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Robust and Adaptive Guidance and Control Laws for
Missile Systems

1 Objective of the Research Effort

The objective of this three year study is to develop robust and adaptive guidance and control
laws for homing missiles, mechanizable with near-future computer technology, which can
satisfy system objectives in the presence of large uncertainties and nonlincaritics. Over the
past years, considerable progress has been made in resolving some of the fundamental issues
in homing guidance. Of particular importance, new filter structures, which were tailored to
the passive homing engagement,; and new target models and kinematic psuedo-measurements,
which modified the new filter algorithm and induced a new adaptive homing guidance law,
were developed. During the last three years in support of these important innovations, robust
filters and control schemes which further enhance system performance were developed based
upon a stochastic control problem known as the linear-exponential-Gaussian problem and a
related deterministic approach called the disturbance attenuation problem. Most important,
emerging from this work is a new structure for adaptive control and a unifying framework

for developing midcourse and terminal homing missile guidance schemes under uncertainty.




2 Status of the Research Effort: Robust and Adaptive Guidance

and Control Laws for Missile Systems

An active research program in systems theory has been established at UCLA in the Mechan-
ical, Aerospace and Nuclear Engineering Department. One aspect of this research program
centers on the development of robust high performance guidance and control schemes for
such new concepts as bank-to-turn missile guidance systems. This activity considers new
theoretical innovations and tailors them to missile system applications. Under this grant, the
game theoretic approach to control and guidance syntheses, estimation with bearings-only
measurements, and adaptive control were investigated. The missile system is an important
conduit for motivating and using the results of this effort. Our approach is to develop re-
alistic guidance systems based upon models of special dynamic and measurement systems.
Previous results have been new state reconstruction algorithms based upon bearing-only
measurements [1,2] and new missile guidance rules [3]. The missile guidance system pre-
sented in (3] represents the integration of our efforts over the years in estimation, target
modeling and missile guidance laws. In this grant, robust filters and control schemes which
further enhances system performance were developed based upon a stochastic control prob-
lem known as the linear-exponential-Gaussian problem and a related determistic approach
called the disturbance attenuation problem. Emerging from this work is a new structure for
adaptive control and a unifying framework for developing missile guidance schemes during

midcourse and terminal homing under uncertainty.

2.1 Game Theoretic Synthesis

Since the game theoretic approach [4] is formulated in state space, it generalizes the cur-
rently popular H-infinity robustness techniques for time-invariant systems to finite-time and
time-varying systems with both partial and full information. This is done by first defin-
ing a disturbance attenuation function as the ratio of an L, function of the outputs over

an L, function of the disturbance inputs. A controller is to be determined which bounds




the distufbance attenuation function in the presence of all input disturbances constrained
to be in L,. Furthermore, the game theoretic approach is related to the stochastic control
problem of minimizing the expected value of an exponential of a quadratic argument sub-
ject to a Gauss-Markov process [5]. An essential feature of the solution to this so-called
Linear-Exponential-Gaussian (LEG) problem is the realization that the expectation opera-
tor of an exponential form with respect to Gaussian random variables is equivalent to the
extremization of the augmented quadratic argument formed from the exponential cost and
the Gaussian probability density function. This leads to a game theoretic interpretation
of this stochastic control problem. An application of the game theoretic approach to the

problem of integration of the missile autopilot with the guidance system is given in [6].

2.2 Robust Game Theoretic Synthesis in the Presence of Uncer-

tain Initial States and System Parameters

A game theoretic approach to linear control synthesis [4] is developed where initial states and
parameter uncertainties are included as adversaries {7]. An implicit approach [8] closely re-
lated to u-synthesis, characterizes the parameter dependence in the system coefficient matri-
ces as linear. Although process and measurement uncertainties are included in the game cost
criterion by quadratic penalty functions, the initial states and parameters are constrained
to lie on or within given multi-dimensional ellipsoids. It is shown that the suboptimal H
controller is not a saddle point strategy with this cost criterion even if the parameters are
known. To solve this new dynamic game problem, a genera! linear control structure is as-
sumed of given dimension for the output or partial information control prot:emn so that the
control is a function of a set of constant control parameters. In this game the adversasies are
assumed to be knowledgeable about the value and the strategy of the control, although the
controller is only aware of the measurement history. It is shown that under this circumstance,
the dynamic game can be transformed into a parameter game problem between the control
parameter set and plant unknown parameters if there exists an admissible control parameter

set. If a saddle point strategy for the parameter game problem exists, then the saddle point




inequalities for the dynamic game problem are satisfied for process and measurement distur-
bances as well as for all initial states and parameters within their respective ellipsoids. This
saddle point inequality guarantees a level of performance robustness as given by the value
of the cost at the saddle point. In relation with the dynamic game problem, a disturbance
attenuation problem is introduced where two types of disturbance attenuation parameters
are used; one is associated with process and measurement disturbances and the other is
associated with initial states. It is shown that these disturbance attenuation parameters are

closely related to A, norm and the cost criterion of the dynamic game.

2.3 A LEG Estimator

By probing further into the relationship between game theory and the stochastic LEG prob-
lem, very significant results have been obtained. By employing a worst-case performance
measure, a game theoretic approach is used to determine a discrete-time state estimator
[9,10]. The continuous estimator is reported in [11]. Although the order of minimization
and maximization do not effect the saddle point value for this class of games, the order is
critical in obtaining game theoretic strategies. Two interesting strategies result, an [, esti-
mator which is the deterministic equivalent to the Kalman filter and the H estimator which
satisfies a bound on a disturbance attenuation function. If a corresponding LEG problem is
constructed where the quadratic argument of Jhe exponential is the estimation error, then
these two estimators under somewhat different assumptions still result and give the same
saddle value of the augmented quadratic argument formed from the exponential. Note that
it is well known (Sherman’s Theorem) that minimizing, with respect to a function of the
measurement history, the expectation of any symmetric, unimodal function of the estimaticn
error (such as the exponential) subject to a Gauss-Markov system results in a conditional
mean estimator, i.e., the Kalman filter. However, if the estimation error is replaced by the
sum of estimation errors where these errors are functions of the measurement history up
to the index of time in the sum, then Sherman’s theorem does not hold, and the Kalman

estimator is not minimizing. However, the stochastic LEG problem does have a unique solu-




tion which is the H, estimator. This new filter generalizes the Kaiman filter. Its statistical

properties are now being investigated.

2.4 The Centralized and Decentralized LEG Prohlem

A third activity to be reported is that a uniform approach to the solution of the LEG prob-
lem constrained to the classical information pattern, one-step delayed information pattern,
and one-step delay information-sharing pattern has been obtained (12]. The results vastly
- simplify the results of [13]. The one-step delayed information-sharing pattern allows a de-
centralized control structure where at each state of the dynamic programming algorithm a
stochastic static team problem is solved. Furthermore, both convex and unimodal exponen-
tial functions are included which is an important extension of the work in [14]. Application of
these results to sensor fusion in missile guidance systems should produce robust performance

in the presence of electronic counter measures.

2.5 A Game Theoretic Dual Control Problem

Beginning with a disturbance attenuation function, a game is formulated for a special class
of dual control problems. A scalar bilinear system is considered where the control coefficient
is unknown and cnly an uncertain measurement of the state variable is available. The
resulting controller, which is constrained to the measurement history, is a function of the
state and parameter estimates and their associated pseudo-error variance. This controller
depends upon the real roots of a fifth-order polynomial whose coefficients are also functions
of both the estimates and pseudo-error variance. When the paper [15] was written, it was
though that the controller had a dual control property because of the explicit appearance
of the pseudo-variances. However, this is not the case for this formulation. Nevertheless,
the resulting controller based only on the initial formulation as a disturbance attenuation
problem did lead, without any approximations, to an interesting and mechanizable controller.

This motivated new work in adaptive control discussed in the next subsection.




2.6 A Disturbance Attenuation Approach to Adaptive Control

In Rhee and Speyer [4], the disturbance attenuation problem is shown to extend the results
of Hy analysis from time-invariant systems on infinite intervals to time-varying systems on
finite intervals. By using a disturbance attenuation approach, it is attempted to limit the
effect of any possible combination of disturbance and uncertainty to some small multiple
of the disturbance. To this end, a disturbance attenuation function is constructed. The
disturbance attenuation function is then converted to a performance index similar to those
in more common optimal control problems. The problem then becomes a zero-sum game,
in which the initial uncertainties and the system disturbances are considered as intelligent
adversaries attempting to maximize the performance index, with the control playing their
opponent, trying to minimize.

This approach has in the past resulted in very complex results when applied to other than
a few special cases {15]. Speyer, Fruchter, and Hahn {15] applied it to a scalar system, and
for a constant unknown control parameter, obtained a closed-form solution that hinged upon
the solution of a fifth-order polynomial. In {16}, an alternate approach which generalizes the
results of Bernhard [17] appears to produce some simplification. By using the Principle of
Optimality, the problem is split into two parts, each to be solved separately, and rejoined
by an algebraic “connection” condition. The resulting problems are much simpler than
the original, although in general still quite complex. In many cases, however, they can be
reduced to a manageable level. In particular, for the case of constant parameters, with the
system uncertainty limited to unknown control parameters, a solution suitable for real-time
application is derived and the cxistance of a saddle point is shown.

The controller resulting from this approach is a function both of the state and parameter
estimates and the associated curvature matrices which act as pseudo-variances. Although
this approach represents a type of separation, no explicit assumption is made ol certainty

equivalence, as found in the development of current adaptive control algorithms.




2.7 A System Characterization of Positive Real Conditions

Necessary and sufficient conditions for positive realness in terms of state space matrices are
presented in [18] under the assumbtion of complete controllability and complete observability
of square systems with ind. pendent inputs. As an alternative to the positive real lemma
and to the s-domain inequalities, these conditions provide a recursive algorithmn for testing
positive realness that result in a set of simple algebraic conditions. By relating the positive
real properiy to an associated variational problem, the paper outlines a unified derivation of
necessary and sufficient conditions for optimality of both singular and nonsingular problems.
Based on this algorithm, a synthesis of a positive real system via output feedback is presented.
This work is motivated by the need to determine cost criteria which allow control design based
upon phase considerations rather than magnitude, the result of minimizing L, induces norms.
Current work is in determining the characteristics of plants and compensators for which
closed-loop transition matrix between desired output and disturbance inputs are positive

real or dissipative.
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A Game Theoretic Approach to a Finite-Time

Disturbance Attenuation Problem

Ihnseok Rhee and Jason L. Speyer, Fellow, IEEE

Abstract—A distarbance attenuation problem over a finite-
time interval is considered by a game theoretic approach where
the control, restricted to a function of the measurement history,
plays against adversaries composed of the process and measure-
ment disturbances, and the initial state. A zero-sum game,
formulated as a quadratic cost criterion subject to linear time-
varying dynamics and measurements, is solved by a calculus of
variation technique. By first maximizing the quadratic cost crite-
rion with respect to the process disturbance and initial state, a
full information game between the control and measurement
residual subject to the estimator dynamics resalts. The resulting
solution produces an n-dimensional compensator which com-
pactly expresses the controller as a linear combimation of the
measurement history. Furthermore, the controller requires the
solution to two Riccati differential equations (RDE). For the
linear saddle strategy of the controller mecessary and sufficient
conditions for the saddle point to be strictly concave with
respect to sll disturbances and initial conditions, and sufficient
conditions for various process disturbance strategies to satisfy
the saddle point condition are given. A disturbance attenuation
problem is solved based on the results of the game problem. For
time-invariant systems it is shown that under certain conditions
the time-varying controller becomes time-invariant on the infi-
mite-time interval. The resulting controller sstisfies an H_ norm
bound.

1. INTRODUCTION

ECENTLY, a time-domain control synthesis procedure

or H_, control problems has been developed in [1], [3].
Riccati equations arising in the linear quadratic (LQ) game
problem (12]-[14], (23] and Linear-Exponential-Gaussian
(LEG) problem [15)-[18] play a key role in this synthesis
procedure. These resuits motivated the formulation of a
finite-time interval H_ control problem for time-varying
systems based on a linear quadratic game approach. Refer-
ences [4], [S] considered a finite-time K control problem
where the initial condition is given as zero. The full state
information discrete-time H_, control problem is considered
in. [6], [7] by using existing linear quadratic game results.

In this paper, a finite-time interval disturbance attenuation
problem for a time-varying system with uncertainty in the
initial conditions of state is considered based on a LQ game
theoretic formulation where the control plays against adver-

Manuscript received March 8, 1989; revised June 12, 1990 and February
21, 1991. Paper recommend by Associate Editor, P. B. Luh. This work was
supported in part by the Air Force Armament Laboratory, Eglin Air Force
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Mechanics, University of Texas, Austin, TX 78712.

J. L. Speyer is with the Department of Mechanical, Aerospace, and
Noclear Engineering, University of Californis, Los Angeles, CA 90024,

IEEE Log Number 9101615.

saries composed of the process and measurement distur-
bances and initial conditions. The general problem presented
here is formulated as one of partial information such that the
control is restricted to be a function of only the measurement
history. A standard calculus variation procedure, w =~ = was
shown in [13], [24] to be a useful tool for the full in;or- .- .on
LQ game problem, is adopted to solve the LQ game problem
with partial information. The solution to this game problem
generalizes many of the standard results given in [13], [14],
{24]. The resulting compensator for the controller is n-di-
mensional requiring the solution to two Riccati differential
equations (RDE). In particular, the solution is identical to
that given by the continuous-time formulation of the Linear-
Exponential-Gaussian (LEG) problem [16]. The formulation
and solution of this finite-time time-varying game problem is
given in Section IIl. By first maximizing the quadratic cost
criterion with respect to the process disturbance and initial
state, a full information game results between the control and
measurement residual subject to the estimator dynamics.
Three different saddle strategies for the process disturbance
are considered and sufficient conditions for the existence of a
saddle point solution are determined. In addition, necessary
and sufficient conditions are determined for the saddle point
to be strictly concave with respect to all nonzero variations of -
the disturbances and initial conditions from their saddle point
strategies. Based on these results, conditions for the finite-time
disturbance attenuation pmblem of Section IV are developed.
The finite-time solution is specialized in Section V to the
infinite-time time-invariant solution based upon the two
RDE's produced in Section III. In particular, it is shown in
Section III-C that assuming the existence of a nonnegative
definite solution to the algebraic Riccati equation (ARE), the

solution to the RDE with certain initial conditions converges

to the minimal nonnegative definite symmetric solution of the
ARE. The results of Section III-C provide a proper develop-
ment for the infinite-time time-invariant controller. In Section
V it is shown that the n-dimeasional compensators con-
structed from all the nonnegative solutions to two ARE,
satisfying certain condition, satisfy the H_, norm bound.

Throughout this paper, || - || 4 denotes the Euclidian norm
weighted by A; X, means d# /dx; D > O(= 0) means
that D is a positive (nonnegative) definite matrix; D > E(=
E) means that D — E > O(= 0).

Dunngmeoourseofthetevalmsﬂleauthombe-
come aware of similar results for the finite-time disturbance
attenuation problem that were independently obtained in
(8], [9).

0018-9286/91/0900-1021$01.00 © 1991 IEEE
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II. PROBLEM STATEMENT
Consider a linear time-varying system described by

x(t) = A(t)x(t) + B()u(t) + T()w(e) (1)
() = HOX() +T (00 (2
90 = [CO]xt + [y s @

where x is the n X 1 state vector; u is the m X 1 input
vector; z is the p X 1 measurement vector; w and v are the
g x ! and p x 1 input disturbance vectors, respectively; y»
is the controlled output vector; and it is assumed that I', and
R = CTC, are nonsingular and the initial condition x(0) is
unknown. All matrices have appropriate dimensions and are
time-varying.

Define the measurement history up to ¢ as

Z,={z(s),0=sss1t}.

The admissible control is restricted to be a function of only
Z,. Let ¥ denote the set of admissible controls, and ¥, C ¥
is the subset of linear functions of Z,.

The disturbance attenuation problem to be considered is to
find a control u € ¥, such that

T
Ix(T)U3, + /o Iyl? de

<- 31O+ [+ -y a] @

for all w, veL,[0,T], x(0)eR" such that (w(?), v(®),
x(0)) # 0 over all te[0,T). It is assumed that @ is a
negative constant, the final time is fixed, Py, W, and V are
time-varying positive definite matrices, and Q; is a nonnega-
tive definite matrix.

In order to solve the above problem, we will first consider
as in [6], [7] the related linear quadratic game problem of
finding u* € ¥, v*, w* € L,[0, T) and x*(0) € R" satisfying
the saddle point condition

J(u*, v, w, x(0)) s J(u*, v*, w*, x*(0))
< J(u,v*, w*, x*(0))
for all u,v, we L,[0, T], x(0) e R", where

J(u,v,w, x(0)) = %[-;-II x(0) - 2ol + 1x(T) 12,

®)

+/°7{ lxh% + Nubk + %(llwll%w + ||v||%~)} dt]
| (6)

where £, is a given vector and Q = C7C. The left-hand

side inequality plays an important role in the above distur- |

bance rejection problem.

. THE LINEAR QUADRATIC GAME PROBLEM
A saddie point strategy can be obtained by solving two
optimization problems

il max max %J(u. v, w, x(0)) = J*

.given u and Z is given by

(@)

 After substituting (11) into (1) the following two point
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mfxm:x%xggl(u,v.w, x(0)) = Je. (8)
The solutions to (7) and (8) produce saddle point strategics
when J* = J,.
First, the optimization problem (7) is considered. By sub-
stitution of the constraint (2) into (6), we can change the
optimization problem of (7) to the following problem:

11
. 2
min max max mx(%;&-z-[;H x(0) = £oll %5 + N (7)1,

T
+f {uxnz+ Nl

+ 5 (1wl + Uz = )11} dr] ©)

subject to equation (1) where ¥ = I',V'T'7. This cost crite-
rion for the continuous deterministic game is remeniscent of
the criterion constructed from the argument of the exponen-
tial in the discrete LEG problem [17), [18].

|
|

A. Maximization with Respect to w and x(0)

To solve the problem consider first the maximization of J
with respect to w and x(0) for a given z and fixed strategy
ue ¥ for which the variations of w and z vanish. The
resulting cost criterion will then be minimized and maxi-
mized with respect to u and z, respectively. Let

J, = max maxJ.
w  x(0)
The standard variational procedure {24] is formally applied to
this problem. A vector Lagrange multiplier function A is
introduced to adjoin (1) to (9). The first variation of J for

6J = %[ﬁ;'{s}(o) — %5} + N0)] " 8x(0)

e[orstr) - ] x(r)

|
+/°T[;()\’+ 0,) 6x + ¥, Gw] dt
where ) is the Hamiltonian, defined by
H(x,w,\) = —;—{xTQx + uTRu + wT(0W) 'w
+(z - Hx)"(6V)7'(z - Hx)} i
+%)\T(Ax‘ +Bu+ T'w).
The first-order necessary conditions for a maximum are

A= -0X7, NT)=00,x(T),

MO) = - P '{x(0) ~ %,}
X, =0mw=—WIN\

(10)
(11)
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boundary value problem is obtained:
~-TWrr [x]
-A7 LA
[H'V“ ] (12)

PN0), NT) =60,x(T). (13)

Since the two point boundary value problem is linear, the
solution can be obtained by the sweep method [24]. Let x«
and A. denote the solutions to (12) and (13). We assume that
the solution x4 satisfies

Xe =X — Phe (14)

where £ and P are to be determined. The substitution of the
differentiation of (14) into (12) yields

{P-PAT— AP+ P(HTV-'H+0Q)P-TWTT}\
=% - A% — Bu — PHTV-'(z - HX) + 0PQx.
Therefore, if we choose X and P to satisfy the following:
% =A%+ Bu+ PHTV-'(z - H®) - 0PQ%,

[:] - [-:(OQ+I;1’T’"H)

with

£2(0) = (15)

P=PAT+ AP-P(H"V'H+0Q)P+TWTI7
P(0) = P, (16)
then (14) becomes an identity. From (13) and (14) we obtain
M(T) = 00-{1+0P(T)Q,}'(T)  (17)
xo(T) = {I+6P(T)Q-} '(T)  (18)

where we assume {7 + 6 P(T)Q} is nonsingular. Then, we
can calculate A«(?) from

M=—[A-P(HTV'H+60)]"\
+ H™V-'(z—- Hz) - 00% (19)
with the final condition given by (17).

The second variation is considered to determine additional
necessary conditions of optimality. The second variation
along the extremal path §2J is given as
82J = 6x(0)T(0.P,) " 6x(0) + 6x(T)7Q, 8x(T)

1 T —
+ 3/ [sxT(HTV-'H +0Q) 6x + 5w W~ sw] dt.
[
(20)
From the constraint (1), we obtain
5% = Abx+Tdw.
Adding the zero quantity

(21)

0= bx’(ap)" 8x]; - / T% {sx7(6P) " 8x} dt
0
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to (20) and using (21), we obtain the second variation 82J as
a perfect square of the form

8J = ;[“51‘(7)“}»-'(1)“0,
T
+/ Béw — WP 5x)|3,-: dt
(/]

where we assume P(?) is nonsingular over f € [0, T). Since
the performance index is quadratic, for a maximum the
second variation should be negative for all variations §x(0)
and dw not vanishing simultaneously. Consider the variation

Sw= WITP-'éx. (22)

Then, from (21)

x=(A-TWr7P ") bx. (23)
Hence

5x(T) = &(7T,0) 6x(0)

where & denotes the transition matrix of the linear differen-
tial equation (23). Thus
8 = -;- Bx(O)TQr(T, 0){P~'(T) + 6Q,}¥(T,0) 6x(0)

<0, vix(0)#0

which implies that for a maximum it is necessary that
P (T)+60Q,>0 (24)
since ¥(7T,0) is nonsingular. Also, (24) implies P(7T) > 0
since Qr 2 0.
We will show that if the condition (24) holds and P!
finite, the second variation is negative for all variation §x(0)

and éw not vanishing simultaneously. If (24) is satisfied,
then for all variations

§2J=<0
where thc equality holds for the variation given in (23) and
x(T) = (25)

However, for the variation (22) and (25), (23) leads to
éx(t) = 0 and éw(?) = 0 over te[0, T) if P' is finite.
That is, wa(f) = -Wr’\.(z) and x4(0) = £, — Pohe(0)
produce the maximum.

B. The Solution to Problem (7)

To perform the minimization and maximization with re-
spect to v and z, first evaluate J,. By using (10), (11), and
(14), J, can be represented as

1
= 2 (IO, + 1xe(T) b))
1 .
+5/or[||x ~ PA3 + Juli?

