access time SRAM for all protocols. The network is order preserving
with static, wormhole routing and multicast.

The applications studied here include a simple, iterative partial differeniial equation
solver (PDE), a 3-D iterative partial differential equation solver using FFTs (3DFFT),
and three different methods of factorizing a matrix into triangular matrices: a multifrontal
solver (MF'), sparse Cholesky factorization (SPCF), and LU decomposition.

Table 1 summarizes the important characteristics of the applications studied. The
number of consumers for each data block gives a measure of general contention for each
object and the maximum number of invalidates or updates that might be needed when
the data is modified. The line utilization is the percentage of each memory line that is
modified by the producer. For example, if the data is a dense vector, the producer is
likely to modify all the words in the given line. This would result in a line utilization
of 100%. If the data is a structure, the producer might only modify a few words, which
would result in a low line utilization. In the invalidate-based protocols using fine-grain
synchronization, these measures give an indication of the possible interference between
the consumers and producer of a line of data. The larger the line utilization or number
of consumers, the higher the probability of interference and extra invalidation and reread
cycles. The table also indicates the type of the coarse-grain synchronization: a simple
flag or barrier. The table specifies which applications are iterative and shows both the
number of synchronization events in each application and the average number of words
protected by each synchronization event.

The update-based protocols examined in this paper include the centralized-directory
update-based protocol (CD-UP) and the distributed directory update-based protocol
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(Applications MF | PDE SPCF | LU | 3DFFT )
Data Set (words) [ 1000x1000 | 32x32 | 1138x1138 | 64x64 | 8x8x16
Consumers 1 1 1.89 31.5 4
Line Utilization % 93.0 50.0 11.2 59.0 50.0
Sync Type Flag Flag Flag Flag | Barrier
Tterative No Yes No No Yes
Sync Events 332 1120 2118 2016 678

[ Words/Sync Event 198 80 49 244l 1886

Table 1: Application characteristics

(DD-UP) described in our earlier work [4, 3]. The update-based protocols use the write-
buffer grouping scheme also described in our earlier work [5]. The invalidate-based proto-
cols examined include a centralized directory invalidate-based protocol (CD-INV), which
is similar to DASH (7!, a singly-linked distributed directory invalidate-based protocol
(SDD) [9] and a doubly-linked distributed directory invalidate-based protocol {SC1), which
is the IEEE standard protocol.

5 Results

The relative performance of the fine-grain synchronization scheme compared to the coarse-
grain scheme and to a common base (CD-INV) is illustrated in figure 4. Table 2 gives
the ratio of invalidations (updates) required and the relative change in total network
traffic for the fine-grain synchronization case compared to the coarse-grain case for the
invalidate-based (update-based) protocols.

Relative Fine-Grain Execution Time

25 Compared to bese L D-INV
Relative Execution Time
20 coats
s
Jue »
PDE
Py P24 srcr
é g :
FOFFT
a1
E 10 %
: 1.
& ¥
7 i 7
(13 ‘ H ¢
H / &
; 7 o5 ‘.
i / ]
¢ /
] /
/ /
] /
[ ! o 4 . :
1 <DuP DOUP DNV 0 «a (o2} 4 oouUP
Cachie Coberence Protocal Cache Caherence Protocol
a) Fine-grain execution time compared to coarse-grain b} Execution time compared 1o common base (CD-INV)

Figure 4: Performance of fine-grain synchronization

For the invalidate-based protocols, the performance of the fine-grain synchronization
scheme varies. For the applications with small blocks aud few consumers (PDE and
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Invalidate-Based Protocols Update-Based Protocols ]
Ratio of invalidations Ratio of network traffic Ratio of updates Ratio of network traffic
CD-INV | SDD | SCI || CD-INV [ sDD [ SCI || CD-UP [ DD-UP || CD-UP DD-UP

PDE 0.93 0.93 | 0.93 0.67 0.55 | 0.51 1.85 1.91 0.87 1.09
[ SPCF 0.94 0.97 | 0.95 0.41 0.51 | 0.50 0.73 0.73 0.4U 0.44
MF 10.7 7.08 | 4.07 0.81 0.81 0.80 0.98 0.84 0.84 0.84
3DFFT 1.00 1.08 | 1.14 0.98 1.07 | 0.99 1.38 1.38 0.84 1.13
U 4.42 367 | 3.42 1.24 1.32 1.59 0.40 0.41 0.34 0.71

Table 2: Ratio of invalidations/updates and network traffic

SPCF), the fine-grain synchronization scheme improves the performance of the appli-
cations compared to the coarse-grain synchronization case. In these applications, the
coarse-grain synchronization operation is costly, as each synchronization point protects
only a small block of data: 8 words for the PDE application and 4.9 words for the SPCF
application, as summarized in table 1. Therefore, the elimination of this coarse-grain
synchronization operation outweighs any extra invalidations or network traffic genera:ed
by the fine-grain scheme. The fine-grain synchronization has actually reduced the total
number of invalidations compared to the coarse-grain case for these two applications, as
illustrated in table 2 for all the invalidate-based protocols. With the small block sizes
of these applications, the producer was able to write the full block before the consumers
could reread the line after the initial invalidation. The single invalidation per block acted
as a synchronization or triggering event. The elimination of the explicit synchronization
also significantly reduced the network traffic for these applications, as shown in table 2.
This resulted in an improvement in exccution times for the PDE and SPCF applications,
as shown in figure 4a for the invalidate-based protocols.

As the line utilization increases, the consumer and producer interference also increases.
For the MF application, the number of invalid:tions was small for the coarse-grain syn-
chronization case. This indicates that the consumers were not always eagerly consuming
the data. The fine-grain synchronization increased the number of invalidations signifi-
cantly, but the overall traffic was reduced since the extra invalidation traffic was less than
the traffic eliminated by the elimination of the explicit coarse-grain synchronization events.
The actual execution time increased for the CD-INV and SCI protocols, but decreased
for the SDD protocol. The difference in execution time between the invalidate-based pro-
tocols arises from the particular producer-consumer interaction that was interfered with.
For the SDD protocol, the interference was off the critical timing path of the application
and in the critical path for the other two invalidate-based protocols.

For the 3DFFT application, the iterative nature of the application required approxi-
mately twice the number of shared writes for the fine-grain synchronizatior case as com-
pared to the coarse-grain case because the data must be set to an invalid code between
iterations. As shown in table 2, these extra writes created at least as many invalidations
as were eliminated by the fine-grain synchronization, and the resulting network traffic
remained almost constant for the same reason. The small number of consumers increased
the execution time of the distributed directory invalidate-based protocols (SDD and SCI)
slightly more than the centralized-directory protocol (CD-INV). Overall, the fine-grain
synchronization scheme did not improve the execution time for the 3DFFT application
when invalidate-based protocols were used.

As the number of consumers and the line utilization increased, the consumer and
producer interference also increased. For the LU application, fine-grain synchronization
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increased the number of invalidations and network traffic, as illustrated in table 2. With
relatively inexpensive coarse-grain synchronization in this application, the increase in
invalidations and network traffic outweighed any performance gains from the elimination
of the coarse-grain synchronization operations. Again, fine-grain synchronization offered
no improvement in execution time for systems with invalidate-based protocols.

For the update-based protocols, fine-grain data synchronization always improved the
performance of the applications, as illustrated in figure 4a. The fine-grain synchronization
decreased both the number of updates and the network traffic for non-iterative applica-
tions (SPCF, MF and LU), as shown in table 2. For the iterative applications (PDE and
3DFFT), the extra writes to clear the data between iterations increased the number of
updates for both update-based protocols. The network traffic was reduced for the CD-UP
protocol, but it increased slightly for the DD-UP protocol.

The fine-grain synchronization scheme had the largest impact on the DD-UP protocol
when the number of consumers was greater than one (SPCF, 3DFFT and LU). In these
applications, the coarse-grain synchronization scheme required the producer to wait for
the updates to be propagated down the list of caches and then acknowledged. This limited
the performance of the DD-UP protocol; the fine-grain synchronization scheme removed
the need for these acknowledgements.

Figure 4b shows the relative execution time of the applications using fine-grain syn-
chronization compared to the centralized directory invalidate-based protocol (CD-INV).
As shown in the figure, the update-based protocols always perform better than any of the
invalidate-based protocols when a fine-grain data synchronization scheme is used.

For the invalidate-based protocols using fine-grain data synchronization, the SDD
protocol performed better for the applications with a single consumer. In these cases,
the memory write backs of the CD-INV protocol were unnecessary since the data was
not read from memory again because cache-to-cache transfers were used to transfer the
data to the single consumer. But as the number of consumers increased, the invalidation
latency of the distributed directory protocols resulted in longer execution times compared
to the base CD-INV protocol.

For the update-based protocols, the performance of the two protocols was almost
identical except for the SPCF application. The improvement in performance compared to
the base CD-INV protocol was best for applications with high line utilization and a large
number of consumers (LU). As the number of consumers decreased, the improvement from
the update-based protocols also decreased compared to the CD-INV protocol. Compared
to the SDD protocol, the improvement was less for applications with a single consumer,
but it was more for applications with multiple consumers.

6 Conclusions

In summary, the fine-grain data synchronization scheme, when used with invalidate-based
cache coherent systems, did not offer a robust solution. It only improved the performance
for applications with a small number of consumers (less than 2) and a low line utilization.
These application characteristics tended to avoid consumer interference. On the other
hand, systems with update-based protocols could take advantage of the fine-grain syn-
chronization scheme. The resulting execution times were always less than the coarse-grain
synchronization case, and they were always less than the corresponding execution times
for the invalidate-based systems using fine-grain synchronization.

The performance of fine-grain synchronization was unstable when invalidate-based
cache coherence protocols were used because the definition of the invalidate-based pro-
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tocols prevented the producer and consum-rs from actively sharing a memory line. The s
producer was required to obtain exclusive ownership of the line before writes could be

performed. Consumers who might be consuming data from the line were forced to give

up their copy of the line. The simulated results of the fine-grain scientific applications

demonstrate the performance loss that can occur as the producer and consumers interfere

with each other.

The definition of update-based protocols offered a much better match to the fine-grain
data synchronization. The protocols allow multiple producers and consumers to maintain
copies of a given memory line al the same time; the producer and consumers of data can
not interfere with each other. Overall, our earlier work and this work have demonstrated
the performance gains that can be achieved with update-based cache coherence protocols.
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Abstract: We describe an experimental computing system based on an active memory
architecture and its programming environment. The key idea is to directly embed within each
memory unit some processing logic that can be programmed, at run time, to perform user defined
operations on the data stored within the memory unit. Such an active memory architecture
provides a natural and efficient framework for object oriented programs by directly supporting
objects in memory and providing the underlying hardware base for a high performance storage
server. Additionally, its unique memory-based approach to performing I/O enables application
programs to have direct access to high speed network or disk data, with no involvement of the
operating system kernel.
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1. INTRODUCTION

For the past few years our group’s research efforts have been focussed on memory
participative computer architectures, in which the traditional ‘‘passive’’ role of the memory is
superseded with memory as an active agent that cooperates with the main CPUs to complete a
computation. To develop a deeper understanding the design and use of such systems, we have a
built a prototype intelligent memory system at Bell Labs called SWIM (Structured Wafer-based
Intelligent Memory.)

In this paper we briefly describe the architecture of the system and share our experiences in
developing programming tools and applications for it. We present a snapshot of an on-going
research project, reporting on what we have done so far, our current status, and plans for
addressing outstanding issues/areas.

The demands of the target applications - primarily from telecommunications and databases -
has considerably influenced our thought process. We believe that the existing processor-centric
designs are not ideally suited for database and communications applications that by their nature
tend to be memory intensive. For example, in communications processing, typically, data from a
communication link gets deposited in memory through the system bus with the help of an /O
channel processor or a DMA unit. The processing of this data involves simple operations such as
checksum computation, bit extraction, insertion, header parsing, link list manipulation, table
look up, keyword searches and the like. Generally, no massively CPU intensive floating point
vector operations are involved. Quite often (such as in routing or switching) the received data
after some processing is put on an output queue for transmission back on the communication
link. The situation in network query processing is similar. The data stream is divided into units
(messages or packet) whose processing is repetitive, pipelined and localized. These properties
are not well exploited in processor centric design of existing computer systems.

On the other hand, memory is a vastly underutilized resource in computer systems.
Moreover, in its traditional form, it is not capable of scaling along with the CPU (the system bus
just gets more congested). Large latencies in accessing data from the main memory to the CPU
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cause serious inefficiencies in many applications. Lack of fast context switching also limits the
performance of real-time applications. In addition, locking operations for shared data structures
with ‘‘passive’’ memories is another drain on the system bus.

2. SWIM ACTIVE MEMORY

We have developed an architectural solution based on active memories to address these issues
[3]. The key idea is to take a small part of the processing logic of the CPU and move it directly
inside every memory unit. Additionally, that processing logic can be programmed, at run time, to
perform user defined operations on the data stored within a memory unit. By doing so, the
memory is no longer just a passive repository of data, but can actively participate in completing
a computation along with the host CPU.

Conceptually, SWIM appears as a
high bandwidth, multiported memory
system capable of storing, comm link
maintaining, and manipulating data
structures within it, independent of the CACHE {i]
main processing units. The memory
system is composed of up to
thousands of small memory units,
called Active Storage Elements
(ASEs), embedded in a CACHE [] [Jonse
communication network. Figure 1
shows a conceptual picture of SWIM.
Each ASE has on-line micro-
programmable  processing  logic
associated with it that allows it to Figure 1. Conceptual Model
perform select data manipulation
operations locally. The processing logic is specially designed to efficiently per‘orm operations
such as pointer dereferencing, memory indirection, searching and bounds checking. This makes
SWIM well suited to performing operations such as record searches, index table lookup,
checksum computation and exception processing in active databases.

memory and processing logic pair

The memory system can be partitioned
to support small and large objects of
different types, some that fit within a J_I
single ASE, others that span several ASEs
as shown in Figure 1. In the latter case,
ASEs cooperate with each other to
implement user defined distributed data
structures and methods. ASEs can also
connect directly via back-end ports to
disks and communication lines.

row bus

Switch

column bus

Data
L, Memory

Physically, the ASE represents a close
coupling between the memory cells and
specialized processing logic in the same
local domain, thereby creating the
potential for performance benefits. Figure
2 shows a block diagram of an ASE. The
i[?s?l?{ c:mggnertl)tis[ ar:Lt(l}e :lv?:?l ":;:?l?g Figure 2. SWIM Active Storage Element
microprogrammable control unit, and a
two-ported switching and bus interface unit. The row and column bus interfaces allow ASEs to
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be connected in a two dimensional array. The switching logic supports the routing and buffering
of messages between ASEs.

3. SWIM ARRAY

ASEs can be configured in various topologies to construct a parallel memory subsystem. Our
experimental system has a 2-D array structure as shown in Figure 3 and consists of a 4x4 array
of ASEs on a single VME card with SUN/SPARC as its host platform. Since the entire bus
interfacing and switching logic is built within the ASE, no additional ‘“‘glue’’ circuitry is
required to construct a SWIM array. The ASE array interfaces to the host system bus through
circuitry known as the CLAM (Control Logic for Access to Memory).

The Swim array appears as ordinary memory
to the host processor but provides back-end JTTTT T e e ]
interfaces to communication lines and to disk 1
subsystems. Such a back-end connection into !
memory elements has several benefits. First, i
Messages from the communication lines can be sy:umbus:
received and processed entirely within this active
memory system or be moved directly to the disk  __ T _ T @)
subsystem. Additionally, queries for data on the !
disks can be processed rapidly and replies |
forwarded to the network directly with virtually no |
involvement of the host processor. Second, since i
the ASEs handle all the low level data transfers |
and processing (such as filtering, format :
conversions, compression, decompression etc) |

{
f
|
]
i
]
]
I
]

CcLAM

DISKS

much of the traffic is contained within the memory
system. Third, the CPU(s) are relieved of much of
the interrupt handling and context switching
overhead associated with 1/O transfers. Fourth, the
architecture is scalable in that I/O bandwidth can
grow with the size of the array. The memory size

and processing capacity grows correspondingly T e e e
with it. Last, multiple parallel I/O paths can be

used to enhance either performance or fault Figure 3. SWIM 4x4 Array
tolerance or both.

Other reasons to favor this model are technological. Memories themselves are getting denser
but no more functional. A 64 Mbit chip is capable only of storing and retrieving a single word at
a time. Adding 80,000-100,000 transistors of processing logic to that chip amounts to less that
0.1% of the chip’s area, yet the functionality of the chip is now vastly increased. Secondly,
because more computation is done on-chip and pad boundaries have to be crossed less often, a
saving in power consumption results.

<) 3] 1 N

4. PROGRAMMING MODEL

An active memory provides a natural and efficient framework for object oriented
programming by directly supporting objects in memory. This is significant because much of the
investment for large networks is in software. If we consider an object-oriented programming
paradigm, different memory processors can be programmed with the methods (member
functions) to manage the objects for which they are responsible. Much of the computation can
now be off-loaded onto the memory system. Memory functionality is increased to better balance
the time spent in moving data with that involved in actually manipulating it. The host processor
now has only the job of dispatching tasks to the memory processors (or object managers).
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Performance gains are realized in several ways. First, the memory processor is tightly coupled
with the memory. There is no slow system bus, and access is at cache speeds. Secondly, the
instruction set can be optimized for ‘‘memory intensive’’ operations. Finally, concurrency is
possible between memory processors, and between the host processor and a memory processor.
Unless one processor needs the results or data of another, there is no reason why they cannot
execute their programs asynchronously.

In an object-oriented framework, We
can logically view a SWIM ASE as a ‘
microprogrammed implementation of a Host Procc
class. An object physically consists of a
data structure and some member functions,
shared by all objects of that class. The
member functions are resident in the
microcode of the ASE and the data resides
in the ASE’s data space as shown in Figure
4. An ASE provides the complete logical
encapsulation of the object it manages. An
object could be a data structure such as a
priority queue or a graph, or an I/O object
such as a disk or a communication link.
External application level agents accessing
the objects need not know about its
internal implementation. Only the ASE

SWIN

concerned need have knowledge about the Data " [oara
structure and semantics of the object, be it y|Mthd

a queue, a communication link or a disk

block server. Figure 4. Cooperating Objects Model

Multi-ASE-Data Structures: Simple and small objects can be stored and manipulated entirely
within an ASE, while larger and more complex objects are stored within several ASEs, and are
cooperatively managed. Presently, the task of partitioning a large data structure and the
assignment of ASEs to object data and code segments is up to the programmer. However, the
architecture provides built-in support at the hardware level for low latency communication
between ASEs (two cycles for sending a packet between ASEs), direct invocation (scheduling)
of code sequences with the arrival of an ASE transaction, programmable traps, and a fast reply
mechanism. Efficient fine grain parallelism can be achieved using these mechanisms.

5. BUILT-IN SUPPORT MECHANISMS FOR OBJECT MODEL

A unique feature of SWIM is its memory mapped architecture. The individual data memories
within each ASE are directly mapped into the host CPU’s address space and can be
asynchronously read and written by it any time, as indicated by the thin arrows from application
C to the ASE in Figure 5. This makes setting up of data structures, downloading object code,
and communication between the host and ASE extremely easy. Since the entire state of the
program running in SWIM is directly observable and controllable by the host, it also simplifies
the debugging and monitoring of multi-ASE programs. We have developed a graphical parallel
debugger for SWIM to ease the task of inspecting and debugging application programs. Packet
transfers and reads and writes of an ASE’s data address space become simple memory reads and
writes.

Communication Modes: The architecture supports two modes of inter-ASE communication.
The first is a three word packet form, for short asynchronous inter-ASE transactions. The notion
of a message consisting of multiple packets is also supported by the hardware. The second form
of communication is synchronous bulk data transfers between ASEs. Since ASEs typically
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communicate with each other using small messages, we designed a two levcl bus structure for
the interconnect. Such a structure provides the smallest average latency of communication
between ASEs for moderate size arrays, is simple to implement, and makes it easier to
incorporate message broadcasting.

An ASE is configured with the member
functions for a particular object class [6] by
loading its on-chip microcode memory with (0 son Line
the appropriate microcode to execute member
functions associated with that class. In the
SWIM system, this microcode can be down-
loaded at run-time. Conceptually, the data
memory of the ASE is divided into multiple
object buffers. Each object buffer is a chunk
of memory large enough to hold all the data
for an instance of the particular class. The
memory system can be partitioned to support
small and large objects of different types,
some that fit within a single ASE, others that
span several ASEs. In the latter case, ASEs
cooperate with each other to implement user
defined distributed data structures and
methods.

A member function is invoked on a pigure 5. SWIM and Host Processor Interactions
specific object by sending a message to the
ASE managing it. Shown, for example, by the bold arrow from application C to the rightmost
ASE. This message must identify the particular object of interest, the specific function to be
executed, and the values for any parameters that may be required. Any response from the ASE is
also in the form of a message. The SWIM system provides a very efficient mechanism (in the
order of a few micro-instructions) to effect the transfer of short messages of this kind. The ASEs
communicate with each other using this mechanism. Under the supervision of a host program, an
ASE can independently read/write data from/to host’s regular memory, process it on-the-fly, and
move it to a specified /O device. The dotted lines in Figure 5 show an example of such a transfer
in which the middle ASE serves as a ‘‘smart’”> DMA agent to move data between host’s regular
memory and a communication line.

The processing between the receipt of a function invocation by an ASE, and the subsequent
provision of the corresponding response back to the invoking entity is called a transaction. In
the course of the execution of a transaction, multiple additional functions may be invoked. The
entire computation has associated with it a system-generated transaction identifier, and the
invoking entity can look for the associated results using this identifier. For interfacing with the
host, the hardware provides multiple logical buffers at the output of SWIM, each associated with
a different transaction identifier.

The function invocation mechanism is asynchronous in that there is no need for the invoking
entity to wait while code for the invoked function is being executed. Thus, the overhead of
member function invocation on an ASE is a few memory operations as far as a source ASE is
concerned, and a few micro-instruction cycles as far as the target ASE is concerned. This
overhead may cancel any benefits arising from executing code in SWIM rather than in the host
for very trivial member functions. But, for any substantial member function, and especially if it
is likely that a significant portion of the data is not cached, executing the member function on
SWIM will be a win. However, note that individual memory read/writes by the host are
synchronous — but these are usually quick enough so that the waiting time is not large.
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Branches and programmable traps: Branches in an ASE are free, a conditional or
unconditional branch consumes no additional cycles and may be incorporated into a
microinstruction which performs other useful work. The traps in SWIM are programmable. In
traditional processors, one operation that often consumes CPU cycles is checking for special
conditions. Loops can often be coded tightly except for memory bounds checking. Counters are
cheap to implement except that code has to check for a maximum or minimum value. When
matching patterns, a tight loop is possible except that the pattern string may contain special
characters or the data stream may contain special matches. All these conditions are handled in
SWIM through an efficient trap mechanism. Traps may be set for memory bounds, maximum
increment value, decrement reaching zero, and so on. When a trap condition occurs, program
control is transferred to a user-specified address containing the trap handler. This mechanism,
along with a long instruction word architecture, permits the coding of very tight loops (e.g.
pattern matching can be performed in a single microinstruction).

6. C LANGUAGE SUPPORT FOR SWIM

While the SWIM ASEs may be programmed in microcode assembler, they are more
conveniently programmed using the C programming language. The SWIM C compiler which
generates microcode directly. At a higher level, classes in a C++ program can be targeted to
reside on an ASE through pragma statements. The entire C++ program is then run through a
compile system which splits code into host-resident and SWIM-resident sections. Method
invocations are replaced with references to SWIM’s memory. The SWIM resident portions are
then compiled by the SWIM compiler and the host-resident portions are compiled by the
standard C++ compiler on that host. If necessary, time-critical code segments can be specified
using in-line assembly statements. Traditionally, microcoded architectures have been

programmed

th!'OUgh o hand- host-resident HosLC++

microcoaing. generate functions compiler Host object code
However, as parallel C++ | cms:]—lsysl:m .

architectures will be program it code )

. N split ¢ SWIM resident SWIM C+4 SWIM mic :
increasingly used by functions oompiler micracade
programmers  not

intimately familiar *cross~system calls are mechunisms by which the

with the details of i ndion ™

the

microarchitecture rfigure 6. C++ Compilation on SWIM

and software support
and maintenance becomes more important, the ability to program the machine in a higher
language becomes more desirable.

The C programming language {5] was chosen as the input language for SWIM. It offers
several advantages. For programming data-intensive operations, C allows the direct description
of bit manipulations and low-level operations. It is a good language for program generation. C is
already known and used by a large community of users. Because C is the dominant language on
the host systems to which SWIM is currently interfaced, a C compiler on SWIM would be an
ideal complement. Finally, programs written for an ASE may be tested on other C compilers on
other machines.

A high level language may be supported on a microprogrammable machine in several ways.
The first is to run an interpreter for the language in microcode. The second is to run an
interpreter for an intermediate language in microcode. The compiler will translate the high level
language into this intermediate Janguage. The third, and last, is to compile the high level
language directly into microcode. Banerji and Raymond [7] advocate the second method,
arguing that microcode store is often too small and the translation may be easier if a good
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intermediate language is chosen. We opted for the third method instead, compiling directly into
microcude to maximize flexibility and performance.

Most retargettable C compilers (e.g. pcc, UNIX's portable C compiler [1} and gcc from the
Free Software Foundation) are inadequate for generating code for a SWIM ASE. Their model of
the architecture, registers, and instruction space is too rigid to be retrofitted into a compiler for
SWIM. In particular, they assume a von Neumann architecture with shared program and data
memory, a single stack, and a single program counter. SWIM’s microcode forces the compiler
to deal with memory access through only a few memory address registers and a simulated stack.
This is a great burden on automatic code generation. Common practices, such as allocating three
memory address registers to serve as a frame pointer, argument pointer, and stack pointer are
prohibitively expensive. The lcc compiler [4] has been chosen as a front end for a SWIM C
vompiler. It nrovides a convenient coupling between the front and back ends. It conforms to
ANSI C and is fast and compact. The front end is responsible for parsing the language and
produces a forest of directed acyclic graphs (dags) representing each compiled function. The
back end selects code and annotates these dags and passes them back to the front end which then
calls the back end to emit the code.

The goals of the compiler are to generate good, accurate, and compact code. The microstore
on an ASE is not large, so the generated code is optimized and the microinstructions well-packed
while ensuring that the behavior does not deviate from the programmer’s intent. Moreover,
facilities are provided to allow the knowledgeable programmer the ability to better control code
generation. These controls include the generation of function prologues and epilogues, the
mapping of variables to registers, and adding in-line assembly code. The pragma mechanism in
C enables the support of these directives.

There are three steps in generating code for a SWIM ASE. The first is generating the dags in
the front end and performing global optimization on the dags such as common subexpression
elimination. The secend takes place at register allocation time and involves allocating registers
and annotating and/or restructuring dags to better fit SWIM’s instruction set. The third stage
takes place during code emission and consists of generating instructions, rewriting them, and
packing a microword. In some cases instructions may be rewritten to better fill the microword.
For instance, a register move may be rewritten to an equivalent alu operation if the alu fields are
not in use, enabling another register move to take place in the same microinstruction cycle.

A set of functions and macros are available on the host end to facilitate interfacing with
SWIM ASEs. Some of these facilities are functions to map SWIM’s memory onto the processes
memory space, claim a lock on SWIM, dereference ASE memory and register space to physical
memory, and send and receive packets.

7. APPLICATION EXAMPLES

A number of applications have been written to explore the capabilities of SWIM and to obtain
a measure of the potential performance gains. Resuits from a national phone database server,
implemented on the existing SWIM system, indicate that it could handle in excess of 75 Million
queries per day for retrieving a name/address given a phone number. We have also applied
SWIM for prototyping a call screening application. The call screening agent receives copies of
signaling messages and determines whether they should be processed by a service processor
instead of being given normal treatment. In order to do this, it performs a database lookup on
calling number and/or called number in real-time, and identifies the service processor where the
features for the call are enabled. We showed that a query processing rate of 10,000 - 12,000
queries/second with nominal latency of 344 microseconds, is achievable in our lab prototype.
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Gigabit IP Router

An IP packet router that can keep up with gigabit per second packet rates has been implemented
on SWIM. Our approach is not to build a communications processor 10 support a special
protocol set but, instead, to identify generic, commonly occurring communications processing
functions and provide an implementation that efficiently supports these underlying functions in
SWIM [2]. The motivation is similar to that in the use of DSP chips for signal processing
applications in preference to regular general purpose microprocessors. Many of the
communications processing functions are data-intensive, and most data-intensive processing is
best done where the data is, in the memory system itself, independent of the main processing
unijt.

The three primary operations performed in a router are: 1) reception and transmission of the
data frames from and to the link, 2) for an incoming packet deciding the outgoing link on which
it should be transmitted, and, 3) switching the packet from the input link to the output link.
Consistent with this functional division, the architecture shown in Figure 7 separates the data
movement function from the actual function of routing based on the IP header. The latter
function is performed by a SWIM/ASE based module, while the interface modules support
various link protocols. The system can contain different types of link modules and multiple
copies of a given type of link module.

The Interface Modules transmit and receive data from the links at the required bit rates. The
data received from a link is saved in an input buffer. As a packet comes in, the [P header is
stripped by the control circuitry, augmented with an identifying tag, and sent to an ASE for
validation and routing. While the ASE is performing the routing function, the remainder of the
packet is deposited in an input buffer in parallel. The ASE determines which outgoing link the
packet should be transmitted on, and sends the updated header fields to the appropriate
destination interface module zlong with the tag information. The packet is then moved from the
buffer in the source interface module to a buffer in the destination interface module and
eventually transmitted on the outgoing link.

ASEs can each work on different headers in
parallel. The circuitry in the interface modules
peels the header off of each packet and assigns the
header to ASEs in a round-robin fashion. Each
ASE performs processing as discussed below. In
some applications, order-maintenance is an issue.
The output control circuitry also goes round-robin,
guaranteeing that packets will then be sent out in
the same order as they were received. (Better < - ;
load-balancing may be achieved by having a more [dta eter e
intelligent input interface which assigns each
header tc the lightest loaded ASE. The output
control circuitry would then have to select the next
ASE to obtain a processed headers from by
following the demultiplexing order followed at the il b
input, so that order preservation of packet: is jofromink toffiom ink o ik
ensured).

ASE colums bus
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Figure 7. Organization of a SWIM based IP router

The performance results for processing an IP packet header varied depending on the type of
packet. On a single 20 MHz ASE system, with 512 network addresses, a packet can be routed at
a rate of 400,000 packets/sec . With host specific addresses and 2 fragments per packet, the
speed falls to around 200,000 packets/sec.




97

Maultiple ASEs can be used to obtain even higher throughput. Two header-processing ASEs
provided a speed-up of 1.8-1.9 times that of a single ASE (the actual performance varied a little
depending on the packet mix, and on other load on the system). With four ASEs, the speed-up
obtained is 3.3-3.5. The less than linear speed-up shown is largely on account of the
synchronization cost since we used a simple round-robin distribution mechanism, with
essentially no buffering to even out the loads.

8. EXTENSIONS

We have discussed the suitability of an ASE managing a single class of objects. The scope of
objects is great, in that they may vary greatly both in size and in quantity. Essentially, any size
object can be supported by SWIM. If an object is so big that it cannot fit into the address space
of a single ASE, one of two actions can be taken. Either parts of the object can be swapped onto
a disk attached to the ASE or several ASEs can cooperatively manage different parts of the
object. The choice is up to the programmer and depends on the size of the object, frequency of
reference, and performance required.

A large number of objects can use up all available memory on an ASE. When this is a
concern, a disk may be used as a store for swapping objects. This may be a local disk or another
ASE with an attached disk devoted to object management. The advantage of a local disk is
performance. The disadvantage is that code for managing a disk-based object store has to cc-
reside with the methods for the class that the ASE manages. On the other hand, a separate ASE
acting as an object store can devote all of its resources to storin, and caching objects. An ASE
would send an object identifier to the object store and receive the object as a message. This
latter approach is far more practical for all but extremely large objects where packet transmission
times become significant.

Finally, in certain environments, persistent objects are needed. These are objects that live
beyond the lifetime of a single process. An object store on SWIM can support such objects,
using an ASEs memory for cache and the disk as a store. Note that while a process’ address
space disappears when the process dies, SWIM’s ASEs and associated memory still remain
active. Hence, even if an object is not placed in secondary storage, it still remains durable and
persistence is achieved (without resorting to a file system).

9. CURRENT STATUS

A complete parallel hardware and software
system constructed using an array of SWIM chips
is operational. A photograph of the prototype
SWIM board plugged into the VME bus on a Sun
workstation is shown in Figure 8.

The chip, fabricated in 1.25 micron CMOS,
has 80K transistors for logic and 4 Kbytes of
downloadable microcode memory. We have not
yet integrated the data memory into our
experimental ASE, so the 512 Kbytes of data
memory per ASE is currently external to the ASE
chip.

Figure 8. SWIM Prototype Board

In order to use SWIM effectively, a suite of software tools to aid development and debugging
has been written. This includes a microcode assembler, disassembler, compiler, graphical
debugger, libraries, and over 50 user commands for manipulating various aspects of the SWIM
system.
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10. CONCLUSION

The results from the ap'  ations we have studied so far have been encouraging. We are
exploring other applications . .ecmory based /O subsystems particularly in the area of wireless
networks.

The performance gains realized by an active memory based system are due to three factors:
1) Data can manipulated in an ASE locally by the on-chip processor at a speed limited only hy
on-chip clock rate, and not by off-chip memory access times. 2) The ASE processing logic is
designed to perform a generic class of data structure operations very well, resulting in several
fold architectural performance advantage over a general purpose processor. 3) Both fine grain
and medium grain parallelism in an application can be exploited using SWIM. Finully, the
SWIM architecture scales with regard to processing power, memory size, memory bandwidth
and /O bandwidth.

