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Robust and Adaptive Guidance and Control Laws for
Missile Systems

1 Objective of the Research Effort

The objective of this three year study is to develop robust and adaptive guidance and control

laws for homing missiles, mechanizable with near-future computer technology, which can

satisfy systcm objectives in the presence of large uncertainties and nonlincaritics. Over the

past years, considerable progress has been made in resolving some of the fundamental issues

in homing guidance. Of particular importance, new filter structures, which were tailored to

the passive homing engagement; and new target models and kinematic psuedo-measurements,

which modified the new filter algorithm and induced a new adaptive homing guidance law,

were developed. During the last three years in support of these important innovations, robust

filters and control schemes which further enhance system performance were developed based

upon a stochastic control problem known as the linear-exponential-Gaussian problem and a

related deterministic approach called the disturbance attenuation problem. Most important,

emerging from this work is a new structure for adaptive control and a unifying framework

for developing midcourse and terminal homing missile guidance schemes under uncertainty.
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2 Status of the Research Effort: Robust and Adaptive Guidance

and Control Laws for Missile Systems

An active research program in systems theory has been established at UCLA in the Mechan-

ical, Aerospace and Nuclear Engineering Department. One aspect of this research program

centers on the development of robust high performance guidance and control schemes for

such new concepts as bank-to-turn missile guidance systems. This activity considers new

theoretical innovations and tailors them to missile system applications. Under this grant, the

game theoretic approach to control and guidance syntheses, estimation with bearings-only

measurements, and adaptive control were investigated. The missile system is an important

conduit for motivating and using the results of this effort. Our approach is to develop re-

alistic guidance systems based upon models of special dynamic and measurement systems.

Previous results have been new state reconstruction algorithms based upon bearing-only

measurements [1,2] and new missile guidance rules [3]. The missile guidance system pre-

sented in [3] represents the integration of our efforts over the years in estimation, target

modeling and missile guidance laws. In this grant, robust filters and control schemes which

further enhances system performance were developed based upon a stochastic control prob-

lem known as the linear-exponential-Gaussian problem and a related determistic approach

called the disturbance attenuation problem. Emerging from this work is a new structure for

adaptive control and a unifying framework for developing missile guidance schemes during

midcourse and terminal homing under uncertainty.

2.1 Game Theoretic Synthesis

Since the game theoretic approach [4] is formulated in state space, it generalizes the cur-

rently popular H-infinity robustness techniques for time-invariant systems to finite-time and

time-varying systems with both partial and full information. This is done by first defin-

ing a disturbance attenuation function as the ratio of an L2 function of the outputs over

an L2 function of the disturbance inputs. A controller is to be determined which bounds
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the disturbance attenuation function in the presence of all input disturbances constrained

to be in L2. Furthermore, the game theoretic approach is related to the stochastic control

problem of minimizing the expected value of an exponential of a quadratic argument sub-

ject to a Gauss-Markov process [5]. An essential feature of the solution to this so-called

Linear-Exponential-Gaussian (LEG) problem is the realization that the expectation opera-

tor of an exponential form with respect to Gaussian random variables is equivalent to the

extremization of the augmented quadratic argument formed from the exponential cost and

the Gaussian probability density function. This leads to a game theoretic interpretation

of this stochastic control problem. An application of the game theoretic approach to the

problem of integration of the missile autopilot with the guidance system is given in (61.

2.2 Robust Game Theoretic Synthesis in the Presence of Uncer-

tain Initial States and System Parameters

A game theoretic approach to linear control synthesis [41 is developed where initial states and

parameter uncertainties are included as adversaries [7]. An implicit approach [8] closely re-

lated to p-synthesis, characterizes the parameter dependence in the system coefficient matri-

ces as linear. Although process and measurement uncertainties are included in the game cost

criterion by quadratic penalty functions, the initial states and parameters are constrained

to lie on or within given multi-dimensional ellipsoids. It is shown that the suboptimal H..

controller is not a saddle point strategy with this cost criterion even if the parameters are

known. To solve this new dynamic game problem, a general linear control structure is as-

sumed of given dimension for the output or partial information control proF-Uern so that the

control is a function of a set of constant control parameters. In this game the adversaries are

assumed to be knowledgeable about the value and the strategy of the control, although the

controller is only aware of the measurement history. It is shown that under this circumstance,

the dynamic game can be transformed into a parameter game problem between the control

parameter set and plant unknown parameters if there exists an admissible control parameter

set. If a saddle point strategy for the parameter game problem exists, then the saddle point
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inequalities for the dynamic game problem are satisfied for process and measurement distur-

bances as well as for all initial states and parameters within their respective ellipsoids. This

saddle point inequality guarantees a level of performance robustness as given by the value

of the cost at the saddle point. In relation with the dynamic game problem, a disturbance

attenuation problem is introduced where two types of disturbance attenuation parameters

are used; one is associated with process and measurement disturbances and the other is

associated with initial states. It is shown that these disturbance attenuation parameters are

closely related to H, norm and the cost criterion of the dynamic game.

2.3 A LEG Estimator

By probing further into the relationship between game theory and the stochastic LEG prob-

lem, very significant results have been obtained. By employing a worst-case performance

measure, a game theoretic approach is used to determine a discrete-time state estimator

[9,10]. The continuous estimator is reported in (11]. Although the order of minimization

and maximization do not effect the saddle point value for this class of games, the order is

critical in obtaining game theoretic strategies. Two interesting strategies result, an 12 esti-

mator which is the deterministic equivalent to the Kalman filter and the H, estimator which

satisfies a bound on a disturbance attenuation function. If a corresponding LEG problem is

constructed where the quadratic argument of Lhe exponential is the estimation error, then

these two estimators under somewhat different assumptions still result and give the same

saddle value of the augmented quadratic argument formed from the exponential. Note that

it is well known (Sherman's Theorem) that minimizing, with respect to a function of the

measurement history, the expectation of any symmetric, unimodal function of the estimation

error (such as the exponential) subject to a Gauss-Markov system results in a conditional

mean estimator, i.e., the Kalman filter. However, if the estimation error is replaced by the

sum of estimation errors where these errors are functions of the measurement history up

to the index of time in the sum, then Sherman's theorem does not hold, and the Kalman

estimator is not minimizing. However, the stochastic LEG problem does have a unique solu-
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tion which is the Ho, estimator. This new filter generalizes the Kalman filter. Its statistical

properties are now being investigated.

2.4 The Centralized and Decentralized LEG Problem

A third activity to be reported is that a uniform approach to the solution of the LEG prob-

lem constrained to the classical information pattern, one-step delayed information pattern,

and one-step delay information-sharing pattern has been obtained (121. The results vastly

simplify the results of [131. The one-step delayed information-sharing pattern allows a de-

centralized control structure where at each state of the dynamic programming algorithm a

stochastic static team problem is solved. Furthermore, both convex and unimodal exponen-

tial functions are included which is an important extension of the work in [114]. Application of

these results to sensor fusion in missile guidance systems should produce robust performance

in the presence of electronic counter measures.

2.5 A Game Theoretic Dual Control Problem

Beginning with a disturbance attenuation function, a game is formulated for a special class

of dual control problems. A scalar bilinear system is considered where the control coefficient

is unknown and only an uncertain measurement of the state variable is available. The

resulting controller, which is constrained to the measurement history, is a function of the

state and parameter estimates and their associated pseudo-error variance. This controller

depends upon the real roots of a fifth-order polynomial whose coefficients are also functions

of both the estimates and pseudo-error variance. When the paper [15] was written, it was

though that the controller had a dual control property because of the explicit appearance

of the pseudo-variances. However, this is not the case for this formulation. Nevertheless,

the resulting controller based only on the initial formulation as a disturbance attenuation

problem did lead, without any approximations, to an interesting and mechanizable controller.

This motivated new work in adaptive control discussed in the next subsection.
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2.6 A Disturbance Attenuation Approach to Adaptive Control

In Rhee and Speyer [4], the disturbance attenuation problem is shown to extend the results

of H,, analysis from time-invariant systems on infinite intervals to time-varying systems on

finite intervals. By using a disturbance attenuation approach, it is attempted to limit the

effect of any possible combination of disturbance and uncertainty to some small multiple

of the disturbance. To this end, a disturbance attenuation function is constructed. The

disturbance attenuation function is then converted to a performance index similar to those

in more common optimal control problems. The problem then becomes a zero-sum game,

in which the initial uncertainties and the system disturbances are considered as intelligent

adversaries attempting to maximize the performance index, with the control playing their

opponent, trying to minimize.

This approach has in the past resulted in very complex results when applied to other than

a few special cases [15]. Speyer, Fruchter, and Hahn [15] applied it to a scalar system, and

for a constant unknown control parameter, obtained a closed-form solution that hinged upon

the solution of a fifth-order polynomial. In [16], an alternate approach which generalizes the

results of Bernhard [17] appears to pioduce some simplification. By using the Principle of

Optimality, the problem is split into two parts, each to be solved separately, and rejoined

by an algebraic "connection" condition. The resulting problems are much simpler than

the original, although in general still quite complex. In many cases, however, they can be

reduced to a manageable level. In particular, for the case of constant parameters, with the

system uncertainty limited to unknown control parameters, a solution suitable for real-time

application is derived and the existance of a saddle point is shown.

The controller resulting from this approach is a function both of the state and parameter

estimates and the associated curvature matrices which act as pseudo-variances. Although

this approach represents a type of separation, no explicit assumption is made of certainty

equivalence, as found in the development of current adaptive control algorithms.

8



2.7 A System Characterization of Positive Real Conditions

Necessary and sufficient conditions for positive realness in terms of state space matrices are

presented in [18] under the assumption of complete controllability and complete observability

of square systems with ind. ,endent inputs. As an alternative to the positive real lemma

and to the s-domain inequalities, these conditions provide a recursive algorithm for testing

positive realness that result in a set of simple algebraic conditions. By relating the positive

real properly to an associated variational problem, the paper outlines a unified derivation of

necessary and sufficient conditions for optimality of both singular and nonsingular problems.

Based on this algorithm, a synthesis of a positive real system via output feedback is presented.

This work is motivated by the need to determine cost criteria which allow control design based

upon phase considerations rather than magnitude, the result of minimizing L2 induces norms.

Current work is in determining the characteristics of plants and compensators for which

closed-loop transition matrix between desired output and disturbance inputs are positive

real or dissipative.

2.8 References

1. Song, T.L., and Speyer, J.L., "A Stochastic Analysis of a Modified Gain Extended

Kalman Filter with Applications to Estimation with Bearings Only Measurements,"

IEEE Trans. on Automatic Control, AC-30(10), October, 1985.

2. M. Tahk and J.L. Speyer, "Target Tracking Problems Subject to Kinematic Con-

straints," IEEE Transactions on Automatic Control, Vol. AC-35, No. 3, March 1990.

3. J.L. Speyer, K.D. Kim, and M. Tahk, "A Passive Homing Missile Guidance Law Based

on New Target Maneuver Models," A1AA Journal on Guidance, Control and Uncertain

Initial States Dynamics, September-October, 1990.

4. I. Rhee and J.L. Speyer, "A Game Theoretic Approach to a Finite-Time Disturbance

Attenuation Problem." IEEE Transactions on Automatic Control, Vol. AC-36, No. 9,

September, 1991.

9



5. Speyer, J.L., Deyst, J.J., Jacobson, D.H., "Optimization of Stochastic Linear Sys-

tems with Additive Measurement and Process Noise Using Exponential Performance

Criteria," IEEE Trans. Automat, Contr., Vol. AC-19, pp. 358-366, August, 1974.

6. C.F. Lin, Q. Wang, J.L. Speyer, J.H. Evans, J.R. Cloutier, "Integrated Estimation,

Guidance, and Control System Design Using a Game Theoretic Approach," Proceed-

ings of the 1992 American Controls Conference.

7. S. Hong, and J.L. Speyer, "Robust Game Theoretic Synthesis in the Presence of Un-

certain Initial States and System Parameters," Proceeding of the 1992 Conference on

Decision and Control.

8. 1. Rhec and J.L. Speyer, -Application of a Garme Theoretic Controller to a Benchmark

Problem," ALAA .ournal of Guidance, Control and Dynamics.

9. J.L. Speyer, R.N. Banavar, and C.H. Fan, "Linear Estimation with an Exponential

Cost Criterion," 1992 IEEE Conference on Decision and Control.

10. R.N. Banavar and J.L. Speyer, "Risk-Sensitive Estimation and a Differential Came"'.

to be published in the IEEE Transaction on Automatic Contro:

11. R.N. Banavar and J.L. Speyer, "A Linear-Quadratic Game Approach to Estimation

and Smoothing," Proceedings of the 1991 American Controls Conference, June 1991.

12. C.H. Fan, J.L. Speyer, and C.R. Jaensch, "Centralized and Decentralized Stochastic

Control of Gauss-Markov Systems with an Exponential Cost Criterion," IEEE Trans-

actions on Automatic Control, November 1994.

13. C.R. Jaensch and J.L. Speyer, "Centralized and Decentralized Stochastic Control Prob-

lems with an Exponential Cost Criterion," Proceedings of the 1988 Conference on

Decision and Control.

14. J.C. Krainak, J.L. Speyer, and S.I. Marcus, "Static Team problems, Part 1: Sufficient

Conditions and the Exponential Cost Criterion," IEEE Transactions on Automatic

Control, August 1982.

10



15. J.L. Speyer, G. Fruchter, and Y.S. Hahn, "A Game Theoretic Approach to Dual Control

Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, May

20-22, 1992.

16. D.F. Chichka and J.L. Speyer, "A Disturbance Attenuation Approach to Adaptive

Control," submitted to the IEEE Transactions on Automatic Control.

17. T. Basar and P. Bernhard, Hoo,-Optimal Control and Related Minimax Design Prob-

lems, Birkh~iuser, Boston, 1991.

18. H. Weiss, Q. Wang, and J.L. Speyer, "System Characterization of Positive Real Con-

ditions," IEEE Transactions on Automatic Control, March 1994.

3 Publications

1. I. Rhee and J.L. Speyer, "A Game-Theoretic Approach to a Finite-Time Disturbance

Attenuation Problem", IEEE Transactions on Automatic Control, Vol. 36, No. 9,

September 1991.

2. I. Rhee and J.L. Speyer, "Application of a Game Theoretic Controller to a Benchmark

Problem", AIAA Guidance, Control, and Dynamics, Vol. 15, No. 5, September-

October 1992.

3. H. Weis3, Q. Wang, and J.L. Speyer, "System Characterization of Positive Real Con-

ditions", IEEE Transactions on Automatic Control, Vol. 39, No. 3, March 1994.

4. R.N. Banavar and J.L. Speyer, "Risk-Sensitive Estimation and A Differential Game",

to be published in the IEEE Transaction in Automatic Control.

5. C.-H. Fan, J.L. Speyer and C.R. Jaensch, "Centralized and Decentralized Solutions of

the Linear-Exponential Gaussian Problem", to be published in the IEEE Transaction

in Automatic Control, November, 1994.

Appendix A contains these papers.

11



4 Research Professional Personnel

4.1 Professional Personnel

1. Chih-hai Fan

2. Sinpyo Hong

3. Ravi N. Banavar

4. David F. Chichka

5. Jinsheng Jang

4.2 Advanced Degrees Awarded

1. Chih-hai Fan, "Stochastic Control and Estimation with Exponential Cost Criteria",

Doctoral Dissertation, 1992.

2. Ravi N. Banavar, "A Game Theoretic Approach to Linear Dynamic Estimation", Doc-

toral Dissertation, May 1992.

3. Sinpyo Hong, "Robust Game Theoretic Synthesis in the Presence of Uncertain Initial

States and System Parameters", doctoral Dissertation, 1993.

5 Interactions

5.1 Papers in Proceedings of Technical Meetings

1. R.N. Banavar and J.L. Speyer, "A Linear-Quadratic Game Approach to Estimation

and Smoothing", Proceedings of the 1991 American Controls Conference, June 1991.

2. S. Hong and J.L. Speyer, "Application of a Parameter Robust Game Theoretic Con-

troller to the Benchmark Problem", Proceedings of the 1992 American Control Con-

ference, June 24-26, 1992.

3. C.F. Lin, Q. Wang, J.L. Speyer, J.H. Evans, and J.R. Cloutier, "Integrated Estimation,

Guidance, and Control System Design Using a Game Theoretic Approach", Proceed-

12



ings of the 1992 American Control Conference, June 24-26, 1992.

4. C.-H. Fan, J.L. Speyer, C.R. Jaensch, "Decentralized Solutions of the Linear-Exponential-

Gaussian Problem", Proceedings of the 31" IEEE Conference on Decision and Control,

December 16-19, 1992.

5. J.L. Speyer, C.-H. Fan and R.N. Banavar, "Optimal Stochastic Estimation with Ex-

ponential Cost Criteria', Proceedings of the 3 1"t IEEE Conference on Decision and

Control, December 16-19, 1992.

6. J.L. Speyer, G. Fruchter and Y. Hahn, "A Game Theoretic Approach to Dual Control".

Proceedings of the Seventh Yald Workshop on Adaptive and Learning Systems, May

20-22, 1992.

7. S. Hong and J.L. Speyer, "Robust Game Theoretic Synthesis in the Presence of Uncer-

tain Initial States and Systems Parameters", Proceedings of the 32 d IEEE Conference

on Decision and Control, December 1993.

5.2 Interaction with Air Force Laboratories

During the grant period and also currently, we have been involved with "'ersonnel at Eglin

AFB on the implementation of nonlinear filters and target models, developed under AFOSR

Sponsorship, to the AMRAAM missile product improvement program.

13



Appendix A: Papers published and Accepted for Publication

14



ME TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 36. NO. 9. SEPTEMBER 1991 021

A Game Theoretic Approach to a Finite-Time
Disturbance Attenuation Problem

Ibnseok Rhee and Jason L. Speyer, Fellow, IEEE

Abutrct-A disturbance attenuation problem over a finite- saries composed of the process and measurement distur-
time Interval is considered by a game theoretic approach where bances and initial conditions. The general problem presented
the control, restricted to a function of the measurement history, here is formulated as one of partial information such that the
plays against adversaries composed of the proess and measure- control is restricted to be a functon of only the measurement
meat disturbances, and the initial state. A zero-sum game,
formulated as a quadratic cost criterion subject to linear time- history. A standard calculus variation procedure, w as
varying dyuamics and measurements, Is solved by a calculus of shown in [13], [24] to be a useful tool for the full ino.•- - •on
variation technique. By first maximizing the quadratic cost crite- LQ game problem, is adopted to solve the LQ game pTx,.•em
don with respect to the process disturbance and Initial state, a with partial information. The solution to this game problem
full Information game between the control and measurement
residual subject to the estimator dynamics results. The resulting generalizes many of the standard results given in [13], [14],
solution produces an n-dimensional compensator which com- [241. The resulting compensator for the controller is n-di-
pactly expresses the controller as a lneaw combination of the mensional requiring the solution to two Riccati differential
measurement history. Furthermore, the controller requires the equations (RDE). In particular, the solution is identical to
solution to two Riceati differential equations (RDE). For the that given by the continuous-time formulation of the Linear-
linear saddle strategy of the controller necessary and sufclent
conditions for the saddle point to be strictly concave with Exponentia-Gaussian (LEG) problem 1161. The formulation
respect to all disturbances and Initial conditions, and sufficient and solution of this finite-time time-varying game problem is
conditions for various process disturbance strategies to satisfy given in Section MI. By first maximizing the quadratic cost
the saddle point condition are given. A disturbance attenuation criterion with respect to the process disturbance and initial
problem is solved based on the results of the game problem. For AM, a N11 information game results between the control and
time-invariant systems it Is shown that under certain conditions
the time-varying controller becomes time-Invariat on the infi- measurement residual subject to the estimator dynamics.
nite-time Interval. The resulting controller satisfies an H. norm Three different Saddle strategies for the process disturbance
bound. are considered and sufficient conditions for the existence. of a

L. INTRODUCON saddle point solution are determined. In addition, necessary
and sufficient conditions are determined for the saddle point

D ECENTLY, a time-domain control synthesis procedure to be strictly concave with respect to all nonzero variations of
~for H. control problems has been developed in [1], [3]. the disturbances and initial conditions from their saddle point

Riccati equations arising in the linear quadratic (LQ) game strategies. Based on these results, conditions for the finite-time
problem [121-[14], [23] and Linear-Exponential-Gaussian disturbance attenuation problem of Section IV are developed.
(LEG) problem [15]-[18] play a key role in this synthesis The finite-time solution is specialized in Section V to the
procedure. These results motivated the formulation of a infinite-time time-invariant solution based upon the two
finite-time interval H. control problem for time-varying RDE's produced in Section M. In particular, it is shown in
systems based on a linear quadratic game approach. Refer- Section rn-C that assuming the existence of a nonnegative
ences [4], [5] considered a finite-time H. control problem definite solution to the algebraic Riccati equation (ARE), the
where, the initial condition is given as zero. The full state solution to the RDE with certain initial conditions converges
information discrete-time H,. control problem is considered to the minimal nonnegative definite symmetric solution of the
in [6], [7] by using existing linear quadratic game results. ARE. The results of Section m-C provide a proper develop-

In this paper, a finite-time interval disturbance attenuation ment for the infinite-time time-invariant controller. In Section
problem for a time-varying system with uncertainty in the V it is shown that the n-dimensional compensators con-
initial conditions of state is considered based on a LQ game structed from all the nonnegative soluions to two ARE,
theoretic formulation where the control plays against adver- satisfying certain condition, satisfy the H. norm bound.

Manuscript received March 8, 1989; revised June 12, 1990 and Febray Throughout this paper, I II A denotes the Euclidian norm
21,1991. Paper recommnid by Associate Editor, P. B. lab. This work was weighted by A; Jr, means air/ax; D> 0(a 0) means
mpponed in pat by the Air Force Armament Laboratory. Ein Air Force that D is a positive (nonnegative) definite matrix; D > E(z:
Bae under Cattract F08-3S87-K-0417, by Generd Dynamic, Fort Worth, E) means that D - E> 0(2 0). . -
TX, and by NASA Johnsm Spae Flight Center.

1. Rhee is with the Depwtment of Aerospace Engineering and Engineering During the course of the review process the authors be-
Mechanics, University of Texas, Austin, TX 78712. come aware of similar results for the finite-time disturbance

J. L. Spryer is with the Department of Mechanical, Aerospace, nd attenuation problem that were independently obtained in
Nuclear Engineering, Unimvity of California, LeA Angeles, CA 90024.

IEEE Log Number 9101615. [8], [9].

00164928691/0900-1023S01.00 0 1991 IEEE



IC0 IEEE 7hAWACIMoNS ON AUTOMAI1C CONTROL. VOL. 36. NO. 9. SEPTErEMR 1991

.PROLEM STATEMENT max max max minJA(u, U, w, x(0)) =Ji. (8)
Consider a linear time-varying system described by . W X(Q) to 0

() A(t)x(t) + B(t)u(t) + (t)w(t) (1) The solutions to (7) and (8) produce saddle point strategies
when J* = J.

z(t) = H(t)x(t) + r,(t)v(t) (2) First, the optimization problem (7) is considered. By sub-

c(I) 1 [ 1 stitution of the constraint (2) into (6), we can change the
Y(t) = 1 0 x(t) + c,(tIu(t) (3) optimization problem of (7) to the following problem:

where x is the n x I state vector; u is the m x I input min max max 1I X(0) - .. o1l2, + 11 x(T) 1O
vector; z is the p x I measurement vector; w and v are the ,ef X wIxxT)I2
q x I and p x I input disturbance vectors, respectively; y r"
is the controlled output vector; and it is assumed that r, and +f IIXn 1 + Ilu112
R = CrC, are nonsingular and the initial condition x(O) is 0
unknown. All matrices have appropriate dimensions and are 1 + ]
time-varying.-, + W _ H dt] (9)Define the measurement history up to t as

Dein the mn h str u to tsubject to equation (1) where V= rvr T.his cost crite-
T at is rui non for the continuous deterministic game is remeniscent of

The admissible control is restricted to be a function of only the criterion constructed from the argument of the exponen-
Z,. Let T/denote the set of admissible controls, and qI C */ tial in the discrete LEG problem [17], [18].
is the subset of linear functions of Z,.

