
AD-A28 5 086
CDRL: 05203

30 November 1992

PCTE Browser Tool (PBT)
Version 1.0

Informal Technical Data

E I..

94-31235
STA RS-U:C-05203/001/00 i;II I/ II '
30 November 1992

S.-D 3

TASK: UU04
CDRL: 05203

30 November 1992

USER MANUAL

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

PCTE Browser Tool (PBT)
Version 1.0

SunOS implementation

STARS-UC-05203/00 1/00
30 November 1992

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0011

Prepared for:

Electronic Systems Center
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by: -3 I . ..

Paramax Systems Corporation
12010 Sunrise Valley Drive

Reston, VA 22091
-- . • ...

)I'_' ". ' : -

TASK: UU04
CDRL: 05203

30 November 1992

Data ID: STARS-UC-05203/001/00

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1992, Paralnax Systems Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with

the DFAR Special Works Clause.

Developed by: Paramax Systems Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA)
under contract F19628-88-D-0031, the STARS program is supported by the military services,
SEI, and MITRE, with the U.S. Air Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

In addition, the Government, Paramax, and its subcontractors disclaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and
in no event shall the Government, Paramax, or its subcontractor(s) be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from the loss of use,
data, or profits, whether in action of contract, negligence or other tortious action, arising in
connection with the use or performance of this document.

TASK: UU04
CDRL: 05203

30 November 1992

USER MANUAL
PCTE Browser Tool (PBT)
Version 1.0
SunOS implementation

Principal Author(s):

Michael J. Horton, Valley Forge Labs 9ate

Approvals:

Task Manager Dr. Paul Orgren Date

(Signatures on File)

TASK: UU04
CDRL: 05203

30 November 1992

USER MANUAL
PCTE Browser Tool (PBT)
Version 1.0
SunOS implementation

Change Record:

Data ID Description of Change Date Approval
STARS-UC-05203/O01/00 Successor volume: Upgrade 30 November 1992 on file

for software version 1.0
STARS-TC-04014/003/00 Original Issue: PCTE 12 June 1992 on file

Browser Tool (PBT) User
Manual for PBT version 0.1

TASK: UU04
CDRI." 05203

30 November 1992

USER MANUAL

For The

SOFTWARE TECH NOLOGY FOR ADA PTABLF, ! ELIA!BLE SYSTEMS
(STARS)

PC'TE Browser Tool (PB7")
Version 1.0

Sun7OS 2r1plermcniatlon

STARS-1iC-05203/001/0Q
30 November 1992

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-I)-0031
Delivery Order 0011

Prepared for:

Electronic Systems Center
Air Force Systems Command, (ISAF

Hanscom AFIB, MA 01731-5000

Prepared by:

Paramax Systems Corporation
12010 Sum se Valley Drive

Reston, VA 22091

30 November 1992 STARS-UC-05203/001 /00

Contents

1 INTRODUCTION 1
1.1 SCOPE. ... 1
1.2 PBT Overview 1

2 References 5

3 INSTRUCTIONS FOR USE 6
3.1 PREPARATIONS FOR USE 6

3.1.1 Installing the PBT Executable 6
3 1.2 Installing the pbt SDS 6
3.1.5 Installing the X Resource Files 7

3.1.3.1 Identifying the X Resource Files 7
3.1.4 Starting the X W indow System 8
3.1.5 Starting the PCTE Server 8
3.1.6 Logging into PCTE 8
3.1.7 Executing the PCTE Browser Tool 8

3.1.7.1 Order of Evaluation of Command Line Arguments 9.....9
3.2 BROWSER LOOK AN) FFE! 10

3.2.1 Initial Browser Window 10
3.2.2 Composite View Windows 12

3..3 L~ocal Vie:w ""'mu . 14~ JO~a 'vie Wi ,iuuw................................

3.2.4 Dialog Boxes 14
3.2.5 Control Panels 16
3.2.6 Text Windows 17
3.2.7 Alert Boxes 18
3.2.8 Confirmation Boxes 19

3.2.8.1 Use of View's Topology Region 19
3-2.9 Miscellaneous Window Manager Operations 19

4 PCTE Browser Capabilities 20
4.1 Object Identification 20

4.1.1 Aliases in Object Identification 21
4.1.1.1 Displaying Object Aliases 22
4.1.1.2 Setting Object Aliases 23
4.1.1.3 Deleting Object Aliases 23
4.1.1.4 Saving Object Aliases 23
4.1.1.5 Dynamic Loading of Object Aliases 24
4.1.1.6 Loading Object Aliases at IPBI'1 Session Startup 24

4.2 Name Pattern Syntax 25
4.3 Creation/Maintenance of View Windows 25

4.3.1 Creation of Composite View Windows 26
4.3.1.1 Dynamic Creation of Composite Views 26
4.3.1.2 Creating Composite Views at PBT Session Startup 27

Page ii

30 November 1992 STARS-UC-05203/001/00

4.3.2 Creation of Local View Windows 28
4.3.2.1 Dynamic Creation of Local Views 29
4.3.2.2 Creating Local Views at PBT Session Startup 30

4.3.3 Creation of Topology Regions in View Windows 31
4.4 Filtering Objects and Links Within View Windows 31

4.4.1 Hiding/Revealing Objects Based Upon Object Kind 31
4.4.2 Hiding/Revealing Links Based Upon Link Category 32
4.4.3 Hiding/Revealing Objects Based Upon Object Type Name 32
4.4.4 Hiding/Revealing Links Based Upon Link Type Name 34

4.5 A Priori Filtering of Links 34
4.5.1 Displaying Link Type Name Patterns 35
4.5.2 Adding Link Type Name Patterns 37
4.5.3 Deleting Link Type Name Patterns 37
4.5.4 Saving Link Type Name Patterns 37
4.5.5 Loading Link Type Name Patterns 38
4.5.6 Loading Link Type Name Patterns at PBT Session Startup 38

4.6 Current Object-Oriented Operations 39
4.6.1 Setting the Current Object 39

4.6.1.1 l)ynamic Setting of the Current Object 39
4.6.1.2 Setting of the Current Object at PBT Session Startup . . . 40