Flexibility of design and on-line reconfigurability are additional advantages of our approach.
This is significant because much of the investment for large networks is in provisioning, access
and management of databases.

The SWIM C compiler has been used extensively. It produces good compact code within
the realm of the ASE’s architecture with which it is familiar. Through in-line assembly code,
additional features of SWIM may be accessed. With pragmas, the programmer has more control
over generated code. Interfacing between SWIM and host program. -s made easy with include
files produced by the compiler which define static variables for the host

SWIM'’s architecture, however, is far richer than that which can be easily compiled into a
language such as C. In particular, the traps mechanism enables address or value bounds to be set
and checked for automatically. When a condition is met, a trap takes place. These can be hand
coded into SWIM C programs through a combination of in-line assembly code and register
assignments. Ultimately, it would be desirable to have the compiler automatically detect
conditions where using traps would prove useful. Similarly, SWIM’s pattern matching hardware
is unused by the compiler. Using it would involve putting a number of general purpose registers
to special use and deducing segments of code that can be optimized by using this hardware.
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Abstract: We use a general model to represent interprocessor collective communication
in languages such as High Performance Fortran. Our model includes a communication
pattern matrix and a shift vector. Most current research uses a simple distance vector
{3, 7); a distance vector corresponds to our shift vector when the communication pattern
matrix is the identity matrix. We show how to find and operate on the communication
pattern matrix from user-aligned array references. We also discuss the differences between
physica.l[a.nii virtual communication. We have implemented some of our analysis methods
in Tiny [11].
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1 Introduction

Multicomputers are an important parallel architecture because they are scalable and rela-
tively inexpensive to build. However, multicomputer MIMD or SPMD programs are hard
to develop and extremely difficult to debug. Several higher level languages have been
proposed to help multicomputer programmers; SISAL, Crystal, Kali, Superb and Fortran
D are some examples. Most, if not all, use an SPMD programming model that utilizes
data parallelism, as described in {2, 6]. In these higher level languages, interprocessor
communications are generated by the compiler [13).

In multicomputers such as the Intel iPSC/860 and nCUBE, the overhead time as-
sociated with sending a message is relatively high. Reducing the total communication
overhead is an important optimization. One approach is to minimizing the number of
communications by using “vectorization,” that is, transmitting whole blocks of data rather
than single elements. Current systems such as Fortran D [3] and Superb {7] use distance
vector information, similar to dependence distances [1], to classify communication pat-
terns. These patterns are used to vectorize communications. We believe that distance
vectors are too restrictive for communication analysis.

In this paper, we propose a systematic approach to analyze interprocessor communi-
cation for multicomputers, assuming data decomposition is described by the user. We use
a programming model similar to that of High Performance Fortran (HPF). We first apply
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forall( iy = LB,:UB,, i3 = LB;:UB;, ..., i, = LB,:UB,)
x(iﬂ; ’iﬂgl""il‘) = ﬂ( Y(Gl(ilniﬂa--- nin)’GZ(i);---:GJ(i)))

1‘ Figure 1: Language Model

side array reference in an array assignment. Communication patterns are classified for
each array reference according to the pattern matrix. The analysis is used to find com-
munication in the virtual space. The model proposed for this analysis has some severe
restrictions, which we relax in the final section.

2 The Program Model and Definitions

1 usage analysis to find a communication matriz and a shift vector for every right hand
! The program model we are using is similar to the one used for data dependence analy-
1 sis. We focus on parallel assignments, such as Fortran 90 array assignments or forall
! statements, as shown in Figure 1. For this paper, our examples have three restrictions:
1

! 1. The dimensionality of each array is equal to the number of parallel indices;

2. The subscript expressions in the left hand side array are a simple permutation of
the parallel indices. This is easily satisfied by appropriate restructuring, as shown
by Li and Pingali {4]; and

3. The right hand side subscript expressions G(z) are linear combinations of the parallel
indices, which is also typical of data dependence analysis methods.

We discuss these restrictions further in the last section.

2.1 Data, Iteration and Processor Space

In a multicomputer application, the programmer and/or compiler must conside: three
different indexed spaces, i.e., the data space, the iteration space, virtual process space
and the actual processor space. We define these as follows:

¢ Data Space: Each array defines a data space, where each point corresponds to an
element of the array.

o Iteration Space: The iteration space of a d-nested loop or forall is a d-dimensional
Cartesian space, where each point corresponds to an iteration of the loop or forall
body.

e Virtual Space: A virtual space is an abstract indexed space that roughly corresponds
to templates in HPF. Data alignment is used to describe how points of a data space
are aligned to points of a virtual space, as described in Li and Chen’s work [5, 12]
or in High Performance Fortran. When two points from different data spaces are
aligned to the same point in a virtual space, they will always be allocated to the
same physical processor, regardless of the distribution used.
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Two points from the same data space will always be aligned to different points in
virtual space. In this paper we assume a single virtual space, to which all data
spaces are aligned. We define the active area of a virtual space as follows: a parallel
assignment updates a subset of the data space of its left hand side; the points in
virtual space to which that subset is aligned is called the active area.

o Physical Space: A physical space is an indexed space such that each point cor-
responds to a physical processor. Each processor has its own ID number. The
topology of the interconnection network is not considered here, thus our analysis is
architecture independent. The virtual space is distributed over the physical space,
which implies distribution of the data spaces; when two points in virtual space are
assigned to the same point in physical space, they are allocated to the same phys-
ical processor. Again we assume a single physical space, which may have fewer
dimensions than the virtual space.

Data alignment and distribution define how the data spaces are distributed over the
physical space. The goal is to allow users to write programs in a data distribution in-
dependent manner. The distribution can then be tuned without changing the program.
When the distribution is known, the compiler can generate appropriate communications
for each array reference in a parallel assignment.

2.2 Data Decomposition

Here we study only block decompositions of dimensions of the virtual space onto the
physical space. Cyclic data decompositions [3] have not yet been considered. Possible
data decompositions for a two dimensional virtual space are:

e Decomposed by row: X(block,:).
e Decomposed by column: X(:,block).
o Decomposed by subblock: X(block,block)

Decompositions for higher dimensional spaces can be described similarly. We have
also studied diagonal decompositions, where X(i,j) and X(k,1) are allocated to the
same physical processor if i+j=k+1, but these are not reported here.

3 Usage Analysis

For each right hand side use of an array that fits our model, we find a communication
pattern matriz M and a shift vector s to represent the usage pattern. The matrix M and
the shift vector s are simply obtained by representing the right hand side array subscript
expressions as a function of the left hand side subscripts. Analyzing the matrix and shift
vector tells us a great deal about the necessary communication. Qur representation has
advantages over other work, which concentrates on communication distance vectors, as
we will demonstrate. In the following, upper case italics refers to matrices, and lower case
italic names are column vectors.
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forall( i = 1:n, j = 2:n ) (10 _ 0
ali,j) = a(i,j-1) M= ( 01 )*5‘ ( -1 )

Figure 2: Identity communication pattern matrix.

forall( i = i:n, j = i:n ) {10 _[{0
a(i,j) = a(i,i) M‘(1 o)’s‘(o)

Figure 3: Singular (multicast) communication pattern matrix.

3.1 Mappings

The iteration space is indexed by the vector of loop indices, i. When we restrict the left
hand side reference subscript expressions to be a permutation of the index vector, the LHS
reference can be expressed as X(Pi), for some permutation matrix P. Each right hand
side array reference can be represented by expressing the subscript functions in matrix
notation, as Y(Gi + g). We call G the data access matriz and g the access offset vector,
extending Li and Pingali’s work [4]. This gives us a mapping from each point in the
iteration space to the corresponding points in the data space.

We also assume that the arrays are all aligned to a single virtual space by a simple
affine mapping. Initially we study only azis alignment and offset alignment (i.e., no
scaling). The mapping from a point d in a data space to the corresponding point v in
virtual space is given by an axis alignment matrix A and an alignment offset vector a.
Thus, v = Ad + @; for now we restrict ourselves to the case where A is nonsingular and
unimodular (integer entries, determinant = +1).

In the virtual space, communication must occur from the RHS array to the LHS. The
LHS array reference is at virtual point w = Ax(P?) + ax, and the RHS array reference is
at virtual point v = Ay(Gi + g) + ay. Solving for 7 in terms of w gives us

i= P Ay (w — ax)
Inserting this into the source equation, we get commmunication to point w from point
v=Ay(G(P Ay (w —ax)) + g) + ay

Algebraic manipulation can give us communication to point w from point v = Mxyw +
sxy, where

Mxy
sxy

AyGP_IA}l
Ay(G(—P—lA)-(lax) +9g)+ay

Note that even in the simple case of communication with the same array or arrays that
are identically aligned, the alignment matrices do not drop out of the expression.

3.2 Examples

To demonstrate the basic idea, we give some examples. In Figure 2, the communication
pattern matrix is the identity matrix, since the LHS and RHS arrays are the same (and

r -
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template t(:,:)
align (a(i,j),t(i,3)) 0
align (b(j,i),t(i,j)) M= ( 1
forall( i = 1:n, j = 1:n)

a(i,j) = v(i,j)

Figure 4: Transpose communication pattern matrix, through alignment.

thus must be aligned), and the indices appear in the same order in the subscripts. Figure 3
shows a singular communication pattern matrix; this is a situation where each point in
virtual space must send a value to many receivers. Because of the restrictions of our
model, this is called a linear commmunication, since the virtual point of the source can
be computed as a linear combination of the virtual indices of the destination. Here, each
source has n destinations. In general, whenever the communication pattern matrix is
singular, we have a linear communication. Figure 4 shows the matrix computed after
taking into account the alignment of two arrays onto a common virtual space.

4 Virtual Communication

The virtual communication is communication between source and destination points in
the virtual space. The communication pattern matrix and shift vector can be used to
determine the source point in virtual space from the destination. For any point w in the
active area, w will receive data from virtual point v = Mw + s.

4.1 Basic Idea

Here we describe a simple process to find the destination point or points from each possible
virtual source. This uses a great deal of the linear algebra that is also used in analysis
of subscript expressions for data dependence analysis, as in Banerjee’s monograph [9].
Given the matrix and vector M and s as in the previous section, we wish to decide for
each virtual point (1) whether that point is a source for this communication, and (2)
what are the virtual destination points. Moreover, most of this work should be done at
compile time, so that at run time the decisions can be made as efficiently as possible. We
do this by finding a unimodular matrix U and a lower triangular integer matrix L such
that MU = L. We can then solve Lt = v — s, where v is the index of the potential source
point. Since L is lower triangular, a simple back substitution will suffice. This solves
for ¢ in terms of v; in case of linear communication, one or more of the ¢ indices will be
left unspecified (a free variable). If there is no integer solution, then this virtual point is
not a source. If there is a solution, then Lt = v — s can be rewritten as MUt = v — s
or Mw = v — s where w = Ut. Thus the matrix product Ut gives the destinations in
terms of ¢, where some or all of the ¢ entries are replaced by their equivalents in terms
of v. The proofs of this are in [9]. During the first reduction process (finding U and L),
redundant rows of M will be eliminated, which will add constraints to the indices of the
source points. For instance, if we find that row 2 of M is twice row 1, then we eliminate
row 2 of M, and add the constraint that v, = 2v,. The second element of v is then
completely determined, and does not participate in the rest of the matrix solution.
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forall( i = 1:n, j = 1:n) M=(! 1) o=("!
a(i,j) = a(i+j-1,2%i+2%j-3) “\N22)7 T\ =3

Figure 5: Linear communication pattern matrix.

In the rest of this section, we show how to find communication pattern using M.

4.2 Nonsingular Communication

In the example from Figure 4, we have

(3 1) (1)

We can use any method to find appropriate L and U matrices; efficient methods are
described in 9, 8]. The simplest solution here is

10 01
L—(Ol)’u_(lo)
U

The reader can trivially confirm that MU = L. At any virtual point v = ( v ) we can
2

solve the matrix equation Lt = v — s with ¢; = v, #; = vz. The destination point w is

computed as
_[01 vy ) _ [ v
o= (14)(5)- ()

This is an example of a nonsingular communication matrix with no redundant rows
or columns and no free entries of t. We found other nonsingular communication patterns
such as rotation, but thsese are not reported here.

4.3 Singular/Linear Communication

Consider the example in Figure 5. The methods used for the Power Test for data depen-
dence (8] to find the L and U matrices will also determine that the second row of M is
redundant. In the matrix equation Mw = v — s, the second row is eliminated by adding
the constraint v; — 33 = 2(v; — s;), or in this example, v = 2vy — 1. We then find L and

U for the reduced system as
L=(1 0),U=((1) ‘i)

Again, the reader can confirm that MU = L. We solve Lt = ¥ — §, where 3 and § are v
and s reduced by eliminating the elements corresponds to the redundant rows of M; in
this case L has one row and © and 3 have one element. The matrix equation solves to
t, = v; + 1; since ¢, is not constrained by the solution, it is a free variable. From the
matrix formula Ut = w, we find the destinations as

o= ()= (6 D)(E)-(2")
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Thus, a value of t = (t,,t;) describes a communication with source at (¢, — 1,2¢; — 3)
and a destination at (¢ — t3,¢;). Given a virtual point at (v, v;), it is a source point if
v = 2v; — 1; if s0, it has destinations at all virtual points (vy — ¢3 + 1,¢3) for all values of
t2 such that the destinations lie within the active area. We can solve for the range of t;
(or all free variables, in general) for which this virtual point has destinations by applying
the boundary region constraints of the active area to the destination point solution. If
the active area is (1 : 10,1 : 10), then virtual point (3,5) is a source, since 5 =2 x3 -1,
and its destinations are those points (4 — f;,12) that lie in the active area. From the first
index we get the inequalities 1 < 4 —¢; < 10 or —6 < t; < 3; from the second index we
get the inequalities | < t; < 10. Combining these, we have the limits 1 < 3 < 3, so the
destinations are (3,1), (2,2), (1,3).

5 Physical Communication

In the multicomputer system, many virtual points are clustered together on a single
physical node. In this paper, we only consider simple block decompositions.

When a dimension of the virtual space is distributed, communication across that
virtual dimension will cause physical communication. This can be easily tested by looking
at the formulas for source and destination virtual points. In the example in Figure 3, we
have a communication source at virtual point (v;,v;) when v; = vy, and its destinations
are those points (w;,w;) with w; = v, and w, is free. In these formulas, the first
index of source and destination is the same, while the second differs. If only the first
virtual dimension is distributed, this reference pattern will cause no communication in
the physical space.

In the example in Figure 5, the communication source is virtual point (v;,2v;, — 1)
with destinations at (vy — 2+ 1,t;) for all valid values of t;. Communication will occur no
matter which dimension is distributed, since both indices of source and destination differ
for some values of ;. When there is no free variable in the formula for w;, for some j,
and only that dimension is distributed, then there will be only one physical destination
for each virtual source point.

Three kinds of optimization can affect physical communication. When two or more
virtual destination points for the same virtual source point are assigned to the same phys-
ical processor, the message needs to be sent only once; we call this message collapsing.
The situation is recognized when there is a {ree variable (one of the t variables) in the
formula for destinations in the distributed index, and its coefficient is less than the dis-
tribution block size. In the example from Figure 5, if the first dimension is distributed
with a block size of 10, then each virtual source has up to ten virtual destinations in the
same physical processor (since the coefficient of ¢; in the destination first index is one).

When two or more virtual source points are allocated to the one physical processor and
have virtual destinations on the same physical destination processor, the messages can
be collected and sent as a vector. Previous research has called this message vectorization
(10], and focused on ccnstant distance communication, when this is easy to recognize (the
communication pattern matrix is the identity matrix).

Finally, and most importantly, when the source and destination virtual points are
allocated to the physical processor, no message should be sent. We are working on the
criteria that characterize these last two conditions.
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6 Summary

We have described a method to classify references in data parallel languages that take into
account global indices and individually aligned arrays. The method allows the compiler
to generate code to compute the destinations for each data source. The classification is
more general than previous research, which focuses only on fixed distance communication.
It is related to Li and Chen’s work [12], though that work attempts to automatically
generate an alignment from a declarative algorithmic specification. We have implemented
some of the compiler analysis in our research prototype, Tiny. We are now working on
experimenting with some of the linear communication patterns on an Intel iPSC/860
multicomputer.

In our work here we have several severe restrictions on the programming model. One
of the restrictions is that the left hand side array subscript expressions be a simple per-
mutation of the parallel index variables. This is not too severe; by the rules of forall
assignments (as proposed in Fortran 8x and used in High Performance Fortran) only one
value can be assigned to any array element. Thus if the subscripts can be represented
by the matrix formula Fi + f, the matrix F must be of rank n, where n is the number
of parallel indices. If F' is square, it must be invertible; the compiler can then invert the
matrix and modify the index limits and right hand side references to satisfy this condition.
For instance, the assignment

forall( i = 1:N, j = 1:M )
AGi,i+j-1) = B(i,j)
can be rewritten internally by the compiler as
forall( i = 1:N, j = i:i+M-1)
A(i,3) = B(i,j-i+1)
More general restructuring is shown by Li and Pingali [4]. We use a slightly more general
data access function than that paper, and generalize the programming model by allowing
different alignment functions and composing the alignment and access functions to access
the virtual space.

The restriction that the arrays have the same dimensionality as the number of parallel
indices can also be relaxed. Arrays with greater dimensionality must have redundant rows
in the access matrix. These are eliminated before (or during) processing, and added back
after solving the reduced system. Arrays with less dimensionality cause other problems.
On the left hand side, deficient arrays often correspond to manually linearized multidi-
mensional arrays. On the right hand side, deficient arrays are less of a problem; when a
vector is replicated across a virtual 2-dimensional space, the compiler has the freedom to
choose which replicated copy of the vector to use as a source. Non-replicated deficient
arrays will be allocated to a fixed subset of the virtual space, causing communication in
some virtual dimension. These issues have not been fully investigated.

The final restriction to subscript expressions that are linear combinations of the par-
allel indices is typical of such analysis work. Nonlinear subscripts, such as indexed sub-
scripts, must be handled dynamically or by some other means. We intend to focus on the
important case where compile time analysis can be effective.

Future work will look at analyzing parallel programs to see what types of communica-
tion pattern matrices actually appear. We will also look at whether this analysis can be
used to drive a program restructuring process, when the parallel assignment appears in
sequential loops. In this situation, depending on the distribution, loop interchanging or
other restructuring transformations may be able to optimize the communication pattern
and frequency. We also plan to use this formulation to evaluate the cost of the commu-
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nication by inspecting the regularity of the communication pattern and estimating the
communication density, where the density is the maximum amount of data transferred
from any source or to any destination.
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Abstract: The goal of languages like Fortran D or High Performance Fortran (HPF)
is to provide a simple yet efficient machine-independent parallel programming model.
By shifting much of the burden of machine-dependent optimization to the compiler, the
programmer is able to write data-parallel programs that can be compiled and executed
with good performance on many different architectures. However. the choice of a good
data layout is still left to the programmer. Even the most sophisticated compiler may not
be able to compensate for a poorly chosen data layout since many compiler decisions are
driven by the data layout specified in the program.

The choice of a good data layout depends on many factors, including the target ma-
chine architecture, the compilation system, the problem size, and the number of processors
available. The option of remapping arrays at specific points in the program makes the
choice even harder. Current programming tools provide little or no support for this diffi-
cult selection process.

This paper discusses automatic data layout techniques in the context of a programming
environment and an advanced compilation system that allows dyunamic data remapping.
Our proposed framework for automatic data layout builds and examines search spaces
of candidate data layouts. A candidate layout is an efficient layout for some part of the
program. Choosing a single layout for each program part among its candidate data layouts
such that their overall cost is minimal has been shown to be NP-complete. Instead of
resorting to heuristics, this paper investigates methods to determine the optimal selection.
The data layout selection problem is formulated as a 0-1 integer programming problem.
which is then fed to a state-of-the-art, general purpose integer programming solver. Our
experiments show that even though we use a general purpose integer programming tool.
there exists a formulation that can be solved very efficiently. Comparisons with similar
0-1 problems and their special purpose solvers indicate that our results can be improved
on significantly as well if a special purpose solver is used.
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1 Introduction

The advent of languages like High Performance Fortran (HPF) [20], in which the pro-
grammer specifies parallelism implicitly by specifying the layout of an application’s data
across the processor array, has focused renewed attention on the problem of choosing a
good data layout for parallel execution. Many experts believe that the choice of data lay-
out is one of the two most important steps, in addition to choice of a suitable algorithm,
toward a successful parallel implementation.

However, many programmers are not sure what data layout to choose. Many complex
considerations must be taken into account if the program is to perform at high efficiency.
For example, it is almost essential to consider the program as a whole rather than a series
of independent subroutines. Of particular importance and complexity is the problem of
determining when dynamic data redistribution will enhance overall performance.

Fortunately, the designers of languages like HPF and Fortran D [14], by requiring
that data layout specifications be provided by the programmer, have opened the door for
powerful new tools which can use intensive computation to determine a first approximation
to a good data layout automatically. Because these tools are not embedded in the compiler
and will be run only a few times during the implementation phase of a project, they
can use techniques that would be considered too computationally intensive for inclusion
in compilers, even on today’s powerful supercomputers. Furthermore, by providing a
high-level target language for these tools, HPF and similar languages have dramatically
simplified the implementation of data layout tools.

In this paper, we will describe a data layout tool that uses a number of techniques from
linear and integer programming. Integer programming is required because the automatic
data layout problem that we solve is NP-complete. Evidence will be presented that our
approach will be efficient enough for use in a programming assistance tool.

Our ability to solve integer programming problems has been remarkably improved
over the last five to ten years, particularly pure (-1 integer problems such as those being
generated here. The basic technique for solving integer problems is to apply intelligent
branch-and-bound using linear programming at the nodes. Important improvements have
come in three areas. First, linear programming codes are on average approximately two
orders of magnitude faster than they were five years ago, particularly for larger problems
[6]. Combined with the improvements in computing speed over that same period these
codes represent an approximate four orders of magnitude improvement in our ability to
solve linear programming problems.

The second major development is in so-called cutting-plane technology. Motivated by
work of Dantzig, Johnson and Fulkerson in the 50’s [12], Padberg, Groetschel and others
have shown how cutting-plane techniques could be used to strengthen the linear program-
ming relaxations of many pure 0-1 integer programming problems (25]. The strengthening
is effected by studying the facets of the underlying polytope generated by the convex hull
of 0-1 solutions. Knowledge of these facets leads to subroutines for recognizing inequal-
ities violated by the current fractional solution. These violated inequalities can then be
added to the linear programming formulation in lieu of branching.

The third major area of improvement has come in the application of parallel processing
to handle the branching when cutting planes do not succeed in sufficiently strengthening
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the linear programming formulation. Parallelism is particularly appropriate for current
cutting-plane methods because cuts are computed not only at the root node but at all
nodes in the branching tree. The extra computation at the nodes has the effect of making
the computations sufficiently coarse grained that communication costs need not be signif-
icant. The most striking example of an integer programming success story exploiting all
of the above advances is the recent work of Applegate, Bixby, Cook and Chvatal in which
a 4461 city traveling salesman problem was solved to exact optimality using a complex
branch-and-cut code running on a network of up to 60 loosely connected workstations [3].

2 Framework for Automatic Data Layout

The choice of a guod data layout for a program depends on the compilation system, the
problem size, the number of processors used, and the performance characteristics of the
target machine architecture. Our proposed framework for automatic data layout will
determine a good data layout for a given compilation system. Although this framework is
not designed to be used inside the compilation system, it knows about the transformations
and optimizations performed by the compilation system. The data layout is optimized for
a target distributed-memory machine, a specific problem size, and the number of available
processors, which implies that these entitics have to be known at tool invocation time.
This section gives an overview of the proposed framework for automatic data layout
for regular problems. Typically, regular problems represent data objects as dense arrays
as opposed to a sparse representation. Regular problems allow the compilation system
to determine the communication requirements and to perform a variety of program op-
timizations at compile time. The framework assumes that different data layouts ran be
specified for different program sections. Qur proposed strategy for automatic data layout
in the presence of dynamic data remapping consists of several steps, each discussed briefly
in the remainder of this section. A detailed program example can be found in Section 3.

2.1 Overview

The initial step partitions the program into code segments, called program phases. Data
remapping is allowed only between phases. A phase is the outermost loop in a loop nest
such that the loop defines an induction variable that occurs in a subscript expression
of an array reference in the loop body. This operational definition does not allow the
overlapping or nesting of phases. Other strategies for identifying program phases are a
topic of current research. Note that loop transformations such as loop fusion or loop
distribution can change the partitioning of a program into phases. The discussion of
transformations in the context of phase recognition is beyond the scope of this paper.

The phase structure of the program is represented in the phase control flow grapk. an
augmented control flow graph {1] where each phase is represented by a single node. The
graph is annotated with branch probabilities and loop control information.

In the second step, the program alignment space is determined. The program alignment
space corresponds to a single HPF template or a single Fortran D decomposition. All
alignments and distributions are specified based on this unique program alignment space.

In the next two steps, data layout search spaces are constructed for each phase. A
data layout for a single phase is specified by the alignment and distribution of all arrays
referenced in the phase. First, alignment analysis builds a search space of reasonable
alignment schemes for each phase. If arrays have fewer dimensions than the program
alignment space, alignment analysis may generate different embeddings for the arrays.
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Then, distribution analysis uses the alignment search spaces to build candidate data layout
search spaces of reasonable alignments and distributions for each phase. A preliminary
discussion of possible pruning heuristics and the sizes of their resulting search spaces can
be found in [16).

After the generation of the search spaces, a single candidate data layout is selected for
each phase, resulting in a data layout for the entire program. This step solves the so-called
inter-phase data layout problem. The inter-phase data layout problem will be described
in more detail in the next section. The selected candidate layouts have minimal overall
cost. The overall cost is determined by the costs of each selected candidate layout, and
the required remapping costs between selected candidate layouts. Note that the optimal
data layout for a program may consist of candidate data layouts that are each suboptimal
fur their phases. The selection process is based on static performance estimates of the
candidate data layouts and of data remappings between layouts. A static performance
estimator suitable for automatic data layeut has been discussed elsewhere {4, 14]. The
performance estimator will mimic the compilation process for single phases. It will use the
training set approach to determine communication and computation costs of the target
machine architecture.

In the final step, data layout specifications are generated. The program alignment
space 1s represented by a single decomposition or template statement. A data flow
problem over the phase control flow graph is solved to avoid redundant specifications of
alignments and/or distributions for the selected candidate data layouts. The final data
layout specifications are iranslated into corresponding align and distribute statements.

2.2 Inter-phase Data Layout Problem

T'he inter-phase data layout problem is modeled as an optimization problem over the data
layoul graph. The data layout graph has one node for each candidate data layout. Edges
represent possible remappings between candidate data layouts. Nodes and edges have
weights representing the overall cost of each layout and remapping, respectively, in terms
of execution time. The costs reflect the frequencies or probabilities of phase execution.
A data flow problem over the phase control flow graph can be solved to determine these
probabilities. The proposed data flow problem is similar to a reaching definitions problem
(1} that additionally determines the probability that a definition reaches a given point in
the program.

The initial formulation of the inter-phase data layout problem as an optimization
problem over the data layout graph does not model the possible overlap »f communication
and computation between phases. However, the static performance estimator for each
single phase will take the effect of compiler generated wavefronts inside a phase into
account [27]. In addition, the initial formulation requires that only a single copy of an
array can exist at any time during program execution, unless the array is replicated due
to multiple ownership. This restriction can be relaxed by adding additional remapping
edges. The placement of these remapping edges is a topic of current research.

The inter-phase data layout problem is proven to be NP-complete [21]. The proof is
based on a reduction from the 3-CNF satisfiability problem (3-SAT) {11]. However, in
the special case where each candidate layout specifies a mupping for every array in the
program, the inter-phase data layout problem can be solved in polynomial time in the
size of the data layout graph. The polynomial time algorithm uses dynamic programming
to solve multiple single-source, shortest path problems over the data layout graph {22].

In this paper, we focus on methods to compute the optimal solution of the inter-
phase data layout problem with only a single copy of each array at any time during
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the execution of the program. An instance of the inter-phase data layout problem is
translated into a 0-1 integer programming problem suitable to be solved by CPLEX?, a
linear integer programming tool partly developed by Robert Bixby at Rice University [5].
We give experimental results for our 0-1 integer programming formulations for an 800
line benchmark code developed by Thomas Eidson at ICASE.

3 Example Program

The following example illustrates the framework for automatic data layout. Figure 1A
shows an Alternating Direction Implicit (ADI) integration kernel. ADI integration is a
technique frequently used to solve partial differential equations (PDEs). The operational
phase definition partitions the code into eight phases (see Section 2.1). The first phase
and the last phase are loop nests that perform input and output operations, respectively.
The resulting phase control flow graph is shown in Figure 1B. The program has a two-
dimensional alignment space of size N in each dimension. To simplify the example, we
assume that alignment analysis builds alignment search spaces that map the three arrays
a, b, and c canonically onto the program alignment space. To simplify the example even
further, we assume that distribution analysis generates only two candidate data layouts for
each phase, namely a row layout and a column layout. The resulting data layout graph is
shown in Figure 1C. The edges represent possible remappings of arrays between candidate
data layouts. To model the effects of the iterative loop, the data layout graph contains
edges between the layouts of the seventh phase and the second phase. The node and
edge weights are the estimated costs for phase execution and remapping, respectively,
in terms of execution time, multiplied by their predicted execution frequencies. The
cost for transposing a single array is denoted by T. max is the number of iterations in
the iterative loop. A static performance estimator together with the computed phase
execution frequencies will be used to determine the node and edge weights {4, 14].

To solve the inter-phase data layout problem, a single candidate data layout must be
chosen for each phase such that the overall cost of the selected layouts is minimal. The
overall cost of a set of selected layouts is the sum of the weights of their representing
nodes and the weights of all edges between these nodes. The solution requires that the
value of max is known.

The execution of the ADI integration kernel consists of a repeated sequence of for-
ward and backward sweeps along rows, followed by downward and upward sveeps along
columns. For the sweeps along the rows, a row layout has the best performance. The same
holds for a column layout for the column sweeps. Transposing the arrays between the row
and column sweeps, i.e. between phases 4 and 5, and between phases 7 and 2, eliminates
communication within phases. In contrast, choosing the same data layout for both, row
and column sweeps will avoid communication between phases but will make communi-
cation necessary inside some of the phases. The right choice will depend on the speed
of the communication hardware and software of the target distributed-memory machine,
and the ability of the compiler to exploit pipelined parallelism efficiently. In addition,
the performance characteristics of the underlying 1/O system has to be considered for the
candidate layouts of the first and the last phase. Figure 2 shows two different data layout
specifications that may be generated by the automatic tool. The left hand side shows a
static, column-wise data layout. The right hand side depicts a dynamic data layout where
transpose operations will be performed between the row and column sweeps.

2CPLEX is a trademark of CPLEX Optimization, Inc.
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REAL (N, N). a(N, N), b(N, N)

DO iter = I, max
1/ Forward and backward sweeps along rows

[Doj=2N
DOi=1,N
ofi, ) = oti, ) - i j - 1) ai, /KL j - D)
b, j) = Bi. ) - ah ) * adi, j) /b, - 1)
ENDDO
ENDDO

L "8

DOi=1 N

(i, N) = i, N) 7 b{i. N)
ENDDO

DOj=N-1,1,-1

DOi=2,N
oij) =( (i ) - Al j+ D *clij+ 1)) )

ENDDO

ENDDO

/1 Downward and upward sweeps along columins

fpoj=1.N

DOi=2,N
i, ) = el ) - ofi- L j) S ali, )/ bG- 1. §)
i, j) = bi. j) - ai. ) * (i, j) /i - 1, j)

ENDDO

\ENDDO
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Figure 1: ADI integration kernel with three array variables. A: Source code with phase
partitioning. There are eight phases. The loops representing the first and the last phase
are not shown. Each phase references either two or three arrays. B: The phase control
flow graph for the phase partitioning. C: The data layout graph for the candidate data
layout search spaces of the phases. To simplify the example, we assume that there are only
two candidate data layouts in each search space. Weights represent static performance
estimates of overall execution times. Node weights are not shown. Unlabeled edges have
zero weight. T is the cost of performing a single array transpose, and max is the number
of iterations of the outermost loop of the ADI integration kernel.
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REAL o(N, N), a(n, N), b(N, N) REAL o(N, N), a(n, N), (N, N)

1/ Dynamic row and column-wise layout

{HPF$ TEMPLATE X(N, N)

{HPF$ DYNAMIC X

HPF$ ALIGN (i, j), a(i, j), b(i, j) WITH X(i, j)
{HPF$ DISTRIBUTE X(:, BLOCK)

/ Static column-wise layout

'HPF$ TEMPLATE X(N, N)

tHPES ALIGN o(i, j). a(i, ), Wi, j) WITH X, j)
'HPF$ DISTRIBUTE X(:, BLOCK)

DO iter = 1, max
#/ Forward and backward sweeps along rows
'HPF$ REDISTRIBUTE X(BLOCK,:)

DO iter = 1, max
# Forward and backward sweeps along rows

// Downward and upwasd sweeps along columns
{HPF$ REDISTRIBUTE X(:, BLOCK)

#l Downward and upward sweeps along columns

ENDDO ENDDO

Figure 2: Example output of the proposed framework for automatic data layout for the
ADI integration kernel. The left hand side shows a static column-wise data layout, and
the right hand side shows a dynamic layout that performs transposes between the sweeps
along rows and columns.

4 Related Work

The problem of finding an efficient data layout for a distributed-memory multiprocessor
has been addressed by many researchers (2, 8, 9, 10, 13, 15, 17, 18, 19, 23, 24, 26, 28].
The presented solutions differ significantly in the assumptions that are made about the
input language, the possible set of data layouts, the compilation system, and the target
distributed-memory machine. Even though many researchers have recognized the need
for dynamic remapping and are planning to develop solutions, our work is one of the first
to provide a framework for automatic data layout that considers dynamic remapping.