The disturbance attenuation problem to be considered is to A. Maximization with Respect to w and x(O)
find a control u e 4t such that To solve the problem consider first the maximization of J

fTJ 2  with respect to w and x(O) for a given z and fixed strategy
Ilx(T)I•Or+ j yIldt ue T for which the variations of u and z vanish. The

a T resulting cost criterion will then be minimized and maxi-
<-•[IIx(O)lg,+ 112]_ (IIwI + vl,)dt (4) mized with respect to u and z, respectively. Let

J= maxmaxJ.
for all w, veL 2[0, T], x(O)eR" such that (w(t),v(t), w x(o)
x(0))•* 0 over all t E [0, T]. It is assumed that 0 is a The standard variational procedure [24] is formally applied to
negative constant, the final time is fixed, P0, W, and V are this problem. A vector Lagrange multiplier function X is
time-varying positive definite matrices, and QT is a nonnega- introduced to adjoin (1) to (9). The first variation of J for
tive definite matrix. given u and z is given by

In order to solve the above problem, we will first consider
as in [6], [71 the related linear quadratic game problem of _i= ![ p-ux(0) - _2o + X(0)]T x(0)
finding u* E T, v*, w* eL 2[0, TI and x*(0) ERI satisfying C I

the saddle point condition I T

J(u*, .w, x(O)) S J(u*, v* w*, x*(O)) +[Qrx(T) - 0 X(T)] x(T)
:5 A(, V*, w*, X*(o)) (5) + + /o•'6 +•f •w]d

for all u,v, weL 2 [O, T], x(O) eR", where 0

J(u, v, w, x(o))= [ x(°) _ .112.+ I x(T)11 where Jr is the Hamiltonian, defined by

+I + Iu .+ (lwll , + v r) dt] x X Qx + uTRu + w(OW)w

(6) +(z - Hx) T ( F)-'(z - Hx))

where *tC is a given vector and Q = CTC. The left-hand +X (Ax + Bu + rw).
side inequality plays an important role in the above distur- V
bance rejection problem. The first-order necessary conditions for a maximum are

M. THE L2L A QuD4Ric GAonimo = -PRBE, X(T) = OQTx(T),

A saddle point strategy can be obtained by solving two (0) = -P; {x(0) - -o) (10)
optimization problems e,, = o -. w =-wr . (11)

mm* max maxmaxJ(u, v,wftx(0)) () er substituting (11) into (1) the following two point
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boundary value problem is obtained: to (20) and using (21), we obtain the second variation 62j as

[ - A -rwr T 1X J a perfect square of the form

u6 12J 1[U6x(T) fP-.,r'÷+Q,[H•,](12) 6D

t+HTVu + 1or)w- wrTP-'1x•_w.- dt]
with

x(O) = t0 - P0 X(0), X(T) = OQrx(T). (13) where we assume P(1) is nonsingular over te[0, TI. Since
the performance index is quadratic, for a maximum the

Since the two point boundary value problem is linear, the second variation should be negative for all variations 6x(O)
solution can be obtained by the sweep method [24). Let x, and 6w not vanishing simultaneously. Consider the variation
and A. denote the solutions to (12) and (13). We assume that a= Wrp-x.
the solution x, satisfies

X k =2 - PA. (14) Then, from (21)

where 1 and P are to be determined. The substitution of the 6b = (A - rwrrp-J) 6x. (23)

differentiation of (14) into (12) yields Hence

(P - PAr- AP + P(HT7P-'H + eQ)P- rwrT ,\ 5x(T) = f (T,(0) 6x(0)

= -A - u- pHTV-I(Z _ I) + p . where # denotes the transition matrix of the linear differen-tial equation (23). Thus
Therefore, if we choose k and P to satisfy the following: 1

f A2 + Bu + PHrW'(z-Hk)-GPtk, 62J= " ,x(o~r O ){P-l(r) +-QT}I(-,O) 6x(O)

2:(0) = to (15) < 0, v6x(o) * 0

P PAT + AP - p(HTV-'H + 9Q)P+ rwrT which implies that for a maximum it is necessary that

P(0) = P0  (16) P-)(T) + VQT > 0 (24)

then (14) becomes an identity. From (13) and (14) we obtain since f(T, 0) is nonsingular. Also, (24) implies P(7) > 0
A.(T) = f Qr{+ OP(T)QTrl-'(T) (17) since Qr > 0.

We will show that if the condition (24) holds and P- is
x.(T) = V + 9P(7)QT)}':(T) (18) finite, the second variation is negative for all variation 6x(0)

and bw not vanishing simultaneously. If (24) is satisfied,
where we assume {I + 0P(T)QT) is nonsingular. Then, we then for all variations
can calculate X,(t) from

S- [A - P(H Tp-'H + eQ)ITX. where the equality holds for the variation given in (23) and

+HTVP-(z-Hk)_-9Qt (19) 6x(T) = 0. (25)

with the final condition given by (17). However, for the variation (22) and (25), (23) leads to
The second variation is considered to determine additional 6x(t) = 0 and 6w(t) = 0 over te[0, T] if P- is finite.

necessary conditions of optimality. The second variation That is, w.(t) = - wrrx.(t) and x,(0) =2o k- PO*(0)
along the extremal path 62j is given as produce the maximum.

62j Sx(O)T(epo)-I 6x(0) + 6x(T)rQrSx(T) B. The Solution to Problem (7)
! T Hr[ To perform the minimization and maximization with re-++ e o[xr(Hr"-'H+OQ)3x+ wrW-I6w]dt. spect to u and z, first evaluate J,. By using (10), (11), and

(20) (14), J, can be represented as

From the constraint (1), we obtain J, ) .0' [ II* 0 2 + I x.(T)ig2,Q'j
81 = A 6x + raw. (21)

Adding the zero quantity + 2 -

O [SXT(ovp)-'y x 6x- )d SX) dt x ).+ { II A.,r, +10 dtr + z Hikf - PA.)Ui]d.
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Adding the zero quantity with the terminal condition S(T) = ST has a solution over

1 [g * l T 1 - d t E [0, T]. It is noted that open-loop strategies for u may

0:-3 [ o~Px - 2"OJo- PX0)dt make the cost (27) unbounded without certain condition while
the feedback strategies (29) makes the cost bounded (see

to J, yields (using (16) and (19)) [23]). The cost criterion using the u* and 0 is given as

2 20
2 9  T T ~ TJ'(u,' *) =f 24S(0)k0 " (32)

1 fTf Let x*(t), )e(t), and k*(t) denote the optimal trajectory
+2 J Cr(. + UTrRu of x, k and I, respectively. x*(I), f)*(, and k*(t) a

solutions of x.. X., and I with u=u* and =

+(z -Mtc(V) -'(z - Hfc)J di. Substituting (29) and (30) into (15) and (19) yields

From (17) and (18) * = (A - OPQ)i* - BR-'BTSfi*
S- 0pHrP-tHpSfr*, I*(o) =Ioe (33)

X*(T)TQTx*(T) + !X(T)TP(T)Xa(T)
6 g T = -(A- OPQ)TX* + HTV-'HP(* - OS**)

where (Qk* (34)

ST = QTIl + -p(T)Or}-' with )?(T) = OSTr*(T). **(t) can be calculated from (33)
independently. Observe that

By the matrix inversion lemma ST becomes d
ST = QT- OQT{P-(T) + Or}- OQ. -t(e.&*) = -(A - ePQ)T(eSc*) - DQk* (35)

Therefore, condition (24) implies that ST a 0. Now, by Comparing (34) aid (35) gives
using (26) J, can be represented in terms of I as = GS.*(t), te [0, T]. (36)

A, = i(T)T*STI(T) + - Substituting (29) and (36) into'(12) and (14) yields
112 2

•aT~ + u (Z- Hf) r(0 F)"'(z - HI)I dt. t* = Ax* - (BR-'BTS + orwrTs)**,

Sx*(0) {1 - OPoS(O))}to.

The minimization and maximization can be performed with Observe that
respect to u and z, respectively, subject to (15). By defining

a - H!, this problem can be changed to dt[(I - OPS)I] = A(I- OPS).k*

mining. 2 1 (Tr)sI(r) dt- (BR -'BTS + or wr Ts) jc*.

TfT By inspection we obtain the optimal state trajectory as
+ {Qf + u u + V 61 1% (27)x*(t) =(J-.Ps)I*(t), te[0,T]. (37)

subject to From (2), (30), (37) and the definition of 6, the optimal

T=fc + Bu + f6, 1(0) = Ro (28) trajectory for v and x(O), denoted as v*(t) and x*(O),
respectively, are given as

where A - OPQ and PHTP-'. We obtain (28) te[O,T]
from (15) by using the definition of 6. Finally, the problem
reduces to the well-known deterministic game problem. The =0, (38)
optimal feedback strategies U*E c- Tand 6* for (27) are given x*(0) = 11 - ePoS(O))fo. (39)
in [14], [23] as

S= -R-BTS. (2 From (11), (36), and (37), we obtain the optimal trajectory
6 * 0 Ffi -R- 0 Br- (30) for w, denoted as w*(t), in terms of k*(t) as

= G ~t 9HP.R 30)w*(t) =-owr'k*(t), t: [0, T] (40)

if the Riccati equation
or in terms of e(t), by assuming I - OPS is nonsingularl

-Sffi .+AXrS-S(BR-IBr+OfrvT)S+Q over [0, T7, as

=S(A - OPQ)+ (A -_ PQ)TS w*(t) = -ewGrW rx*(t), te[0,T] (41)

-S(BR-tBr+ 0PHrV-i HP)S + Q (31) 'Conditions -- coon &k imem am give in ft so.
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where matrix X- satisfying the ARE (46). Then, X(t, 0) exists for
nI = s(lr- ops)5)t (42) all I z; T and is- nondecreasing as t decrease. Moreover,

_' (42)X(t, 0) -- 1sX , as t -. -, a where X denotes the mini-

Equations (38), (39), (40), and (41) denote the open-loop mal nonnegative definite solutica to the ARE (46).

strategies for v, x(O) and w. The open-loop strategy for u is Lemma 3: Suppose that for 0 S XrT < Xr2 there exist
obtained by substituting I* for I in (29). However, since X(t, Xr.) and X(t, Xr2) over [t0 , T]. Then. 0 s

the cost (27) may become unbounded for the open-loop X(t, XTI) S X(t, X77).
strategy for u, the closed-loop strategy confined to be a Proof. Consider a value functonal

function of the measurement history (29) should be used. T

Sufficient conditions for the existence of various saddle point 1(u, w, xo) = x(T)rx x(T)

strategies ae given in Section MI-D. The cost along the u*, +I TT
v, w*, and x*(0) is obtained from (32) as+ XQX + UIT - wTw} dt

AJu, v* , wV , *' 'x*(O)) !Ts(o)k - (43) associated with a differential equation

2 x=dx+au+.w, x(0)=Xo.

C. Some Properties of Riccati Equations By using the completion of square argument for this value

Consider a Riccati differential equation of the form functional, we obtain (see [141)
J1= TX +X - ) + e,, I(u, w, Xo) = xoX(t, X+ )xo

X(T) = XT2 0, t: T (44) +fT{llu+.•Tx(t,x77)xll2

where the coefficient matrices i., . 9 and -Q are time- I

varying matrices. It is assumed that -0 and X1 are nonnega- -1w -_ 9TX(t, Xr2)xlp'} dt (47)

tive definite matrices. Note that the RDE (16) has this form if and
we change independent variable from t to 7 = T - t.

Let X(t, XT) denote the solution to the RDE (44), if it (u, w, Xo) =x4X(t, XTI)xo

exists. + x()r - XT)x(T)
Lemma 1: Suppose that X(t, XT) exists over [to, T]. If T

Xr a 0(> 0), then X(t, XT) is nonnegative (positive) def- + f IU+ Nrx(t, XTT )XI12

inite over [to, T].
Proof: Suppose that X(t, Xr) is a solution to (44)

with XT ; 0(> 0) over [to, T]. Then, X(t, X.) satisfies -11 W TX(t XTI)x ) dt. (48)

the Riccati differential equation Since (47) and (48) hold for any u and w, let u =

TX+r +1 X = T - RrX(t, Xr7)x and w = 9TX(t, XTI)X. Subtracting
-c = • + -x T, + , X(T) 5XT (48) from (47) yields

X() X(t, X7)- X(t, XTI,)}Io

for all t e[to, TI where x(T)r(x72 - Xrl)x(T)

1(t) - R + X(t, X.)9•TX(t, XT). x(T)U( + g XtI X .1)

Note that 1(t) is nonnegative definite over [to, T]. Hence, 1t
[22, Theorem 2.1] shows that X(1, XT) is a unique and +11 W _X(tX)X11 2 Idt
nonnegative (positive) definite solution to (45). 0

Her-.sfter, we assume that the matrices d. A. 9, and - This completes the proof since X22 - Xr, ? 0 by assUmp-

are constant matrices. Then, the associated algebraic Riccati dion. 0

equation is represented as X(t, 0) is nondecreasing as t decreases and X(t,0) s

=d +_ ) +. (46) X(t, Xr) for all Xr 2 0 by Lemmn 3. Hence, it is clear
that if X(t, XT) does not exist for t :s to, then it increases

We define the notion of a minimal nonnegative definite without bound as t decreases to t0 . On the other hand, if we

solution to the algebraic Riccati equation (46) (see also [111]). can find a upper bound for X(t, X.) for all tI T, the

Definition P: A nonnegative definite symmetric matrix solution to (44) exists since it can not escape the upper

Xi satisfying the algebraic Riccati equation (46) is Said to be bound.
the minimal nonnegative definite symmetric solution to Corollary 1: Suppose that there exists a nonnegative def-

(46), if given any other nonnegative definite symmetric solu- inite matrix X, satisfying the ARE (46). If 0 : XT S 5F
tion X 2 to (46), then X 1 : X2 . then X(t, XT) exists and 0: !X(t, XT) s X, for all tz

Lemma 2 follows from [141. T. Moreover, if 0 ;XTr S1 where X is the minimal

Lemma 2: Suppose that there exists a nonnegative definite nonnegative definite solution to the ARE (46), then
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X(t, Xr)" "s tV-- - . with M(O) - (I + 0Poll(O))- 'Po. it is omed dht
Proof.- For the first pan it suffices that X(t, Xr), if it

exists, is bounded above by X 1. Since X, : X(t, X, and
0 s XT s X 1 , it follows from Lemma 2 and Lemma 3 that
0 s X(t, XT) S X. D. Saddle Point StrateIt

From the above discussion and Lemma 3 if 0 XrS , From the results of Section l-B, two strategies for game
then X(t, XT) exists and X(t, 0) s X(t, XT) % X. Since problem can be deduced from (29), (38), (39), (40), and
X(tO)-Xast-- ,X(tXT)Xas -- - . 0 (41).

The solutions developed in Section Ill-A and MI-B, de- Strategy 1:
scibed by (29), (38), (39), (40), and (41), require the
solutions of two coupled RDE's (16) and (31). However, U* R-.IBTS, w* -ew -r'x,
these two coupled RDE's can be decoupled into two indepen- v*=0, x*(0) - {i+oPon(o)}-'o. (53)
dent RDE's by a transformation.

The following assumptions result from Section I-A and Strategy 2:
m-B. u* - -R -BraTS , w* -Owr Sk,

Assumption 1: U*=O, x*(O) = -i+oPoi(0)[-'.ko.

a) There exists a solution P(t) to the RDE (16) over In the above strategies, x and It denote the states of the
(0, T]. dynamic equation (1) and the state estimator (15). Note that

b) P- I(T) + 0QT > 0. we have made u* a function of the estimate in both strate-
c) There exists a solution S(t) to the RDE (31) over gies, but w* is a finction of state in the Strategy I and a

[0, T]. function of the estimate in the Strategy 2. We will show that

Note that from Lemma 1, the Assumption I-a) assures the Strategy I forms a saddle point under the Assumption I
P(t) > 0 over [0, T], and the assumptions I-b) and l-c) while an additional condition is required for the Strategy 2 to
assure S(t) ? 0. Moreover, under the Assumption 1 it is produce the saddle point.
easily verified that rI(t) defined in (42) satisfies an RDE By adding the zero quantity

-l= AT+ An- I(BR-'Br + rwr)n + Q, o= --[x ll Td (xT nx)dt
I'(T) = QT. (49) 2-[ °+ 2 J dt t I

to (6), J is represented as a perfect square of the form
Again Lemma 1 shows that 11(t) t 0 over [0, T]. 1 I

Assumption 2: J(u, v, w, x(O)) = -x(O) -roII" + [|x(O)

a) There exists a solution P(t) to the RDE (16) over I I
[0, ). + 'flu + R-,Brnxpflt

b) There exists a solution 1'(t) to the RDE (49) over j
[0, T). I

c) P-'(t) + o n(t) > 0 over [0, T]. + -(11 w + owr WT xiw-.

Claim 1: Assumption 1 and Assumption 2 are equivalent. +* l, dt(
Proof. Suppose Assumption 1 holds. Then, P(t)> 0 V- dt. (54 )

and 1(t) 2 0, hence P-9 _ OS> 0 over [0, T]. By using
the matrix inversion lemma Define e x - (I - OPS). Then, satisfies

P-1 + on = P'(P-' - oS)-'P-1 > 0. += ( A - MHM-H)e + 9PSB5

Suppose Assumption 2 holds. Then, P(T) + 6n(T) = + r' - MHrV-IrV (55)
P(T)+OQT>O. It can be verified that S=ii(1+ with the initial condition Ei(0)=x(O)-{I-OPoS(O)}kCo
PH)-' satisfies the RDE (31). 0 where •i =u + R - B'rS* and w + o wF rs. Adding
From these relations and by solving the decoupled RDE's 1[ 1 x

:(16) and (49) we can construct the controller for each player. O= X- [•gs-2
For later use we define 2[ . 0

M= (I +UPn)-'P. (50) +I [1 . d IX.s 2 ]

Then M(t) > 0 and satisfies the RDE
to (6), yields J as

M=M(A - orwrrn)T + (A - orwrrn)M ac (o3, 12 a)

-M(HTP-'H++onBR-1 Tn)M+rwrT (5l) J(u, v, ,x(o)) - o- M 20ilj-
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Proof.* T1e proof of the inequality (59) is the same as
+ dot of the left-hand side inequality in (57).

Let E* denote the output of (55) when w2', vu, and x(0)

+ 0 ( - Wrp_ , It121am appl to the system dynamics and the sate estimator.
211Then from (55) V satisfies

+ j + HE u HU,-,) } dt. (56) j* - (A _ MHTv-hH)t* + OPSB , J*(0) =0

and
Note that (54), (55), and (56) hold for any strategy. For
convenience let u,4, w*', u*',a x~'(0)denote Strategy Iand J(U,., ',() - fkU 0 -*()I~uT
Strategy 2 is indexed by the subscript 2. 2 () 29

Proposition I: Under the Assumption 1, Strategy I forms ]
a saddle point, that is, + 2 I

,'( *, U, , ,.' X(o)) -.5 J(,,:, 0,,' w*, X*1(o)) Il *<5 .,u(,. u,, w*, x*,(O)) (57) +' (PwrrP- w-I•

for all u, u, w eL2[0, T], x(0)e R. + II He*l,,) 3 dl. (62)
Proof. If u = u*, then 0 = 0. Hence from (56)

iIII n ( 1& 2 + If there exists a real symmetric solution 0' to the RDE (60)
J(a, v, w.x(o)) - M o Tewd)+•2 9 u )•n - over [0. )], then•adding

+ jT( _wrrp-I itj,~ W_0=- tye To "t
+ ir u + HtI-,) dt. to (62) yields J as a perfect square of the form

Since M- 1 (T) >0 under the Assumption 1, it is obvious :(u,I4,w,(O)) = -fCo p 2

that
J( *1 -1-B12''I t. ( 3J(u4,,,, w, x(o)) o(8) 1 + d (63)

2IkI()2Jf 9 1R

From (43) and (58), we obtain the left-band side inequality in Cnequey comparing (43) and (63) yields the inequality
(57). (61). 01

From (54) we obtain Suppose that u, v, w, and x(0) play with the Strategy 2.

J1Uvw*x*fV ...Iu1.n2 By taking the coordinate transformation x, = (I +
( * xO 2" os OPn)-'k, we obtain the following strategy, say Strategy 3.

+fT dt Strategy 3.
fU Rlur' R jU R'Blx

w* = -OwTnx, U* = 0,
J(u4,.•, w•,4(o)) = x*(o) = {i+ ePonf(o))-' o (64)

which completes the proof. 0 where
Proposition 2: Under the Assumption I *, Ax, + Bu - orwrTnx. + MHTV-( Z - HxI)

J(U*, ,U, W,, X(0)) <S J(U2,,;,* ,,2.,• X2(0)) (59) (65)

for all v, weL[O, TI, x(O)eR'. naddition, if there exists with x.(0) = (1+ ePoIT(0))-'•o. Since Strategy 3 is o-
a real symmetric solution to the RDE tained by a coordinate transformation of Strategy 2, it can be

_f= (A _MHrV.,H)T F+ Yr(A _MWr.-'H) assumed that this strategy is equivalent to Strategy 2. How-
ever, Proposition 3 shows that this conjecture is false.

-O.YPSBR-IBrsPs+ P-trwrTp-l + HTV 1tH Proposition 3: With Assumption 1, Strategy 3 satisfies
(6) the saddle point condition

with the final condition Y(T) - -(T), then UT. (1,) fX(o)) S *(3*T xR. x;(O)):(•,,•,•,d~~~o)) Au•v,;•;o) (, U*, *, X*(o)) (66)
v,,eZ,.,0, T]. (61) foral. u,v,,weL2to, T), x(O)eR"..
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Proof: First, prove the left side inequality. If u plays subject to the stochastic linear system

x =Ax +Bu + rw,
X, -(i + opJ)'kf (67) z = Hx + r~

r any u. w, and x(o). Therefore, u*3 -u*,since~f( s = a w em I denotes due expectation operator, x(0) is nor-
*pfrl). mallydsrbtdwithma 0  adcovariac P0 , and w(t)
Next, dhe right side inequality of (66) is proved. Suppose and uvQ) are jointly Gaussian independent white noise pro-
,, u, and x(0) play first with Strategy 3. If u does not ceases with statistic
,ay its saddle point strategy, then (67) does not hold. E[ w(t)] = 0, El w(t) w(r)J r] W(t) 6(t -r),
owever comparing (1) to (65), we obtain that x = x, for uuTr
)Y U, hence W,' - W*1. From this consideration, Strategy 3 E[ u(t)] 0, E[ut()T = V(1)6(t - 7)

equivalent to Strategy 1. 0 where 5(t - 7) denotes the Dirac delta function. It should be
In controller (15) and (53), the worst case disturbances w* noted that the condkions for optimality determined here are

md x*(0) are not explicit as they are in controller (64) and not the same as the conditions that are required for the
55). Clearly, if w, u, and X(0) play Strategy 3, then by solution in [161. However, the conditions in [171, [18] do
bswving (65), the error x - x,= 0 even if u does not play reduc to thuose given here.
ptimally. In contrast, the error t*, defined as r*= X - (I
- opfly -I and propagated by (55) where w, u, and x(O) IV. FZvrm-TiME INmhRYAL DmSuRBANcE ArrENuATIoN

lay Strategy 2, is nonzero if i9 * 0. This is because (67) PROBLEM

nly holds when u plays its saddle point strategy. In this section, the finite-time interval disturbance attenua-
If If is confined to be a linear function of Z,, then the tion problem is solved by using the results in Section M.

ollowing lemma holds. L.et J. denote J with 20 = 0. The finite-time distu~rbance
Lemma 4: There exists a R e 44 such that J(0l, u, w, attenuation problem (4) is equivalent to finding u e *, satis-

'(0)) is strictly concave with respect to (u,w, x(0))if and tying

n11Y if Assumption I or, equivalently, Assumption 2 holds. Jo(u, v, w, x(0)) < 0
4oreover, when the assumption holds, R~ = - R -IBTSf is aI
ontrol which mae J(11, v, w, x(0)) strictly concave with ni al U, w eL2 10, T), x(0) eR", such that (v(t), w(t),
aspect to (u.w. x(0)). x(0)) *O0over all t e[0, T].

Proof. Se pedx Theorem 1: There exists a solution u e &I~ to the finite-
Since the ransformation (67) is valid for any u, w, x(0) tieditraneatp lenaion pobem(4iadon ly ifAs-

br Re R 'B k 0 ~R -B TXC is equivalent to sumPtion 1 or 2 holds. If the assumption holds, u
1 -R-'B~Sf. -,R-BrSf = -R-IBTIx, is asolution.

Asawn inPropositionslIand 2, for agiven 9 41, which Pof
nakes AR1, u, w, X(0)) strictly concave with repect to (u, SutfGiciency: Suppose that assumption I or 2 holds. Then,
w. x(0)) we can find many optimal strategies (v¶, w*, x*(0)) for u-=utj - R-BrSk, from Proposition I
Af (v, w, x(0)) which satisfies J0u1 .W () . JW * I'X() 0

r(i7 ,v w, x(O)) ::r J(R7,v*, W*,X* (0)), forall v, weL2 0, TI, x(0)eRm. Since fro= 0, (0) = 0.

Vu, w eLAO, TI, x(0) e R. Hence, for u*', v*,, w,, and 4'(0), equations (1) and (15)
ioweerall ptial tratgie proucethesameoptmalbecome homogeneous equations with zero initial conditions,

lowevory, tatll ,th optimal strategesrdcet he is amiqe. O7heli25l which leads x(t) =1k(t) = 0 over [0, T) and (uf(t), w*'(t),
rajctoy, hatis th opima tafetor isunque Threfre 4(0)) = 0 over [0, T). From L emma 4. J0 (u~', ui, w,.x(0))

J(Ri U, W, x(0)) < 1(1, v¶ w, 9*X(0)) is strictly concave with respect to (u, w, x(0)), hence
~or ll u we 2 [OTIx(0) eR " such that (v(t), w(t), 4au ,x0)<

0(0)) * (u*(t), w*(t), x*(0)) for all t e 0, T].
for all v, w e L2 0,T], x(0) eR" such that (v(t), w(t),I

F. The Deterministic Linear-Quadratic Game and the x(0)) * 0 for all tc e[0, T].
!.EG Stochastic Control Problem Necessity:, Suppose that 1e e qV, is a solution to (4). SiacmI

T"he solution of the deterministic hinar-quadratic game V E *4, Jo(U7,v, w, 40O)) is a quadratic function with respect
Iroblem considered here, in particular (15), (16), (29), an to (u, w, 40O)). For (u(t), w(t). 40O)) = 0 over [0, T], z(t)
,31), is equivalent to the solution of the linear-exponential- = Hx(t) from which the equation (1) with st = V7 becomes a
Jaussian problem [161 homnogeneouIs equation with zero initial condition, and R17()

' IT = 0 over [0, T]. Therefore,
rninE[ ~ ( J xr~x+ ru)d

18expi -0f' +0W uTu d- W ,wx(0)) S R J 01,o,0,o0) = 0

+X(T)7'~x(T) IV v, w eL 2[0, TJ, x(0) e R

Iiand (0(t), W(l), 40O)) -=0, t e[0, TI is a unique extremal
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trajectory. that is, Jo(V, v, w. x(0)) is strictly concave with where
respect to (u, W. X(0)). Applying Lemma- 4 completes the A RDC
proof. -0 x=[xj, U= , BI H AA J

V. Tunh-INvARLAw Co*noLLER ni,;=[] Ic B A

In this section, we assume that the systems (1), (2), and (3) d w=o B ,' Cd = 10 CIC, "
are time-invariant systems with zero initial condition; that is,
A, B, r, H, rF, C, and C, are constant matrices. It is also The transfer function from the disturbance W to y denoted
assumed that all weighting matrices in (6) are constant, in by Tp is given as
particular, W and V are identity matrices. It is also assumr(ed C.[!-A]-'r,
that (AB) and (A,.) are stabilizable and controllable
pairs, respectively, and (H, A) and (C, A) are detectable Preposition 4: The closed-loop system (73) is stable and
pairs. A disturbance attenuation problem for this system has
been solved in [11 based on two ARE'S associated with the -.. (74)
RDE's of (16) and (49). In this section, all stabilizing com-
pensators which can be constructed from the solutions of two aim 2: A - MHT V'H - errft is a stable matrix.
ARE'SsasProof. Rewrite (72) as

Suppose that there exists a nonnegative definite fl and a
positive definite P satisfying the following ARE'S M(A - MHT V- IH - err"Tf)r

0=A Tf + fEA - Fi(BR-IBT + errT)fl + cTc (68) +(A - WH7P-3H - rrT*i)X?