4.6.2 Displaying the Current Object 40
4.7 Current Working Schema-Oriented Operations 41

4.7.1 Setting the Current Working Schema 41
4.7.1.1 Dynamic Setting of the Current Working Schema 41
4.7.1.2 Setting the Current Working Schema at PBT Session Startup 42

4.7.2 Displaying the Current Working Schema 43
4.7.3 Displaying SDSes in Metaba~se 43

4.8 Object-Oriented Operations 43
4.8.1 D)isplaying the Pathiname........ 45
4.8.2 Displaying Object Attributes 45
4.8.3 Displaying PC(TI' File Contents 45
4.8.4 Invoking Actions on P('TE Objects 47

4.9 Link-Oriented Operations 48
4.9.1 Displaying Non-Key liink Attributes 49
4.9.2 Displaying Full Linkname 49
4.9.3 Navigating Tlo Source or Target Object 50

4.10 Displaying the Latest PCTE Exception Information 50
4.11 Customizing the Browser 50
4.12 Terminating the Browser Session...55

A Appendix: Customizing the PBT X Resources 56

B Appendix: FCTE Browser Tool Help Message 64

Page iii

30 November 1992 STARS-UC-05203/001/0b

List of Figures
1 Graph of PCTE Objects and Links. 2
2 Topology Region Within View 4
3 Initial Browser Window 10
4 Objects Command Button Menu 11
5 Composite View Window Example 13
6 Local View Window Example 15
7 Dialog Box Example 16
8 Control Panel Example 17
9 Scrollable Text Window Example 18
10 Alert Box Example 19
11 Confirmation Box Example 19
12 Object Aliases Submenu 22
13 Display Aliases Text Window 22
14 Set Alias Name Control Paaiel 23
15 Delete Alias Dialog Box 23
16 Save Aliases Dialog Box 24
17 Load Aliases Dialog Box 24
18 Display Command Button Menu 26
19 Composite View Control Panel 27
20 Local View Control Panel 29
21 Filter Command Button Menu 32
22 [Un]Suppress by Object Kind Submenu 32
23 [Un]Suppress by Link Category Submenu 33
24 Suppress Object Name Dialog Box 33
25 Unsuppress Object Name Dialog Box 33
26 Suppress Link Name Dialog Box 34
27 Unsuppress Link Name Dialog Box 34
28 Links Menu 36
29 Display Patterns Text Window 36
30 Add Pattern Dialog Box 37
31 Delete Pattern(s) Dialog Box 37
32 Save Patterns Dialog Box 38
33 Load Patterns Dialog Box 38
34 Current Object Menu 39
35 Set the Current Object Dialog Box 40
36 Current Object Pathmiame Text Window 40
37 SDSes Submenu 41
38 Set PCTE Working Schema Dialog Box 42
39 Current Working Schema Text Window 43
40 SDSes in Metabase Text Window 44
41 Non-File Object Menu 44
42 File Object Menu 45
43 Object Pathname Text Window 45
44 Object Attribute Values Text Window 46

Page iv

30 November 1902 STARS-UC('-05203/001/00

45 PCTE File Contents Text Window 47
46 Viewer Selection Control Panel 47
47 Object Menu With Actions 4S
48 Action Selection Control Panel 48
49 Link Operations Menu 49
50 Link Attribute Values Text Window 49
51 Full Linkname Text Window 50
52 Graph Including SDS Names 52
53 Setup Control Panel 53

Page v

30 November 1992 S'I'A RS-l C-05203/001/00

1 INTRODUCTION

1.1 SCOPE

The PCTE Browser Tool (PBT) is an instance of the Paramax STARS Reusable Graphical
Browser (RGB), a generic graphical bro.vser for the display of networks of nodes and arcs.
In the case of the PBT, the nodes displayed by the RGB arc PCTE objccts, and the arcs are
PCTE links. The PBT is a Motif-oriented X Window System application making use of the
SA-Motif Ada bindings, a commercial product of Systems Engineering Researchl Corporation
(SERC).

This tool has been developed in Ada using the Sun Ada 1.0 compilation system from Sun
Microsystems.

The PBT is ultimately intended for use in an ECMA PCTE environment and has beeii
implemented using the ECMA-162 Ada programming bindings to PCTE. However, in the
absence of a conforming ECMA PCTE implementation, the 1'BT has been built on top of
the Emeraude V12 PCTE 1.5 implementation, using a subset implementation of the ECMA
Ada binding developed by Paramax STARS (release 0.2).

This document describes the general capabilities of the PBT and how to invoke them. For
detailed instructions on how to install or rebuild the PBT, consult the associated Version
Description Document (VDD).

1.2 PBT Overview

The PBT is designed to graphically display selected parts of a PCTE object base. Graphs of
objects in the object base and the relationships amongst them are created and displayed at
the PBT user's request. The PBT is intended to complement text-oriented commands such
as obj_listidinks and obj__ist-attr, which are included with the Emeraude V12 PCTE
release-commands intended to be invoked from the text-oriented esh command shell.

The PBT allows the user to create and display any number of netwcrks of objects- Views
in PBT terminology -from a single PCTE object base. Figure 1 illustrates one such View.

In figure 1, two basic kinds of objects are represented, using two different icons: PCTE file
objects use a representation of a sheet of paper filled with text as an icon, while ordinary
PCTE objects without contents use a representation of a file folder. Most objects in the
PCTE object base are specializations of one of the basic PCTE object types. The PBT
identifies the specialization by labeling each object with the object type name as defined
in the current working schema. It also labels each arc with the link name and key value
associated with that PCTE link. The PIT distinguishes amongst the various kinds of
links by decorating the arcs with different icons for differen, link categories. In figure 1,
composition links are labeled with Cs, reference links with R's, and ,mplicd links with rs.
When run on color monitors, the PBT uses different colors for the different icons to further

Page 1

30 November 1992 S'IAI{S-UC-05203/001/00

Display objects Links Statu!. Setup.. Quit [

Composite View: -/.users
Filter Topology Delete View]

/ / tx

filei

I

useroi

C

nembetrof

tory.e
A', .e

Figure 1: Giaph of PCTE Objects and Links

distinguish amongst the basic node and arc kinds.