+ 3 (Delbwsr + 12 - H(2 - Pr)lb)] ar
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Adding the zero quantity
1 r 1 yrd
x — | 2L - — — [\
0= - [NPN]] - — /o — (5PN dr
to J, yields (using (16) and (19))
1 1
J = 5x.(r)’Q,x.(T) + -2—0M(T)TP(T)>\.(T)
1 ¢r )
- TN T
+ 2/; {#70% + u"Ru
+(z~ H2)7(07) (2 - HR)} at.
From (17) and (18)
1
xo(T) Qrxe(T) + Ex.(r)’p(r)x.(r)
= 2(T)"S,%(T) (26)
where .
Sr=0r{I+6P(T)Q;} "
By the matrix inversion lemma S, becomes
Sr=0r- er{P-‘(T) + er}_lQro
Therefore, condition (24) implies that S, 2 0. Now, by
using (26) J, can be represented in terms of X as
1 r. . 1
4= S2(T) S 2(T) + 3
./T{£TQ£+ uRu+ (2- H2)"(0V) ' (z - Hz)} dt.
[\]

The minimization and maximization can be performed with
to u and z, respectively, subject to (15). By defining
t 2 z — HR, this problem can be changed to

1

minmgx-z—[i'(T)TS,-i(T)
] v
T =y -1
+ / {270 + u"Ru + §7(67) "5} ar| (27)
[+]
subject to _
£=A2+Bu+Ts, £(0)=2%, (28)

where A £ 4 - 6PQ and T 2 PHTV-1. We obtain (28)
from (15) by using the definition of &. Finally, the problem
reduces to the well-known determinjstic game problem. The
optimal feedback strategies #* € ¥ and &* for (27) are given
in [14], [23] as
u*= —R-'BTS% (29)
9* = -0VT7S% = —0HPS% - (30)
if the Riccati equation L
~§=SA+A'S-S(BR'BT+0TVI")s+Q
=S(A-0PQ) + (A -06PQ)"S
~ S(BR™'BT+O0PHTV-'HP)S+Q (31)

with the terminal condition S(T) = S, has a solution over
1€[0, T). 1t is noted that open-loop strategies for u may
make the cost (27) unbounded without certain condition while
the feedback strategies (29) makes the cost bounded (see
[23])). The cost criterion using the 4* and * is given as

J(u*, %) = %:?O’S(O) %o. (2)

Let x*(¢), N(#), and £*(¢) denote the optimal trajectory
of x, \, and £, respectively. x*(r), N(7), and £*(¢) are
solutions of xe, Ae, and £ with ¥ = u* and ¥ = i*.
Substituting (29) and (30) into (15) and (19) yields

%* = (A - 6PQ)%* - BR™'B7S%*
- 8PHTV-'HPSx*, £*(0) =%, (33)
M= —(A-0PQ)"N + HTV 'HP() - 65%*)
- 6Qx* (34)
with X(T) = 0S,£%(T). £*(¢) can be calculated from (33)
independently. Observe that

.‘%(asf‘) = —(A - 0PQ)7(65%%) - 6Q%*. (39)

4Comparing (34) and (35) gives

N(r) = 65%%(1), tefo0,T]. (36)
Substituting (29) and (36) into'(12) and (14) yields
A= Ax - (BR™'BTS + 6T WTTS) 2",
x*(0) = {1 - 0P,5(0)} %,
Observe that '

d . Y *
3;[(1 - ops)x_] = A(I - 0PS)%

—(BR'BTS + 6T WTTS) 2*.
By inspection we obtain the optimal state trajectory as
x*(t) = (I- 0PS)z*(¢), tef0,T]. (37)

From (2), (30), (37) and the definition of o, the optimal
trajectory for v and x(0), denoted as v*(z) and x*(0),
respectively, are given as T

v (¢) = Ty Y{o%(1) + H(2*(7) - x*(1))}, tel0,T)
=0, (38)
x*(0) = {1-0P,5(0)} %,. (39)

From (11), (36), and (37), we obtain the optimal trajectory
for w, denoted as w*(¢), in terms of £*(?) as

w*(1) = —0WT7S%*(t), tefo,T] (40)

or in terms of x*(f), by assuming I — 6 PS is nonsingular®
over [0, T'], as

w*(r) = —OWTTIIx*(1), te[0,T]  (41)

'Conditions that ensure this inverse are given in the next section.
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where
n=5S(I-0pPs)".

Equations (38), (39), (40), and (41) denote the open-loop
strategies for v, x(0) and w. The open-loop strategy for u is
obtained by substituting £* for £ in (29). However, since
the cost (27) may become unbounded for the open-loop
strategy for u, the closed-loop strategy confined to be a
function of the measurement history (29) should be used.
Sufficient conditions for the existence of various saddle point
strategies are given in Section III-D. The cost along the u*,
v*, w*, and x*(0) is obtained from (32) as

(42)

1
J* = J(u®, v, w*, x*(0)) = -z-f{S(O)S'o. (43)

C. Some Properties of Riccati Equations
Consider a Riccati differential equation of the form

“X=oA X+ Xotd-X(23" - 997)X + 2,

where the coefficient matrices &, £, 2 and 2 are time-
varying matrices. It is assumed that 2 and X'r are nonnega-
tive definite matrices. Note that the RDE (16) bas this form if
we change independent variable from f to 7= T — .

Let X(f, Xy) denote the solution to the RDE (44), if it
exists.

Lemma 1: Suppose that X (¢, X ) exists over [#,, T). If
Xy 0(> 0), then X(¢, X7) is nonnegative (positive) def-
inite over [1,, T']-

Proof: Suppose that X(f, X,) is a solution to (44)
with X, = 0(> 0) over [y, T]. Then, X(#, X;) satisfies
the Riccati differential equation

tsT

~X=2TX+XA-XBBTX+ 2, X(T)=Xr
(45)
for all tel¢,, T] where
2(1) 2 2+ X(¢, X;) 997X (1, Xy).

Note that 2 (¢) is nonnegative definite over [#y, T']. Hence,
[22, Theorem 2.1] shows that X(f, Xy) is a unique and
nonnegative (positive) definite solution to (45). O
Hereafter, we assume that the matrices &, 4, 9, and 2
are constant matrices. Then, the associated algebraic Riccati

equation is represented as
0= "X+ Xoa-X(2337 - 99T)X + 2. (46)

We define the notion of a minimal nonnegative definite
solution to the algebraic Riccati equation (46) (see also [11]).
__Definition I: A nonncgative definite symmetric matrix
X, sausfymgthealgebmcklwanequanon(%)xssmdtobe
the minimal nonnegative definite symmetric solution to

(46), if given any other nonnegative definite symmetric solu-'

tion X, to (46), then X, < X,.
Lemma 2 follows from [14].
Lemma 2: Suppose that there exists a nonnegative definite
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matrix X, satisfying the ARE (46). Then, X (¢, 0) exists for
all /s T and is nondecreasing as { decrease. Moreover,
X(t, 0)-'XsX, as ¢ ~ —oo where X denotes the mini-
mal nonnegative definite soluticn to the ARE (46).

Lemma 3: Suppose that for 0 < X, < Xp, there exist
X(t, Xp) and X(¢, Xy;) over [f,, T]. Then, 0<
X(t, X5)) s X(1, Xpq).

Proof: Consider a value functional

I(u, w, x5) = X(T) Xpa x(T)
+/T{x'Qx +uu - wiw} dt

associated with a differential equation

x=dx+ Bu+ 32w, x(0)=x,.

By using the completion of square argument for this value
functional, we obtain (sce [14])

Iu,w, xo) = x5X(t, Xr3) %o
7
+ [Tl + #7x(0, X))
!

—lIw- 27X(1, Xp3) x|1*} dt (47)
and

Ku,w, xo) = x5 X(t, X1\) Xo
+x(T) (X2 = X7,) x(T)

T
+/ {lu+ 27X(t, X)) x|?
[ 4

—llw—- 27X(t, Xpy) x§2} dr. (48)

Since (47) and (48) hold for any » and w, let w =
- BTX(t, Xr9)x and w= 27X(t, Xr)x. Subtracting
(48) from (47) yields

xI{ X(t, Xr2) = X(t. X11)} %o
= X(T)T(sz - X)) x(T)

T
+ [hu+ 87X(0 X)) 21
t

DTX(1, Xpp) x|} dt.

This completes the proof since X, ~ Xz, = 0 by assump-
tion. 0

X(2,0) is nondecreasing as 7 decreases and X(7,0) <
X(t, Xy) for all X, 20 by Lemma 3. Heace, it is clear
that if X (¢, X;) does not exist for 7 < {,, then it increases
without bound as ¢ decreases to Z;. On the other hand, if we
can find a upper bound for X(#, X7) for all 1< T, the
solution to (44) exists since it can not escape the upper
bound.

Corollary 1: Suppose that there exists a nonnegative def-
inite matrix X, satisfying the ARE (46). If 0 < X, < X,
then X(f, X,) exists and 0 < X(1, X,)sX, forall <
T. Moreover, if 0 < Xy< X where X is the minimal
nonnegative definite solution to the ARE (46), then

+w-

W
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X(t, Xp) > Xest— —oco.

Proof: For the first part it suffices that X(¢, X7), if it
exists, is bounded above by X,. Since X, = X(¢, X,) and
0= X,s X, it follows from Lemma 2 and Lemma 3 that
0s X(t, Xp) s X,.

From the above discussion and Lemma 3 if 0 < X, s X,
then X(¢, X,-) exists and X(¢,0) sX(t Xr) sX Since
X(1,0)— Xast— —oo, X(¢, X,-)-’Xas 1= -0, [0

The solutions developed in Section II-A and III-B, de-
scribed by (29), (38), (39), (40), and (41), require the
solutions of two coupled RDE’s (16) and (31). However,
these two coupled RDE's can be decoupled into two indepen-
dent RDE’s by a transformation.

The following assumptions result from Section III-A and
HI-B.

Assumption 1:

a) There exists a solution P(?) to the RDE (16) over
0, T].

b) P~Y(T)+6Q;>0.

c) There exists a solution S(¢) to the RDE (31) over
[0, T).

Note that from Lemma 1, the Assumption 1-a) assures
P(t) > 0 over [0, T], and the assumptions 1-b) and 1<)
assure S(?) = 0. Moreover, under the Assumption 1 it is
casily verified that I1(#) defined in (42) satisfies an RDE

-M=A"TI+IA-N(BR'BT+6TWIT)I1 + Q,
I(T) = Qr. (49)

Again Lemma 1 shows that II(¢) = 0 over [0, T).
Assumption 2: '

a) There exists a solution P(t) to the RDE (16) over
0, T].

b) There exists a solution II(¢) to the RDE (49) over
[o, ).

c) P~(¢) + 6TI(¢) > O over [0, T).

Claim 1: Assumption 1 and Assumption 2 are equivalent.

Proof: Suppose Assumption 1 holds. Then, P(f) > 0

and TI(¢) 2 0, hence P~! — 8S > 0 over [0, T]. By using
the matrix inversion lemma

P'+6N =P (P '-0S5)"'P!>0.

Suppose Assumption 2 holds. Then, P(T) + 0II(T) =
P(TY)4 60Q;>0. It can be verified that S =TI(J +
0 PIT)~! satisfies the RDE (31). O

From these relations and by solving the decoupled RDE’s
:(16) and (49) we can construct the controller for each player.
For later use we define

M= (I+6PH)'P. - (50)
Then M(f) > 0 and satisfies the RDE

M=M(A-0TWPTI)  + (A= 6TWITI)M
- M(HTV'H + 6TIBR™'BTNI)M + TWTT (51)

with M(0) = (1 + 0.P,I1(0)~'P,. It is noted that
M= (I-0PS)P. (52)

D. Saddle Point Strategy

From the results of Section III-B, two strategies for game
problem can be deduced from (29), (38), (39), (40), and
41).

Strategy 1.
u* =R 'BTS%, w*= -0WTTIx,
=0, x*0)={/+0P(0)} '%. (53)
Strqtegy 2

u*= —-R'B'S%, w*= -0WTr7sz,
v* =0, x*0)={I+6P,I(0)} '%

In the above strategics, x and £ denote the states of the
dynamic equation (1) and the state estimator (15). Note that
we have made u* a function of the estimaie in both strate-
gies, but w* is a function of state in the Strategy 1 and a
function of the estimate in the Strategy 2. We will show that
the Strategy 1 forms a saddle point under the Assumption 1
while an additional condition is required for the Strategy 2 to
produce the saddle point.

Byaddmgtbewoquanmy

-=[xT — (T
0= [x le]o 2/ (x"Nx) dt
to (6), J is represented as a perfect square of the form

1
J(u,v,w, x(0)) = —llx(o) i'oll,‘-: + Eux(o)u},,,,,
+5/ {||u+k-'nfnxu;
+- (||w+0Wl‘Tnx||,,,-.

+uvn%~)} ar. (54)

Define ¢ £ x — (I — 0PS)2. Then, ¢ satisfies

£=(A-MHTV-'"H)t + 0PSBi
+T#%-MHTV-'Tpw (55)

with the initial condition £(0) = x(0) — {7 — 6P, S(0)} %,

where i = u + R™'B7St and w = w + WT7Sk. Adding
1 2 1 2 T
0= -z [1en- ghx-s1-
+1/” 22— £13-1| ar
2J, @ i "s‘ol-" 15
to (6), yields J as

J(u,v, w, x(0)) = %"%u«» + "’lf(”“r‘m

Twear

S A
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".l‘/r{'ﬂ"2
2/, R
1
+;(nw- WLTP %t}

+|I‘,u+He||i;-.)} dr. (56)

Note that (54), (55), and (56) hold for any strategy. For
convenience let uf, w, v}, and x{'(0) denote Strategy 1 and
Strategy 2 is indexed by the subscript 2.
Proposition 1: Under the Assumption 1, Strategy 1 forms
a saddle point, that is,
J(ut, v, w, x(0)) < I(u}, v}, wt, x}(0))

x1(0)  (57)

< J(u, v}, wt,

for all u,v, weL,[0,T], x(0)eR".
Proof: If u = uf, then # = 0. Hence from (56)

1

7 1Ml
1 T

35 [ (1% - WETP Y-
20 Jo |

‘+|Tyw + HE||1}-1) at.

Since M~'(T) > O under the Assumption 1, it is obvious
that

1
J(uf, v, w, x(0)) = Ellfolﬁm +

1
It w,x0) S ShRol3e:  (59)
From (43) and (58), we obtain the left-hand side inequality in
57.
From (54) we obtain

1
oot . 5100 = 51500,

T
+/ lu+ R-\B x| dt].
0

Therefore
J(ut, o3 w8, 23(0)) = 55k S (1, oF, wE, 31(0))
which completes the proof. O
Proposition 2: Under the Assumption 1
J(u,v, w, 5(0)) < J(u8 15, w2, 230))  (59)

for all v, we L,[0, T], x(0) e R". In addition, if there exists
a real symmetric solution to the RDE
~F=(A-MHTV-'H) 4+ F(A - MHTV-'H)
— 05 PSBR-'BTSP$+ P-'TWTTP-' + HTV-'H
' (60)
with the final condition F(T) = M~Y(T), then
J(3, 03, w3, x3(0) = J(u, v}, w3, x3(0)),

vueL,[0,T}. (61)

03]

Proof: The proof of the inequality (59) is the same as
that of the left-hand side inequality in (57).
wt‘denomtheoutpmof(SS)whcn w}, v, and x3(0)
are to the system dynamics and the state estimator.
Then, from (55) ¢* satisfies

£*=(A-MHTV-'H)t* + 0PSBa,
and

£(0) =

x3(0))

1 1
J(u’ v:' W;, = 'Eﬂfong(o) + '2_0“8‘(7.)"2 "(T)

+3 [{nan:
2J, 1H=

1 Tp-lg&y2
+;(||WPP v

+HE )| ar. ()

If there exists a real symmetric solution & to the RDE (60)
over [0, T'], then adding

°“‘_[£'r o+ 20/ dt ?Tﬂ‘)d'

to (62) yields J as a perfect square of the form

1
J("' ";: W;, xz‘(o)) = '5"’%"%(0)

2

1 1
s ’“u-n-mfspfe* dr. (63)

Consequently comparing (43) and (63) yields the mequahty
(61).

Suppose that u, v, w, and x(0) play with the Strategy 2.
By taking the coordinate transformation x. = (/ +
0 PII)~'%, we obtain the following strategy, say Strategy 3.

Strategy 3:

u*= -R'B"Ilx,
w*=-6wrTlix, v*=0,

x*(0) = {1+ 0PTI(0)} ™' %6 (64)
where
%, = Ax.+ Bu - TWTITllx, + MHTV-'(z — Hx_)
(65)

with x,(0) = (I + 8 PyI1(0))'%,. Since Strategy 3 is ob-
tained by a coordinate transformation of Strategy 2, it can be
assumed that this strategy is equivalent to Strategy 2. How-
ever, Proposition 3 shows that this conjecture is false.
Proposition 3: With Assumption 1, Strategy 3 satisfies
the saddle point condition
J(u3, v, w, x(0)) s J(u3,v3, w3,

x3(0))

x3(0))  (66)

< J(u,v3, ws,
for all u,v, weL,[0, T}, x(0)eR".
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Proof: First, prove the left side inequality. If u plays
st with the Strategy 3, then it can be verified that
x.=(I+0PN)"'2 (67)

¢ any v, w, and x(0). Therefore, u3 = u} since S = I(J
9P~
Next, the right side inequality of (66) is proved. Suppose

, v, and x(0) play first with Strategy 3. If ¥ does not’

ay its saddle point strategy, then (67) does not hold.
owever, comparing (1) to (65), we obtain that x = x_ for
1y u, hence w§ = wi. From this consideration, Strategy 3
. equivalent to Strategy 1. O

In controller (15) and (53), the worst case disturbances w*
ad x*(0) are not explicit as they are in controller (64) and
55). Clearly, if w, v, and x(0) play Strategy 3, then by
bserving (65), the error x — x_ = 0 evea if u does not play
ptimally. In contrast, the error {*, defined as {* = x — (J
F 0PIT)~'% and propagated by (55) where w, v, and x(0)
lay Strategy 2, is nonzero if & # 0. This is because (67)
nly holds when u plays its saddle point strategy.

If u is confined to be a linear function of Z,, then the
ollowing lemma holds.

Lemma 4: There exists a 1€ ¥, such that J(&,v, w,
'(0)) is strictly concave with respect to (v, w, x(0)) if and
aly if Assumption 1 or, equivalently, Assumption 2 holds.
foreover, when the assumption holds, # = —R™'B7St isa
ontrol which makes J(%&, v, w, x(0)) strictly concave with
espect to (v, w, x(0)).

Proof: See appendix. 0

Since the transformation (67) is valid for any v, w, x(0)
or #= —R™'B7S%, i = —R™'B"Ilx_ is equivalent to
i= -R'BTSk.

As seen in Propositions 1 and 2, for a given ¥ € ¥, which
nakes J(#, v, w, x(0)) strictly concave with repect to (v,
w, x(0)) we can find many optimal strategies (v*, w*, x*(0))
f (v, w, x(0)) which satisfies

I(@, v, w, x(0)) s J(@, v*, w*, x*(0)).,

vuv, wel,[0,T], x(0) eR".
However, all optimal strategies produce the same optimal
rajectory, that is, the optimal trafectory is unique. Therefore

J(i,v, w, x(0)) < J(@, v*, w*, x*(0))

for all v,wel,[0,T], x(0)eR" such that (v(), w({),
t(0) # (v*(2), w*(?), x*(0)) for all £€[0, T).
E. The Deterministic Linear-Quadratic Game and the
LEG Stochastic Control Problem

The solution of the deterministic linear-quadratic game
yroblem considered here, in particular (15), (16), (29), and
31), is equivalent to the solution of the linear-exponential-

Saussian problem [16]
minE[-O exp{ —0(/T(erx + u"Ru) dt
B °

+x(r)’erx(r))}]

subject to the stochastic linear system

' X=Ax+ Bu+Tw,

z=Hx+Tp
where E{:] denotes the expectation operator, x(0) is nor-
mally distributed with mean %, and covariance P,, and w(?)
and v(t) are jointly Gaussian independent white noise pro-
cesses with statistic
E[w(t)] =0, E[w(t)w(r)T] = W(1)s(t - 1),

E[u(t)] =0, E[u(l)v(‘r)r] = V(1)8(t ~ 1)
where 8(7 — 7) denotes the Dirac delta function. It should be
noted that the conditions for optimality determined here are
pot the same as the conditions that are required for the

solution in {16]. However, the conditions in {17], (18] do
reduce to those givea here.

IV. FINrTe-TIME INTERVAL DISTURBANCE ATTENUATION
PROBLEM
In this section, the finite-time interval disturbance attenua-
tion problem is solved by using the results in Section III.
Let J, denote J with £, = 0. The finite-time disturbance

attenuation problem (4) is equivalent to finding u € 4, satis-

fying
Jo(u, v, w, x(0)) <0

for all v, weL,[0,T), x(0)eR", such that (v(1), w(1),
x(0)) # Oover all 1€(0, T).

Theorem I: There exists a solution u € %, to the finite-
time disturbance atteauation problem (4) if and only if As-
sumption 1 or 2 bolds. If the assumption holds, u =
—R™'B7S% = -R™'B7Ilx, is a solution.

Proof:

Syfficiency: Suppose that assumption 1 or 2 holds. Then,

for u = u} = - R~'B7S%, from Proposition 1

Jo(ut. v, w, x(0)) s Jo(uf, vy, w, x1(0)) = 0

for all v, we L,[0, T), x(0) € R". Since £, = 0, x}(0) = 0.
Hence, for uf, v}, wi, and x{(0), equations (1) and (15)
become homogeneous equations with zero initial conditions,
which leads x(¢) = %(f) = 0 over [0, T'] and (v{(¢), wi(0),
x3(0)) = 0 over [0, T). From Lemma 4, Jy(u], v, w, x(0))
is strictly concave with respect to (v, w, x(0)), hence

Jo(u?, v, w, x(0)) < 0

for all v, weL,[0,T], x(0)eR” such that (v(?), w(r),
x(0)) # 0 for all re[0, T).

Necessity: Suppose that ¥ € ¥, is a solution to (4). Since
e ¥, Jo(i,v,w, x(0)) is a quadratic function with respect
to (v, w, x(0)). For (v(1), w(t), x(0)) = 0 over [0, T), z(¢)
= Hx(t) from which the equation (1) with ¥ = & becomes a
homogeneous equation with zero initial condition, and #(?)
= 0 over [0, T'). Therefore, '

Jo(@@, v, w, x(0)) s Jy(%,0,0,0) =0
Vv, weL,[0,T], x(0)eR"
and (u(?), w(t), x(0)) = 0, t€{0,T) is a unique extremal

-,
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trajectory, that is, J,(%, v, w. x(0)) is strictly concave with
respect to (v. w, x(0)). Applying Lemma 4 completes the
proof. D

V. TIME-INVARIANT CONTROLLER

In this section, we assume that the systems (1), (2), and (3)
are time-invariant systems with zero initial condition; that is,
A, B,T, H, T, C, and C, are constant matrices. It is also
assumed that all weighting matrices in (6) are constant, in
particular, W and V are identity matrices. It is also assumed
that (A, B) and (A,T) are siabilizable and controllable
pairs, respectively, and (A, A) and (C, A) are detectable
pairs. A disturbance attenuation problem for this system has
been solved in [1] based on two ARE’s associated with the
RDE’s of (16) and (49). In this section, all stabilizing com-
peasators which can be constructed from the solutions of two
ARE's satisfy an H, norm bound. -

Suppose that there exists a nonnegative definite IT and 2
positive definite P satisfying the following ARE's

= AT +T1A - TI(BR'B” + 6TTT)1 + CTC (68)
0=AP+ PA" - P(HTV-'H+ 0CTC)P + ITT (69)

such that _ _
P l+oM>o0. (70)

By Corollary 1 the solution II(¢) to the RDE (49) converges
to I, if Qr < II,, where Il is the minimal nonnegative
definite solution to the ARE (68). The solution to RDE (16)
has similar properties.
As T -+ o, the compensator, described by (64) and (65)
becomes a time-invariant controller of the form
x.,=A.x_+ B.2

u=C.x, (71)
where .
A.=A-BR'BTI1 - MHTV-'H - TT™Tl
B.= MHTV-!
C.= -R'B7I1

M= (1+6PT)"'P>0.

Note that we can also obtain a time-invariant controller from
(15) and (53) which can be transformed to (71) by taking a
coordinate transformation x, = (I + 0 PII)~'%. In general,
there can be more than one nonnegative definite solution to
(68) or (69). Therefore, we can construct more than one
time-invariant controller from (68) and (69). It is noted that
M is a positive definite solution to the ARE resulting from
the RDE (51)
0=M(A-orrTi)’ + (4 - err" MM

- M(H" V-H + 6TIBR" ‘B'H)M+ rr’. (72)

Byusmgtheumeomvamntconuolleral)theclosed oop
system becomes
i’=Ad§+rd‘w-

(73)

y=C,yx
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s_1 X _Iw = A BC‘.
’[-'c]’ W’[v]' A4 [B,H A,]'
r o c o
I'=*=[o n,r,]' Cd=[o c,q]-

The transfer function from the disturbance W to y denoted
by T,y is given as
Tyu(s) = Calsf - A4]) " 'Ta.

Preposition 4: The closed-loop system (73) is stable and

1
Tele s ——5-
Claim2: A - MHTV-"H - 6TT 711 is a stable matrix.
Proof: Rewrite (72) as
M(A - MHTV-'H - orTTTT)”
+(A-MHTV-'"H-orr"i)M
= —{M(H"V-'H - 6TIBR"'BTII)M + I'T7}
£ v
Since (A, T) is controllable, [ 4 — 6T'T7{1, T'] is control-
lable. From [22, Lemma 4.1), (A4 - MHTV 'H -
érT 711, (MHTV-'"HM + I'T7)'”] is controllable. By ap-
plying the lemma again [A4 - MH”V~'H - TT7I,
U'”] is controllable. Since M > 0 is the solution of above
Lyapunov equation, ﬂ:echxmnsoomplewdbyusmgm
Lemma 4.2).
Proof of Proposition 4: It can be verified that .1
2= [ P!
—M-!

defined as
M
M-
satisfies the ARE
AT X+ NHAy= - AT Ty TH+6C Ca (75)

Since (C, A) is detectable, there exists a L such that 4 —
LC is stable. For this L

L BR-'CT
Ay - Ca

(74)

0 BR™'CT
_[a-Lc 0
| BBH A-MHTV'H-e6rri
which from Claim 2 implies that (C,, A,) is detectable.
{22, Lemma 4.1] shows that [(¥ T,Ig X - 6CIC4)'?, A4)
is dectectable. Observe that P~! = M~! — 611, hence

g | W2 ] M-

T
_alll O
M- -rr'ﬂ] o[o O]"°

Therefore, it follows from [22, Lemma 4.2]) that A4, is
stable.