0=AP+ PAT- p(HTV-'H+eCrC)p +rrT (69) = _{,(HrT ( -,H_ - BR-,Brrl)) + rrr}
such that F- - U.

P-' eft> o.(70)
Since (Ar) is controuable, [A - erlrT, ri] ib'control-

By Corollary 1 the solution [(t) to the RDE (49) converges lable. From 122, Lmma 4.1 [A - RHTV.IH -
to nm, ifj Qr - n, where n,. is the minimal nonnegative erroTf, (MH r-M + rrT)1 /

2 1 is controllable. By Lp-
definite solution to the ARE (68). The solution to RDE (16) plying the lemma again [A - MHrV-IH - err TH,
has similar properties. UI/2] is controllable. Since M > 0 is the solution of above

As T-. ,, the compensator, described by (64) Lyapunov equation, the claim is completed by using 22,
becomes a time-invariant controller of the form Leqma 4.2). 0

re = Ax, + Bz Proof of Proposition 4: It can be verified that if

u = C.x, (71) defined as
where

A= A - BR-BH - MH-f - errrff

B, = MHr W' satisfies the ARE

CA : -R-' fr Arr++ .tA = - drrdrX+ 9cdcd. (75)

Since (C, A) is detectable, there exists a L such that A -
~ (I + --- )-•> 0. LC is stable. For this L

Note that we can also obtain a time-invariant controller fro L BR -'ac,7l
(15) and (53) which can be transformed to (71) by taking a Ado - BR-ICT Cd
coordinate transformation x., = (I + 9 Pflf - I. in general, I0 IR ,
there can be more than one nonnegative definite solution to [A-LC 0 1
(68) or (69). Therefore, we can construct more than one = BH A - MHTV- - err TIH

time-invariant controller from (68) and (69). It is noted that I
M is a positive definite solution to the ARE resulting from which from Claim 2 implies that (Cd, Ad) is detectable.
the RDE (51) [22, Lemma 4.11 shows that [(jr rTr.Jr- 9CrCd)'/ 2 , A.]

= (A-rrrff) T + (A -errTi-)7 is dectectable. Observe that P'= '- of, hence

- = (H 7rr-'H + OHM B 'Brij)M+ rrr. (72) rr= [j)L 112 r - 0.

By using the time-invariant controller (71) the closed-loop T
system becomes Therefore, it follows from [22, Lemmaz 4.2] that Ad is

stable.
=A,• + rdThe/4 H,. bound can be deduced from the inequality (57) or

y-=Cd• (73) (66) as in [7] which considered the state feedback case.
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drthe asewherefo - o, PO-P, QT-= fH. The 10,
control law (71) is equivalent to the control law for u in

ato 3. When the controle (71) is used, from the
t-hand side inequality of (66)

J( , u, ow0) s 0, VwveL2 [OT1 (76)

meover, since the closed-loop (73) is stable, as T goes to '"

inity .urns _(.)

,t),x,(t),u(t),y(t)eL2 [Om) vwveL2[0,w) . Umg a(L

im which x(cc) -0 Vw, ve L.O, o). &..ce, from (76)
Sobtain
a. 1 10mO

y dS - ( wrw + uTu) dt (1 .1)

Vw, veL2 [O,o) Fil. 1. 1 pr valaP,,, .

iich is equivalent to (74). - variation technique to solve a linear-quadratic differential
Note that for all solutions 0 F 0 P to (68) and Same, an extremely straightforward derivation is obtained for
P), respectively, such that P-' + Ol > 0, Proposition 4 a linear n-dimensional compensator. A solution to a finite-
WdS. If we take the minimal nonnegative and positive time disturbance attenuation problem was obtained by using .
finite solutions as n and P, then the time-invariant con- the results of a LQ game problem with partial information.
)ller (71) is equivalent to the H. controller proposed in The resulting compensator can be time-varying, thereby gen-

]" eralizing the results of [1]. The generality of the problem
Example: Consider evaluating the controller (71) for the formulation and the simplicity of its solution is due to the use
miar system of a state space rather than a frequency domain approach. In

S-1.5x+ u +w Section Iil-D it is shown that this approach suggests that

Iv there could be more than one saddle strategy. Three strate-
z = x + 71 gi were considered sad ufficient conditions are given for

Q 4, R-2, 0--1. whentheysatisfy the saddle poim condition. FurthermoTe, it
is shown that there exists a V e *, which makes

We corresponding ARE's are J(9, w, v, x(O)) strictly concave if and only if Assumption 1

-3f + 0.5 2 + 4 =0 - =2,4 or 2 is satisfied. Also, the controller u* given in Section

Hm-C is identical to that of the LEG problem [16] except that
-3 P-I0,+ 1s0,P= 0.2. certain conditions found in [16] are different.

'e obtain two positive solutions for ff which satisfy the By specializing to time-invariant systems and infinite-time
equality (48). Therefore, two controllers can be con- cost criterion, a time-invariant controller results. To do this

ructed. we studied the properties of the two RDE's obtained in
For (fl, P) = (2,0.2) Section m-A and 11-B, and decomposed their associated

= - 4.667z ARE's in Section HI-C. It was shown that there can be moreU€ = -5.6x +467 , than one nonnesative definite solution to the ARE and that

the H,. norm given by (74) is satisfied by all compensators
For (rI, P) - (4,0.2) constructed from all of them which satisfy certain conditions.

It is ggested that the m l nonnegative definite solution
S-13.* 5x + 14z1 (*.) to the ARE wh;ch has a strong solution [ll] be•used to design

u = -2x, the compensntor. Finally, we gave a direct proof that the

g. I depicts the largest singular value of the T,,(jw,) of the LEG and differential game controllers satisfy the H. bound
med-loop system using the controller (*) or (**), and [3].
ows that the two controllers satisfy the H.,-norm bound of
,.- In this example as 0 increas in a nejptive way, we
il to obtain a positive solution to the ni equation for Foragivenie W, letJ(v,w,x(0))=J(R,u,w,x(O)).
< -17116. Thfis occurs when the Hamiltonian matrix The second varation 62.J along the extremal path is given as
ciated with the 1l equation has two eigenvalues at the 2
din. 62.1= •[ti~x(0)9lI, + I 6X(T) l2

VI. •,CbNCLUoW

A finie-time disturbanc attenuation problem was analyzed + f SX12+ 16gl2

a game theoretic approach. By adopting a calculus of
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I 11V112 dt (u(t), w(t), Sx(O)) = 0 over all te[0, TI, from which+ (UfwlswI -, + lfl•) dtl.
_ i 12.7 > 0

Taking a first variation of (1), (2), and (15) for given for all 6v, 6w, bx(0) such that (Sv(t), 5w(t), bx(O)) * 0 for
u = , we obtain all t e [0, T], that is, J is strictly concave with respect to

SR = A 6x + BbU + raw, (77) (v, w, x(O)).
Necessity: Suppose that for a U e W1*, 1 is strictly concave

bz = HSx + rt, v (78) with respect to (u, w, x(0)). Since J is a quadratic

k = A c + B 6i + PH T V-( Z - H k) - GPQ k, function, the second varation of J along the extremal path
52. should be negative for all 6v, Sw, bx(O) * 0 such that

ak(o) = 0 (79) (6,(t), 5w(t), bx(O)) * 0 for all teO[0, T].

Note that (79) is defined over the interval where P(t) exists. a) Suppose assumption (2a) is violated. Let 1, e (0, Tj be

Define e(t) = k(t) - x(t). Then, be satisfies the escape time to RDE (16). Then, for some nonzero vector
P1, PrP- P())p, -" 0 as t(< t1) -. 1e. Adding

U = ( A - P H T V P- H ) be - r a w + P H T P- I r l a utI T e ( op ) - I 1o j . d T ( 0p ) e

- OPQ6k (80) 0 = -[be be]" - - {(e( e} dt

with a initial condition e(O) = -6x(O).
Claim 3: Suppose that P(t) exists over [0, tj and U 6 * where 0 e ts < t, to 52y yields

is given. if sv = 1-'H be over [0, tj, then 61(t) = 0 and 62= f'{ II 6k1D2 + ii112
611(t) = 0 over [0, t]. In addition, if Sw is linear with 1= 0
respect to be, then any nonzero be(t2 ), t2 C_[ 0, t,11 can be
produced with an appropriate choice of nonzero bx(0). +o11w + 9WTTP-1 6eIl~.)-,

Proof. If av = r-'-Hne, then bz = Hbx + r'1 Sv +Ilr, av -. HMe112 V)-_} dt + I1 e(t,)II1.1,-,
H 62. Equation (79) for given u = 11, therefore, becomes

+ 11 xT(T) 112 + I(ts:T)
S& = A U + B 61 - OPQ 62, 61(0) = 0

where
over [0, t1]. Since 6z is a function of only Uk and Rf is linear

with respect to Z,, BR(t) = 0 and U1(t) = 0 over [0, t]. 1(t,: IT2 IAI 2 + I1t...ii2

Equation (80) becomes
,t=A be- raw, be(0) = -6x(0), te[0, t,]. +116ul12 V)_,dt

If bw is linear in be, then Choose

be(t)= -0(t, to) 6x(0) sw =WrTP-I Se, bv = -r-'Hbe; forO0 t < ts

where 0, is the transition matrix of resulting linear system. aw=0, 6v=0; for ts I tr. T.
This complete the proof. 0

Proof of Lemma 4: From Claim 3, 61(t) = 0 and 5(t) = 0 over 10, tj, and

Sufficiency: Suppose the Assumption I holds. Consider 6x(0) * 0 can be choosed as 6e(t5 ) = p
1
. Hence

U = -R-'BrSr. Then bi = -R-IBTS 61. Ina similar way 262.7= pl U 2 P("))_, + 11 W(T)U 2

in (56), we obtain + 
(T

26 +Jt1IX 12 16O12)Wt62.7 11 alf(T)l12l.(7.)r + Ila*• - wr* it.-
"20 -p-1 at 112, + 0t • ] As t _ t, 2 rj 0 which is a contradiction.

IW. + J b)sSuppose that assumption 2a) holds, but Assumption 2b)

where is violated. Let t2 e [0, T) be the escape time to RDE (49).
Then for some nonzero vector P2 , P2fOl(t)p 2  cc as t(>

i ( A - MHT V-H) si + r ' - MHT -'T, Sv, tQ) - 1,. Adding

h e(0) = 6x(O). + X7n _ 1 d d
The equalit holds only for 6t(T)= 0, 6* = wrTP-I at 0 +x Ix -fT-{Sxrnfx
and l'; 5 = -HS5. For these values where t2 t, :s T to 52 j yields

6j = (A + rwrTP-) at, 6t(T) = 0 1 SX(0) 112 + II6X(t),) +(262.7 = o)Ibor, + I x to)II• + l(O:t,)

which implies 6t(t) = 0 over 10, TI, hence 6v(t) = 0,r T6

aw(t) = -ow rrs .(t) over [0, T] and bx(O) = 0. From +1 / {•5I +RR-lBnII
(77) and (78), Sk(t)0O. Therefore, 62.7=0 only if
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+116 w + W+ (0vllv)-,I dt. uncertain lima system," Syst. Contr. Let.. vol. 10, pp. 341-348,
1988.

Choose 1121 A. Bensoussan, "Saddle points of convex concave functionals," in
Differential Games and Related Topics, H. W. Kuhn and G. P.

6w = 0, av r' 1H6e; for05 t:5 t. Szego, Eds. Amsterdam, The Netherlands: North-Holland, 1971,
pp. 177-200.

6w = -0wrIr 6x, 6v = 0; for t. < t : T 1131 Y. C. Ho. A. E. Bryson, and S. Bran, "Differntial game and
optimal pursuit-evasion strategies," IEEE Trans. Automat. Contr.,

and 6x(O) * 0 as 6X(ts) = p2. Hence 'vol. AC-10, no. 4, pp. 385-389, 1965.[14] E. F. Mageirou, "Values and strategies for infinite time linear
62. { aO 2 +quadratic games," IEEE Trans. Automat. Contr., pp. 57-550,

62J> O 6x(°) 111 +i SerH j-'Hbedi (15] D. H. Jacobson. "Optimal stochastic linear systems with exponential
performance criteria and their relation to deterministic differential

+ games," IEEE Trans. Automat. Contr.. vol. AC-18, no. 2, pp
124-131, 1973.

The iside term can be positive by letting ts - (161 A. Bonsoussan and J. H. Van Schuppen, "Optimal control of partiallyTheright-hand sd tr cobservable stochastic systems with an exponential-of-integral perfor-
which is a contradiction. mance index," SIAM J. Contr. Optimiz., vol. 23, Do. 4, pp.

c) Suppose the Assumptions 2a) and 2b) hold but the 599-613, 1985.
Assumption 2c) is violated at t = 13, 0 < t3 5 T. Then, for [17] C. R. Jaensch and J. L. Speyer, "Ceatraized and decentralized

- (t3)+ .: Choosestochastic control problems with an exponential cost critenon," in
some P3 * 0, p•{ -(13) + GI](13 )}p 3 • 0. Choose Proc. 27th IEEE Conf. Decision Contr., 1988, pp. 286-291.

[18) P. Whittle, "Risk-sensitive linear/quadratic/Ganssian control," Adv.
6w = -owprTp- 6e, 6v = F-'H6e; for 0 < t 1t3 Appl. Probability, vol. 13, pp. 764-777. 1981.

[191 C. Martin, "Finite escape time for Riccati differential equations,"
6w = -ewrna 6x, avf=o0; for 13 < t <_ T Syst. Contr. Lett., vol. 1, no. 2, pp. 127-131, 1981.

[20] J. L. Speyer, "The linear-quadratic control problem," in Control
and 6x(O) * 0 as 6x(t 3) = P3. From Claim 3, 62(t) = 0 and Dynamic Systems, Vol. XXIII, E. Loondes, Ed. New York:
and 6U(t) = 0 over [0, t31. By identifying t, in b) and c) Academic, 1986.

(21] J. C. Willems, "Least square stationary optimal control and theas 13 algebraic Riccati equation," IEEE Trans. Automat. Contr., vol.
1 T ( AC-16, no. 6. pp. 621-634, 1971.

26 2 J- + Ofl(M)}p 3  [221 W. M. Wonham, "On a matrix R, equation ofstochastic control,"
SIAM J. Contr., vol. 6, no. 4, pp. 681-697, 1968.•T 611 [231 T. Basar and G. J. Olsder, Dynamic Noncooperative Game The-

+ I61 + R-IBTH 6xI5 dt a 0 ory. New York: Academic, 1982.
1241 A. E. Bryson and Y. C. Ho, Applied Optimal Control. New

York: Hemisphere, 1975.
which is a ontradiction. [ [25] W. T. Reid, Riccati Diferential Equations. New York: Aca-

Remark: Similar results have come to our attention are demic, 1972.
given in j8], [9].
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Application of a Game Theoretic Controller to a
Benchmark Problem

Ihnseok Rhee* and Jason L. Speyert
University of Texas at Austin, Austin, Texas 78712

The game theoretic coutreler wbose structure Ideutical to that of both the Knaew epouemtle Gmula Sad
the H. coatroller Is applied to the problem of coatrolilag a mau-sprlag system th approximates the dyaamics
of a flexible structure. By viewlag the piat parameter NIsHom a = lateriam fedback lop, plua ainwiMu es

of tie system, laput, m•d output matrices can be decomposed io a fatitious ilput/outt sysem with mi-
knowo plus. Tes fictitious Iapt/output directou due to parameter uaeertaluty am used In coustructig tie
gsa for the uame theoretic comroller. The resulnag esotrol reduces the effect of parsmeer umertalaty a the
system peforman.

1. Introduction 19. Game Theoretic Controller

A SYNTHESIS procedure is described for the design of a A controller for a linear time-invariant system with parame-
state feedback control law for a linear time-invariant sys- ter uncertainties in the system, input, and output matrices is

tern in the presence of parameter uncertainty in the system, derived via the differential game framework.
input, and output matrices. The parameter uncertainty is Consider a time-invariant system with uncertainties in sys-
modeled via an input/output decomposition procedure.'. 2 A tem, input, and output matrices described by
differential game approach has been taken for this problem in
Ref. 3, where the parameter uncertainty was not 4ecomposed i = (A, + AA)x + (B0 + AB)u (1)
and only the uncertainty in the system matrix is considered. In
Refs. 4-6 the Lyapunov stability theory has been used to (H0 + AH)x (2)
design a control law for a system with uncertainty. In Refs. 1
and 2, by adopting an input/output decomposition of the where x, u, and z denote the state vector, the input vector, and
parameter uncertainty, the uncertain system is represented as the measurement vector, respectively; A0, Bo, and H, denote
an internal feedback loop (IFL) in which the parameter uncer- the nominal system matrix. the nominal input matrix, and the

tainty is embedded in the system as a fictitious disturbance. nominal measurement matrix with suitable dimensions, re-

Tahk and Speyer'.2 developed the parameter robust linear spectively; and &A, AB, and AH are perturbations of the
quadratic Gaussian (PRLQG) synthesis procedure, which is an system matrix, the input matrix, and the measurement matrix,
LQG design based on an extension of loop-transfer recovery respectively, due to parameter variations. It is assumed that
for the IFL description. In Refs. 1, 2, and 6, the system is (A0, 0) is a stabilizable pair and (Ho, A,) is a detectable pair.
augmented to accommodate the input and output matrix un- By adopting the input/output decomposition modeling'.2 of
certainty. In this paper, by considering the input and a ficti- the perturbations, AA, AB, and AH are represented as
tious input in the IFL description as two noncooperative play-
ers, a finite-time linear differential game problem is con- AA - DL(t)E, AB = FLb(e)G, AH = YL,(e)Z (3)
structed based on the results of Ref. 7. By taking the limit to
an infinite-time, time-invariant linear system, a time-invariant where E denotes the parameter variation vector, which is con-
control law is obtained. It is shown that the resulting time-in- stant but unknown, and all other matrices are known constant
variant controller stabilizes the uncertain system for a pre- matrices. The elements of e need not be independent of each
scribed parameter uncertainty bound. These results are pre- other.
sented in Sec. II. A. State Feedbad

This approach is applied in Sec. III to a benchmark problem A. t e cteedback
composed of two masses and a spring with an unknown spring In this subsection all states are assumed to be perfectly
constant. The input is applied to the first mass and a noisy measured, and the control u is restricted to a state feedback,
measurement is made of the position of the second mass. i.e., u p p tl).
Furthermore, a harmonic forcing function of unknown ampli- With the plant perturbation modeling given by Eq. (3), the
tude and phase is applied to the second mass. The objective is uncertain dynamic system iEq. (1)) can be represented as an
to regulate the second mass about the zero position given the internal feedback loop'i in which the system is assumed to be
assumed uncertainties. A robust compensation is determined forced by fictitious disturbances caused by the parameter un-
that has four nonminimal phase zeros. certainty:

J - Ar + Bou + r• (4)

Received March 22, 1991; revision received Oct. 4, 1991; accepted
for publication Oct. 4, 1991. Copyight 0) 1992 by the American wf = L(e)yf (6)
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

OCurrently, Senior Research Engineer, Korea Aerospace Research where rf- (D Fl, wf is the fictitious disturbance, and
Institute, Daeduck Science Town, Daejum, Korea.

tHarry H. Power Professor of Engineering; currently, Professor, [L(.) 0)1
Mechanical, Aerospace and Nuclear Engineering Department, Uni. L(e) ,
versity of California, Los Angele, CA 90024. 1 0 L(
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Consider a quadratic performance index, then 1f(t) converges to the minimal nonnegative definite solu-
tions to the ARE (9).. Hei, u and w. become time-invari-

l!J ant strategies described by
20 a* --R'tBjflx (011s)

where T is a fixed fimal time, and
wfe- ?r,-tfz (10b)

N 1 X + Ic] where fl, is the minimal amegative definite solution to the
ARE (Eq. (9)].

Assume that all admissible parameter variations are character- In the worst case design. snce the fictitious disturbance wf
izedM ais not an intelligent player, only the control strategy for the

tyfL Tr()L (e)yf dt rwfw dt control u given by Eq. (lO) can be implemented.
1[yf~yd dt J~y dt 'S Claiml. SuppoethatSDAM+ G7 > 0andletILIand¶L2be arbitrary positived•flake matrices with suitable dimen-

where 1 is a positive constant. Note that IL (t) 1,s ' for all sion. TheM

admissible parameter variations, where I • I denotes the spec- S)T'LU + grett2 > 0
tril norm.

For a given control law u = u(x), the performance index J
achieves its maximum when the parameter variations are the Proof. It is sufficient to prove that D)TqlI+(Qrt2!g is
worst case for the control u. The worst case occurs when wf nonsingular. Suppose that there exists a nonzero z such that
uses all of the available control, i.e., z r(3rT(L•I) + grqTa")Z -0. Then 5z -0 and 9: =0 since %I3

and c'2 are positive definite; hence, (VDS) + Grg)z =0, which
2IT Ircontradicts the assumption. a

"r-'Iwf~wld = f yjydt (7) Claim 2. Let S)rT)+gTG=r9 Tff and let D'r)+Gr'LG
o f 1 ,1 where IL is an arky positive-definite matrix with

onswthat minimizes J for the worst case w. asuitable dimension. f(�,6) is detectable, then (T a, ( + G)
Consider a control law that Is detectable for all X with mftable dimensions.
Then a game situation arises such that Proof. Suppose that (5., 6 + XS) is not detectable. Then

min max J there exists a nonzero vector for some s in the closed rightmin ,xJhalf plane such that (s/- a- XG)z = 0 and S:= 0. Since

'CU >0,
subject to Eqs. (I) and (7). Adjoining the constraint (7) to the
performance index J yields the problem of . r(ff5), - :(ZD' + 9%rL9)z = 0

min maxt! [1 y y + (Ojy, - -V wfwf)] dt (8) which implies that 3k - 0 ad Gz - 0. Hence,
a a', 2 10

subject to Eq. (4), where p is a constant to be determined by (sl- (I - XG)z - (1 - d•}
trial and error to satisfy Eq. (7). It is well known3.8 that if
there exists a real symmetric solution II(t) over the interval t E Therefore,
[0, t1] to the Riccati differential equation (RDE),

-rI=t -Aor+fAo- n(D 0R-,'gjr -9rp + Q, a]=
with the final condition fl(t•) =0O, where which contradicts the assumption that (5, ) is detectable. s

= ,9CrC + ETE, R = 92CrC, + GoG Proposition !. Assume tiat R > 0 and (Q,1, Ao) is a de-
tectable pair. Suppose that for a given p and -f there exists a

and R is assumed to be positive definite, then the optimal nonnegative definite solutiot IT, to the ARE [Eq. (9)). Then
strategies u* and wf for u and w1. respectively, are given as the control law given as

'u = -R 'BJr'(t)x x -R -1 BtlB (! I)
wo T1gtstabilizes the uncertain dyimnic system (I) for all t such that
" -? fJIJQ)z IL.(e)I, < i and I L(c)1, < y.

For the case where T--b, if there exists a nonnegative def- Proof. By using the control law (11), the dosed-loop system

inite solution to the algebraic Riccati equation (ARE), is described as

O=AJlI, +fA. - n,(B.R - tBor-9•rIr)E1, +?, (9) kAtx (12)

where
XI X2= Z

As - A'A+ DL.,(e)E- IBo+FLb(e)GOIR-'BrI",

The ARE JEq. (9)] can be rewritten as following the Lyapunov
equation:

Fig. I lau.,prtgsysmem. AIn, +n16, - -Q, (13)
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With an approach similar to that taken in Sec. ILA. a
differential game, where the fictitious disturbances w1 and v1and the initial conditions play against the control u, is con-

.. . mrin max max max [-pl (x(0) -k1l1X(0) - lei
____ I r I50

+ ,,med S192, + yA +yf y.--,lwfrw,+ vTv.,) dat+JIY3F ., ,., i

Fig. 2 Block diagram of doed-loop "uem. subject to Eqs. (14) and (iS), where the cost for the initial
conditions is included to handle the uncertainty in the initial
condition from the nominal value of ko. As T - *D, a time-in.

where variant controller is obtained in Ref. 7 as

Q, = [18cR - 'AbR - 'BJI% + ETAE + P2CrC Xc - Acx, + Bez (lSa)

+ -?(I1,D - 7-1ETL.T)(nD - 7 -2ETL.T)T u = CX (1ab)

y-+ 721 (92F + BoR -IGTLr)(9?F + BoR - IG TLr)iII where

A0 = I - -L.(e)rL.(.) A, -=A0 - BO "R'Bii. - MHrV-'Ho + erfrfrn.