Knobe, Lukas, and Dally [19}, and Chatterjee, Gilbert, Schreiber, and Teng [9, 10}
address the problem of dynamic alignment in a framework particularly suitable for SIMD
machines. Anderson and Lam discuss techniques for automatic data layout for distributed
and shared address space machines [2]. Their approach considers dynamic remapping.
Lee and Tsai propose a dynamic programming algorithm to determine a data layout for
a sequence of loop nests, allowing remapping between the loop nests [23].

In contrast to most of the previously published work, our framework is designed to work
in the context of a programming assistance tool, not inside a compiler. As a consequence,
the framework can use techniques that may be too expensive to be included in a compiler.

5 Inter-phase Data Layout as a 0~1 Problem

This section discusses the details of translating an instance of an inter-phase data layout
problem and its data layout graph into an instance of a 0-1 integer programming problem
with linear constraints, or 01 problem for short. For the purpose of this discussion, we
assume that the input program has n phases, Py,... P,. The corresponding data layout
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Figure 3: A: Layout constraints for the first three phases. B: Remapping constraints for
the first candidate layout in the fourth phase. Switch z4; represents this layout.

graph has m; nodes for cach phase 7, 1 <7 < n. Remember that each node represents
a particular candidate data layout that specifies the alignment and distribution of all
variables referenced in the phase.

Au instance of a 0-1 problem consists of a set of variables X, a set of linear constraints
over the variables in X, and a linear objective function with domain X. A solution to an
instance of the 0-1 problem is a function sp; : X — {0,1} that minimizes the objective
function while respecting the constraints.

The translation introduces a variable for each node and edge in the data layout graph.
These variables can be thought of as switches that are on if and only if the represented
nodes or edges are part of a solution of the inter-phase data layout problem. The set X is
the union of two sets of variables, X = Xiayout U Xremap. Xiayour cOntains a single switch
for each node in the data layout graph, and X,emap has one switch for each edge. The
switch Zik € Xiayour represents the k-th node of the i-th phase. The switch :Acf,'c € Xremap
represents the remapping edge between the [-th node of phase j and the k-th node of
phase .

Similar to the variable set X, the set of constraints is partitioned into two classes.
Constraints that ensure the selection of only a single node for each phase are called layout
constraints. For each phase 7, 1 <1 < n, there is a constraint of the form [, zix =1 .
In other words, exactly one switch has to be on for each phase and all other switches for
the phase have to be off. The layout constraints for the first three phases of our example
data layout graph (Figure 1C) are shown in Figure 3A.

Remapping constraints guarantee that all remapping edges between selected nodes are
considered, i.e. are also selected. For each node in the data layout graph, there are two
types of remapping constraints, namely IN-constraints and QUT-constraints.

For the node represented by z;; and all incomin§ edges with nodes in the same phase j
as their sources, IN-constraints of the form 12, zJ, = z;: are generated. In other words,
if switch z; is on then exactly one switch representing an incoming edge from phase j
must be on. If zi is off then all incoming edge switches have to be off.

Similarly, for the node represented by z;; and all outgoing edges with nodes in the
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same phase j’ as their sinks, OUT-constraints of the form 2,’:‘;’1 z}',‘,, = z are gencrated.
The remapping constraints for the node representing the first layout in the fourth phase
of the ADI integration example, x4, are listed in Figure 3B.

A solution sg; of an instance of the 0-1 problem minimizes the following objective
function under the above constraints:

; il 3t
Er,kex,,,ou, Tik COStlayout (zik) + z:zf"‘e,\’"m" Tik COStremap (zik) ’

where costigyous and €OSt,emqp represent the node and edge weights of the data layout
graph, respectively.

Note that we also investigated other valid formulations of the data-layout problem as a
0-1 problem. However, these other formulations turned out to be inferior to the presented
formulation in terms of the time CPLEX needed to compute the optimal solution. A more
detailed discussion of the different formulations can be found elsewhere (7).

6 Experiments

All of our experiments are based on ERLEBACHER, a 800 line benchmark program written
by Thomas Eidson at the Institute for Computer Applications in Science and Engineer-
ing (ICASE). The program performs 3-dimensional tridiagonal solves using Alternating
Direction Implicit (ADI) integration. The code contains computational wavefronts across
all three dimensions. Array kill analysis was performed by hand and arrays were renamed
and replicated appropriately. The resulting program contains 40 phases and 25 arrays.
There are arrays with one, two, and three dimensions.

ERLEBACHER has a three-dimensional alignment space. For our experiments, we as-
sume that alignment analysis and distribution analysis generate seven candidate layouts
for each phase, one layout for each possible combination of distributed dimensions. How-
ever, if a phase contains only one-dimensional arrays, its candidate search space has only
four layouts since some layouts are the projection of two distribution schemes. The corre-
sponding data layout graphs with different weights were generated by hand. Weights were
chosen to model different communication costs and the presence or absence of compiler
optimizations. For instance, a compiler may be able to generate a coarse-grain pipelined
loop if the data layout induces cross-processor dependences [27]. Whether the compiler
performs such an optimization or not is represented by different weights given to the
nodes.

We wrote a tool that generates the 0-1 problem formulation (see Section 5) for a given,
weighted data layout graph. The remapping costs for individual arrays are handed to the
tool as a cost table. The tool automatically generates the edge weights of the correspond-
ing data layout graph based on this cost table. The generated 0-1 problems have 253
layout switches, 2133 remapping switches, and 715 layout and remapping constraints.

For the experiment, twelve 0-1 problems were automatically generated. Each of the
0-1 problems was solved by CPLEX, a linear integer programming tool. CPLEX includes
an implementation of a general-purpose branch-and-bound code for mixed integer pro-
gramming. Being general purpose, this code does not exploit the structural properties
of our particular 0-1 problems. The experiments show that our 0-1 formulation can be
solved by the general-purpose CPLEX in less than 4 seconds on average on a SPARC-10
workstation. For one 0-1 problem instance, CPLEX determined the optimal solution
in 2.6 seconds. CPLEX did not take longer than 4.8 seconds on any of the twelve 0-1
problem instances.
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0-1 integer programming is NP-complete. Therefore, it is unrealistic to expect a
solution for all instances in minimal computation time. However, recent experience with
other NP-hard problems formulated as 0-1 integer programs — principally the TSP —
indicate that a careful study of structure of the particular integer program can lead
to very effective practical procedures. Recent work on the TSP again provides a good
example of what one can hope for. Using the well-known TSPLIB test set of problems,
we have been able to solve to exact optimality all instances with fewer than 2000 cities,
with the notable exception of one 225 city instance for which our cutting plane methods
simply do not seem to be effective. However, it is interesting to note that for this one
instance. it is symmetry that makes that problem difficult for our algorithms. That
very symmetry implies that various heuristic procedures easily find the optimal solution
(provably optimal by an independent analysis of problem structure). For the problem
at hand, namely the inter-phase data layout problem, a similar approach is proposed
in which inexact heuristic procedures would be applied if integer programming fails to
find a solution within acceptable time limits. We remark in this context that we would
expect our branch-and-cut algorithm to be computing both upper and lower bounds as
it proceeds. If the computation is terminated prior to optimality, these bounds would
provide estimates of the solution quality.

CPLEX is also designed to be applied as a callable library of linear-programming
routines that can be conveniently built into a branch-and-cut code, such as a special
purpose solver for the inter-phase data layout problem.

7 Future Work

So far, the discussion of the our proposed framework has ignored procedure calls. All steps
of the framework as discussed in Section 2.1 will have to be performed interprocedurally.
For the inter-phase data layout problem, we plan to use the following approach in the
absence of recursion. The data layout graphs of subroutines can be propagated bottom-up
along the edges of the call graph, resulting in a single data layout graph for the entire
program. If the compilation system performs procedure cloning, a distinct copy of a
procedure’s data layout graph is propagated along each edge in the call graph. This
strategy has been used to hand generate the data layout graph of the ERLEBACHER code
used for the experiments discussed in Section 6. In the absence of cloning, each procedure
is represented by a single copy of its data layout graph in the data layout graph for the
entire program.

We are currently investigating the support of data replication in our framewcrk. There
are two forms of data replication. Data replication that consists of multiple copies of an
array with distinct owners for each copy will be handled during the construction of the
candidate search spaces, i.e. search spaces may contain candidate layouts that specify
multiple owners of an array. Data replication that refers to multiple copies of an array
with only a single owner can be modeled by additional remapping edges in the data layout
graph. The IN and OUT-constraints of our presented 0-1 problem formulation will have
to be slightly modified to accommodate the new edges. Additional constraints can be
used to enforce an upper bound on the number of copies of an array.

The proposed framework for automatic data layout is currently being implemented as
part of the D programming environment. The implementation will provide the basis for
the validation of our proposed techniques.
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8 Conclusion

We have presented an approach to automatic data layout in the context of a programming
tool that produces High Performance Fortran or a similar language as output. This has
permitted us to explore exact solutions to the problem of automatic data layout, even
though our formulation of the problem is NP-complete. Through the use of the latest and
most powerful general purpose techniques for linear and integer programming, we have
shown the technique to be practical for a full-sized application.

Recent experiences with similar NP-complete problems indicate that special purpose
linear and integer programming techniques can be used to compute the exact solution even
faster. These special purpose techniques will take advantage of the particular structure
of our formulation of the data layout problem.
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Abstract: The computation partitioning, communication analysis, and optimization
phases performed during compilation for distributed-memory multicomputers require an
efficient way of describing distributed sets of iterations and regions of data. Processor
Tagged Descriptors (PTDs) provide these capabilities through a single set representation
parameterized by the processor location for each dimension of a virtual mesh. A uniform
representation is maintained for every processor in the mesh, whether it is a boundary or
an interior node. As a result, operations on the sets are very efficient because the effect on
all processors in a dimension can be captured in a single symbolic operation. In addition,
PTDs are easily extended to an arbitrary number of dimensions, necessary for describing
iteration sets in multiply nested loops as well as sections of multidimensional arrays. Using
the symbolic features of PTDs it is also possible to generate code for variable numbers
of processors, thereby allowing a compiled program to run unchanged on varying sized
machines. The PARADIGM (PARAllelizing compiler for DIstributed-memory General-
purpose Multicomputers) project at the University of Illinois utilizes PTDs to provide
an automated means to parallelize serial programs for execution on distributed-memory
multicomputers.

Keyword Codes: C.1.2; E.2
Keywords: Multiprocessors; Data Storage Representations

1 Introduction

A parallelizing compiler for distributed-memory multicomputers must be able to: (1) de-
scribe decompositions of arrays and loops across a number of processors, and (2) translate
indices and iterations between global and local address and iteration spaces. There is a
need for a representation capable of describing partitioned polyhedra of arbitrary dimen-
sions in any of these spaces. It must also provide a flexible structure for performing
high-level set operations required in both computation partitioning and communication
optimizations [11). This paper describes how PTDs efficiently provide all of these capa-
bilities. In addition, a key feature of PTDs is the support of code generation for variable
numbers of processors. Not only does this allow a compiled program to run unchanged on

*This research was supported in part by the Office of Naval Research (Contract N00014-91J-1096),
and in part by the National Aeronautics and Space Administration (Contract NASA NAG 1-613).
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varying sized machines, but it is also useful when selecting the number of tasks for multi-
threaded execution [9] or for varying the number of processors assigned to a given task
when utilizing functional parallelism [12]. In contrast, most ongoing work on compilers
for distributed memory {3, 5, 8, 10] can only compile for a fixed number of processors.

Earlier structures describing index or iteration space arose in the context of interpro-
cedural data dependence analysis. They include the Regular Section Descriptor (RSD) [4]
and the Data Access Descriptor (DAD) [2]. RSDs can only describe a single row, column,
or diagonal of an array, or the entire array. DADs describe convex polyhedra bounded by
hyperplanes that are either orthogonal to an axis or at 45° angles with a pair of axes. Both
representations are only able to define regions in an unpartitioned address space. The
Fortran D compiler [8] uses the RSD augmented with three component sections for each
dimension to handle boundary conditions, which are often present in partitions owned
by boundary processors. However, when the exact set boundaries are not computable at
compile time, it maintains an individual iteration or index set per processor.

The Stanford SUIF compiler system [15) models data and computation decompositions
using a form of parametric integer programming. Its representation is parameterized with
processor information and is able to handle symbolic block sizes but results in multi-
version copies of loops.! It also only supports global index and iteration domains, while
local index translation is performed at run time for all distributed array accesses [1].

The PTD and defined operations are presented in Section 2. The application of PTDs
in the PARADIGM compiler is described in Section 3, and conclusions appear in Section 4.

2 Processor Tagged Descriptors

The PTD is a set representation parameterized by processor coordinates. This provides
a uniform and efficient means of describing sets of iterations or sections of arrays that are
partitioned across processors. A PTD in n dimensions is a collection of one-dimensional
PTD; (1 < ¢ < n), each of which has as a lower and upper bound. Each bound is a
symbolic expression involving a processor coordinate (p;) along dimension ¢ of the mesh:

PTD; = [lower _bound : upper _bound)] linear -eapr (pi)

bound = { min(bound, bound)
lower _bound = bound | [bound] maz(bound, bound)
upper _bound = bound | |bound]| linear expr(p:) = sym_ezpr - p; + sym_ezpr

where sym_ezpr is a scalar symbolic expression (expressions involving constants and pro-
gram variables). Each PTD; captures the range of integers between the lower and upper
bounds in a single dimension. Together, they span the entire n-dimensional region. Since
the PTD is parameterized by processor coordinates, it provides a uniform representation
for every processor in the mesh. This is regardless of the shape and size of the partition
and whether it resides in a boundary or an interior processor in the mesh. Furthermore,
set operations on these partitions are very efficient because all processors in one or more
dimensions can be captured into a single symbolic set operation.

Figure 1 shows the PTD for an array A(40,40) partitioned by blocks on a 4 x2 processor
mesh. A; (first dimension of A) is distributed along the first dimension (4 processors) of
the mesh and A; along the second dimension {2 processors). Section 3.1 defines this as the
IMAGE of A. Each processor is identified by its coordinates (p1, p2), with p; € {0,1,2,3}

!For each dimension of a decomposition, SUIF generates three different versions of each partitionable
loop (two boundaries and a core computation). For n-dimensions this results in code expansion of 3.
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o DOi=535 "f
DOj)=2,i+2
©1 [{A] @n @0 S A(i,j) - o iy en o)
2 A{4040) zJ
29
p?
oo | oo | o | eo o0 | oo | es | oo
®p)
" 10 ¥ 20 2y 30 40 p‘ ‘| 10 11 201 30 3t 40
PTD,; ={1 + 10p; : 10 + 10p,) i € PTD, =[maz(5,1 + 10py) : min(35, 10 + 10p, )]
PTD2 =[1+ 20p2 : 20 + 20p,} J € PTDy=[maz(2, 1+ 20p;) : min(i + 2,20 + 20p))

Figure 1: Partitioned Array A(40,40)  Figure 2: Partitioned Iteration Space

and p; € {0,1}. Given any processor p = (p,p2), the bound expressions of the PTD
shown in the figure define the regions of A stored in p. Let A(7,j) be referenced in the
loop nest as shown above. If the iteration space were partitioned such that p executes
iteration (¢,7) if p accesses A(%,j) locally, the resulting description would be as shown
in Figure 2. Although all of these regions have different sizes (from @ in p = (0,1) to
10 x 19 in p = (2,0)) or shapes (null, rectangular, triangular, and trapezoidal), a single
PTD describes them all. Section 3.1 refers to each partition as the ACCESS iteration set
of A(i,j) with respect to p.

2.1 Variable Number of Processors

On most multicomputers, users are able to request the size of a machine partition on
which to run programs. Given a fixed size array, the more processors available at run
time, the smaller the array partition accessed by each processor (since b; o 7’,:). The
compiled program must adapt itself to the configuration of the machine partition on
which it runs. The PTD supports variable processor compilation by retaining the block
sizes of distributed array dimensions, &;, as symbolic variables (described in Section 2.3).
Many implementation issues arise when dynamically allocating memory which has to
be accessed in a multidimensional fashion. One solution is to linearize all partitioned r-D
arrays, as used by APR in the FORGE xHPF parallelizer, at the expense of evaluating
complicated array subscripts for each reference at run time. A simpler approach, currently
used in PARADIGM, is to require the user to specify a minimum processor configuration
at compile time. This allows memory to be statically partitioned for the minimum con-
figuration (retaining any dimension information) while allowing the number of processors
to grow beyond this lower bound. Since the required block sizes of the partitioned ar-
rays decrease with increasing number of processors, all accesses are contained within the
partitioning of the minimum configuration while retaining multidimensional access.

2.2 Set Operations

To work with PTDs, several relational tests are defined to detect subset, disjoint,
and null set conditions. Union, intersection, and difference functions are also defined to
perform multidimensional operations on the sets. Figure 3 shows algorithms for the PTD
set operations. Note that the representation is closed under intersection while a union
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issubset(14y(A, B) are_disjoint(;4)( A, B)
ifA=10 return(true) if(A=0or B=10)
else if B = 0 return(false) return(true)
else if ((Ib(A) > Ib(B)) or (ub(A) < ub(B))}) else if ({ub(A) < ib(B)) or (Ib(A) > ub(B)))
return(true) return(true)
else return(false) else return(false)
(a) Subset Relation (A; C B:) (b) Disjoint Relation (A;) B; = 0)
(A =0)= (Ib(A) > ub(A;)) D for some dimension ¢
(c) Null Set Relation (A = 0)
union( A, B)
for i = 1 to dim do intersection( A, B)
ifA; =0 AUBi =8 for i = 1 to dim do
elseif Bi=0 A;UB;=A; if are_disjoint(14y(A:, Bi)
else if are_disjoint(14)( Ai, Bi) AiNB =0
A;UBi= A+ B else A, Bi = [max(Ib( A;), 1b( By)) :
else A;UB: = [min(Ib( Ai), 1b(B:)) : d min(ub( A;), ub( B;))]
max(ub( A;), ub(B))]  COnC
done ? o
(d) Union Operation (AUB) (e) Intersection Operation (A B)

difference( A, B)
for i = 1 to dim do
if are_disjoint(14)(Ai, By) Ai — Bi = A
else
T = [Ib(A;) : Ib(Bi)-1] U [ub(Bi)+1 : ub( A;)]
kernel; = TN A,
done
A — B = stretch(kernel, AN B)

(f) Difference Operation (4 — B)

Figure 3: Algorithms for Performing Set Operations on PTDs

A A
K -
stretch(K, ANB) | !
ANB i oiAnB
B ‘, B o
A-B i K=kernel(A - B) D=A-B

Figure 4: Stretch of a Difference Kernel

A
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|
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Figure 5: Examples of Set Operations between two PTDs A and B

or difference can potentially result in a list of sets. In Figure 3f, the difference operation
is seen to perform a strelch operation after computing an n-dimensional “kernel”. The
kernel of a difference can be thought of as the region in which all 1 D differences intersect
when projected into n dimensions. The kernel is then stretched over the intersection of
the original sets. This is done by choosing up to {n — 1) non-null dimensions from one set
and selecting the remaining dimensions from the other (see Figure 4).

Figure 5 shows an example of how a union, intersection, and difference are performed
between a triangular region A and a trapezoidal region B, both partitioned on a 4 x 2
processor mesh. As shown in the figure, the first axis, «, is aligned with the first processor
mesh dimension p,, and y is aligned with p;. In the figure, each shaded region corresponds
to the accompanying PTD expressions. PTD, defines its z-values, and PTD, defines the
y-values as a function of the z-values (the expressions have been simplified where possible).

2.3 Symbolic Bound Comparison

Symbolic comparison is used to determine relations between bounds of PTDs as well as
to maintain simplified bound expressions. The details involved in performing symbolic
comparison between the expressions supported in PTDs are not included here due to space
constraints. The basic approach taken to perform comparisons between two expressions
is based upon a hierarchy of symbolic comparisons at different levels of complexity.
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At the lowest level, symbolic comparison is performed between a pair of symbolic scalar
ezpressions (expressions involving constants and variables) by simplifying a difference of
the two expressions. For symbolic linear erpressions (a linear expression with symbolic
scalar coeflicients), linear comparisous can be made within a desired range using scalar
comparison between the coefficients. Comparison of symbolic binary expressions (a min or
mar of two symbolic linear expressions) can be performed with comparison lattices using
linear comparisons between components. These levels are applied recursively to perform
comparisos:s of nested binary operations on linear expressions of symbolic quantities.

Symbolic Comparison with Variable Processors Recall that the block sizes of
partitioned arrays are allowed to vary with the number of processors P; assigned to the
mesh dimension. Given a dimension of a distributed array of size N, the block size is

computed as & = [ 7’)\%] Since all array dimensions mapped to the same mesh dimension

will vary together (with respect to P;), comparison relations still exist between symbolic
block sizes although the actual value of the block size is not known at compile time.

To support comparison of symbolic block sizes the symbolic scalar coniparison opera-
tion is further abstracted using mirrors. A mirror retains information that would other-
wise be lost if the source of the symbolic quantity were ignored. For symbolic scalars, an
n-dimensional polynomial is used to mirror the value involving symbolic block sizes:

/Bnpn—l +ﬁn—1P,.—_ll +... +/12P2_1 +/}1})|—l +c

where f3; are block sizes based on a minimum processor configuration and c is a constant.
Whenever symbolic scalars are encountered, comparison can be performed by component-
wise comparisons of each of the corresponding coefficients of the mirrors maintained for
each scalar.? Any arithmetic operation that is performed on a symbolic expression must
also be performed on the corresponding mirror polynomial. For use in the compiler, it is
sufficient to support polynomial addition/subtraction, and scalar muitiplication/division
on these mirrors.

3 Use of PTDs in Compilation

Both data and computation decompositions can be represented using PTDs. In this
section we examine the use of PTDs in the PARADIGM compiler [7]. During analysis
of the reference patterns in a program, PTDs are transformed among different domains.
Altogether, four domains can be defined: global and local indices {GN and LN), and
global and local iterations (GI and LI). Transformation functions (and their inverses)
among the different domains are:

Global . Local
7p(1)
Indices GN — LN
s7H1) 1T s(4) 1s(3)
Iterations GI — LI
Ap(2)

2Since any dimension of a mirror is affected by the constant term, ¢ is added to non-zero coefficients
during comparisons. Constant scalars also have implicit mirrors where ¢ is equal to the numeric value.
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The subscript function s(z) of an array reference A(s(z)), enclosed in a loop, transforms
points from the loop’s iteration space into the index space.® For simplicity, in this paper
(i) is allowed to be a linear function®* of a loop variable i: s(¢) = a1z + ag. The index
translation function 7, transforms points in the global index space into indices local to
a processor p: T,(x) = x — bp, where b is the block size of distribution. Similarly, the
iteration translation function A, transforms points from the global iteration space into
iterations local to a processor p: A, (2) =1 — ip.

3.1 Data Partitioning

IMAGE Global Index Sets Using the data partitioning provided by the user or gen-
erated by the compiler [6], PTDs in the global index domain (GN) can be generated fo:
each partitioned dimension of a distributed array. For each array A{1 : N) distributed
across a processor mesh dimension of P processors indexed by p (0 < p < P — 1), the
corresponding PTD describing this partitioned array is

PTD =1+ bp: b+ bp|

where b = [¥] is the block size of A. This PTD is called the IMAGE of A on p, denoted

IMAGE(A,p). This expression assumes that the alignment offset w of A on the mesh
dimension is w = 0, and that the indices of A start at 1. In general, we may have
A{a: N +a—1) and w # 0, and then IMAGE(A, p) becomes

IMAGE(A, p) = [maz(a,a+ w + bp) : min(N + a — 1,b+ w + bp))

If w > 0, then we need some p < 0 to address the leftmost w elements of A. Similarly,
if w < 0, then some p > P — 1 is required to address the rightmost w elements of A.
In either case, we can define p; = p mod P as the real processor coordinate. To avoid
unnecessarily obscuring the expressions derived, we assume w =0 and a = 1.

ITERIMAGE and AcCCESS Global Iteration Sets From the IMAGE index set of A,
the ITERIMAGE and ACCESS global iteration sets (in GI) of each reference A(s(:)) can
be computed. The ITERIMAGE set of A(s(:)) with respect to a processor p is the set
of iterations 7, unrestricted by loop bounds, such that A(s(z)) is stored in p. Since the
partition of A stored in p is given by IMAGE(A, p), we can write

{i | s(i) € IMAGE(4, p)}
[[s73(1 + bp)] : |s~"(b+ bp)]]

For A(s(z)) enclosed in a loop nest in which the i-looﬁ g’oes from { to u, ACCESS(A(s(z)), p)
is defined as the set of iterations 7 in the i-loop for which A(s(?)) is stored in p:

ITERIMAGE(A(s(2)),p) () [!: u]
([maz(l,s™(1 + bp))] : [méin(u,s™ (b + bp))]]

3For simplicity of notation, it suffices to use one-dimensiona!l arrays in the discussion. For n dimensions,
there is a PTD; per dimension. Thus, A(s(i)) should be thought of as A(...,s(i),...).

4The more general case of affine subscript functions over enclosing loop variables can also be handled.
If i is the innermost loop variable that appears in the subseript, then s(i) = a1i + ao still holds by
letting ao be an affine function over the rest of the loop variables. Some additional conditions for loop
partitioning must be observed when such subscripts are allowed.

ITERIMAGE(A(s(2)), p)

It

il

AccEss(A(s(2)), p)

it




- ————— -

130

3.2 Computation Partitioning

The compiler applies the owner computes rule which states that the processor owning
a data item performs all computations for that item. An efficient implementation must
avoid the run-time overhead of computing ownership. For a loop nest, this is done by
reducing the loop bounds according to the Reduced Iteration Set [8] (RIS) of the loop.
This is the union of the ACCESS sets of the left-hand side (/hs) references in the loop with
respect to a processor p. The RIS represents the largest subset of the iteration space for
which p does some work in every iteration. The RIS is in the global iteration space GIL. If
used directly, an index translation 7, is required at every iteration to transform s(¢) from
the global index space GN into the local space LN of p: DO (i € RIS) A(7,(s(i)))="--
This can be costly if |RIS| is large. A better approach is to obtain LRIS = A,(RIS), which
is in the local iteration space LI of p. The loop becomes DO (i € LRIS) A(s(i))=---
and is more efficient since |RIS| 7, operations are saved at run time.

If the ACCESS set of a lhs in the loop is a proper subset of the RIS, then the corre-
sponding statement must be masked [8] to make its execution conditional. Optimizations
such as mask merging (consecutive assignment statements sharing the same mask) and
mask extraction (multiple occurrences of a mask coalesced and extracted out of a loop) are
performed automatically by the compiler. Details about the conditions and algorithms to
compute RIS, LRIS, and masks can be found in [13].

3.3 Communication Determination

To find the necessary communication among processors, the compiler computes several
communication sets for each right-hand side (rhs) reference. Details of these sets and the
algorithms to calculate them are found in [13, 14]. A brief description follows.

RECEIVE and SEND Global Iteration Sets The first communication sets computed
are the RECEIVE and SEND sets, both in the global iteration space GI. For an assignment
statement S with a lhs reference L and a rhs reference R, RECEIVE(R, p) is the set of
global iterations for which p owns L but not R. Thus, p must receive this data via
interprocessor communication to execute S. Similarly, SEND(R, p) is the set of global
iterations for which p owns R but not L, and hence must send the data to the owner
processor of L for it to execute S. Thus, we have:

RECEIVE(R, p)
SEND(R, p)

Accgss(L,p) — ITERIMAGE(R, p)
Access(R, p) — ITERIMAGE(L, p)

IN and OUT Local Index Sets To generate communication, the array sections to be
communicated must be determined. The RECEIVE and SEND sets are translated from
the global iteration space GI to the local index space LN of each processor p, obtaining
the IN and OUT sets, respectively. First the subscript function s(z) is applied to translate
the sets from global iterations GI to global indices GN, and then the index translation
function 7, is used to take the sets from global indices GN to local indices LN of p:

IN(R, p)
OvuT(R,p)

7,(s(RECEIVE(R, p)))
7p(s(SEND(R, p)))
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PARADIGM Code Example It is zlso of interest to examine the actual code gener-
ated. Figure 6 shows a serial program for a two-dimensional Jacobi iteration. Figure 7
shows the resulting optimized node program supporting a variable number of iPSC pro-
cessors with a2 minimum configuration of four nodes. Notice the use of symbolic block
sizes (highlighted) whose values are computed at run time.

program jacobi if (my$p(2) .le. m$num(2)—2) then
parameier (np2 = 500, ncycles = 10) call crecv(0,B(1,m8bB2+1),4*m$bB1)
real A(np2, np2), B(np2, np2) end if
apl = np2-1 if (my$p(2) .le. m$num(2)~-2) then
do k = 1, ncycles call csend(1,B(1,m8$bA2),4*m8$bB1,m$to(0,1},1)
do j = 2, npl end if
doi = 2, npl if (my$p(2) .ge. 1) then
AG,j) = (BGi-1,J) + B(i+1,§) call crecv(1,B(1,0),4*m$bB1)
+ B(i,j-1) + B(i,j+1)) / 4 end if
end do if (my$p(1) .ge. 1) then
end do mS$inc = f$pack2(B,4,0,251,0,251,1,1,3,1,m8bB2,1,m$buf)
do j = 2, npl call csend(2,m$buf,m$inc,m$to{—1,0),1)
doi = 2, npl end if
B(i, ) = A(i,)) if (my$p(1) .Je. m$num(1)—2) then
end do call crecv(2,m$buf,1000)
end do m$inc = fSunpack?(B,4,0,251,0,251,m8$bB1+1,m8bA1+1,
end do 1,1,m$bB2,1,mS$buf)
end end if
. N . N . if (my$p(1) .le. m$num(1)—2) then
Figure 6: Serial Version of Jacobi méinc = f$pack2(B,4,0,251,0,251,m$bA1,m8$bB1,

1,1,m8bB2,1,mSbuf)
program jacobi call csend(3,m$buf,m$inc,m$to(1,0),1)
character m$buf(1000) end if
integer my$p(2), m$bA1, m$bA2, m$bB1, m$bB2 if (my$p(1) .ge. 1) then
integer m$numdim, m$num(2), m$to(—1:1,—1:1), mSinc call crecv(5,m$buf,1000)
real A(250,250), B(0:251,0:251) m$inc = fSunpack2(B,4,0,251,0,251,0,0,1,1,m8bB2,1,m$buf)
m$numdim = 2 {number of mesh dimensions} end if
m$num(1) =2  {minimum mesh configuration} do j = max(2—-m$bA2*my$p(2), 1),
min(499-m8bA 2*my$p(2), m3bA2)

m$num(2) = 2
call m$g (m$; des()) do i = max(2~-m$bA1*my$p(1), 1),
call m$gridinit(m$ di $ des(},1) min(499-m$bA1*my$p(1), m$bA1)
call m$gridcoord(mynode(),my$p) A, j) = (B(i-1,j) + B(i+1,j) + B(i, j-1)
m$to(—1,0) = mSgridrel2(my$p,—1,0) + B(i, j+1)) / 4
m$to(0,—1) = mSgridrel2(my$p,0,~1) end do
m$to(0,1) = m$gridrel2(my$p,0,1) end do
m$to(1,0) = mgridre}2(my$p,1,0) do j = max(2-m8$bB2*my$p(2), 1},
m$bA1l = ceil(float(500) / m$num(1}) min(499—-m8$bB2*my$p(2), m$bB2)
m$bA2 = ceil(float(500) / m$num(2)) do i = max(2—-m8$bB1*my$p(1), 1)),
m8$bB1 = ceil(foat(500) / m$num(1)) min(499-m$bB1*my$p(1), m$bB1)
m$bB2 = ceil(float(500) / m$num(2)) B(i, j) = A, ))
dok =1,10 end do

if (my$p(2) .ge. 1) then end do

call csend(0,B(1,1),4*m$bB1,m$to(0,~1),1) end do
end if end

Figure 7: Jacobi for Variable Number of Processors, with a Minimum 2 x 2 Configuration

4 Conclusions

The purpose of this work is to provide a uniform and efficient way of describing distributed
data or computation. The main advantages of the PTD over many other existing rep-
resentations can be summarized as follows: (1) a single PTD describes all partitions of
a region regardless of the shape and size of each partition; (2) a wide range regions of
are possible with arbitrary numbers of dimensions, arbitrary boundary angles (not just
multiples of 45°), and nonconvex shapes; (3) the PTD supports symbolic set functions
and domain transformations, essential parallelizing compiler for distributed memory; and
(4) symbolic block sizes make it possible to compile for a variable number of processors.
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Abstract: We present Resource Spackling, a framework for integrating register alloca-
tion and instruction scheduling that is based on a Measure and Reduce paradigm. The
technique measures the resource requirements of a program and uses the measurements to
distribute code for better resource allocation. The technique is applicable to the allocation
of different types of resources. A program’s resource requirements for both register and
functional unit resources are first measured using a unified representation. These mea-
surements are used to find areas where resources are either under or over utilized, called
resource holes and ezcessive sets, respectively. Conditions are determined for increasing
resource utilization in the resource holes. These conditions are applicable to both local
and global code motion.

1 Introduction

A variety of local and global scheduling techniques have been developed for exploiting
instruction level parallelism. The degree of parallelism in the schedule is affected by reg-
ister allocation, which is applied either Lefore or after scheduling. Instruction scheduling,
which allocates functional units, and register allocation have competing goals. The goal
of register allocation is to avoid spills, which tends to result in a few values being held in
registers for a long time. The goal of instruction scheduling is to keep all functional units
busy, typically requiring a large number of values to be available for future operations.
Thus an improvement in the availability of one resource may reduce the availability of
the other resource, and possibly result in poor overall quality of generated code.

We present a framework for integrating instruction scheduling and register allocation
that is based upon a Measure and Reduce paradigm. Resource requirements are measured
and better resource utilization in both local and global scheduling is achieved by moving
instructions from areas with over utilized resources to areas with under utilized resources.
Integrated allocation of registers and functional units is achieved by allowing simultaneous
consideration of the demand for both types of resources during scheduling.