The H,, bound can be deduced from the inequality (57) or
(66) as in [7] which considered the state feedback case.

s
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nsider the case where £, =0, P, = P, O, = II. Then
control law (71) is equivalent to the control law for ¥ in
ategy 3. When the coatroller (71) is used, from the
1-hand side inequality of (66)

J(u3.v,w,0)s0, vw,veL,[0,T]. (76)

sreover, since the closed-loop (73) is stable, as T goes to
inity
1), x (1), u(t), y(1) e L,[0,®)  vw,vel,[0,)

m which x(®) = 0 Yw, vel;[0, ®). ...xce, from (76)
) obtain

- l o
yiydis - -5/ (wTw + vTv) ar
) 0

vw, veL,[O,co)
iich is equivalent to (74). O
Note that for all solutions nzOmd P> 010 (68) and
9), respectively, such that P~! + 811 > 0, Proposition 4
ids. If we take the minimal nonnegative and positive
finite solutions as T and P, then the time-invariant con-
sller (71) is equivalent to the H_ controller proposed in
). '
Example: Consider evaluating the controller (71) for the
alar system

X=—-15x4+u+w
1

I=x+ \/1_4-”
O=4, R=2, §=-1.
e corresponding ARE’s are
- +05M+4=0=11=2,4
-3P-10F+1=0=P=0.2.

‘e obtain two positive solutions for I which satisfy the
equalxty (48). Therefore, two controllers can be con-

For (II P)=(2,0.2)
Xx.= =5.167x + 4.6672

Y

u= -x,
For (T1, F) = 4,0.2)
—-13.5x+ 142

g.ldepictsdxehrgestmguhrvalueofﬂ)e T,o(jw) of the
ased-loop system using the controller (*) or (**), and
ows that the two controllers satisfy the H_-norm bound of
yw- In this example as @ increases in a negative way, we

il to obtain a positive solution to the I1 equation for

<«-l7ll6.'l'his£ccutswhenlhelhmiltonianmmixas-
ciatedwiththenequaﬁonhstwoeigenvalm'atthe

VI. ConcLusiONS }
A finite-time disturbance attenuation problem was analyzed
' a game theoretic approach. By adopting a calculus of

10
= 1
8
]
=
i .
°© Using Conoller (*)
“““““ Using Congoller (**)
1
n.Ol A 1 10 100
© (rad/sec)

Fig. 1. Largest singular value plot.

variation technique to solve a linear-quadratic differential
game, an extremely straightforward derivation is obtained for
a linear n-dimensional compensator. A solution to a finite-
time disturbance attenuation problem was obtained by using
the results of a LQ game problem with partial information.
The resulting compensator can be time-varying, thereby gen-
enilizing the results of [1]. The generality of the problem
formulation and the simplicity of its solution is due to the use
of a state space rather than a frequency domain approach. In
Section II-D it is shown that this approach suggests that
there could be more than one saddle strategy. Three strate-
gies were considered and sufficient conditions are given for
when they satisfy the saddle point condition. Furthermore, it
is shown that there exists a iie ¥, which makes
J(a, w, v, x(9)) strictly concave if and only if Assumption 1
or 2 is satisfied. Also, the controller 4* given in Section
II-C is identical to that of the LEG problem [16] except that
certain conditions found in {16] are different.

By specializing to time-invariant systems and infinite-time
cost criterion, a time-invariant controller results. To do this
we studied the properties of the two RDE’s obtained in
Section III-A and III-B, and decomposed their associated
ARE’s in Section III-C. It was shown that there can be more
than one nonnegative definite solution to the ARE and that
the H, norm given by (74) is satisfied by all compensators
constructed from all of them which satisfy certain conditions.
It is suggested that the minimal nonnegative definite solution
to the ARE wh.ch has a strong solution {11] be used to design
the compensstor. Finally, we gave a direct proof that the
LEG and differential game controllers satisfy the H_, bound
B3l

APPENDIX
For a given e ¥,, let J(v, w, x(0)) = J(i, v, w, x(0)).
The second varation 52J along the extremal path is given as

- 111
#J = 5[;uax(o)nz..-- +18x(D)IY,

T
+f {|ax|:,+ TR
0

MBI - bl ¢ + el vy . o

= ———

At




e —

. v .

ERT T T

' RHEE AND SPEYER: A GAME THEORETIC APPROACH

G L

Taking a first variation of (1), (2), and (15) for given
u = u, we obtain

3% = Adx + Bdii + T dw, (17)
8z = Héx + T, dv (78)

8% =Ab%+ Bsu + PHTV-\(8z - Hb%) — 0PQb%,
5%(0) =0 (79)

Note that (79) is defined over the interval where P(t) exists.
Define e(t) = £(t) — x(t). Then, de satisfies
dé=(A-PHTV 'H)ée-Téw+ PHTV'T év

- 6PQ 5% (80)

with a initial condition e(0) = —6x(0).

Claim 3: Suppose that P(r) exists over [0, #,]and 7€ ¥,
is given. If dv = I'; 'H de over [0, ¢,], then 6%(¢) = 0 and
6u(t) = 0 over [0, ¢;). In addition, if dw is linear with
respect to Se, then any nonzero de(f,), £, €0, ¢,], can be
produced with an appropriate choice of nonzero §x(0).

Proof: If v =T,'Hde, then 6z = Hdx + T, v =
H 6%. Equation (79) for given u = 4, therefore, becomes

8% = A% + Bdii ~ 0PQ8%, 52(0) =0

over [0, ¢,]. Since 4z is a function of only 3% and # is linear
with respect to Z,, X(¢) = 0 and 8u(¢) = O over {0, 7,].
Equation (80) becomes

té=Abe—-Tow, de(0)=-5x(0), ref0,1,].
If dw is linear in de, then
Se(t) = —®,(1,1,) 5x(0)

where ®, is the transition matrix of resulting linear system.
This complete the proof.
Proof of Lemma 4:
Sufficiency: Suppose the Assumption 1 holds. Consider
#=-R™'BTS%. Thendii = —R~'B7S8%. Ina similar way
in (56), we obtain

87 = 186 (T) iy + [ {169 - w7
26 0
‘P8¢ ||h-1 + T 6 + HOE|}-1} | dt
where
8 =(A-MHTV'H) b8t + T 6w ~ MHTV"'T, v,
5£(0) = 8x(0).

The equality holds only for 54(T) = 0, 8w = WI'TP~! 8¢
and I, 6v = ~ H §¢. For these values

6= (A+TWITP ') 8¢, 84(T)=0

which implies §¢(¢) = 0 over [0,T], hence Su(f) =0,
Sw(t) = —@WTTS52(2) over [0, T] and 5x(0) = 0. From
(77) and (78), 8£(f) = 0. Therefore, 52J =0 only if
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(8u(1), dw(t), §x(0)) = 0 over all £ €[0, T], from which
827>0

for all &v, dw, 5x(0) such that (dv(t), dw(?), 8x(0)) # O for

all 1€[0, T), that is, J is strictly concave with respect to

(v, w, x(0)). _

Necessity: Suppose that for a U e #,, J is strictly concave
with respect to (v, w, x(0)). Since J is a quadratic
function, the second varation of J along the extremal path
82J should be negative for all dv, dw, 8x(0) # O such that
(Su(), dw(t), 6x(0)) # O for all £€[0, T).

a) Suppose assumption (2a) is violated. Let ¢, € (0, T'] be
the escape time to RDE (16). Then, for some nonzero vector
o1, PP Yo, = 0 as (< 1,) = ¢,. Adding

1

l t & d
-1 ] -1
= — — - — é t
0 [3e™(6P) " 8¢], | @ {6eT(0P) e} d

where 0 < £, < ¢, to 82J yields
267 = [“1oxty + noal
+||5w + OWT TP~ be| ln)-1
+||T, év -- Hae"(zn’/)-'} dt + || ée(t,) "(20(:,»-‘
+ [8xT(T) g, + 1(2::T)
where

T
1(esT) = [ {16xhS + 18705 + (5w n
t'

+ “60“(2’;/)—1} dt.

‘Choose

Sw=0WTTP ‘e, sv=-T['Hse; for0=t<t,
dw=0, 6v=0; fort,<t=<T.

From Claim 3, 6x(¢) = 0 and 8u(¢) = O over [0, ¢,], and
6x(0) # 0 can be choosed as de(f,) = p,. Hence

2827 = || pilliopey + 18x™(T) %,
r
+ [T (Nxlg + Naa13) ar.
"

As t,— t,, 2J = 0 which is a contradiction.

b) Suppose that assumption 2a) holds, but Assumption 2b)
is violated. Let ¢, € [0, T) be the escape time to RDE (49).
Then for some nonzero vector p,, p1Il(f)p, = = as (>
t,) — t,. Adding :

1 T 1 ¢7d .
0=+4=[6x7 -—/ —{6xTI16x} dt
+2[6x Méx],, 2J, o (87T x}

where £, <1, < T to §2J yields
2827 = 18x(0) Iopy- + 18X (1) Wi, + 1(0:1,)

T
+/ {1167 + R~'BTII 6x|)%
&
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+iow + OWTTILox (|2 p)-1 + [Bv]l3,,-1} ar.
Choose
dw=0, bv=Ty'Hbe;
Sw= -0WTr I éx, sv=0;
and 6x(0) # 0 as 6x(7,) = p,. Hence

for0st st
fort,<t<T

. 1 t, —
26’12-0—{[|6x(0)||}5-+/ 6eTH'P"H6edt}
1]

+ | ol ?w,) .

The right-hand side term can be positive by letting ¢, — ¢,
which is a contradiction.

c) Suppose the Assumptions 2a) and 2b) hold but the
Assumption 2¢) is violated at f = ¢;, 0 < ¢, < 7. Then, for
some p; # 0, p3{ P~Y(1,) + 611(1,)} p; < 0. Choose

dw= —0WTTP"'se, bv=T;'Hbe;
éw= -0WTTNéx, dv=0; fort,<t<T

and 6x(0) # 0 as 8x(¢;) = p;. From Claim 3, 8%(f) =
and &u(¢) = 0 over [0, #,]. By identifying 7, in b) and c)
as ¢,

forO=str=<t,

- 1
284 = ;P;-{P-l(’s) + 0T1(23) } oy

T
+ |6 + R-'B"N éx||% dr = 0
L1
which is a contradiction. (|
Remark: Similar results have come to our attention are
given in {81, [9].
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Application of a Game Theoretic Controller to a
Benchmark Problem

Thnseok Rhee* and Jason L. Speyert
University of Texas at Austin, Austin, Texas 78712

The game theoretic controlier whose structure is identical to that of both the kincar expouncatial Ganssian and
the Ha controlier is applied to the probiem of controlling a mass-spring system that approximates the dynamics
of a flexible structure. By viewing the plant parameter varistion as an internal feedback loop, plant uncertaiaties
of the system, input, and output matrices can be decomposed into a fictitious imput/outpet system with un-
known gains. These fictitious input/output directions due to parameter uncertainty are used in constructing the
gains for the game theoretic controlier. The resulting control reduces the effect of parameter uncertainty on the

system performance.

I. Imtroduction

SYNTHESIS procedure is described for the design of a

state feedback control law for a linear time-invariant sys-
tem in the presence of parameter uncertainty in the system,
input, and output matrices. The parameter uncertainty is
modeled via an input/output decomposition procedure.!? A
differential game approach has been taken for this problem in
Ref. 3, where the parameter uncertainty was not decomposed
and only the uncertainty in the system matrix is considered. In
Refs. 4-6 the Lyapunov stability theory has been used to
design a control law for a system with uncertainty. In Refs. 1
and 2, by adopting an input/output decomposition of the
parameter uncertainty, the uncertain system is represented as
an internal feedback loop (IFL) in which the parameter uncer-
tainty is embedded in the system as a fictitious disturbance.
Tahk and Speyer!? developed the parameter robust linear
quadratic Gaussian (PRLQG) synthesis procedure, which is an
LQG design based on an extension of loop-transfer recovery
for the IFL description. In Refs. 1, 2, and 6, the system is
augmented to accommodate the input and output matrix un-
certainty. In this paper, by considering the input and a ficti-
tious input in the IFL description as two noncooperative play-
ers, a finite-time linear differential game problem is con-
structed based on the results of Ref. 7. By taking the limit to
an infinite-time, time-invariant linear system, a time-invariant
control law is obtained. It is shown that the resuiting time-in-
variant controller stabilizes the uncertain system for a pre-
scribed parameter uncertainty bound. These results are pre-
sented in Sec. II.

This approach is applied in Sec. I1I to a benchmark problem
composed of two masses and a spring with an unknown spring
constant. The input is applied to the first mass and 2 noisy
measurement is made of the position of the second mass.
Furthermore, a harmonic forcing function of unknown ampli-
tude and phase is applied to the second mass. The objective is
to regulate the second mass about the zero position given the
assumed uncertainties. A robust compensation is determined
that has four nonminimal phase zeros. ’
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II. Game Theoretic Controller
A controller for a linear time-invariant system with parame-
ter uncertainties in the system, input, and output matrices is
derived via the differential game framework.
Consider a time-invariant system with uncertainties in sys-
tem, input, and output matrices described by

k=(Ao+ AA)X + (Bo+ ABu 1¢))

)

where x, u, and z denote the state vector, the input vector, and
the measurement vector, respectively; Ao, By, and H, denote
the nominal system matrix, the nominal input matrix, and the
nominal measurement matrix with suitable dimensions, re-
spectively; and AA, AB, and AH are perturbations of the
system matrix, the input matrix, and the measurement matrix,
respectively, due to parameter variations. It is assumed that
(Ao, By) is a stabilizable pair and (H,, A¢) is a detectable pair.

By adopting the input/output decomposition modeling'? of
the perturbations, A4, AB, and AH are represented as

2=(Ho+AH)x

AA =DL,()E,, AB =FLy(e)G, AH = YL,\(6)Z (3)
where € denotes the parameter variation vector, which is con-
stant but unknown, and all other matrices are known constant
matrices. The elements of ¢ need not be independent of each

other.

A. Siate Feedback

In this subsection all states are assumed to be perfectly
measured, and the control u is restricted to a state feedback,
ie., u =u(x).

With the plant perturbation modeling given by Eq. (3), the
uncertain dynamic system [Eq. (1)] can be represented as an
internal feedback loop'? in which the system is assumed to be
forced by fictitious disturbances caused by the parameter un-
certainty:

k= Aox + B + Tpw, @
o3l
wy = L{e)yy ©
where T, = [D F1], w; is the fictitious disturbance, and
vo- [ 1)
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Consider a quadratic performance index,

, T
- 2
J 250 Iyl2dr

where T is a fixed final time, and

=[Gl

Assume that all admissible parameter variations are character-
ized as

ToTy T, T | %% ¢
by yL (¢)L(¢)y[ dr - o :[rw[ dr s
Kyl ar oy yedr

where y is a positive constant. Note that 1L ()1, < vy for all
admissible parameter variations, where | - I, denotes the spec-
tral nonn.

For a given control law ¥ = u(x), the performance index J
achieves its maximum when the parameter variations are the
worst case for the control &. The worst case occurs when w,
uses all of the available control, i.c.,

T T
7’2 jo w,'w, dr = Lyfyf ar ()]

Consider a control law that minimizes J for the worst case w;.
Then a game situation arises such that

min maxJ
] L4

subject to Egs. (1) and (7). Adjoining the constraint (7) to the
performance index J yields the problem of

mm max ! s 1P»Ty + Oy — v 2wwp)) de ®)

subject to Eq. (4), wherep is a oonstant to be determined by

" trial and error to satisfy Eq. (7). It is well known®#® that if

there exists a real symmetric solution IT(f) over the interval 7 €
[0, 1] to the Riccati differential equation (RDE),

-l =AJI + 1A, - II(BoR - ‘B - -y’l‘,t‘,')n + QO
with the final condition II(¢) = 0, where
Q, =?CTC + ETE, = p?CIC, + GG

and R is assumed to be positive definite, then the opumal
strategies u* and w7 for u and wy, respectively, are given as

u*=-R-'‘BITI(N)x
w$ =yTTI(0)x

For the case where T— oo, if there exists a nonnegative def-
inite solution to the algebraic Riccati equation (ARE),

0=AJIL + 1L, Ao~ 1L, (BoR~'BI - PI,TIL+Q, (9

Xy X=2

=

s —* m=l PW,— mxl —®»w

then I1(7) converges to the minimal nonnegative definite solu-
tion® to the ARE (9).” Hemce, 4* and w§ become time-invari-
ant strategies described by

w*=-R-'B]0x (10a)
wi=yT Nx (10b)

where I, is the minimal nomaegative definite solution to the
ARE (Eq. (9)].

In the worst case design, since the fictitious disturbance w,
is not an intelligent player, only the control strategy for the
control u given by Eq. (10a) can be implemented.

Claim 1. Suppose that D™D + Q' > Oand let U, and U,
be arbitrary positive-definite matrices with suitable dimen-
sion. Then

!)"Il.l)-&g"llzg >0

Proof. It is sufficient to prove that DU, D + §TU,Q is
nonsingular. Suppose that there exists a nonzero z such that
27(OTU,; D + §TU,;8)z =0. Then Dz =0 and Gz =0 since U,
and U, are positive definite; bence, (D7D +§7Q)z =0, which
contradicts the assumption. @

Claim 2. Let D'D+8'G=5"F ond let D'D+¢™UGg
=F, it 1» where L is an arbitrary positive-definite matrix with
asmtable dimension. If (¥, @) is detectable, then (¥,, @ + XG)
is detectable for all X with suitable dimensions.

Proof. Suppose that (F;, @ + XG) is not detectable. Then
there exists a nonzero vector z for some s in the closed right
half plane such that (s/ - @ — XG)z =0 and ¥,z = 0. Since
U>0,

27(F,F )z =2 (DD + §TUG)z =0

which implies that Dz = 0 and Gz = 0. Hence,

(F-Q-XG)z = (s] - @)z

si-@
=0
[ s ]‘
which contradicts the assumption that (¥, @) is detectable. ®
Proposition 1. .Assume that R > 0 and (Q*, Ay) is a de-
tectable pair. Suppose that for a given p and + there exists a

nonnegative definite solution 11, to the ARE [Eq. (9)). Then
the control law given as

u=-R-'‘BJTLx ()

stabilizes the uncertain dymemic system (1) for all « such that
1L (), < yand WLy(e)), < v.

Proof. By using the control law (11), the closed-loop system
is described as

Therefore,

i=Ax (12)
where

A, = Ag + DL(e)E — {Bo + FLy(6)G )R ~'BJTI,

The ARE [Eq. (9)] can be rewritten as following the Lyapunov
equation:

Alrnl +ILA, = -0 3)
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Fig.2 Block diagram of closed-loop system.

where
Q, = ILBoR - 'A,R ~'B{1l, + EAE + ¢*CTC
+ YLD - yETL)ALD - v 2ETL]Y
*+ UL (PF + BoR“'GTL])¥F + BR~'G'L])NI,
By =1 -y LT
8y = PC]C, + GTlI = v 2Ly() Ly ()]G

1L, ()N, <« implies that A, > 0, and ML,(e)), < v and
Claim 1 yield A, > 0. Hence, Q, is nonnegative definite. Since
(Q.%, Ao) is detectable by assumption, it follows from Claim 2
that [(ETAE + p*CTC)*, Ag+ DL,E] is detectable. From
Lemma 4.1 (Ref. 9), |(@,BoR-'A,R~'B{Tl; + ETAE +
P2CTC)*, A, is also a detectable pair. Applying Lemma 4.1
of Ref. 9 again yields that (Q, A,) is detectable. Applying
Lemma 4.2 of Ref. 9 to the Lyapunov equation [Eq. (13)}
completes the proof. =

Note that Proposition 1 holds for any nonnegative solution
to the ARE [Eq. (9)). However, the minimal nonnegative
solution 11, produces the smallest gain for the control law,

To design the controller (11), the design parameters p and v
should be chosen for the ARE [Eq. (9)] to have a nonnegative
definite solution. In particular, as the value of p increases, sys-
tem performance improves, whereas as the value of v in-
creases, stability robustness with respect to parameter varia-
tion improves.

B. Messurement Feedback

In this subsection the state is assumed to be partially mea-
sured by Eq. (2) and the control u is restricted to be a measure-
ment feedback. '

By use of the uncertainty modeling of Eq. (3), system (1)
and (2) include an IFL description: .

k=Ax + Bou + Tpw, (14)
z2=Hopx + Yy, (15)
E 0
w=0|x+]|Glu (16)
z 0
w, L O 0
w | = 0 L) O [y a7
vy 0 0 Ly(e)

where Iy = [D F) and w, = [w] w]].

With an approach similar to that taken in Sec. 11.A, a
differential game, where the fictitious disturbances w, and v,
and the initial conditions play against the control 1, is con-
structed such that

min max max max { - o} (x(0) — £} T(x(0) - £o)
1 wo vy X0

T
+I 27y + y]yr — v 3w]w, + v]vp)) di)
0

subject to Eqs. (14) and (15), where the cost for the initial
conditions is included to handle the uncertainty in the initial
condition from the nominal value of £,. As 7 — oo, a time-in-
variant controller is obtained in Ref. 7 as
X, = AX. + B2 (18a)
u=Cx, {18b)
where
Ac = Ag— BoR™'BTN,, - MH]V-'H, + *T,T]11,,
B. = MH[V-!,
M = (I - v'Pull,) P
if there exist I1,, = 0 and P, > O satisfying the AREs:

0=AgNl, + NpAo — Iu(BoR ~'B] ~ T, T, + Qu (19)

C= "R-lBor L

0= AOPJI + PMAOT" Pm(HorV-lHO = an)Pm + r,r;' (20)
such that P,, — y*I1,, > 0, where
On=pC'"C+E'E+27Z, Ve=YYT

and V is assumed to be positive definite. Since both AREs
{(19) and (20)] may have more than one nonnegative definite
or positive definite solution, many controllers can be con-
structed from the formulation (18). Note that A > 0 and
satisfies the ARE:

(Ao + YT T N)M + M(Ag + VI, T 0,7

— MIHJV~'Hy ~ VlI,BoR ~'BJl1.IM + r,r] =0 (21)

By using the controller (18), the closed-loop system becomes

[:] =(Ad+ud)[‘] 22)
e Xe.

Ao BoCc DL,E FLQGC‘-
Aa= [BcHo Ac ] Ada= [B,n.z 0 ]

and where A A is the variation of the closed-loop system due
to the uncertainty in system (1) and (2).

Proposition 2. Assume that R >0, V > 0, (Q%, Ay) is
detectable, and (Aq, Ty) is controllable. If there exist 1, = 0,
P, > O such that P;' — v~ 1., then the controller (18) sta-
bilizes the closed-loop system (22) for all ¢ such that
1Ly(e) L<v

iIL (), <y, 1Ly, <y (23)

Proof. Equation (21) can be rewritten as

MA+AM = -0,




»

where
A= Ag- MHJV - 'Ho + ¥*T,TJ 11,
Oy = M(HJV~"Hy + YL BoR - 'BITL M + I, T}
Since (Ao, I'y) is controllable by mmpuon. it follows from
Lemma 4.1 (Ref. 9) that (A4,, Q, ) is controllable. Since M

> 0, it follows from Lemma 4.2 (Ref. 9) that A, is stable. It
can be verified that X, defined as

x5 ]

satisfies the ARE:
0=AJK + XAy + XQLX + 0, (24)
where
nry o } Q. O
0= [ 0 B.VBT| &=1% CIRC,

' Rewriting Eq. (24) as
(Aa+ AA4)K + XAy + AAL) = - Q, 5)

where Q= X0, X + v*0; —
be written in the following form

AJX - XAAy. Then Q. can

P.'F

; Q= [n.BoR-'G'L{-M"F]

x P.'F r
D.BoR~'GTL] - M~'F,

ETLT-P;'DI[ETLT - 'D]
"L mp M-'D

[sz,,’+H.,Tv-'Y] [sz{+HJv-'Y]T

Ay=1I- 'y'zL{L.

Since 1L, (e)); < v, WLy(e)); < v, and DL ()N, < v, Q4 is
nonnegative definite. From Lemma 4.2 (Ref. 9),

((p?CTC + ETAE + ZTA\Z )%, A+ DL.E)

is detectable since (O, Ao) is detectable and A,, A, > 0. There-
fore, there exists L such that A,, defined as

A% Ag+ DLE ~ L(p°C7C + ETAE + ZTA\2)"
is stable. Let

(0’C7C + ETAE + Z7A,2)* 0 ]
0 ASR-'B/L,,

—HV-'Y —HyV-'Y
71[p2C7C +ETAE +2TA2 0 ] '
* 0 L8R AR 'B]1,
where
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Fig.3 Root locus of 1 - a«G(s)X(s) with respect to a.