Ab = p2Crc, + GT(I - 7- 2Lb(0)TLb(E)]G Be - MHfrv-', C. = -R -tBerI,.

IL.(e)I, <7y implies that A. > 0, and ILb(U)l, < f and M = (I - -?P. n.) -P,.
Claim I yield Ab > 0. Hence, Q, is nonnegative definite. Since
(QO6, Ao) is detectable by assumption, it follows from Claim 2 if there exist In, a 0 and P, > 0 satisfying the AREs:
that [(ETADE + p2C TC)II A 0 + DL.E] is detectable. From
Lemma 4.1 (Ref. 9), IlBoR -'Ab-R '-Brn,+ ETA.E + 0 = A ofl. + n.A 0 - n. (BR - IBr - rrY)I. + Q. (19)
p2CTC)1, A,1 is also a detectable pair. Applying Lemma 4.1
of Ref. 9 again yields that (Q, A,) is detectable. Applying 0 = A0 P. + PA A- P.(HOTV -Ho - 7Q.)P. + r. r (20)
Lemma 4.2 of Ref. 9 to the Lyapunov equation [Eq. (13)1

completes the proof. s
Note that Proposition I holds for any nonnegative solution

to the ARE [Eq. (9)]. However, the minimal nonnegative pCTC + ETE + ZTZ, V YYT
solution n,. produces the smallest gain for the control law.

To design the controller (11), the design parameters p and - and V is assumed to be positive definite. Since both AREs
should be chosen for the ARE [Eq. (9)1 to have a nonnegativedefinite solution. In particular, as the value of p increases, sys [(19) and (20)1 may have more than one nonnegative definite
tem performance improves, whereas as the value of p in- or positive definite solution, many controllers can be con-

tem erfrmane iproes, heras a th vaue o -fin- structed from the formulation (18). Note that M > 0 andcreases, stability robustness with respect to parameter varia- satisfies the ARE:
tion improves.

B. Meassment Feedback (A 0 + 72rflfln.M + M(Ao + -9r r~fl],)r

In this subsection the state is assumed to be partially mea-
sured by Eq. (2) and the control u is restricted to be a measure- - M[HorV- tro - -eI,,BoR - •ornl,]M + rlr"" 0 (21)
ment feedback.

By use of the uncertainty modeling of Eq. (3), system (1) By using the controller (18), the closed-loop system becomes
and (2) include an IFL description:

J = Aer + Bou + Fr 1 w (14) =(Ad + AAd)[X (22)

z =Hox + Yvf (15) Ad.A BOCl AA - D4E FLbGC. ]

A,^ J dLB YLaZ 0 1

yV = X + u (16) and where A Ad is the variation of the closed-loop system due
to the uncertainty in system (1) and (2).

0 [GOProposition 2. Assume that R > 0. V > 0, (Q.1 , Ao) is

detectable, and (A0, If) is controllable. If there exist n, a: o,
P. > 0 such that P;I - -y- 2,. then the controller (18) sla-

F~, FLE 0 0 1bilizes the closed-loop system (22) for all e such that[ J = L(et) 0 yf (17) ILe(f)Is <7, ILa(e)I, <7, L(4)I, <7 (23)

Proof. Equation (21) can be rewritten as

where !f -[D F) and wf - [wir wjr1. MAr+AM- -Q,
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where
AI=A-m ,Pole

ANo- Ao- MH W+V-'H r, I. o zm
0 PkWd value

a, m(mJ'v-'H0 + y •.Q-'&9n.w +rr rf 6

Since (Ao, r1) is controllable by assumption, it follows from 4

Lemma 4.1 (Ref. 9) that (A0, Q9) is controllable. Since M
> 0, it follows from Lemma 4.2 (Ref. 9) that AI is stable. It 2 "
can be verified that XC, defined as ,iŽ.

p. 4 .4 -2 'j-/ 2 4
3C= -MW - Real

FIg.3 Root locus of I-aG(s)K(s) with resped to a.
satisfies the ARE:

o = Ar3C + 3CAd + 3CQzK + 9Q (24)

where Since I - y-f 2LTLb > 0 and R > 0, it follows from Claim I
that Ab > 0. Observe that, for this L,

02 0CBCI Cm T' Ad +AAd- L -(Bo + FLbG)&; Q
Rewriting Eq. (24) as

(Ad + AAd)T3C + XC(Ad + AAd) -Q4 (25) =A[M oV-A2 + YLtZ)

where Q. = 3CQ 23C + -?Q3 - &Adr3C - 3CAAd. Then Q, can

be written in the following form:
Since A, and A2 are stable, (Qs. Ad + AAd) is a detectable pair
which implies that, by Lemma 4.1 of Ref. 9, (Q4, Ad + AAd)

P; is detectable. Since 3C is a nonnegative definite matrix, the
Q4[ITR - TL• -- M-IF proof is completed by applying Lemma 4.2 of Ref. 9 to Eq.S-G(25). 

N
Note that the proposition holds for all controllers con-

P; IF ] r structed from the solution of AREs and is therefore very
X !rOR - MO TLT-MIF- conservative.

To design the controller (18), the design parameters p and -f
should be choosen for the AREs 1(19) and (20)) to have a non-

[ErLT-P,1D]ETL.-jP;D Tnegative definite solution and a positive definite solution,
+ M-ID M-D Jrespectively. In particular, as the value of p increases, system

performance improves, whereas as the value of y increases,
stability robustness with respect to parameter variation im-

L -Hov-'Y JL -_ev-'y J In the usual case the positivity of Vand the controllability
of (A, rF) do not hold. However, these can be avoided by

P32CTC+ ET.E + ZTA,,Z 0 redefining V and If as

o? 'BOTH-] v = r,rr+ yyT, r.=[ D F]

where r, and r are chosen to ensure that V > 0 and (A, rf) is

where controllable. It can be proved with minor change that Proposi-
tion 2 holds for these new V and rf.

A I =I-y- 2 LrL&
!!!. Two Mass-Spring System

Since ILo(e)ls < -y IUb(El, < -y, and IL,(e)l, < y, Q4 is11.ToMs-pigSte
nonnc ative definite. From Lemma 4.2 (Ref. 9), Consider a mass-spring system, shown in Fig. 1, that ap-

proximates the dynamics of a flexible structure.2 The system is

described by
(I9pCrC + ETArE + ZTAhZ I%, Ao + DLE)

f , + k(x, - x2) - u (26a)
is detectable since (Q,, Ao) is detectable and A,,A# > 0. There- R2 + k(x 2 - x) - w (26b)

fore, thtre exists L such that A2 , defined as

with a noncollocated measurement
A2 -- A@ + DL.E - L(pZCTC + ETA.E + ZT %Z)= z =x2  (27)

is stable. Let
where k is an unknown constant with nominal value k0 - 1, u

Q (p CrC + ETA2E + zTrz)% 0 1 is an actuator input, and w is a cyclic disturbance described by

0L A0R - 'BoyIInj w(:) =A,, sin(0.St + so)
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where A. and o are constant but unknown. The transfer The variation of system matrix due to the uncertainty of k can
function form of the system and measurement equations, Eqs. be decomposed as.
(26) and (27), respectively, is given as

G(s) A1 0
u(s) s 2 (s + 2)

The design objective is to regulate x2 and to reject the ex- &A - 0 [lk] _ 0 0.25n 0 no
ternal cyclic disturbance in xl for all k with 0.5 < k < 2. 0 1-L

To handle the cyclic disturbance, differentiate Eq. (26) until 0
w disappears in the resulting system. Differentiating Eq. (26) 1
twice yields

D
x•Iv- -k(2 1 + 0.25x, - 2- 0.25x2) - 0.2S.f + U (28a) With choices of

x2(v) - -k(1 2 + 0.25x2 - i, - 0.2x,) - 0.2522  (28b) C=H, r-0.0 1 00 oo T r, -0.033

where the parenthetical superscripts represent the time-deriva- C = 0 , = : , - 0.043, n = 10
live order and 0 is a new control variable defined as

ii fi + 0.25u (29) the control fi can be obtained by using Eq. (18) as

x. = Ax. + B•z, az = Cx. (31)

where

0 1 8.41 0 0 0

-147.26 -17.11 60.32 -61.00 44.21 -174.52

0 0 -7.19 1 0 0

0 0 -25.78 0 1 0

0 0 -51.65 0 0 1

1.03 0 -41.20 0.11 - 1.11 0.30

B,- 1-8.41 -37.85 7.19 -25.78 51.65 40.401T

\ C,=[-146.23 -17.11 22.24 -60.89 43.34 -174.22]

Note that n is a weighting between the E direction and C. and
r is chosen to ensure that (A, r.) is controllable (see Proposi-

The new system (28) contains uncontrollable poles at s - tion 2). The design parameters p, r, and n were chosen to
* 0.1j. To remove the uncontrollable poles from Eqs. (28), a satisfy the robustness requirement that 0.5 < k < 2 and the
new state, f , is introduced as J = f, + 0.25x1 . Then Eqs. (28) transient requirement that the system settle within 20 s. The
are represented in terms of x2 and J as minimal nonnegative definite solutions for the AREs 1(19) and

(20)] are used in controller design. Combining Eqs. (29) and
= - kt + k(22 + 0.25x 2) + ol (30a) (31) yields an eighth-order controller for the original system

(28) in the form of
xlIv) = - (k + 0.25)92 - 0.25kx2 + kJ (30b) rA, 06.2

A controller is designed for this augmented system. Figure 2 I 0 1
shows that the controller for original system is constructed by [0I [ 1]
combining the controller for the augmented system (30) and -[.1] C 025 01-
the relation (29). Define L

x=(t1xa2xg 2xI11 ]r u [0,1 6 I 01J,

Then Eqs. (27) and (30) can be represented in state-spqc form or in the transfer function form:
as K A u(s) -4430(s + 0.08)(s - 0.44Xs - 2.83)

0 1 0 0 0 O 0(s ) (S2 + 0.25Xsa + 1.78s + 9.67)
-k 0 0.25k 0 k 0 1

0 0 0 1 0 0 0 (S2 - 0.Is + 0.24)
& 0 0 0 0 1 0 x+ 0 Ts + 6.56s + 13.S1)(sl + 15.68s +124.99)

0 0 0 0 0 1 1 where the compensator poles are at *-0.5., -7.84 * 7.97j,

k 0 -0.25k 0 -k-0.25 0 0 -3.28.* 1.66j, and -0.89 * 2.98j, and the complex compen-
ý ,sator zeros are at 0.05 -0.49j. The zero configuration of the

A Bt compensator represents nonminimum compensation. The

z ft [0 0 1 0 0 0]x closed-loop poles are at -2.14, -0.33, -0.13 *0.56j.
-0.19 * 0.25j, -0.77 * 2.S0j, -1.83 * 1.45j, and -7.84

H * 7.97j.
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10 of (0.33)3 Time responses, shown in Fig. 5, for the nominal
k.e5 system and the perturbed system with k - 0.5 are simulated.

I k~l-2"For both simulations, A. = 0.5, i ,= 0, and all initial condi-I .o tions are zero. Figure 5 shows that, for the nominal case, the
6 .'" • controlled variable x2 has settled down and the cyclic distur-

bance is rejected in x 2 in - 20 s, and for the perturbed system
4 :with k - 0.5, the settling time has been delayed.

2 9- k
2 IV. Conclusions0

A game theoretic controller was applied to a mass-spring
- .6 4 12 system disturbed by cyclic external force. The cyclic distur-

Rea bance was augmented to the system by a procedure involving
differentiation and transformation. The resulting state and

Fig. 4 Roar loan of domse4oop sysem witk rmpedt k. control are used to design the game theoretic compensator. A
nonminimum phase compensator resulted.
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[14] F. Alvarado, "Parallel solution of transient problems by trapezoidal Legendre-Clebsch condition and the solution to an algebraic Riccati
integration," IEEE Trans. Power Apar. Syst., vol. PAS-98, no. 3, May equation of possibly reduced dimension. This test for positive realness
1979. parallels that given in [5]. The transformation used here based on

the results of [61 produce interesting characterizations of positive
real system in terms of system zeros and the necessary conditions in
singular optimal control. That a positive real system is of minimum
phase becomes transparent in this development. In Section IV. it is
proved that if a square system is minimum phase with certain positive
real characteristics, them exists a constant output feedback gain such
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that the resutin cloed-loop symm is positive rel. Some examples 1wr 1.4: Since dts test is done for all fequencics, the amount
me shown in Section V to illustrate the theaiy. Concluding remarks of computation for matrix systems may be large. The approach here
am given in Section VL only requires a finite number of operations which guarantee positive

The derivation of this new test for positive realness is based upon a nss.
stase-apce formulafim of dissipative systems. Basic definitions and
physical dchacaatcs, ae presented below. EL REAMm BuTWEN OrnmAL CoNTioL AND PosrnvRALNEss

A. Dinoadve System A. M Rehted VariationalPrblem

Consider the system input-output dewciption H: U -- e Y where
U = L4 (R+) and Y = L; (R+). Tbe noation A (R+) is used to C s minimizing the cost functional

denore the space of square integrable functions f: R+ -- RJe where fi
R+ = (to, o). The supply rme associted with this system is defined V[zo, to, u(.)I =J~ w[u(t), y(t)ldt (2.1)

as the ftncton w: & x " -. R wher where the supply rae is
w(u, y) = y'Qy + 2j'Su + u'Ru (1.1) , 1 s (2.2)

and Q E R"-, S E R-2', R rR *' are cnstant matrices, with W(u, 1 ) = I u = i(u Ru+2z'C'u).2)

Q and R symmetric. . to the dynamic system (1.3) and (1.4). where R = D + D'.
Defition 1.) 17): A dynamical system H is diuspave with T7e dimension of u and i is assumed to be m. Denote u'(.) E U

respect to the supply rae w(z, V) if and only if the control which minimizes (2.1) subject to the dynamic equation

ju•u(0 9 y(t)Jdt >0 (1.2) (1.3) umd (1.4), where z(to) = xo is prescribed The necessary and
muff)cien>conditions for V*Ixo, to] = Vi[o, to, u*(')to be bounded

for allit1 : to and all u E A. whenever the initial state satisfies from below ae equivalent to the necessary and sufficient conditions

(to)=0.T concept ofasupply rate is relatedinthegeneralcam for V0, to, u(.)] to be nonnegative defnite (positive real).
to) =t0.e "stored e for the spystem. nhRemark 2.1: IfR 0, and rank(R)=r < m, there exists anto the 'stored energy" for the system, orthogona trasformation matri r = jr,, r•] such that

Remark 1.1: Pasivity corresponds to dissipativeness where Q =

R = 0, 1= rn, S5= (1/2)1. and 4. is mn x m identity matrix. R[I' tr,.. ['l 01 (2.3)
Remark 1.2: Positiv realness corresponds to passivity where the L'2J L0 0]

dynamical system is linear and time invarianL wh is positive [9). Positive realness of O(s) = r'G(s)r is
Assume that the system under consideration is linear and time- shi e by is transfosition.

invariant, g not affected by this tranformaion.

Ax= A + Bu (1.3) B R Lemma Equations
=Cx +Du (1.4) Necessary and sufficient conditions for V"[xo, to] to be bounded

where z E R", u E Rl, E iR" and A, B, C, and D are constant from below over a finite time interval [to, ti am presented in [10,
matrices with appropriate dimensions. theontn 11.3.3]. The required positive real conditions are obtained via

the extension of Theorem 11.3.3 to the time-invariant, infinite-time
B. Review of the Positive Real Property interval case [11].

The positive real property is related directly to the iransfer function Under the complete controllability and complete observability
matrix description of the system. The positive real lemma, presented assmuapio of system (1.3) and (1.4), necessary and sufficient con-
in Section IL connects the positive realness to the parameters of ditiom for the nonnegativity of V[0, to. u(-)] ae that there exist
a system realization with complete controllability and complete w < 0, L, and W such that
observability. riA+ A'r vB +C' 1 L'1]L )ý 24

The Positive Real Property 18, p. 511: Let G(s) be an m x mr B'w + C R ] [V1  [LW]>0 (2.4)
matrix of functions of a complex variable a. Then G(s) is termed
positive real if the following conditions ae satisfied: wher W and L are of prope dimensions.

i) All the elements of G(s) are analytic in Refs] > 0. By identifying P = -w, the positive real lemma is stated below.

ii) G(s) is real for real positive s. Me Positive Real1emma 8, p. 218: Let G(s) be an m x m
iii) G*(s) + G(s) > 0 for Re[s] > 0wbere (.)" denotes complex matrix of real rational functions of a complex variable s, with

c.tugate +ransposex G(oo) < oo. Let {A, B, C, D} be a minimal realization of G(s).

Remark 1.3: N G(s) is a real rational matrix of functions of ,, Theu, G(s) is positive real if and only if there exist real matrices P,

then necessary and sufficient conditions for the positive real property L, and W with P symmetric and positive definite, such that

to hold awe given by the following theorem. PA + A'P = -L'L (2.5)
Theorem 1.1 [8, p. 53): Let G(s) be a real rational matrix of B'P = C - W'L (2.6)

functions of s. Then, G(s) is positive real if and only if
i) No element of G(s) has a pole in Re[s] > 0. W'W = D + D'. (2.7)

ii) G(jw) + G(jw) _: 0 for all real w., with jw not a pole of Remark 2.2: The generalized Legendre-Clebsch condition which
any element of G(s). is a necessary condition for V*[xo, to] > -oo in the totally singular

iii) If jwo is a pole of any element of G(s), it is at most a simple caeu, fewmar time-invariant system as given in [3), is
pole, and the residue matrix, 8

flim --i. (a - jwo)G(s) if jwo is finite •-(Hu) = CB - (CB)'= 0 (2.8)

lima._. G(jw)ljw if jwo is infinite Z0
is nonnegative definite Hermitian. -(Hu) = CAB + (CAB)' <0 (2.9)
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wher H is the variational Hamiltonian and A E R" is the associated A. Dervation O Tf)mVoMed Necessmy armd Sakcu Caodt

Lagrang multiplier defined by For (partialy) singular problem, (3.2) and (3.3) se as necessary
H'= u'Cz + A'(Az + Bu), = -H. sufficie Cnditios for positive realness of a system. Since (3.2)

and (3.4) parially determine the stucare of K, the original problem

By letting D = 0. (2.8) and (2.9) are also obtained fino the positive can be transfmed into the positive realness of a reduced-order

rea lemma (2.8) can be obtained from (2.6) which is in this case ysm
B'P = C. (2.9) can be obtained by pm- and post- multiplying (2.5) By assuming that (34) holds, one can perform the following

by B' and B. respectively, then applying B'P = C. trnsformation with
T = [NI 7-1=[IM, B,(C.B.)-1]

IIL PMM REAL CONDITIONS IN TERMS OF STAT-SPAM MATRICES [.
Let {A, B, C, D) be a minimal realization of G(a) = I'G(a)r where N and M arem (n - )zs and x(n - s) matrices consist of

[see (2.3)]. In terms of state-space matrices, (2.4) gives necessary basis of the nuil spaces of B. and C,, respectively, such that

and sufficient conditions for a positive real system. In this section, NB. = 0, C.M = 0, NM = I.-..
necessary and sufficient conditions for positive real systems are
developed using singular optimal control [10). The new realization of G(e) becomes {AT, BT, CT, D), where

To simplify the notation, we assume that B, C, and D admit the rNAM NAB,(CB,)-' 1

following partition Ar = TAT-' = LC.AM C.AB.(C.B.)J']

1 0]B =[B,., B.), C = ¢oj, RD=O+ D' [=~ Br=TB = [TB,., TEE)- =Br.1  CoBo

where B, is an nzr matrix, B. is an nzs matrix. C, is an rzn C[ = c- = r T'- I
mn-ix, C. is an szn matrix, R is an mzm matrix, and R is an1
rxr matrix, where r = rank(R) is the dimension of the nonsingular By applying (3.2) and (3.3) with respect to {Ar, Br, Cr, D}, we
control, and s = m - r is the dimension of the singular control. obtain

R being positive semidefinite is a necessary condition for (2.4) to
be satised. If R> 0. (2.4) can be reduced to a condition based upon i 0 (3.5)
a Riccati equation. That is, there exists a symmetric negative definite [.B.] + [1 [ 00

solution w to the algebraic Riccati equation and

x(A - BR-1 C) + (A - BR-C)'r [ wAT + A'2r wTB, + (CT0 1 )'1 36

-irBR- 1B'w - C'R- 1C = 0. (3.1) L(TB,)'z + CT"' XI 0  (3.6)

To satisfying (3.5), the structure of w can only be
If R is singular, (2.4) can be rewritten with some matrix V as =[i _ 0)1.(37

B[Er + C, R, 0 C =V'V In order that w < 0. the n - s dimensional wr must be negative
LBs'r + C. 0 0 = definite.

or. equivalently, there exist a 2r < 0 and some matrix V, such that By substituting (3.7) into (3.6), we obtain

wE. + C.[ 0 (3.2) triAi+A'1 wi w 1B, +Cl] > 0 (3.8)•~~~~~ Bo+ "=0 32LTB ir,, + C, At j

and
[rA + A',r 7rB, + C, = V,. (3.3) where
LB• +Cr . ,. I Ai = NAM (3.9)

Under conditions (3.2) and (3.3), two cases are treated separately. B1 = LNAB.(C.B.)-1, NB,] (3.10)
Case 1) f the dimension of the state is less than or equal to the C, -(C.B.)-C.AM(

dimension of the singular control, i.e., n < s, w can be determined =LM
from (3.2). If and only if a solution w < 0 can be solved from (3.2) and(3.12)asshownatthebottomofthepage. Accordingto(2.4)or
and the same w satisfies (3.3), the system is positive real. the (3.12) al Lemma. the boof of the rale. of tOe or

Case 2) Nf n > s, (3.2) and w being symmetric and negative the positive real Lemma, the proof of positive realness of the origindadefinite imply that system is reduced to the proof of positive realness of the reduced-
order system (A,, B1 , Ci, RI/2). The process will be continued

C.B. = (C.B.)' = -B'wB. > 0. (3.4) until either Ri becomes nonsingula, or, the dimension of At is less
than or equal to the dimension of mnll space of Ri. Furthermore,

Note that (3.4) is necessary, but not suffcient. See (2.8) for a from (3.8), the upper left-hand block of (3.12) must be nonnegative
varational interpretation. The new necessary and sufficient conditions definite. Note that this satisfies the generalized Legendre-Clebsch
are derived for Case 2) in the next subsection. condition given in (2.9).

R, -(1 .B.)-[CoABo + (C.AB.)'](C°B.)-t (C.Bo)-(B.C,c, -C.B..)] (3.12)L (C.- . - B..C.) (C.B.) RI
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Remark 3.1: The calculation of N and M is well defined. Corn- Remark 3.3: From (3.9) and Remark 3.2, we conclude that there
pule the singular value decomposition of B. and C. as are n - m finite zeros for a positive real strictly proper system and

all the zeros lie in the closed left-half complex plane. In other words,

B. = full, U12)[Ea lvai C. =U2(Ec, 01r J2' th system is mfinimum phase.
01V22 To simplify the approach further, a transformaion can al-

ways be found such that if n > m. a minimal realization of
1G(s),{A,B,C,D) can be established so that C = 10,11.W Vt. U2. lU,,. U12,,. Jand am a ortogona maries In particular, this is accomplished by finding a realization in

and E, and Ec ae nonsingular.7Then, we can define N and M as obeervability canonical form fill. In this case, M and N can

N = UI' 2 , M = V2 2 (UI'2 V22 )_. simply be chosen as

A. Naceuary and Sqficia Ckmduons for Positve Realness M- [ ,
The new necessary and sufficient conditions for positive Yzalness where B. = fB. 1 , B. 2 1 and B. 2 is assured inverible.

is smmaized in the following theorem.
Theorem 3.1: The transfer function G(s) = (A, B, C, D} is

positive real if and only if IV. SYmMMss oF PosrMvE REAL SYSTEM ViA OUTPU FEEDBACK
i) R > 0 Consder the linear system
ii) If R > 0, there exists a positive definite solution P to the

following algebraic Riccati equation i = Ax + Bu (4.1)

P(A - BR-C) + (A - BR-) C)'P + PBR-'B'P = CX. (4.2)

+C'R-IC = 0. It can be shown that if CB = (CB)' > 0, and the system is strictly

minimum phase, then an output feedback gain K can be found suchiii) ifyrank R = r<m, andn<s,thereexistsP=CB(EB)> that with u = ui + Ky, the closed-loop system
0 satisfying PB = C', and

F-PA - A'P -PB, + C, 0(A-BK)x+Bu (4.3)

.- B•P + Cr Pr I O y= Cx (4.4)

iv) If rank R r < 'm and s < n, then C.B. = (C.B.)' > 0 is positive real with respect to ul now as the input. By applying the
and JAI, BD, C1, R, /2) is positive real where A1, B1 , C1 , and R, new positive real conditions to a system (A - BKC. B, C, 0), the
are defined in (3.9)-(3.12). selection of K becomes straight forward.

Condition ii) is obtained by identifying P with -ir in (3.1). Lt N and M be such that NB = 0 and CM = 0. Then the
Condition iii) is the interpretation of (3.2) and (3.3) for the case reduced-Order system {A,, Bi, Ci, R,/2) is the one with
n 5 a.IfP = -w > Oexists, thenPBo = C, and PB°B" = C;Bs,
and P = C.B.(B.B')-' > 0. Condition iv) corresponds to the A, = N(A - BKC)M = NAM
situation discussed in Section M-A. B, = N(A - BKC)B(CB)-f = NAB(CB)-

Remark 3.2: If G(s) is strictly proper, and CB is nonsingular, Cl = -(CB)-'C[C(A - BKC)M = -(CB)-'CAM
then the eigenvaiues of Ai = NAM are the mtsmission zeros of 1

system (1.3) and (.4). Since the system's zero a are determined from = -(CB)- ([CAB+ B'A'C'I(C A)-' + K-+ K'.