The PBT supports two types of Views:

* Composite Views

* Local Views

A Composite View includes the set of ICTIE objccts making tip a composite object, i.e.,
the set of objects which comprise the tree formed by traversing the IPTE composition
links emanating from a specified root object. The user can specify that the entire tree, of
composition links be included in the View. Alternatively-presumably for "large" composite
objects--the user can specify that the tree be cut off at a user-specifiable maximum depth.
Under the user's control, a Composite View may also include other types of (internal and
external) PCTE links emanating from the individual PC'M E objects comIlprising the composite
object.

Page 2

30 November 1992 STARS-UC-05203/001/00

A Local View consists of the set of PCTE objects which fall within a user-specified maximum
distance from a specified start object. The distance from the start object is defined as the
minimum number of link traversals beginning at the start object to reach another cbject in
the set. Each Local View also includes all the links amongst the objects in the set.

The objects to be used as the roots of Composite Views or the start objects for Local
Views can be identified by the user via their PCTE pathnames. In addition, once Local and
Composite Views exist, these objects can also be selected from amongst the objects within
these existing Views via point-and-click mouse-oriented operations.

The PBT supports a number of operations on objects and links displayed in Views:

For every kind of PCTE object, it is possible to:

e display the object's pathname within that View;

* display its attributes;

* make it the PBT session's Current Object;

* create a new Composite View rooted at the object;

* create a new Local View starting from the object;

* invoke one of the associated action programs, if any exist for the object.

In addition, for every PCTE file object, it is possible to:

* display its contents.

For every category of PCTE link, it is possible t(:

* display the full pathname within that View of the link's target object;

* display any non-key link attributes;

* "go to" the source of the link by scrolling the graph so that the source object is
approximately centered within the View window;

* "go to" the target of the link by scrolling the graph so that the target object is ap-
proximately centered within the View window.

In addition, for every specialized pbt-viewer and pbt-action link, it is possible to:

• invoke the program that is the link target, passing it the pathname of link source so
that it can have access to the source object.

Page 3

30 November 1992 STARS-UC-05203/001/00

Display Objects Links Status Setup... Quit

Composite View: -/.users

SFilter Topology Delete View

------- -- --- -------- i
I- I

I
file

C
of i

C

ad member-sf

C/
tory.e

----_ --_ ---

Figure 2: Topology Region Within View

Several PBT commands expect PCTE objects to be identified via their pathnames. Such
pathnames can stait at either the root of the object base ("_") or the PBT user's home (").

Such pathnames can also be relative to the PBT session's Current Object. In addition, such
pathnames can make use of user-defined object aliases. The user may define new aliases
(which are local to a PBT session), or modify or delete existing ones. The PBT also supports
the saving of such aliases in PCTE file objects, and the loading of aliases from such files.

Since the graph of objects in any particular View may be too large to fit within the window,
the PBT supv-arts mechanisms for scrolling around the graph. The PBT also allows the
user to attach a Topology region to any existing View-a region that contains a miniaturized
depiction of the graph, sometimes called the "view from one thousand feet." Figure 2
illustrates the same graph displayed in figure 1, with the Topology region now added to the
right portion of the View.

The PBT supports a number of mechanisms by which one can filter out objects and links
from the graphs displayed within Views.

Page 4

"30 November 1992 STARS-UC-05203/001/00

Prior to the creation of Views, the user can control which links are to be included in such
Views in two ways: via the PCTE working schema and via user-specifiable link name pat-
terns.

The PBT allows the user to modify the set of SDSes are included in the PBT session's
current working schema. Links whose names are not defined in this working schema will not
be displayed in Views. In addition, the PBT allows the user to specify any number of link
type names or name patterns; if any such patterns have been specified, then the PBT further
limits the displayed links to be those matching such type name patterns. Link type name
patterns can include the UNIX shell-like wildcards "*" and "?" (e.g., "*list"). The PBT
allows the user to save these patterns in PCTE file objects, and to load previously saved
patterns from such files.

For graphs of objects displayed in existing Views, the PBT supports the hiding and reex-
posing of objects and/jr liaks within these Views: PCTE objects of a specific kind (e.g.,
all PCTE files or all non-file objects) can be hidden or exposed, as can links of a specific
category (e.g., all composition, reference or implicit links). The PBT can also hide or expose
objects based upon the names of their object type names, and can hide or expose links based
upon their link type names.

The PBT allows the user to tailor some aspects of the PBT behavior, such as:

@ whether SDS names are to be used in Views within object and link labels;

e the default maximum depth of composition trees associated with Composite Views;

e whether user requests to delete Views or requests to quit the browser should be con-
firmed;

e whether to display PCTE exception information when PCTE exceptions are raised.

2 References

The following documents are applicable to the PCTE Browser Tool:

e PBT Version Description Document, Version 1.0, 30 November, 1992.

* Standard ECMA-149, Portable Common Tool Environment (PCTE) Abstract Specifi-

cation, December, 1990.

e Emeraude V12, release 3, System Administration, January, 1992.

* Emeraude V12, release 3, Environment Guide, January, 1992.

* Emeraude V12, release 3, Tool Catalogue, January, 1992.

Page 5

30 November 1992 SI ARS-UC-05203/001/00

"* Quercia, Valeria and O'Reilly, Tim, X Window System User's Guide for XlI R3 and
R4, Volume 3, 3rd edition, O'Reilly & Associates.

"* Fulton, Jim, X Window System, Version 11 Release 4 Release Notes, (supplied with
MIT distribution)

"* OSF/Motif Programmer's Reference, Revision 1.1, 1991.

"• RGB User Manual, STARS-US-020401/002/00, 20 November, 1992.

3 INSTRUCTIONS FOR USE

3.1 PREPARATIONS FOR USE

In order to use the PBT, the following preliminary steps must be taken:

1. The PBT executable must be installed in the environment so that it will be accessible
by PCTE users.

2. A PBT-oriented SDS (named pbt) must be installed in the environment so that it
may be included in the current working schema by the PBT. (NOTE: This SDS is
used to implement the action and file object contents viewing mechanisms described
in sections 4.8.3 and 4.8.4 described below.)