Previous work on local schedulers has treated register allocation and instruction schedul-
ing as separate phases [BEH91, GoH88, Pin93, SwB90|. In addition, the instruction
scheduling phases have been based on list scheduling. The separation of phases and use
of list scheduling limit the direct assessment of the impact of register and functional unit

!Partially supported by National Science Foundation Presidential Young Investigator Award CCR-
9157371 and Grant CCR-91090809 to the University of Pittsburgh
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allocation decisions on the availability of other resources and hence on the length of the
schedule. Recent work has incorporated parallel live range information into register al-
location, but still separates register allocation from instruction scheduling [Pin93]. The
approach we present unifies the allocation of registers and functional units in a single
phase and is able to consider the impact of an allocation decision on other instructions.

Work on global scheduling has identified blocks to which an instruction can be moved
(AiN88, BeR91, Fis81, GuS90, SHL92] by concentrating on functional unit constraints
[EbN89, MGS92] in carrying out the code motion. Only recently has work on global
scheduling begun to consider register allocation as a part of the problem [MoE92, NiG93].
Although Moon and Ebcioglu[MoE92] added register constraints, they are only able to
exploit unused registers at the beginning or end of a basic block. Our framework allows
all idle resources in a basic block to be identified, regardless of when they are idle, and
exploited when instructions are available. The framework can be used in conjunction with
commonly used methods for performing code motion, such as Trace Scheduling[Fis81],
Percolation Scheduling{AiN88], and Region Scheduling{GuS90].

The Resource Spackling framework computes resource requirements for a program.
A unified representation of functional unit and register uses is constructed to identify
all resource uses that can temporally share the same instance of a resource. Using this
representation we compute the maximum number of each resource required at each point
in the program. Maximum functional unit requirements correspond to maximum par-
allelism, while maximum register requirements correspond to the maximum number of
simultaneously live values. The resource requirements measures are then used to identify
two sets: ezcessive sc!s, which are sets of instructions that may be executed concurrently
but require more resources than are available, and resource holes, which are areas where a
resource is underutilized. Properties are identified for holes and resources, which indicate
how instructions can be inserted into the holes to increase resource utilization. Moving
an instruction is only beneficial if it can be placed in a hole where all necessary resources
are available. The technique is called Resource Spackling due to the process of identifying
and filling resource holes.

2 Determining Resource Requirements using Allocation Chains

This section summarizes the measurement of resource requirements used to locate ex-
cessive sets and resource holes [BGS93]. Measurement of resource demands depends on
the usage characteristics of the resource. The two major types of resources considered in
this work, functional! units and registers, have different use properties. If a resource is in
use only during the execution of an instruction, we say it is a non-spanning resource. If
the use of a resource begins during the execution of one instruction and ends during the
execution of a subsequent instruction we say the resource is spanning. The instruction
that begins the use is called the defining instruction and the instruction that ends the
use is called the killing instruction. Functional units are non-spanning resources, while
registers are spanning resources.

The resource usage information is represented as a Reuseg DAG, and is computed from
the program DAG. Functional unit and register Reuse DAGs are denoted as Reusegy
DAG and Reuseg.,, DAG respectively. The term Reuse comes from the property that for
any edge (A, B) in the Reusegp DAG, where A and B are nodes representing instructions
in the program DAG, B can always safely reuse A’s instance of R.

The program DAG in Figure 1(b) is a Reusepy DAG. A corresponding Reusepe,
DAG is shown in Figure 1(c). The selection of which use kills a value must be performed
carefully so that the number of simultaneously live values is maximized. To maximize the
number of simultaneously live values for the Reuser.; DAG in Figure 1(c) the following
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A: load a

B: b=2=x*a
C:c=a+1
D:d=a-3
E:e=cx*xd
F: £f=c-~-4d
G:g=e/ ¢
H: h=g+5
I: 1 =h=*2
J: 3=h + 4
Ki k=1/j
L: 1 =b +k

(a) Basic block of code (b) Functional Unit Reuse DAG (¢) Register Reuse DAG

Figure 1: Basic block and Reuse DAGs

selections have been made: B kills A, T kills H, and E kills both € and D.

Resource requirements for resource R are measured from the partial order represented
by the Reusegr DAG by finding sets of instructions that can reuse the same resource
instance, called allocation chains. Formally, a chain is a subset of elements in a partial
order such that all elements in the chain are related, i.e., ordered. A decomposition of a
partial order into chains is a set of chains such that all elements in the partial order are in
exactly one of the chains. A decomposition is minimal if there is no other decomposition
of the partial order that has fewer chains. Since the allocation chains are found on the
Reusen DAG, all instructions on one allocation chain can be assigned the same instance of
the resource. Each of the sets of nodes {A, C, E, G, H, I, K, L}, {D, F, J}, and {B}
is a chain, and this set of chains forms a minimal decomposition of the DAG. Similarly,
the Reusep.; DAG can be minimally decomposed into the chains {4, B, L}, {C, F, G,
H, 1, K}, {D}, and {E, 3}.

The maximum number of independent elements in a partial order is equal to the num-
ber of chains in a minimal decompositior[Dil50]. Since the partial order is constructed
from resource reuse information, the number of chains in a minimal decomposition rep-
resents the maximum number of instructions that can execute concurrently and simul-
taneously live values for Reusery DAGs and Reusegr., DAGs respectively. Thus, the
block in Figure 1(a) requires three functional units and four registers to exploit all of
its parallelism. A minimum decomposition of a partial order can be found by using a
straightfor vard transformation to a bipartite graph matching problem[FoF65).

3 Resource Holes

Resource holes and their properties are located by analyzing the allocation chains for the
resource of interest. Given a hole k, the size of h, sizey, is the number of cycles for which
the hole’s resource is available for allocation. EAT), the earliest available time of hole
h, is the earliest time that the resource can be allocated to an instruction. LAT;, the
latest available time of hole h, is the lastest time that the resource can be allocated to an
instruction. These properties are determined by the time of execution of the instructions
surrounding the holes. The scheduling of instruction 7 in the program DAG is limited
by the precedence constraints to a time frame in which it can execute. The time frame
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is delimited by the instruction’s earliest start time, EST;, and latest finish time, LFT;.
Let r; denote the execution time for instruction . Then i's latest start time, LST;, is
given by LST; = LFT; — r;. The slack time for scheduling instruction ¢ is given by
slack; = LST; — EST;. The identification of resource holes is performed by examining
the instructions’ ESTs and LFT's on each allocation chain and recording the information
for each hole.

Resource holes can occur in two different situations. The first, a free hole, occurs when
an instance of a resource is unused in a section of a basic block. Free holes can occur
because no instructions from an allocation chain can execute in this section. They can
also occur at the beginning or end of a block before maximum demands are encountered.

Definition 1 If two consecutive instructions, ; and ¢;4,, on an allocation chain cannot
be executed consecutively, i.e., LFT; < EST; ,, then there is a free hole, h, such that
EAT, = LFT;, LAT, = EST,,,,, and sizey = LAT, — EAT.

We refer to the pair (EAT},, LAT,) as the range of hole . As an example, assume the
DAG in Figure 1(b) and the chains mentioned earlier, and that all instructions require
unit time. The DAG requires eight time units to execute. A free functional unit hole
exists between instructions F and J, with size 2 and range (3, 5). Thus, two instructions
could be allocated to that allocation chain between F and J.

The second type of hole, a slack hole, occurs when resources that are already allocated
may be temporally shared. If slack; = 0 then i is on a critical path and has no flexibility
for scheduling without increasing the execution time of the basic block. If ¢ is not on a
critical path then there is some flexibility on when it can be scheduled. Thus, its resources
may be available for allocation to another instruction.

Definition 2 If there is a set of consecutive instructions T = {iy,1, ..., i»} and a constant

s such that _VI slack;, = s, there is a slack hole, h, such that EAT, = EST,,, LAT, =
IJG

LFT;,, and size, = s.

In Figure 1(b) there is a slack functional unit hole involving instructions A, B, and the
end of the block. B has a slack time of 5, and a range of (1, 7). Thus, five instructions
could be allocated to B’s allocation chain. Any number of these five instructions can be
allocated between A and B, with the remainder after B.

Instructions are inserted in holes to avoid increasing the critical path length. Thus
a hole must be at least as large as the instructions being inserted in it. There are cases
when additional instructions must be placed in the hole to manage the use of registers. In
a register slack hole there are instructions which are already using the register. Spill code
must be placed in the hole around the inserted instructions to free this register for the
inserted instructiors. Additionally, the final value computed by the inserted instructions
must sometimes be spilled. The following theorem formalizes the conditions under which
a set of instructions can be inserted in a hole. The values 7,re and Tioaq are the number
of cycles required to store and load a value respectively.

Theorem 1 Let T be a set of instructions, with execution time 7z, that requires resource
R. During insertion of T in h there will not be any increase in the length of the critical
path of the basic block containing h, due to unavailability of resource R, if h satisfies one
of the following conditions.
1. R is a non-spanning resource or R is a spanning resource and inserting I in h
requires no spills, and size, > 71.
2. Ris a spanning resource, and inserting I in h requires only the final value computed
by T to be spilled and sizer, 2> 77 + Tyore-
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3. R is a spanning resource, and inserting Z in & requires only a value computed by
instructions already in h to be spilled, and stzen > 77 + Tyore + Tivad-

4. R is a spanning resource, inserting I in A requires both a value computed by
instructions already in h and the final value computed by Z to be spilled and
sizep 2 T + 2Tstore + Tload-

Proof: Since the cases are mutually exclusive, each case is proven in turn.

Case 1 When ro spilling is required the hole must be at least as big as the inserted
instructions, whose size is 77, giving size, > 771.

Case 2 When the final value computed by the inserted instructions must be spilled, the
hole must be at least large enough to hold both the inserted instructions and the
store instruction, giving sizep 2> T1 + Tyeore-

Case 3 When a value computed by instructions already in the hole must be spilled, the
value must be stored before the inserted instructions and then reloaded following the
inserted instructions. Thus the hole must be at least large enough to hold a store
and a load in addition to the inserted instructions, giving stzes > 77 + Tstore + Tivad-

Case 4 This case is a combination of cases 2 and 3. Summing the additional instructions
that must be inserted with 7 gives size, > 71 + 2Tyore + Tioad-O

In addition to the instructions chosen for insertion in the hole, T must also contain
any load instructions for any values needed by Z which are not already in registers.

In some situations, instructions must be inserted even when there are no holes available
for insertion. In these situations the scheduler creates pseudo holes in the block for each
resource needed, resulting in an increase in the critical path length. This process of forcing
holes into the block, increasing its critical path length, is called wedged insertion.

4 Local Scheduling and Register Allocation

In the Measure and Reduce paradigm, local resource allocation is performed by introducing
sequentiality between instructions whose resource demands exceed availablc resources.
The sequencing places two instructions, which were on separate allocation chains, onto
a single allocation chain. The result is that the two instructions are allocated a single
instance of the resource and share it temporally. Sequencing must be performed when the
number of allocation chains is greater than the number of resource instances available.

Definition 3 An ezcessive set Ep = {1, I5,...I,,} for resource R is a set of instructions
such that

1. all instructions are independent, i.e., .VE 1 ¢ ancestors(j) U descendants(j), and

1.JEER

2. there are excessive requirements, i.e., m > |R|.

Note that condition 1 implies that each instruction is on a separate allocation chain.

For every instruction i, the allocation chains can be used to find all resources for
which 7 is a member of at least one excessive set of the resource. Sequentialization is then
performed by selecting ¢ to be the instruction with excessive uses that has the greatest
slack time to be moved to holes. The slack time is used to prioritize the instructions
since it indicates flexibility in finding a place to move the instruction. If there is a set of
overlapping holes for all resources that i excessively uses within ¢’s execution range, then
i can be inserted in those holes without increasing the critical path length.

If there is no set of holes within i’s execution range, then an increase in the critical
path length 1s unavoidable. There are two options. First, there may be a set of holes
close to i’s execution range to which i can be moved. Second, wedged insertion can be
performed to create a set of holes for i’s excessive uses. The option that minimizes the
increase to the critical path length should be selected. The outline for an algorithm that
reduces a block by finding or creating holes is given in Figure 2.
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Procedure reduce_block( block )
{ While block has excessive sets do
{ T = all instructions in all excessive sets for all resources;
select ¢ € 7 with maximum slack;;
R = the set of resources that i excessively uses;
if (3 :’R hole h, whose ranges overlap with each other and

1’s execution range)
holes = this set of holes;
else
{ close = the set of holes h, 8.t. r € R whose ranges overlap
and are closest to i:’s execution range;
wedge = the set of holes created by wedged insertion for R;
holes = the set, either close or wedge that minimally increases
the critical path length of block; }
R GYI place ¢ in h, by adding sequentialization edges;
rEROIES
if ( excessive spanning uses remain )
spill uses between the excessive set and the hole containing i;

remove ¢ from excessive set information; }

Figure 2: Function reduce_block()

As an example, consider the DAG in Figure 3(a). First assume that the target archi-
tecture has at least five registers but only three functional units. Then the nodes C, D, F,
G, H, and I are all members of at least one functional unit excessive set. Nodes H and I
each have a slack time of one. There is a functiona} unit slack hole around each of H and
1, so H’s hole overlaps with I’s execution range. Figure 3(b) shows the result of inserting
I in H’s hole. Dashed arrows indicate sequentializing dependences, i.e., dependences due
to reuse of resources rather than data values.

Now assume that only four registers are available and G is selected to kill both C’s and
D’s values and I is selected to kill E's value. Then nodes C, D, F, H, and I are in functional
unit and register excessive sets. Node H has slack time but there are no register holes
in its execution range. Therefore the algorithm must increase the critical path length.
There are a functional unit and a register hole available after G executes since it kills two
values and only needs one register for itself. Inserting H in the hole following G would
increase the critical path by one instruction. Wedged insertion would increase the critical
path length more because the pseudo hole must be large enough to spill and reload a
value. Therefore the algorithm chooses the hole close to H instead of performing wedged
insertion. The resulting DAG is shown in Figure 3(c).

Although the creation of some live values may be delayed by sequencing, the instruc-
tions that compute the live values may need input values. These input values remain live
from where they are computed to where the excessive instructions are moved. In Figure
3(c) the value computed by H was delayed until there was a register available. However,
E’s value remains live until after both H and I execute. In this example it is impossible
to reduce the register requirements below four using just sequentialization. When such a
situation occurs sequentialization must be combined with register spilling. There are two
options for selecting what values to spill. Either the values in the excessive set may be
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(a) Example DAG {b) Functional unit (c) Register (d) Register spilling
sequencing sequencing
Figure 3: Local reductions of resource requirements

computed and spilled, or the input values may be spilled. The option selected depends on
what holes are available. Computing and spilling the excess values prior to the excessive
set requires additional functional unit and register holes, while spilling the input values
requires additional functional unit holes to where the values are moved.

Continuing with the above example, assume the same killing instructions and that
the target architecture has three registers and two functional units. As before, the nodes
C, D, F, H, and I are in an excessive set and only instructions H and I have slack time.
Free functional unit and register holes become available after G executes, and another set
of free functional unit and register holes become available after J executes. H and I are
placed in the free holes. However, the sequentialization would still leave the excessive
set {C, D, E, F}. Thus a spill must be performed. To minimize the number of sp:lls, the
algorithm spills the input value, E. The resulting DAG is shown in Figure 3(d).

5 Global Scheduling and Register Allocation

The goal of global scheduling is to move instructions from a source block to a destination
block to decrease the execution time of the source block by reducing the critical path length
in the source biock and avoiding increasing the critical path length in the destination
block. The instructions moved are called fill instructions since they are inserted in holes
in the destination block. Fill instructions may be found in blocks with the same control
dependences and in blocks with different control conditions when the architecture supports
speculative execution [SHL92] or guarded execution [HsD86), or when code duplication is
performed.

Next we describe how existing global code motion techniques [AiN88, Fis81, GuS90]
can use the framework to unify functional unit and register allocation, and determine
which code motions are beneficial. To realize a benefit, all instructions that are at one
end of a DAG and are on a critical path must be moved together; otherwise the critical
path length will not be reduced. We call such sets of instructions critical sets. Consider
removing nodes from the top of the DAG in Figure 1(b}. The first critical set is {A}.
When A is moved the length of the DAG is reduced by the execution time of A. Then the
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Function £ill( dest, source )
{ reduce = 0;
While dest has holes do
{ ¢s = next set of critical instructions from source;
Foreach instruction: € cs
{ compute EST; based on I’s dependences in the destination block
LFT; = LFT of the last instruction in the destination block }
/* find overlapping resource holes */
Foreach instruction : € cs, in decreasing order of EST;
{ Forall resources r required by :
{ select holes h, such that they overlap with the other holes
selected and with :
if no such holes exist
{ undo all moves from the current critical set;
return reduce; }
Insert i into h’s allocation chain; }
Update the hole description information; }
reduce = reduce + 'néi?s (7))

return reduce;

Figure 4: Function £111()

next critical set is {C, D}. Note that B is not in the critical set since moving it would not
affect the length of the critical path.

If not all instructions in a critical set can be moved, none are moved. The allocation
of resources is similar to that in local schedulers. Overlapping resource holes are found
for all resources required by each instruction. However, the holes must be within the
instruction’s execution range, and wedged insertion is not performed, since the goal is
to avoid increases to the critical path length of the destination block. An algorithm for
performing global code motion in this manner is given in Figure 4.

Consider the problem of moving the instructions from Block 2 to Block 1 in Figure
5(a). Assume that there are three functional units and four registers available. The
first critical set consists of instructions M1 and M2. Instruction M2 can be inserted in the
functional unit hole following F and the register hole following D since the holes overlap.
M2’s value must be spilled since the register hole is not available to the end of the DAG.
M1 can be inserted in the functional unit hole following B and the register hole following G,
which results from killing F. The value computed by M1 need not be spilled. The resulting
DAGs are shown in Figure 5(b). Next M3 and M4 are moved up. Since M4 is selected to
kill both M1 and M2 it can use the same functional unit and register as M2. Instruction
M3 can use M1's functional unit, and it will also take M1’s register, forcing M1 to use B’s
register. B’s value must now be spilled around the inserted instructions and M3’s value is
spilled before B’s value is reloaded. The resulting DAGs are shown in Figure 5(c).

Traditional global schedulers, based on list scheduling, are able to identify functional
unit holes. However, since the scheduler is separate from the register allocator, it does
not know if there are registers available for the instructions that it moves up. Similarly,
these schedulers cannot recognize when instructions from other blocks should be moved
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Figure 5: Example of global code motion

up above instructions in the block with slack time, since these schedulers usually schedule
all instructions in the current block first. Resource Spackling can move instructions from
other blocks above instruciions with slack time in the current block when overlapping
resource holes are available.

Several problems concerning the insertion of fill instructions must be considered. The
code motion algorithms must determine if the critical path length of the source block
is decreased when loads of moved values are inserted in it. The algorithms mu. also
consider the impact of code duplication on the critical paths.

6 Experimentation and Concluding Remarks

We have implemented Resource Spackling using our experimental compiler tool, pdgcc.
Pdgce is a C compiler front-end which performs dataflow and dependence analysis and
generates intermediate code in the form of PDGs. Both local reductions and global code
motions have been implemented. The target architecture of the experiments is a VLIW
architecture that supports speculative execution. Two configurations of different numbers
of functional units and registers are used. In the target architecture all instructions
execute in one cycle, except for memory access instructions which execute in two cycles.
Although the framework supports all code motions for conditionals, the experiments are
based on code motions for speculative execution of instructions.

The procedures used consist of six routines from the C version of the linpack bench-
mark. Execution profile information was collected for each region. The resulting execution
times, after local and global Resource Spackling has been performed, are determined by
multiplying the execution times of each region by the number of cycles required to execute
the region.
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VLIW machine 1 || VLIW machine 2

4 FUs 8 Regs 8 FUs 16 Regs

routine [ local  global local  global
matgen | 2.48 2.64 | 2.48 2.73
dgcal | 1.96 2.12 || 2.01 2.18
daxpy | 2.24 2.35 | 4.09 4.40
ddot 2.12 212 ) 212 2.12
idamax | 3.01 3.01| 3.01 3.01
epslon | 2.17 2.38 § 2.17 2.38

Table 1: Experimental results

The results for two target architectures are shown in Table 1. The columns labeled
local give the speedup over a 1 wide VLIW architecture when only local scheduling using
reductions are performed. The columns labeled global give the speedups when both local
and global scheduling are performed. The size of the critical path reductions ranged from
1 to 6 cycles and averaged 2.6. The number of instructions moved ranged from 1 to 8 and
also averaged 2.6.

The numbers show that Resource Spackling is able to exploit the parallelism available
in the benchmarks within the constraints of the architecture’s resources. Further, in all
but two cases, ddot and idamax, global code motion using Resource Spackling made ad-
ditional improvements. Upon examining the routines and their profile information, it was
discovered that instructions were moved during global code motion, but that neither their
source or destination regions were executed during the profiling runs. The routines ddot,
idamax, and epslon did not show any improvement when run on the 8 wide architec-
ture because the resource requirement measurements showed that the 4 wide architecture
provided sufficient resources.

Resource Spackling is a framework which is general enough to allow common archi-
tectural features to be incorporated. Separate Reuser DAGs can be built for each type
of resource provide, e.g., integer and floating point register files, and integer functional
units and separate floating point adders and multipliers. Pipelines, resource demands
that can be satisfied by several types of resources, and implicit resource demands also can
be modeled in Resource Spackling[BGS94].
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Abstract: Predicated and speculative execution have been separately proposed in the
past to increase the amount of instruction-level parallelism (ILP) present in a program.
However, little work has been done to combine the merits of both. Excessive speculative
execution can negatively affect the performance, especially when unguided by suitable
profiler estimates. Similarly, predicated execution always results in unnecessary execu-
tion of operations present in the untaken branch. Conventional techniques use expensive
profiler analysis to reduce the overhead costs of predicated execution. In this paper we
first study the effects of individual as well as combined effects of speculative/predicated
execution features. We then present an algorithm which attempts to combine the merits
of the two. We show that for programs with unpredictable branch outcomes, the proposed
technique improves the program performance as compared to previous techniques. We
also show that separating the two (predication and speculation) results in less efficient
schedules.

Keyword Codes: C.1.3, D.1.3, D.3.m

Keywords: instruction level parallelism, program dependence graph, region scheduling,
predicated execution, speculative execution

1 Introduction

Architectures such as horizontal microengines, multiple RISC architectures, Superscalar
and VLIW machines benefit from the utilization of fine-grain or instruction level paral-
lelism (ILP). The presence of conditional branches in the code however limit the extent
of ILP that can be extracted at a basic block level. Since many application programs are
branch intensive and basic blocks do not contain many operations, the need to extend
the scheduling phase beyond basic blocks is important in order to achieve better perfor-
mance [4]. Techniques have been adopted by conventional compilers to parallelize the
branch code. Two widely known techniques which attempt to alleviate this problem are
predicated execution and speculative execution.

Predicated execution is presented as a technique to handle conditionals using basic
block techniques. First, a branch condition is replaced with a statement which stores the
result of the test in a predicate register, P. An instruction in the true branch such as
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Figure 1: (a) Original data dependence graph.(b) After renaming f = ¢—1 (c) Dependence
graph after renaming and forward substituting g = f+eanda=g+e.

a = b + cis replaced by a predicated instruction a = b + ¢ if P_t which specifies that
the operation will actually be completed only if the predicate P is true. An instruction
on the false branch such as d=e*f would be replaced by d=e*f if P.f Mahlke et al.
propose a parallel architecture which supports predicated execution in which the predicate
operations may execute concurrently with the statement which assigns the predicate [6, 7].
This is possible because the operation is executed regardless of the value of the predicate,
but is only allowed to change the assigned value if the predicate value is satisfied. Since
the stores are performed in a later part of the execution cycle than the computation of
the value, this is feasible. Thus, code containing branches is converted into straight-line,
branch-free code. Warter et al. [5] later propose a reverse if-conversion process to convert
the predicated representation back to the control flow graph representation in order to
facilitate architectures without predicated execution support.

Speculative execution refers to the execution of operations before it is known that
they will be useful. It is similar to predicated execution except that instead of allowing
the operation to be performed at the same time step as the predicate, the operation can
be performed many time steps before its usefulness is known. Renaming and forward
substitution are used by Ebcioglu et al [8] and Nicolau et al [10] to move operations
past predicates. The length of a dependence cycle containing a control dependence is
reduced when the true dependencies in the cycle are collapsed by forward substitution.
Renaming is a technique which replaces the original operation by two new operations, one
of which is a copy operation while the other is the original operation but whose result is
assigned to another variable. The copy operation copies the value from this new variable
to the original variable. Since the new variable is used only in the copy operation, the
assignment is free to move out of the predicate. Figure 1(b) shows how renaming is used
to move the operation f = ¢ — 1 past the predicate. A new variable f’ is created and is
assigned the result of the expression ¢ — 1. In order to preserve the original semantics of
the program, the value assigned to f’ is copied back into f. Since f’ is used only by the
copy operation, it can move past the predicate. Figure 1(c) shows the resultant graph
formed after renaming and forward substituting g= f+eanda=g+e.

Various factors effect the desirability of using either predicated or speculative execu-
tion. If the code is highly constrained by data dependencies, predicated execution may
be of little benefit. Speculative execution may perform better. In Figure 1(a), predicated
execution would allow operations 3 and 4 to execute simultaneously which would have the
effect of reducing the dependency cycle to five. However, Figure 1(c) shows that the cyclic
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dependency can be reduced to 4 by performing speculative execution only. Similarly, for
branch intensive programs, predicated execution may perform better than speculative ex-
ecution as it supports multi-way branching. Operations dependent on different predicates
can be executed simultaneously, provided the parallel instruction can accommodate them.
This provides more parallelism than speculative execution.

Both the techniques have their drawbacks as well. Excessive speculative or predicated
operations may result in the generation of inefficient code. Speculated operations con-
suming extra resources may degrade the initial schedule. Similarly, predicated execution
always examines operations from both the branches irrespective of which branch is finally
taken. This may worsen the performance, if the predicted operations from the branch not
taken consume extra cycles after the predicate has been computed.

The issue therefore becomes, how can the merits of both be combined in order to
improve the efficiency of the generated code and if so, to what extent should they be
combined? This paper attempts to answer these questions. In Figure 1(c), the cyclic
dependency (4) after performing speculative execution can be further reduced to (3) with
predicated execution (allowing 3 and 4 to execute concurrently).

The rest of the paper is organized as follows. Section 1.1 explains previous work done
in this direction. Section 2 explains our model and the set of transformations we used
for our comparison study. In this section, we also compare our combining algorithm with
hyperblock scheduling [6], another relatively new technique which attempts to alleviate
this problem. Finally, Section 3 shows the results obtained from the test cases.

1.1 Previous Work

An early attempt to speculatively execute predicated operations was done by the Impact
Group [6]. They use hyperblocks to control the overhead which is inherent when all oper-
ations (which are performed conditionally) are predicated. Profiler estimates are used to
analyze the various conditional paths and ignore blocks with low frequency. All condition-
ally executed operations within the hyperblock are initially predicated. The predicated
operations are then considered for speculative execution. All the predicated operations
which could pot be speculated, either due to resource or dependence conflicts, remain
as predicated operations. Global transformations are then performed on the resultant
hyperblocks to generate parallel schedules. The performance of the technique depends
on two main factors. First, the amount of regular parallelism a program contains i.e.,
how predictable and uniform are its control structures. Second, the overhead costs of
compensation code (for the less frequently executed blocks) and other side-effects due to
predicated exeuction, which may negatively affect the performance.

Another global scheduling technique which attempts to combine the merits of the two
techniques is region scheduling proposed by Gupta et al. [11]. The extent of combining
however is limited and less aggressive than hyperblock scheduling. A condition P; is
merged (predicated) with its true and false regions' R; and Ri respectively, only, if
both R; and R contain sufficiently less parallelism to fully utilize the system resources.
Precisely, the transformation is performed if 6; + 8 < 6ideat; ideat is the number of
function units available in the target architecture. The parallelism §; present in region R;
is measured as O;/T;, where O; is the total number of operations present in the region
and T; is the execution time of the longest dependency chain.

!Regions represent independent schedulable units and summarize all statements having the same
control condition. More details can be found in subsection 2.1.
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Most of the earlier work aimed at increasing the efficacy of using the speculative execu-
tion feature. Several hardware and software mechanisms have been proposed. Boosting,
a hardware mechanism to support speculative execution, was proposed by Smith et al
(2]. The work describes a hardware feature to support delayed and accurate reporting of
exceptions caused by speculatively executed instructions. However, their work is based on
a trace-driven simulation which does not support predicated execution features. More-
over, trace scheduling possesses serious limitations as shown in [11]. Bernestein et al
{3] present an algorithm to selectively speculate instructions. Speculation is performed
after non-speculated operations (if any) have been considered for possible code motion.
The work assumes a machine with low issue rates (2-3). Their model does not support
code duplication and provides limited speculative execution (one branch only). However,
neither of the techniques support predicated execution.

2 Our Approach

We propose a technique which attempts to combine the merits of both the predicated and
speculative execution features. Predicated execution is used to simultaneously execute
control dependent operations with the computation of the predicate. Operations which
can not execute simultaneously with the predicate are not predicated. Subsequent pred-
ication is unnecessary as the outcome of the branch condition will be known then. This
avoids the consumption of extra resources needed to execute operations in the untaken
branch. Let C be the set of all operations which are performed conditionally. Let C, be
the set of all operations which can be executed speculatively (if such execution will not
increase the execution time of the non-taken branch). Let C, = C — C, be the other
operations which cannot be speculatively executed, either because of data dependence or
because of resource conflicts. The operations of C, can be executed (predicated) con-
currently with the operation on which they are control dependent, can be skipped via
branching, or can be executed (taken branch).

The technique treats the jump instruction as a predicated instruction and allows the
possibility for its concurrent execution along with the predicate controlling its execution.
We assume that the writback stage of program counter is guarded for predicated jump
instructions. In case, the predicated jump instruction is nullified, the program counter
is assumed to point to the next sequential address in memory. We perform this partial
combining only when the cost of inserting this predicated jump instruction is still less
than the cost to fully predicate all the conditional operations or to strictly disallow control
dependent operations to execute simultaneously. The combining technique is performed
only if both of the above two conditions is satisfied. More details about the technique are
described in section 2.2.

We implemented the above technique in our enhanced version of the region model.
The program dependence graph (PDG) [9] is used as a framework for performing our
paralielizing transformations. The purpose of this study is two-fold. First, to show that
predicated or speculative execution by itself cannot fully exploit the global ILP available
in a program. Second, to show that the combining technique we propose, is better than
previous techniques which attempted to combine the merits of both the predicated and
speculative execution feature.
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Figure 2: Code Motion Possibilities (a) Program Fragment (b} PDG Equivalent (c) Code
Motion Possibilities

2.1 Our Transformations

We used our enhanced version of the region scheduler {1} as our model for performing all
the parallelizing transformations. The transformations include pipelining, loop transfor-
mations and code motion transformations. Pipelining is used to overlap (simultaneously
execute) operations present in different iterations of a loop body. Loop transformations
peels one or more iterations from the loop body to a region just before/after the loop.
This transformation is used to increase the parallelism present outside the loop. In our
model, loop transformations are performed (if necessary) after pipelining to peel the iter-
ations from the transformed loop body. Code motion transformations are then employed
to redistribute the parallelism among regions. Figure 2(c) shows the various code mo-
tion transformations performed in our model. Figure 2(b) shows the PDG equivalent of
a program fragment in Figure 2(a). Nodes A, --,F represent simple region nodes and
contain operations. Nodes R represent combined region nodes as each has heterogeneous
descendants. Nodes P represent the predicate condition operation. The various code
motion transformations as listed in Figure 2(c) are given below. All the transformations
are subjected to dependence constraints and resource availability.

1 Code Duplication Operations from region A can be moved to regions B and C. Sim-
ilarly, operations from region B can be moved to regions D and E.

2 Speculative Execution Operations from region B and/or C can be speculatively ex-
ecuted at region A. Similarly, operations from region D and/or E can be specu-
latively executed at region B. An operation is speculatively executed only if both
the renamed and the copy operation generated can be executed without increasing
execution time.

3 Predicated Execution Operations from B and/or C can be executed simultaneously
with the predicate condition operation P1. Similarly, operations from D and/or E
can be executed simultaneously with P2.

4 Delayed Execution Operations from A can also be moved to F.
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Figure 3: Combining Technique (a) Initial Code Fragment (b) Determination of predicated
operations which can be speculated (c) After Speculative Execution (d) Determination
of Predicated Operations that can be Accommodated in w (e) Combining Technique (f)
Pseudo-code Equivalent.

5 Eager Execution Operations from F can be executed eagerly at A.

At each stage, operations with maximum height are considered first as possible can-
didates for code motion. Among operations with the same height, the one with more
immediate breadth (successors) is selected next. We assume branch outcomes are un-
predictable and therefore assume equal frequency of execution on both branches. The
details and the style of each individual transformation can be found in [1]. Our previous
model did not incorporate predicated execution capabilities. We implemented the pro-
posed combining technique to facilitate predicated execution. We also implemented the
combining technique proposed by the hyperblock method in our model and compared it
with our technique.

2.2 Combining Algorithm

In this section, we explain our combining algorithm and then compare it with the similar
work done at the hyperblock level.

Definition 1 A parallel instruction is said to be of width wif it can execute w operations
in one instruction cycle. An instruction of width w can accommodate w regular
(ALU/memory) operations along with w copy operations.

Definition 2 P(X) represents the number of parallel instructions (of width w) required
to execute all operations in set X.