{[ ]}0 Provided that C = (CB)' > 0, the positive realness of

(At, B1, C1 , R 1/2) implies the positive realness of the closed-
[A SI ] b loop system. By applying the positive real Lemma, it is shown thatpee-[and post-multiply -C by nonsingular ma0ri for some K, there exists a P1 > 0 such that

sl1 amd 0V'(,V2- 021U'2 ) 0 respec- P At +A A'P, = -L'L (4.5)

lively, the following matrix is obtained C = -'+ ( 4.6)- (CiB1 )-'[C1 ABi + B'A'1C1(CaBr)-
1

[(A .- r)M ... 0] + K + K' = W'V (4.7)

0 U2 :Ec(U12 V22)-l 0 Since the original system is stricty minimum phase, by choosing L
such that (A1 , L) is completely observable, (4.1) admits a solution

Since EsV• and U2Ec(UsV22)-l we nonsingular, (3.13) is equiv- PA > 0. In order that W is solvable from (4.6), L can be chosen as
alent to a nonsingular square matrix which also guarantees that (A,, L) be

observable. Finally, K can be solved from (4.7). The above discussion
det (N(A - aI)M) = det (NAM - &I) = 0. is summarized into the following theorem.

Theorem 4.1: If the system is minimum phase, and (CB) -

That is, the eigenvalues of NAM we the same as the system's finite (CB)' > 0, there exist a constant feedback matrix K such that
zros the closed-loop system with u = uI1 - Ky is positive real.
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V. EXAMPLES Section Ill-B. These positive realness conditions mae exprmed in

T"eosem 3.1 introduces a procedure for testitg positive real terms of the state-space marix inequalities and an algebric Rici

systems, requires only the testing a series of matrices C..B,. > 0, for equation of possibly- reduced dimension. These conditions do not

i = 0, 1, 2, . . ., k, and the solution to an algebraic Riccad equation ade w ineqlties tew d over the frequency domain or with

PA > 0, where i is the index associated with the new system obtained searching for matrices that satisfy the positive real lemma equations.

from the ith iteraion, and i =0 corresponds to B., C., and P. The E y, the direct tesa developed her provide a methodology

testing stops when R, becomes nonsingular, or dim (A.) = 0. for using the positive real lemma. A system either satsfs these

The following examples illustrate the application of Theorem 3.1. conditions of does not These conditions also made the synthesis

[;2 4 . 2 ±22 1of positive real system straight forward. Examples are given which

Exa.m+2 +2 . demonstrate the power of this approach.

A mnmal realization of G(s) is {A, B, C, D) where RmatiNcw

A= I B, B [_ 0], C =[2 , [1] L D. Landau. Adaptve ConTml-Te Model Rerence Appmsy New
2 1 York: Maicel-Dekker, 1979.

1i- (21 I- J. As"rom, Theory nad Applications of Adapve Q•m•u--A Smu-

D =[ 0* Vey," Aaomasica, voL 19, no. 5, pp. 471-481, 1983.
D 0  0 13 D. I.L Jacobson and J. L Speyer. -Necensary and sufficient oliamios

for optimality for singular contrl problems: A limit approach J. Mak.
Thus, C. = [2, 11, B, in 0]Ithe tm R>0, CB,= I>0 Anal. Appl. vol. 34. no. 2, May 197/1. pp. 239-266.

[1 n -- " [4] D. J. Bel and D. IL Jacobson. Singwlar Optimal Conmnol hpsbein

1 ,N= ---- [1,0], weo nAi=---- = New York: Academic press, 1975.
By choosing M = _-- N obtain A -3, B (5] B. D. Anderson and P. J. Moyln, "Synthesis of linear dni-vaying

-2 passive networks," IEEE Tran. Cirrwu S,'yst, voL CAS-21, no. 4, 1974.

[1, 11C 1  [5] and Ri =[2 Si] c R, is 1odfnt 61 A. G. J. MacFarlane and Karcanias. "Poles and zeros of lw mltivai-
[1-1 J' d 1= 1 2 able systems: A survey of the algebrmic. geometric and compa e -wuable

because the Legendre-Clebsch condition fails, the system is not theory," InL J. Conf.n, vol. 24, no. 1, 1976. pp. 33-74.

positive real. (7] D. J. Hill and P. 3. Moylm, Dissipstive dynamical systeam Basic

Example 5.2: G(s) = ((s + 2)(s + 3)/s(s + 1)(s + 4)) = ipu put an sta Properties." Jy Fn 1 ,.373ard.e. vol. 3W ,sno. 5,

(s + 5s + 6/s3  + 5s 2 + 4s). An observable realization of G(s) 18] B. D. 0. Anderson and Vegplaitlrd. NAnurk Anaysis md Syn-
is given below Aes i.-A Modem System Theory Apprach. Englewood bffs, qNJ:

Prentice-Hall 1973.
0[1(91 C. T. Chen. Linear System Theory dad Desrign. New York Holt,

A 0, C = 00, 0, 1], D = 0. Rinehart and Wnsto. 1984.

1 -] [101 D. J. Clements and B. D. O. Andemon• Singuar Opt maltC vL The
Limear-omadark Problem, Lecuir Norw in Cottrol and lmr.,o

In the test, R =0, C.B. = CB = (CB)' =1>0. By choosing Sciences, A. V. Balakrishnan and M. Thoma., Eds. Berlin l6&jblg
and New York: Springer-Weag. 1973.

61(113 C. Wilems, Leaw Squares Stationery Optimal Contra and theM= 01 N = [01 6fl .C

Algebra iccali Equ13ion," IEEE Trans. Aomai Contr., vol. AC-16,
[ 1 0 pp. 621-46•, 1971.

we obtainA _5I BI [0,; C.= 0,-, RI 0
2[]= ] 1  , k0 Stochastic Monotonldty and Concavity Prputes

Now test positive realness of {AI, BI, CI, 0). Since C1 BI = of Rate-Based Flow Control Mechanism

-2 < 0, the system is not positive real.
Example 5.3: In this example, we are going to cosingict an output Kenneth C. Budka

feedback gain K for the system given in Example 5.2 such that the
closed-loop system is positive real. From (4.5), by choosing L to be A--U sample path eompmrbons, we study the dtastie

the identity matrix, we obtain P5 = -05 0: . By substituting m ouiotandty and concavity properties of the moving and Ju win.
dow flow eostrl mediaium , leaky bucet flw centrol medbm and

[W sb.u the token bank rate eanul duvtte t9 deftudger the effect . -I pa-
P and L into (4.6), W is solved as W = _ .6 By substituting rameters have on trougbputs and downstream cnggmlon kk Ramits
W into (4.7). K = 6.38 is obtained. ar developed without disrtbutionsl assmptions on the packet inrival

stream and make me of spe•lally4aflored domed queeing Etw•r.

VI. SUMMARY AND CONCLUSIONS Performance comparisonm between maeidet ar pa m ntad

This paper reviews positive real systems as a subclass of
dissipative systems and states the positive real lemma equations. By
using the variational problem associated with the partially singular Manuscript received October 22, 1990; revised November 15. 1991 and
problem, necessary and sufficient conditions for a stm to be July 16.1992. This work was supported in put by NSF iam CDR49803012,

positive real are stated which are equivalent to the positive real ONR grants NA 0 4-9- K-1093 and N0014-9-J-1023,and U.S0171.

lemma. The Legendre-Clebsch conditions and the zero structure e author i s with AT&T Dell La s olmdeL, NJ 07731

are particularly transparent through the ransformation discussed in IEEE Log Number 9212872.
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Risk-sensitive Estimation and A Differential Game

Ravi N. Banavar " and Jwenn L. Speyer t

Abstract

A large deviation result is employed to solve the state estimation problem of a continuous

time Gauss-1 tirkov system with an exponential cost. The exponential cost is the expected

value of an exponential function of the state estimation-error. A scalar 0 appearing in the

cost, termed as the risk factor, determines the penalty on the higher order moments of the

error. In contrast to the minimum variance estimate, penalty on large deviations of the

estimation error is possible.

1 Introduction

The expected value of an exponetial function as a performance measure - henceforth

referred to as exponential cost (EC) - was initially proposed by Jacobson [11].

The cost is employed as an optimality criterion for a Gauss-Markov system with

perfect knowledge of the systems states. The EC includes as a special case the

LQG cost. The performance measure was later examined, for the case of imperfect

state observation by [17, 20, 2, 12]. In 121] Whittle views the cost as a risk-sensitive

criterion and lends a desirable certainty equivalence principle to the problem. An

application to missile guidance is demonstrated in [18].

Interest in the exponential cost problem was revived when the solutions obtained

*Asst.Profeasor, Systems and Control Engineering, Indian Institute of Technology, Bombay - 400

076, INDIA.
tProfessor, Mechanical, Aerospace and Nuclear Engineering Department, UCLA, Los Angeles,

CA 90024



from it were linked to those of the Ho, problem [8, 4). In his initial paper, Jacob-

son [11] demonstrates the link between the EC and a differential game. Solutions

to the H., problem for time-varying systems is obtainable through a differential

game approach [1, 15, 13). The differential game commonality links the stochas-

tic problem with the EC to the deterministic problem with a worst-case measure

(Ho,). Most of the existing results on the exponential cost problem assume an ex-

act equivalence to optimizing a quadratic performance measure. More recently, the

problem has been re-examined from a large deviation perspective. Whittle [24, 25].

states a risk-sensitive maximum principle derived from a result in large deviation

theory. Non-linear extensions to the same are found in [6]. Recasting the problem

into a large deviation framework highlights the sub-optimal nature of the solution

obtained through a quadratic kernel optimization. This is also in consonance with

the deterministic Ho theory where sub-optimal solutions are obtained [4].

This paper examines the continuous time version of the estimation problem on

a finite time interval. Speyer et al. [19] have considered the discrete time version of

the problem. As stated in [19], the estimation problem in this stochastic setting is

particularly interesting since the cost function is a curious exception to the family of

functions proposed by Sherman [16, 9] that yield a conditional mean as the optimal

estimator. Here, the performance measure is recast into a large deviation framework

and a sub-optimal solution is obtained by invoking a result in large deviation. The

approach is similar to Whittle's [25]. The two main theorems are stated and proved

in section 2.

2 Preliminaries

Consider a Markov process

+=Ax+Bw Rn, wER m (1)



with a measurement

y=Cx+v yERP, vERP (2)

where f(x(t)IX(t-)) = f(x(t)jx(t-)) is the Markov assumption and A, B,C are

time-varying matrices of appropriate dimension. The system noise w and the mea-

surement noise v are assumed to be white with zero mean and covariances W and

V The cost function is defined as

J E[e-L]L•1LA- 10 11 X -i 112 dr (3)

where 11 X - E 112 )T(x -- &) and the expectation is over the random variables

w, v and the initial state x(O) and induced by the estimate &. The cost function is

minimized with respect to the estimate i(t)

minJ (4)

where i(t) is restricted to a causal function of the information W(t) defined as

Ww~ft) ±t{,,r, fwxo)

where

Y-{y(T) :0 0<5r < t}

where

and the distribution of the state at the initial time is Gaussian given by

A140)) = 1e(X(o) &)ý(Z(0)0)

(21) I(det(Po))0 5 -

where io is the mean (a priori estimate at time t = 0) and Po > 0 is the covariance

matrix.



The EC penalizes large deviations of the estimation error. A better picture of

the cost function is obtained by expanding the exponential function as
62L2  63L3

J=E[1-OL-+ 02L+ ] (5)
2!- 3!

As 0 gets large (>> 1), the higher order moments E[L 3], E[L'],... are weighted

more heavily than EIL], E[L2]I. As 0 gets small (<< 1), the lower order moments

are weighted heavily and in particular, as 0 --+ 0 the second moment is the dominant

factor in the cost and the problem reduces to a minimum variance measure. The

risk-factor 0 allows a certain degree of freedom in shaping the probability density

function of the estimation error.

3 Main Results

The problem is cast into a large-deviation [5] framework and the solution is obtained

by invoking a large deviation result.

Preliminaries: Consider the course of the Markov process with state variables

(x, z) where

S= A x + B w

and

z=y = Cz + v

over the time interval [0, 71.

The derivative characteristic function H and the action functional DOT [7] corre-

sponding to this Markov process are defined as

H(z, a,fl) / aT(Ax) + /F(Cz) + 1 [a'Wa + f01] (6)
2

where a and 0 are conjugate variables (Lagrange Multipliers) and

DO{zZ() sup flaTic + , _ H(x, a, /)]dr (7)



where

(.)/z(-) )- 0 < T, < P}

x(.)I{fx(r) : _0< r < T}

When the initial state x(0) is unobserved and supposed random (here Gaussian)

then

DoT(x(.), z(.)) = Do(x(0)) + sup JIaTi + • T _ - H(x, a, 0)]dr (8)

where
f(x(0)) oc e.p-Do°€•€°•

is the probability distribution of the initial state.

With these preliminaries in view, consider the cost

E[e-L]

It can be rewritten as

E[e-kLI

where k is a positive scalar parameter. Note that this modification alters the perfor-

mance index but does not affect the optimal estimate. Let e& . A large deviation

result [5, 7] applied to the present problem states that

lir e log(E[e-L]) - - ess inf{DoT(x(.), z(.)) + OL}

where "ess" is over the appropriate measure. From the above result, for large k the

performance index

J = •e-kL]

is logarithmically asymptotic

exp{-kess'inf{Dor(z(.), z(.)) + OL}}
COX),,. •



or

E[e-AL] -L exp{-kessinf{Do2 {x(.), z(.)) + 0L}} (9)-0 (-),.

where -L denotes logarithmic asymptoticity.

With this background, the main theorem of the paper is stated. The theorem

below is akin to the risk sensitive maximum principle in [25] applied to the case

of control with imperfect observation. Here it is derived for the problem of state

estimation.
ATheorem 1 Tide sub-optimal estimate i(t) is obtained by seeking the inlimnum of

the linear-quadratic performance index

Jg = Do(x(0))+ II+ -X 112
1 2

+ 1[WTV-I w + (y - Cx)T V'-l(y - Cx)]dT- (10)

with respect to the estimates {i(,r) : 0 _<T - < T}, and the supremum (infimum) with

respect to {z(0), w(r) : 0 5 i- < } f{y(i-) : 0 < r < 7} ) for0 < 0 (0 > 0). The

performance index is subject to (1).

Proof:

From (9)

J = Ele-OL]

-L exp{--k inf {DoT(x(.),z(.)) +OL}}

Let

JA exp{-k inf f{DoT(d(.),z(.)) + 9L}(

Minimizing J with respect to :(.) is equivalent to minimizing JX with respect to i(.)

We shall consider the case 0 < 0 only. The proof is similar for 0 > 0.

For 0 <0

inf -- infexp{-Ok sup {fDoT(x(.), z(.))-+ L} (12)•(.) •(.) fOX()•.



exp{-Okinf sup f1Dwzx(.),z(.)) + L}•() a(.),z(.)

=-exp{-Okinf sup {IDo7 {x(.),z(.))+L} (13)-4.) 2(o),,.(.),v 0,

Now examine the term
sup / [aT• + /r._ H(x, a, 6)]d-

in the action functional (8). By a straightforward completion of squares it is shown

to be
•o [TWlw+ vr2 V-hjdr

which in turn can be expressed as

f1fwTu!W- + (y - Cx)V'ý"(y - Cx)Jd-r

and substituting in (8) results in

DoT{x(.), z(.)) = Do(x(O)) + / [[T--w + (y - Ck) T V(y - G:)ldr (14)

Define

Jg{=0Doix(.), z(.)) + L} (15)

From (13) and (14) the sub-optimal estimate is obtained by solving the differential

game
1

"inf sup {- DoT(x(.),z(.)) + L} (16)

QED

0.

Remark 1:Note that in the case 0 < 0, the linear-quadratic problem is a differential

game and for 0 > 0 the problem reduces to a one-sided optimization.

Remark . The estimate is termed sub-optimal since the the differential game

formulation is equivalent to the original problem only in the limiting case as e -4 0

or k -- oo.



Theorem 2 A saddle point solution to the differential game J,. exists if and only

if there exists a solution to the Riccati differential equation

P=PAT+AP+BWBT-P(CFVV-1tC+0) P (,0) =0Po (17)

over the time interval [0, 71. The optimal values are then given by

X(0)' = io

W* = WBTp-(x -- )

y* =Ci

X = A + PGV'(y - Ci); i(0) = o (18)

Proof:

Assuming i•(z(.), •(t), t) is the optimal return function [3] at time t. (All decisions

are assumed optimal over the interval [t, 71 and i(t) is the a priori estimate at time

t.) The saddle solution is sought by solving the Hamilton-Jacobi- Bellman partial

differential equation [31 or Issacs' equation [101

= inf sup [-:i + M(X(t),:(t),w(t),y(t),t)] (19)

where

MWO~t, •(), W(t), y(t), t) •

1II x(t) -- :i(t) 112 +-1 [w0(t)W-1w(t) + (y(t) - Cx(t))TV-'(y(t) - Cx(t))] (20)

Assume a solution

J.*W(X(.)(t),4(t),t) = Wx()() -- i(t))TP-I(t)(X(.)(t) -- 40t) (2-1)

with

JXP(W(.)(0), i(0), 0) W O(z(0) - :(0))T P-I(0)(X(.)(0) -- (0)) (22)



Substituting (21) in (19) and subsequent algebraic manipulation results in

X(0)' = io

w* -WBTp-1(x - r)

y" =C

=A. + PCIV '•(y-C); i(0) = &o (23)

where

P=PAT+AP+BWBT- p(CIWVC+O1)p P(O) =p10 (24)

With the optimal values given by (23)

j.9(:*, y,W, x(0)) <5 J9(W, e,w', X(0)') <5 Jg(&, o,w', X(O)')

Vx(O)•/R, i,x,yEL 2[0,7j. (25)

This proves sufficiency.
(Necessity) :Assume that P(t) becomes unbounded at time t,, 0 : t. < T. P(t) oo

as t - t. from below. Let c bea small number. The variation

AJý-J,(&, y, w, x(O)) - J (,*, W*, x(O))

-- po 2t. 21~nIIPA~~ - 1) +1j WBTkl(A&e) W 1-
-.0 2O (t-) +F-

+ l_ y - C: 1 12)dt

+ li-a fI Ae' 112 + (I� u' v- + II y-¢ C ,)dt (26)

where Ae* z - V represents the error in the optimal estimate. The existence of

P(t) is not assumed for the interval It. - f, 2) and consequently the optimal estimator

given by (18) does not exist in this interval. In the interval It, - e, q, i* represents



the optimal strategy of i, no longer governed by the dynamics (18). Note that the

optimal estimator over this interval of time may be non-linear as well.

Now consider the following strategies for y and w,

w=WBTP-lAe, y=C " VtE[0,t,-e]

W=0, y=Cz Vt E [te - e,l (27)

Then
I ]•,1=_2 I 11Ae 112 dt) (28)As, = lm( II Ae'(t,-,) 2-~.-)l je- (8

As e --s 0, P-1 (t. - e) tends to a singular matrix. For the interval, 10, te - el, Ae* is

governed by

AI* = AAe + B(WBTP-lAe") (29)

= (A + BWBT &P-)Ae"

The solution to the linear dynamic equation (29) can be expressed in terms of a

state-transition matrix,

Ae'(t. - e) = ,((t. - e), O)Ae'(0) (30)

where 4t.,) is the state-transition matrix of (A + BWBTP-l) and Ae*(0) = x(0) -

£0. Since z(0) is arbitrary, z(0) can be chosen such that li, Ae*(t, - e) lies in

the null space of lim._a P-l(te - e). Note that the latteris a singular matrix. Then

i1 Ae'(t. - C II2(.o.)=- (31)

and

Ile = li -, 11 Ae' 112 dt > 0 (32)

Therefore, (32) is a contradiction thatV is optimal. Hence, P(t) must exist Vt E

QED



0.

Remark .If the solution to the Riccati differential equation (17) exists over the

time interval [0,71 then the solution remains positive drefinite throughout the in-

terval [15, 26].

Remark 4: For 0 < 0, the estimator views the initial state z(0), the disturbance

w and measuremnt corruption v as adversaries and adopts the safest (risk-averse)

strategy.

For 0 > 0 the estimator views the actions of the initial state z(0), the disturbance

w and measuremnt corruption v as friendly and adopts a more adventurous (risk-

prone) strategy.

Remark •: Define an attenuation function

JA sup 1 X - 112 dt (33)
II X(0) - jo II2, +J• II (3 3 + I V - ,i

where ((&(0) - &0), tw, v) E (Rn, L2[0,1, L2[0, T]) and sup stands for supremum. The

sytem dynamics (1) and measurement (2) are now deterministic and the objective

is to find an optimal estimator which bounds Jo! i. e.

1Y~f < -I

wghere 0 is a negative scalar. An optimal estimator for the performance measure

(33) is identical to (18) and for the time invariant case (with a few additional

assumptions) is the H, optimal solution [14].

4 Conclusions

The large deviation approach applied to the exponential cost problem highlights

the sub-optimal nature of the solution obtained through a quadratic kernel opti-

mization. This feature is very much similar to that encountered in the deterministic

counterpart or the H.. optimal problem. Even in the latter case, sub-optimal so-

lutions are obtained. The estimator is not the typical conditional mean (Kalman)



filter and is an exception to the large class of cost functions proposed by Sherman.

Existence of the optimal solution depends on the existence of the solution to a

Riccati differential equation, which in turn depends on the risk-factor 0.

Acknowledgements The first author appreciates the comments of the anonymous

reviewer regarding theorem 1.
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"'ENTRALIZED AND DECENTRALIZED SOLUTIONS OF THE

LINEAR-EXPONENTIAL-GAUSSIAN PROBLEM"

Chih-hai Fan,l Jason L. Speyer,$ and Christian R. Jaenschl

ABSTRACT

A particular class of stochastic control problems constrained to different information patterns is con-

.udered. This class consists of minimizing the expectation of an exponential cost criterion with quadratic

argum'mnt subject to a discrete-time Gaues-Markov dynamic system, i.e., the Linear-Exponential-Gaussian

(LEG) control problem. Besides the one-step delayed information pattern previously considered, the classical

(includes current observations) and the one-step delayed information-sharing (OSDIS) patterns are assumed.

After determining the centralized controller based upon the classical information pattern, the optimal decen-

tralized controller based upon the OSDIS pattern and the solution to a static team problem is found to be

affine. A unifying approach to determine controllers based upon these three information patterns is obtained

by noting that the value of a quadratic exponent of an exponential function is independent of the information

structure. Even though the controllers are determined by a backward recursion of this exponent, the value

of the cost criterion is not; rather a coefficient of the exponential delineates the value of the cost criterion

with respect to the information patterns. Both necessary and sufficient conditions for the controllers to be

minimizing are obtained regardless of the exponential form. The negative exponential form is included which

is unimodal but not convex.

1. INTRODUCTION

Control problems with an exponential cost, in particular the exponential of a quadratic form, have proved

to be an interesting extension to control problems with only a quadratic cost, such as the well known linear-

quadratic-gaussian (LQG) control problem. The first to consider the linear-exponential-gaussian (LEC

problem was Jacobson (81 who treated the case of perfect state observation. Jacobson pointed out the

relation between the LEG problem and deterministic differential games. Subsequently, Speyer, Deyst, and

Jacobson in [18] derived results for special cases of the general LEG problem with imperfect observations

where they obtained fixed finite-dimensional controllers. Speyer et. al. also considered the general LEG

"This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 91.0077

tRmserch Amistant, Department of Mechanical, Aerospace and Nuclear Engineering, UCLA.

SProfemor, Department of Mechanical, Aerospace and Nuclear Engineering, UCLA.

$German Aerospace Riearch Orgsnization(DLR), Wasling-Oberfaffenhofen, FRO



problem with imperfect observations, but obtain an optimal controller which is a function of the entire

smoothed history of the state vector from the initial to the current time. Kumar and Van Schuppen [13]

obtained results analogous to [181. In [21] Whittle obtained the solution to the general LEG problem with a

one-step delayed information pattern and showed that a fixed-dimensional controller resulted. In his analysis,

a risk-sensitive certainty equivalence principle is derived, from which the differential game interpretation

follows. Later, Bensoussan and Van Schuppen obtained in [2] results in continuous time analogous to [21].

A major objective of this paper is to consider in a unified manner LEG problems having various information

patterns. Included is the decentralized LEG problem which is more naturally formulated in a discrete-time

setting. Therefore, we will not refer to the continuous time LEG optimal control problem any further.

In contrast to centralized control which assumes all the measurements of the system's state are available

(the classical information pattern), decentralized control focuses on systems in which not all the information

is available. A particular information structure is assumed here called the one-step delayed information-

sharing pattern (OSDISP) which assumes that each control station (elements of the control vector) has, at

the current time, all the previously implemented control values, all the observations made anywhere in the

system through and including the previous time, and its own observation at the current time. Hence, the

difference between the one-step delayed information-sharing pattern and the classical information pattern is

that the current observations are not shared. The one-step delayed information pattern is that only the past

observations are available and the current observations are not available to any control station.

Dynamic team problems associated with a one-step delayed information-sharing pattern can be conve-

niently reduced into a series of static team problem by utilizing the Dynamic Programming method. However,

this is in general not true with arbitrary information pattern [24]. Nevertheless, for different cost functions

the one-step delayed information-sharing pattern has produced recursive solutions for obtaining the optimal

control law. In particular, Sandell and Athans developed in [17] the first recursive solution to the team

problem with a quadratic cost, one-step delayed information-sharing pattern and linear dynamics. For the

exponential of a quadratic cost function without intermediate state penalties, Krainak, Machell, Marcus and

Speyer derived in [12] an analogous result for a one-step delayed information-sharing pattern. In section 6

we extend that result for the general exponential of a quadratic cost function.