Since J = v~3LJL, > 0 and R > 0, it follows from Claim 1
that A, > 0. Observe that, for this L,

L -(a.,+n,o)4;“]
0

Ad+AAd-[o -BOAE”

N [ A, o]
T IMHIV-\Ho+ YLZ) A,

Since A, and A; are stable, (Qs, A4 + AAy) is a detectable pair
which implies that, by Lemma 4.1 of Ref. 9, (Q,, Ag + AA4)
is detectable. Since X is a nonnegative definite matrix, the
proof is completed by applying Lemma 4.2 of Ref. 9 to Eq.
(25). m

Note that the proposition holds for all controllers con-
structed from the solution of AREs and is therefore very
conservative.

To design the controlier (18), the design parameters p and
should be choosen for the AREs [(19) and (20)) to have a non-
negative definite solution and a positive definite solution,
respectively. In particular, as the value of p increases, system
performance improves, whereas as the value of vy increases,
stability robustness with respect to parameter variation im-
proves.

In the usual case the positivity of ¥ and the controllability
of (A, Ty) do not hold. However, these can be avoided by
redefining V and Iy as

V=nTIT+YY?, T,= D F]
where I', and T are chosen to ensure that ¥ > 0 and (4, Ty) is
controllable. It can be proved with minor change that Proposi-
tion 2 holds for these new ¥ and I'.

III. Two Mass-Spring System
Consider a mass-spring system, shown in Fig. 1, that ap-

proximates the dynamics of a flexible structure.? The system is
described by
F+k(n-x)=u (26a)
X+ k(O ~x) = w (26b)
with a noncollocated measurement

Z=x 27)

where k is an unknown constant with nominal value ko= 1, &
is an actuator input, and w is a cyclic disturbance described by

w(t) = A, sin(0.51 + ¢)
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The variation of system matrix due to the uncertainty of k can
be decomposed as -

where A, and ¢ are constant but unknown. The transfer
function form of the system and measurement equations, Eqs.
(26) and (27), respectively, is given as

s2) 1
GeY= 16 " Sei+ D)

-

AA =

[ onsmne

L vy

E

The design objective is to regulate x; and to reject the ex-
ternal cyclic disturbance in x; for all k with 0.5 < k¥ < 2.
To handle the cyclic disturbance, differentiate Eq. (26) until
w disappears in the resulting system. Differentiating Eq. (26) ~1
twice yields L J
D

xM = — k(% + 0.25x) — % ~ 0.25x;) — 0.25%, + & (283)

0]
1
0
0
0

With choices of

V) = — k(% + 0.25x; ~ % — 0.25x;) — 0.25%; (28b)

C=H, r=0.07-101000 1)7, I, =0.033

where the parenthetical superscripts represent the time-deriva-

tive order and & is a new control variable defined as . n =10

C, =0.08, p=1, v = 0.043,

the control & can be obtained by using Eq. (18) as

4 =6+0.25u 29)
X =Ac X + B.z, d=C.x (3"
where

) 1 841 O 0 o
-147.26 -17.11 60.32 —61.00 4421 -174.52

0 0 -1.19 1 0 0

A=
: 0 0 -25.78 0 1 0
0 /] —51.65 0 0 1
L 1.03 0 -41.20 0.11 -1 0.30

B.={-8.41 -37.85 7.19 —25.78 51.65 40.40]”

\  C=[-146.23 ~17.11 22.24 —60.89 43.34 -174.22)

'

The new system (28) contains uncontrollable poles at s =
+0.5j. To remove the uncontrollable poles from Egs. (28), a
new state, £, is introduced as § = %, + 0.25x;. Then Egs. (28)
are represented in terms of x; and £ as

= —kE+ k(5 +025x)+ 4 (30a)
" = — (k + 0.25)% — 0.25kxs + k§ (30b)
A contrbller is designed for this augmented system. Figure 2
shows that the controller for original system is constructed by
combining the controller for the augmented system (30) and
the relation (29). Define
" x = [§ £ xy 30y By x§T

Then Eqs. (27) and (30) can be represented in state-space form
as

[0 1 0 0 0 0] 0]
-k 0 025 0 k 0 1
00 0o 1 0 0 0
=1 00 0 o 1 ol **lol®
00 0o 0 o .1 i
| k 0 -025k 0 -k-025 0 0
\ - J V_
A 8

z=[001000)x
H

Note that 7 is a weighting between the E direction and C, and
T is chosen to ensure that (4, I/) is controllable (see Proposi-
tion 2). The design parameters p, v, and n were chosen to
satisfy the robustness requirement that 0.5 < & < 2 and the
transient requirement that the system settle within 20 s. The
minimal nonnegative definite solutions for the AREs [(19) and
(20)] are used in controller design. Combining Egs. (29) and
(31) vields an eighth-order controller for the original system
(28) in the form of

At ] 06x2
. B
Xc = 0 0 1 £‘+[ f]z
L[l]c' [—o.zs o] 021

u={0,x¢ 1 0J%

or in the transfer function form: .

— 4430(s + 0.08)(s — 0.44)(s — 2.83)
(52 + 0.25)(s2 + 1.78s + 9.67)

x (s2-0.1s + 0.29)
(s? + 6.56s + 13.51)(s? + 15.68s + 124.99)

where the compensator poles are at +0.5/, ~7.84 4 7.97/,
—3.28 + 1.66/, and —0.89 + 2.98/, and the complex compen-
sator zeros are at 0.05+0.49/. The zero configuration of the
compensator represents nonminimum compensation. The
closed-loop poles arc at —2.14, -0.33, -0.13 2 0.56/,
~0.19 £0.25j, —0.77 £2.50/, -1.83x1.45j, and -7.84
+7.97j.
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Figure 3 shows the root locus of 1 — oG(s)K (s) with respect
"to a. For the controller K(s), the gain margin is 3.23 dB at the
frequency 0.67 rad/s, and the phase margin is 25 deg at the
frequency 0.20 rad/s. The values of ¥ and n show that the
stability margin 1Ak | < 0.43 is guaranteed for this compen-
sator. However, the root locus, shown in Fig. 4, shows that
the compensator stabilizes the system over 0.5 < & < 2. Note
that the compensator pole at — 7.84 + 7.97; is unaffected by
parameter or open-loop gain changes. The removal of these
poles from the compensator does not affect stability robust-
ness or transient response.

In the simulation the measurement is assumed corrupted by
zero mean white Gaussian noise with a power spectral density

of (0.33).2 Time responses, shown in Fig. S, for the nominal
system and the perturbed system with & = 0.5 are simulated.
For both simulations, 4, = 0.5, ¢ = 0, and all initial condi-
tions are zero. Figure $ shows that, for the nominal case, the
controlled variable x; has settled down and the cyclic distur-
bance is rejected in x; in ~ 20 s, and for the perturbed system
with k = 0.5, the settling time has been delayed.

IV. Conclusions °

A game theoretic controller was applied to a mass-spring
system disturbed by cyclic external force. The cyclic distur-
bance was augmented to the system by a procedure involving
differentiation and transformation. The resulting state and
contro] are used to design the game theoretic compensator. A
nonminimum phase compensator resulted.
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an elimination method such as the cyclic reduction method. This line
of reasoning should provide a further clue to improve present parallel
and sequential algorithms for engineering computation by exploiting
specific system structures.
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System Characterization of Positive Real Conditions
H. Weiss, Q. Wang, and J. L. Speyer

Abstract— Necessary and sufficient conditions for positive realness in
terms of state-space matrices are presented under the assumption of
complete controllability and complete observability of square systems
with independent inputs. By a particular transform of these conditions, a
direct sigorithm for testing positive realness is determined that requires

only checking a set of simple algebraic conditions. This provides an
alternstive procedure to the positive real lemma and to the s-domain

inequalities. Based op this algorithm, a synthesis of a positive real system
via output feedback is presented.

1. INTRODUCTION

Positive real systems play a major role in control theory, especially
in adaptive control, and in stability analysis. The impressive develop-
ment of adaptive control and self-tuning regulation over the last two
decades [1], [2] is hinged on satisfaction of some positive realness
conditions. Alternatively, considerable imtial knowledge about the
controlled plant must be given. The prior knowledge is used to
implement reference models, iden:_.crs, or observer-based controliers
of about the same order as the plant. Since the prior assumptions
about the controlied plant may never be entirely satisfied, the stability
properties of the related adaptive schemes are debatable. Therefore, 2
direct adaptive control procedure which does not use identifier or
observer-based controllers in the feedback loop is preferred. The
implementation of such an algorithm requires positive real controlled
plants or alternatively, a synthesis of a positive real plant on the
basis of the actual plant.

The existing tools for analysis and synthesis of positive real
systems are based in the s-domain on complex variable inequalities
which are inconvenient or in the state space requiring the positive
real lemma equations. These tools are computationally complex and
there is a need for an easily used complementary tool. Necessary
and sufficient conditions for positive real systems equivalent to the
positive real lemma are developed in Sections II and ITI using optimal
control theory for the associated partially singular problem. Positive
real systems are characterized in terms of the necessary and sufficient
conditions of optimal control theory such as the generalized Le-
gendre-Clebsch condition [3), [4]. By using a special transformation,
the resulting test for positive realness reduces to testing certain
square matrices for positive definiteness related to the generalized
Legendre-Clebsch condition and the solution to an algebraic Riccati
equation of possibly reduced dimension. This test for positive realness
parallels that given in [S). The transformation used here based on
the results of (6] produce interesting characterizations of positive
real system in terms of system zeros and the necessary conditions in
singular optimal control. That a positive real system is of minimum
phase becomes transparent in this development. In Section IV, it is
proved that if a square system is minimum phase with certain positive
real characteristics, there exists a constant output feedback gain such
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that the resuiting closed-loop system is positive real. Some exampies
are shown in Section V 1o illustrate the theory. Concluding remarks
are given in Section VL

The derivation of this new test for positive realness is based upon a
state-space formulation of dissipative systems. Basic definitions and
physical characteristics are presented below.

A. Dissipative §
Consider the system input-output description H: U — Y where
U=L; (Ry)andY = LT (R,). The votation L; (Ry) is used to
denote the space of square integrable functions f: R, — R' where
Ry = [to, o0). The supply rate associsted with this system is defined
as the function w: R’ x R™ — R where

w(v, ¥) = y¥'Qy+ 2y'Su+ u'Ru (n

and Q € R™™, 5 € R™*', R € R'*' are constant matrices, with
Q and R symmetric. .

Definition 1.1 [7]: A dynamical system H is dissipative with
respect to the supply rate w(z, y) if and only if

[ elue, sone 2 0

for all ¢; > to and all u € L}, whenever the initial state satisfies
z(to) = 0. The concept of a supply rate is related in the general case
to the “stored energy” for the system.

Remark 1.1: Passivity corresponds to dissipativeness where Q =
R=0,1=m,8=(1/2)I and I, is m x m identity matrix.

Remark 1.2: Positive realness corresponds to passivity where the
dynamical system is linear and time invariant.

Assume that the system under consideration is linear and time-
invariant, giving

(1.2)

&= Az + By (1.3)
y=Cz+Du (1.4)

where z € R*,u € R\, y € R™ and A, B, C, and D are constant
matrices with appropriate dimensions.

B. Review of the Positive Real Property

The positive real property is related directly to the transfer function
matrix description of the system. The positive real lemma, presented
in Section II, connects the positive realness to the parameters of
a system realization with complete controllability and complete
observability.

The Positive Real Property [8, p. 51]: Let G(s) be an m x m
matrix of functions of a complex variable s. Then G(s) is termed
positive real if the following conditions are satisfied:

i) All the elements of G(s) are analytic in Refs] > 0.

ii) G(s) is real for real positive s.

iii) G*(s) + G(s) > O for Re[s] > Owhere (-)° denotes complex
ca jugate transpose.

Remark 1.3: If G(s) is a real rational matrix of functions of s,
then necessary and sufficient conditions for the positive real property
to hold are given by the following theorem.

Theorem 1.1 [8, p. 53]: Let G(s) be a real rational matrix of
functions of s. Then, G(s) is positive real if and only if

i) No element of G(s) has a pole in Refs] > 0.

ii) G(w) + G(jw) 2 0 for all real w, with jw not a pole of
any element of G(s).

iii) If jwo is a pole of any element of G(s), it is at most a simple
pole, and the residue matrix,

b= {limemie o - juniGC)
lim, ;o GUjw)/jw
is nonnegative definite Hermitian.

if juqis finite
if jwois infinite

Remark 1.4: Since this test is done for all frequencies, the amount
of computation for matrix systems may be large. The approach here
only requires a finite number of operations which guarantee positive
realness.

Il. RELATIONS BETWEEN OPTIMAL CONTROL AND POSITIVE REALNESS

A. The Related Variational Problem
Consider minimizing the cost functional

Vieo a0l = [l ales @D
where the supply rate is
wiv, y)=¢'u= %(u'ﬂu +22'C'v) .2)

subject t0 the dynamic system (1.3) and (1.4), where R= D + D'.
The dimension of u and y is assumed to be m. Denote ¢°(-) € U
as the control which minimizes (2.1) subject to the dynamic equation
(13) and (1.4), where x(to) = zo is prescribed. The necessary and
sufficient conditions for V" [ze, ta] = V{ze, to, ©”(-)] to be bounded
from below are equivalent to the necessary and sufficient conditions
for V[0, to, u(-)] to be nonnegative definite (positive real).

Remark 2.1: If R > 0, and rank(R) = r < m, there exists an
orthogonal transformation matrix T = [I'), T'2} such that

a5

where R, is positive [9). Positive realness of G(s) = I'G(s)T is
not affected by this transformation.

23)

B. Positive Real Lemma Equations

Necessary and sufficient conditions for V°[zo, to] to be bounded
from below over a finite time interval [to, £1] are presented in {10,
theorem I1.3.3]. The required positive real conditions are obtained via
the extension of Theorem I1.3.3 to the time-invariant, infinite-time
interval case [11). )

Under the complete controllability and complete observability
assumption of system (1.3) and (1.4), necessary and sufficient con-
ditions for the nonnegativity of V[0, to. u(-)] are that there exist
x <0, L, and W such that

xA+A'r zB+C'| _[L
[B’:r+c R ]"[u"]["’ w20 @4

where W and L are of proper dimensions.
By identifying P = ~=, the positive real lemma is stated below.
The Positive Real Lemma [8, p. 218): Let G(s) be an m x m
matrix of real rational functions of a complex variable s, with
G(00) < co. Let {A, B, C, D} be a minimal realization of G(s).
Then, G(s) is positive real if and only if there exist real matrices P,
L, snd W with P symmetric and positive definite, such that

PA+AP=-LL Q.5
BP=C-WL 2.6)
Ww=D+D' v X))

Remark 2.2: The generalized Legendre-Clebsch condition which
is a necessary condition for V*{zo, o) > —o0 in the totally singular
case, for linear time-invariant system as given in {3}, is

8 = r _
3a(Hv)=CB - (CBY =0 2.8)

%(ﬁu) =CAB+(CAB) <0 @9)
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where H is the variational Hamiltonian and A € R" is the associated
Lagrange multiplier defined by

H'=4'Cz + ) (Az + Bu), \M=-H,.

By lewing D = 0, (2.8) and (2.9) are also obtained from the positive
real lemma. (2.8) can be obtained from (2.6) which is in this case
B'P = C. (2.9) can be obtained by pre- and post- multiplying (2.5)
by B’ and B, respectively, then applying B'P = C.

HI. POSITIVE REAL CONDITIONS IN TERMS OF STATE-SPACE MATRICES

Let {A, B, C, D} be a minimal realization of G(s) = I'G(s)T'
[see (2.3)). In terms of state-space matrices, (2.4) gives necessary
and sufficient conditions for a positive real system. In this section,
necessary and sufficient conditions for positive real systems are
developed using singular optimal control {10).

To simplify the notation, we assume that B, C, and D admit the
following partition

C= [Br]

where B, is an nzr matrix, B, is an nzs matrix, C; is an rzn
matrix, C, is an szn matrix, R is an mazm matrix, and R, is an
rzr matrix, where r = rank(R) is the dimension of the nonsingular
control, and s = m — r is the dimension of the singular control.

R being positive semidefinite is a necessary condition for (2.4) to
be satisfied. If R > 0, (2.4) can be reduced to a condition based upon
a Riccati equation. That is, there exists a symmetric negative definite
solution 7 to the algebraic Riccati equation

x(A-BR™'C)+(A-BR'C)'r
-#BR™'B'x-C'R™'C=0.

= [B,, B.), R=D+D' =

R, 0
0 0

3.1
If R is singular, (2.4) can be rewritten with some matrix V as
xA+ A'x #B.+C, Bix+C,
Blx+C. R, 0 =V'v
B;f +C, 0 0
or, equivalently, there exist 8 # < 0 and some matrix V. such that

x#B.+C.=0 3.2)
and
nA+A'n #B.+C:) _
s ) o

Under conditions (3.2) and (3.3), two cases are treated separately.

Case 1) H the dimension of the state is less than or equal to the
dimension of the singular control, i.e., n < s, * can be determined
from (3.2). If and only if a solution * < 0 can be solved from (3.2)
and the same = satisfies (3.3), the system is positive real.

Case 2) f n > s, (3.2) and x being symmetric and negative
definite imply that

C.B, = (C,B.) = -B.,xB, > 0. (34

Note that (3.4) is necessary, but not sufficient. See (2.8) for a
variational interpretation. The new necessary and sufficient conditions
are derived for Case 2) in the next subsection.

A. Derivation of Transformed Necessary and Sufficient Conditions

For (partially) singular problem, (3.2) and (3.3) serve as necessary
and sufficient coaditions for positive realness of a system. Since (3.2)
and (3.4) partiaily determine the structure of x, the original problem
can be transformed imto the positive realness of a reduced-order
system.

By assuming that (3.4) bolds, one can perform the following
transformation with

T= g] T-! = (M, B.(C.B.)™"]

where N and M are (n — s)zs and sz(n — s) matrices consist of
basis of the null spaces of B, and C,, respectively, such that

NB‘:-O. C.M=0, NM=In—J-
The new realization of G(s) becomes { Ar, Br, Cr, D}, where
-l NAM NAB'(C‘B‘)-
Ar =TAT" =10 4M C,AB,(C.B.)"
o _[Bn O
Br =TB=|TB,,TB,) = [Bn cl B_]

—_ 1 _
Cr=CT" = o 1 0 In..|

By applying (3.2) and (3.3) with respect to {Ar, Br, Cr, D}, we

C"T”] - [Cn Cra2

obtain
0 0o]_1Jo
“[cen.]* 2] = o] 69
‘nd .
xAr + Arx  xTB. +(C.T')
(TB.Yx+C.T! R, 20 3.6)
To satisfying (3.5), the structure of = can only be
_Im 0
= [0 _(C.B‘)—l]’ (3.7)

In order that x < 0, the n — s dimensional x; must be negative
definite. -
By substituting (3.7) into (3. 6). we obtain

nA+Am 0B +C
[iprdiz »Br%20 0w
where
A; = NAM (39)

= [NAB,(C.B,)™}, NB]
[ (C.B.)~ C.AM]
C.M

(3.10)
@3.11)

and (3.12) as shown at the bottom of the page. According to (2.4) or
the positive real Lemma, the proof of positive realness of the original
system is reduced to the proof of positive realness of the reduced-
order system {A;, B, C\, R1/2}. The process will be continued
until either R, becomes nonsingular, or, the dimension of A; is less
than or equal to the dimension of null space of R,. Furthermore,
from (3.8), the upper left-hand block of (3.12) must be nonnegative
definite. Note that this satisfies the generalized Legendre-Clebsch
condition given in (2.9).

. = [(C:BJ) )~YC.AB, + (C,AB,Y|C.B.)~' (C.B, )“(B'C'. -c.B.)]
Bl Cl)(C‘B‘)—l

(C-B, -

3.12)
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Remark 3.1: The calkulation of N and M is well defined. Com-
pute the singular value decomposition of B, and C, as

B, = [Un, Ui [EOB]V; C, =lh[Zc, 0] [V::;]

wbere Vi, U, (Uss, Usal, and [12 | are atl nbogonat matrices

and X5 and ¢ are noasingular. Then, we can define N and M as

N=Up,  M=Van(U,Ve)™.

A. Necessary and Sufficient Conditions for Positive Realness

The new necessary and sufficient conditions for positive 1zalness
is summarized in the following theorem.

Theorem 3.1: The transfer function G(s) = {A, B, C, D} is
positive real if and oaly if

YR20

il) f R > 0, there exists a positive definite solution P to the
following algebraic Riccati equation

P(A-BR™'!C)+(A-BR™'C)YP+PBR'B'P
+C'R™!'C=0.

iif) If rank R = r < m, and n < s, there exists P = CB(BB) >
0 satisfying PB = C', and
-PA-A'P -PB,+C! >0
A-B:P+C: R, =

iviIfrank R =r < m and s < n, then C,B, = (C,B,) > 0
and {Al, By, C, 31/2} is positive real where Ay, B,, C,, and R,
are defined in (3.9)-(3.12).

Condition ii) is obtained by identifying P with —x in (3.1).
Condition iii) is the interpretation of (3.2) and (3.3) for the case
n < 8. If P= —x > 0 exists, then PB, = C, and PB,B, = C.B,,
and P = C,B.(B,B,)~' > 0. Condition iv) corresponds to the
situation discussed in Section IJ-A.

Remark 3.2: If G(s) is stricdy proper, and CB is nonsingular,
then the eigenvalues of A, = NAM are the transmission zeros of
system (1.3) and (1.4). Since the system’s zero s are determined from

w{[* 0]}=0

AZ.SI g] by nponsingular matrices

3.13)

pre- and post-multiply
U{z 0 VI Ul Vi -1 4 7 -1
Ul 0 and 22( 12 22) 21 (U12V22)
6‘ 1 0 0
tively, the following matrix is obtained

[N(A -sDM 0 ]

0
I] respec-

.o EBVII
0 UsSc(UiaVar)™? 0

Since EpV{ and U (Ui2V22) ™! are nonsingular, (3.13) is equiv-
alent to

det (N(A — sI)M) = det (NAM - sI) = 0.

That is, the eigenvalues of NAM are the same as the system’s finite
ze10S.

S43

Remark 3.3: From (3.9) and Remark 3.2, we coaclude that there
are n — m finite zeros for a positive real strictly proper system and
all the zeros lie in the closed left-half complex plane. In other words,
the system is minimum phase.

To simplify the approach further, a transformation can al-
ways be found such that if » > m, a minimal realization of
G(s),{A, B, C, D} can be established so that C = |0, [].
In particular, this is accomplished by finding a realization in
observability canonical form [11). In this case, Af and N can
simply be chosen as

M= [1_0_.], N=[h-., -B.B;

where B, = [B;,, B,;] and B,; is assured invertible.

IV. SYNTHESIS OF POSITIVE REAL SYSTEM Via OUTPUT FEEDBACK
Consider the linear system

= Az 4+ Bu
y=Caz.

“4.1)
4.2)

It can be shown that if CB = (CB)' > 0, and the system is strictly

minimum phase, then an output feedback gain K can be found such

that with u = u; + Ky, the closed-loop system
z=(A-BK)z+ Bu;
y=Cz

(4.3)
“44)

is positive real with respect to u; now as the input. By applying the
new positive real conditions to a system {A — BKC. B, C, 0}, the
selection of K becomes straight forward.

Let N and M be such that NB = 0 and CM = (. Then the
reduced-order system {A,, Bi, C1, R1/2} is the one with

A1 =N(A-~ BKC)M = NAM

B, = N(A-BKC)B(CB)™' = NAB(CB)™!

Ci1 = -(CB)™'C|[C(A- BKC)M = ~(CB)"'CAM

R, = -(CB)"}|C(A~ BKC)B + B'(A-~ BKC)C')(CB)™}
=—(CB)"'[CAB+ B'A'C')(CB)*+K + K"

Provided that CB = (CB) > 0, the positive realness of
{A1, By, Cy, R;1/2) implies the positive realness of the closed-
loop system. By applying the positive real Lemma, it is shown that
for some K, there exists a P; > 0 such that

PiA + AP =-I'L “4.5)

PB,-C|=-L'W 4.6)
~(C1B1)"'[C1 A1 B, + B} A\CI|(C1 B,) ™!

+K+K =ww. “.7

Since the original system is strictly minimum phase, by choosing L
such that (A;, L) is completely observable, (4.1) admits a solution
P, > 0. In order that W is solvable from (4.6), L can be chosen as
& ponsingular square matrix which also guarantees that (4,, L) be
observable. Finally, K can be solved from (4.7). The above discussion
is summarized into the following theorem.