3. The set of files describing the X Window System resources and bitmaps to be used
by the PBT must be installed in the UNIX file system, and the location of these files
must be identified via the XAPPLRESDIR environment variable.

4. The X Window System, X11R4, must be running on the user's display.

5. The server pi)cess for the PCTE object base must be running.

6. The useýr must be logged into PCTE.

3.1.1 Installing the PBT Executable

In the Emeraude implementation of PCTE, an executable such as PBT can either be installed
as a static context (type env-sctx) within the PCTE object base itself, oi can be moved
into one of the UNIX directories within the UNIX path in affect during a PCTE session.

3.1.2 Installing the pbt SDS

One of the files that is part of the PBT delivery is pbt. sds. This file contains the PCTE
schema data definition language (DDL) specification of the pbt SDS. This SDS defines two
link types that are used by the browser:

Page 6

"30 November 1992 STARS-UC-05203/001/00

* viewer links - which go from PCTE file objects to PCTE static contexts. The PBT
includes a mechanism by which these static contexts can be invoked for the associated
file objects. (See section 4.8.3 below for more information.)

* ection links - which go from all types of PCTE objects to PCTE static contexts.
The PBT includes a mechanism by which these static contexts can be invoked for the
associated objects. (See section 4.8.4 below for more information.)

The SDS is installed in the PCTE object base via the sds.compile command. See the
accompanying VDD for more details on installing the SDS.

3.1.3 Installing the X Resource Files

A number of UNIX files associated with the PBT must be on-line at the time that the PBT
is executed:

e PCTE-Browser, the "X resource file" associated with the PBT.

* A set of files describing the bitmaps to be used for the various object and link icons.

These files arc part of the PBT delivery. See the accompanying VDD for a description of
how to install these files.

The PBT is typical of X-oriented tools in that the characteristics of the tool can be set or
overridden by the user, rather than being hard-wired into the tool. These characteristics
include such things as which bitmaps to use for specific types of object, or what physical
display dimensions to use for the various widgets used by the browser. These characteristics
("resource values") are specified in PCTE-Browser, which is read by the browser each time
it is started, and therefore, can be customized for each site or for individual users of the
PBT. Appendix A contains the color monitur-orientedi X resource file supplied with the
PBT release--one which could be customized at any local installation)f the PBT.

3.1.3.1 Identifying the X Resource Files

As discussed above, the PBT reads its X resource specification, PCTE-Browser, each time
that the browser is invoked. The browser expects to find the newly installed PCTE-Browser
file in the UNIX directory identified by the XAPPLRESDIR environment variable. The follow-
ing command line could be added to the . login or . cshrc file of every potential user of the
browser, or else could be executed prior to invoking the PBT:

setenv XAPPLRESDIR directory-containing-PCTE-Browser

where directory-containing-PCTE-Browscr is to be replaced by the site-specific absolute
UNIX pathname of the directory containing the PCTE-Browser file.

Page 7

30 November 1992 STARS- UC-05203/001 /00

NOTE: There are two versions of the PCTE X Resource File delivered with the PBT--
one for a color monitor, and one for a monochrome monitor. Make sure that the version
of PCTE-Browser in the directory identified by XAPPLRESDIR is appropriate for the type of
monitor being used.

3.1.4 Starting the X Window System

The PBT can be executed on any workstation running X11R4. This can be the San-supplied
implementation of X, OpenWindows, or the X distribution from MIT.

It is beyond the scope of this user manual to describe how to install X, or how to start the
X server on a workstation. Consult with your local system administrator for help.

There are a number of "standard" window managers that one may use in an X environment.
The PCTE browser has been used successfully under the following such window managers:
mvm (Motif Window Manager) and trm (the official MIT-distributed window manager).

3.1.5 Starting the FCTE Server

Consult the Emeraude V12 System Administration guide for information on how to start
the PCTE server.

3.1.6 Logging into PCTE

The "standard" method for logging into PCTE is sufficient for using the PBT. Consult the
Emeraude V12 System Administration guide for details.

3.1.7 Executing the PCTE Browser Tool

Once the PBT executable and the pbt SDS hay been installed in a PCTE object base,
the X server, X window manager and PCTE server are executing, and the XAPPLRESDIR
environment variable has been set, the PBT may be invoked.

The invocation can be done from any environment capable of creating PCTE processes, such
as from within the esh shell.

The PBT recognizes and accepts a number of command line irgumcnts. These arguments
allow the user to do any or all of the following:

1. Set any or all of the customizable aspects of PBT behavior. (See section 4.11.)

2. Set the initial working schema to be used by the PBT. (See section 4.7.1.2.)

Page 8

30 November 1992 S'TARS-UC-05203/001/00

3. Set the initial value of the Current Object. (See section 4.6.1.2.)

4. Load an initial set of objecL aliases. (See section 4.1.1.6.)

5. Load an initial set of link type name patterns. (See section 4.5.6.)

6. Create an initial set of Local and/or Composite Views. (See sections 4.3.1.2 and
4.3.2.2.)

Refer to Appendix B for a complete listing of the PBT "help" message, which describes all
of the command line arguments.

3.1.7.1 Order of Evaluation of Command Line Arguments

The command line arguments are always processed in the order indicated above, regardless
of the order in which these arguments are specified. For example, consider the following
PBT invocation which both loads object aliases ("-a") and sets the Current Object ("-c"):

PBT -a aliases.e -c

Even though the arguments are entered with the "load aliases" argument indicated first, the
setting of the Current Object (step 3) will actually be performed first. As a consequence,
the "Clirrent Object-relative" aliases.e pathname is relative to -; i.e., the full pathname
to the aliases file object is interpreted as -- /aliases.e.

If the PBT detects any syntax errors in the command line arguments, it simply identifies
them (by writing error messages to the PBT's standard output device) and then terminates
the program. The following is an example of such a PBT invocation attempt:

PBT -a aliases.e -q -c "
Command line argument 3 ("-q") is invalid.
Use the -h option to display all valid PBT options.