Figure 3 illustrates the combining technique proposed by the hyperblock method in
the framework of our region model. Figure 3(a) shows an example code fragment. Each
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region R), Ry, R; and R, contains Q, R, S, T operations respectively. Assume that
both the branches (R;, R3) have equal likelihood of being executed and that the resultant
hyperblock formed comprises of Ry, R;, R3, Ry. Initially, all operations R and S present
in the true and false branch regions are predicated on condition pl. Assume, that only Z
and Z’ can be speculatively executed from R and S, owing to dependence and resource?
constraints. Figure 3(c) shows the code after Z and Z’ have been speculatively executed.
In the hyperblock technique, all the remaining opcrations R’ and §’ which could not be
speculated, are predicated. This may consume unnecessary resources especially when the
code present in the untaken branch is sufficiently large. This can be avoided by branching
to the appropriate region depending on the outcome of pl. We also make the instruction
executing pl as a predicated instruction in order to facilitate parallel execution of control
dependent operations. Assuming that the width of the instruction is w, operations X
and X' from the true and the false branch regions are executed in parallel along with pl,
as shown in Figure 3(e). The equivalent pseudo-code formed is shown in Figure 3(f). A
predicated jump operation is now inserted.

The entire sequence of steps is summarized as follows. The schedule cost estimates
for each of the three cases (total predication, partial predication, no predication) are
first determined. The resultant global schedules formed using the schedules at the region
nodes (which are currently being used for analysis) are used as estimates for comparison
purposes. The process is repeated for each of the above three cases separately. The one
with a better estimate is chosen as the combining method and the process is repeated
until all the regions are considered for scheduling. The specific combining equations used
to achieve the above effect are given below.

P(R+ 5 +pl)>1+P(R").--true 1)
P(R' + 5 +pl) > 14 P(S")--- false (2)
0.5 (P(R') + P(S")) > 1+ 0.5« (P(R") + P(S") (3)

P(R'+ S'+pl) is the number of instructions required to execute operations R’ (true),
S’ {false) and the condition operation (pl) as shown in Figure 3(c). P(R") + 1 is the
number of instructions required to execute the remaining operations (R”) in the true
branch plus the inserted predicated instruction as shown in Figure 3(f). Equations (1)
and (2) are used to determine if the cost of performing partial predication/speculation
as shown in Figure 3(f), is less than that of performing total predication, as shown in
Figure 3(c). Equation (3) compares the costs of performing partial combining against
following strict control dependence. The equations are multiplied by 0.5 to average the
number of instruction cycles required for the true and false branch respectively. Partial
combining is avoided if any of the above two conditions do not hold true. The average
performance of the algorithm can be improved by using weighted equations and/or profiler
estimates. We are currently studying the effect of the two in our combining heuristics.
Our combining algorithm is shown in Figure 4(a).

2Resource constraints here refer to the availability of these operations (Z and Z') being accommodated
for free in R,.
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Figure 4: (a) Combining algorithm (b) Results Obtained for an Issue Rate = 3.

3 Performance Evaluation

3.1 Evaluation Methodology

The underlying architectural model is a VLIW processor with homogeneous function
units. The latency of the ALU, memory (load/store) and branch operations is assumed
to be one, two and one respectively. Our current enhanced region scheduling (ERS)
compiler version does not handle procedure calls and pointer references. We also assume
that all the references to the cache are perfect. Thus, our results compare the relative
CPU execution times. An instruction of width w (initially assumed) can accommodate w
regular (ALU, memory, branch) operations along with w copy operations. All the results
are derived using a global list-based scheduler which schedules each region/predicate node
in an inorder fashion. The performance is measured as the number of instruction cycles
required to schedule the whole program. The speedup is measured as the ratio of the
number of cycles required for sequential execution over the number of cycles required
after performing parallelizing transformations.

The benchmarks consist of programs from the SPEC benchmarks, livermore loops
and other commonly used application programs. All the programs are written in C and
contain loops with one or more conditionals. In order to present a fair comparison with
previous methods, we avoided loop pipelining transformation in our analysis. However,
our combining algorithm can be used to treat pipelined loops as well. Peeled iterations
from the transformed (pipelined) loop body containing conditionals can be treated with
non-loop conditional constructs. In our analysis, loop peeling is performed first (if nec-
essary) to peel the iterations from the loop body. This transformation provides more
opportunities for code motion with the code present outside the loop body. Code motion
transformations are then performed to redistribute the parallelism among regions. The
proposed combining technique is applied during the code motion stage.
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Average 50.1 56 54.8 65.5 Average 54.4 61.7 578 68.7

Figure 5: (a) Results Obtained for an Issue Rate = 5 (b) Results Obtained for an Issue
Rate = 7.

3.2 Results

Consider Figure 4(b) and Figure 5 which show the performance increase for issue rates
of 3, 5 and 7 respectively. The issue rate is the maximum number of operations that can
reside in a single parallel instruction. PE shows the performance increase over sequential
execution using predicated execution support. All other transformations except specula-
tion are performed for tI case study. SE shows performance increase using speculative
execution support. Predicated execution support is avoided for this case study. Finally,
ERS1 (hyperblock) and ERS2 (proposed), the two different combining approaches are also
shown. It should be noted that the amount of global speculative code remains the same
for SE, ERS1 and ERS2. The performance difference for the three models comes in, how
the remaining unspeculated operations in each branch region are treated. SE disallows
control dependent operations to execute simultaneously. ERS1 allows control dependent
operations to execute simultaneously but predicates all the remaining unspeculated op-
erations pre-ciit in the branch regions. ERS2 performs partial combining as discussed in
Section 2.2.

The results show that SE performs better than PE for most of the test cases except for
the test case minmax. For the test case (Minmax) with multiple nested predicates (and
few conditionally executed operations), predicated execution has a greater performance
than speculative execution for lesser issue rates. Less speculative execution is performed
for low issue rates due to insufficient resources. However, for higher issue rates, the
performance is greater for speculative execution. On the average, speculative execution
performed 5%-16% better than using predication execution only.

It is interesting to note that SE performed better than ERS1 for most of the test cases.
This clearly shows that performing total predication of the remaining unspeculated oper-
ations may result in the consumption of extra cycles. The effect was more pronounced for
low issue rates and less for higher issue rates. An average of 2-3 peeled iterations from the
loop body was observed for most of the test cases. For test cases tomcatv and pterm._ops,
ERS] performed consistently better than SE. This shows that for branch intensive pro-
grams with less side-effects (due to predicated execution), ERS1 can actually find more
parallelism than SE. However, the side effects seem to be more pronounced for other test
cases, thereby affecting the performance of ERS1. ERS2 seem to perform consistently
better than all the other models. On the average, the performance improvement of ERS2




156

is around 10%-15%, 5%-20%, 15%-25% over using ERS1, SE and PE respectively. For
some of the test cases (kernel 20), the performance of ERS2 was similar to SE. The pro-
posed technique was never performed for that test case resulting in a similar performance.
Similarly, for the test case (bresnham), ERS2 and ERS1 had a similar performance.

4 Summary and Conclusions

In this paper, we have studied the effects of individual as well as combined effects of
predicated and speculative execution features. Previous studies have separately proposed
several hardware/software mechanisms to improve their existing performance. We show
that both predicated and speculative execution are important features and should be
employed by any parallelizing compiler in order to extract all the potential parallelism
available in a program. We also presented a technique which attempts to combine the
merits of the both and showed that the proposed technique performs better than the
technique proposed by the hyperblock method. All our transformations are performed
using the extended region model [1].
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Abstract: This paper explores the potential of a program representation called the program dependence graph
(PDG) for representing and exposing programs’ hierarchical control dependence structure. It presents several
extensions to current PDG designs, including a node labeling scheme that simplifies and generalizes PDG traversal.
A post-pass PDG-based tool called PEDIGREE has been implemented. It is used to generate and analyze the PDGs
for several benchmarks, including the SPEC92 suite. In particular, initial results characterize the control
dependence structure of these programs to provide insight into the scheduling benefits of employing speculative
execution, and exploiting control equivalence information. Some of the benefits of using the PDG insteuu of the
CFG are demonstrated. Our ultimate aim is to use this tool for exploiting multi-grained parallelism.

1. Introduction

A program representation called the program dependence graph (PDG) (6] explicitly represents all control depen-
dences, and readily identifies control-equivalent basic blocks that may be far away from each other in the CFG.
The hierarchical representation of the program control dependence structure in a PDG allows a large fragment of
the code to be treated as a single unit. Since the work by Ferrante et al. (6], a number of other researchers have
studied the use of PDG for code motion {8, 2, 5], program partitioning [13], code vectorization (4], register alloca-
tion [11], program slicing and software engineering [9,12], and code translation for dataflow machines (3).

PDGs appear well-suited for the exploitation of program parallelism of different granularities. Current compilers
exploit fine-grained parallelism by overlapping the execution of instructions within a basic block or a small num-
ber of adjacent basic blocks, and medium-grained parallelism by overlapping the execution of loop iterations. Re-
cent studies [10] suggest that additional parallelism can be harvested if the compiler is able to exploit control
equivalence and use multiple instruction streams. This parallelism may not be strictly fine-grained or medium-
grained. Multi-grained parallelism is an informal generalization of parallelism that can be achieved by the paralle]
execution of code fragments of varying sizes or granularities, ranging from individual instructions to loop itera-
tions, to mixtures of loops and conditionals, to large fragments of code. PDGs appear to be well-suited for exploit-
ing such parallelism, since such fragments are subgraphs of the PDG that ::n be hierarchically summarized, and
because they explicitly maintain accurate control dependence information.

Our eventual goal is to develop a PDG-based compilation tool capable of performing powerful code transforma-
tions to exploit multi-grained parallelism. This paper presents our initial results, most of which focus on programs’
control dependence structure. It proposes a number of extensions to the current PDG design in order to facilitate
more generalized code motion of varying granularities, for even unstructured and irreducible programs. A node la-
beling scheme is introduced that simplifies and generalizes PDG traversal.

The initial portion of a prototype PDG-based tool called PEDIGREE is complete. It is a post-pass tool which can
be used in conjunction with existing compiler front ends or disassemblers to perform optimizations on existing
source or object code. Currently, PEDIGREE is able to parse large, unstructured and irreducible programs into its
internal PDG representation. The PDGs of these programs are analyzed, and their contrnl dependence structures
are characterized. Section 2 introduces the PDG and presents our extensions to the PDG. The PDG node labeling

* Supported by National Science Foundation Graduate Research Fellowships, and ONR contract No. N0001491-J-1518.
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scheme is summarized in Section 3. Section 4 briefly describes the implementation of PEDIGREE. Section S an-
alyzes the PDGs generated by PEDIGREE for a number of benchmarks, including some from the SPEC92 suite.
The advantages of using the PDG over the CFG are highlighted using collected statistics in Section 6. Section 7
provides a summary and sugge:ts potential code transformations that can be implemented based on PEDIGREE.

2. The Program Dependence Graph

The program dependence graph (6] is essentially a hierarchical control dependence graph (CDG) and data depen-
dence graph. The explicit representation of contrel dependences facilitates the identification of control-equivalent
code. The hierarchical control dependence structure identifi- and groups code constructs for special processing.

2.1. PDG Definitions

A control flow graph (CFG) represents a single procedure. Nodes in a CFG are basic blocks. An arc between
nodes X and Y indicates one of the following: (a) a conditional or multi-way branch from X to Y, (b) an uncondi-
tional branch from X to Y, (c) X does not end with a branch and is immediately followed by Y, (d) X ends with a
procedure call, and Y _; the return target of the call. Only type (a) arcs represent true control dependences. They
are traversed only on a specified condition, while the traversal of arcs of type (b), (c). and (d) does not depend on
any condition. Figure 1b shows a typical CFG for the code in Figure la.

Nodes in a control dependence graph (CDG) may also be basic blocks. In a CDG, however, an arc from node X to
node Y indicates that Y is immediately control dependent on X. This means that X ends with a conditional or
multi-way branch, and that Y's execution depends on the value that determines the path out of X. This value is in-
dicated by the arc label. Figure lc shows the CDG derived from the CFG in Figure 1b. In the CFG, B6 follows
B3, B4, and BS. However B6 is not control dependent on any of these; in fact, it is control equivalent to B3. CDG
siblings that have exactly the same incoming arcs are control equivalent.

The program dependence graph (PDG) extends the CDG with hierarchical summary and data dependence informa-
tion. The PDG has additional nodes and arcs to represent hierarchical relationships. PDG nodes hierarchically
summarize regions of the CDG, rather than summarizing strongly-connected CFG components like a hierarchical
task graph (7). PDG nodes are classified into three basic types (8]. Code nodes represent basic blocks, and are leaf
nodes in the PDG. The control dependences in the CDG are represented in arcs which emanate from Predicate
nodes. Region nodes group together all nodes which share a common set of control dependences. Each Code node
contains the set of instructions from the corresponding basic block. Conditioral branch instructions are associated
with Predicate nodes rather than Code nodes, since descendants of Predicate nodes are control dependent on the
branch. Instructions can be broken into smaller sets, with Code nodes representing sub-blocks. Other PDG imple-
mentations, e.g. [2,4,6,8,13], generally use leaf nodes that represent statements rather than basic blocks. The repre-
sentation of data dependences is orthogonal to the control dependence structure. Data dependences may be
represented only within basic blocks if control flow order is maintained, or the representation may be as sophisti-
cated as Gated Single Assignment form (2]

PDG arcs represent two distinct concepts. Control dependence arcs represent control dependences, and thus must
emanate from a Predicate node. They correspond to the arcs of the CDG, and are labeled similarly. Conditional
branches use two arc labels, T and F. Multi-way branches, e.g. from case statements, have a unique arc label for
rach branch target. Unlabeled arcs, which emanate from Region nodes, are called grouping arcs. They represent
transitive, rather than immediate, control dependence for a set of nodes with a common set of control dependences.
Arcs which emanate from the same node can be ordered according to the original control flow order [8]. This or-
dering is necessary only to preserve inter-node data dependences if they are not explicitly represented. It also sim-
plifies data flow analysis and allows regeneration of a CFG identical to that from which the PDG is generated.

Figure 1d shows the original PDG representation (6] constructed from the CDG in Figure Ic. It has the same over-
all structure, but Region nodes have been added for each set of CDG nodes with control dependences in common.
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NUMEL=0
DO 360 I=1,18

360 NUMEL=NUMEL+JELCNT(I)
NUMTEM=MAX0 (NUMTEM-1, 1)
IDIST=MINO (IDIST, 1)

Bl: numel = 0
i=1

B2: jelcnt_i = load jelent,i
numel = numel + jelcnt_i
i=1i+1
b {i <= 18) B2

B3: numtem’ = numtem - 1
b (numtem’ $ 1)BS

B4: numtem = numtem’
br B6

BS: numtem = 1

B6: b (idist < 1) B8

B7: idist =1

(c) The CDG for the fragment

Bi Basic block i in CFG

Ri  Region node

Ci Code node for CFG node Bi

Pi  Predicate node for CFG node Bi
Li Loopnode

B8: ... ProcProc, the procedure node
EN Procedure entry
(a) FORTRAN and pseudo code EX Procedure exit

for a fragment of SPICE
\Control dependence

induced by loop back arc

%d Ferrante et al.’s PDG for the fragment
wn al basic block vs. stalement level) {e) PEDIGREE's PDG for the fragment

Figure 1. (a) FORTRAN example from spice, and its (b) CFG, (c) CDG, (d) PDG as specified in [6], and () our PDG
2.2. PDG Extensions

This work extends the PDG to better support exploitation of multi-grained parallelism. First, the Region node type
described above is subclassified. This is done to identify and isolate PDG phenomena like cycles, regions with
multiple contro! dependences, and irreducible loops, so that they can be handled more efficiently. Second, new
node types are added to represent proceJure calls and procedure entry points. Finally, each PDG node is labeled to
indicate its position within the PDG. These labels facilitate efficient PDG traversal and computation of inter-node
relationships such as dominance, reachability and control depender.ce. The first two extensions are presented in the
following subsections; node labeling is presented in Section 3. Figure le exemplifies this type of PDG.

2.3. Subclassification of Region Nodes

The generalized Region node type is subclassified to represent certain control dependence structures which should
be handled differently by the compiler. The special treatment of the region associated with one of these special Re-
gion nodes is indicated by the region type.

Multiple-predecessor (MultiPred) nodes group sets of nodes that share multiple immediate control dependences.
MultiPred nodes can arise from unstructured control flow like goto and break statements. A MultiPred node
signals the compiler that special actions, such as code replication or liveness analysis, must be taken when moving
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i=0 Cell: 0 1 2 3
, Label: Ti2[Ti2[Fi1|Tis
Pointer J Section number, e.g. 0, 1, ...
Side of cond..e.g. Tor F
B3's label M10’s labels
T1 T1 Fi T2 T2 Fo-2]1 T2 F1-3)
0 2 0 2 0 1
0 0 2 0 1
TTF TTF T F
? 1 0 2 2 0212 13
splivPDG pointer | ENB1 B2 Pr P6 P7 Br P6
) 3 } (c) Elements of CFG and PDG labels

(a) CFG example, showing conditional levelsi =0, 1 and 2
and increasing section bers within each level

Pr Procnode

Bi Basic block i

Ci Code node for Bi

Pi  Predicate node for Bi
Mi  MultiPred node

EN CFG procedure entry
EX CFG procedure exit

(b) CFG example, showing overlapping sides (d) PDG for (b)
of a conditional, with B10 on both sides

Figure 3. Labeling examples. (a) CFG for structured code, (b) CFG for unstruc-
tured code, (c) Elements of CFG and PDG labels, (d) PDG for the CFG in (b).

Figure 3a illustrates conditional nesting levels. Split EN is at level 0, BI is at ievel 1, and B2 is at level 2. Figure
3c illustrates the makeup of the label for B3, TITIFQ. It has three cells since it has three enclosing conditionals.
Cell 0, T1, describes B3’s position within the outermost conditional: it is on the true side and it is in section 1. B1
is in section 0 and BS is in section 2 at nesting level 0. Cell 1, T1, describes B3’s position within the enclosing
conditional whose split is at level 1, B1. It is on the true side, and in section 1. Because B3 shares a common pre-
fix, T1—, with B2, and it has a larger section number than B2 in cell 1, it must be reachable from B2. Finally, it is
the first node in the innermost conditional nesting level, and thus has a section number of 0 in the last cell. Cell 1
of B4’s label, FO, indicates that it is on the false side of the enclosing conditional at level 1.

Standard programming constructs such as if-then-else, multi-way branches and loops form structured code.
Unstructured code allows control to flow from one side of a conditional to another, such that some nodes in that
conditional are on more than one side of the conditional. A label can only describe position with respect to one
side of a conditional, so such nodes are assigned one label for each side of a conditional that they are on. In Figure
3b, a conditional is formed by the split node B6 and structured join B11, which are at level 1. The side of this con-
ditional associated with the T arc from B6 has nodes B7, B9 and B10. The other side of the conditional consists of
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If a PDG is constructed for every procedure in a program, then a Call node can contain a pointer to the called pro-
cedure’s PDG. An implicit call graph of the program is then present, with the PDGs as nodes, and the procedure
pointers within Call nodes as arcs. Summary information for a procedure can be maintained in the Proc or Call
nodes to support inter-procedural analysis and demand-driven inlining.

With this PDG design, a code fragment of varying size and granularity, including a mixture of control-equivalent
regions of different granularitics, can be summarized by a Predicate or Region node and ireated as a single unit.
This enables these fragments to be moved past other such fragments in what can be called multi-grained code mo-
tion. Identification of different types of regions indicates how each region should be treated. The next section de-
scribes a node labeling scheme that facilitates generalized PDG traversal for - ' ~ode motion.

3. Node Labeling and PDG Construction

A node labeling scheme is proposed which labels each node in a PDG, as well as in a CFG, so that its position rel-
ative to any other node may be determined by comparing their labels. This facilitates computation of reachability,
dominance, and control dependence relationships, as well as node-to-node traversals. Without such a labeling
scheme, these operations would require expensive traversals from the root to each node. The labeling scheme pre-
sented here handles unstructured and irreducible code. In addition, it allows inserted nodes to be labeled without
global changes to other node labels. Finally, a labeled PDG can be constructed during CFG labeling with minimal
additional computation. A brief description of the labeling scheme follows.

3.1. Program Control Dependence Structure

The structure of a program is determined by its patterns of control flow. There are three important control flow pat-
terns: splits, joins, and back arcs. A split is a CFG node with multiple successors because of a conditional or multi-
way branch. It has one successor for each branch target, or “side”, of the conditional. For example, an if-then-else
construct has a split with two successors, one for the “then side” and one for the “else side”, and a case statement
has a split with one side for each case. Joins are CFG nodes with multiple predecessors. These occur when two or
more paths rejoin. Each split has a corresponding structured join, which is the first CFG node where all paths from
that split rejoin. In structured code, all joins are structured joins. In Figure 3b, the splits are EN, B6, and B7. The
structured joins for these splits are EX for EN, and B11 for both B6 and B7. B10 is not a structured join. A back
arc is a control-flow arc such that the tail of the arc has a higher depth-first number [1] than the head.

Nodes must be labeled such that a comparison of the labels indicates reachability, dominance, and control depen-
dence. Node Y is reachable from node X iff they are on the same side of all enclosing conditionals and Y is on
some path from X to EX that does not include back arcs. X dominates Y iff all paths to Y from EN pass through X.
Y is control dependent on X if X is a split, and Y is inside that split’s conditional. In order to evaluate these rela-
tions, the following information must be maintained at each node: 1) the conditionals it is nested within, 2) which
sides of each enclosing conditional the node is on, and 3) relative position on each of those sides. Conditionals
may be nested, producing the different conditional nesting levels illustrated in Figure 3a. The EN and EX nodes
are at level 0. A node at conditional nesting level i is nested within i conditionals.

3.2. Node Labeling

A label consists of an array of cells, where cell i describes the node’s position within the enclosing conditional
whose split is at nesting level i. Each cell has two fields. The first specifies which side of that conditional the node
is on, e.g. with a truth value of T or F. The second is the section number, which indicates the relative position on
that side of the conditional. It can take on values like 0,1,2... . When inserting a new node between two existing
nodes, non-integer values can be used for section numbers to avoid having to modify section numbers of any exist-
ing nodes. Section numbers increase in the forward direction. Each cell also has a pointer to the CFG split or
immediate PDG ancestor in the innermost enclosing conditional. This pointer aids in node labeling and PDG tra-
versal of unstructured code. Figure 3c shows the clements of a 1abel, and shows the correspondence of labels’ cells
to nodes with three examples.
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nodes B8 and B10. B10 is on both sides of the conditional because arcs B7-B10 and B8-B10 bridge between sides
of the conditional. Thus B10 has two labels, one for each side of B6, with opposite truth values in cell 1.

Labels of Predicate and Region nodes have ranges for their section numbers in the last cell, /, instead of single val-
ues. The range bounds the possible section number values for cell { in the labels of the descendants of that node.
Hence the labels of the root of a region can be inspected during traversal to determine if a particular labeled node is
in that region. For example, in Figure 3d, all of P7’s descendants have a label in the range (T2T1, T2T3), abbrevi-
ated T2T(1-3). The section number range is distinct from the multiple labels associated with MultiPred nodes. For
example, M10 has two labels, T2T2F(0-2) and T2F(1-3).

3.3. PDG Construction

CFG node labels are assigned in depth-first order [1]: each node is labeled prior to its successors. The label(s) for
a node are constructed from its predecessors’ [abels. Labels are essentially a list of conditionals whose splits have
not been rejoined. Labels have a new cell appended for every conditional their node is nested within. At a struc-
tured join, labels from predecessors on all sides of a conditional are merged into a single, shorter label.

A PDG and its node labels may be constructed as the CFG is labeled. After a CFG node is labeled, a PDG Code
node is created, along with a Predicate or Call node if the CFG node ends with a conditional branch or call instruc-
tion, respectively. A Loop or IrrLoop node is generated for each loop entry, and MultiPred nodes are generated for
nodes with multiple control dependences. Code nodes are assigned the labels of the corresponding CFG nodes.

The immediate control dependence of CFG node X on the split node S of its innermost enclosing conditional is
indicated by the last cell of Xc’s label. A control dependence arc is added in the PDG from the Predicate node Sp
that corresponds to Sc to the PDG node Xp that corresponds to X¢. The last ceil of Xp's label points to Sp. In Fig-
ure 3, B6 has corresponding Code and Predicate nodes C6 and P6. C6 has the same label as B6, while P6's labels
bound the labels of C7-C10. Since C10 has multiple immediate control dependences, a MultiPred node M10 is
created forit. As seen in Figure 3¢, both of M10’s labels have their pointers set to P6 in cell 1. The section num-
ber ranges for Predicate and Region node labels are assigned after all of their children have been constructed.

3.4. Uses of Node Labels

With this node labeling scheme, evaluation of reachability, dominance, and control dependence are quite efficient.
Let A[{] be the i cell of label A, and let d be the first cell index for which labels A and B differ. A <B if A[d] and
BId] have the same truth value, and A{d] has a lower section number. For example, T2T1 < T2T2F1 but T2TO £

T2F2. Node B is reachable from A iff there exists a label of A, A;, and a label of B, By, such that A; <B;. In Figure
3a, B2 is reachable from B1 since TO < T1TO. B2 (T1TO) is not reachable from B4 (T1F0) because their labels
have different truth values in the first differing cell. Node A dominates node B iff for all of B’s labels, By, there
exists a label of A, A;, such that A; < B; and the first cell in which A; and B; differ is the last cell of A;. The defini-
tion of postdominance is similar. In Figure 3b, B7 does not domuiate B8 because they are on different sides of a
conditional. B6 dominates B10, but B7 does not dominate B10. B10 postdominates B8. Control dependence is
indicated with a pointer in cell i to the split at conditional nesting level i, on which the node is control dependent.

Labels uniquely describe a location in the PDG that is a target for traversal, since no two nodes have the same la-
bels. PDG traversal from node N toward a target label T proceeds one PDG node at a time. The direction from N
—right, left, up or down — is determined by comparing T°s label(s) with the label(s) of N and its neighbors. If the
next neighbor in the direction of traversal is past the target, traversal stops. Unstructured code creates multiple
paths in the PDG, between a MultiPred and the first Predicate that dominates the code in the MultiPred region.
Non-overlapping traversal along multiple paths is very difficult without guidance from a labeling scheme. Con-
sider traversal from M10 in Figure 3d to C6 via P6, along the two paths. P6 is the first node common to all paths
up from M10, as determined by the pointers to P6 in M10’s labels, shown in Figure 3c. Non-overlapping traversal
from M10 along one path proceeds only up to P6 without visiting it, while the second should then proceed through
P6 10 C6. The target for traversal along the first path should be inside P6’s region but before all of its children,
such as T1.5, since T1 < T1.5 < T2—. The target label for the other path toward C6 remains TO. T0 is before T1,
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5o traversal continues to the left of P6. Such traversal is important for code motion, since it allows muitiple copies
of code moved out of a MultiPred region to be unified at the dominating Predicate. Section 5 addresses the com-
plexity of label comparison and PDG construction. It uses collected data to illustrate their efficiency.

4. PEDIGREE: A PDG-Based Framework

The implementation of a post-pass, PDG-based, retargetable compilation environment called PEDIGREE is in
progress. PEDIGREE is implemented in C++, following an object-oriented design philosophy. The unique treat-
ment of each kind of PDG node, for summary, traversal, and scheduling, is encoded into the members and member
functions of different classes. The software architecture has four layers. Lower layers generallv provide services
to higher layers. At the bottom, the basic layer handles fundamental data structures such as graphs. The represen-
tation layer deals with the CFG and PDG program representations. This includes constructing the CFG and PDG,
and providing generic traversal functions. The scheduling layer provides low-level transformations related to code
motion, including functions to perform data dependence analysis and memory disambiguation, as well as functions
to actually move regions in the PDG. At the top, the guidance layer makes decisions regarding scheduling heuris-
tics. This includes identifying parallelism-lean regions and attempting to fill them with code from parallelism-rich
regions. The first two layers have been completed. Implementation of the third is nearing completion.

Currently, PEDIGREE performs the following functions.- It parses assembly files generated by a high-level lan-
guage compiler for an instruction set architecture specified in the architecture description file. It constructs a CFG
fo. each procedure, constructs a labeled PDG, analyzes the PDG, and generates statistics. It also regenerates the
CFG from the PDG in order to verify correct PDG construction. PEDIGREE has been used to collect the data for
the SPEC92 benchmarks. It is currently targeted to the DEC Alpha 21064, but can be easily retargeted.

5. PDG Analysis

The current implementation of PEDIGREE has been used to analyze several benchmarks. A subset of ten bench-
marks, including nine from the SPEC92 suite, are selected for presentation here. This section presents initial results
for these benchmarks in two areas: general PDG statistics and PDG construction and labeling complexity.

5.1. General PDG Statistics

Table 1 lists the benchmarks used in this paper, and presents the distribution of the different types of PDG nodes.
The presence of MultiPred nodes indicates that compilers must be able to handle the unstructured code in these
benchmarks. The number of MultiPred nodes may be unexpectedly high for some of these benchmarks, but un-

Table 1: PDG Statistics
source B“e::: lines of I #pro- | #PDG | #PDG | # Code | #Pred- | #Call | #Multi- | #Loop |  # t"r'_"(‘;‘;';y
{|assembly R cedures | nodes | arcs nodes | icates | nodes | Preds | nodes |lrrLoops targets)

SPECH92[ ear [ 16902 | 113 | 2812 | 2849 [ 1511 | sS04 | 578 38 | 106 0 f2 8
nssa? || 10095 18] 985 [ oo si2 | 229 [ o3 0| 133 oo ¢
spice’ [[115013 [ 111 [13615 |14734 [ 7498 | 2817 | 2614 | 343 [ 555 20 [ar ©2)
tomear || 1815 1] 0| o] os | 34| 2 o[ 2 ofo o
SPECim92[compress|| 4302 | 16 | 762 [ 791 | 435 | 165 | 130 | 17 | 16 o f1 o
eqntore || 14319 62 | 2527 | 2691 | 1396 | 577 | 367 61 | 125 0 iz as)f
espresso|| 74277 | 361 [15246 (15874 | 8314 | 3170 [ 2690 | 197 | 7 0 |6 a28)f
i | 31868 | 357 | 6141 | 6132 | 3274 [ 1118 [ 1270 | 149 | 122 o Jio s
sc || aa198 | 151 | 7544 [ 7892 | 4157 [ 1554 [ 1460 | 161 [ 222 0 [22 as3)
other | loops || 3142 2] a8 31| 160 53 52 o | s oo

* One spice procedure not processed at this time.
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structured code can arise from goto and break statements, and from returns from within a procedure. Many of
the programs are call-intensive, suggesting that inlining and inter-procedural analysis could provide considerable
benefit. The conditional nesting depth can be larger than the nesting of i f statements. The body of all loops that
have an exit test at their entry point are control dependent on the exit Predicate. Multi-way branches are fairly
common in integer code. The last column of Table | shows that the average number of targets ranges from 4 to 18.
The number of PDG nodes, arcs, and labels are an indication of the memory requirements of the representation.
The average number of PDG nodes per basic block is approximately 1.7.

5.2. Node Labeling Statistics

A node’s label length is equal to its conditional nesting depth. Table 2 shows that it is largest for benchmarks with
unstructured and irregular code, like spice, sc, and li. The cases with the largest average and maximum number of
labels arise in parsers with switch statements whose cases have returns in them. Because the returns create a path
from the muliti-way branch to the exit, all the paths from that split are not rejoined unti! the procedure exit node.

The time for CFG labeling, PDG construction, and label comparisons depends primarily on the length and number

of labels at each node. The complexity of label comparisons is O(CU?), where C is the conditional nesting depth,

and U is the nun ber of labels per node. Since the average and maximum values of these parameters shown in Ta-

ble 2 are small, | abel comparisons are generally efficient. Table 2 also shows labeling and PDG construction time,

in seconds, on a 133 MHz Alpha 3000/400. This time is most affected by the number of PDG nodes, the number of

labels per node conditional nesting depth, and loop nesting depth. The implementation has yet to be optimized.
Tab ie 2: Control Structure and Lzbeling Statistics, Ordered by Number of PDG Nodes

Ipnchmrc| ™o | o Mmoot 1ot et | s | msing | s | o o
bloaks block depth depth per node node depth depth | struction (s)
tomcaty 9. 178 170 192 4 1.00 1 1.52 3 091
Toops 164 9.99 318 1.01 2 1.00 1 0.69 3 2.37
compress | 467 4.00 762 8.61 19 257 48 0.52 2 398
nasa? 548 s 13 985 2.0 5 1.00 1 1.44 4 4.09
car 1737 436 | 2811 274 18 114 16 0.36 3 6.27
| eanon | 1765 4n 2933 6.40 16 2.53 84 0.81 7 17.11
i 3493 316 | 5323 8.23 21 274 | 1024 0.25 2 2161
sc 4459 370 | 7544 | 1003 24 3.86 81 0.75 7 | 22929
spice 6850 711 ] 12237 8.07 23 3.56 178 118 7 | 350091
espresso 1 833) 403 | 14008 385 15 1.29 49 0.58 4 ] 19722
6. Scheduling Scopes

Several researchers {2,3,4,5,6,8,11,13] have proposed the PDG as a better representation than the CFG for use in
code optimization. The size of the scope for code scheduling is a key factor in code optimization. The results in
this section highlight the available scopes for code motion and scheduling using the PDG representation, and show
how they compare with available scopes using the CFG representation. Since the data dependence analysis of
PEDIGREE is not yet complete, data dependences and specific code motion techniques are not addressed here.