Theorem 4.1: If the system is minimum phase, and (CB) =
(CB)' > 0, there exist a constant feedback matrix A such that
the closed-loop system with u = u; — Ky is positive real.
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V. EXAMPLES

Theorem 3.1 introduces a procedure for testing positive real
systems, requires only the testing a series of matrices Ci, B,, > 0, for
§=0,1,2,--,k and the solution to an algebraic Riccati equation
P, > 0, where i is the index associated with the new system obtained
from the ith iteration, and i = 0 corresponds to B,, C,, and P. The
testing stops when R. becomes nonsingular, or dim(4;) = 0.

The following examples illustrate the application of Theorem 3.].

24e~2 o42
Example 5.1: G(s) = [- +2:+42 747 +2a33 ]
73242 403

A minimal realization of G(s) is {A, B, C, D} where
_[-11 10 N ON!
=33} 2=[2 9] e )

D=[(l) °].

0].lnthcwst.R20,C.B,=l>0.

Thus, C. = (2,1}, B, = [l

—2 , N =1, 0], we obtain A, = -3, B, =
L1, C = [_f ,and R, = ['f ;] Since R, is nondefinite
because the Legendre-Clebsch condition fails, the system is not
positive real.

Example 5.2: G(3) = ((s + 2)(s 4+ 3)/s(s + 1)(s + 4)) =
(s* + 58 + 6/s° + 55 + 4s). An observable realization of G(s)
is given below

00 0 6
A=1]1 0 -4}, B=15], Cc=]0,0,1]j, D=0.

BychoosingM:[ !

01 =5 1
In the test, R=0, C,B, = CB = (CB)' =1 > 0. By choosing

10
M=1]0 1], N=
00

1 0 -6
01 -5}
we obtain

0 -6 0
Al = [l _5]1 Bl = [2]7 Cl = los —111 R! =0.

Now test positive realness of {A:, By, C, 0}. Since C1 B, =
-2 < 0, the system is not positive real.

Example 5.3: In this example, we are going to construct an output
feedback gain K for the system given in Example 5.2 such that the
closed-loop system is positive real. From (4.5), by choosing L to be

the identity matrix, we obtain P; = [ _%555 ’8‘2 . By substituting
1

P and L into (4.6), W is solved as W = [__2 6l By substituting

W into (4.7), K = 6.38 is obtained.

VI. SUMMARY AND CONCLUSIONS

This paper reviews positive real systems as a subclass of
dissipative systems and states the positive real lemma equations. By
using the variational problem associated with the parfially singular
problem, necessary and sufficient conditions for a system to be
positive real are stated which are equivalent to the positive real
lemma. The Legendre-Clebsch conditions and the zero structure
are particularly transparent through the iransformation discussed in

Section II-B. These positive realness conditions are expressed in
terms of the state-space matrix inequalities and an algebraic Riccati
equation of possibly- reduced dimension. These coaditions do pot
deal with inequalities tested over the frequency domain or with
searching for matrices that satisfy the positive real lemma equations.
Essentially, the direct test developed here provide a methodology
for using the positive real lemma. A system cither satisfies these
conditions or does not. These conditions also made the synthesis
of positive real system straight forward. Examples are givea which
demonstrate the power of this approach.
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Stochastic Monotonicity and Concavity Properties
of Rate-Based Flow Control Mechanisms

Kenneth C. Budka
Abstract— Using sample path comparisons, we study the stechastic

monotonicity and concavity properties of the moving and jumping win-
dow flow control mechanisms, leaky bucket fiow control mechanism, and

" the token bank rate control throttle to determine the effect comtrol pa-

rameters have on and downstream congestion jevels. Results
are developed without distributional assumptions on the packet arrival

- streams and make use of specially-tailored closed queveing metworks,

Performance comparisons between mechanisms are presented.
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Risk-sensitive Estimation and A Differential Game

Ravi N. Banavar * and Jasrn L. Speyer !

Abstract

A large deviation result is employed to solve the state estimation problem of a continuous
time Gauss-}arkov system with an exponential cost. The exponential cost is the expected
value of an exponential function of the state estimation-error. A scalar  appearing in the
cost, termed as the risk factor, determines the penaliy on the higher order moments of the
error. In contrast to the minimum variance estimate, penalty on large deviations of the

estimation error is possible.

1 Introduction

The expected value of an exponetial function as a performance measure - henceforth
referred to as exponential cost (EC) - was initially proposed by Jacobson [11].
The cost is employed as an optimality criterion for a Gauss-Markov system with
perfect knowledge of the systems states. The EC includes as a special case the
LQG cost. The performance measure was later examined, for the case of imperfect
state observation by [17, 20, 2, 12]. In [21] Whittle views the cost as a risk-sensitive
criterion and lends a desirable certainty equivalence principle to the problem. An
application to missile guidance is demonstrated in [18].

Interest in the exponential cost problem was revived when the solutions obtained
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from it were linked to those of the H,, problem [8, 4]). In his initial paper, Jacob-
son [11] demonstrates the link between the EC and a differential game. Solutions
to the H,, problem for time-varying systems is obtainable through a differential
game approach [1, 15, 13]. The differential game commonality links the stochas-
tic problem with the EC to the deterministic problem with a worst-case measure
(Hs)- Most of the existing results on the exponential cost problem assume an ex-
act equivalence to optimizing a quadratic performance measure. More recently, the
problem has been re-examined from a large deviation perspective. Whittle [24, 25)].
states a risk-sensitive maximum principle derived from a result in large deviation
theory. Non-linear extensions to the same are found in [6). Recasting the problem
into a large deviation framework highlights the sub-optimal nature of the solution
obtained through a quadratic kernel optimization. This is also in consonance with
the deterministic H,, theory where sub-optimal solutions are obtained [4].

This paper examines the continuous time version of the estimation problem on
a finite time interval. Speyer et al. [19] have considered the discrete time version of
the problem. As stated in [19], the estimation problem in this stochastic setting is
pafticula.rly interesting since the cost function is a curious exception to the family of
functions proposed by Sherman [16, 9] that yield a conditional mean as the optimal
estimator . Here, the performance measure is recast into a large deviation framework
and a sub-optimal solution is obtained by invoking a result in large deviation. The
approach is similar to Whittle’s [25]. The two main theorems are stated and proved

in section 2.

2 Preliminaries
Consider a Markov process

t=Az+Bw z€R", weR" (1)




with a measurement
y=Cz+v yeER, veR (2)

where f(x(t)|X(t-)) = f(z(t)|z(t-)) is the Markov assumption and A, B,C are
time-varying matrices of appropriate dimension. The system noise w and the mea-
surement noise v are assumed to be white with zero mean and covariances W and

V. The cost function is defined as

J2Ele™]

1 R
2l [ha-sppar 3)

where || z — % ||? =-A-(z — £)T(z — £) and the expectation is over the random variables
w, v and the initial state (0) and induced by the estimate #. The cost function is

minimized with respect to the estimate Z(t)

in J 4
min (4)

where Z(t) is restricted to a causal function of the information W{(t) defined as
W)=Y X, Az(0))}

where

Ye{y(n:0<r< ¢}

where
XE{z(1):0<T< ¢}

and the distribution of the state at the initial time is Gaussian given by

- 1 o~} (2(0)~20)7 Py (2(0)-20)
f(z(O)) = (21)9(det(Po))o'5b H=00 R0

where % is the mean (a priori estimate at time ¢t = 0) and P, > 0 is the covariance

matrix.




The EC penalizes large deviations of the estimation error. A better picture of
the cost function is obtained by expanding the exponential function as

e erd

As 0 gets large (>> 1), the higher order moments E{L3], E[L"],... are weighted
more heavily than E{L], E[L*]. As @ gets small (<< 1), the lower order moments
are weighted heavily and in particular, as § — 0 the second moment is the dominant
factor in the cost and the problem reduces to a minimum variance measure. The
risk-factor @ allows a certain degree of freedom in shaping the probability density

function of the estimation error.

3 Main Results

The problem is cast into a large-deviation [5] framework and the solution is obtained
by invoking a large deviation result.
Preliminaries: Consider the course of the Markov process with state variables

(z, z) where

T = Az + Bw
and

égy =Cz+v

over the time interval (0, 7].
The derivative characteristic function H and the action functional Dgr (7] corre-

sponding to this Markov process are defined as
1
H(z,a, f)2aT(Az) + F(Cz) + i[aTWa + 43 (6)
»
where a and S are conjugate variables (Lagrange Multipliers) and

Dor{2(.),2(.))2 sup f (o7& + Fz — H(z, a, B))dr (7)
a(.).A() 70




where
2()&{z(1): 0< T< T}

2()2{z(1):0< < T}

When the initial state z(0) is unobserved and supposed random (here Gaussian)

then
Darfa(),()) = Dof=(0) + sup. /; (0% + % — H(z, 0, B))dr (8)
where
£(2(0)) ox exp™2et=)
is the probability distribution of the initial state.
With these preliminaries in view, consider the cost
E[e—OL]
It can be rewritten as
E[e—kOL]

where k is a positive scalar parameter. Note that this modification alters the perfor-
mance index but does not affect the optimal estimate. Let eg%. A large deviation

xesult [5, 7] applied to the present problem states that

lim e log( Ele™+]) = — essinf{ Dor(z(.), 2(.)) + 6L}

where "ess" is over the appropriate measure. From the above result, for large k the

performance index

J = Ele™"]

is logarithmically asymptotic

exp{—kessinf{ Dor(=(.), 2(.)) + 6L}}




or
Ele ™) ~p exp{-k ess inf{ Dor{z(.), 2(-)) + 6L}} (9)

where ~ denotes logarithmic asymptoticity.

With this background, the main theorem of the paper is stated. The theorem
below is akin to the risk sensitive maximum principle in [25] applied to the case
of control with imperfect observation. Here it is derived for the problem of state

.estimation.
Theorem 1 Tb@ sub-optimal estimate Z(t) is obtained by seeking the infimum of

the linear-quadratic performance index
| Jy= Do) + [ 5 Iz~ 2
s 9° o2 " ¥
+21—9[w7W“1w + (y — Cx)'V 'Yy — Cx))dr (10)
with respect to the estimates {#(7) : 0 < 7 < T}, and the supremum (infimum) with

respect to {z(0),w(7) : 0 <7< T} {y(r) : 0 <7< T} )for@ <0 (6> 0). The

performance index is subject to (1).

Proof:
From (9)
J = E[e ™7
~L eXP{-kz(i_)l;f(_){DoT(:v(-), 2(.)) +6L}}
Let

Jéexp{—k,(i_;;f(_,{uor(x(.),z(.»+0L}} (11)

Minimizing J with respect to Z(.) is equivalent to minimizing J' with respect to Z(.)
We shall consider the case 8 < 0 only. The proof is similar for 8 > 0.
For 8 <0

infJ' = infexp{~0k sup {~Der(z(.), () + L} (12)
£() () =),y 6

L )




= exp{—Bkubfzsu? {z Dm-(z( ),2(.))+ L}

= exp{—6kinf sup {=Dor(z(),2())+ L} (13)
2() z(0)()y €

Now examine the term

sup [aTx+ﬂrz— H(z,a, B))dr
o().8() /0

in the action functional (8). By a straightforward completion of squares it is shown
to be
fo %[Wlw + vV ddr
which in turn can be expressed as
]‘; %[wTW“ lw + (y — Cz)"V(y — Cx)jdr
_and substituting in (8) results in

Dur(a(), 2()) = Do(a(0) + [ [ W- ' + (y = Cof V' (y~ Calldr  (14)

Define
1
Ji={5Dor(a(.), () + L} (15)

From (13) and (14) the sub-optimal estimate is obtained by solving the differential
game

inf sup { g Dor(=(), 2(.)) + L} (16)

#() (o) u() 0
QED
a.

- Remark I:Note that in the case < 0, the linear-quadratic problem is a differential
game and for 6 > 0 the problem reduces to a one-sided optimization.
Remark 2: The estimate is termed sub-optimal since the the differential game
formulation is equivalent to the original problém only in the limiting case as € — 0

or k — oo.




Theorem 2 A saddle point solution to the differential game J; exists if and only

if there exists a solution to the Riccati differential equation
P=PAT+ AP+ BWBT - P([C"V'C+6I)P, P(0)=P, (17)

over the time interval [0,7]. The optimal values are then given by

z(0)" = Zo
w' = WBTP }(z - %)
y'=Cz
& = Az + PCTV-'(y — Cz); (0) = % (18)

Proof:

Assuming J,,(2(.), £(t), t) is the optimal return function {3] at time ¢. (All decisions
are assumed optimal over the interval [t, 7] and £(t) is the a priori estimate at time
t.) The saddle solution is sought by solving the Hamilton-Jacobi- Bellman partial
differential equation [3] or Issacs’ equation [10]

oz,
ot

oJ,
— inf L2 i + M(x(t), &(t), w(t), y(t), ¢ 19
éa),(,),s;(‘gw)[ 5z & + M(x(2), £(t), w(t), y(t), )] (19)

where

M(z(t), &(t), w(t), y(t), t)=2

2 12(0) = 5(0) I +55 L OW0(6) + (y(e) - Co®) V- (w(e) — Ca(®))]  (20)
Assume a solution
Jop(2()(2), 2(2), t) = %(z(-)(t) — ()P () (=(.)(2) — £(2)) (21)
with

Jop(2(.)(0),2(0),0) = -21—9(1(0) —~ £(0))"P1(0)(=(-)(0) — £(0)) (22)




Substituting (21) in (19) and subsequent algebraic manipulation results in

E(O). = 530
w' = WBTP \(z — %)
¥y =Cz
z = A%+ PCTV"\(y — C&); #(0) = & (23)
where
P=PAT+ AP+ BWBT - P(C*V"'C+6D)P P(0) = P, (24)

With the optimal values given by (23)

Jo(2*, y, w, z(0)) < Jy(2*, ', w*, 2(0)*) < Jo(z, 9", w*, 2(0)*)
vz(0) e R, #,z,y€ L,y[0,T). (25)

This proves sufficiency.
(Necessity): Assume that P(t) becomes unbounded at time t,, 0 < t. < T. P(t) — oo

as t — t, from below. Let € bea small number. The variation

AJET (%, y,0,2(0)) — J,(&",y", w’, 2(0))

1 . 2 1 p—e T . 2
"ty | A (te = ) Py +35 | I WBTPHAC) - w
+ || y— Cz* [|}1)dt

1 . 1
43 | N8 4300l + 1y~ O eyt (26)

where Ae*Sz — 3 represents the error in the optimal estimate. The existence of
P(t) is not assumed for the interval [t.—¢, T} and consequently the optimal estimator
given by (18) does not exist in this interval. In the interval [t. — ¢, T], £* represents




the optimal strategy of #, no longer governed by the dynamics (18). Note that the
optimal estimator over this interval of time may be non-linear as well.
Now consider the following strategies for y and w,

w=WBTP'Ae’, y=Ci* Vte|[0,t.— ¢

w=0, y=Cz Vtel[t, —¢T) (27)

Then
A.I--lim1 Ae'(t 2 ! Ae’ || dt 28
= (o | Ac(te— ) I +3 | Il A" P ) (28)

As € — 0, P}(t. — ¢) tends to a singular matrix. For the interval, [0, ¢, — €], Ae' is
governed by
Aé = AAe' + B(WBTP-'Ae’)

(29)
= (A+BWBTP)Ae'

The solution to the linear dynamic equation (29) can be expressed in terms of a

state-transition matrix,
Ae*(t, — €) = B((t. — €),0)Ae’*(0) (30)

where ®(, .,) is the state-transition matrix of (A + BWBTP!) and Ae*(0) = z(0) -
Z,. Since z(0) is arbitrary, (0) can be choser such that lim. o Ae*(t, ~ €) lies in
the null space of lim..; P~}(t. — ¢€). Note that the latteris a singular matrix. Then

lim( o || A (te = ) [Baeog= 0 (31)
and

A, = lie_r.l‘}-;-_[:_e | Ae* |2 dt >0 (32)
TherefoFe, (32) is a contradiction thatz® is optimal. Hence, P(t) must exist Vt €
[0, 7}.
QED




a.
Bemark 3If the solution to the Riccati differential equation (17) exists over the
time interval [0,7] then the solution remains positive drefinite throughout the in-
terval (15, 26).
Remark 4: For 6 < 0, the estimator views the initial state z(0), the disturbance
w and measuremnt corruption v as adversaries and adopts the safest (risk-averse)
strategy.
For @ > 0 the estimator views the actions of the initial state z(0), the disturbance
w and measuremnt corruption v as friendly and adopts a more adventurous (risk-
prone) strategy.
Remark 5: Define an attenuation function

fillz—2|*at (33)
12(0) = 20 s + 5 N w s + 0 I3 dt
where ((z(0) — ), w, v) € (R*, L,[0, T}, L,[0, 7)) and sup stands for supremum. The

sytem dynamics (1) and measurement (2) are now deterministic and the objective

Jafé Sup

is to find an optimal estimator which bounds J, i. e.

)|
J¢f<—_—9'

wghere 0 is a negative scalar. An optimal estimator for the performance measure
(33) is identical to (18) and for the time invariant case (with a few additional

assumptions) is the H,, optimal solution [14].

4 Conclusions

The large deviation approach applied to the exponential cost problem highlights
the sub-optimal nature of the solution obtained through a quadratic kernel opti-
mization. This feature is very much similar to that encountered in the deterministic
counterpart or the H,, optimal problem. Even in the latter case, sub-optimal so-

lutions are obtained. The estimator is not the typical conditional mean (Kalman)




filter and is an exception to the large class of cost functions proposed by Sherman.
Existence of the optimal solution depends on the existence of the solution to a
Riccati differential equation, which iﬁ turn depends on the tisk-faﬁtor 0.

Acknowledgements The first author appreciates the comments of the anonymous
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SENTRALIZED AND DECENTRALIZED SOLUTIONS OF THE
LINEAR-EXPONENTIAL-GAUSSIAN PROBLEM °

Chih-hai Fan,! Jason L. Speyer,}! and Christian R. Jaensch$

ABSTRACT

A particular class of stochastic control problems constrained to different information patterns is con-
asidered. This class consists of minimizing the expectation of an exponential cost criterion with quadratic
argumont subject to a discrete-time Gauss-Markov dynamic system, i.e., the Linear-Exponential-Gaussian
(LEG) control problem. Besides the one-step delayed information pattern previously considered, the classical
(includes current observations) and the one-step delayed information-sharing (OSDIS) patterns are assumed.
After determining the centralized controller based upon the classical information pattern, the optimal decen-
tralized controller based upon the OSDIS pattern and the solution to a static team problem is found to be
affine. A unifying approach to determine controllers based upon these three information patterns is obtained
by noting that the value of a quadratic exponent of an exponential function is independent of the information
structure. Even though the controllers are determined by a backward recursion of this exponent, the value
of the cost criterion is not; rather a coefficient of the exponential delineates the value of the cost criterion
with respect to the information patterns. Both necessary and sufficient conditions for the controilers to be
minimizing are obtained regardless of the exponential form. The negative eXponential form is included which

is unimodal but not convex.
1. INTRODUCTION

Control problems with an exponential cost, in particular the exponential of a quadratic form, have proved
to be an interesting extension to control problems with only a quadratic cost, such as the well known linear-
quadratic-gaussian (LQG) control problem. The first to consider the linear-exponential-gaussian (LEC
problem was Jacobson {8] who treated the case of perfect state observation. Jacobson pointed out the
relation between the LEG problem and deterministic differential games. Subsequently, Speyer, Deyst, and
Jacobson in [18] derived results for special cases of the general LEG problem with imperfect observations
where they obtained fixed finite-dimensional controllers. Speyer et. al. also considered the general LEG

*This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 91-0077
tResearch Assistant, Department of Mechanical, Aerospace and Nuclear Engineering, UCLA.
$Profescor, Department of Mechanical, Aercspace and Nuclear Enginsering, UCLA.
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problem with imperfect observations, but obtain an optimal controller which is a function of the entire
smoothed history of the state vector from the initial to the current time. Kumar and Van Schuppen [13]
obtained results analogous to [18]. In {21] Whittle obtained the solution to the general LEG problem with a
one-step delayed information pattern and showed that a fixed-dimensional controller resulted. In his analysis,
a risk-sensitive certainty equivalence principle is derived, from which the differential game interpretation
follows. Later, Bensoussan and Van Schuppen obtained in [2] results in continuous time analogous to [21].
A major objective of this paper is to consider in & unified manner LEG problems having various information
patterns. Included is the decentralized LEG problem which is more naturally formulated in a discrete-time
- setting. Therefore, we will not refer to the continuous time LEG optimal control problem any further.

In contrast to centralized control which assumes all the measurements of the system’s state are available
(the classical information pattern), decentralized control focuses on systems in which not all the information
is available. A particular information structure is assumed here called the one-step delayed information-
sharing pattern (OSDISP) which assumes that each control station (elements of the control vector) has, at
the current time, all the previously implemented control values, all the observations made anywhere in the
system through and including the previous time, and its own observation at the current time. Hence, the
difference between the one-step delayed information-sharing pattern and the classical information pattern is
that the current observations are not shared. The one-step delayed information pattern is that only the past
observations are available and the current observations are not available to any control station.

Dynamic team problems associated with a one-step delayed information-sharing pattern can be conve-
niently reduced into a series of static team problem by utilizing the Dynamic Programming method. However,
this is in general not true with arbitrary information pattern [24]. Nevertheless, for different cost functions
the one-step delayed information-sharing pattern has produced recursive solutions for obtaining the optimal

“control law. In particular, Sandell and Athans developed in [17] the first recursive solution to the team
problem with a quadratic cost, one-step dzlayed information-sharing pattern and linear dynamics. For the
exponential of a quadratic cost function without intermediate state penalties, Krainak, Machell, Marcus and
Speyer derived in [12] an analogous result for a one-step delayed information-sharing pattern. In section 6
we extend that result for the general exponential of a quadratic cost function.

In the following presentation superscripts on vectors indicate either components or partition of vectors.

The following defines a class of static team problems.

Definition 1.1

A team decision problem is concerned with a decision making unit (called a team) consisting of M
members, that chooses a value of the decision vector u from a subset = C RP and incurs a cost C(u,x), which
depends upon both the decision u and the prevailing state of the world x. The decision variable u is usually

a p-tuple of individual decision variables, or an M-tuple of individual decision vectors u* € =* C R?:, where




Y M p =p=dimu. The set of all possible decision values is some subset of the Cartesian product of the
=5, ie. ECE!' x 2 x ... x EM, We also assume that z € 2, where (2, I,P) is a given probability space
and Q = R™ for some n, £ consists of the Borel sets on R™ and P is a known probability measure. C(u,x)
indicates the penalty associated with each decision for each state of the world and is assumed for ail purposes
of this paper to be real-valued and Borel measurable on (RP x ). Furthermore, the i** team member has
available to him some observation of the state of the world : 2* = h'(z), where dim z* = r* and z is the
vector of all the observation values known to the team members with dim z = r. Note that z* indicates the
i*? partition of z and not the i** component. It is also presumed that Af(-) : 2 — R™ is a Borel measurable
function to avoid the discussion of pathological cases. Finally, it is supposed that the set of admissible control
laws for the i** team member, U?, consists of all Borel measurable functions, v(-): R — =%, where = is a
Borel measurable subset of RP:. This means that the control value u' is solely a function of the observation
2'. The set of all admissible team control laws is defined as Uy = U! x U2 x ... x UM, The problem faced

by the team is to select the control law

7. Ul

7 uM
which minimizes the average cost, J = E[C(7(z),z)]. O

For the remaining part of this section and throughout the paper, we adhere to the notation given in the
above definition, unless noted otherwise. _

A sufficient condition for global optimality of a class of static team problems is given by Radner [15). In
particular, it is assumed that for every fixed z € R, C(u, z) is convex. Furthermore, because of the hard to
verify “local finiteness” condition in [15], an extension which circumvents this conditions is given by Krainak
et. al. in [11}. Further simplifications are obtained here because of the restriction to exponentials with
quadratic arguments.