However, if there are semantic errors in the command line arguments, the PBT does not
terminate. Instead, it processes as many of steps in the command line processing as it can
up to, but not including, the step in which the semantic error is detected. It then skips over
the remaining steps, with warning messages written to standard output as shown below.
The PBT opens up the Initial Browser window (shown in figure 3), thus allowing the user
to e;,plicitly recover from whatever semantic errors were detected. The following example
illustrates what happens when semantic errors are debt:ted. In this example, the specified
object to become the initial Current Object does not exist:

PBT -a aliases.e -c _/cuest.usr -1
Error setting object reference: "-/cuest.usr" is not an existing object.

Page 9

30 November 1992 STARS-UC-05203/001 /00

- -p l " Ai

Display Objects Links Status Setup... Quit

Initial Browser Window

Figure 3: Initial Browser Window

Skipping over the setting of the current object.
Skipping over the loading of the initial object aliases.
Skipping over the creation of the initial Views.

3.2 BROWSER LOOK AND FEEL

The PBT application creates a number of cypes of Motif-style windows as needed during a
PBT session. These windows include:

* an Initial Browser window

* Composite View windows

* Local View windows

* control panels

* dialog boxes

e scrollable text windows

* alert boxes

e confirmation boxes

3.2.1 Initial Browser Window

The Initial Browser window, shown in figure 3, is the first window created by the PBT.
This window exists until the first Local or Composite View is created, at which point it is
transformed into either a Local or Composite Vit w window.

The Initial Browser window consists of a title bar with the constant title "Initial Browser
Window," and a global menu bar above the title.

The global menu bar in Initial Browser window contains six command buttons that can be
used to invoke global PBT commands-commands which apply to the overall PBT session,
rather than to any specific View window. These command buttons are:

Page 10

30 November 1992 S'I'ARS-GJC-05203/001/00

Display tO~bjectsj- Links Status Setup... Quit
77!S VrWindow

Current Object
O bj.i.e ct 1A..I..I.a'se-s .. Display Aliases

Set Alias...

Delete Alias...
Load Aliases...
Save Aliases...

Figure 4: Objects Command Button Menu

"* Display - used to create new Composite and Local View windows (see sections 4.3.1.1
and 4.3.2.1).

"* Objects - used to maintain the current working schema (see section 4.7), to maintain
the Current Objiect (see section 4.6), and to maintain the set of object aliases (see
section 4.1.1).

"* Links - used to maintain the set of link type name patterns (see section 4.5).

"* Setup- used to customize the PBT behavior (see section 4.11).

"* Status - used to display the most recent PCTE exception information (see sec-
tion 4.10).

"* Quit - used to terminate a PBT session.

Three of the global command buttons (Status. Setup and Quit) have only a sipgle PBT
command associated with it. To invoke any of these PBT commands, the user simply clicks
the left mouse button while the mouse pointer is within the bounds of one of these command
buttons.

The other global command buttons (Display, Objects and Links) can each be used to
invoke more than one PBT command. Each of these three buttons have pulldown menus
that appear when the left mouse button is depressed while the mouse pointer is within the
bounds of the cormmand button. To invoke any of these PBT commands, the user selects
the desired menu item off one of these pulldown menus; this selection is done by releasing
the left mouse button while the mouse pointer is pointing at the menu item.

Figure 4 contains an example of a pulldown menu-the one associated with the Objects
command button. Th*s particular pulldown menu includes cascaded submenus. Since this is
a standard Motif menu, it uses the Motif convention for indicating the presence of a cascaded
submenu-a right-pointing arrow head.

Page 11

IV•~~~~ I JII]IIIrn =:_

30 November 1992 STARS-tUC-05203/001 /00

Figure 4 also illustrates a PBT menu cc.,vention: A number of PBT commands that are
invoked via menu selection require additional information to be supplied by the user in order
to be complete the command invocation. When selected, these menu items all pop ,p either
a control panel or dialog box in which this additional information can be specified. The PBT
indicates that a menu item has an associated popup by including an ellipsis ("...") at the
end of the menu item title.

3.2.2 Composite View Windows

Composite View windows display the set of PCTE objects comprising a composite PCTE
object beginning at a user-specified PCTE object, as illustrated in figure 5. The PBT can
create any number of Composite View windows during a PBT session. These View windows
remain in existence until either the PBT session is terminated or until the user explicitly
deletes them.

Each Composite View window includes the following:

* a global menu bar, containing the same set of global command buttons as in the Initial
Browser window;

* a title bar below the global command bar identifying the root of the Composite View;

* a second menu bar (below the title), containing view-specific command buttons;

* a scrollable region at the bottom of the window containing the graph of the composite
object and related links.

The lower menu bar contains three command buttons that can be used to invoke view-specific
PBT commands--commands which apply to the specific Composite View window, rather
than to the PBT session in general. These command buttons are:

9 Filter - used to hide and/or reveal nodes and arcs withing the View's gra-ph (see
section 4.4).

* Topology -- used to hide and/or reveal the "view from one thousand feet" (see sec-
tion 4.1.1).

* Delete View - used to destroy the Composite View window.

Two of the view-specific command buttons (Topology and Delete View) have only a single
PBT command associated with it. To invoke either of these PBT commands, the user simply
clicks the left mouse button while the mouse pointer is within the bounds of the appropriate
command button. The third command button (Filter) can be used to invoke more than
one PBT command; it, th'refore, has an associated pulldown menu that appear when the
left mouse button is depressed while the mouse pointer is within the bounds of this command
button.

Page 12

30 November 1992 STAIMSUC-05203/001 /00

DplyObjects Links Status Setup... Quit1

Composite View:-

Fitr Topology Delete View

AC

a~cmo... nroot

rit

use~

C
guest-grp

CC
-grousa grouplist

Figure 5: Composite View Window Example

Page 13

30 November 1992 STARS- UC-05203/001 /00

3.2.3 Local View Window

Local View windows display the set of objects that are within a user-specified distance from
a user-specified starting object, as illustrated in figure 6. The PBT can cicte any number
of Local View windows during a PB3'r session. As with Composite View windows, Local
View windows remain in existence ,ntil the browser session is terminated or until the user
explicitly deletes them.