In the following presentation superscripts on vectors indicate either components or partition of vectors.

The following defines a class of static team problems.

Definition•I. 1

A team decision problem is concerned with a decision making unit (called a team) consisting of M

members, that chooses a value of the decision vector u from a subsetE C RP and incurs a cost C(ux), which

depends upon both the decision u and the prevailing state of the world x. The decision variable u is usually

a p-tuple of individual decision variables, or an M-tuple of individual decision vectors u' E E C RN", where

2



pi = p = dimu. The set of all possible decision values is some subset of the Cartesian product of the

341 s, i.e. - C = 1- X 2 x -f × We also assume that z E fl, where (fl, E,P) is a given probability space

and f• M R' for some n, E consists of the Borel sets on R" and P is a known probability measure. C(u,x)

indicates the penalty associated with each decision for each state of the world and is assumed for all purposes

of this paper to be real-valued and Borel measurable on (RP x fl). Furthermore, the ilh team member has

available to him some observation of the state of the world : =z = hi(z), where dim zi = r' and z is the

vector of all the observation values known to the team members with dim z = r. Note that z' indicates the

ill partition of z and not the ith component. It is also presumed that hM(.) : fl --+ Ri is a Borel measurable

function to avoid the discussion of pathological cases. Finally, it is supposed that the set of admissible control

laws for the ill team member, Ui, consists of all Borel measurable functions, -y'(.): R•' --+ -. , where •' is a

Borel measurable subset of RP'. This means that the control value u' is solely a function of the observation

zi. The set of all admissible team control laws is defined as UT- U x U 2 X x Um. The problem faced

by the team is to select the control law

U1

which minimizes the average cost, J = E[C(-y(z), z)]. 0

For the remaining part of this section and throughout the paper, we adhere to the notation given in the

above definition, unless noted otherwise.

A sufficient condition for global optimality of a class of static team problems is given by Radner [151. In

particular, it is assumed that for every fixed z E R, C(u, z) is convex. Furthermore, because of the hard to

verify "local finiteness" condition in [15], an extension which circumvents this conditions is given by Krainak

et. al. in f111. Further simplifications are obtained here because of the restriction to exponentials with

quadratic arguments.

In section 2 and 3 we extend the results presented by Whittle in [21] for the slightly more natural

assumption that the control at the current time is a function of the observation history up to the current

time (the classical information pattern) rather than only up to the previous time (the one-step delayed

information pattern). In addition, in section 2 and 3 we contribute detailed proofs to some of the Theorems

of [21] where only a proof outline is given. The lemma given by Whittle in [21] converts the expectation

operation of the exponential of the quadratic function to the extremization operation. Using this property,

we avoid the tedious proof in [11] for the exponential cost and give sufficient conditions for both the risk-

averse and risk-preferring cases of the LEG team problem in Section 4. The optimal team control function

for risk-preferring is found also as an alfine function. For the risk-preferring case, C(u, x) is an exponential

3



function but nonconvex. This extends the results of [11] in which only the risk-averse case with a convex cost

function is considered to be a nonconvex but unimodal exponential function. For more general functions of

C(u,x), the work in (111] must still be extended. In Section 5, we investigate the relationship among three

different information patterns: the classical information, one-step delayed information, and one-step delayed

information-sharing patterns. Using the results of the classical information and one-step delayed information

patterns, the dynamic programming recursion will be shown to be essentially the same for the three different

information patterns. This property simplifies the derivation of the control gains for the one-step delayed

information-sharing pattern in that the backward algorithm in [10] is no longer needed. Furthermore, only

the coefficient of the exponential in the cost function changes for different information patterns indicating

their relative optimality. In section 6 we derive the optimal decentralized controllers for the one-step delayed

information-sharing pattern. This extends the results of Krainak, Machell, Marcus and Speyer in [12), who

examined only the case in which terminal state penalty is present. Also, the results in Section 6 are extended

to nonconvex C(u, x) but unimodal exponential functions.

2. THE LINEAR-EXPONENTIAL-GAUSSIAN PROBLEM

Consider the following linear, stochastic, discrete-time system,

xt+1 = Atzt + Btut + wt (2.1)

where we assume that dim(xt) = n and dim(ut) = p. The state observation is now restricted to the form

zt = Htxt + vt (2.2)

where zt E W. Notice that the definition in (2.2) is different from that in [21]. In addition, zo is normally

distributed with mean x0 and covariance Vo > 0, and {wt} and {vt} are assumed to be zero-mean, jointly

Gaussian, independent random variables for all t = 0, 1, ... , N with known positive-definite covariance

matrices Wt and et, respectively. Whereas this description of the dynamics suffices for the centralized LEG

problem, a few additional requirements have to be added for the decentralized LEG problem.

Specifically, it is assumed that ut and Bt are partitioned as
utt=[I(t)T," .,(UM)T]T, B2 (2.3)Ut=[U t=[B',,B, .BM] (2.3)

where u, corresponds to the control implemented at time t by the i"h team member (i E {1, ... , M}) with

dim(t4) = pi and E-, pi = p. In addition, zt is partitioned as

= [(z)T,...', (ZtM)T]T (2.4)

where zA corresponds to the observation of the i•h team member at time t with dim(z') = r1 and '•= I r= -.

It is also presumed that eO can be partitioned as

09 = Diag[e, .. ,e] (2.5)



In other words, vi and vj (i,j E {1, .. ,M},i # j) are assumed to be independent Gaussian random

variables, where vi corresponds to the noise corrupting the observation of the i"' team member.

The objective is to minimize the following performance index,

J(O) = E[-#e-1  ] (2.6)

where 0 is a real scalar and %P is given by,

N-i
E ( (xTQtxt + -t-uT•) + X'TQNXN (2.7)
t=0

We assume that Qt _> 0 and Pt > 0, and Rt is partitioned in the decentralized problem as

Rt . ......... (2.8)

In addition, all matrices and vectors are assumed to be compatibly dimensioned.

The feature distinguishing the decentralized problem from the centralized is the assumed information

pattern. In particular, a one-step delayed information-sharing pattern is assumed for the decentralized LEG

problem which can be described as follows,

YoM(emptyj set), Yt =-Yt- 1 U {Zt...ut1,U1, IT = Yt U {z}l

Given this, we require for the decentralized LEG control problem that the team member constructs his own

control value, ut, according to the mutually agreed law, -y(.): Yg' -, 1P, i.e. u% = -y(Yt) E U', as discussed

in Definition 1.1 where UT is the admissible control set.

On the other hand, we require for the LEG problem with the classical information pattern that the control

at time t be a Bore] measurable function of the observation history Yt, -yt(') : -- RP" i.e. ut =--t(k),

where Y0 is the initial information available on x0 and Yt = Yt' U.. U YM. The set of all admissible control

functions with the classical information pattern is

Uc = {Ut: = t(YL)}

The information pattern based on kt is called classical, the information based on Y1' is one-step delayed

information-sharing, and the information pattern based on Y, is called one-step delayed. Similar to the

definition of Uc, the set of all admissible control functions for the one-step delayed information pattern is

Us = {t: ,,, = -A

From the above definition, the following relation is obtained.

Us CU•T C UC (2.9)
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In general, we will also adopt the notation,

X,-- (XO, Tl,-..,X,), X,&-=(X1,X1,*,*'-,XN)

witha similar convention for all other variables.

2.1 Some preliminaries

Two lemmas from Whittle [21] [22] are given here to form the basis for the dynamic programming method-

ology given in section 2.2. The first lemma is concerned with the relationship between minimization and

integration of gaussian densities and is restated below somewhat more precisely.

Lemma .I Let S(u, v; 0) be a quadratic form in the components of the vectors u and v with dim(u) = r.

In other words, let JT - [uT, vT], then

v+., S , 1.

If 0 > 0, suppose that S > 0 and S(u, v; 0) attains its minimum at u = u" and v = v*, whereas if 0 < 0,

assume that Suu > 0, S,,. < 0 and S(u, v; 0) attains its minimax solution at u =u* and v =v*. Then

min ° e-S(u)dv = -(27r)irSv-Iees(',t'D;e) ce-es('';) (2.10)

and the minimum is attained at u = u*,

Proof. See [9] 15] or [23]

The importance of this lemma is that it precisely relates the expectation operation on the exponential

with quadratic argument with respect to a Gaussian probability density to the extremization with respect

to the random variable of the quadratic argument of the exponential.

The second preliminary result concerns the explicit form of the conditional probability density of all un-

observables and is stated in detail below. Let f(XN, ZN IUN- 1) denote the joint probability density function

of the random variables XN, ZN given the admissible control sequence UN-1, where

XN- (XO,xl,--.,XN), ZN-- (zo,z1,'",ZN), UN-i--(tO,,, N-J)

This notation is consistent with that of Whittle; see [23] equation (2.39).

Lemma 22t

f(XN,ZNVIUN-I)= nfl'If(zkIXz)f(zXXt-1,ut-l)]f(zoIzo)f(Xo) CXC-'(P+-N) (2.11)

with
N-I M

P = Z(nt + (EM )) + (xO _.0)T VC0-(x0 -- -0)
k=O i=i
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N-I=F, (,'- +, ,,,) + (xo - &O)TVo-•(x - 1)

n= (xk+l - Akzk - B W•-jT (xt+i - Atzk - Bk)

=• (4 - H T )-l( ) {1,-.-, M}, m=(zt--Hkxt)T(Ok)-(zk -t-t)

and the constant term for (2.11) is

const = (27r)-f IVoI-inN-o [(27r)- IWkjl-jnkto(2w)-f Iel]- 1) (2.12)

Proof. See 19] or [5].

Define

+= 0_ + -(P + MN) (2.13)

Sc is called "stress" in [21] and 4' is defined in (2.7). We shall also say that a variable extremizes Sc if it

minimizes Sc in the case 0 > 0, and it maximizes SO when 0 < 0.

2.2 The Dynamic Programming decomposition

The Dynamic Programming recursion for the classical information pattern is given as follows. The cost

function is

J = nmn E[-Oe-l"']UN-i

By applying the Fundamental Theorem of Dynamic Programming, see [18], J is written as follows,

J = E[min E[mini l.E[. •min E[... nin E[E[-Oe-ieO"IN]YN]... [Yt+i]--" IY2 ]IYIJ]

UO U) Ut UN..i

The above equation can be rewritten more explicitly as follows,

J=Iminlnin. n_...minf[ ...min
J-oo UO J-O U1 f, U -o UIN--I -0

f(XNIYN)dXN]f(ZNIYN)dZN ... f(zi+uIY+ lt+)]d+1 "" "f(z 2jy 2 )dz2

f(ziIYi)dzif(zo)dzo = f- minf mini fo .m min[fi rain[f 0 -e "

f(XN IY"N)f(Zj+2 IUN -.1, Z9+ )dXNdZN2 1f(Zt+II UO) A+II... dZ2]dZIldZO (2.14)

From (2.14) the optimal return function is defined as,

Jt+,(f(+1 ) = min EI-6e-eI"It+ujf(Zt+jIUt)

7



Then, the Dynamic Programming recursion rule is

Jt(t) = min o Jt+,(t+,)dzt+l (2.15)

The optimal return function at the final stage, i.e. at t=N, after reviewing (2.14) is

JN(YN) =(-V)j(k'jUN-z)Eje-1e'jkN)

= (-0) e ° 'f(XN, IN)f (ZN JUN-l )dXN

=(-9)jfo e1 e*f (XN, ZNWUhi..I)dXN

From Lemma 2.2

JN(kN) = xMStl(-o) e-iS"dXN (2.16)

where const, is given in (2.12). Let SxcNx be equivalent to Se,, in Lemma 2.1 and apply Lemma 2.1 to

(2.16). Let IWN(YN) = extxSe where "ext" means "min" for 0 > 0 and "max" for 0 < 0, then JN(Y5,) can

be written as

JJVN(N) = C4MSt 2 (-Oe-'•N(YN)), conSt 2 = constj(27r)ý 10SNXj-i

where YN(kN) is a quadratic function in ZN and UN-,.

The optimal return function at time stage N-I is evaluated by using the Dynamic Programming recursion

rule (2.15). Thus,

JN-1(YN-1) = rain JN(kN)dZN = min COnSt2 (--)e--;O*N(9N)dzNUaN-1 r-o UtN-1

Let S N.N be equivalent S,, in Lemma 2.1 and apply Lemma 2.1 to the above equation. Let 4ýN-.(fN-1) =

Urai eX 4N(YN), then JN-1(YN-1) can be written as

JN-I(YN-1) = (COnSt 3)(-O)e-'I•O.-l¢•(N-1), const3 = const2(2wr)i•IOSN-Ni (2.17)

where ZN-.(YRN-1) is a quadratic function in ZN-1 and UN-2.

In general, the recursion produces

JA(I,) = Const 4 (-O)e-'t*'¢) (2.18)

where const4 = const ( aInd

4ý(Yt) = min ext Pt+I(' +1 ) (2.19)

zt+1

t(kt) is a quadratic function in Zt and Ut- 1 , and ut found from (2.19) is the optimal control at time t for

the classical information pattern.
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3.THE OPTIMAL CONTROL LAW WITH THE CLASSICAL INFORMATION PATTERN

From the derivation in Section 2.2 the following Theorem is obtained, which is applied to the central-

ized LEG problem with current observation (the classical information pattern) and is different from Theorem

I in Whittle [21] who considered the centralized LEG problem with the one-step delayed information pattern.

Theorem 3.1: Let SC be positive definite in UNV-I,XN, Z(l when 0 > 0 and Sc be positive definite in

UX- 1 and negative definite in XN, t+ when 0 < 0. Suppose SC is minimized with respect to the decision as

yet undetermined UN-' = (Ut, ... , UN-1) and extremized with respect to XN and the current unobservable

ZN for a given value of Y•. Then, the value of ut is the optimal control at time t and the order of the

optimization is irrelevant.

Proof: From the Dynamic Programming decomposition in Section 2.2, the recursion 4'(k) (2.19) for

the classical information pattern is

4ýt(Y) = min ext jt+1 (Yt+1 ) (3.1)

4 N (YN) = ext SCVXN, YN) (3.2)XN

The optimal control at time t determined .77om (3.1) assumes the classical information pattern. 'It(Yt) can

be written as

t(Yj) = min[ext 4tj+(Yt+)] = min[ext min ext t+2 (Y9+2 )] = min[4g+2(z•+i, Z,+2 , Ut+i,Z t, Ut)1 (3.3)Ut Z.+- U, Zt+l U,- 1 - +2  U,

By repeatedly using equation (3.1) in (3.3)

T (')=nin['PN(Zt'V*, Zt, U+1'i Ut)] (3.4)
Utt

From (3.2) and (3.4)

d t(Y,) = min[Sc(X;,, z,, Zt, UN*, Ut)] = min ext ext SC(XN, YN) (3.5)
U, uN- IZN ~XN

Since we have assume S' is positive definite in U'- I, XN, ZN(i when 0 > 0, so the order of the minimizations

can be certainly interchanged. We also assume S' is positive definite in U[-1 and negative definite in

XN, ZN1 when 9 < 0, so Sc possesses a saddle point. The operations of min and max can commute [1]. 0

The recursion of the quadratic function Sc in (3.5) can be decomposed into a forward recursion Pt and a

backward recursion Ft. In fact, the ability to decompose Sc in such a way is the key in solving the general

centralized discrete time LEG problem because it allows for a separation of the control algorithm from the
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estimation algorithm. In essence, this says that in some sense the separation principle (21] holds for this

class of problems. Let

a--i

Si (Xt, YO) = 0- (Xo - z)TVi ' (X0 - x) + (T Q + ,R*,,
k=O

+ (-lk(n,(Xk+I,Zj, u) + mk(zk,,Zk)])+ +e-mt(zL,xt) (3.6)

N-i
s2(xI, Z( •1, Ut-i) E (4TQa=z +,uRk,,

k=t

N

+ 0-'n t(xk+i, Zk, u,)) + 0-i E Mk(Z,, xt) + ZTNQNXN (3.7)

1C=t+i

where S1 is named "past stress" and S2 is named "future stress in [21].

Since S2 does not contain Xt-i and S1 does not contain U ,ant+d, 3.

of the optimization is irrelevant. Decompose (3.5) as,

min ext ext SC(XN,•YN) =-extf ext SI(Xt,Yt)-+ rmin ext ext S2 (X, ,Z[.i,U•, )] (3.8)
UN- ZN XN -X- 1  U.N-- N ZN&l+I Xtx+1 e•+1

Define Pt and Ft as follows,

Pt (x, Yt) =- ext S,(Xt, Y) (3.9)
xC- 1

Ft(xt) -= min ext ext S2 (Xt, ZtN+1, U N-) (3.10)U'N-2 Nj ZN

ZNAlso observe that the second summation term of $2 simply vanishes when extremizing with respect to + ,

since extremizing S2 with respect to z£ for all k E {t + 1, t + 2,..., N) yields z* = Hkxk implying that

EMk = 0.

It also follows immediately from the above definitions of Pt and Ft that Pt(x,, kt) satisfies the following

forward recursion,

Pt+1(xt+i, Yt+ 1) = ext[Pt(xi, kt) + xTQtxt + ,TRu, + 0-'(n, + mt+i)]

with the initial condition,

Po(Xo, Yo) = e-'(zo -_o)TVo1(Xo -_o) + 0o-1

and Ft(xt) satisfies the backward recursion,

Ft(xt) = rin ext [Ft+i(xTt+i) + -- TQtx, + JTRtu, + 0-'n,] (3.11)
Ut t,,-0
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with the terminal conditioiq FN(ZN) - zQNZN. FRom the above discussion, Theorem 3.2 is obtained which

is an alternative form of Theorem 3.1. Theorem 3.2 assumes the centralized LEG problem with the classical

information pattern and is different from Theorem 2 in [21] which considers the centralized LEG problem

with the one-step delayed information pattern.

Theorem 3.f Let u*(zg,t) be the minimizing value of ug in the recursion equation Ft(xt), and let zx(Yg)

be the value of z, extremizing Pt(xt, Yj) + Fj(zt). Then, the optimal control at time t is given by,

Proof: Since S 2 does not contain Xt-1 and S1 does not contain UN-, Xtr1, Z+, and by Theorem 3.1

the order of the optimization is irrelevant, then from (3.8) to (3.10)

min ext ext SC(XNv, Y')= ext[ ext S (XI,Y) + mrin ext ext S2 (Xp, ZN , U'- =ex t[Pt•+ FL]

6+- t v 9+ +,ZU'•-' Z~ Xii z, X,- 4'- x,+1 z,+

If the state is completely observed, then the optimal control is ut = u* (xt, t) and is determined from the

backward recursion Ft(zt) in (3.11). The optimal control in the case of imperfect state observation is ob-

tained simply by replacing xt by x*(Y), where xt(Y) is the value of xt extremizing Pt(xt, Yt) + F,(zt). This

replacement is a modified version of certainty equivalence [21]. C

In the following, first the controller Ue(xt, t) is determined from the backward recursion Ft(zt) in Theorem

3.3, then, the forward recursion Pt(xt, k) is evaluated in Theorem 3.4A, and finally, the optimal controller

at time t, u*(x(ft),t), is computed in Theorem 3.5.

In fact, the following Theorems 3.3, 3.4 and 3.5 are taken from Whittle [21]. More detailed proofs than

Whittle gave in [21] are given in [9]. The following Theorem essentially presents the results of solving the

backward recursion Ft(z,).

Theorem 3.3: Ft(xt) is quadratic in the state variable xt, Fj(zt) = zTrItzt, and the optimal control for

complete state information is linear, u*(xi, t) = kjxg, where the controller gain kt satisfies

kt = -R 1 BTrit+,(I + BtRT-B1 tTn+ + -OWt'lt+)-'At (3.12)

and I1t satisfies the discrete time Riccati equation,

n, = Q, + ATnt+I(I + BtR-IBTII1+I + OWtrlt+1)-'At, fiN = QN

For these assertion to be true when G < 0, it is necessary that 11+1 < -(OW,)- 1 for all s > t.

Proof. See [21] or [9]
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Remark: Notice fIg is positive semidefinite when 0 > 0. From the ba&wards Riccati equation if I +

9Wj,+ > 0, then 11 > 0 when 0 < 0.

The recursion equation for Pt(zt, Y) is rewritten in the following form,

P,+, (xt+i, Y,+,) = ext[,(xt, Y,) + xTQtx + ,TRs,

+ O-9(nt(z,+j,z,, t,) + m,(z, z,))] + -lm,_,(z,+,, ,t+,) (3.13)

where
t--1

Pt(zt, yt=) - eXt[-1(o - zo)TVI(Z -- _o) + E(zTQtz& + uT',*ua + -'(n, + imk))] (3.14)

The reason for rewriting the Pt recursion as,

P, CX,',) = P,(X,, Y) + 0- 1 ,m,(z,, XI) (3.15)

is that the recursion equation for Pt is exactly the same as the equation for Pt in Whittle's paper. Therefore,

we can invoke Theorem 4 in [21] to obtain an expression for Pt(xt, YI) = Pa(xg, kg) -0- 1 mg(zg, x) which will

be needed in Theorem 3.5 to obtain the optimal controller with the classical information. A less complete

form of this theorem without the explicit form of Lt+,(Yt+1) (3.18) was originally given in [21]. However,

as we shall see in Section 6 in order to obtain the optimal decentralized controller with the one-step delayed

information-sharing patterp we need an explicit expression for LC+1 (Yt+1 ) (3.18).

Theorem 3.4: PA(zx, Yt) has the form

P,(x,, Y7) = O-t(z, -£)TV,-l(zt -- ) + LA(Y) (3.16)

where Lg(Yt) contains all those terms independent of xz and the matrix V, and the vector it satisfy the

recursions,

V,+, = Wt + At(V- 1 + tH t tH, + OQt)-1 AT (3.17)

Lt+I(Yt+1) = L,(YI) + •T(9V,)- 1 st + ZT(ee,)-'Z, + ?ARtut
-- 0-'(Vt-'2 + HeTE'tzt) T (Vt- 1 + HtOel'[Ht + OQt)-'(Vt-4 + HtO'71 z-) (3.18)

-*t+, = Ate* + Btu, + A,(V'7- + HTet'Ht + OQ,)-'(HOet'(zt - Hi,,) - OQt-*,) (3.19)

with the initial condition cov(xo) = Vo, Lo = 0, to = AD. Moreover, for these assertions to be true in the

case e < 0, it is necessary that V,-I + VQ, + HTe;1 H, > 0 for all s < t + 1.
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Aoof. Proof of this theorem, especially (3.18) is given in Appendix A or in [91.

The following lemma will show the relationship of two inequalities that were used in the proof of Theorem

3.4 and the positive-definite property of V%.

Lemma S. 1 The following inequality exists

Vg-' + Q1 + HTOe'Ht > 0 (3.20)

if and only if

Vg-' + OQ& + ATWý' As + HTo 1-'H, > 0 (3.21)

for 0 9 0 where t e {0,..., N - 1}. The existence of (3.20) implies that Vt+I > 0.

Proof. See Appendix B.

From Theorem 3.4, tg is the value which optimizes PI(zt, Y1). The next theorem will find it which

optimizes P1 (zt, kt).

Theorem- 3.4A: P(zg,19) has the form

p,(z,, ,t) = e-I(X, _ f,)Tk-V(X, -. i) + L,(k,)

where L(Y1) contains all those terms independent of xt, and the matrix Vg and the vector It satisfy the

recursion,

V,+ = Wt - ! + 9OQ)-'AT, 10+1 = (V;+' + H7+!O',+H+,+)- (3.22)

Lt(k,) = Lt(Yj) + ,itVt + (H (Oet)-1 H 1)-]-

+zt{t + Ht(evt)HuT-`Z- - 2at(evo (eft)H,(eex)-1IlZ

&t = j(Vj-'. + HgT6O'z) = :, + HrHTe'-'(z - Htit) (3.23)

21+ = At(I + O1Qt)-'It + Bgu&

with the initial condition Vlo = (VC' + Io %I'o o)-I and 1o = (VC' + H•oeT !Ho)-I(Vo- 1 o + HOeT%'o),

where V, •t are given in Theorem 3.4. Moreover, for these assertions to be true in the case 9 < 0, it is

necessary that 0' - I + OQ. > 0 for all s < t + 1.

Proof The proof is similar to that of Theorem 3.4 (See [51).

Notice that the control gain k, in (3.12) contains OWt and the state estimate It (3.19) contains OQ1 . The
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control gain depends on the covariance of the noise and the state estimate depends on the state-penalties.

Nevertheless, the computation of the control law is decoupled from the computation of the state estimates

implying that the separation principle holds even though not in the same strict sense as for the LQG problem.

We can now appeal to Theorem 3.2, 3.3, 3.4, 3.4A and the discussion leading to equations (3.13)-(3.15)

to obtain the final result.

Theorem 3.5: The optimal control rule is u*(xt, t) = kt', where

x, = (I + BVtnt + VtHTe, -Ht)-'(±, + VtHtet-ZL) (3.24)

= (I + OHII 1-g (3.25)

and kt, [h,, Vt and tt are given in Theorems 3.3 and 3.4 and it, Vý are given in Theorem 3.4A. The necessary

condition for (3.24) is v,-I +onl, + HyE)'Ht > 0 when 0 < 0.