In section 2 and 3 we extend the results presented by Whittle in [21] for the slightly more natural
assumption that the control at the current time is a function of the observation history up to the current
time (the classical information pattern) rather than only up to the previous time (the one-step delayed
information pattern). In addition, in section 2 and 3 we contribute detailed proofs to some of the Theorems
of [21] where only a proof outline is given. The lemma given by Whittle in [21] converts the expectation
operation of the exponential of the quadratic function to the extremization operation. Using this property,
we avoid the tedious proof in [11] for the exponential cost and give sufficient conditions for both the risk-
averse and risk-prelerring cases of the LEG team problem in Section 4. The optimal team control function

for risk-preferring is found also as an affine function. For the risk-preferring case, C(u, z) is an exponential




function but nonconvex. This extends the results of [11] in which only the risk-averse case with a convex cost
function is considered to be a nonconvex but unimodal exponential function. For more general functions of
C(u, ), the work in [11] must still be extended. In Section 5, we investigate the relationship among three
different information patterns: the classical information, one-step delayed information, and one-step delayed
information-sharing patterns. Using the results of the classical information and one-step delayed information
patterns, the dynamic programming recursion will be shown to be essentially the same for the three different
information patterns. This property simplifies the derivation of the control gains for the one-step delayed
information-sharing pattern in that the backward algorithm in {10] is no longer needed. Furthermore, only
the coefficient of the exponential in the cost function changes for different information patterns indicating
their relative optimality. In section 6 we derive the optimal decentralized controllers for the one-step delayed
information-sharing pattern. This extends the results of Krainak, Machell, Marcus and Speyer in [12], who
examined only the case in which terminal state penalty is present. Also, the results in Section 6 are extended
to nonconvex C(u, z) but unimodal exponential functions.
2. THE LINEAR-EXPONENTIAL-GAUSSIAN PROBLEM

Consider the following linear, stochastic, discrete-time system,
Loy = Aeze + Beue + wy (2.1)
where we assume that dim(z;) = n and dim(u,) = p. The state observation is now restricted to the form
2= Hyzy + v, (2.2)

where z, € R". Notice that the definition in (2.2) is different from that in [21]. In addition, zo is normally
distributed with mean z, and covariance V; > 0, and {w.} and {v.} are assumed to be zero-mean, jointly
Gaussian, independent random variables for all ¢t = 0,1,---,N wifh known positive-definite covariance
matrices W, and O, respectively. Whereas this description of the dynamics suffices for the centralized LEG
problem, a few additional requirements have to be added for the decentralized LEG problem.

Specifically, it is assumed that u; and B, are partitioned as
U = [(utl.)Ta STy (uthl)T]T: B¢ = [Btlv Bt2» ) BtAl] (23)

where u} corresponds to the control implemented at time ¢ by the i** team member (i € {1,---, M}) with

dim(u!) = p; and E"Z . Pi = p. In addition, z, is partitioned as
ze={(z)T,---, ()T (2.4)

where z{ corresponds to the observation of the i** team member at time t with dim(z{) = r; and M r, = 1.

It is also presumed that ©, can be partitioned as

6, = Diag[8}, ---,0M) (2.5)




™.

In other words, v} and v] (i,7 € {1,---,M},i # j) are assumed to be independent Gaussian random
variables, where v} corresponds to the noise corrupting the observation of the i** team member.

The objective is to minimize the following performance index,

J(6) = E[—6e~3%%] (2.6)
where @ is a real scalar and ¥ is given by,
N-1

¥ = E (zT Qiz¢ + ul Rewg) + W QNTN (2.7)
t=0

We assume that Q, > 0 and R; > 0, and R; is partitioned in the decentralized problem as

R} R}
Re=| .eceenn. (2.8)
R‘M 1,.. R‘M M
In addition, all matrices and vectors are assumed to be compatibly dimensioned.
The feature distinguishing the decentralized problem from the centralized is the assumed information
pattern. In particular, a one-step delayed information-sharing pattern is assumed for the decentralized LEG

problem which can be described as follows,
Yo = O(empty set), Yy =Y, 1 U{z1,u1), ¥V7 = YU {2}

Given this, we require for the decentralized LEG control problem that the team member constructs his own
control value, u}, according to the mutually agreed law, 4§(:) : Y — RP, ie. u} = 9}(Y{) € U*, as discussed
in Definition 1.1 where Ur is the admissible control set.

On the other hand, we require for the LEG problem with the classical information pattern that the control
at time ¢ be a Borel measurable function of the observation history ¥;, v,(:) : ¥; — RP i.e. u, = 7(¥)),
where Y} is the initial information available on zo and ¥; = Y U..-UYM. The set of all admissible control

functions with the classical information pattern is
Uc= {ut U= ‘7:(1?0}

The information pattern based on ¥ is called classical, the information based on Y} is one-step delayed
information-sharing, and the information pattern based on ¥ is called one-step delayed. Similar to the
definition of Ug, the set of all admissible control functions for the one-step delayed information pattern is

Us = {uq : ue = 7(Y:)}
From the above definition, the following relation is obtained.

UscUrclUc (2.9)




In general, we will also adopt the notation,
X! = (IO,:l)' "uzl)t XtN = (I¢|z¢+ln M ',IN)

with a similar convention for all other variables.
2.1 éome preliminaries
Two lemmas from Whittle [21] [22] are given here to form the basis for the dynamic programming method-
ology given in section 2.2. The first lemma is concerned with the relationship between minimization and
integration of gaussian densities and is restated below somewhat more precisely.

Lemma 2.1 Let S(u,v;8) be a quadratic form in the components of the vectors u and v with dim(v) =r.

In other words, let £T = [u7,v7), then

- - Suu Suv
S(u,v;0)=-;-£TSE+kE+n S=[S < ]

If 6 > 0, suppose that § > 0 and S(u, v; §) attains its minimum at u = u* and v = v*, whereas if § < 0,

assume that Sy, > 0,S,, < 0 and S(u,v;#) attains its minimax solution at u =u* and v =v*. Then

(- -]
min / —0e= 05wl gy = —0(27r)§'|05w|'*e"s(“."’.;’) ox e~85(u"v*:0) (2.10)
—co

“

and the minimum is attained at u = u*.

Proof: See [9] [5] or [23]

The importance of this lemma is that it precisely relates the expectation operation on the exponential
with quadratic argument with respect to a Gaussian probability density to the extremization with respect
to the random variable of the quadratic argument of the exponential.

The second preliminary result concerns the explicit form of the conditional probability density of all un-
observables and is stated in detail below. Let f(Xn, Zn|Un-1) denote the joint probability density function

of the random variables Xy, Zy given the admissible control sequence Uy —;, where

XNE(IO,I],"',IN), ZNE(ZO,Z[,“',IN), UN—IE("O)“’]:""“N—I)

This notation is consistent with that of Whittle; see [23] equation (2.39).

Lemma 2.2:
S(XN, ZN\UNn=1) = T, [f (zalze) S (@rlTa—1, ue—1)}f (20lZ0) f(z0) o e~3(P+mn) (211)
with
N-1 M
P="(nk+)_(mi)+ (20 — %) V5 ' (zo — Zo)
k=0 =1




N-1
=) (ne +ma) + (zo — 20)™Vo * (zo — 20)
k=0

ny = (Ta41 — AxZi — Bguk)TW:l(zk+l — Axzx — Brux)
mi = (zf — Hiza)T(0}) M2k — Hize), i€ {l,---,M}, my=(2x— Hezi)T (k)" ! (2x — Hazs)
and the constant term for (2.11) is
const, = (2m)" Vol 30! [(27)~ Wi T o [(2m)~ § 104 ) (212)

Proof. See [9] or [5].
Define

L=V+0"(P+my) (2.13)
S¢ is called “stress” in [21]) and ¥ is defined in (2.7). We shall also say that a variable extremizes S¢ if it

minimizes S€ in the case 8§ > 0, and it maximizes S¢ when @ < 0.

2.2 The Dynamic Programming decomposition

The Dynamic Programming recursion for the classical information pattern is given as follows. The cost

function is
J = min E[-8e~1¥)
Una

By applying the Fundamental Theorem of Dynamic Programming, see [18], J is written as follows,
J = E[min E{min E[.--min E[-- min E[E{~0e™¥¥|Vx)|Yn] -« [Yor1] - - Y2 1V3])
The above equation can be rewritten more explicitly as follows,
(+ <}
= / min / / mm - min / { / —ge— ¥V
—o0 Yo J_ UN-1

F(XNIVN)EXN]f(znIYN)dzn - - - f(2es1lYee1)ld2e41 - - f(22]Y2)d2n
Siderf Goddzo = [ minl [~ minl [ - ominl [~ min( [~ —ge-tov

FXNIYNYF(ZH2lUN-1, 2041 )dXNAZN ) f(Zes1|Ue)d2e41] - - - d2g]d2y)dzo (2.14)
From (2.14) the optimal return function is defined as,

Jesr(Vi1) = min B{-0e~4% (7o) f(Zesa|UL)

t+1




Then, the Dynamic Programming recursion rule is
B = min [~ Jens(Ferr)dsn (215)
The optimal return function at the final stage, i.e. at t=N, after reviewing (2.14) is
In(Pn) = (=0 (Y Un—1)E[e~ 1% V)
= (0) [ IV SXMIT) S 201U )iXi
=(-0) [ 40w, ZnlUn-1)iXn
From Lemma 2.2

JIN(Yn) = consty(-0) /Q e 1057 ax (2.16)

-0
where const, is given in (2.12). Let S%, x, be equivalent to S,, in Lemma 2.1 and apply Lemma 2.1 to
(2.16). Let &n(¥n) = extx, S¢ where “ext® means “min” for 6 > 0 and “max” for 8 < 0, then Jy(¥,) can

be written as
JN(}.’N) = oonstg(—ac‘*“”(’.'”)), consty = const1(21r)u o IGS§(NX”|'*

where QN(}-’N) is a quadratic function in Zy and Un.,.
The optimal return function at time stage N-1 is evaluated by using the Dynamic Programming recursion
rule (2.15). Thus,

B oo . 00 .
JIJn<1(YN-1) = min / JIn(Yn)dzy = min / constz(—e)e"“""(y”)dzn
uN-1 J oo uN-1 J oo

Let 53, ., be equivalent S,, in Lemma 2.1 and apply Lemma 2.1 to the above equation. Let ®y_;(Yy_,) =

i S & (Yn), then Jy_1(Yn_1) can be written as
In-1(Ynoy) = (cor;stg)(—O)c-‘}o°”"(‘7""), consts = con.stg(27r)§|9,S';"~,M|°i (2.17)

where QN_I(Y’N_l) is a quadratic function in Zy_; and Un_,.

In general, the recursion produces
J(¥) = consh(—ﬂ)e‘*“"(?‘) (2.18)
where consty = constgllf;l[(%r)ilosaul”*] and
®,(¥:) = min ext ®441(Yes1) (2.19)

®,(Y;) is a quadratic function in Z, and U,_,, and v, found from (2.19) is the optimal control at time t for

the classical information pattern.




3. THE OPTIMAL CONTROL LAW WITH THE CLASSICAL INFORMATION PATTERN

From the derivation in Section 2.2 the following Theorem is obtained, which is applied to the central-
ized LEG problem with current observation (the classical information pattern) and is different from Theorem

1 in Whittle [21] who considered the centralized LEG problem with the one-step delayed information pattern.

Theorem 3.1: Let S¢ be positive definite in U,” -1 Xn, Z,’f’H when @ > 0 and S€ be positive definite in
UN-1 and negative definite in Xy, Z¥ , when 6 < 0. Suppose S¢ is minimized with respect to the decision as
yet undetermined U,N “! = (uy, -, un—1) and extremized with respect to Xy and the current unobservable
Z}, for a given value of Y;. Then, the value of u, is the optimal control at time t and the order of the
optimization is irrelevant.

Proof : From the Dynamic Programming decomposition in Section 2.2, the recursion &,(Y;) (2.19) for

the classical information pattern is

®,(Y,) = min ext ®er1(Yer1) (3.1)

On(Yn) = &t S(Xn, Yn) (3:2)

The optimal control at time t determined 7om (3.1) assumes the classical information pattern. &,(Y;) can

be written as

®(V:) = "'ﬁn[ﬁ’ﬁ Ber1(Yeer)] = "}}‘n[g’ﬁ m‘l‘ 2’5& Dei2(Yer2)] = n‘l‘i‘n[d’ﬁz(z:.,_,, Zg42:Uge1s Ze, Up)) (3.3)

By repeatedly using equation (3.1) in (3.3)

& (Vo) = min[®n (2.5, 20, USY3, V) (34)
From (3.2) and (3.4)
oY) = min{SY(XR, 231, 2, U3, Ub)) = J?,igl ;i‘fl Xt S (X, Yn) (3.5)

Since we have assume S¢ is positive definite in UN !, X v, ZX, when 8 > 0, so the order of the minimizations
can be certainly interchanged. We also assume S° is positive definite in UM ™! and negative definite in
Xn, Z,’i, when ¢ < 0, so S° possesses a saddle point. The operations of min and max can commute [1]. O
The recursion of the quadratic function S¢ in (3.5) can be decomposed into a forward recursion P; and a
backward recursion F. In fact, the ability to decompose S¢ in such a way is the key in solving the general

centralized discrete time LEG problem because it allows for a separation of the control algorithm from the




estimation algorithm. In essence, this says that in some sense the separation principle [21] holds for this
class of problems. Let

t-1
$1(Xe, i) = 07 @0 — 20) Vi (20 — Z0) + 3 (2L Qezs + u Revi

k=0

+ 07 [ne(Zrr s, Tk, Bi) + ma(2ze, Zk)]) + 07 my (20, 30) (3.6)

N-1

SaXY, Z{ L UM = (af Quza + uf Raun
k=t
N
+ 07 ne(Zhr 1, T we)) + 071 D malzk, Th) + TN QNN 3.7)
k=41

where S is named “past stress” and S, is named “future stress” in [21].
Since S7 does not contain X,—; and S; does not contain U}¥ ~!, XN, ZX | and by Theorem 3.1 the order
of the optimization is irrelevant. Decompose (3.5) as,
min, ext ext S(Xn, ¥i) = extlext Si(X., ¥o) + min ext ext So(xN,zN UMY (38)

UN -t zc-n e+l ze-n

Define P, and F; as follows,

Pt(xh f,t) = §Xt Sl(xh f,t) (39)
¢=1
Fi(z) = Jrhl,igi oxt ext Sa(xN,zN,,uNY) (3.10)

3 t+1 “e41

Also observe that the second summation term of S, simply vanishes when extremizing with respect to Z,_H,

since extremizing S, with respect to 2, for all k € {t + 1,t + 2,.... N} yields 2z} = Hiz, implying that

ka=0.

It also follows immediately from the above definitions of P, and F; that P,(z,,Y,) satisfies the following

forward recursion,
Pt+1(-'l-'t+1. Vi) = eXt[Pt(It- Y)) + 27 Quze + ul Reue + 07 (e + meyy)]
with the initial condition,
Po(0, Yo) = 67 (z0 — 20) Vg (20 — Zo) + 07" mg
and F;(z.) satisfies the backward recursion,

Fe(z) = n'}i‘n ff; [F..,.l(zgﬂ) + ITQgI; + u',rR.u, + 0"’n¢] (3.11)

10




with the terminal condition Fn(zn) = 2k QnzZn. From the above discussion, Theorem 3.2 is obtained which
is an alternative form of Theorem 3.1. Theorem 3.2 assumes the centralized LEG problem with the classical
information pattern and is different from Theorem 2 in [21] which considers the centralized LEG problem
with the one-step delayed information pattern.

Theorem 3.2 Let u*(z,,t) be the minimizing value of u, in the recursion equation Fi(x,), and let z;(¥;)
be the value of z; extremizing P;(z:, Y;) + Fi(z.). Then, the optimal control at time t is given by,

u.(zh t)lzs=2: = u.(z:(}-’l)a t)'

Proof : Since S does not contain X;_, and S; does not contain U,N",Xﬁl,Zﬁl. and by Theorem 3.1
the order of the optimization is irrelevant, then from (3.8) to (3.10)
min ext extS"'(XN, Yn) = ext.[ ext Si( X, Vo) + mm ext ext Sy(X\", 2, U} ") =ext|P; + F}]
vzl X P X 20 *s
If the state is completely observed, then the optimal control is u; = u*(z,t) and is determined from the
backward recursion F¢(z.) in (3.11). The optimal control in the case of imperfect state observation is ob-
tained simply by replacing z, by z; (Y;), where z; (¥;) is the value of z, extremizing Pi(z:, ¥;) + Fe(z.). This

replacement is a modified version of certainty equivalence {21]. O

In the following, first the controller u*(x,,t) is determined from the backward recursion F(z.) in Theorem
3.3, then, the forward recursion P;(z,Y,) is evaluated in Theorem 3.4A, and finally, the optimal controller
at time t, u*(z{(¥),t), is computed in Theorem 3.5.

In fact, the following Theorems 3.3, 3.4 and 3.5 are taken from Whittle {21]. More detailed proofs than
Whittle gave in {21] are given in [9]. The following Theorem essentially presents the results of solving the

backward recursion Fi(z;).

Theorem 8.3 Fy(z.) is quadratic in the state variable z,, Fi(z;) = z] Ilz,, and the optimal control for

complete state information is linear, u*(z,,¢) = kyx,, where the controller gain k, satisfies
k.= —R;'!BT 1 (I + B.R;'BT N,y + W11, 1)1 A, (3.12)
and I, satisfies the discrete time Riccati equation,
M, =Q+ ATl s (I + BeR; BTy + W, I1et1) ' Ay, Ty =Qn

For these assertion to be true when @ < 0, it is necessary that I,.; < —(6W,)~! for all s > ¢.
Proof. See [21) or [9)

11




Remark: Notice I, is positive semidefinite when § > 0. From the backwards Riccati equation if J +
OW¢H¢+] > 0, then I1 2 0 when 6 < 0.

The recursion equation for P;(z., Y;) is rewritten in the following form,

Peyy(zesn, f't-rl) = e:c‘t[P.(z‘, Y:)+ -"‘{Qtzt + “{Rt“t

+ 07 (ne(Zer1, e, te) + Mme(20,20))] + 07 ' me 1 (2041, Tes1) (3.13)
where

t—1
Pz, Y) = ot (07" (z0 — 2o) TV H(zo — zo) + Z(«‘tthzk +uf Reue + 07 (e +my))]  (3.14)
¢-1 k=0

The reason for rewriting the P, recursion as,
Pi(z:,Y:) = Pi(ze, Vi) + 0" 'my(z,, 70) (3.15)

is that the recursion equation for P, is exactly the same as the equation for P, in Whittle’s paper. Therefore,
we can invoke Theorem 4 in [21] to obtain an expression for P;(z,, Y:) = Pi(z¢, ;) — 0~ 'my (2, z¢) which will
be needed in Theorem 3.5 to obtain the optimal controller with the classical information. A less complete
form of this theorem without the explicit form of L¢4,(Y;+1) (3.18) was originally given in [21]. However,
as we shall see in Section 6 in order to obtain the optimal decentralized controller with the one-step delayed

information-sharing patterr we need an explicit expression for L¢41(Ye+1) (3.18).

Theorem 3.4: P,(z,,Y:) has the form
Pi(ze,Y:) = 0~ Mae — 20)TV; Mz — 2e) + Le(Ye) (3.16)

where L;(Y:) contains all those terms independent of z; and the matrix V; and the vector Z; satisfy the

recursions,

Vesr = W+ AV + HTO T Hy + 0Q¢) AT (317)

Lep1(Yes1) = Le(Ye) + 2T (6V2) 12 + 27 (00,) 'z, + uT Reu,
-0 (Vg + HFO ' 2)T(V,) + HTO ' H, + 0Q,) M (V, '2, + HTO[ '2,) (3.18)

Zey1 = Ak + Beug + AV + HTO 1 Hy + 0Q,) M (HTO; (2 - H,Z,) — 60Q.2:) (3.19)

with the initial condition cov(zg) = Vo, Lo = 0, Zo = z,. Moreover, for these assertions to be true in the
case # < 0, it is necessary that V,”! + 6Q, + HTO;'H, >0 forall s < t + 1.

12




Piroof: Proof of this theorem, especially (3.18) is given in Appendix A or in {9].

The following lemma will show the relationship of two inequalities that were used in the proof of Theorem
3.4 and the positive-definite property of V;.
Lemma 3.1 The following inequality exists

Vil4+0Qc+ HIO 'He >0 (3.20)
if and only if
Vo' 4 0Qc+ ATW YA, + HTO'H, > 0 (3.21)
for 8 # 0 where t € {0,---, N — 1}. The existence of (3:_20) implies that V., > 0.

Proof: See Appendix B.

From Theorem 3.4, %, is the value which optimizes P;(z;,Y;). The next theorem will find £, which
optimizes Pi(z¢, ¥;)-
Theorem' 3.4A: Py(z,,Y:) has the form
Pz, Vo) = 07 (e — 2)TV, M (20 — 20) + Le(V2)

where L(Y;) contains all those terms independent of z,, and the matrix V; and the vector Z, satisfy the

recursion,
Verr =W+ AV +0Q) AT, Vg = (VI + HL 167 He) ™! (3.22)

Le(¥,) = Lo(Ye) + 2.0V + (HT (60,) ' H,) V)2,

+2.[00, + H (Vo) H | 20 — 22((0Ve) 1 (0Ve) He (00) V)2¢

£.=Vi(V '2 + HTO; '2,) = £, + V,HTO (2, - H(Zy) (3.23)
Zep1 = Al + 0ViQ,) 2, + B,

with the initial condition Vo = (V5! + HJ 65 Ho)~! and £ = (V5! + HI©; " Ho)~* (V5 20 + HT 65 20),
where V;, Z, are given in Theorem 3.4. Moreover, for these assertions to be true in the case 8 < 0, it is
necessary that V"1 +6Q, > 0 for all s < ¢t +1.

Proof: The proof is similar to that of Theorem 3.4 (See [5]).

Notice that the control gain k; in (3.12) contains W, and the state estimate £, (3.19) contains 6Q,. The
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control gain depends on the covariance of the noise and the state estimate depends on the state-penalties.
Nevertheless, the computation of the control law is decoupled from the computation of the state estimates
implying that the separation principle holds even though not in the same strict sense as for the LQG problem.

We can now appeal to Theorem 3.2, 3.3, 3.4, 3.4A and the discussion leading to equations (3.13)-(3.15)

to obtain the final result.

Theorem 3.5: The optimal control rule is u*(z?,t) = k¢x7, where

z; = (I 4+ 6Vl + V.HTO, H,) 1 (z, + V:HT ©; '2,) (3.24)
= (I +6V,1,) 'z, (3.25)

and k., I1;, V; and %, are given in Theorems 3.3 and 3.4 and %,, V, are given in Theorem 3.4A. The necessary
condition for (3.24) is V,”! 4+ 6I1, + HTOG; 'H, > 0 when 6 < 0.

Proof:: As shown in Theorem 3.2 the optimal control is
U (21, Olymap = 4° (25 (Fo), 1)
where z; is determined by extremizing P, + F; with respect to z,,
e:x‘t[Fg +P)= e}‘tIF, + P +67'm,) (3.26)
Using Theorem 3.3 and 3.4, the right hand side of the above equation can be written as,
e;(‘t[:rz'ﬂtz, +6 Yz, - :Et)TVfl(z. —2)+ L(Y)+ 0 (2 - ng‘)Teg'l(n — H,z,}) (3.27)

Performing the indicated operation yields (3.24). Using Theorem 3.3 and 3.4A, the left hand side of (3.26)
can be written as
extfz{ Tz + 87 (20 — £)TV, " (ze = &) + Le(V2)]

where the optimal value of z, is given by (3.25). Therefore, z* is obtained in (3.24) and (3.25), provided
(6Ve)~'+ M.+ HT(60,)'H, < 0 when 6 < 0. Using (3.22)(3.23), it is easy to show that the two z§ are the
same. Finally, from Theorem 3.2 u*(z},t) = k.z; and can thus deduce the Theorem. O

The form for the classical information pattern in (3.25) is similar to that of the one-step delayed infor-
mation pattern in [21], only V,, &, are changed to V,, z,. The form in {3.24) is an affine function which will
be needed in Theorem 5.1.

Discussion of Sufficient and Necessary Conditions: The sufficient conditions given in Theorem 3.1 are

different from the necessary conditions given in Theorems 3.3-3.5. Below we show that the necessity of

Theorems 3.3-3.5 are also sufficient.
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Theorem 3.6: There exists an vmque finite optimal! control function which is given in Theorem 3.5 and
yields finite cost, if and only if the following three inequalities exist for all t € {0,...,N -1}

1. V1 460Q,+ HTO; H, > 0 for all s <t when 8 < 0.
2. V. 400, + HFO;'H, > 0 when 8 < 0.
3 W NI, n+1>0forall N> s>t whend<0.

Proof: In order to obtain the optimal control function, F;, P, in theorems 3.3 and 3.4, and z} (3.24) must
exist. Condition 1 guarantees the existence of P,. Condition 2 is for the existence of z; in (3.24). Condition
3 is from Theorem (3.3) and guarantees the existence of F; in (3.11).