Each Local View window includes same set of components as is found in a Composite View
window:

"* the global menu bar;

"* a title bar below the global command bar identifying the start object of the Local
View;

"* a second menu bar (below the title), containing the same set view-specific command
buttons as found in Composite View windows;

" a scrollable region at the bottom of the windo%. containing the graph of the Local View.

a.2.4 Dialog Boxes

Dialog boxes pop up when a simple text string is needed from the user to complete a requested
PBT command. For example, the dialog box illustrated in figure 7 pops up in response to
selecting the Delete Link Type Name Patterns menu item of the global Links command
button. The information needed from the user in this case is the pattern to be deleted.

The dialog box includes an editable Motif text field. To insert text within this field, the
mouse pointer must first be moved into the rectangle surrounding the text field.

Text will be inserted at the location of the "I-beam" cursor within this field, which appears
whenever the mouse pointer is within the bounds of the field. Once text has been inserted
into the field, this cursor can be moved by clicking (with the left mouse button) at any point
within this text. (Consult the standard Motif text widget documentation for more complete
information on moving this cursor.)

Existing text within this field can be replaced by first selecting (i.e., highlighting) some or
all of the existing text, then entering new text; this will delete the old, selected text and
insert the new text in a single operation. One way to select text is to depress the left mouse
pointer at the beginning of text drag the mouse pointer to the other end of the text section.
One way of selecting the entire text fi•ld is to triple click (with the left mouse button) while
pointing anywhere within the text. field. Another way to select the entire field is to type
control-slash while pointing anywhere within the text field. (Consult the standard Motif
documentation on the text widget for more complete information on selecting text.)

Page 14

30 November 1992 STARS-UC-05203/001 /00

Display Objects Links Status Setup... Quit

Local View: _.jusers/horton.usr
Filter Topology Delete View

.profiloe sctx

iMYVt.e SCtx

aliestor.e file

Figure 6: Local View Window Example

Page 15

30 November 1992 S'I'AHS-UC-05203/0O1/00

Enter link name pattern to be deleted (all patterns]

W------ ----

Figure 7: Dialog Box Example

Text to the left and the right of this cursor can be leleted using the d(.tte and back space
keys, respectively. Alternatively, a section of text to be deleted can be selected and then
deleted in a single operation via the delete key.

A dialog box is deleted as soon as the user clicks (with the left mouse button) in either the
OK b,:tton (to apply the information and complete the PBT command invocation) or Cancel
button (to cancel the associated command). NOTE: in general, no other PBT action can
be taken until the user responts to the dialog box.

3.2.5 Control Panels

Control Panels are used when information is ncleded from the user and where a dialog box,
with its single text field, is insufficient. For example, the control panel illustrated in figure 8
pops up whenever the user requests the creation of a new Local View. The information
needed from the user in this case is the pathname of the object to be used as the Local
View's starting point, as well as the maximum distance of other objects from this start
object.

Control panels can consist of any or all of the following types of components:

* text fields

* radio buttons

* single selection lists

Text fields within control panels are similar to those found in dialog boxes. (See section 3.2.4
for information on editing such fields.)

Radio boxes are used to select one item from amongst a fixed set of choices. For example,
the control panel in figure 19 contains a single radio button component (along with two text
fields). The radio button component allows the user to chose which (of three possible choices)
sets of link categories to include in a new Composite View. The user selects a radio button

Page 16

30 November 1992 STARS-UC-05203/001/00

start object's path:

maximum distance from start object:

iAPPLVJ RETACL

Figure 8: Control Panel Example

choice by clicking (with the left mouse button) in the diamond-shaped icon associated with
that choice. NOTE: Radio button components in control panels are designed to ensure that
exactly one choice is always selected within these components.

Single selection lists are used to select one item from amongst a dynamic set of choices.
For example, the control panel in figure 46 contains a single single selection list component.
This particular iist component allows the user to chose amongst the available mechanisms
for viewing a file object's contents. The user selects an item in such a list by clicking (with
the left mouse button) in that item. NOTE: The user need not select any item within a
single selection list component; in fact, if the user clicks in an already selected iist item, that
item will be deselected, without selecting any other item.

A control panel is deleted as soon as the user clicks (with the left mousc button) in either
the APPLY button (to complete the PBT command invocation) or CANCEL button (to cancel
the associated command). The third button at the bottom of every control panel, RESET,
can be used at any time prior to clicking in the APPLY button; this will reset all of the control
panel fields to their values at the time when the control panel first popped up.

3.2.6 Text Windows

Scrollable text windows, such as the one illustrated in figure 9, are used by most PBT
commands that must display text. Information displayed in these text windows include:

* the current working schema

* the Current Object

e the full set of SDSes in the PCTE metabase

* the current set of link type name patterns

* the current set of object aliases

Page 17

30 November 1992 STARS-UC-05203/001 /00

.. -- -- -- -i l .. - - -------- "il :Qui t

;C -smi th
S cd..

si
t els-

c• c .users |
els

I els smith
els horton
els guest
evi guest/.profile

4 els -1 guest/.profile
PBT&

Figure 9: Scrollable Text Window Example

* PCTE file object contents

* the non-key attributes for a particular link

e all the attributes for a particular object

* object pathnames

All PBT text windows contain standard Motif scroll bars. These scroll bars can be used to
move about the text window contents when it is too long to be displayed all at once.

The PBT user can simultaneously display any number of text windows. Individual text
windows may be deleted by selecting the Delete the Text Window menu item (using the

left mouse button) from the text window's quit button. The entire set of text windows-
and all Local and Composite View windows as well-will be deleted when the global Quit
command button is selected in any View window.

NOTE: Currently, all text windows created by the PBT are read-only.

3.2.7 Alert Boxes

Alert boxes pop up when unexpected conditions are detected. The alert box illustrated in
figure 10 appears when a pathname specified as the root of a new Composite View does not
exist.

A alert box will be deleted when the user clicks (with the left mouse button) in the alert
box's OK button. Until the user responds, no other PBT action can be taken.

Page 18

30 November 1992 STA RS-UC-05203/001/00

Sinvalid base node path name specified.

Figure 10: Alert Box Example

SDo you really wantto quit the browser?