6.1. Scheduling Scope Without Speculation

A PDG explicitly represents all control dependences. Region node are used to identify a set of control-equivalent
basic blocks. All control-equivalent basic blocks can be grouped into one scope for fine-grained scheduling (sub-
ject to data dependences). These basic blocks may be separated by potentially large distances in the CFG, making
it difficult for CFG-based technigues to harvest such parallelism. Table 3 presents the average sizes of these con-
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Table 3: Scope Size Without Speculation

"Bcnchmnks car nasa? spice | tomcatv | compress | eqgatott | espresso li s loops | WHM
oG BB.| 438 9.0 73 | 228 26 31 52 42 32 | 908 5.1
mswl 243 | 878 | 571 [2429 | 103 | 144 | 252 | 185 | 122 [10386 | 239

FG BB.| 10 10 10 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0
nse| 54 98 8.4 8.0 43 5.0 46 4.1 40 | 102 5.6

trol-equivalent PDG scopes and non-speculative CFG scopes. It is assumed that code is not moved to blocks with
lower execution frequency. For example, moving code from outside a conditional onto all paths of the conditional
requires replication and results in code explosion. This assumption limits PDG scope sizes more than CFG scope
sizes. The weighted hanmonic mean of the number of control-equivalent basic blocks, across all benchmarks, is
5.1, and the corresponding number of instructions is 23.9. For comparison, the analogous average scope sizes that
can be obtained using CFGs without speculation are 1.0 basic blocks and 5.6 instructions. The ability to identify
control-equivalent basic blocks enables PDGs to increase the average scope size for fine-grained scheduling to
over five times that of the CFGs. Potentially, this ability could significantly increase instruction-level parallelism
and resultant performance. Actual increases will depend on data dependences.

The difference in scope sizes is primarily due to the intrinsic weakness of the CFG: not explicitly representing con-
trol dependence information. The control equivalence of basic blocks before and after a conditional (or called pro-
cedure) cannot be determined, in general, with traversal along a single path. Consequently, code motion
techniques that traverse CFG paths would not be able to determine this equivalence and would need to conserva-
tively assume that these two basic blocks are control dependent. Use of the CFG effectively induces “false” con-
trol dependences. The scope for fine-grained code motion is restricted by these false dependences. Control-
equivalent basic blocks that are dispersed throughout the program can be easily identified using the PDG.

6.2. Scheduling Scope With Speculation

Speculative scheduling involves moving instructions across basic block boundaries, or to be more precise, moving
instructions so that they are executed prior to the resolution of their control dependence conditions. To perform
speculative code motion, a speculation scope is usually identified by grouping multiple basic blocks that are adja-
cent in the CFG. The degree of speculation is typically measured in terms of either the number of basic block
boundaries crossed or the number of conditional branches crossed. The opportunity for code motion generally in-
creases with a larger scope, which can be obtained with highe: degrees of speculation.

Figure 5 presents the PDG and CFG speculation scope sizes for varous degrees of speculation (DOS). Figure 5

presents corresponding scope sizes when speculation across lop hack arcs is considered. Given a DOS of N, the
100 T T T 22

PDG Scope Size (Basic Blocks)
CFG Scope Size (Basic Blocks)
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Figure 4. Scope size as a function of degree of speculation, for the PDG (a) and the CFG (b)




PDG Scope Size (Basic Blocks)
CFG Scope Size (Basic Blocks)

1 2 3 4 0 1 2
Degree of Speculation Degree of Speculation
Figure 5. Scope size as a function of degree of speculation, considering
specujation across loop back arcs, for the PDG (a) and the CFG (b).

CFG speculation scope size indicates the average number of basic blocks that are reachable from a reference basic
block by traversing up to N divergences of control flow, i.e. N splits in the forward direction or N joins in the back-
ward direction. CFG scopes are not permitted to extend past procedure calls. The PDG speculation scope is deter-
mined by crossing up to N true control dependences. Only control dependences are considered, not the original
control flow order. Thus intervening Call nodes are ignored. Inlining should further increase PDG scope sizes.

The average PDG scope size in basic blocks across all benchmarks is 9.0 for DOS 1, and 14.7 for DOS 4. When
speculation across loop back arcs is permitted, this number increases to 25.6 for DOS 4. The average scope size in
instructions is 37.0 for DOS 1 and 57.7 for DOS 4. The corresponding CFG scope sizes are 1.7 (DOS 1) and 1.9
(DOS 4) basic blocks, and 8.4 (DOS 1) and 9.4 (DOS 4) instructions. PDG speculation scope size is 5.3 times
greater on average than the CFG speculation scope size for DOS 1, and 7.7 times greater for DOS 4. Clearly, for
speculative scheduling with a given degree of speculation, the PDG provides larger scopes for scheduling than the
CFG. Furthermore, certain speculations in the CFG are not truly speculative, due to the false control dependences
induced by the traversal of paths in a CFG. Consequently, some basic blocks in the speculation scope of degree N
are not necessarily speculative of that degree.

Space does not permit presentation of more detailed data for individual code modules, but some insights are pro-
vided here. The bigger the procedure, the larger the PDG scopes, and the greater the benefits of the PDG vs. the
CFG. For very small procedures without procedure calls, the PDG and CFG scope sizes are similar, although CFG
scopes rise more slowly with DOS. The increase in scope size in the PDG levels off quickly for very shallow
PDGs (e.g. espresso’s cubestr) and more slowly for deeper ones (espresso’s mv_reduce). Calls are very limiting to
CFG scopes. Table 2 indicates that ear, spice, li and lloops have a high ratio of Call nodes to Code nodes. This
may explain why these benchmarks have smaller CFG scope sizes. As can be observed from a comparison of Fig-
ure 5 and Figure 5, the relative contribution of speculation across loop back arcs is small for low DOS. For higher
DOS, when other speculation potential is exhausted, consecutive loop iterations offer a continuous supply of paral-
lelism. Loop speculation accounts for only 18% of the scope size increase of 4.7 basic blocks from DOS 0 to DOS
1. But it accounts for 77% of the scope size increase of 6.2 basic blocks from DOS 3 1o DOS 4.

Two key differences between the CFG and the PDG are that the PDG represents the control dependences instead of
the control flow of the CFG, and that the PDG has the capability for hierarchical representation using region nodes.
The former removes the undesirable artifacts of the original sequential code. The latter allows encapsulation of in-
formation and more efficient traversal of the PDG during code motion. Initial results from the PEDIGREE tool ap-
pear to support the claims of the proponents of the PDG (2, 5, 6, 8, 13].

7. Summary and Potential PDG-Based Optimizations using PEDIGREE

The PDG described here is useful in exposing hierarchical control dependence structure. This information can be
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used to determine the kind of transformations that should be applied to cach section of the program, e.g. specula-
tion, loop optimization, and replication. PDG analysis suggests the benefits of increased scope size for different
degrees of speculation, and can provide guidance in selecting appropriate aggressiveness for cach procedure. The
use of accurate control dependence information to avoid unnecessary speculation provides a 5x increase in scope
size. Aggressive scheduling techniques are needed to exploit parallelism for non-loop code on wide architectures.
Exploiting even a small fraction of the additional parallelism discussed here is a significant step toward that goal.

The existing PDG-based tool, PEDIGREE, provides a framework for future development of a number of useful ca-
pabilities. It can be extended to take advantage of PDG features to 1) increase the scheduling scope and guide
speculation with accurate control dependence information, 2) perform inlining and inter-procedural analysis, 3)
move any region of code along an unstructured path, 4) schedule for multiple-instruction stream architectures, and
5) perform binary optimization. The data from Section 6 suggests that the PDG scopes for code motion for a given
degree of speculation are significantly larger than those of a CFG. Fine-grained code scheduling techniques can be
implemented in PEDIGREE to take advantage of the larger scope. The Call and Proc nodes added here facilitate
inlining, which can further increase scope size. They can also be used to summarize parallelism, variable usage,
and execution frequency, in order to inform a global guidance layer of the benefits of inlining, and to facilitate in-
terprocedural analysis. The implementation of inlining and use of branch profiling data will be completed shortly.

The PDG’s features provide a solid basis for partitioning and scheduling code for multiple-instruction stream ar-
chitectures. Such features include its ability to represent parallel schedules, its summary of parallelism informa-
tion that guides trade-offs in the redistribution of parallelism, and its support for generalized multi-grained code
motion. Parallelism studies [10] indicate that exploiting control parallelism in multiple instruction streams can
lead to a three-fold performance increase over a single instruction stream for non-loop-intensive code.

The post-pass PEDIGREE tool currently parses assembly files and constructs the PDG for a given architecture
specified in an architecture description file. Using this feature, PEDIGREE can be easily retargeted for other as-
sembly languages. There is potential for using this tool to perform translation and optimization on existing object
code. This will permit the effective execution of a large volume of existing software on new platforms without re-
compilation from the source. Future exploration of this potential application using PEDIGREE is planned.
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Abstract: Many coarse-grained, explicitly parallel programs execute in phases delimited
by barriers to preserve sets of cross process data dependencies. One of the major obstacles
to optimizing these programs is the necessity to conservatively assume that any two
statements in the program may execute concurrently. Consequently, compilers fail to
take advantage of opportunities to apply optimizing transformaticns, particularly those
designed to improve data locality, both within and across the phases of the program.

We present a simple and efficient compile time algorithm that uses the presence of barriers
to perform non-concurrency analysis on coarse-grain, explicitly parallel programs. It
works by dividing the program into a set of phases and computing the control flow between
them. Each phase consists of one or more sequences of program statements that are
delimited by barrier synchronization events and can execute concurrently. We show that
the algorithm performs perfectly on all but one of our benchmarks.

Keyword Codes: D.1.3; 1.1.3
Keywords: Concurrent Programming; Languages and Systems

1 Introduction

On cache coherent shared memory multiprocessors, much of the “unnecessary” commu-
nication, i.e., that which could be eliminated with locality enhancing optimizations, is
coherency overhead caused by false sharing (22, 10]. False sharing occurs when multiple
processors access different words in the same cache block. Although they do not actually
share data, they incur its costs, because coherency operations are cache block-based. In
a write-invalidate coherency protocol the overhead of false sharing takes the form of ad-
ditional invalidations when a processor updates data and invalidation misses when other
processors reread (different) data that reside in the invalidated cache block. In some
coarse-grain, explicitly parallel applications, misses due to false sharing make up between
40% and 90% of all cache misses (over block sizes ranging from 8 bytes to 256 bytes) [10].

False sharing is caused by a mismatch between the memory layout of write-shared data
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and the cross-processor memory reference pattern to it. Manually changing the placement
of this data to better conform to the memory reference pattern reduced false sharing misses
by 40% to T5% {22, 10]. However, manual restructuring requires that the programmer
pinpoint the data structures that suffer from false sharing in a particular memory (cache)
architecture. This is hard to determine; knowledge of how each data object is shared
is often non-intuitive, and each application must be tailored to the particular memory
architecture of the system on which it is running.

For these reasons we have automated the elimination of false sharing. We have added a
series of compiler-directed algorithms and a suite of transformations to a source-to-source
restructurer to transform shared data at compile time. Our algorithms analyze explicitly
parallel programs, producing information about their cross-processor memory reference
patterns that identifies data structures susceptible to false sharing, and then chooses
appropriate transformations. They were more successful than the programmer-directed
approach in restructuring shared data, eliminating up to 97% of all false sharing misses.

The compiler analysis involves three separate stages. The first determines which sections
of code each process executes by computing its control flow graph [13]. The second
performs non-concurrency analysis [16] by examining the barrier synchronization pattern
of the program, and delineating the program into phases that cannot execute in parallel
The third stage performs an enhanced interprocedural, flow-insensitive, summary side-
effect analysis (7] and static profiling (23] on a per-process basis (based on the control
flow determined in stage one) for each phase (determined in stage two). The second stage
of this process, the barrier synchronization analysis, is the subject of this paper.

Analyzing a program based on data summarized over the whole program often fails to
recognize shifts in the reference pattern to shared data between different (non-concurrent)
phases of the program. The barrier synchronization analysis algorithm addresses this
problem by dividing the program into a set of sequentially executing phases, delineated
by barriers, and computing the flow of control among them. Using the barrier analysis
algorithm to obtain more detailed, per-phase summary information for shared data can
be used, along with static profiling, to detect a dominant sharing pattern in the program
and restructure for that pattern. For example, in one application in our workload the
barrier analysis algorithm revealed that shared structures were accessed on a distinct per-
process basis in all parts of the program except during the final convergence testing. Our
algorithm therefore decided to transform the data by process, according to its dominant
usage. Applying the barrier analysis to the program reduced the false sharing miss rate
by 96% (on average, across multiple block sizes). Excluding it produced a value of only
8% for the same metric.

In the next section we describe our model of parallel programming. Section 3 places the
barrier synchronization algorithm in context by summarizing the algorithms and trans-
formations in our compiler. Section 4 describes the barrier algorithm in detail. Section 5
briefly describes the methodology and workload. Section 6 presents results of using the
barrier algorithm: its ability to detect phases in all programs and its effect on eliminating
false sharing in one. Section 7 discusses related work, and Section 8 concludes.
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2 Model of Parallel Programming

Our compiler is aimed at coarse-grained, explicitly parallel programs for shared memory
multiprocessors, similar to those found in the Stanford SPLASH application suite [20].
The granularity of parallelism in these programs is coarse, on the level of an entire process.

private int pid; Work() { MastarWork() {

shared barier_t MyBarr1, MyBarr2, MyBarr3; while (converged 1= 0) { while (converged l« 0) {

.shwed int NumProcs; SubParti(pid); SubPart1(pid),

o . ) S1: Wait Barer(8MyBarrt), | s4: Wait_Barrier(&MyBarr1);

for ( pid = 1; pid < NumProcs; pid++) SubPart2(pid); SubPart2(pid);
it (fork() == 0) { s2:  Wait_Barrier(&MyBarr2); s5:  Wait_Barrier(&MyBar2);

Work(); $3:  Wait Barrier(8MyBarr3); converged = TestConverged();

\ axit{0); } s6: Wait_Barrier(&MyBarr3);

MasterWork(): !

Figure 1: Example program segments.

In our model the number of processes equals the number of processors and processes do
not migrate. The programs conform to an SPMD model of parallel programming: the
processes all have identical code, but need not take the same path through the program.
They may or may not access different shared data. Processes are created explicitly, e.g.,
using a fork() system call (illustrated in Figure 1). Processes are differentiated by the
values of private variables (pid in Figure 1 is an example) or system calls that return
process identifiers.

Process synchronization is performed using global barriers. When the control flow of a
process reaches a barrier, it must wait until the other participating processes also reach
the barrier. A barrier is global if all the processes in the program participate in the barrier.
On bus-based multiprocessors barriers are commonly implemented using a structure that
contains a shared counter [3]; we call this structure the barrier varieble. Upon reaching
the barrier, each process increments the counter and waits until the counter has reached
the preset limit, at which time the counter is reset and the processes continue execution.

3 Enhancing Locality

To determine which data structures in a program are susceptible to false sharing, where
locality may be improved and which transformations to apply at compile time, we ana-
lyze the program and compute an approximation of the memory accesses of each of its
processes. To provide a context for the barrier analysis algorithm, that process is briefly
outlined in the remainder of this section.

The first stage of the analysis is to determine the set of possible control flow paths through
the program that each process may take. The most conservative assumption would be
that every process may take any path through the program. However, in many cases this
vastly overestimates the code that the individual processes may execute and consequently
leads to overly conservative approximations of the processes’ memory accesses. We use
information about how the values of private variables, such as pid in Figure 1, vary across
the processes to prune sections of the control flow graph that cannot be executed by the
different processes. Complete details of this analysis may be found in {13].
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The second stage consists of the barrier synchronization analysis algorithm. It divides the
program into a set of non-concurrent phases, so that the sharing pattern for each phase
may be analyzed separately. We discuss the details of this algorithm in section 4.

The third stage of the analysis uses the results from the first two stages to perform
an interprocedural, flow-insensitive, summary side-effect analysis of the code each process
executes in each phase of the program. The side-effect information includes regular section
descriptors [11] to describe the sections of each array that each process accesses . We have
enhanced the summary s: le-effect analysis in two ways. First, we use static profiling [23]
to produce a weighting of the side-effects with respect to estimated execution frequency.
The weighting makes it easier to pinpoint which data structures suffer from false sharing
by eliminating from consideration those that are accessed infrequently. Second, instead of
merging all regular section descriptors for an array into a single descriptor in the summary
information [4, 11], we only merge descriptors when very little or no information will be
lost, or when the number of descriptors for  single array exceeds some small preset limit.
Multiple regular section descriptors allow us to factor out irregula: array access patterns
that occur seldom and do not contribute to false sharing.

In order to eliminate or significantly reduce false sharing misses, data must be restructured
so that (1) data that is only, or overwhelmingly, accessed by one processor is grouped to-
gether, and (2) write-shared data objects with no processor locality [1] do not share cache
lines. We apply three different kinds of transformations, depending on the outcome of
the static analysis. The first transformation groups data physically together by changing
the layout of the target data structures in memory. When it is not possible to physically
change the data layout (because, for example, the affected per-process data structure is
embedded into the elements of a dynamically allocated list or graph data structure), we
can achieve a similar result using the secand transformation. It allocates data areas of
memory for each processor, places shared data into them pointed to by pointers that re-
place the shared data in the target data structures. Although this adds a memory access
to each reference of the affected data structures, the accesses are much more likely to be
cache hits rather than invalidation misses. Thus the total amount of time spent to access
the data is less. The third transformation uses padding to prevent affected data items
from residing in the same cache block.

4 Barrier Synchronization Analysis

We define a process segment as the set of statement sequences along all barrier free paths
in the control flow graph that start at one barrier synchronization call site ¢ using barrier
variable b, which we denote S;,_, and end at another (possibly the same) barrier syn-
chronization call site S;s,. A process segment is identified by the barrier synchronization
call sites that delimit it, i.e., the above process segment would be denoted (Sibes Siny ). A
phase of a program is the set of process segments that may execute concurrently between
two global barrier synchronization events. The goal of the barrier analysis algorithm is to
divide the program into a set of process segments and partition them into a set of phases.

! A regular section descriptor is a vector of subscript positions in which each element describes the
accessed portion of the array in that dimension as either an invariant expression, a range (giving invariant
expressions for the lower bound, upper bound and stride), or unknown.




175

To help explain the algorithm we introduce the notion of a barrier synchronization graph
G = (VB, Eg) for a program. It is a rooted, directed graph, defined as follows:

1. Every vertex v € Vg corresponds to the set of process segments 7,5 that originate at
the same barrier synchronization call site and terminate at barrier synchronization
call sites that pass the barrier variable b. A dummy start node? (root vertex) is
inserted to point to the vertices that contain process segments originating from
a conceptual barrier at the beginning of the program. We do not insert an end
barrier, but instead observe that the sections of the program not covered by process
segments make up a separate program phase that ends in program termination.

2. There exists a directed edge (u,v) € Ep, if there are process segments (S;s,, S;s,) €
Tup, and (Smp,, Snp,) € Top, such that j =m, ie., S;p, and Sp, denote the same
barrier synchronization call site.

Intuitively, the nodes in the gra h represent sets of statement sequences of the program
that do not contain barriers (process segments), and the edges represent barrier synchro-
nization events that transfer control flow from one segment to another. The phases of the
program can then be represented as a partition of the vertices all of whose segments can
execute in parallel.

Initially Step 1 Step 2 Final Set of Phases
Phasc A:  {S.1DGSH) (GG (GDGBH)  (B1NGSH)
Phase B:  {(1.2)} (1243} (122@9)) ({125
Phase C:  ((23)} {23 {23).65.6))  §(23).(56))
Phase D:  {(3.1)} (3.1} {G.1)} (3,1).(6,4)}
Phase E:  {(4,5))
Phase F:  {(5.6}} ((56)}
Phase G:  {(6.4)) ((6:4)) (6.4}

Process Segments = {(5,1),(5,2).(1,2).(2.3).(3,1).(4.5).(5,6).(6.9)}

Figure 2: Barrier synchronization graph for program in Figure 1. Dashed boxes illustrate phases. Barrier
variables have been left out for reasons of readability.

The results of the barrier synchronization analysis are conservative. If two process seg-
ments are in different phases, they do not execute concurrently. However, the converse
may not be true, i.e., if two process segments are in the same phase, they may, but need
not, execute in parallel.

4.1 Computing the Process Segments

The first stage of the barrier analysis algorithm divides the program into a set of process
segments. For each barrier synchronization call site we compute which other sites can
be reached along barrier free paths in the program. Conceptually we create a variable
SynchVar, for each barrier synchronization call site S, (as opposed to the barrier variable
b, that is passed as a parameter at S,). We then treat each barrier synchronization call
at sitc S, as the use of its variable SynchVar, followed by the definition of the variables
SynchVar, for all i. The problem reduces to that of computing which SynchVar;, are live
at the end of each barrier synchronization call site. (Recall that a variable is live at a point

?For simplicity. this node is not shown in any illustrations of the barrier synchronization graph.
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in a program if its value can be used before it is redefined {2].) Since these conceptual
variables cannot be aliased, an interprocedural solution to this live barrier problem is
possible and tractable [18]. Live barriers can be formulated as a simple distributive
data flow analysis problem [14], for which efficient solutions are known. To speed up
computation, procedures that do not contain any barriers and that do not directly or
indirectly call any procedures containing barriers can be summarized into single nodes
in the program control flow graph (thus avoiding propagating information through each
statement of these procedures) without affecting the accuracy of the solution.

Following the solution to the interprocedural live barrier problem, the process segments
are computed by considering each barrier S;, in turn. For each barrier S;p, that is live
just after S;,,, we create the process segment (S;s,, Sjp, ).

4.2 Partitioning Process Segments into Phases

The second stage of the barrier analysis algorithm partitions the process segments into
sequentially executing phases. It first optimistically assumes that only process seg-
ments that start at the same barrier and end at barriers that pass the same barrier
variable can execute concurrently. That is, each barrier synchronization call site S;,,
gives rise to phases: ((Sizy, Sim)s-s (Sizrs Sinwn )y ((Sizis Skypa)s s (Siers Sknsa)) and
((Si,z“Sl,,y,.),--a(si,z” ln.Vn) y Whereé Oj, 41403 Vjn,u kl-wv"vskn.yz’ and S’l.ym"w Inyyn
are barrier synchronization calls live at S;.,. These initial phases correspond to the
vertices of the barrier synchronization graph. Using a work queue approach, the phases
are then selectively merged until no two process segments that may execute in parallel
are contained in different phases.

Initially all phases P; that contain multiple process segments are put on the work queue.
Each phase P; on the queue is then examined in turn. For each pair of process segments
(Sibss Sk, ) (Srp,s Sap,) € Piy we merge all phases that contain either Sk, or S, as the
first barrier in any of their process segments and whose process segments all end in barrier
call sites that pass the same barrier variable. The resulting program phase is added to
the work queue. This continues until the work queue is empty, after which the final set of
phases remain. Phases that contain process segments that terminate at barrier call sites
that pass different barrier variables are never merged.

Figure 2 illustrates how the algorithm works for the program shown in Figure 1. Since the
program has seven barriers (six plus the start barrier), the process segments are initially
partitioned into seven phases, A through G. Initially, only phase A is put on the work
queue, since it is the only phase that contains more than one process segment, specifically
the process segments (S, 1) and (S, 4). As can be seen from the figure, barriers 1 and 4 are
first components of process segments in phases B and E, respectively. Since they both
end at barrier call sites that pass the same barrier variable, they are merged together in
B, which is then added to the work queue. The presence of process segments (1,2) and
(4,5) in B causes phase C and phase F to be merged. Lastly, phase D and G are merged
to produce the final set of phases.
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5 Methodalogy

The barrier analysis algorithm and our false sharing detection and restructuring algo-
rithms have been implemented as separate passes in Parafrase-2 [19]. False sharing re-
ductions were measured using trace-driven simulation of a bus-based, shared memory
architecture. Execution times were measured on a 56-processor Kendall Square Research
KSR1 [15], which has a cache block size of 128 bytes for the purpose of cache coherency.

The workload consisted of five programs, all written in C (Table 1). Water, LocusRoute
and Mp3d are from the Stanford SPLASH benchmarks {20]. Water evaluates the forces
and potentials in a system of water molecules in liquid state; Mp3d solves a problem
involving particle flow at extremely low density; and LocusRoute is a commercial quality
VLSI standard cell router. Topopt [8] performs topological optimization on VLSI circuits
using a parallel simulated annealing algorithm. Maxflow [6] computes the maximum flow
in a directed graph. Mincut [9] partitions a graph using simulated annealing.

6 Results

We present two types of results. The first evaluates the effectiveness of the barrier analysis
algorithm in defining phases and process segments by comparing the number of phases
created by the algorithm to the actual dynamic synchronization behavior of each program.
The second illustrates the usefulness of the algorithm by measuring the reduction in false
sharing for one application.

Program Lines of C | Barriers || Phases | Segments per phase | Segments Total
LocusRoute 6709 2 1 2
Maxflow 810 6 6 1,1, 1,1,1 6
Mincut 479 7 3 1,4,16 21
Mp3d 1653 6 7 i,1,1,1,1,1, 1 7
Topopt 2206 10 5 4,3,224 15
Water 1451 6 8}1,1,1,1,1,1,1,1 8

Table 1: Results of applying the barrier analysis algorithm to the benchmarks.

Table 1 summarizes the results of applying our algorithm to each benchmark. The results
are given as the number of phases computed (excluding the termination phase), the num-
ber of process segments for each phase and the total number of process segments (again,
excluding those in the termination phase). Figure 3 shows the barrier synchronization
graphs for each of the benchmarks with the set of phases illustrated by dashed boxes. The
algorithm correctly computes the set of process segments for all benchmark programs. In
addition, it partitions these segments perfectly for all but one of the benchmarks. The
results listed in Figure 3 and Table 1 show that the algorithm performs flawlessly in divid-
ing LocusRoute (trivially), Maxflow, Mp3d, Topopt and Water into a maximum number
of phases that coincide with the actual dynamic behavior of the programs. That is, for
these programs the results are exact, not conservative.

For Mincut, the large number of cycles of vastly different lengths in the barrier synchro-
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Figure 3: Program phases computed by the barrier synchronization analysis algorithm.

nization graph forces the algorithm to make a conservative approximation of the set of
process segments that can execute concurrently. Because different processes may traverse
different paths through the graph, specifically, different length cycles, they may get “out
of synch™ with one another. Thus, any two process segments in that phase could conceiv-
ably execute in parallel. It therefore places all process segments involved in these cycles
into the same phase.

We use the barrier analysis algorithm in the context of a series of algorithms and data
transformations designed to reduce false sharing. When different phases of a program ex-
hibited different memory access patterns, barrier synchronization analysis was extremely
effective in eliminating false sharing. Topopt illustrates this situation.

In the original, untransformed version of Topopt, false sharing caused 60% of all cache
misses, averaged over block sizes between 8 and 256 bytes. Without barrier synchro-
nization analysis shared data restructuring could only eliminate 8% of the false sharing
misses. When barrier analysis was included, false sharing misses dropped an average of
96%. The consequence of eliminating false sharing misses and coherency operations was
an improvement in execution time. When running on the KSR1, transformations reduced
the execution time for Topopt by 15% when barrier synchronization analysis was included
in the false sharing analysis, versus only 5% when it was not.

For the other benchmarks in our workload the impact was more modest. They fell into
one of three categories. First, LocusRoute exhibited very little false sharing originally
and therefore had very little room for improvement. Second, Mincut, Mp3d and Water
suffered from more false sharing, but the analysis without the barrier analysis algorithm
eliminated almost all of it. Third, for Maxflow the side-effect a~. .ysis concluded that the
data structures should be left untransformed.

7 Related Work

Related work primarily concentrates on analyzing event variable synchronization to de-
tect race conditions in parallel programs for the purpose of debugging, as opposed to
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compile time program optimization. Their analysis is mainly focused on event variable
synchronization, i.e., post and wait or locks, and few show experimental results attesting
to the effectiveness of their algorithms. Taylor [21] presents an algorithm that analyzes
rendezvous in concurrent Ada programs and is exponential in the number of tasks in
the program. The algorithm computes the set of possible concurrency states for a pro-
gram and determines the possible sequences in which they may occur. McDowell [17],
and Helmbold and McDowell {12] also enumerate possible concurrency states, but present
techniques to reduce the number of states. The worst case number of states remains su-
perpolynomial, however. Callahan, Kennedy and Subhlok [5] uses a synchronized control
flow graph to determine when possible race conditions exist in parallel programs. Their
model of parallel programming is based on parallel case and parallel do constructs, and
their analysis is focused on loop nests. Our model of parallel programming is based on
process level parallelism, and we perform our analysis over the entire program.

Masticola and Ryder [16] present a framework for non-concurrency analysis of Ada tasks.
Using four refinement strategies they apply iteration to conservatively approximate which
basic blocks cannot execute concurrently. Our algorithm has some similarity to their
strategy of pinning; however, there are some key differences. First, they concentrate
on pairwise process synchronization, while we address global process synchronization.
Second, our solution is applicable to programs written under a different model of parallel
programming. Finally, our algorithm is simpler and therefore more efficient.

8 Summary

We have presented a simple and efficient algorithm that statically analyzes the barrier
synchronization pattern of coarse-grained, explicitly parallel programs. It uses a version
of live variable analysis to divide each program up into a set of process segments, and
by selectively merging vertices in the barrier synchronization graph, partitions these into
non-concurrent program phases.

The algorithm performs well in computing the phases between barriers in parallel pro-
grams. Out of our six benchmarks, it produced a solution identical to the actual barrier
synchronization pattern of each program in all but one case. For the last program the
result was a conservative but safe approximation to the dynamic barrier synchronization
pattern.
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Abstract: We describe an approach to parallel compilation that seeks to harness
the vast amount of fine-grain parallelism that is exposed through partial evaluation of
numerically-intensive scientific programs. We have constructed a parallelizing compiler
which uses partial evaluation to break down data abstractions and program structure,
producing huge basic blocks that contain large amounts of fine-grain parallelism. To
utilize this parallelism, we have developed a technique for automatically mapping the fine
grain parallelism onto a coarser grain parallel computer architecture. We selectively group
the fine-grain operations together so as to adjust the parallelism grain-size to match the
inter-processor communication capabilities of the target architecture. On an important
scientific problem, code produced by our compiler for the Supercomputer Toolkit parallel
computer runs 6.2 times faster on eight processors than on one. For an important class of
scientific applications, the coupling of partial evaluation with static scheduling techniques
eliminates the need to require programmers to obscure programs by manually exposing
the parallelism implicit in a computation.

Keyword Codes:
Keywords: Parallel Compilation; Partial Evaluation; Parallel Instruction Scheduling;
Fine-grain Parallelism

1 Introduction

Previous work has shown that partial evaluation is good at breaking down data abstrac-
tion and exposing underlying fine-grain parallelism in a program [3]. We have written a
novel compiler which couples partial evaluation with static scheduling techniques to ex-
ploit this fine-grain parallelism by automatically mapping it onto a coarse-grain parallel
architecture.

Partial evaluation eliminates the barriers to parallel execution imposed by the data
representation and the control structure of a program by taking advantage of information
about the particular problem a program will be used to solve. For example, partial
evaluation is able to perform at compile-time most data structure references, procedure
calls, and conditional branches related to data structure size, leaving mostly numerical
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computations to be performed at run time. Partial evaluation is particularly effective on
numerically-oriented scientific programs, since they tend to be mostly data-independent,
meaning that they contain large regions in which the operations to be performed do not
depend on the numerical values of the data being manipulated. For instance, matrix
multiplication performs the same set of operations, regardless of the particular numerical
values of the matrix elements. We use partial evaluation to produce huge basic blocks from
these data-independent numerical regions. These basic blocks often contain thousands of
instructions, two orders of magnitude larger than the basic blocks that typically arise
in high-level language programs. To benefit from the fine-grain parallelism contained in
these huge basic blocks, we schedule the partially-evaluated program for parallel execution
primarily by performing the operations within an individual basic block in parallel.

In order to automatically map the freshly derived fine-grain parallelism onto a mul-
tiprocessor, we developed a technique which coarsens the dataflow graph by selectively
aggregating operations together. This technique uses heuristics which take the commu-
nication bandwidth, inter-processor communication latency, and processor architecture
all into consideration. High inter-processor communication latency requires that there
be enough parallelism available to allow each processor to continue to initiate operations,
even while waiting for results produced elsewhere to arrive. Limited communication band-
width severely restricts the parallelism grain size that may be utilized by requiring that
most values used by » processor be produced on that processor, rather than being received
from another proc. sor. Our approach addresses these problems by tailoring the grain
size adjustment and scheduling heuristics to match the communication capabilities of the
target architecture.

Our compiler operates in four major phases. The first phase performs partial evalu-
ation, followed by traditional compiler optimizations, such as constant folding and dead-
code elimination. The second phase analyzes locality constraints within each basic block,
locating operations that depend so closely on one another that it is clearly desirable that
they be computed on the same processor. These closely related operations are grouped
together to form a higher grain size instruction, known as a region. The third compilation
phase uses heuristic scheduling techniques to assign each region to a processor. The final
phase schedules the individual operations for execution within each processor, accounting
for pipelining, memory access restrictions, register allocation, and final allocation of the
inter-processor communication pathways.

The target architecture of our compiler is the Supercomputer Toolkit , a parallel pro-
cessor consisting of eight independent VLIW processors connected to each other by two
shared communication busses [5]. Performance measurements of actual compiled pro-
grams running on the Supercomputer Toolkit show that the code produced by our compiler
for an important astrophysics application[18] runs 6.2 times faster on an eight-processor
system than does near-optimal code executing on a single processor. The compilation
process of this real world application is used as an example throughout this paper.

2 The Partial Evaluator

Partial evaluation converts a high-level, abstractly written, general purpose program into a
low-level program that is specialized for the particular application at hand. For instance,
a program that computes force interactions among a system of N particles might be
specialized to compute the gravitational interactions among 5 planets of our particular
solar system. This specialization is achieved by performing in advance, at compile time,
all operations that do not depend explicitly on the actual numerical values of the data.
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Figure 1: Parallelism profile of the 9-body prob-
lem. This graph represents all of the paralielism
available in the problem, taking into account the
varying latency of numerical operations.