Proof:: As shown in Theorem 3.2 the optimal control is

U (Xt)I.,=. = '

where x* is determined by extremizing PL + Ft with respect to xt,

ext[Ft + Pt) = extiFt + P, + O-'mn] (3.26)
Xe Xe

Using Theorem 3.3 and 3.4, the right hand side of the above equation can be written as,

ext[ Trlcxt + 0-(X, - ±,)Tvy-(x, -1 ) + L_(Yj) + -I (z, - HI,)Te I (Z, - Hx,)] (3.27)

Performing the indicated operation yields (3.24). Using Theorem 3.3 and 3.4A, the left hand side of (3.26)

can be written as

ext[xT l-txt + O- 1 (x- - i ( ) + Lj(Y,)]
Xt

where the optimal value of xt is given by (3.25). Therefore, x* is obtained in (3.24) and (3.25), provided

(0VO)- 1 +rlL + HtT(OE(,)- 1 Ht < 0 when 0 < 0. Using (3.22)(3.23), it is easy to show that the two zx are the

same. Finally, from Theorem 3.2 u*(x, t) = kLtx and can thus deduce the Theorem. D

The form for the classical information pattern in (3.25) is similar to that of the one-step delayed infor-

mation pattern in 121], only 1, it are changed to Vt, ±t. The form in (3.24) is an affine function which will

be needed in Theorem 5.1.

Discussion of Sufficient and Necessary Conditions: The sufficient conditions given in Theorem 3.1 are

different from the necessary conditions given in Theorems 3.3-3.5. Below we show that the necessity of

Theorems 3.3-3.5 are also sufficient.
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Theorem 3.6: There exists an umque finite optimal control function which is given in Theorem 3.5 and

yields finite cost, if and only if Ow following three inequalities exist for ai t C{ O... , N - 1)

1. V,-' + eQ, + H•e;'H, > 0 for alls < t when e < 0.

2. v,-1 + Ole, +HI•e'H, > 0 when e < O.

3. eWnl,+. + I > 0 for all N > s > t when e < 0.

Proof In order to obtain the optimal control function, Fg, Pg in theorems 3.3 and 3.4, and zx (3.24) must

exist. Condition 1 guarantees the existence of Pg. Condition 2 is for the existence of zx in (3.24). Condition

3 is from Theorem (3.3) and guarantees the existence of F, in (3.11).

The necessary conditions are proved by contradiction. Notice Sc could be decoupled to four parts. The

first part is from Si(3.6) and (A.3)(see [9]), the second part is from Theorem 3.5, the third and fourth parts

are from (3.7)(3.10) and (3.11).
t--1

+ (x, - x)T(fl, + (V1+)-' + HT(6O-'Ht +,)( , - x;)

N-I

+ 1 (Xk +I - +,)Tln+, + (OWk)lJ(za+l -4+)

N-I

+ t _ - b)T(Rt + B~fla+I i(WJ11h+ I + I)-'Bt)(ug, -u;

k--9

where

z4(k < t) = (VA- 1 + $Qk + 4e 1 H& + A4W;1 A,)-&

.(V;I±k + •e t + 4W;"-(-A+I - Bkut))

=t (+ ef/'rji- 11

x,t. I(k >- t) = (Onk÷1I + W;-') -W; 1'(Akxi. + Bkuk.)

u4(k > t) = -(Re + BTnt+,(ewjnr,+, + +)-'t)-'

•BTnf+,(OWknA,+, + I)-'AAzx

From Lemma 3.1 V;-' + OQ& + HeTO-'Ht + ATW;,Ak > 0 if and only if V•- + GQa + > 0,

therefore the form in condition I is obtained. Condition 2 is from the second part. Because condition 3

implies l4+1ý! _ 0 and R, + Bflk+ I (tWalt+I + I)-IBi > 0, only condition 3 is needed for parts 3 and 4.

If one of the three inequalities does not exist, then
J = min f(-e)e-A9dXNdZN = ±00

UN-.1 1-1..

Therefore, the expected value of the cost function would be infinite or negative infinite. The necesinty of

these conditions is established. 0
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Remark: Notice the three inequalities always eyst when 0 > 0. Also, the three inequalities exist if and

only if the assumption of S4 in Theorem 3.1 exists. Furthermore, the following relation associated with the

gain (3.12) can be proved that

(Rt + BTn,,(OWetnt+1 + l)-'Bt)-'B•nt+1(0Wtnt+1 + I)-'At

= Rý-BT ,+ (I + BtRt-1 BBTrIl+, + OWt t+,1)- 1 At

Theorem 3.5 provides the discrete-time centralized controller with the classical information for finite

horizon and time-v-arying coefficients. For the time-invariant, infinite horizon case under certain conditions,

a time-invariant controller results. It is shown in 161 that this time-invariant controller is equivalent to a

H.. controller, and the best H,,o controller is produced wh*R 0 is decreased to a critical value 0•, where

the cost goes to infinity. However, the information pattern is not discussed. The controllers with the

classical information or one-step delayed information patterns may be time-varying or time-invariant and

finite horizon or infinite horizon. Therefore, the controllers here generalize H.. controller to a larger class of

controllers.

4. DYNAMIC PROGRAMMING FOR THE DECENTRALIZED CONTROL PROBLEM

This section is begun by presenting a variation in the Dynamic Programming recursion given in

Section 2.2. The difference is that instead of conditioning on the classical information pattern Yt as in

(2.18), the recursion is conditioned on the one-step delayed information pattern Yt. This change allows the

explicit formulation of the static team problem at each stage of the recursion. The analysis is the following.

First, the Dynamic Programming recursion is obtained conditioned on Yt. From the Dynamic Programming

a recursion associated with the argument of the exponential Et(Yt) is defined in (4.1). Note that Eg(Yt)

and its recursion repiace 4zt(Y) (2.18) and its recursion (2.19). Et(Yt) is propagated backwards assuming

that the decentralized controller is affine, which is shown to imply that it is quadratic at each stage time.

In particular, in Section 4.1 it is shown that if EIt+ is quadratic, then the global optimal decentralized

controller ut is affine. Since EN(YN) is quadratic, then by induction Et(Yt) will remain quadratic.

A deeper property of Et(YI), shown in Section 5.1, is that the quadratic form of E,(Y•) at each time stage

is independent of the information pattern. This is because the saddle point strategies for all the information

patterns produce the same saddle point trajectory which is used to construct Et(Yt). From this property

a uniform approach is produced for the development of controllers with different information patterns; a

considerable simplification over that given in [10].

The optimal return function is defined, rather than as in Section 2.2, as

Jt+1 (Yi+l) = minm E[-0e-16*IY1+m1f(ZtlUt)
-+1 6
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Then, the Dynamic Programming recursion rule changes from Jt(kt) in (2.15) to

Jt(Y= min jt+(Y )dt= J+()dzt
U4 T oo f -oo

In Lemma 5.1 the assumption that the controller is affine is used, and forms the basis for the propagation

of the quadratic function Et. The relationship between Jt(Yt) and Et(Yt) is given as

Jt(Yt) cK exp[- IEt(Yt)], EL(Yt) = extminEt+i(Yt+)) (4.1)
2St U&

where Et+1 (Yt+ 1 ) is a quadratic function of Zt and Ut, and EN N- 4 N('N). From (2.19) and (4.1), the

following relation is obtained.

Et(Y0) = ext4 ,(•t) (4.2)

From (6.1) and (6.2), Et+±(Yt+1 ) can be decoupled as two parts

Et+I(Y+1) = ft(ut, zt,.tt) + Lt(Yt) (4.3)

where Lt(Yt) is in (3.18) and ft(ut, zt,2t) will be given in (6.2). In the next section it is shown that the

static team controller which globally minimizes ft is afline. Therefore, starting with EN, Et by the recursion

(4.1) is propagated backwards and by induction Et remains quadratic.

4.1 The static team problem

To obtain the static optimal team controller we need a definition of person-by-person optimality.

Then, it is shown that, with an additional assumption on the convexity of the quadratic function ft, person-

by-person optimality implies global team optimality. Although the cost C of Definition 1.1 is not explicitly

defined, it is related to the optimal return function Jt+l as

min E[Ct('&t(i, zt, ±t ), zt, t, Yt)IYt, zf] = min Jt+, (Yt, Zt, ilt(i, Zi, t,))dit(i) (4.4)

oc rninj exp[- Oft(fit(i, zt,, *), zt, 2,)]did(i) cc exp[-10min ext ft]

The last relation is from Lemma 2.1 and it(i) = {z•}io, where ;t(i) is the vector z, without the observation

of the i-th team member, and

i-t-*(zjt'-t) if igj

t u• if i=j

Note that in [15] and [13] person-by-person optimality is defined with respect to the left side of (4.4). Below

we define person-by-person optimality with respect to the right side of (4.4).

In the discussion of the static team problem, the subscript t is dropped for convenience.
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Definition 4.1:

A static team decision rule u* E UT is person-by-person optimal if for

J = ext f(u, z, 2), JJJ< oo

and if ut is determined from

min [ext f(fi(i,z Jr i E {1,2,...,M}
U&'EU. 1is)

Let f have the particular quadratic form

f(u, z, _) = ±TQI It + 2UTQI 2z + 2tTQ1au + zTQ22z + 2ZTQ23U + urQa3u (4.5)

where ± is a constant vector and Q1i, Q12, Q13, Q22, Q23 and Qx3 are defined in (6.3) and are function of e, a

real number and 0 0 0. The operator "ext" means "min" when 9 > 0 and "max"when 0 < 0. The vectors u

and z are partitioned as u = ulr,...., UMT]T and z = [zIT'...-, z MT, and the matrices Q12, Qia, Q22, Q23

and Q3s are partitioned into block form, to correspond to the partitioning of the vectors u and z, as

Q12 = [Q12,--', QM']; Q13 = [Q1 3,---,QtI

-... Q 1
Qpp... . . ... ... , ppE {22,23,33}

QI ... QMM

Let us also denote,

fR = D QT SD + Q2D + (Q23D)T + Q22 (4.6)

6= DTQS33 + (Q+3D)T + Q 23C + QT2 (4.7)

where D and C are determined from (4.8) and (4.9).

It is shown in Lemma 4.1 that the person-by-person optimal team rule for the quadratic function f is

atfine. In Lemma 4.2, by completing the square and using a stronger assumption than required for person-

by-person optimality, the affine person-by-person rule is also globally optimal.

Lemma 4.1: Let the quadratic function f be given as (4.5). If Q• - ([ )Tati > 0,FR > 0 when 0 > 0,

and if Q% > 0, f < 0 when 8 < 0, then the optimal person-by-person controller for the one-step delayed

information pattern is given by

u" = C+ + Dz
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- So

where D is a block diagonal matrix with dimension p, x ri for the diagonal matrix D1, and C is partitioned

according to u into pi x nblocks, i E (1,---, M} where

D 3' = - 3 )T _ (4.8)

M

C4 =P--fi T a6'i]-[(Q'a)T + 1 Q•C' - (4.9)
j=1,.91i

where for ij, k E {1,--., M},

a'=ith minor of DTQQ3D + Q2D + (Q23D)T + Q22: the ith minor does not depend on Di,

=[Qt~ + DJTQt~k#j, ..Ti = (Q2"i + (Qj Di)Tljo,~

ef [(+ E Qj2C' + E 1,i TcQc)

Furthermore, the optimal cost is

ext f(u, z, .) = f(u', z, ) = gET(Qn1 + Q13C + (Q 13 C)T + CTQ3 3C - F•T2-)2 (4.10)
S

Proof See Appendix C.

Remark: Note that Q%- = f•,., f' = fj(.),, and (a)-' = fa(i)(). For additional characterization of

, and 6', see equations from (C.3) to (C.6).

Remark: The optimal person-by-person control function is a stationary point for the function f.

Lemma 4-. If Q33 > 0, the person-by-person optimal control function determined from Lemma 4.1 for

the quadratic function f(u, z,±) (4.5) with the one-step delayed information-sharing pattern (OSDISP) is

also the unique global optimal team controller, i.e. for UT defined in definition 1.1 and Vu E UT, U # u*, the

inequality f(u, z, -) > f(u*, z, ±) holds.

Proof From page 187 of [1], for a - -ictly convex function the person-by-person optimal solution is unique

and is also team-optimal. In particular, since f is a quadratic function where it is assumed that Q33 > 0,

f(u* + 6u, z, t) - f(U*, z, ±) = 6uJQ36u + 2(Q33(C2 + Dz) + Q2z + Q12)T6u

By applying u' = C'i + D'z' to Qa•(C2 + Dz) + Q~z + QT2, (C.1) is obtained. Since z satisfies the

stationary conditions and 6tu' depends on zi only, i(i) in (C.1) is eliminated by using (C.2)

[Q3(CE + Dz) + Q 1z + QT] T
3 u(Z)

M M
= Z{Qhu' + [(Qi 3)T + 1 Qi 3C'] + (Qi) T z' + r(i)}vbUi(Z)

i=1 j=1jot

M

= Z(u" - C02 - D'z')T(Qt - ,6tTaI'P)6bu(z') = 0

i=1
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Since Qss > 0,

f(U+6 +4 6 Z, f) -f(uz, ) 6UTQ36u > 0

Therefore, for arbitrary 6u

f(u* + 6+ z, t) > f(u*, z, £)

0

The following Theorem shows that the optimal control us E UT from Lemma 4.1 also minimizes

J¶*. -ee-I ofdz.

Theorem 4.1: Let the function f be a quadratic function given in (4.5) and Q33 > 0. Then, the control

function u* E UT given in Lemma 4.1 also minimizes -0e-i-! and fr_ -6e-•edz.

Proof. Since Q3 > 0, f is a strictly convex function with respect to u and there exists an unique control

function us which minimizes f. IfuAu*, f(u*,z,±) < f(u,z,£). For 0:e 0, then

e- ,- (4.11)

for Vu E UT, z and t. From Theorem C in page 96 of [7] and equation (4.11), we know

J fo -0e-1 Y("*','2•)& 00 <_ 0o-e-1 f(",z,t) dz

If the equity exists, then

S_0[e-If(uz,*) - e-1f(u',2ze)]dz = 0

By using Theorem B on page 104 of [7]

The above equation contradicts equation (4.11). Therefore, only the inequality exists

f~fo 00 e-1.f(u',z*) dz < 0_0 -e-1 !(u',2) dz

for al u E UT, Z, and t. c

Remark: Theorem 4.1 gives the sufficient condition for the optimality of the team problem where 0 # 0.

This extends the result in [13] which deals with the convex exponential function (0 < 0) to a nonconvex but

unimodal function (0 > 0) as given in Theorem 4.1.

5. EFFECTS OF INFORMATION PATTERN ON DYNAMIC PROGRAMMING

RECURSION AND COST FUNCTION CRITERION

The main purposes of this section is to show that the recursion for Et (4.1) is independent of the

information pattern and that only the coefficient of the exponential JAI in (4.6) delineates the differences in

the value of the cost.
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From Theorem 3.5 and Theorem 4.1, the optimal control for the classical information and one-step delayed

information-sharing patterns is an affine function. The optimal control for the one-step delayed information

Pattern [21] can also be expressed as an affine function u* = Ct + Dz, D = [01. From the above discussion,

the optimal control for the three different information patterns can be written as u* = C5 + Dz, where C

and D are different for different information patterns.

As will be seen, the variable z in Lemma 5.1 plays a role equivalent to v in Lemma 2.1. However, because

u° = C2 + Dz is explicitly dependent on z, some modifications need to be done on Lemma 2.1 in which u, v

are independent. Lemma 2.1 is a special case, i.e. D = [0], of Lemma 5.1. Lemma 5.1 is needed for the

Dynamic programming decomposition in Section 4 and gives the coefficient of the exponential IRI.

Lemma 5.1: Let the function f defined in (4.5) be a strictly convex function with respect to u, i.e.

Q33 > 0. Let u' be the value which minimizes function f and fL0 0-e-f(us,)dz and u° is an affine

function of z, i.e. u* = C± + Dz. If 0 > 0, assume A? > 0; if 0 < 0, assume 1? < 0; and dim(z) = r where R?

is given in (4.6). Then,

min -0,e-f(uz',)dz = -- (21r)irIORfl-e-;f(u',z*,2) c e-f(u'z,) (5.1)

where z* minimizes f whe:i 0 > 0 and z* maximizes f when 0 < 0.

Proof. Let the function f be defined as in (4.5) and u* is the optimal u which minimizes f and

f_ A-Oe-f(u,z*•)dz. The discussion at the beginning of section 5 indicates that the optimal control func-

tions "or the three different information patterns can be expressed as an affine function u* = Ci + Dz.

Notice that C and D are different for different information. Let R and 6 be defined in (4.6) and (4.7) and

substitute * .= Ct + Dz into I of (4.5), then

f(U., , 5:i) = zftr + 21 T STz +- T(CT Q33 C + Q13 C + (Q 13C)T + Qll)±

= (z + +1 St)TR(Z + _'6j) + ±T(Q -

where Q_ - CTQ33C 4 Q 13 C + (Q 13 C)T + Q1 1. Also define i = z + R- 162, then

-Oe- Jf("'-,)dz = jde- (5.2)

.- • - inext

- .0(2n)jfl) ~cORI = (2Hi)iIGR~jiei is (5.3)

In order to obtain (5.3) from (5.2) we need to assume R > 0 when 0 > 0 and R < 0 when 0 < 0. If the

assumption is not satisfied, the integration of (5.2) will be infinite (0 < 0) or negative infinite (0 > 0). From

Theorem 4.1 and (5.3),
_oofuxRd fo _;m inextf

rain -Oe- f ")dz= -e- " d e-
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5.1 The cecursion of Et(Y,) and its independence of the information pattern

In this section we give a theorem which shows that the argument Et is the same for the classical informa-

tinn, one-step delayed informa\. ;n and one-step delayed information-sharing patterns (OSDISP). This will

simplify the derivation about the control gains for OSDISP, i.e. the backward iterative algorithm given in

[10] is no longer needed.

Theorem 5.1: Let Sc be positive definite in U['-,XN,ZP when 9 > 0 and SC be positive definite in

Uf- 1 and negative definite in XN, ZtN when 0 < 0. Then, the value of Yt(Yt) in (4.1) is the same for the

three different information patterns: the classical information, one-step delayed information, and one-step

delayed information-sharing pattems.

Proof In Section 4, the recursion from the Dynamic Programming decomposition produces (4.1) and

(4.2) where 4t(kt) is given in (3.5). The order of the extremization in (3.5) is irrelevant (Theorem 3.1). By

using Theorem 3.1, and the operations and definitions used in Section 3, an expression for Ej is obtained for

the classical information pattern as

Et(Yt) = ext4t(s) = min extext Sc(XN, YN)
X, U'-U -Z 'XN

= extext[ext S,(Xt, Yt)+ min ext ext S2(XZN 1, 1)
st Ze Xj-j UN-' XNIZN

2 +1 9+1

= ext ext[Pt + Ft] = ext ext[Pt + 0-1mnt + Ft]
Zst Ze &t &

extext[- 1 (x, -_t)TV-I(Xt - ±t) + Lt(Yt) + 0-1(zt - HtXt) T E-t1(Zt -- Htxt) + xTfitx,] (5.4)
Zt Ze€

where S1 , S2, Ft, Pt are defined in (3.6)-(3.10). If (OVt)- 1 + [it + HT(OEt)-1 Ht < 0 when 0 < 0 and clearly

(OV )- I + It "+ HT(OEt)-IHt is always positive definite when 0 > 0, then the stationary condition of Xt

which optimizes (5.4) is (3.24). Substitute x4 into (5.4)

ext{zT[Oet + Ht((oVt)-' + H ',)-'1j t0-t - 21 (O"y)1 [(OVt)+ + H t +Z

+ ±TiOVt + (Flt + HT(OEe)- 1H -)-'p'., + Lt(Yt)) (5.5)

Assume OEt + Ht((01½)-I + HIt)- 1HT < 0 when 8 < 0 and clearly eOE + Ht((0Vt)- 1 + t)- 1 H• is always

positive definite when 0 > 0. Then, from the first-order stationary condition of zt for optimizing (5.5), we

obtain

Z4 = Ht(I + ovtnt)-',t (5.6)

If z; is substituted into (5.5), then we obtain (See Appendix D for details of derivation)

- T nIGVtnt + I['±t + Lt(Yt) (5.7)
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kor the one-step delayed information pattern, Zj" is not available at time t. From the assumption about

SC, the order of the optimizaton is irrelevant w.r.t. UN- 1 , Z4', XN.

rin ext ext S0 (XN, YN) = ext[P, + ext 0-r1 mt + Fi
U,' z(N XN 6

= extrxT n,=x, + 0-1 (x, - JTVs-(=, -s) + LY,)] (5.8)

Extremizing with respect to zt will make mt = 0. If nI, + (V 2)- I < 0 when 0 < 0 where clearly, nj + (OV,)-'

is always positive definite when 0 > 0, the optimal x4 will be as follows.

X*1 = (I + OV, n,-'±, (5.9)

By substituting 4, in (5.9) into (5.8), (5.7) is obtained. Therefore, the classical information pattern and the

one-step delayed information pattern have the same Et. In order to obtain x* in (3.24) and (5.9), and z4

in(5.6), we assume (yt)- 1 + nI, + HT(OeL)- 1 Ht < 0, n, + (eV,)- 1 < 0, sO, + Ht((eVt)-l + nl,)-/H• < 0

when G < 0. The assumption that Se is positive definite in UN-1 and negative definite in XN, ZI when

9 < 0 will guarantee the three inequalities exist. This assumption on S guarantees that Jt(Yt) in (4.2) is

finite. If any one of the three inequalities is not satisfied, then Jt(Y,) will be infinite.

From (2.9), Us C UT C Uc. If g is a strictly convex function with respect to u, then

rain .9 > nin g 2! min 9UEUs -- UEUT UEUc

iIf'eus =*U'C .9, then TeUS9.UTg=WeUc 9. We write in a nore explicit form at time stage N - i

EN-1 = ext min EN = min ext extS'
XN- MUN-1 UN--, zN_ XjV

Because Us C UT C Uc

min ext extSc> amin ext extSc> mnn ext extSc
UN-.IEUSZN_ XN IN- I UTZ_ XN -- 1_.Uc ZN1 XN

Ej has shown to be the same for the classical and one-step delayed information patterns, therefore

min ext ext Sc = min ext ext Sc
,N.-IEUS Z_ XN UN,,I-EUCZNI X

From the above two equations

min ext extSc-= min ext extSc= min ext extSc
UN-= a.EUs Z_,N XN UN-.I E UT ZV_ XN sV-3EUCZNN XN

At t = N-I the classical information, one-step delayed information and one-step delayed information-sharing

patterns have the same EN- I

EN-I(YN-1) f= _ nTNh7rN1VN_1nN-1 + I]-•tJVN + L I-,(YN-1)
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By induction, using the recursion for Et, the value of Et for the decentralized case with the one-step

delayed information-sharing pattern is giving by (5.7). 0

Remark: From Theorem 5.1 and (4.3) , the value of ft(u;, z, ±) are the same for the three information
patterns. Therefore, from (4.10) and (5.7), ±Tllt[OVtflt + i]-'±, = T(Q1i,1 + Ql3,LcL + (Qi3,gtc)T +

CTQ.,sC, - TRT'S,.

Remark: A defined in (4.6) is different for different information patterns because D is different for different

information patterns. In Theorem 5.1 we showed that the value of Ec is the same for the three information

patterns. Therefore, only Iftj in (5.1) makes the cost function different for different information patterns.

5.2 Comparison of two solutions using the classical information pattern

In Speyer, Deyst, and Jacobson [18] the optimal controller for the classical information pattern is derived

as a function of the entire smoothed history of the state vector from initial to the current time. This controller

appears to be different from that given in Theorem 3.5. Two reasons for the difference are : 1) as shown

below the probability density functions are the same, they are functionally expressed differently, and 2) the

order of the extremization (or integration) is different. The probability density function given in Lemma 2.2

is

f(XN, ZNIU,- -1) = n N 1 [f (z Ixk)f(xk 1Xk- 1, Uk-- 1) )]f (zo IXo)f(Xo)
N-1 N

oc exp{ E nk + E Mk + (Xo _ ±)TVoI(Xo ±o)}

k--O k=O

The probability density function which is used in [18] is

f(XVN, ZNJIUN-1) = !(XN•ZN, U-l)fl_-o1 f(;+lU1 )f(z0)

From Bayes theory, the above two equations are equivalent.

f(XN IZN, UN_I)TIN-lf(Z;+ 1U1)f(zo) T=IN [f(zk:xk)f(xk:xk,_•, )]f(zolxo)f(xo)

Therefore, the exponent in [18] is equivalent to S" defined in (2.13). From Lemma 2.1 the integration

operation is equivalent to the extremization operation and from Theorem 3.1 the order of the extremization

is irrelevant in deriving the optimal control function. Therefore, below we show that the value of the control

given by the controller in Theorem 3.5 and [18] are equivalent and the values of the performance index are

equal.

The optimal control function is given in Theorem 3.5. By substituting t (3.19) and u,_-, i E 1,.-.

into u*, we will obtain

,,t = ,t' (Z,,-o) = >jnz, + rto (5.10)
i=O
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where "fli and r depend on DA,i E {0,.. ,t}. From Theorem 4.1 u' is unique, i.e. Di in (4.8) is unique.

Therefore, f/l and r are unique, and in a similar way the controller u in [18] can be reduced to (5.10). Thus,

substituting u' i E {0,. ., t) into f Jt+1 (kt+1)dzt+1 , where Jt+1 (Yt+1) is in (2.18), and integrating w.r.t.

Zt+i will produce the same value of the performance index.