Figure 11: Confirmation Box Example

3.2.8 Confirmation Boxes

Confirmation boxes pop up when a yes/no answer is required from the user to complete
a PBT command. The confirmation box shown in figure 11 pops up when the user has
requested that the PBT session be terminated; it is used to make sure that user did not
invoke the quit operation unintentionally.

A confirmation box will be deleted when the user clicks (with the left mouse button) in the
either box's YES or NO button. Until the user responds, no other PBT action can be taken.

3.2.8.1 Use of View's Topology Region

3.2.9 Miscellaneous Window Manager Operations

A number of functions related to the management of browser windows are controlled by
the X window manager in use at the time the browser is invoked (e.g., mwm or tm). These
functions include:

"* Resizing windows

"* Iconifying windows

Page 19

30 November 1992 STARS-UC-05203/001/00

"* Placing windows on the screen and moving them around the screen

"* Exposing browser windows covered by other windows

"* Hiding browser windows behind other windows

The means by which these operations are accomplished depends upon which window manager
is in use. These window managers decorate most browser windows with title bars with
"buttons" (mouse-sensitive regions) that can be used to initiate some or all of the above
functions. All of the examples illustrated in this document were created using mwn, the
Motif window manager. Consult the documentation for the specific window manager in use
for explanations as to how the title bar buttons are used, and for alternate methods for
initiating window manager functions.

4 PCTE Browser Capabilities

The subsections below describe the following PBT capabilities:

* PCTE object identification

* name pattern conventions

e creation/maintenance of View windows

* filtering of objects within View windows

e filtering of links within View windows

* operations on objects

* operations on links

* display of error status information

e customizing the browser

* exiting the browser

4.1 Object Identification

Several PBT functions prompt the user to identify the object in the PCTE object base for
which the function is to be applied.

The PBT recognizes standard PCTE pathnames starting either from the root ("_') or the
user's home (",-2"). Examples of such pathnames include:

Page 20

30 November 1992 STARS-UC-05203/001 /00

-/history. e
_/. users/guest .usr

Relative pathnames are those beginning with a link name, such as: hi story. e. Such path-
names are interpreted within the PDT as relative to the PBT session's Current Object. For
example, if _/.projects was the set to be the Current Object earlier in the PBT session,
then the previous relative pathname would be interpreted as J.project s/history. e. (See
section 4.6.1 for information on setting the Current Object.)

4.1.1 Aliases in Object Identification

As a final shorthand method for object identification, the PBT supports the crk ..ion and
miintenance of a set of aliases whose values are the object pathnames, and allows objects
to be identified via the use of these aliases.

Assume for the moment that one such alias already exists, path-tef, and assume that the
values of this alias is "_/.users/guest .usr.". Then the following are valid examples of
object references:

$path-ref
$path-ref/history. e

References to the values of object aliases always begin with a dollar sign ("$") followed
immediately by the name of the object alias. The PBT interprets such references by substi-
tuting the $ahas-name by the current value of the alias. This means that these references
are equivalent to:

_/.users/guest.usr
_/. users/guest .usr/history.e

NOTE: The PBT is case-sensitive; i.e., the case used when specifying the name of the alias
is significant.

The PBT supports the following aliases-oriented operations:

"* Display the current set of object aliases.

"* Create new aliases or modify existing ones.

"* Delete existing aliases.

"* Load alias names and values from existing PCTE files.

Page 21

30 November 1992 STARS-UC-05203/001 /00

Display Aliases

Set Alias...

Delete Alias...

Load Aliases...

Save Aliases...

Figure 12: Object Aliases Submenu

t°

Figure 13: Display Aliases Text Window

* Save the existing set of aliases in new or existing PCTE files.

All of these operations are initiated by selecting menu items off the global Objects com-
mand button's pulldown menu-more specifically, by selecting menu items from the top-level
Object Aliases menu item's cascaded submenu (see figure 4). This cascaded submenu is
shown in figure 12.

Any of these operations can be invoked at any time during a PBT session. In addition, the
PBT supports the capability of optionally loading a set of alias names and values from a
single PCTE file object at PBT startup.

4.1.1.1 Displaying Object Aliases

Selecting the Display Aliases submenu item pops up a text window that contains the
current set of object aliases, as illustrated in figure 13. The aliases are displayed one per
line, as in:

Alias Name: Alias Value

Note that Current Object is one of the aliases displayed in figure 13. This is a consequence
of the fact that the PBT treats the Current Object internally as an object alias, rather than
relying upon the underlying PCTE implementation to manage it.

Page 22

30 November 1992 STARS-UC-05203/001/00

name of alias to be set
S...... -- ---

value of alias:
S..

APPLY =RESE D I F APCEL

Figure 14: Set Alias Name Control Panel

Enter name of alias to be deleted:

I.

Figure 15: Delete Alias Dialog Box

4.1.1.2 Setting Object Aliases

Selecting on the Set Alias menu item causes a control panel shown in figure 14 to pop up.
The user can then enter the name of an alias and its associated value (i.e., PCTE pathname).
When the user clicks in this Panel's APPLY button, the PBT will either replace the previous
value of the alias (should one exist), or will add the new alias to the existing set of aliases.

4.1.1.3 Deleting Object Aliases

Clicking on the Delete Alias option causes a dialog box shown in figure 15 to pop up. By
default, all existing aliases (other than CurrentLObject)--names and values-will be deleted.
If the user enters a specific alias name, then only that alias will be deleted.

4.1.1.4 Saving Object Aliases

Clicking on the Save Aliases option causes a dialog box shown in figure 16 to pop up. This
allows the user to identify the PCTE file in which to save the current set of object aliases.

Page 23

30 November 1992 STARS UC-05203/001/00

Figure 16: Save Aliases Dialog Box

Enter name of PCTE File contwlnich tosav aliases:

./.users/horton~usr/allases.e

1 •:• • { • 1............... i

Figure 17: Load Aliases Dialog Box

if this file already exists, its contents will be overwritten by this list of aliases. Otherwise,

the PBT will create this file. (NOTE: The one alias that is not saved in this operation is
:te current value of CurrentObject.)

"zc format used for saving the object alias names and values in the file object is exactly
tne same as that used f- dii:laying them, as shown in figure 13. It is also the same format
exopcted by the LoaC, : asAs option discussed below.