Figure 2: A Simple Region Forming Heuris-
tic. A region is formed by grouping together oper-
ations that have a simple producer/consumer rela-
tionship. This process is invoked repeatedly, with
the region growing in size as additional producers
are added. The region-growing process terminates
when no suitable producers remain, or when the
maximum region size is reached. A producer is
considered suitable to be included in a region if it
produces its result solely for use by that region.
(The numbers shown within each node reflect the
computational latency of the operation.)
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Region { Number of
Size Regions
1 108
2 28
3 28
5 56
6 1
7 8
14 36
41 24
43 3

Table 1: The numerical operations in the 9-body
program were divided into regions based on local-
ity. This table shows how region size can vary de-
pending on the locality structure of the computa-
tion. Region size is measured by computational la-
tency (cycles). The program was divided into 292
regions, with an average region size of 7.56 cycles.
The maximal region size used was 43 cycles

£
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Figure 3: Parallelism profile of the 9-body prob-
lem after operations have been grouped together
to form regions. Comparison with Figure 1 clearly
shows that increasing the grain-size significantly
reduced the opportunities for parallel execution.
The maximum speedup factor dropped from 69 to
49 times faster than a single processor execution.
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Many data structure references, procedure calls, conditional branches, table lookups,
loop iterations, and even some numerical operations may be performed in advance, at
compile time, leaving only the underlying numerical operations to be performed at run
time

Our compiler exposes fine-grain parallelism using a simple partial evaluation strategy
based on a symbolic execution technique described in [4, 3].! Despite this technique’s sim-
plicity, it works well at exposing fine-grain parallelism. Figure 1 illustrates a parallelism
profile analysis of the nine-body gravitational attraction problem of the type discussed
in [18].2 Partial evaluation exposed so much low-level parallelism that in theory, parallel
execution could speed up the computation by a factor of 69 over a uniprocessor.

3 Adjusting the Grain Size

Searching for an optimal schedule for a program which exploits fine-grain parallelism is
both computationally expensive and difficult to achieve. Rather than do an exhaustive
search for the optimal schedule, we developed a heuristic technique to coarsen the exposed
fine-grain parallelism to a grain size suitable for critical-path based static scheduling.
Prior to initiating critical-path based scheduling, we perform locality analysis that groups
together operations that depend so closely on one other that it would not be practical
to place them in different processors. Each group of closely interdependent operations
forms a larger grain size macro-instruction, which we refer to as a region.® Some regions
are large, while others may be as small as one fine-grain instruction. In essence, grouping
operations together to form a region is a way of simplifying the scheduling process by
deciding in advance that certain opportunities for parallel execution will be ignored due
to limited communication capabilities.

Since operations within a region will occur on the same processor, the maximum region
size must be chosen to match the communication capabilities of the target architecture.
For instance, if regions are permitted to grow too large, a single region might encompass
the entire data-flow graph, forcing the entire computation to be performed on a single
processor! Although strict limits are therefore placed on the maximum size of a region,
regions need not be of uniform size. Indeed, some regions will be large, corresponding
to localized computation of intermediate results, while others will be quite small, corre-
sponding to results that are used globally throughout the computation.

We have experimented with several different heuristics for grouping operations into
regions. The optimal strategy for grouping instructions into regions varies with the ap-
plication and with the communication limitations of the target architecture. However,
we have found that even a relatively simple grain size adjustment strategy dramatically
improves the performance of the scheduling process. As illustrated in Figure 2, when a
value is used by only one instruction, the producer and consumer of that value may be
grouped together to form a region, thereby ensuring that the scheduler will not place the

! More complex partial evaluation strategies that address data-dependent computations may be found
in [9, 11, 10].

ZSpecifically, one time-step of a 12th-order Stormer integration of the gravity-induced motion of a
9-body solar system.

3The name region was chosen because we think of the grain size adjustment technique as identifying
“regions” of locality within the data-flow graph. The process of grain size adjustment is closely related
to the problem of graph multisection, although our region-finder is somewhat more particular about the
properties (shape, size, and connectivity) of each “region” sub-graph than are typical graph multisection
algorithms.
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producer and consumer on different processors in an attempt to use spare cycles wher-
ever they happened to be available. Provided that the maximumn region size is chosen
appropriately,! grouping operations together based on locality prevents the scheduler from
making gratuitous use of the communication channels, forcing it to focus on scheduling
options that make more effective use of the limited communication bandwidth.

An important aspect of grain size adjustment is that the grain size is not increased
uniformly. As shown in Table 1, some regions are much larger than others. Indeed, it is
important not to forcibly group non-localized operations into regions simply to increase
the grain size. For example, it is likely that the result produced by an instruction that has
many consumers will be transmitted amongst the processors, since it is not practical to
place all of the consumers on the result-producing processor. In this case, creating a large
region by grouping together the producer with only some of the consumers increases the
grain size, but does not reduce inter-processor communication, since the result would need
to be transmitted anyway. In other words, it only makes sense to limit the scheduler’s
options by grouping operations together when doing so will clearly reduce inter-processor
communication.

4 Parallel Scheduling

Exploiting locality by grouping operations into regions forces closely-related operations
to occur on the same processor. Although this reduces inter-processor communication
requirements, it also eliminates many opportunities for parallel execution. Figure 3 shows
the parallelism remaining in the 9-body problem after operations have been grouped
into regions. Comparison with Figure 1 shows that increasing the grain size eliminates
about half of the opportunities for parallel execution. The challenge facing the parallel
scheduler is to make effective use of the limited parallelism that remains, while taking
into consideration such factors as communication latency, memory traffic, pipeline delays,
and allocation of resources such as processor buses and inter-processor communication
channels.

Our compiler schedules operations for parallel execution in two phases. The first phase,
known as the region-level scheduler, is primarily concerned with coarse-grain assignment
of regions to processors, generating a rough outline of what the final program will look
like. The region-level scheduler assigns each region to a processor; determines the source,
destinations, and approximate time of transmission of each inter-processor message; and
determines the preferred order of execution of the regions assigned to each processor. The
region-level scheduler takes into account the latency of numerical operations, the inter-
processor communication capabilities of the target architecture, the structure (critical
path) of the computation, and which data values each processor will store in its mem-
ory. The region-level scheduler does not concern itself with finer-grain details such as
the pipeline structure of the processors, the detailed allocation of each communication
channel, or the ordering of individual operations within a processor. At the coarse grain
size associated with the scheduling of regions, a straightforward set of critical-path based
scheduling heuristics® have proven quite effective. For the 9-body problem example, the

4The region size must be chosen such that the computational latency of the operations grouped
together is well-matched to the communication bandwidth limitations of the architecture. If the regions
are made too large, communication bandwidth will be under utilized since the operations within a region
do not. transmit their results.

5The heuristics used by the region-level scheduler are closely related to list-scheduling [13]. A detailed
discussion of the heuristics used by the region-level scheduler is presented in [1].
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computational load was spread so evenly that the variation in utilization efficiency among
the 8 processors was only one percent.

The final phase of the compilation process is instruction-level scheduling. The region-
level scheduler provides the instruction-level scheduler with an ordered list of regions to
execute on each processor along with a list of results that need to be transmitted when
they are computed. The instruction-level scheduler chooses the final ordering of low-level
operations within each processor, taking into account processor pipelining, register al-
location, memory access restrictions, and availability of inter-processor-communication
channels. Whenever possible, the order of operations is chosen so as to match the prefer-
ences of the region-level scheduler, represented by the ordered list of regions. However, the
instruction-level scheduler is free to reorder operations as needed, intertwining operations
among the regions assigned to a particular processor, without regard to which coarse-grain
region they were originally a member of. This strategy allows the instruction scheduler to
maintain a schedule similar to the one suggested by the region scheduler, thereby ensur-
ing that the results will be produced at approximately the time that other processors are
expecting them, while still taking advantage of fine grain parallelism available in other
regions to fill pipeline slots as needed.

The instruction-level scheduler derives low-level pipelined instructions for each proces-
sor, choosing the exact time and communication channel for each inter-processor transmis-
ston, and determining where values will be stored within each processor. The instruction-
level scheduling process begins with a data-use analysis that determines which instructions
share data values and should therefore be placed near each other for register allocation
purposes. This data-use information is combined with the higher-level ordering prefer-
ences expressed by the region-level scheduler, producing a scheduling priority for each
instruction. The instruction scheduling process then proceeds one cycle at a time, per-
forming scheduling of that cycle on all processors before moving on to the next cycle.
Instructions compete for resources based on their scheduling priority; in each cycle, the
highest-priority operation whose data and processor resources are available will be sched-
uled. This competition for data and resources helps to keep each processor busy, by
scheduling low-priority operations whose resources are available whenever the resources
for higher priority computations are not available. Indeed, when the performance of the
instruction-scheduler is measured independently of the region-level scheduler, by gener-
ating code for a single Supercomputer Toolkit VLIW processor, utilization efficiencies in
excess of 99.7% are routinely achieved, representing nearly optimal code.

An aspect of the scheduler that has proven to be particularly important is the retroac-
tive scheduling of memory references. Although computation instructions (such as +
or *) are scheduled on a cycle-by-cycle basis, memory LOAD instructions are scheduled
retroactively, wherever they happen to fit in. For instance, when a computation instruc-
tion requires that a value be loaded into a register from memory, the actual memory
access operation® is scheduled in the past for the earliest moment at which both a reg-
ister and a memory-bus cycle are available; the memory operation may occur fifty or
even one-hundred instructions earlier than the computation instruction. Supercomputer
Toolkit memory operations must compete for bus access with inter-processor messages, so
retroactive scheduling of memory references helps to avoid interference between memory
and communication traffic.

50On the toolkit architecture, two memory operations may occur in parallel with computation and
address-generation operations. This ensures that retroactively scheduled memory accesses will not inter-
fere with computations from previous cycles that have already been scheduled.




Program Single Fight Speedup
Processor | Processors
Cycles Cycles
ST6 5811 954 6.1
ST9 11042 1785 6.2
STi2 18588 3095 6.0
RK9 6329 1228 5.2

Table 2: Speedups of various applications run-
ning on 8 processors. Four different computa-
tions have been compiled in order to r-~asure
the performance of the compiler: a 6 particle
stormer integration(ST6), a 9 particle stormer
integration(ST9), a 12 particle stormer integra-
tion(ST12), and a 9 particle fourth-order Runge
Kutta integration(RK9).
processor execution time of the computation di-

Speedup is the single

vided by the total execution time on the multipro-

CEessor.
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Figure 4: The result of scheduling the 9-body
problem onto 8 Supercomputer Toolkit processors.
Comparison with with the region-level parallelism
profile (figure 3) illustrates how the scheduler
spread the course-grain parallelism across the pro-
cessors. A total of 340 cycles are required to com-
plete the computation. On average, 6.5 of the 8
processors are utilized during each cycle.

187
SPEEDUP VS PROCESSORS
N-body Stormer Integrator
1
1
1P I A
11 oy 7]
10
S
s T e
B 7
7]
cL—
s] I
7 .
3 //
2
1
0

0123456789 1011121314
PROCESSORS

Figure 5: Speedup graph of Stormer integra-
tions. Ample speedups are available to keep the
8-processor Supercomputer Toolkit busy. However.
the incremental improvement of using more than
10 processors is relatively small.
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Figure 6: Utilization of the inter-processor com-
munication pathways. The communication system
becomes saturated at around 10 processors. This
accounts for the lack of incremental improvement
available from using more than 10 processors that
was seen in Figure 5.
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Figure 4 illustrates the effectiveness of the instruction level scheduler on the nine-
body problem example.

5 Performance Measurements

The Supercomputer Toolkit and our associated compiler have been used for a wide variety
of applications, ranging from computation of human genetic pedigrees to the simulation
of electrical circuits. The applications that have generated the most interest from the
scientific community involve various integrations of the N-body gravitational attraction
problem.” Parallelization of these integrations has been previously studied by Miller{17],
who parallelized the program by using futures to manually specify how parallel execution
should be attained. Miller shows how one can re-write the N-body program so as to
eliminate sequential data structure accesses to provide more effective parallel execution,
manually performing some of the optimizations that partial evaluation provides auto-
matically. Others have developed special-purpose hardware that parallelizes the 9-body
problem by dedicating one processor per planet.[16] Previous work in partial evaluation
[2, 4, 3] has shown that the 9-body problem contains large amounts of fine-grain par-
allelism, suggesting that more subtle parallelizations are possible without the need to
dedicate one processor to each planet.

We have measured the effectiveness of coupling partial evaluatior with grain size ad-
justment to generate code for the Supercomputer Toolkit parallel computer, an archi-
tecture that suffers from serious inter-processor communication latency and bandwidth
limitations. Table 2 shows the parallel speedups achieved by our compiler for several
different N-body interaction applications. Figure 5 focuses on the 9-body program (ST9)
discussed earlier in this paper, illustrating how the parallel speedup varies with the num-
ber of processors used. Note that as the number of processors increases beyond 10, the
speedup curves level off. A more detailed analysis has revealed that this is due to the
saturation of the inter-processor communication pathways, as illustrated in Figure 6. The
accuracy of these results was verified by executing the 9-body program on the actual
Supercomputer Toolkit hardware in an eight processor configuration.

An important drawback to the partial evaluation approach is that it results in the
unrolling of loops, which can potentially lead to an explosion in the size of the compiled
program. We have found that depending on the size of the data set being manipulated.
partial evaluation may reduce the overall size of the program, by eliminating data accesses,
branches, and abstraction-manipulation code; or partial evaluation may increase the size
of the program by iterating over a large data set. The key to making successful use of the
partial evaluation technique is to not. carry it too far. For relatively small applications,
such as the 9-body integration program, it was practical to partially-evaluate the entire
computation; on the other hand, if one was simulating a galaxy containing millions of stars,
it would probably be best not to partially-evaluate some of the cutermost loops! Our work
focuses on achieving efficient parallel execution of the partially-evaluated segments of a
program, leaving the decision of which portions of a program should be subjected to this
compilation technique up to the programmer.

7For instance, [18] describes results obtained using the Supercomputer Toolkit that prove that the solar
system’s dynamics are chaotic.
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6 Related Work

The use of partial evaluation to expose parallelism makes our approach to parallel compi-
lation fundamentally different from the approaches taken by other compilers. Tradition-
ally, compilers have maintained the data structures and control structure of the original
program. For example, if the original program represents an object as a doubly-linked
list of numbers, the compiled program would as well. Only through partial evaluation
can the data structures used by the programmer to think about the problem be removed,
leaving the compiler free to optimize the underlying numerical computation, unhindered
by sequentially-accessed data structures and procedure calls. However, the drawback to
the partial-evaluation approach is that it is only highly efffective for applications that are
mostly data-independent.

Many compilers for high-performance architectures use program transformations to
exploit low-level parallelism. For instance, compilers for vector machines unroll loops
to help fill vector registers. Other parallelization techniques include trace-scheduling,
software pipelining, vectorizing, as well as static and dynamic scheduling of data-flow

graphs.

6.1 Trace Scheduling

Compilers that exploit fine-grain parallelism often employ trace-scheduling techniques [14]
to guess which way a branch will go, allowing computations beyond the branch to occur
in parallel with those that precede the branch. Our approach differs in that we use
partial evaluation to take advantage of information about the specific application at hand,
allowing us to totally eliminate many data-independent branches, producing basic blocks
on the order of several thousands of instructions, rather than the ten to thirty instructions
typically encountered by trace-scheduling based compilers. An interesting direction for
future work would be to add trace-scheduling to our approach, to optimize across the
data-dependent branches that occur at basic block boundaries.

Most trace-scheduling based compilers use a variant of list-scheduling[13] to parallelize
operations within an individual basic block. Although list-scheduling using critical-path
based heuristics is very effective when the grain size of the instructions is well-matched
to inter-processor communication bandwidth, we have found that in the case of limited
bandwidgh, a grain size adjustment phase is required to make the list-scheduling approach
effective.

6.2 Software Pipelining

Software Pipelining [12] optimizes a particular fixed size loop structure such that several
iterations of the loop are started on different processors at constant intervals of time. This

8The partial-evaluation phase of our compiler is currently not very well automated, requiring that
the programmer provide the compiler with a set of input data structures for each data-independent
code sequence, as if the data-independent sequences are separate programs being glued together by the
data-dependent conditional branches. This manual interface to the partial evaluator is somewhat of an
implementation quirk; there is no reason that it could not be more automated. Indeed, several Supercom-
puter Toolkit users have built code generation systems on top of our compiler that automatically generate
complete programs, including data-dependent conditionals, invoking the partial evaluator to optimize
the data-independent portions of the program. Recent work by Weise, Ruf, and Katz[9, 10] describes
additional techniques for automating the partial-evaluation process across data-dependent branches.
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increases the throughput of the computation. The effectiveness of software pipelining
will be determined by whether the grain size of the parallelism expressed in the looping
structure employed by the programmer matches the architecture: software pipelining can
not parallelize a computation that has its parallelism hidden behind inherently sequential
data references and spread across multiple loops. The partial-evaluation approach on
such a loop structure would result in the loop being compietely unrolled with all of
the sequential data structure references removed and all of the fine grain parallelism in
the loop’s computation exposed and available for parallelization. In some applications,
especially those involving partial differential equations, fully unrolling loops may generate
prohibitively large programs. In these situations, partial evaluation could be used to
optimize the innermost loops of a computation, with techniques such as software pipelining
used to handle the outer loops.

6.3 Vectorizing

Vectorizing is a commonly used optimization for vector supercomputers, executing oper-
ations on each vector element in parallel. This technique is highly effective provided
that the computation is composed primarily of readily identifiable vector operations
(such as dot-product). Most vectorizing compilers generate vector code from a scalar
specification by recognizing certain standard looping constructs. However, if the source
program lacks the necessary vector-accessing loop structure, vectorizing performs very
poorly. For computations that are mostly data-independent, the combination of partial
evaluation with static scheduling techniques has the potential to be vastly more effec-
tive than vectorization. Whereas a vectorizing compiler will often fail simply because
the computation’s structure does not lend itself to a vectnr-oriented representation, the
partial-evaluation/static scheduling approach can often succeed by making use of very fine-
grained parallelism. On the other hand, for computations that are highly data-dependent,
or which have a highly irregular structure that makes unrolling loops infeasible, vectorizing
remains an important option.

6.4 Iterative Restructuring

Iterative restructuring represents the manual approach to parallelization. Programmer’s
write and rewrite their code until the parallelizer is able to automatically recognize and
utilize the available parallelism. There are many utilities for doing this, some of which
are discussed in [15]. This approach is not flexible in that whenever one aspect of the
computation is changed, one must ensure that parallelism in the changed computation is
fully expressed by the loop and data-reference structure of the program.

6.5 Static Scheduling

Static scheduling of the fine-grained parallelism embedded in large basic blocks has also
also been investigated for use on the Oscar architecture at Waseda University in Japan.[6].
The Oscar compiler uses a technique called task fusion that is similar in spirit to the grain
size adjustment technique used on the Supercomputer Toolkit. However, the Oscar com-
piler lacks a partial-evaluation phase, leaving it to the programmer to manually generate
large basic blocks. Although the manual creation of huge basic blocks (or of automated
program generators) may be practical for computations such as an FFT that have a
very regular structure, it is not a reasonable alternative for more complex programs that
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require abstraction and complex data structure representations. For example, imagine
writing out the 11,000 floating-point operations for the Stormer integration of the Solar
system and then suddenly realizing that you need to change to a different integration
method. The manual coder would grimace, whereas a programmer writing code for a
compiler that uses partial evaluation would simply alter a high-level procedure call.

7 Conclusions

Partial evaluation has an important role to play in the parallel compilation process, es-
pecially for largely data-independent programs such as those associated with numerically-
oriented scientific computations. Our approach of adjusting the grain size of the compu-
tation to match the architecture was possible only because of partial evaluation: If we
had taken the more conventional approach of using the structure of the program to detect
parallelism, we would then be stuck with the grain size provided us by the programmer.
By breaking down the program structure to its finest level, and then imposing our own
program structure (regions) based on locality of reference, we have the freedom to choose
the grain size to match the architecture. The coupling of partial evaluation with static
scheduling techniques in the Supercomputer Toolkit compiler also eliminates the need to
write programs in an obscure style that makes parallelism more apparent.
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abstract: Vector multiprocessors rely on both spatial and temporal parallelism for
achieving significant speedup. For singly nested loops, we study the effect on the speedup
of: 1) loop fusion and, 2) increasing the granule-size of parallel-vector loops using extracted
statements from scalar loops. The proposed optimizations migrate vector statements from
one loop to another, create new loops, and reduce others. Loops and statements that
belong to strongly connected data paths are vertically fused, whenever possible, in order
to promote chaining and cache/register reuse. To reduce loop synchronization, horizontal
fusion is also used for independent loops having compatible dependence types. Finally,
vector operations are scheduled based on knowledge of the timing of arithmetic pipelines,
load/store operations, and management of the available resource.

Testing is carried out using synthetic Fortran programs on the Convex C240 vector
multiprocessor. The proposed loop fusion improves the speedup by 18% to 43% over the
C240 commercial optimizing compiler. Chaining-oriented scheduling and allocation yields
9% to 15% improvement over the highest optimization option of the C240 compiler.

1 Introduction

Research of the last decade has generated impressive improvements [13] in the design of
parallel vector-processors (VPs), due primarily to decreasing cycle time, the use of faster
pipelined memories, and the increasing number of VPs.

Restructuring compilers such as Parafrase {12], PFC [1j, UFTN [6] or, V-Pascal {14]
perform data dependence analysis of loops in order to classify them depending on their
inherent parallelism. Scalar loops (SL) are the least reduceable because of their tight
recurrences. Techniques for extracting parallelism out of SL loops have been developed
based on recurrence analysis [8]. For example, Cycle Shrinking [13] and Graph Traverse
Scheduling (2] split the loop iteration range into independent or synchronized partitions
which can run in parallel.

Loop fusion has been considered [5] as an optimization method for compiling programs
targeted to distributed-memory systems. Loop fusion simplifies {10, 11] data partitioning
and allows increasing memory reuse. Loop fusion, however, has not been utilized heavily
with vector multiprocessors.
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Vectorizing compilers support operators to extract parallelism from loops that are
primarily classified as scalar or having limited parallelism. Unfortunately, the extracted
parallelism is distributed only out of the original loop. The work presented in this paper is
based on the use of known techniques for extracting parallelism but with the objective of
reducing the granule size of some scalar loops, fusing loops, forming new loops, or migrat-
ing statements from one loop to another whenever possible. With this approach, vector
scheduling is proposed in order to exploit the locality of data producers and consumers
that results from fusion. Scheduling vector operations is based on the use of an accurate
model and timing of the underlying vector processor. The benefits are an increase of
the granule size of parallel vector loops at the expense of scalar loops, increasing reuse of
cache memory and vector registers, improved chaining, and reduced loop synchronization.
The approach has been tested on the Convex C240 mainframe.

This paper is organized as follows. Section 2 presents our approach to loop distribution
and fusion. Loop scheduling for the Convex C240 is developed in Section 3. Resolving
conflicts due to register and data path allocations is presented in Section 4. Section 5
presents the evaluation of this work and Section 6 concludes about this work.

2 Loop Distribution and Fusion

Our objective is to investigate the benefit of fusing loops and statements following the
extraction of parallelizable computations out of loops that are primarily classified as
scalar loops. We do not search to extract all the parallelism out of such loops. There are
many approaches to exploit most of the inherent parallelism in loops {12, 13, 15]. The
effectiveness of the gained speedup is necessarily dependent on the reduction factor, the
granule size of the loop, and the amount of needed synchronization.

In the following we present an algorithm called Distribute for reducing the granule
size of loops that are primarily classified as scalar loops. Algorithm Distribute classifies
loops into a number of categories depending on the amount of available parallelism and
synchronization needed to generate correct results. The algorithm for distributing loops
can be summarized by the following steps:

1. A loop L is classified as loop-independent-dependency (LID) if L does not carry
dependency from one iteration to another but dependency may occur across the
references of the same iteration. This is true when every pair of references r, and
rg of L satisfy led(ry,r2) = 0, where lcd(r, 2) is the loop-carried-dependency test.
The test lcd(ry, ;) yields true value only when r; is referenced in some iteration and
assigned in another iteration. An L4 loop can be strip-mined to generate a parallel
vector loop (PVL). If this step succeeds in classifying L as an L4, then processing
of L terminates and processing of the next loop L' is started.

2. Loop L could be partitioned into a number of Ly loops and one reduced L
loop if some expressions of L are only involved in LID dependence which enables
distributing each of these expressions out of the original LCD loop. In other terms,
there is no reference r, € Ly for which there exists another reference ry € L such
that led(ry, ro) = 1, where both r and r; reference the same array. Each synthetized
Liig loop will be formed by one expression that is free of LCD dependencies. Based
on data producer-consumer relationships, any resulting L;;4 loop should either be
predecessor or successor with respect to the remaining L;.4 loop in the corresponding
dataflow graph.
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3. Partial vectorization (PV) is attempted in order to reduce the granule size of the cur-
rent L, loop. PV consists of distributing parallelizable and vectorizable statements
out of LCD vector expressions. The distributed statements should not be involved
in LCD dependence with the remaining expressions of the same loop. Temporary
arrays are used to store the results of the distributed statements that become prede-
cessors to their original LCD expressions in the dataflow graph. PV may generates
an arbitrary number of L;;4 loops that will be classified as PVL.

4. A reduction is detected whenever two references r; and r; of one expression reference
a scalar or array with lcd(r;,r;) = 0 and r; is used prior to storing a computed
value into ry. A reduction operation can be vectorized by using dedicated vector
accumulator, vector compress and merge, thus, leading to a parallel vector loops
with dedicated code (PV LD).

. The remaining L;q4 could be partitioned into a backward-LCD (B-LCD) and a
forward-LCD (F-LCD). A F-LCD exists when one iteration references a value that
will be assigned in a later iteration. This can be determined by using a write-after-
read (war(r,,ry) = 1) test which can be combined with lcd(r;,r2) = 1 to indicate
the presence of B-LCD dependency between ry and r,. An F-LCD loop does not
prevent vectorization because a write-after-read dependence proceeds in the correct
order when executed on a vector pipeline. Because some iteration boundaries can
concurrently proceeds across the processors, F-LCD loops cannot be safely paral-
lelized without adding synchronization to guarantee correct results. A distributed
F-LCD loop is labelled as parallel vector loops with synchronization (PVLS). The
remainder of the original loop is L;,q with a B-LCD dependence type.

(]

6. Two expressions for which there is a B-LCD dependence can be interchanged if the
result generated in one expression is not used in evaluating the second expression
and no other depeudence is violated. Although, s, and sz can be involved in B-
LCD dependence they can be interchanged without altering the results if s; does
not reference the computed value of s;. If s, and s, are not involved in other
dependence, expressions s, and s can then be distributed out of the current Ly
loop and two new loops can be created.

7. The remaining unreduceable B-LCD loop generally cannot be vectorized nor paral-
lelized which leads to a scalar loop (SL) that should be executed in sequence.

Following the above analysis the program is represented by a data dependence graph
(DDG) in which the nodes represent loops of type SL, PVLD, or PVLS or simply loops
of type PVL. The method used for loop fusion is based on vertical and horizontal fusion:

1. Vertical fusion: statements or loops of the same type and with the same headers
which belong to a dependence path are fused whenever possible. Using the previ-
ously generated loop labeling, fusing condition for PVL or PVLS loops is examined
in order to ensure preserving the loop type of the fused loop. Fusion is not per-
formed if the fused loop could contain: 1) F-LCD (prevent parallelization), or 2)
B-LCD (fusion preventing).

2. Horizontal fusion: data independent loops or statements having the same types and
loop counts are also fused in order to reduce synchronization and loop overhead.
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do i=1n

sl: a(i)=a(i-1)+b(i)*c(i)

s2: e(i)=c(i)-b(i)

83: sum=sum+a(i)*sqrt(e(i))
enddo

Figure 1: Example of a loop carrying a B-LCD

do i=ln (Parallel-vector loop)
82: e(i)=c(i)-b(i)
s3": t2(i)=sqrt(e(i))
sl’: t1(i)= b(i)*c(i)

enddo

do i=1,n (Scalar loop)
sl: a(i)=a(i-1)+t1(i)

enddo

do i=1n (Parallel-vector loop)
s3': t3(i)= a(i) * t2(i)

enddo

do i=1l,n (Add-reduce loop)
$3: sum=sum-+t3(i)

enddo

Figure 2: Output program following Distribution/Fusion

Analysis of conditions that prevent loop fusion can be found in {15]. Loop boundaries
in the output program are mainly those corresponding to loops with different types,
different loop counts, or same type but with fusion preventing condition.

We examine the program shown in Figure 1 as an example  f distributing and fusing
loops. The loop has an LCD with respect to references a(i) and a(i — 1) which indicates
that Step 1 of Distribute fails. In Step 2, s2 is distributed out of the original loop. In
Step 3, PV distributes statements s1’ : t1(i) = b(i) * c(1), s3" : t2(z) = sqrt(e(1)), and
s3' : t3(4) = a(i) * t2(z) out of the the original LCD loop, where s1’, s3', and s3" are
identifiers for the three new statements. Statements s1’, s3', and s3” are labeled as PVL
loops because they are free of LCD dependencies. The previous statements s1 and s3 are
then reduced to 51 : a(i) = a(¢ — 1) + t1(¢) and s3 : sum = sum + t3(7) as a result of the
previous partial vectorization. Step 4 finds the reduction that is present in s3 and creates
a new loop for s3 that is labeled PVLD. The remaining LCD loop is reduced to sl1. Step
5 indicates that s1 is a B-LCD and there is no F-LCD. Step 6 fails because the B-LCD
loop is formed by one single expression s1 that is labeled as SL loop.

The resulting data dependence graph has four levels: 11 = {s1’,s2}, 12 = {s1,s3"},
I3 = {53}, and l4 = {s3}. The dependence edges are: (s1' — s1), (52 — 53"), (s51,s3" —
s3'), and (83’ — s3).

Vertical fusion leads to fuse expressions s2 and s3"”. As sl is SL and s2 is LID,
horizontal fusion inserts then term s1’ within loop (s2,s3") that becomes (s1’,52,53").
The type of s3' is different from that of s1 or s3. The above three loops remain separate
as shown in Figure 2.
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3 Loop Scheduling

The traditional approaches |7, 9] are based on the use of reservation tables that result
from gross estimating the functicnal unit (Fus) times as one or more units of times
and scheduling the vector operations. Resolving problems with respect to memory load
and store operations, resource availability, and resource allocation is done in a separate
step. The result is that isolating the above constraints from the first step leads schedule
makespan to be excessively increased by adding delays for resolving the various register
and data-path constraints in the £nal step.

Our approach consists of early incorporation of all the available constraints by schedul-
ing the load/store and arithmetic operations over the Fus based on accurate timing of
the VP and the management of the available resources during scheduling. This results in
a conflict-free schedule with respect to Fus, memory utilization, and resource availability.
The schedule generated is used to resolve the problem of register and data-path allocation.
This consists of resolving conflicting allocation of registers and data-paths by minimizing
the additional delays to be incorporated in the original schedule.

The vector processor unit of C240 [7, 4] has the following vector pipelines (Fus): 1)
concurrent vector load (M, ) and store { M, ), 2) add and logical (Fu;), 3) multiply and
divide (Fu, ), and 4) merge/compress and conditional pipes. Any of the four register bank
outputs can route vector data to any of three functional pipelines inputs. The functional
unit (Fu) output and M, can be routed to any of the register bank inputs. Each bank
has two vector registers but only one bank input.

In the following we investigate evaluation of the earliest-starting-time (est(n)) of vector
operation n. We start by defining the notation used prior to finding the est time for each
possible case. Variable vs denotes a vector or a scalar. vs.n denotes a vs that is input
operand for vector operation n. n.vs denotes a vector/scalai that is produced by n. Fu(n)
denotes the functional unit on which n is to run. Denote by s(n), t(n), t;(vs) the starting
time of n, finishing time of n, and the time to load vs from memory into some register,
respectively. t(M) and t(Fu) denote the earliest time the memory (M;, or M,,) and
functional unit Fu are free, where M,,, (loading) and M;, (storing) are memories used
to establish two independent data-paths (C240) with the vector-processor.

Evaluation of the earliest-starting time (es¢{s1)) is based on tle previous status of the
Fus, M;, and M,,,;, and the number of registers and data-paths used. Evaluation of the
est(n) for the C240 requires analysis of the following three cases.

For Case 1, n requires loading of two vectors vsy.n and vsy.n. Denote by ¢y (vsy,vss) =
t( My ) + ti(vs1) + ti(vse) the time at which both operands vs;.n and vsz.n will be loaded
from the memory into some registers. As there is no possible chaining, est(n) is defined
by est(n) = max{t.(vs1, vss2), t{ Fu(n))}.

Case 2, n requires loading of one vector vs.n while the other operand is generated by
a predecessor n’. If no chaining is possible (Fu(n) = Fu(n')), then est(n) depends on the
later of the loading time ¢;(vs) and the time #(Fu{n')) the functional unit Fu(n') is free,
i.e., est(n) = max{t.(vs), t(Fu(n'))}.

In the other case (Fu(n) # Fu(n’)), chaining can be done if at the chaining time
(t(n) = s(n’) + 6(n’)) the loading of vs.n is complete and Fu(n) is free, where §(n') is
the delay on of n due to its chaining with operation n’. If the previous condition is not
satisfied, then running n may take place following the completion of n’. To summarize,
the est(n) will be defined by:

te(n) if t(n) 2 max{t,(vs),t(Fu(n))}
max{t(vs),t(n'),t(Fu{n))} otherwise (no chaining)

est(n) = {
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For Case 3, both operands of n are generated by predecessors n’ and n”, respectively.
If there is no chaining (Fu(n) = Fu(n') = Fu(n")), then est(n) = t(Fu(n)) because no
loading is needed.