6. DERIVATION OF THE OPTIMAL DECENTRALIZED CONTROL LAW

A recursion based on (5.7) is developed in this section to determine the decentralized control function

with one-step delayed information-sharing pattern. FRom (4.1) and (5.7), then

Et = ext min PTii ft+129+i + L,+l(Yt+l)] (6.1)
Zt E Ur

where fIt+l = rit+1 j6Vt+ift+1 + I]- '] and Lt+1(Yg+ 1) and 2t+1 are given by the forward recursion equations

(3.18) and (3.19), respectively. Substitute Lt+ 1(Yg+ 1 ) and tt+i into (6.1), and after considerable simplifica-

tions Et will be (See [9] for the simplification)

g -- ext min {IT[(0½)--- + (0V')-I(AtATflt+,AtAA - At)(0Vt)- 1 jt + 2±T(oVt)- 1 (AtAHTt+1 AtAt
Zt utEUT

- At)HT(Bet)- zt + 2 1 AtATflt,. 1  u + 2zT(0et) - ' HAtAT,1t+1 Btu

+ T1(06t)-l + (0Et)-'Hj(AtATflt+jAtAj - A )HT(BEt)- ' ]zg + uT[Rt + BTflt+1Bt ut + L (Yt)1

= ext min [ft + Lt(Yt)] (6.2)
Ze UtEUUT

where

ft = TQ1 + 2TQ2.tz, + 2fTQaa3u, + ZTQ22,z + tut + uTQ,.tut

Qii.t = (OVt)- 1 + (Vt)-y 1[AtATftt+iAtAt -A

Q12,t = (V)-'[AtATf+Atlt - AHT(0e)-l, Q1.t-- (V- ATft+,Bt

Q22,t = (eet)-' + (+O~t)- Ht AtAZIt+jAtAt - Aj]HT(0Ee)-' (6.3)

Q23,t = (OE))-'HtAjAT +Bj, Q33,t = Rt + BtHf,+1 Bt

and fIt+1 and At are defined as,

ft+,= [dt+,[oV,+,n,+ + L]-', A, = [(V)-' + Qt + HT(0Et)-'Ht]-' (6.4)

Notice the value of ftt+l is invariant for the three information patterns.

6.1 The decentralized controller

Notice that since Lt(Yt) in (6.2) is not a function of zt and ut, and it would only act as an added constant

to the performance index in Lemma 4.2. Applying Lemma 4.2 to (6.2) yields the optimal decision gain
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equations at time stage t. In particular, the optimal decentralized controller at stage time t equals,

DIr... 0 =t c

U I ...... + : (6.5)
0 ... , Dim Z ¢C?

and the optimal decision gains DV and C, are determined from the following coupled matrix equations,

D'g = -[lR4 + BltTht+,Bt - (fit) T O J-'I[B'T t+ I AAt(H;)T (Oee)-t - (f) T a'y] (6.6)

M

C= -[R1' + B Tflt+,B - (B)T af]-1 [B4T i+,AtAt(V +)-1 + Q•,,Cj - (,)Tc6I (6.7)
j=1jj~t

where Vi is the diagonal matrix defined in (2.8), Bý is given in (2.3), P Iand a' are defined in section 4

using (6.3), and ij E {1,.. -, M}.

Using the uniqueness of the optimal controller for the one-step delayed information pattern, a simpler

form of Ct for the one-step delayed information-sharing pattern is given in the following lemma.

Lemma 6.1: A simpler form of the coefficient matrix C= for the one-step delayed information-sharing

pattern is

Ct = (k, - DtHt)(I + OV, II)-' (6.8)

where Dt is given in (6.6). Furthermore, z4 is the same for the three information patterns : the classical,

one-step delayed, and one-step delayed information-sharing patterns.

Proo.f The notation (.) is used to distinguish the coefficients Ct, Dt and ut, z4 for different information

patterns. Therefore, (1), (2), and (3) denote the one-step delayed, the one-step delayed information-sharing,

and an alternative form of the one-step delayed information patterns, respectively. The optimal ut and z,

for the one-step delayed information pattern 121] are

u *(1) Ct(l)±t + Dt(1)zt = kt(I + eOVtlt)- 1 ,

4t(1) = Ht(I + Vtlt)-l-1 .t (6.9)

where Dt(1) is a zero matrix and

C,(1) = kt(1 + OVtty)-1  (6.10)

For the one-step delayed information-sharing pattern

ut(2) = Ct(2)28 + Dt(2)zt = (CI(2) - Dt(2),q- 1 ,6).tt + Dt(2)(zt +A, -16,.) (6.11)
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z (2) - (6.12)

where Cc(2),Dt(2) are given in (6.5)-(6.7), and A,, 6, are given in (4.6)(4.7). The equation (6.11) will be

needed to derive a simpler form of Ct(2). From Theorem 5.1, the exponent recursion Et(Yt) is the same

for the three information patterns: the one-step delayed, classical, and one-step delayed information-sharing

patterns. From (5.7)

EtCY) --= THt[0vf+i + jj1I + LC(Yt) = ftL(u, z4, ±t) + Le(Yt)

where ft(ut, zt) is defined in (6.2) and Lt(Yg) is a constant term when Yj is given. Therefore, f,(ui,z,±r)

is the same for the three different information patterns.

fut*;(1), z*(1), ) = Af(u;t(2), z4(2),2t) = 4tflt[0Vfl-t + I]-1•t (6.13)

When we consider ft(u~t, z4), z4 in (6.12) will eliminate the second term in (6.11). Through observing

(6.11) and (6.12), we can define z4(3),t4,(3) as in (6.15)-(6.17) and obtain the following relation

ft(i4(2), z4(2), t) = ft(u (3), z (3), ±t) (6.14)

ut(3) = Ct(3)2t + De(3)zt = (Ct (2) - Dt (2) AT I b) , (6.15)

4t(3) = (6.16)

Dt(3) = [01, Ct(3) = Ot(2) - Dt(2)Rf' 16, (6.17)

From (6.13)(6.14)

ft(t*s(I), z(IX), Xt) = ft(t*(3), zt4(3), tt) =Tnov, +, (6.18)

From (6.18), ut=(3), z4(3) is also the optimal value for the one-step delayed information pattern. The corollary

4.5 in [1] and Theorem 1.11 in [20] give sufficient conditions of the unique optimal value for a strictly convex-

concave function and a strictly convex function, respectively. Since S' is strictly convex with respect to

XN, UtN- 1, Z(r when 0 > 0 and SC is strictly concave with respect to XN, ZN and strictly convex w.r.t.

U/'- 1 when 0 < 0, then the sufficient conditions for the unique optimal value are satisfied. Therefore,

the optimal value of t&t, zt for the one-step delayed information pattern is unique, i.e. t4 (3) = t4*(1) and

=4(3) = z4(1). From (6.9) and (6.16)

- i.t t- = H,(I + OVtft)-yt, (6.19)
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From (6.10)(6.17) and ut(3) = u,(1)

C,(3) = C,(1) = k,(I + ovino) = C,(2) - D,(2)ft,- t

From the above two equations, the following simplified equation for Ct follows as

Ct(2) = Dt(2)/•- 16t + Ct(3) = Dt(2)Rt-'bt + k,(I + 0VIIt)-'= (ki - Dt(2)Ht)(I + OVIHl)-p (6.20)

From (6.9), (6.19) and (5.6), z, is the same for the three different information patterns : the one-step delayed,

one-step delayed information-sharing and classical information patterns.0

By using (6.8), ut with OSDISP is written as

u, = k,(I + OVtflt)-'±t + Dt(z, - Ht(l + eVtVl)-±•') (6.21)

. The above form also exists for the classical and one-step delayed information patterns, where Dt = 0 for

the one-step delayed information pattern and Dt = kt(I +OVtYI + VtHTO eHl)- VtHTOt 1 for the classical

information pattern. Since z4 = Ht(I + eVtLH)-.tt will eliminate the second term of (6.21), only the first

term influences the value of ft(u*, z4,±t). Therefore, the value of ft and EI(Yt) are the same for the three

information patterns. 0

Remark: Note that if Ct is chosen as in (6.8) with arbitrary Dt, then ft(u•, z4, 2t) and Et(Yt) still retain

the same values.

The necessary and sufficient conditions for the decentralized controller with the one-step delayed information-

sharing pattern are listed in following theorem.

Theorem 6.1: Consider the dynamic LEGT one-step delayed information-sharing problem specified by

(2.1)-(2.8). There is an unique finite optimal team control law at time t given as

7- = D4z• + CtIt, i E {1,---,M} (6.22)

which yields finite cost, if and only if the following conditions are satisfied,

1. V,-' + OQo + HTE)-'H, > 0 for all s < t + I when 0 < 0

2. ii.+, + W'- > 0 for all N > s > t + 1 when 0 <0.

3. V7+1 + O-It+i > 0 when 0 < 0

4a. At = DTQ33,tDt + Q23,tDt + (Q23,tDt) T + Q22,t < 0 when 0 < 0

4b. A > 0 and 3,t - (p,)T pti > 0 when 0 > 0

where the estimate of the state based upon the one-step delayed information pattern It is given by equation

(3.19), the optimal gain matrices Di and C,, for i E {1, . . ., M) are determined from the coupled matrix
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equations (6.6) and (6.7), or the simplified form of Ct in (6.20). In addition, the matrix fit is determined by

(6.4).

Proof. In order to obtain the decentralized controller at time t, P,+ , Lt+ 1 , Ft+1 in Theorem 3.3 and 3.4,

zx+, in (3.24) and (5.9), z4*+, in (5.6), D, in (6.6) and Ci in (6.7) need exist. Condition I guarantees the

existence of Pt+ 1 , Lt+1 (see Appendix A). Condition 2 is from (3.11) and guarantees the existence of F,+1.

Condition 3 guarantees that z*+I in (3.24) and (5.9), and z+ I in (5.6) exist (see Section 5.1). From Lemma

4.1, condition 4 and Q33,t > 0 will guarantee the existence of D' and C,. Condition 2 implies flg'.+ Ž 0. No-

tice that the assumption Rt > 0, condition 3 and Ht+1 >_ 0 imply Q33,t > 0. We prove necessity as following.

If any one of conditions 1-4 does not exist, then from (2.10) and (5.2) the expected value of the cost will

become infinite, regardless of the choice of the control function. This implies the necessity of conditions 1-4. 0

Observe that the conditions 1-4 in the above Theorem are not contradictory, and since we are working

with a discrete time system there is only a finite number of the conditions. Hence, there exists an e > 0,

such that the conditions 1-4 are satisfied for all 101 < f. Therefore, D' and C' can be determined through

Theorem 6.1.

7. CONCLUSION

The results presented here extend known optimal solutions of centralized and decentralized control prob-

lems with an exponential cost criterion, and in addition set forth an innovative methodology for the solution

of optimal team problems with gaussian noise processes and exponential cost function. In Sections 2 and 3

we discussed the optimal solution of the centralized LEG problem under the hypothesis that the controller

is constructed from the past information and the current observation of state. This extends the results of

Whittle [211 who only considered a control law based upon the past information. It is shown that many of

the prevalent concepts associated with the LQG problem, such as the optimality of linear Markov controllers,

Riccati equations and the separation principle, hold for this class of problems in a somewhat modified form.

Lemmas 4.1, 4.2 and Theorem 4.1 give sufficient conditions for global optimality of the LEG static team

problem for 0 # 0. For 0 > 0, the exponential of the quadratic function is nonconvex but unimodal. This

extends the result of Krainak et. a). [11] who only consider the convex exponential function (0 < 0). Using

the optimal control for the classical information and the one-step delayed information patterns, we prove in

Theorem 5.1 that the value of the argument of the exponential is the same for different information pat-

terns. Therefore, only IRI in the coefficient of the exponential cost function changes for different information.

Through Theorem 5.1, an innovative method of deriving the optimal control gains for the team problem is

given. The backward iterative process in [10] is no longer needed. In Section 6 we examined the complete

dynamic LEGT problem with the one-step delayed information-sharing pattern for 0 0 0, and derived a set
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of coupled algebraic equations satisfied by the optimal decision gains at each time stage. This extends the

results of Krainak et. al. [12] who examined cost criterion in which only the terminal state penalties are

present. The results in Section 6 is also applied to the nonconvex exponential function with the quadratic

function (0 > 0), where in [12] only convex exponential function (0 < 0) is considered.

Given the continuous results of [4] and [16] the centralized and decentralized synthesis results here, given

certain i -trictions, generalized current H,, results to time-varying and time-invariant discrete-time systems

over finite .,nd infinite time horizons. Furthermore, in the derivations of the LEG controller a quadratic

cost is constructed which is minimized with respect to the control variables, but maximized with respect to

the input uncertainties when 0 < 0. This indicate a r,ýiationship between the LEG problem and game theory.

APPENDICES

A

Proof of Theorem 3.4.

Proof of (3.17) and (3.19) follows Whittle's paper. The derivation of Lt(Yt) (3.18) can be found in [9].

However, a simpler derivation of Lt(Yt) will be given in this section. The forward recursion (3.14) is as

follows.

Pt,+(xt+,, Yj+j) = ext[Pt(xt, Y) + xrQtxt + uTRtu, + 0-'(nt(x+,, xt,t) + mr(z,, xt))] (A.1)

If the relation Pt(xi, Yt) = (Xz - t1)T(OVt)-I(xt - ±t) + Lt(YI) exists at time t, then substitute PN(xt, YO)

into (A.1). We see the quadratic form holds also for Pt, 1 (xt+1 , Yt+1). The value ±t+1 is the value

of the state which extremizes Pt+1(xj+1, Yt+1). We know by assumption at t = 0, the quadratic form

Po(xo, Yo) = (xo - to)T(OVo)- l(xo - ±o) exists.

Writing down the stationary condition of (A.1) about xt,1 and xt, where tt+j and x* are the values

extremizing Pt+ I (xt+1, Yt+ I), results in

Wt-'(x,+j - Atx, - Btut) = 0 (A.2)

- AT, W'(X+ 1 - Atx - BLu,) + OQtxt + V,-'(x, - 2t) - HTOe 1(, _z - HX) = 0 (A.3)

Substitute (A.2) into (A.3), the first term in (A.3) will be zero. So from (A.3), we obtain

= (Vt-I + eQt + H'OE)-IHt)-Vg- 1±t + (V1-I + OQt + HTE)' 1 Ht)- HTrEe1'zt (A.4)
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Prom'(A.2)(A.4)

ft1= Atxt + Btut

ft1= At(Vj 1 + 8Qt + HtTet Hj)- 1 Vj7 1~t + AdYt' + 6Qt + Hje t 1HTt1z + Btut

Rewrite the first term

At(t'+ f7Qt + tt H)-1V--*

= As (Vt- + eQt + Ht et-'Ht)-1f(Vt-1 + eQt + HtTe71 Ht) - (OQt + HjTet-1 Ht)]-*t

=-tt - At (OQt + Htj~t 'H& + Vjr1Y1 (OQt + HT) H)t

Therefore, (3.19) is obtaned. The following matrix is associated with the quadratic in xgx of (A.1)

7T 6j[ ~ j VtI+OQ,+HTe-1Ht+ATtWj1A]

If Vt- 1 + OQt + HgyE)-'Ht + AT Wr 'At > 0 (0 > 0 or 0 < 0), by extremizing (A. 1) w.r.t. zt, we can define

V =- -ybl Then

t - =#- + 3 --yb yT#-l.y)-1 7 T,6 (A.5)

The derivation of Lt+1(Yt+1) in (3.18) will be given as follows. Prom the relation +iz+ 5 +)=

(xt~i -2t+i)T(8V,+i)-l(xt+j -±tt+i)+Lt+1 (Yg+ 1 ), we know

Lt+(Yt,)=ext Pg+,(xg+ 1,Yg4 ,)
Ze+1

-ext ext4Pg(xt, j) + zTQgxg + uR~u*+ 91 (nt(xj+I, ,xtut) + mt(zs, xi))]

Extrernizing with respect to xt~l will eliminate the term flt(Xt+iXt Ut),

Lt+(Yt,)= ext[((t - ±)T(OVt) 1'(. -jt)T + Lj(Yt) + XTQgtt+ UTRtUt + (Zt _ H1at)T(6et)y1(z1 HtXt) T j

-extx(( t' + HtT(Oet)-'Ht + Qt~xt -2 tI(B -Yt1± + HT(Oee)- 1 Ztl

+ 2Tt(eVt) 1'-* + utRjut + Z-T(Oeed 1zt + Lt(Yt) (A.6)

If Vt-' + Hte-'Ht + OQt > 0 for 9 < 0 or 9 > 0, then the optimal value of xt for (A.6) is

x;= lg + Hre-'H, + OQ*[ -1 Vj-1 -t + HTE)-1'zJ (A.7)

Substitute zt back into (A.6), wie obtain

- T(t9V)-l~t + UST&f +T(Oet)-'zt + Lt(Yt)

- 91(~ + He~l~) 1vjl+ HfTE)HTj+ 9Qt)y(VC1tt + Hfe7'ZI) (A.8)
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In order to obtain Vt+ 1(A.5) and xt(A.7), it is assumed that V&-1 + 0QL + HT9-'Ht + ATWý-'At > 0

and V,71 +GQt + HyTE' 1 Ht > 0 when 0 < 0 or 0 > 0. The following relation will be proved later in Lemma

3.1 that V-1 + HTOeHt + OQt > 0 if and only if Vt- + HtE)'Ht + H Qt + ATWj-At > 0, and in turn

the inequality Vt > 0 exist. Notice when 0 > 0, the above two inequalities always exist.

B

Proof of Lemma 3.1

From the matrix inverse identity

Q-1 - Q-IA[R + ATQ-lA]-lATQ-1 = (Q + AR-AT)-1 (B.1)

and (3.17)

Vt+l -- W + At[(Vg- 1 + OQt + ATWJ'At + HTOe'Ht) - ATWj-1 AtI-'AT

=Wt[Wj" - Wj'At(ATWj-'At - (V1- 1 + OQt + ATWj-A, + HTo'eHt)) -'ATWj-]Wt

= W[Wt - A(Vt-' + OQt + ATWj-At + HtTe-'Ht)-1 AT- 1w,

= [Wj' - W- 1At(Vt-1 + OQ, + ATWý-'At + Hre)'•H,)-'ATwI-]- 1

Wj1 - V1 = W-jA,(V- 1 + OQt + AT Wj 1At + HTe1Ht)- ATWj- (B.2)

If (3.21) exists, then

Wj,---V•+•> 0 =ý-Vt+1 _>Wt >0 =;V+j > 0 (B.3)

From (3.17)

At(Vt-'+BOQt+H t 1Ht)-'A T  Vt+1 Wt > 0 (B.4)

Because Vt-' + OQt + HTyEtHt is assumed non-ngular, therefore (3.20) is obtained.

Vt-y + OQt + HtTOe-Ht > 0

If (3.20) exists, reverse the above derivation (B.4)-(B.2), and the inequality (3.21) must be true. Or by

adding ATWJ'1 At L 0 to (3.20), the inequality (3.21) is obtained. From (3.17) and (3.20), (B.3) is obtained

and Vt is positive definite.
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.9

C

First, a three-member team problem is solved. Then, it is only an easy exercise to solve the M-mernber team

problem. To solve the three-member team problem, we formulate as in [19] or chapter 3 of [9] a person-by-

person optimization problem. For the i-th member i E (1,2,3}, each of the other two control functions is at

its one-person optimum problem. Substitute uj = D'z' + Ci±, j 0 i and ij E (1,2,3) into the function f

of (4.5)

3 3

min ext [2TQl2+ 2± 2(Z'T + �z ' 2+T 31zj + 2 TQ13Ui + 2.T[ VI'3(L:pZj + C())]U4 s(i) •fij •# l~

3 3 3

+2(zi)T[ Qi(iz + C'±)] +! 1 (zI)I Ej Qk(DZ' + C''k)] + (Zis)TQIisi

22Z +1: 2z' 2,+ 2 + 23'rQ.

j, lqfi k=1,kdi j=lJoi

3 3 3

3 3 3

+2(u')T[ 1 Qij(Dj-j) + C-t)] + + (D'z' +Ck.)T[ Z Q•I(Djz' + C'±)],,".&
.=Ij#qi k=Ikqi j=Ij~i

The stationary conditions with respect to u' and i(i) yield

3
Q33 +{ [(QU3) T + j Q + (i + T i"T

i(i) = (133 M3+E Q jcj]-++ (Q•) +f ) (c.1)

j=1496i

[(•,I)-i(i) + 6±E + y'zi + il,,] = 0 (C.2)

By solving £(i) explicitly from (C.2) and substituting into (C.1), (4.8) and (4.9) are obtained where M = 3

and
(a)d [[D2T Q�� 2 + Q3D2 + (QID2 )T + Q2 D2TQ2D 3 + Q•D3 + (Q•D) T + 1

()- =D T Q2D 2 + Q 2  ++ QD + (Q2D2)T + Q223

-C 33 23T~D +2 3~1 +(~') -4 DT 3 + Q23D3 + (Q323) + 2~

( - DTQ292 + Q32D2 + (QID3 )T +Q 32 D3 TQ 333D3 + Q33D 3 + (Q323J3)T + Q33

r D T Q~33 + -- D1 + (Q2DD) T + Q3 •2,,Q-aD- + QD ( D+"
(a)-1 = DITQ•D1 + Q•D 1 + (Q"D2 )T + Q13D3"•D. + Q•D2 + (QuD2 )T + Q (3 )

a , [Q,+,DaQ• 1 - [Q ' +D' T Q + - [Q ( + D'T Q 1 (

IQ~d+ D•Q•- Q3 2+ D3T Q3  J =I•+DQ
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= Q2+(Q1 D3 )T I - O3 + (QQ1D2)T  73T Q22 + (Q3jD') (0.5)

Q32 D + (Q+ D() T  2T Q' + (Qj2D2)T]
+ -+ 2 + Q 3 +D3 T(Q QC 2 + Q 3 )

6 Q = Q2+ qD 2)T + Q2C 2 + Q3C 3 + 2  2  + Q 3 )
62 • + D+ 13D Q2 + Q23-C3 + D-T(Q4323C, + Q~C3 ) 1

()2 + T3 D3)T + Q3AC, + Q32 + DaT(Q 331C + Q3C3)

3= (Q' 2 + Q13D') T + Q"C' + QlC 2 + DT(QI3•C + QlC 2 )

1(Q2 + QsD27) + + QC+ Q•2C 2 + DT(QMCI+ QajC2 )

Next we will discuss second-order sufficiency. By observing (C.1) and (C.2), if a' > 0(0 > 0), ai < 0(0 <

0) and Qj > 0, then the control gain Df of (4.8) and C' of (4.9) for person-by-person optimization can be

solved. The assumption R > 0(0 > 0) and R < 0(0 < 0) implies a' > 0(0 > 0), 0' < 0(0 < 0) , where a' is

a minor of R.

The optimal cost f(u*, z*, t) in (4.10) is to be determined. We substitute the optimal team control

function u* = C± + Dz into the function f in(4.5), where C and D are given in (4.8) and (4.9)

f(u*, z*,2) = ext[tTQ It: + 2±TQI2 Z + 2tTQ13 u + zTQ 22z + 2zTQ23u + uTQa3uj

= ext[zT(DTQ33D + QD + (Q23D)T + Q22 )z + 2aT(CTQ33D + Q 13 D + (Q23C)T + Q12)z
z

+ 2T(CTQ33C + Q13C + (Q1 3 C)T + Q11)2] (C.7)

Define and 3 as in (4.6) and (4.7) respectively. Then, the stationary condition yields Rz + it = 0.

Note that "ext" means "min" for 0 > 0 and "max" for 0 < 0. Assume f> 0 when 0 > 0 or A < 0

when 0 < 0. Then, the equation z = -R?-'S± optimizes the function in (C.7) and (4.10) is obtained. If the

assumption A> 0(0 > 0) or R < 0(0 < 0) is not satisfied, then the expected value of the cost function will

be infinite or negative infinite. (See equations (5.2) to (5.3))

D

A more detailed deriv-ation about (5.5),(5.6) and (5.7) is given in this appendix. Let Y = [Hy(OEt)-'Ht +

(9Vt)-' + Uit]-' and substitute (3.24) into (5.4)

~ext{-[(0Vt)- 't + Ht t)-Itt + HrT(0E)-'1z]
+ •T(eE)- 1Z1 +±T(ov)-1,}

= ext{4z[(O0E,)-' - (00,)-'HYHT(OO,)-']zt

- 2.fT(OV)-'YHT(OE,)-'zt - t) + ±T(OV,)-'.• (D.1)
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By using (D.1) and the matrix inverse identity (B.1), (5.5) is obtained. The first-order stationary condition

of zt in (5.5) is

z; = j0Eer + Hs((0Vj)' + F~)1~((,-HY0t-t (D.2)

and ze can be simplified as

4, = (Ht + Ht1(GVt) -1 + ntjv1HT(0Ee,) 1H,}Y(eVL)-.t,

= Ht[O, '+ nl -I Y- IY(oVt) -±g

= He (I + We [it) - .t

The last equation is (5.6). Substitute z4*in (D.2) into (5.5)

- ±T{(e8VylYHtT(ee9)-1{ee10 + Ht((OVty 1 + JJt)-'HtT1{(9.E~)- 1HtY(0ot)- 1 .tj

tt tTo~-Ye~± + t(V-1±,t (D.3)

Let

Z = HT(0et)-'{eet + Ht[(eV,)-' + ntp]'HtT}(eet -Ht

= H(eet)- 'He + HT(oEe,)-'Ht[(ev,)-1 + n~I-'H T(eet)- 'He

- HT(0Ee)-lH- TYB~-1 LH(oot)-1H -(()

By using (B.1)

Z = j(HtY(ee))-'Ht)-' ]'

then (5.7) is obtained from (D.3).

-± ±t)-v'{Y[(HtT(Eet)-'Ht)-l - Y-Y(V)1t

- ±ov-'y(eVi),±t +±TO ,i

- ±~t)e~~- 1y-I Hy(0et)-1Ht)j~~(OVt)-l1±, + .t(VT

t=It + = TTnv[eV-n~
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