The necessary conditions are proved by contradiction. Notice S¢ could be decoupled to four parts. The
first part is from S,(3.6) and (A.3)(see [9]), the second part is from Theorem 3.5, the third and fourth parts
are from (3.7)(3.10) and (3.11).

t—1
S¢= Y (za ~z)TO7 (V) +0Qu + HIO[ ' Hi + ATW ' Ab) (i - 73)
k=0
+ (zo —zg) (I + (8V) ) + HT (66,) ' H)(z¢ — 7)
N-1
+ 2 (Zas1 — z;+1)Tlnk+l + (We) " (xhs1 — Z14y)
k=t
N-1
+ ) (uk — u3)T(Re + Bl ey (8Wialleys + 1) 7' Ba)(us — u})

k=t
where
ik <t)=(V, '+ 0Qu + HTO 'H, + AZ‘W[‘A;)"’
(Vi 'z + HI O 2 + AW (2141 — Baws))
z = (I +6V,I0,) %,
zh (k2 t) = (0 + W)W (A + Biwy)
ui(k 2 t) = —(Re + B ey 1 (6Willeyr + 1)1 Bi) ™}
BI M1 (OWilliyy + )7 Az
From Lemma 3.1 V"' + 6Qs + HT O 'Hi + AW A > 0 if and only if V' + 6Qx + HTO Hy > 0,
therefore the form in condition 1 is obtained. Condition 2 is from the second part. Because condition 3

implies Hx+; > 0 and Ri + B Mx41(6WiIlx41 + 1)) Bi > 0, only condition 3 is needed for parts 3 and 4.

If one of the three inequalities does not exist, then

Q0
J=min [ (-0)e }*dXydZn = oo
Unar J_oo

Therefore, the expected value of the cost function would be infinite or negative infinite. The necessity of
these conditions is established. O
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Remark: Notice the three inequalities always erist when 8 > 0. Also, the three inequalities exist if and
only if the assumption of S¢ in Theorem 3.1 exists. Furthermore, the following relation associated with the

gain (3.12) can be proved that

(Re + Bl 1 (6Wleyy + I)7'By) "' BT Ny (OWeI1,yy + )71 A,
= R7VBTy1(I + B.R: BT I,y + OW, Iy y)~ A

Theorem 3.5 provides the discrete-time centralized controller with the classical information for finite
horizon and time-varying coefficients. For the time-invariant, infinite horizon case under certain conditions,
a time-invariant controller results. It is shown in [6] that this time-invariant controller is equivalent w0 a
H, controller, and the best H,, controller is produced wh&Q 8 is decreased to a critical value 6, where
the cost goes to infinity. However, the information pattern is not discussed. The controllers with the
classical information or one-step delayed information patterns may be time-varying or time-invariant and
finite horizon or infinite horizon. Therefore, the controllers here generalize H,, controller to a larger class of

controllers.
4. DYNAMIC PROGRAMMING FOR THE DECENTRALIZED CONTROL PROBLEM

This section is begun by presenting a variation in the Dynamic Programming recursion given in
Section 2.2. The difference is that instead of conditioning on the classical information pattern Y; as in
(2.18), the recursion is conditioned on the one-step delayed information pattern Y,. This change allows the
explicit formulation of the static team problem at each stage of the recursion. The analysis is the following.
First, the Dynamic Programming recursion is obtained conditioned on Y;. From the Dynamic Programming
a recursion associated with the argument of the exponential £(Y;) is defined in (4.1). Note that Z,(Y;)
and its recursion repiace ®,(Y;) (2.18) and its recursion (2.19). I,(Y;) is propagated backwards assuming
that the decentralized controller is affine, which is shown to imply that it is quadratic at each stage time.
In particular, in Section 4.1 it is shown that if ¥,4, is quadratic, then the global optimal decentralized
controller u; is affine. Since Zn(Yx) is quadratic, then by induction £,(Y;) will remain quadratic.

A deeper property of £;(Y;), shown in Section 5.1, is that the quadratic form of £,(}?) at each time stage
is independent of the information pattern. This is because the saddle point strategies for all the information
patterns produce the same saddle point trajectory which is used to construct £.(Y;). From this property
a uniform approach is produced for the development of controllers with different information patterns; a
considerable simplification over that given in [10].

The optiinal return function is defined, rather than as in Section 2.2, as

Jiar(Yes) = min E(-6e™ 1Y) 1(Z)U,)

+
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Then, the Dynamic Programming recursion rule changes from Ji(¥;) in (2.15) to
o0 o0 -
20y =min [~ Sz = [ Jes(Fird
Y J-oo )

In Lemma 5.1 the assumption that the controller is affine is used, and forms the basis for the propagation

of the quadratic function £;. The relationship between J;(Y;) and X,(Y;) is given as
1 .
Je(Ye) x exp[—aozt(}’,)], Zi(Ye) = ext min ey1(Yess) (4.1)

where T¢;1(Yes1) is & quadratic function of Z, and U;, and En =$x ®n(Yn). From (2.19) and (4.1), the

following relation is obtained.
Zo(Ye) = ext &, (¥2) (4.2)
From (6.1) and (6.2), £.4+1(Ye+1) can be decoupled as two parts
Zer1(Yerr) = fe(ue, 2, %) + Le(Ye) (43)

where L¢(Y;) is in (3.18) and f;(u,, 2z, %;) will be given in (6.2). In the next section it is shown that the
static team controller which globally minimizes f, is affine. Therefore, starting with X, £, by the recursion
(4.1) is propagated backwards and by induction X, remains quadratic.
4.1 The static team problem

To obtain the static optimal team controller we need a definition of person-by-person optimality.
Then, it is shown that, with an additional assumption on the convexity of the quadratic function f,, person-
by-person optimality implies global team optimality. Although the cost C of Definition 1.1 is not explicitly
defined, it is related to the optimal return function J,,; as ’

[ ]
mi.,n E[Ct(‘a'l(ir 2, it)a 2, fh Yl)l}’h Z:] = n'l‘i.n/ J¢+l(}’h 2t ﬁ't(ia Zt,fg))dég(i) (4'4)
Ye ¢ J-oo

. * 1 P . 1 .
x !m‘n/ CzP["z‘oft(uz(i,zh-’i'c)»2¢'5t)]d2t(1) (28 e:rp[—-2-0mmeX,t fi]
u Joco ul £e(1)

The last relation is from Lemma 2.1 and 2,() = {2]}:x; , where 2,(i) is the vector z, without the observation
of the i-th team member, and
ul*(zl,2) if i#j

u} if i=j

ﬁt(it 2t it) = {

Note that in [15] and [13] person-by-person optimality is defined with respect to the left side of (4.4). Below
we define person-by-person optimality with respect to the right side of (4.4).

In the discussion of the static team problem, the subscript ¢ is dropped for convenience.
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Definstion 4.1:
A static team decision rule u* € Ur is person-by-person optimal if for

J= ‘%x‘gf(u, z2,%), |Jl<o
and if u** is determined from

, - i€ {12 M
Jmin, fext S50, 2 ri€{1,2, }

Let f have the particular quadratic form
f(u,2,%) = 2TQnZE + 25T Q122 + 22T Qi3u + 27 Q22 + 22T Qasu + u7 Qa3u (4.5)

where Z is a constant vector and Q;1, @12, @13, @22, @23 and Q33 are defined in (6.3) and are function of 6, a
real number and 6 # 0. The operator “ext” means “min” when 8 > 0 and “max”when 8 < 0. The vectors u
and z are partitioned as u = [u!T,---,uMT|T and z = [2!7,---,zMT|7, and the matrices Q12, @13, @22, Q2

and Qss are partitioned into block form, to correspond to the partitioning of the vectors u and z2, as

Q12 =[Qlz, -, QY] Qi3 =(Qis,---, QY]

1, 1M
PP [
Qu=| --- -+ .o |; ppe€{22,23,33}
M1 .. MM
PP PP
Let us also denote,
R=D"TQ33D + Q23D + (Q23D)T + Q2 (4.6)
§=DTQxuC + (Q13D)" + QuC + QL 4.7)

where D and C are determined from (4.8) and (4.9).

It is shown in Lemma 4.1 that the person-by-person optimal team rule for the quadratic function f is
affine. In Lemma 4.2, by completing the square and using a stronger assumption than required for person-
by-person optimality, the affine person-by-person rule is also globally optimal.

Lemma 4.1: Let the quadratic function f be given as (4.5). If Q% — (8)Ta*8* > 0,R > 0 when 8 > 0,
and if Q%5 > 0, R < 0 when @ < 0, then the optimal person-by-person controller for the one-step delayed

information pattern is given by
v =Ci+ Dz
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where D is a block diagonal matrix with dimension p; x r; for the diagonal matrix D*, and C is partitioned -
according to u into p; x n blocks, i € {1,---, M} where

D = -[Q% - BT B {(@5)T - A Ta'y'] (4.8)
3 - . N M k) . . o .
C' =—[Q5 -BTa' A (Qis)T+ Y. QHKCI - BTa'6);p (4.9)
J=19#4

where for i,5,ke€ {1,--- , M},

a‘=ith minor of DTQasD + Q23D + (Q2D)T + Q23: the ith minor does not depend on D",
B = [Qf+DTQEliw, 7 =@+ (QAD) ]in

& = [(Qla + QsDI)T + Tl s QICE + Tnrs s DT (QASCH )5

Furthermore, the optimal cost is

ext f(u*,2,2) = f(u°,2",2) = 2T(Qu + Q13C + (Q130)T + CTQssC - ETR™8)z (4.10)

Proof: See Appendix C.

Remark: Note that QY = fuiui, B = feqyus and (a*)™! = fyu)z(s)- For additional characterization of
o' ,f 7' and &', see equations from (C.3) to (C.6).
Remark: The optimal person-by-person control function is a stationary point for the function f.

Lemma 4.2 If Q33 > 0, the person-by-person optimal control function determined from Lemma 4.1 for
the quadratic function f(u,z,%) (4.5) with the one-step delayed infofmation-sha.ring pattern (OSDISP) is
also the unique global optimal team controller, i.e. for Ur defined in definition 1.1 and VYu € Ur,u # u*, the
inequality f(u, z,Z) > f(u*, z,Z) holds.

Proof: From page 187 of 1), for a s’ -ictly convex function the persofl-by-person optimal solution is unique

and is also team-optimal. In particular, since f is a quadratic function where it is assumed that Q33 > 0,
fu* + bu, 2, %) — f(u", 2, %) = 6uT Qazbu + 2(Qa3(CZ + Dz) + Q132 + Q'{;:T:)T&u

By applying u* = C'z + D’z to Qa3(Cz + Dz) + Qhz + QT3Z, (C.1) is obtained. Since z satisfies the
stationary conditions and §u’ depends on z* only, (i) in (C.1) is eliminated by using (C.2)

[Q33(Cz + Dz) + QL2 + QTz]T6u(2)

M M
=) {Q%v +{(Q)+ D QACIE+ QBT + FTH()} 6u'(2)
i=1

j=1.5%8

M
=Y (" - C'z - D'2)T(Q% - T a'f)bu'(2') =0

i=1
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Since Q33 > 0,
f(u® + bu, 2,%) — f(u*,2,%) = 6uTQusbu >0

Therefore, for arbitrary fu

f(u* +6u,2,2) > f(u*,2,%)

] A

The following Theorem shows that the optimal control w* € Ur from Lemma 4.1 also minimizes
22, —0eY00dz.

Theorem 4.1: Let the function f be a quadratic function given in (4.5) and Q33 > 0. Then, the control
function u* € Ur given in Lemma 4.1 also minimiges —9e~4%/ and [*2_—6e~%%/d-.

Proof: Since Q33 > 0, f is a strictly convex function with respect to u and there exists an unique control

. function »* which minimizes f. If u # u*, f(u*,2,%) < f(u,2,%). For 8 # 0, then

—Ge—$/(w"52) L _ go—$S(u,2.2) (4.11)

for Vu € Ur, z and Z. From Theorem C in page 96 of {7] and equation (4.11), we know

oo 00
/ _.oe";f(u' "")dz < / _oc-—gf(u.z,z)dz
—oo

—o00
If the equity exists, then
o0
/ —gle~ ) _ o~ 850752 d; = 0
-0
By using Theorem B on page 104 of [7]

_oe‘;f(u.n'v’) - _06_;!‘("'31’)

The above equation contradicts equation (4.11). Therefore, only the inequality exists
o0 (< ]
/ —Ge~ 4" 22 gz < / —e~§/(wr2) g,
—co oo

forall u€ Up,z,and 7. O
Remark: Theorem 4.1 gives the sufficient condition for the optimality of the team problem where 8 # 0.
This extends the result in [13] which deals with the convex exponential function (§ < 0) to a nonconvex but
unimodal function (6 > 0) as given in Theorem 4.1.

5. EFFECTS OF INFORMATION PATTERN ON DYNAMIC PROGRAMMING

RECURSION AND COST FUNCTION CRITERION
The main purposes of this section is to show that the recursion for X, (4.1) is independent of the
information pattern and that only the coefficient of the exponential |R| in (4.6) delineates the differences in
the value of the cost.
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From Theorem 3.5 and Theorem 4.1, the optimal control for the classical information and one-step delayed
information-sharing patterns is an affine function. The optimal control for the one-step delayed information
Pattern {21] can also be expressed as an affine function u* = Cz + Dz, D = [0]. From the above discussion,
the optimal control for the three different information patterns can be written as u* = Ci + Dz, where C
and D are different for different information patterns.

As will be seen, the variable z in Lemma 5.1 plays a role equivalent to v in Lemma 2.1. However, because
u* = C% + Dz is explicitly dependent on z, some modifications need to be done on Lemma 2.1 in which u, v
are independent. Lemma 2.1 is a special case, i.e. D = {0], of Lemma 5.1. Lemma 5.1 is needed for the
Dynamic programming decomposition in Section 4 and gives the coefficient of the exponential |R|.

Lemma 5.1: Let the function f defined in (4.5) be a strictly convex function with respect to u, i.e.
Qas > 0. Let u* be the value which minimizes function f and [ ~fe—$/(22)d; and u* is an affine
function of z, i.e. u* = CZ + Dz. 1f 8 > 0, assume R > 0; if @ < 0, assume R < 0; and dim(z) = r where R

is given in (4.6). Then,

o0
min/ —ge~ H/ (2B g, = _g2m)bT|gR| e HINE) o 8wt ) (5.1)

¥ Jeoo
where z* minimizes f wheu ¢ > 0 and z* maximizes f when 8 < 0.

Proof Let the function f be defined as in (4.5) and u® is the optimal u which minimizes f and
ff: —e~$f(w22)g;  The discussion at the beginning of section 5 indicates that the optimal control func-
tions ‘or the three different information patterns can be expressed as an affine function v* = Cz + D=.
Notice that C and D are different for different information. Let R and & be defined in (4.6) and (4.7) and

substitute »* = CZ% + Dz into f of (4.5), then

fu*,2,2) = 2" r2 + 227672 + 2T (CT Q33C + Q13C + (Q13C)T + Qui)z
= (24 R '8z)TR(z + R'82) + 2T(Qss — §TR'6)z

where Qzz = CTQ23C + Q13C + (Q13C)T + Q1. Also define z = z + R~z then

o0 00 - -
/ —ge~ 32y = / e $1TREGzo— 427 (Que—8T ROz (5.2)
~00 —00
= ()5 |9R|Ye~ §5TQu-FTRTD2 _ _ gomyi|gR|-de~§ ¥ S (5.3)

In order to obtain (5.3) from (5.2) we need to assume R > 0 when § > 0 and R < 0 when 8 < 0. If the
assumption is not satisfied, the integration of (5.2) will be infinite (@ < 0) or negative infinite (8 > 0). From
Theorem 4.1 and (5.3),

oo oo )
min / ~e~$/(0)d; = / PIR JIOAE) RIS o 4
oo -
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5.1 The recursion of I(Y;) and its independence of the information pattern

In this section we give a theorem which shows that the argument X, is the same for the classical informa-
ti~n, one-step delayed informai..n and one-step delayed information-sharing patterns (OSDISP). This will
simplify the derivation about the control gains for OSDISP, i.e. the backward iterative algorithm given in
[10] is no longer needed.

Theorem 5.1: Let S¢ be positive definite in U}, Xn, ZN when 8 > 0 and S° be positive definite in
UN-! and negative definite in Xy, ZN when 8 < 0. Then, the value of Z,(Y:) in (4.1) is the same for the
three different information patterns: the classical information, one-step delayed information, and one-step
delayed information-sharing patte.ns.

Proof In Section 4, the recursion from the Dynamic Programming decomposition produces (4.1) and
(4.2) where &,(Y,) is given in (3.5). The order of the extremization in (3.5) is irrelevant (Theorem 3.1). By
using Theorem 3.1, and the operations and definitions used in Section 3, an expression for Z, is obtained for

the classical information pattern as
Z(Y,) = ext o (Y:) = Jr:l,ip, ?‘t}gx'} S¢(XN,YN)

= extext[ext $;(X,,Y:)+ min ext ext So(X¥,ZN, UN?
Zs e [Xc—x 1( t t) U‘N—l ‘Iil ﬁ‘ 2( t t+1 t )]

extext|P, + Fe] = extext[P, + 8" 'm, + F}
2 X Ze X

= ezctezxt[e'l(:c; bt it)TV‘_l(It - fg) + L;()’z) + o_l(Zg - HgIg)Tet—l(Zg - ngg) + Iz‘ngzgl (54)

where S, Sy, F, P, are defined in (3.6)-(3.10). If (V,)~! + I, + HT (66,) ' H, < 0 when 8 < 0 and clearly
(6Vi)~! + I, + HT(#0,;) "' H, is always positive definite when 6 > 0, then the stationary condition of z,
which optimizes (5.4) is (3.24). Substitute z} into (5.4)

ext{z] 00, + H((0V)™" + )™ =[] —22{(8V) 7 [(OVa) ™" + T + HJ (60:) ' Hy) ' HI (600) ' 2

+ 276V, + (I, + HT(00,) ' He) 7Y 2, + Le(Y2)} (5.5)

Assume 00, + H,((6V,)"! + I1,)"'H < 0 when ¢ < 0 and clearly 80, + H,((8V:)~! + I;)"'HT is always
positive definite when § > 0. Then, from the first-order stationary condition of 2, for optimizing (5.5), we

obtain
Z: = Ht(l +0Vgng)_li( (5.6)
If 27 is substituted into (5.5), then we obtain (See Appendix D for details of derivation)

T = 2T I [OViIL, + I} 2, + L (V) (5.7
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+or the one-step delayed information pattern, Z is not available at time t. From the assumption about
S¢, the order of the optimizaton is irrelevant w.r.t. UM !, ZN, Xn.

. &\ -1
J:gplgf}%f(xu,lﬁv)—e‘x‘t[ﬂ+e:t0 m + F)

= e;tt[z,rl'l,z. +6 Nz, - 5:)7.%-‘(31 - %) + L(Y:)] (58)

Extremizing with respect to z; will make m, = 0. If 1, + (8V;)~! < 0 when 6 < 0 where clearly, IT, + (6V;) !
is always positive definite when 8 > 0, the optimal z; will be as follows.

z: = (I +0‘,¢H¢)_lfg (59)

By substituting z{ in (5.9) into (5.8), (5.7) is obtained. Therefore, the classical information pattern and the
one-step delayed information pattern have the same X,. In order to obtain z; in (3.24) and (5.9), and z;
in(5.6), we assume (6V:)~! + I, + HT (60,)"'H, < 0, Il + (6V.)~! <0, 00, + He((6V:)"! +11,)"'HT <0
when @ < 0. The assumption that S°¢ is positive definite in U,N ~1 and negative definite in X N, ZN when
@ < 0 will guarantee the three inequalities exist. This assumption on S¢ guarantees that J,(Y;) in (4.2) is
finite. If any one of the three inequalities is not satisfied, then J,(Y;) will be infinite.

From (2.9), Us C Ur C Uc. If g is a strictly convex function with respect to u, then

min ¢ > min g > min
'&EUsg - uEU-rg - uellcg

If 05 g =vetc g, then «eUs g =vevy g =wevc g. We Write in a more explicit form at time stage N — 1

IN-1= ext min Zy = min ext extS®
IN-1 YN uv ZN_ | Xwn

Because Us c Ur Cc U¢

min  ext extS°> min ext extS°> min ext extS°
un-1€Us Z§_| XN un_1EUT ZN_| XN un—1€Uc Zj_, Xn

%; has shown to be the same for the classical and one-step delayed information patterns, therefore

min ext extS°= min ext extS¢

un-1€Us ZN_| XN un-—1€Uc ZN_, Xn
From the above two equations
min ext extS°= min ext extS°= min ext extS¢
un-1€Us zﬁ_, Xn un_1€Ur Zﬁ_l XN uny_1€Uc z;,"__, XN

At t = N —1 the classical information, one-step delayed information and one-step delayed information-sharing

patterns have the same Ty,

En-1(Yn-1) = 25 _On-1[0VN-1On-1 + 1) 'Zn_1 + Lv-1(Yn-1)
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By induction, using the recursion for I,, the value of ¥, for the decentralized case with the one-step
delayed information-sharing pattern is giving by (5.7). D
Remark: From Theorem 5.1 and (4.3) , the value of fi(u},z;,Z) are the same for the three information
patterns. Therefore, from (4.10) and (5.7), Z7 L [0ViI1, + 1)}z, = z](Qu1,¢ + Q13,:Ct + (@13,.Ce)T +
CTQss,Ce — 6] Ry '8,)z.
Remark: R defined in (4.6) is different for different information patterns because D is different for different
information patterns. In Theorem 5.1 we showed that the value of I, is the same for the three information
patterns. Therefore, only |R| in (5.1) makes the cost function different for different information patterns.
5.2 Comparison of two solutions using the classical information pattern

In Speyer, Deyst, and Jacobson [18] the optimal controller for the classical information pattern is derived
as a function of the entire smoothed history of the state vector from initial to the current time. This controller
appears to be different from that given in Theorem 3.5. Two reasons for the difference are : 1) as shown
below the probability density functions are the same, they are functionally expressed differently, and 2) the
order of the extremization (or integration) is different. The probability density function given in Lemma 2.2

is

F(Xn, ZNIUN 1) = I [ (2ilzi) f (zilzh—1, ue-1)) f (20l0) £ (o)

N-1 N
o exp{)_ ne+ D" mu + (o — 20)T Vg (z0 — Z0)}
k=0 k=0

The probability density function which is used in [18] is
S(XN, ZN|Un-1) = F(XNZN, Un- )T f(20011U5) £ (20)
From Bayes theory, the above two equations are equivalent.
SXNIZN, Un )T f (2 |Ui) f(20) = TS [ (2rlze) f(zklzk-1, un-1))f (20]20) f (o)

Therefore, the exponent in [18] is equivalent to S¢ defined in (2.13). From Lemma 2.1 the integration
operation is equivalent to the extremization operation and from Theorem 3.1 the order of the extremization
is irrelevant in deriving the optimal control function. Therefore, below we show that the value of the control
given by the controller in Theorem 3.5 and {18] are equivalent and the values of the performance index are
equal.

The optimal control function is given in Theorem 3.5. By substituting Z; (3.19) and u}_,,i € {1,---,¢t},

into uj, we will obtain

t
ul = uf(Ze,%0) = »_ iz + o (5.10)
i=0
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where 0); and I" depend on D;,i € {0,---,t}. From Theorem 4.1 vu; is unique, i.e. D; in (4.8) is unique.
Therefore, 2; and I' are unique, and in a similar way the controller u; in [18] can be reduced to (5.10). Thus,
substituting v ¢ € {0,---,t} into [ Jer1(Yes1)dzes1, where Joy3(Yeq1) is in (2.18), and integrating w.r.t.
Z4+1 will produce the same value of the performance index.