There is potential chaining on one unit when (Fu(n) # Fu(n')) but (Fu(n) = Fu(n")).
Chaining is possible if at the chaining time t.(n) = s(n') + 8{n’) the computation n" is
complete and Fu(n) is free, where §(n') is the time to store the first result of n’. In other
words, est(n) is defined by:

oy < | te(m) if t.(n) > max{t(n"),t(Fu(n))}
est(n) = max{t(Fu(n)),t(Fu(n"))} otherwise (no chaining)

There is potential chaining on two units when Fu(n) # Fu(n') and Fu(n) # Fu(n").
We restrict ourselves to the case of the C240 that has two arithmetic units. Therefore,
operations n’ and n” are sequentially executed and the chaining time of n is t.(n) =
max{t.(n),tI(n)}, where t.(n) = s(n') + 8(n') and t!(n) = s(n”) + 8(n"). The chaining is
possible if Fu(n) is free at the chaining time t.(n), otherwise n is to start following the
completion of both predecessors n' and n”. To summarize this case, we have:

Hn) = t(n) if to(n) > t(Fu(n))
est(n) = max{t(Fu(n)),t(Fu(n')),t(Fu(n"))} otherwise (no chaining)

Finally, we evaluate the earliest time (¢,.(n)) at which the resource (Fu, M,,, and
bank inputs and outputs) needed for n becomes available. The register and data-path
availability are examined at time point est(n) that has been evaluated previously so that
t..(n) > est(n). If the needed resource is available, then ¢,.(n) = est(n). Otherwise, t,..(n)
will be the earliest time the needed resource will be released. The final earliest-starting
time of n will be used by the scheduling algorithm.

Using the above evaluation of the earliest-starting-time, the proposed vector-scheduling
is based on minimizing the Fu idle times in an attempt to maximize the efficiency and
to promote potential vector-chaining. Each loop separately scheduled. Vector load is
not considered as a separate operation but included within each of its arithmetic vector
operation. At any given time, the operands of ready-to-run operations are available in
memory or in some vector registers. The major steps of the Vector-Scheduling algorithm
is the following:

1. All operations of the loop are stored into set A except the set of ready-to-run
operations that are stored into set B

2. Repeat the following steps until B is empty

(a) Select the operation n € B that can start at the earliest time (est(n)) as a
heuristic to maximize the efficiency of the Fus, allocate n, allocate one register
to the output of n, and update the timing of all the resources used by n

(b) Load input operands (if any) for n, allocates one register, and updates the time
My will be free

(c) Check whether a successor operation of n becomes ready to run, remove it from
A and insert it into B

The time complexity of the vector-scheduling algorithm is O(pm?), where p is the
number of resources and m is the number of vector operations.
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4 Minin.izing Register and Data-Path Conflicts

The previous scheduling guarantees that: 1) different loads (M,,,) or stores (M,,) are
properly serialized, 2) allocation of vector operations to Fus do not conflict and, 3)
resource availability is guaranteed. In the following we analyse three types of conficts
that might result from the use of the previous schedule.

Overlapped lifetime of vectors may lead to conflicting utilization if at least two vectors
are allocated to the same register or to different registers but within the same register
bank. Denote by w,,(v,t") the time cost, or delay over the finish time of the previous
schedule, of spilling either v or v/ whenever their lifetimes overlap. The cost w, (¢, ') is
the time to store and load one vector data.

Overlapped bank output occurs when two vectors v and v’ are allocated to registers
of the same bank and their loading into the corresponding Fus overlap with respect
to time. Denote by wyu{v.v') the cost associated with the least delay incurred to the
schedule as a result of serializing the use of the bank output. Therefore, wo, (¢, ") =
min{t(n') — s(n),t(n) — s(n')}, where n and n’ are the operations that consume ¢ and ',
respectively, and s(n) and t{n) are the starting and ending times of n.

Overlapped bank input occurs when two vectors v and v’ are allocated to registers of
the same bank and their storing into their registers overlap with respect to time. The
associated cost wy,, is the least delay incurred by the schedule when serializing the use of
the bank input.

Based on the above time delays, we heuristically define the giobal weight .(v,1') of
edge (v,v’) as the maximum delay caused by the interfering operations of vectors v and
v'. Each vector v is further assigned a weight w(v) that is the sum of all the delays caused
to the schedule:

w(v) = o if no lifetime overlap
T Z, max{wp(v, V') + Weinl ¥ V') + wigue (v, V')}  otherwise

In the following we use Weighted Graph Coloring for allocating banks and registers to
the vectors of each loop. The vectors used in each loop are associated an undirected graph
in which a node v has the weight w(v) and an edge (v, v') has the weight w(v,v’). The
graph is formed by a collection of non-connected sub-graphs. The used coloring algorithm
is a variant of [3]. The algorithm uses two heaps A and B:

1. Initially, A contains all nodes except the one with the highest weight which is placed
in B,

2. Repeat the following steps until A is empty

(a) Repeat the following step until B is empty

i. Remove a node v from B (highest weight), color v, and add to B all
immediate neighbors of v after removing them from A

{b) Remove from A the node (first node of a new component) with the highest
weight and insert it into B

The time complexity of this algorithm is O{cm?), where c is the number of components
and m is the number of vectors within a component.
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Different Programs and Different Allocations
Speedup [ L(1) TL(2) [L(3) [ L(max)
Sczavjmom | 11 | 9.75 | 8.72 | 86
So,./,.,,,,, 15.73 | 12.87 | 10.55 | 10.15
Sopt/)C240 1.43 1.32 1.21 1.18

Table 1: Speedup of (C240) and this Approach (opt)

5 Performance Evaluation

Our objective is to develop a compiler optimization to assists non-expert programmers.
We consider synthetic Fortran programs. Each is formed by a total of 30 arithmetic vector-
expressions. Each expression may include up to four vector-operations. To generate these
programs, the dependence edges between the expressions were randomly generated in
order to specify the vector-operands for each expression including possible vector-loads.
The maximum number of expressions that belong to the same level in the data dependence
graph (DDG) were at most four and the number of levels was at least five. An LCD was
present in 20% of the expressions and all loop counts were set to 1000. We use L(k) to
denote that each loop is allowed to incorporate at most k expressions.

Let’s Sca4g/mopt be the speedup of the highest optimization level of the Convex (240
over the No-Optimization or scalar execution. We also use the speedup S,pt/nope. Where
opt refers to the proposed approach. Finally, we use the Speedup Sou/c210 to compare
our approach to that of the C240 highest optimization option. All the studied cases use
one processor only. Table 1 shows the results of averaging the running of 10 programs for
each value of L(k).

The first entry in Table 1 shows the measured speedup of the C240 optimizer over the
scalar processor {—no) when only one VP is used. The highest speedup is 11 which is
measured when the program is formed by loops that contain only one vector expression.
This speedup decreases with increasing the graaule size of the loops (L(1), L(2). etc.).
The reason is that the vector processor of the C240 has hardware support to implement
the loop overhead that is much faster than the software approach used by the scalar
processor.

With loops having few statements (L(1), L(2), and L(3)), the newly loaded vector
data in the beginning of each loop could have been made available in vector registers
during the running of previous locps. The overhead of multiple vector load and store is
avoided in our approach through loop fusion. The effect of loop fusion aliows improving
the speedup as shown in Sep/nop and Sopr/c24p Of table 1. All assignment statements
require storing data regardless of loop boundary. The difference is that with loop fusion
some of these vector store can occur while the arithmetic pipelines can be active.

The effect of statement migration appears more sharply when the number of expres-
sions within each loop is maximum (L{max)). In this case, the opportunity of loop fusion
is reduced but there is still some benefit from transferring expressions from one loop to
another in order to align vector data producers with vector data consume. as an attempt
to promote pipeline chaining. The benefit of statement migration (L(maz)) allowed to
improve the speedup obtained by the C240 by 18% as shown by Sepr/c240-
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Same Programs but Different Allocations
Speedup | L{1) | L(2) | L(3) | L{max)
Sczto/mopt | 1360 | 11.50 | 9.68 | 9.31

Sopt/mopt | 15.73 | 12.87 | 1055 | 10.15

Sopt/c240 115 | 112 1109 |1.09
Table 2: Effect of the allocation and scheduling of the VP

5.1 Effect of Scheduling and Allocation

The objective of the second experiment is to study the effects of the proposed vector
scheduling and resource allocation. For this, the C240 optimizer and our scheduler were
run using the same restructured program in an attempt to isolate and compare the schedul-
ing and allocation effects which have been done separately.

Table 2 shows the measured speedup for this experiment. The achievement of our
scheduling and allocation are still those obtained in the first experiment. However, the
C240 optimizer improves its speedup (Sc240/nopt), When using restructured programs, by
a 10% to 24% factor compared to that achieved without restructuring the program.

The C240 can find more opportunities for chaining in the restructured programs as
most producers/consumers are now located within the boundary of each loop. Our ap-
proach improves its speedup by a 9% to 15% factor over that of the C240 due to our
scheduling and allocation.

The C240 optimizer uses the technique of reservation table in scheduling vector opera-
tions over the available pipelines {7]. The timing of all the operations is rounded so that it
can either be one or two macro-cycles. Vector scheduling that is a variant of list-scheduling
[9] is performed in the first pass. There are many reasons for inserting delays into the
reservation table in the allocation pass. In general, the inserted delays negate some of the
chaining benefits of the first step. A conservative conclusion is that early incorporation
of timing constraints in allocating the vector registers and data-paths yields better result
than the approach used in commercial vectorizers such as that of the C240.

6 Conclusion

The objective of this work was to investigate some aspects of global restructuring of syn-
thetic programs based on restructuring of the source program and the use of a chaining-
oriented machine dependent allocation. For this, we proposed reducing the granule size
of scalar loops by extracting vectorizable and parallelizable statements. Furthermore,
these statements can be fused within other loops of the same type and having similar
loops count in an atiempt to increase the granule size of parallel loops. The other benefit
of this operation is that placing data producers closer to their consumers increases the
opportunity for chaining their execution, and increasing reuse of data in vector-registers
and cache-memory. At a lower level, we proposed a horizontal scheduling and alloca-
tion method based on locally maximizing the efficiency and incorporation of the vector
load/store delays.

Our approach allows improving the highest optimization option of the convex C240
by a speedup factor of 18% to 43%. Chaining-oriented scheduling and allocation gave an
improvement of 9% to 15%.

Future extension to this work would be the integration of expert techniques in paral-
lelism extraction for each type of loops. This would greatly help scientists in optimizing
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large scale programs within the framework of an interactive optimizer.
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Abstract: A popular approach to speed up fine-grain concurrent languages is to parti-
tion programs into threads. This requires static analysis to determine task dependencies,
to avoid placing a cycle within a thread. In the context of concurrent logic programs
(CLPs), dependency analysis requires mode analysis. Simple argument modes are insuffi-
cient because dependencies can be hidden within complex terms. In this paper we review
Ueda and Morita’s proposed path analysis method and present three novel algorithms for
realizing the technique. We present empirical measurements of the analysis times of a
benchmark suite which indicate that the analysis can be comparable to the compilation
time on a simple, non-optimizing compiler. This study presents the first empirical results
concerning the practicality of complete mode analysis for CLPs.

Keyword Codes: D.1.3; D.1.6
Keywords: Programming Techniques, Concurrent Programming; Logic Programming

1 Introduction

Concurrent logic programs, such as FGHC (9], as well as other dataflow languages such
as Id, are collections of fine-grain concurrent tasks that synchronize implicitly when input
data is not available to a procedure invocation. Naive compilation causes too many, too
small tasks to be generated. Improving execution performance by static partitioning into
threads is a currently developing technique e.g., [6]. In contrast to functional languages,
logic languages have an additional problem that data dependencies are implicit, i.e., the
input/output characteristics of program variables are not explicitly declared or trivially
derivable. Conservative knowledge of dependencies is necessary to avoid placing a cycle
within a thread thereby causing erroneous deadlock.

There are numerous methods for automatic derivation of mode information from se-
quential logic programs, e.g., [2, 4, 5]. Another option is user declarations (e.g., [10]),
which we consider either incomplete or too much burden on the programmer. For CLPs,
Ueda and Morita {14] proposed a mode analysis scheme based on the representation of
procedure paths and their relationships as rooted graphs (“rational trees”). Unification
over rational trees combines the mode information obtainable from the various procedures.
For example, in a procedure that manipulates a list data stream, we might know that the
mode of the car of the list (that is the current message) is the same mode as the cadr
(second message), caddr (third message), etc. This potentially infinite set of “paths” is
represented as a concise graph. Furthermore, a caller of this procedure may constrain
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the car to be input mode. By unifying the caller and callee path graphs, modes can
be propagated. This analysis is subtlely different than classical abstract interpretation,
which could also be used to generate identical information.

Mode information is useful not only for compiler optimization but also for static bug
detection. In the latter, the analyzer warns the programmer that variable usage disobeys
conventions and is thus likely to be erroneous. In this regard, the analysis constitutes
a type restriction on the language, called “moded” flat committed-choice logic programs
by Ueda and Morita. These are programs in which a variable has at most a single
producer and the mode of each path in a program is constant, rather than a function
of the occurrences of the path. This is not regarded as a major drawback, since most
non-moded flat committed-choice logic programs can be transformed to moded form.

To motivate the importance of the static analysis, consider an experimental FGHC-
to-C compiler built using these techniques [7]. Measurements were made comparing the
sequential C code generated by our sequentializer and several other systems. Noteably,
handcrafted C programs and FGHC programs compiled by the Monaco research compiler
generating parallel code [11]. For a QuickSort program sorting 500 integers on a single
Sequent Symmetry processor, Monaco ran in 10.5 seconds, handcrafted C in 1.5 seconds,
and our sequentialized code in 2.2 seconds. We chose this example to motivate the point
that significant performance improvements over traditional systems (Monaco was the
fastest multiprocessor implementation of FGHC at the time of the experiment) can be
achieved with this technique, and the speeds are getting closer to optimized C. Although
more sophisticated partitioning (e.g., based on granularity estimation [6]) is needed to
retain multiple threads for parallelism, mode analysis is still required for safety.

In this paper we discuss three algorithms for implementing Ueda and Morita’s tech-
nique: the first implementations yet built and evaluated (M. Koshimura also has an
MGTP implementation [12]). We present empirical measurements of the analysis times
of a benchmark suite which indicate that the analysis is comparable to compilation time
on a simple, non-optimizing compiler.

2 Background: Paths and Modes

Ueda and Morita’s [14] notion of “path” is adopted as follows: a path p “derives” a subterm
s within a term ¢ (written p(t) I s) iff for some predicate f and some functors a, b, ... the
subterm denoted by descending into ¢ along the sequence {< f,i >,< a,j >,< b,k >,...}
(where < f,i > is the i** argument of the functor f) is s. A path thus corresponds to a
descent through the structure of some object being passed as an argument to a function
call. f is referred to as the “principal functor” of p. A program is “moded” if the
modes of all possible paths in the program are consistent, where each path may have
one of two modes: in or out (for a precise definition, see Ueda and Morita [14]). For
example the cadr of the first argument of procedure ¢ has an input mode specified as:
m({< q/3,1>, <.[2,2>, <.[2,1>}) = in.

All analyses presented in this paper exploit the rules outlined by Ueda and Morita.
For the purposes of following this paper, we grossly summarize these as three rules:
§1 nonvariables and variables constrained in certain ways in the guard are immediately
deduced as in; §2 corresponding paths among left and right side of body unification goals
have opposite modes, and §3 variables have at most one producer thus multiple occurrences
have at most one out instance.!

1This is not precise: a variable produced in the body (of) can be exported in the head (also out).
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Figure 1: Initial Graph of Procedure q/3, After Phases I-11

3 Constraint Propagation Algorithm

In the constraint propagation algorithm [13], a graph? is constructed representing the
entire program.? Analysis proceeds by unifying all roots with the same functor and arity.
Termination, occurring when no further reduction is possible, is guaranteed because the
mode lattice is finite and monotonic. Checking for program “well modedness,” the analysis
cannot terminate even if all modes are derived, in anticipation of a later contradiction.?
Thus time complexity is simply a function of the size of subgraphs to be unified {14] which
are usually small. A program graph is a directed, multi-rooted, (possibly) cyclic graph
composed of two types of nodes. To illustrate the following definitions, Figure 1 presents
a portion of the program graph for Quicksort.

A structure node {(drawn as a square) represents a functor with zero or more exit-ports
corresponding to the functor’s arity. If the node corresponds to a procedure name (for
clause heads and body goals), there are no associated entry-ports (i.e., it is a root). If the
node corresponds to a data structure, there is a single entry-port linked to a variable node
unified with that term. A structure node contains the following information: a unique
identifier, functor, and arity.

A wvariable node (drawn as a circle) represents a subset s of (unified) variables in a
clause. Intuitively we think of these variables as aliases, and upon initial construction of
the graph, s is a singleton (i.e., each unique variable in the clause has its own variable
node initially). A node contains k > 1 entry-ports and j > 0 exit-ports, upon which
directed edges are incident. A unique entry-port corresponds to each clause instance of
each variable in s. An exit-port corresponds to a possible unification of the variable(s) to

3Throughout the paper we informally refer to rational trees as graphs. Note that our graph grammar
i8 quite different than that of Ueda and Morita.

31t is straightforward to build an incremental analyzer; we do not go into details here.

4A program is “well-moded” if the modes of all paths are known, “moded” if the modes of some paths
are known, and “non-moded” if there is a mode contradiction.
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Figure 2: First Local Unification of q/3

a term (exit-ports connect to structure nodes).

A variable node contains the following information: a unique identifier and a mode
set m. An element of m is a vector of length & containing self-consistent modes for the
variable instances of s. To facilitate the implementation, each entry-port has a name; the
identifier and exit-port number of its source node. Elements of m are alternative mode
interpretations of the program. Initially m is computed by Ueda and Morita’s rules.’
Intuitively, graph reduction results in removing elements from m as more constraints are
applied by local and global unifications. A fully-reduced graph, for a well-moded program,
has a singleton m in each variable node.

Initial graphs, e.g., Figure 1, are multi-rooted directed acyclic graphs. The initial roots
correspond to clause head functors, body goal functors, and body unification operators.
In addition to the program graph, a partitioned node set is kept. Initially, each node is a
singleton member of its own partition (disjoint set).

The mode analysis consists of three phases: I) creating a normalized form and initial
graph; II) removing unification operators from the graph, and III) reducing the graph to a
minimal form. Phases I and II (shared by the process network implementation) convert a
flat committed-choice program into a normalized graph with roots named only by clause
heads and user-defined body goals. Precise details of this transformation can be found in
[13]. Phase III is described next.

Throughout this brief discussion of unification, consider the example shown in Figure
1 (initial) and Figure 2 (after unification of roots 1 and 3). See [13] for the formal
graph unification algorithm. Unification is invoked as unify(a,b) of two nodes a and b
(necessarily root structure nodes). The result is either failure, or success and a new graph
(including the node partitioning) that represents the most general unification (mgu) of
the two operands. Implied data structures used by the algorithm include the graph, the

5The size of m increases with the complexity of the rules, e.g., rule §3 (Section 2) can produce several
vectors. By explicitly enumerating initial modes, we simplify the analysis by obviating the need to actively
apply complex constraints implied by rule §3 throughout reduction of the graph.
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disjoint sets (i.e., node partitioning), and a mark table associated with pairs of nodes.

Structure and variable node unifications follow recursive descents. Initially all marks
are cleared. Circular structures that represent infinite paths are handled properly by
marking node pairs at first visit. If a given node pair has been previously marked, revis-
iting them immediately succeeds. Note that we mark pairs instead of individual nodes to
handle the case of unifying cyclic terms of unequal periodicity.

Two important operations for the disjoint sets data structure are union(z,y) and
find_set(z). Function union(z,y) unites two disjoint sets, where z belongs to the first
disjoint set and y belongs to the second disjoint set. Procedure union returns the canon-
ical name of the partition, i.e., the least identifier of the nodes. This facilitates reusing
graph nodes while rebuilding the graph. Function find_set(z) returns the canonical name
of the disjoint set containing z.

The major complexity in the algorithm is variable node unification where the modes
of two argument nodes must be merged. First, mode vectors that are contradictory are
discarded. If all mode vectors are contradictory then a mode error has occurred and
unification fails. Otherwise redundant modes are removed and the two mode vectors are
concatenated. Next we create the entry-port identifiers associated with the new mode
vector. Lastly, children of the argument nodes that share equal functor/arity must be
recursively unified. The exit-port identifiers consist of a single exit-port for each pair of
children unified, included with exit-ports for all children for which unification does not
take place. Intuitively, a variable node forms or-branches with its children, whereas a
structure node forms and-branches with its children. In other words, the least-upper-
bound (lub) of the abstract unification semantics at a variable node is a union of the
structures that potentially concretely unify with the variable node.

4 Process Network Analyzer

The previous constraint propagation algorithm was alternatively implemented by a pro-
cess network wherein each node of the graph was an active, concurrent process. Nodes
communicated by message passing over streams to accomplish reduction. The motiva-
tions for moving the graph from a static data structure to an active process network
are: 1) concurrency is increased because updating the graph no longer bottlenecks the
computation; 2) unification of graph nodes corresponds to merging node processes, thus
resource requirements made by the analyzer decrease as execution proceeds, and 3) an
active process network is an elegant paradigm for this problem.

Translating the unification algorithm requires the specification of how recursive uni-
fication can proceed via message passing, how the distributed unification can terminate
(both successfully and by failure), and how the final mode information can be read from
the reduced graph. Do to insufficient space, we briefly discuss only the distributed unifi-
cation algorithm (see [12] for additional details).

A node process manages either a variable or structure graph node. The node process
contains state holding a unique integer identifier, a symbol (functor/arity for structure
nodes and the atom *$VAR’ for variable nodes), mode information, and a flag indicating
if the node is from a clause head. Mode information consists of a set of mode vectors
and a vector of entry ports, as described in Section 3. In addition, a node has an input
stream, a list of output streams to children, and a global termination flag.

A node process acts on the following two messages (in addition to others). Receipt
of message unify(+Id,+S0,-S1,+Parents,+Ans,+Done) indicates that this node is re-
quested to initiate a unification with node Id on input stream SO. Parents are the two
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parent nodes who made this unification request. The results of the unification are S1
which is the tail of the stream to node Id and Ans, a short-circuit chain® for unification
termination. Done is the short-circuit chain for message termination. Receipt of message
who(-Info,-In,-0ut,+Done) indicates that this node is to be unified with another node,
and therefore this node is to be terminated. Before termination, the state of the node
is passed back to the initiator node via back-messages: Info, In, and Dut. Done is the
short-circuit chain for message termination.

The implementation shares phases 1 and Il with the previous algorithm, and then
spawns a node process network from the static graph definition. Similar to the static
graph analyzer, the root list is grouped into pairs which are unified, then these resulting
trees are unified and 8o on, forming a logarithmic tree of unifications.

A node that receives a unify/6 message is the “active” member of a reduction. It
sends a who/4 message to the “passive” member, who returns all its state information
on a back message and terminates itself. For structure-structure unification, the node
symbols are compared and if matched, the active node sends unify/6 messages to one
member of each pair of children. Otherwise failure occurs.

For variable-variable unification, first the mode sets must be merged. If the merge
is successful, then only children with matching functors are unified, by sending unify/6
messages. Non-matching children are simply appended to the output stream list of the
active node. If the mode set merge is a failure, then the unification fails.

The primary difference between the previous static (Section 3) and active (Section 4)
graph implementations is that the latter is fully concurrent. The static graph is sequen-
tialized by necessity to update the graph consistently. One fix would be to partition the
graph into independent subgraphs (finding the strongly-connected components of the call-
graph), allowing concurrent reduction. The active graph analyzer was more difficult to
build than the static analyzer because concurrent process networks are notoriously hard
to debug. However, compared to other distributed algorithms, debugging was not overly
burdensome because our abstract unifications monotonically approach the final state.

From profiling information we deter..:ined that the active graph analyzer spends most
of its time checking for self-unification of a node (necessary for circular unification) and (to
a lesser degree) manipulating mode vectors. To check for self-unification, we instituted a
naming scheme wherein the identifiers of two nodes to be unified are concatenated to form
the identifier of the new node. Thus node identifiers grow in size during reductions, and
although we use difference lists to concatenate cheaply, the cost of checking membership
within an identifier list grows. An alternative would be to allow both nodes to live
(currently we terminate one of them to save space), and update the state in each to
indicate the current minimum identifier of the alias set. We have not yet experimented
with this option (it is very similar to method used in static graph implementation).

Mode vector manipulation requires finding the indices (within the vectors) of the mode
elements being compared, and concatenation of the two vectors (less the duplicate mode
element which is removed). Time is spent about equally between these main functions.
Quickly finding indices requires a more sophisticated data structure than the current list.
Quick concatenation requires either difference lists or bit vectors. Both are complicated
by the removal of duplicate elements. In fact, the static graph implementation elected
to forgo duplicate removal and used difference lists for mode vectors. This contributes
to the increased space requirement for the static graph analysis (Section 6). The active
graph implementation uses standard lists with removal. We need further experimentation
to determine the best solution.

8See [9] for discussion of CLP programming techniques such as short circuits and back messages.
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The space complexities of the active graph analyzer lie in spawning a process for each
graph node. This working set churns through memory more quickly than the static graph
implementation (which can exploit local memory reuse in PDSS to keep data copying low).
Currently we do not constrain the number of processes, but this could be accomplished
in the manner opposite to parallelizing the static graph analyzer: first finding groups of
strongly-connected components of the program’s call graph, and then analyzing only one
group at a time. For example, a short-circuit chain could be used to force synchronization
between one group and the next. In a multiprocessor system, explicit load distribution of
the groups would be needed.

5 Finite Domain Analysis

To avoid circular unification altogether and much of the overheads of maintaining the
graph, either statically or actively, a radically different algorithm was developed {7}. The
first stage of this alternative algorithm generates a finite set of paths whose modes are to
be considered. Only “interesting” paths are generated in the first stage of our algorithm:
effectively those paths locally derived from the syntactic structure of the procedures.
There are three classes of interesting paths. The first class consists of paths that directly
derive a named variable in the head, guard, or body of some clause. All such paths can be
generated by a simple sequential scan of all heads, guards, and body goals of the program.

The second class consists of paths which derive a variable v in some clause, where
a proper path through the opposite side of a unification with v derives a variable v'.
More formally, consider a unification operator v = t where v is a variable and ¢ is some
term other than a variable or ground term. Let v’ be a variable appearing in t at path
g, i.e., g(t) & v’. Then if p is a path deriving v (by which condition p is also inter-
esting), then the concatenated path p - ¢ is also an interesting path. All paths in this
second class may be generated by repeated sequential scanning of all unification goals
until no new interesting paths are discovered. The necessity for repeated scans is illus-
trated by such clauses as “a(X,Z) :- Y = ¢(X), Z = b(Y).” where the interesting path
{<a/2,2>,< bf1,1>,< ¢/1,1>} given by the first unification body goal will not be gen-
erated until the interesting path {< a/2,2>,< b/1,1>} in the second unification body
goal is generated. Such repeated scans should occur infrequently in practice. In any case
not more than a few scans are necessary — no greater number than the syntactic nesting
depth of expressions containing unification operators.

The third class of interesting paths is generated by noting that if a path starting on
the right-hand side of a unification body goal (i.e., a path of the form {<=/2,2>}-s)
is interesting, then so is the corresponding path starting on the left-hand side of that
unification (i.e., {<=/2,1>}-s).

In general, all interesting paths of a program are generated in a few sequential passes,
e.g., the 39 interesting paths of Quicksort are generated in two passes. The interesting
paths could be generated from a depth-one traversal of the complete Quicksort graph,
except for two paths which are “hidden” because they cannot be derived locally. However,
the set of interesting paths produced is sufficient to mode the program in the sense of
assigning an unambiguous mode to all syntactic variables. This is not always the case!

Once we have generated a set of interesting paths, our algorithm proceeds by simply
noting the modes of paths, first directly, and then by examining relationships between
paths. There are essentially four different stages in the algorithm: 1) Assert absolute
modes for some paths; 2) Assert that all paths on opposite sides of a body unification have
opposite modes; 3) Proceed sequentially through the variables derivable from interesting
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paths, asserting all binary relations between paths, and 4) Repeatedly consider multiway
relations (rule §3 Section 2) asserted by the clauses.

The first three stages have linear complexity. The multiway analysis is exponential
in the number of variables, but by the time it is actually performed, most alternatives
contradict the known modes, and thus are not explored. We found multiway analysis
contributed only 2-7% of total analysis execution time in simple programs, and 11-20%
in complex programs.

Important theoretical issues raised by this algorithm are its consistency, completeness,
and safety. It is not difficult to prove that the finite domain algorithm is consistent in the
sense that if, at some point in the analysis, path p is shown to have mode m, and if some
subset of the interesting paths implies that p does not have mode m, then the algorithm
will derive and report this contradiction. The major barrier to the consistency of this
algorithm is somewhat subtle: the non-modedness of a program may not be detectable if
the analysis uses the wrong set of paths! This leads directly to a reasonable definition of a
complete set of paths. A set of paths generated for a program is complete iff the existence
of a consistent moding for the set of paths implies that the program is well-moded.

Thus, the infinite set of all possible paths is a complete set; however, we are interested
in finite complete sets and in particular in a minimal complete set of paths for the program.
The path generation algorithm is incomplete; because of this incompleteness in path
generation, the finite domain method is unsafe. It is a consequence of the incomplete set
of generated paths that even if the program contains information about the mode of a
path, that information may not be derived. Thus, the analysis is unsafe in the sense the
compiler may not detect mode contradictions in erroneous (not well-moded) programs,
and thereby produce erroneous mode information for programs that should be rejected
altogether. Nonetheless, most generated paths in typical programs are moded by the
finite domain analysis, and if the program being analyzed is known to be moded, all
modes derived are correct. Assuming it can be made faster than safe analyses, unsafe
analysis has utility for “lazy task creation” systems (8].

6 Performance Comparison and Conclusions

A benchmark suite of KL1 source programs (Table 1) was analyzed using the three
mode analyzers. The analysis tools were all implemented in KL1 and run on the PDSS
(V2.52.19) compiler-based system, on a Sun Sparcstation 10/30. PDSS executes about
34,000 reductions per second for the analyzers described here. The analyses tend to have
complexity related to the number of symbols in the source program [14], which we catego-
rize as constants (including functor symbols) and variable instances. Because paths can
be cyclic, we define the number of “broken” paths, e.g., the car and cdr of a list will be
counted, but not the cadr or cddr. We list, in parentheses, the number of paths produced
by the finite-domain analyzer, since it may differ from the other three algorithms.

Execution performance is summarized in Table 2, giving the execution time (an average
over five runs) and data memory consumption for each source program. The last row gives
the static code size of the tools themselves. The broken path output of the analyses was
verified as identical modulo the incomplete nature of the finite domain method. There
are several interesting observations supported from the empirical measurements:

e Programs such as cubes and waltz contain ground lists of data that increase the
analysis complexity by lengthening the propagated paths. Although we can hope
that a ground data list of length one holds as much information as length 100,
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symbols broken paths
| program | proc const [ vars | total total T avg length

qeort 2 5 31| 40] 71| 19(17) 16
primes [ 12 | 63| m2{ 33(28) 1.5
msort 4 1 54 75 129 36 ( 30) 1.7
queens (] 14 77| 19| 196 71 ( 43) 1.8
cubes 9 18 93| 159 252 224 ( 79) 2.7
pascal n 22 143| 200| 343]| 338(56) 2.0
rucs 16 66 218 390 608 79 ( 46) 1.6
bestpath 20 4| a9 492| 771 507 (207) 2.5
waltz 20 54| 333| e30| 963| 320( ) 2.2
waves 20 45( 352| 60| 1042 623 (220) 3.0
triangie 42 80 315 | 1226 | 1541 | 1155 (848) 2.0

Table 1: Benchmark Suite Characteristics

PDSS r finite | static | active PDSS finite l static l active
benchmark | compile | domain | graph | graph || compile | domain | graph | graph
exection time (msec memory consumption (kbytes)

qsort 410 480 380 230 111 188 3713 138
primes 780 950 610 370 164 320 6186 204
msort 760 1,080 760 490 158 381 795 281
queens 1,140 2,190 1,210 620 244 692 1,444 340
cubes 1,570 3,030 1,730 1,080 320 1,057 2,070 5N
pascal 1,660 4,710 2,410 1,080 343 1,362 3,272 574
rucs 3,010 7.970 6,370 2,350 699 1,838 8,224 1,343
bestpath 6,160 20,740 | 11,220 3,630 922 8,501 | 17,298 1,779
waltz 4,510 19,280 | 11,730 5,700 803 6,394 | 17,696 2,278
waves 7,960 37,540 | 16,320 4,690 1,204 9,098 | 28,371 2,318
iangh 11,720 52,920 | 51,440 9,660 1,865 17,339 | 51,856 4,437
analyzers 273 44 54 70

Table 2: Performance of Mode Analyzers (KL1 on Sun Sparcstation 10/30)

there is always an outside chance that the 99** element will cause a contradiction
somewhere in the program. We are considering methods wherein we can cut ground
terms and then do post-analysis to ensure that we did not miss a contradiction.

Development of the analyzers by novice programmers indicated some weaknesses
of current CLP development environments. Notably, even after tuning, the finite
domain analyzer is still generating excess suspensions and the static graph analyzer
has high memory consumption. For example, although graph construction required
35% of total analysis time in the static graph analyzer, it was proportionally 68%
in the faster active graph analyzer (written by an expert). This leads us to believe
that the analyzers can be further tuned.

Finite domain analysis does not appear faster than constraint propagation and there-
fore its utility is questionable. Although the reduction in paths decreases memory
consumption slightly, it can in some cases produce more paths than are necessary,
and in other cases delay resolution of multiway relations.

The active graph analyzer demonstrates execution times ranging from 47% to 126%
of the PDSS compiler. The arithmetic mean over the benchmarks is 69%, which
we consider acceptable. For large programs, garbage collection remains problematic
and thus we must throttle task creation. For example, analyzing triangle consumes
2.4 times the memory of the PDSS compiler.
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We have described three alternative algorithms for rational-tree unification for the
derivation of path modes in CLPs. We showed that mode analysis time was compara-
ble to compilation time, which we consider reasonable, especially sinc