6. DERIVATION OF THE OPTIMAL DECENTRALIZED CONTROL LAW

A recursion based on (5.7) is developed in this section to determine the decentralized control function

with one-step delayed information-sharing pattern. From (4.1) and (5.7), then

T, =ext min (27, ;0e41Z001 + Ler1(Yer1)) (6.1)
2 u€Uy

where fI..H = [;41{0Vis1lli41 + 1]}, and Ley1(Ye41) and %44 are given by the forward recursion equations
(3.18) and (3.19), respectively. Substitute L¢+1(Yi+1) and Z.4; into (6.1), and after considerable simplifica-
tions I, will be (See [9] for the simplification)

I = ext min {ZT[(OVe) ™! + (6Ve) M (A ATTIet ) AcAe — A)(OVE) Y2, + 22T (6Ve) " (A ATH 41 AcA,
e ug T
~ A)HT(06:) 2 + 227 (6Ve) 'A AT T1e11 Boug + 227 (00,) ' H A AT 11,41 Beu,
+ 27 [(66¢)7" + (60:) ' Hy(AcATTTe 41 AeAy — AHT (80,) )2, + ul (R, + BT 1,41 BJu, + Lo(Y2)}

ze u€Ur
where

fi= i?Q]Lgig + 2:2'{6212,;2‘ + 25?Q13,tut + 2¢T Q22,02 + 2z] Qa23,eu; + uzTQaa.zu:
Quie = (6V2) ™" + (0V2) T [AAT Ty 1 AcAe — AfJ(6Ve) ™
Q2 = (0Ve) YA AT M1 AdAr — AJHT(06:)™),  Quae = (0V.)'AATTI 1B,
Qa2 = (00,)7! + (60,) ' H |A ATTI 1 A A — AJHT (60,)7! (6.3)
Q23 = (60,) 'H A AT1N, 11 By, Qa3 = Re+ BT 11,4, B,

and fI,.H and A, are defined as,
Mooy = De1 [0Ves tHerr + 17, A= [(8Ve) ' + Qe + Hg’r(aet)—lHt]—l (6.4)

Notice the value of fIH,l is invariant for the three information patterns.
6.1 The decentralized controller
Notice that since L,(Y:) in (6.2) is not a function of z, and u,, and it would only act as an added constant

to the performance index in Lemma 4.2. Applying Lemma 4.2 to (6.2) yields the optimal decision gain




equations at time stage t. In particular, the optimal decentralized controller at stage time t equals,

y=| ---... + z (6.5)

and the optimal decision gains D} and C; are determined from the following coupled matrix equations,

Di = —[R{ + B{Tl1,41 B - (8))T i i) BT Ms 1 A (H})T (860) ! — ()T o) (6.6)

M
Ci = —(R{ + B{Tl,1y B - (B))Taif) ' [BIT e AM(OV) ' + Y Q%.CI - (B)Tai6l] (6.7)
J=1J#i

where RY is the diagonal matrix defined in (2.8), B; is given in (2.3), B:-and af are defined in section 4
using (6.3), and i,j € {1,---, M}.

Using the uniqueness of the optimal controller for the one-step delayed information pattern, a simpler
form of C; for the one-step delayed information-sharing pattern is given in the following lemma.

Lemma 6.1: A simpler form of the coefficient matrix C; for the one-step delayed information-sharing

pattern is
C.= (k. — D.H,)(I + 6V, 11,)~! (6.8)

where D, is given in (6.6). Furthermore, z{ is the same for the three information patterns : the classical,
one-step delayed, and one-step delayed information-sharing patterns.

Proof: The notation (.) is used to distinguish the coefficients C,, D, and u}, z} for different information
patterns. Therefore, (1), (2), and (3) denote the one-step delayed, the one-step delayed information-sharing,
and an alternative form of the one-step delayed information patterns, respectively. The optimal u, and z,

for the one-step delayed information pattern [21] are

u; (1) = C(1)z + Di(1)2, = k(I + 6V, I1;) "'z,

z;(1) = H,(1+0VI1,) 'z, (6.9)
where D¢(1) is a zero matrix and
Ci(1) = k(1 + gVeI1,)~? (6.10)
For the one-step delayed information-sharing pattern

u: (2) = C¢(2):E‘ <+ D¢(2)z. = (01(2) - D,(2)R:l6¢)i:¢ <+ D;(2)(Z( <+ R,‘l&f;) (6.11)
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2;(2) = —-R; 6.z, . (6.12)

where C(2), D:(2) are given in (6.5)-(6.7), and R,,§; are given in (4.6)(4.7). The equation (6.11) will be
needed to derive a simpler form of C,(2). From Theorem 5.1, the exponent recursion X,(Y;) is the same
for the three information patterns: the one-step delayed, classical, and one-step delayed information-sharing

patterns. From (5.7)
()= f'zr“t[ovtnt + Il_liz + L (Y1) = fe(uy, 27, Ze) + Le(Y2)

where f;(u, z¢) is defined in (6.2) and L,(Y;) is & constant term when Y, is given. Therefore, f(u;, 2, %)

is the same for the three different information patterns.
Ji(uz (1), 27 (1), Z,) = fe(ug(2), z;(2),%:) = 5?“:[‘9"2“: + I]—lft (6.13)

When we consider fi(u},2;), z; in (6.12) will eliminate the second term in (6.11). Through observing
{(6.11) and (6.12), we can define 27 (3), u; (3) as in (6.15)-(6.17) and obtain the following relation

Ji(ug(2),2¢(2), Z¢) = fe(u;(3), 2 (3), Z0) (6.14)
u: (3) = Cg(3)i'g + D¢(3)Zg = (C;(2) - Dg(2)Rt—15g)fg (615)
z;(3) = —R; 6%, - (6.16)
Dy(3)=[0), Ci(3)=Cu(2) — D(2)R; 6 (6.17)
From (6.13)(6.14)
Fe(ui (1), 27 (1), 20) = fi(ui(3), 27 (3), ) = z] I [oViIl, + 1) 7'z, (6.18)

From (6.18), u;(3), z; (3) is also the optimal value for the one-step delayed information pattern. The corollary
4.5 in [1) and Theorem 1.11 in [20] give sufficient conditions of the unique optimal value for a strictly convex-
concave function and a strictly convex function, respectively. Since S¢ is strictly convex with respect to
Xn,UN"1,Z] when 6 > 0 and S¢ is strictly concave with respect to X, ZN and strictly convex w.r.t.
U,N =1 when @ < 0, then the sufficient conditions for the unique optimal value are satisfied. Therefore,
the optimal value of u,, z; for the one-step delayed information pattern is unique, i.e. u{(3) = u{(1) and
z;(3) = z{(1). From (6.9) and (6.16)

- Rt_l&,fg = Hg(l + 9VJI¢)'15:¢ (619)
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From (6.10)(6.17) and u;(3) = u; (1)
Ci(3) = Ci(1) = k(I + 6V,11,)~" = C(2) — D(2)R; 6,
From the above two equations, the following simplified equation for C; follows as
Ci(2) = D:(2)R; '8¢ + Ci(3) = Dy(2)R:16: + ke (I + 0VIL) ™) = (ke — D (2)Ho)(I + 6ViI1,) ™! (6.20)

From (6.9), (6.19) and (5.6), z; is the same for the three different information patterns : the one-step delayed,
one-step delayed information-sharing and classical information patterns.O

By using (6.8), u; with OSDISP is written as
u: = kg(I +0VJI‘)"1':¢ + Dg(Zt - Hg(I + 0V¢l’lg)"i¢) (621)

. The above form also exists for the classical and one-step delayed information patterns, where D, = 0 for
the one-step delayed information pattern and D, = k(I + 6V, + V. HT©; *H;)"'V,HT O} for the classical
information pattern. Since 2; = H,(I + V,I1;)~'z, will eliminate the second term of (6.21), only the first
term influences the value of f,(u*, z7,%:). Therefore, the value of f, and X(Y:) are the same for the three
information patterns. O

Remark: Note that if C; is chosen as in (6.8) with arbitrary Dy, then fi(u,z{,Z,) and £,(Y;) still retain

the same values.

The necessary and sufficient conditions for the decentralized controller with the one-step delayed information-
sharing pattern are listed in following theorem.
Theorem 6.1: Consider the dynamic LEGT one-step delayed information-sharing problem specified by

(2.1)-(2.8). There is an unique finite optimal team control law at time t given as
7:=D:Z:+C:f¢ 1€ {11'”7M} (622)

which yields finite cost, if and only if the following conditions are satisfied,

1. V;14+60Q,+ HTO;'H, >0forall s<t+1 when § <0

2. 6, +W,'>0foral N>s>t+1 when6 <0.

3. Vi1 +6M; >0when <0

4a. R, = DT Q33D + Q23,: D¢ + (Q23,:D:)T + Q2. < 0 when 6 < 0

4b. R, > 0and Qi , - (B)Taif; > 0when >0

where the estimate of the state based upon the one-step delayed information pattern z, is given by equation
(3.19), the optimal gain matrices D} and C}, for i € {1,---, M} are determined from the coupled matrix
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equations (6.6) and (6.7), or the simplified form of C; in (6.20). In addition, the matrix 11, is determined by
(6.4) .

Proof In order to obtain the decentralized controller at time t, Pii1, Lisy, Fiyy in Theorem 3.3 and 3.4,
z$,, in (3.24) and (5.9), z;,, in (5.6), D} in (6.6) and C} in (6.7) need exist. Condition 1 guarantees the
existence of P4y, Ley, (see Appendix A). Condition 2 is from (3.11) and guarantees the existence of Fe,;.
Condition 3 guarantees that z;, , in (3.24) and (5.9), and z;,, in (5.6) exist (see Section 5.1). From Lemma
4.1, condition 4 and Q33 > 0 will guarantee the existence of D} and C}. Condition 2 implies IT,, > 0. No-
tice that the assumption R, > 0, condition 3 and I1;4; > 0 imply Q33 > 0. We prove necessity as following.
If any one of conditions 1-4 does not exist, then from (2.10) and (5.2) the expected value of the cost will

become infinite, regardless of the choice of the control function. This implies the necessity of conditions 1-4. O

Observe that the conditions 1-4 in the above Theorem are not contradictory, and since we are working
with a discrete time system there is only a finite number of the conditions. Hence, there exists an ¢ > 0,
such that the conditions 1-4 are satisfied for all {§{ < ¢. Therefore, D} and C} can be determined through
Theorem 6.1.

7. CONCLUSION

The results presented here extend known optimal solutions of centralized and decentralized control prob-
lems with an exponential cost criterion, and in addition set forth an inncvative methodology for the solution
of optimal team problems with gaussian noise processes and exponential onst function. In Sections 2 and 3
we discussed the optimal solution of the centralized LEG problem under the hypothesis that the controller
is constructed from the past information and the current observation of state. This extends the results of
Whittle [21] who only considered a control law based upon the past information. It is shown that many of
the prevalent concepts associated with the LQG problem, such as the optimality of linear Markov controllers,
Riccati equations and the separation principle, hold for this class of problems in a somewhat modified form.
Lemmas 4.1, 4.2 and Theorem 4.1 give sufficient conditions for global optimality of the LEG static team
problem for 8 # 0. For 8 > 0, the expenential of the quadratic function is nonconvex but unimodal. This
extends the result of Krainak et. al. [{11] who only consider the convex exponential function (4 < 0). Using
the optimal control for the classical information and the one-step delayed information patterns, we prove in
Theorem 5.1 that the value of the argument of the exponential is the same for different information pat-
terns. Therefore, only |R] in the coefficient of the exponential cost function changes for different information.
Through Theorem 5.1, an innovative method of deriving the optimal control gains for the team problem is
given. The backward iterative process in [10] is no longer needed. In Section 6 we examined the complete

dynamic LEGT problem with the one-step delayed information-sharing pattern for  # 0, and derived a set
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of coupled algebraic equations satisfied by the optimal decision gains at each time stage. This extends the
results of Krainak et. al. [12] who examined cost criterion in which only the terminal state penalties are
present. The results in Section 6 is also applied to the nonconvex exponential function with the quadratic
function (@ > 0), where in [12] only convex exponential function (8 < 0) is considered.

Given the continuous results of [4] and [16] the centralized and decentralized synthesis results here, given
certain 13strictions, generalized current H, results to time-varying and time-invariant discrete-time systems
over finite ~nd infinite time horizons. Furthermore, in the derivations of the LEG controller a quadratic
cost is constructed which is minimized with respect to the control variables, but maximized with respect to

the input uncertainties when 8 < 0. This indicate a r-iationship between the LEG problem and game theory.

APPENDICES

A

Proof of Theorem 3.4.
Proof of (3.17) and (3.19) follows Whittle’s paper. The derivation of L,(Y;) (3.18) can be found in [9].
However, a simpler derivation of L.(Y;) will be given in this section. The forward recursion (3.14) is as

follows.
Piii(ze41,Yeq1) = e:gi‘[ﬁt(xz, Y+ I’{Qﬂt + u;rRtu: + 07 (ne(Teg1, Tey t) + mo(2e, z))] (A1)

If the relation Py (z,,Y:) = (z¢ — )T (8V.)~Yz: — Z.) + L(Y:) exists at time ¢, then substitute P(z.,Y:)
into (A.1). We see the quadratic form holds also for P y(ze41,Ye+1). The value Zoy, is the value
of the state which extremizes P, (Z¢4+1,Ye+1). We know by assumption at ¢ = 0, the quadratic form
Po(z0, Yo) = (20 — Z0)T(8V0) ™' (20 — Zo) exists.

Writing down the stationary condition of (A.1) about z,—, and z,, where £,;, and z; are the values

extremizing Py 1(Z¢41, Yes1), results in

Wt_l(zt-H - Az — By ) =0 (A2)

— ATW, Y (z41 = Azt = Beue) + 0Quze + Vi Nz ~ %) — HT©; (20 — Hiz) =0 (A.3)
Substitute (A.2) into (A.3), the first term in (A.3) will be zero. So from (A.3), we obtain

=V 4+ 6Q + HIO7 H) WV, 2, + (V' +6Q. + HTO;'H,)) 'HT6[ 12, (A4)
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From'(A.2)(A.4)

Ze41 = Az + By

= AV 4 60Qu+ HTO7 H) 'V g + AV  +0Q.+ HTO ' H,) ' HT©[ ' 2, + Byu,
Rewrite the first term

AV 4 6Q. + H;"e:lﬂt)'lvz—lfz
= AV +6Q + HTO7 Hy) (V! + 6Q, + HT©; ' H,) - (0Q, + HY ©; 'Hy))z,
= AZ, — A0Q. + HTO 'H, + V. 1) 1 (6Q, + HTO ' H,)z,

Therefore, (3.19) is obtained. The following matrix is associated with the quadratic in z¢41, 2z, of (A.1)

B 7 _ WI‘.—] -Wt_lA!
T ~ATW ! V7'40Q.+HTO'H, + ATW, 1A,
IfV, ' 4+6Q.+ HTO; ' H + ATW; A, > 0 (6 > 0 or 8 < 0), by extremizing (4.1) w.r.t. z,, we can define
Vil =8~96"19T. Then
Vier = (B=467") =1+ 8796 - "B I B (A5)

The derivation of L¢+;(Yi41) in (3.18) will be given as follows. From the relation Pryj(2e41,Yes1) =
(Tex1 = Z041)T(0Ver 1) Ter1 — Ze41) + Les1(Yer 1), we know
Leyy(Yer) = ot Pir(ze41, Yesn)
= f.’.it: e}.‘tlpt(-‘ﬁt, Y)+ ITQ:zz + u;TR,u, + o_l(nt(zt+lszhut) +my(2,, z)))

Extremizing with respect to z., will eliminate the term n¢(z¢41, T¢, ue),

Lep1(Yeqr) = e}‘t[(a:g = ft)T(avt)_l(zt -it)T + L(Y:) + IzTQt-"-'c + uzTRmz +(z¢ — Htx:)T(wz)—l(zt - tht)T]
= ext{z{ ((6V2) 7' + H (68.) ' He + QuJz. - 227 (V1) "2 + H{ (66:) 2]
+ 2] (0V:)7'2, + uf Reue + 2] (00,) "'z + Li(Y2) (A6)

IV, '+ H®O 'H,+6Q, > 0 for § < 0or @ >0, then the optimal value of z, for (A.6) is
.‘t: = IV‘_l + HTG;"H. +9Q¢]’1[V‘—lf¢ + H‘Te;lzd (A7)
Substitute z; back into (A.6), we obtain

Les1(Yeur) = 27 (0V) £ + u] Rewg + 2 (08,) 20 + Li(Y2)
—07NV, 2+ HT O] )T (V' + HIO7'HT + 6Q) ™ (V"2 + HT 6] 'z) (A8)
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In order to obtain Vi41(A.5) and z{(A.7), it is assumed that V,"! + 0Q, + HTO 'H, + ATW, A, > 0
and V' +0Q. + HT ©;'H, > 0 when 6 < 0 or § > 0. The following relation will be proved later in Lemma
3.1 that V,"! + HTO;'H, + 6Q. > 0 if and only if V"' + HTO'H, +6Q,+ ATW 1A, >0, and in turn
the inequality V; > O exist. Notice when @ > 0, the above two inequalities always exist.

B

Proof of Lemma 3.1

From the matrix inverse identity
Q—: _Q—IA[R+ ATQ—IA]—IATQ—I =(Q+ AR-IAT)-I (B.1)
and (3.17)
Virr = We+ AJ(Vi +0Qc + ATW, 'A, + HTO, H,) — ATW, 1A, AT
=W W = W TA(ATW, A — (V7 4+ 0Q+ ATW, A+ HT O HY)) T ATW, YW,
=W [W, — AV, +6Q. + ATW, 1A, + HTO'H,) AT~ 'W,
=W - WAV +0Q + ATWT A+ HT O T H,) T AT W
W -V =W AWV 4 0Q + ATW A+ HTS TH) AT W (B.2)
If (3.21) exists, then
Wl-V3i20 =2V 2W >0 =V >0 (B.3)
From (3.17)
AV, 4+6Q+ HTO7 H) ' AT = Viyy =W 20 (B.4)
Because V,”! + 0Q, + HT©; ' H, is assumed nons'ngular, therefore (3.20) is obtained.
V. '+0Q.+ HTO'H, > 0

If (3.20) exists, reverse the above derivation (B.4)-(B.2), and the inequality (3.21) must be true. Or by
adding ATW, ' A, > 0 to (3.20), the inequality (3.21) is obtained. From (3.17) and (3.20), (B.3) is obtained
and V; is positive definite.
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First, a three-member team problem is solved. Then, it is only an easy exercise to solve the M-member team
problem. To solve the three-member team problem, we formulate as in [19] or chapter 3 of [9] a person-by-
person optimization problem. For the i-th member i € {1,2,3}, each of the other two control functions is at
its one-person optimum problem. Substitute v’ = DYz7 + CIz, j # i and i, j € {1, 2, 3} into the function f
of (4.5)

mmext[:rTQuJ:+21:TQ‘ z' + E 227QI, 27 + 22T Qiqu + 227 Z Qls(D 2 + Ciz))
J=1j#i J=13#i

3 3 3
+HTQ%h + Y ANTQRT+ Y (ML D0 Qe lipian +()TQEBY

J=1j#i k=1k#i J=1g#i

3 3
+2(2)7 Y QAP+ Ca)+ Z Cadl Z QD2 + CIz)) + ()T Q%W

J=1J#i k=1,k#i J=1,j5#4

+2(u5)T Z QH(D’ + CI3)] + Z (D*2* + C*2)7| Z QD727 + C72)] iz
J=1,5#i k=1,k#1 I=15#d

The stationary conditions with respect to u* and () yield

3
B+ Q)T+ Y. QECIz+ Q)T + 8T =0 (C1)
I=19%#4¢
[(e))7'2() + 62 + +'2* + B4’} = 0 (C2)

By solving (i) explicitly from (C.2) and substituting into (C.1), (4.8) and (4.9) are obtained where M =3

and
iyt = | DTORBD+ QBD" + (QBDYT +QB  DTQRD*+ GBD +(QBDY + G |
| DTQED?+ QRO+ QRDT +QB DYTOED®+ QBD® + (QBDY)T +QF
(02)-1 DITQ11D1+Q D1+(Q“D1)T+\, 3 DITQ Da+Q1303+(Q3 D‘)T+Q3 l
| DTQUD' + QD' + (QBD*)T + Q3 DTQRD® + QR +(QRDY)T +QF |
(03)_1 DITQ D1+Q Dl-i—(Q D’)T-{-Q“ DlTQl2D2+Q D2+(Q DI)T-{-Q ] (C3)
i DanéDl +Q 1p1 +(Q D2)T+Q21 D2TQ22DQ+Q D2+(Q22D2)T +Q22 ] )

g |eomeR] L [e#+DTeR] [ oB+D70R )
Q3 + DTQY %+ DTQR | @B+ DTo3 '
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7,=[ 33+(Q;§D’>T] 7,=[ +(Q‘D‘)"} 7:.:[ Q%§+(Q’z§D’)T] s

Q% +(QBD*)T QFE + (QRD%T Q3 + QDY)
oo [ (Q%,+ QLDY)T + QBC? + QBCS + DT(QRC? + QECY) |
| (Q1: + Q1 D)7 + QBC? + QFEC® + D3T(QFHC? + QHC®) |
g | (@h+Q1sDIT +QBC + QRC® + DT(QUC! + QBC?) | <)
| Q%+ QLD + QHC + QBC° + DT(QUC! + QEC?) | '
o _ | @h+QiDIT +QUC! + QBC? + DIT(@QUC! + QBC?) |
| Q%+ Q%DY)T + QHC! + QEBC? + DT(QUC! + QHC?) |

Next we will discuss second-order sufficiency. By observing (C.1) and (C.2), if o' > 0(6 > 0), of < 0(0 <
0) and Q%; > 0, then the control gain D* of (4.8) and C* of (4.9) for person-by-person optimization can be
solved. The assumption R > 0(¢ > 0) and R < 0(@ < 0) implies a* > 0(@ > 0), o < 0(¢ < 0) , where o is
a minor of R.

The optimal cost f(u*,2*,%) in (4.10) is to be determined. We substitute the optimal team control

function 4»* = CZ + Dz into the function f in(4.5), where C and D are given in (4.8) and (4.9)
S, 2%, %)= e)zct[:iTQl 12+ 227 Qo2 + 28T Quau + 27 Qa2 + 22T Qpu + uTQ33u]

= ext[z" (DT Q3D + Q23D + (QusD)” + Q22)z + 227 (CTQxD + Q13D + (Qu0)T + Quz)2

+2T(CTQwC + Q13C + (Q13C)T + Qu1)3) (C.7)

Define R and & as in (4.6) and (4.7) respectively. Then, the stationary condition yields Rz + 5z = 0.

Note that “ext” means “min” for § > 0 and “max” for # < 0. Assume R > O when § > 0or R < 0
when @ < 0. Then, the equation z = — R~18Z optimizes the function in (C.7) and {4.10) is obtained. If the
assumption R > 0(@ > 0) or R < 0(0 < 0) is not satisfied, then the expected value of the cost function will
be infinite or negative infinite. (See equations (5.2) to (5.3))

D

A more detailed derivation about (5.5),(5.6) and (5.7) is given in this appendix. Let Y = [HT(66,)~'H, +
(6Vi)~! 4+ IM,]~? and substitute (3.24) into (5.4)

ext{~[(6V:) 'z, + HI (60,) 2|7 Y [(8V2) 'z + H[ (60:) ™ 2]

+27(600) 'z + 2T (8V2) " '2.)

= ext{zt [(66¢)~! - (66,) 'H,YHT (60,) ")z

—2:{(01/,)“YH;"(06‘)‘ z — Z7 (OV,) 'Y (6Ve) 12, 4 27 (6V,) 'z} (D.1)




By using (D.1) and the matrix inverse identity (B.1), (5.5) is obtained. The first-order stationary condition
of z; in (55) is

z; = [0, + H,((6V,)™' + 11,) "' HT)(66,) ' H,Y (8V;) 'z, (D.2)
and z; can be simplified as
2 = {Hy+ H(6Vi)~! + 11,) ' HT(66,) 'H,}Y (8V,) 'z,
= H[(6Vi) ' + L)Y Y (0V,) 2,
= H,(I + oV I1,) "'z,

The last equation is (5.6). Substitute 27 in (D.2) into (5.5)

— 2T{(6Ve) 'Y H{ (66,) T H8O. + H((6Ve) ' + I1) ' HT }{(60,) ' H Y (6Ve) 'z}

- 2] (6V)) Y (0Ve) 'z + 3] (BV) 1z, (D.3)
Let
Z = HT(60,)71{60, + H[(6V,)"! + I,)"'HT }(¢6,) ' H,
= HT(60,)"'H, + HF (66,)"'H,[(6V:) "' + I1,]"'HT(6©,)"'H,
= HT(60.) 'H, - HT (60,)"'*H,{HT(60,)'H, - Y~} 'HT (68,) ' H,
By using (B.1)

Z=|(H](68)7'H) - Y],
then (5.7) is obtained from (D.3).

~ 27 (0Va) H{Y[(HT (66,)"'H,)"' - Y] 'Y } (V) "'z,

~ 2T (8V,)7Y (8Ve) %, + ZT (0V)) 12,
= ~Z[ (V)Y - H[(68:,)  HJ 7 (Vi) "2 + 2] (6V2) 2,
= —z7(0Ve) "M (6Ve) ! + 1] (0Vi) 2T + 2T (8V2) 'z
=z7 [0V, + O ') 2, = 2T 1L [0VI0, + 1) '2,
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