,,. 1.5 Dynamic Loading of Object Aliases

Clicking on the Load Aliases option causes a dialog box shown in figure 17 to pop up.
This allows the user to identify a PCTE file object containing a set of object aliases to be
used for referencing purposes. If any aliases already exist at the time a new set is loaded,
the new set is merged with the existing set.

4.1.1.6 Loading Object Aliases at FBT Session Startup

By default, the only alias that is initially defined is Current-Object. However, the user
can use the -a command line argument to specify a PCTE file object from which to load an

Page 24

30 November 1992 STARS- UC-05203/001/00

initial set of aliases. The syntax of the -a argument is as follows:

-a pathname

NOTE: It is not considered to be an error for more than one instance of the -a argument to
be specified in a command line argument list; however, all but the last ("rightmost") such
argument will be ignored.

4.2 Name Pattern Syntax

Several PBT commands prompt the user to enter a link or object type name, or a name
pattern that will match one or more such names. The following rules apply whenever such
names or patterns are used:

"* These names are assumed to be made up of letters, digits, underscores and/or hyphens.
All such characters in name patterns match exactly the same cha.racter; that is, these
names are case-sensitive.

"* In addition to the alphanumeric, hyphen and underline characters that can actually
comprise these names, two special characters can also be used:

- "," matches any string of zero or more characters.

- "?•" matches any single character.

If the specified pattern includes a hyphen, then that portion of the pattern to the left of the
hyphen will be matched against the name of the SDS to which the type name applies, and
that portion of the pattern to the right of the hyphen will be matched against the rest of
the type name.

If the pecified pattern does not include a hyphen, then any SDS name within the type name
will be ignored (automatically matched) and the entire pattern will be matched against the

rest of the type name.

4.3 Creation/Maintenance of View Windows

The PBT is able to create two types of Views:

* Composite Views contain a tree of objects formed by the composition links from a given
root object, optionally including the other types of links emanating from the objects
of this tree.

• Local Views contain the set of objects that are within a user-specified distance of a
starting object, together with all types of links amongst these objects.

Page 25

30 November 1992 STARS-UC-05203/001/00

SCreate Composite View....

Create Local View...

Figure 18: Display Command Button Menu

View creation can be initiated by selecting menu items off the global Display command
button's pulldown menu, shown in figure 18. It also can be initiated by selecting the "Create
View" menu item off any object's popup menu, such as the ones shown in figure 41 and 42.

The subsections below describe how these two types of Views are created, as well as how
a Topology region-"the view from one thousand feet"-can be added to or removed from
such Views.

4.3.1 Creation of Composite View Windows

Any number of Composite Views can be created dynamically, throughout a PBT session.
Any number of such Views can also be created "automatically" at the beginning of a PBT
session, based upon user-specified command line arguments. Both methods for creating

Composite Views will be discussed below.

4.3.1.1 Dynamic Creation of Composite Views

To dynamically create a Composite View, the user can select the Create Composite View
option from the global Display command button's pulldown menu (shown in figure 18) from
the Initial Browser window or any existing Local or Composite View window. Alternatively,
one can select the Create Composite View option from the popup menu for any object in
any existing View window. In either case, selecting the option will cause the Composite
View Control Panel shown in figure 19 to appear.

There are three fields in this panel:

* The pathname of the root of the composition tree.

* The category(s) of links that are to included in the View.

* The maximum depth of the composition tree.

If the Create Composite View menu item from an object's popup menu was used to initiate
the View creation process, then the default value of the root pathname is that object's
pathname; otherwise, the pathname of the Current Object will be used as the default. In
any case, the user may modify this pathname before applying the Panel.

Any negative value specified as the maximum tree depth is interpreted as an "unlimited"
tree, meaning that the entire composition tree will be included in the View.

Page 26

30 November 1992 STARS-UC-05203/001 /00

base object's path:

links to Include:

* Composition Links Only 0 All Links

0 All Non-implicit Links

maximum depth of composition tree;

i RESET..C..

Figure 19: Composite View Control Panel

The default category(s) of links to include in the new View, as well as the default value of
the maximum compositicn tree depth, can be customized either via the Setup command
button or via a command line argument when starting up the browser. See section 4.11 for
more details.

Should the browser detect any problem with the values read from the control panel, such as
the specification of a pathname of a non-existent object, then an alert box describing the
problem will be displayed. After clicking the Alert's Ok button, the user may correct the
error and reapply.

NOTE: As is true for all PCTE tools, the PBT is constrained by all the rules governing
PCTE access control. This means that objects which the PBT user is not entitled to access
will not be included in browser Views.

4.3.1.2 Creating Composite Views at PBT Session Startup

To create one or more Composite Views at PBT startup, the user can specify the -o
command line argument. The PBT will attempt to create one Composite View for each -o
argument that the user has specified.

The syntax of the -o argument is as follows:

-o[!ink.types] [depth] [pathname]

The link-types component of the -o argument can take on any of the following values:

* c (i.e., -oc) will include composition links only

Page 27

30 November 1992 STARS-UC-05203/001/00

"* n (i.e., -on) will include all non-implicit links

"* a (i.e., -oa) will include all types of links

If the optional link-types is omitted, then the default link types restriction will be used. (Note
that this default value can itself be specified as a command line argument. See section 4.11
for more details.)

The depth in the -o argument can be any integer value. If it is omitted, then the default
depth value will be used instead. (This default value can also be specified as a command
line argument. See section 4.11 for more details.)

The pathname in the -o argument specifies the root of the composition tree. If omitted, then
the initial value of the Current Object will be used.

The following example illustrates how this command line argument can be used to create

two Composite Views:

PBT -on3 _/.usevs/guest.usr -o

The first View explicitly uses -/.users/guest.usr as the root of the tree and 3 as the
maximum tree depth, and explicitly includes all non-implicit links.

The second View uses the "built-in" default values for the root pathname, depth and link
types to be included: -, 2 and composition links only, respectively.

Note that the default link type restriction, the default depth value, and the initial value of
Current Object can themselves be specified in other command line arguments. If any or all
of these default values are specified in the command line, then these new values will be used
for initial Composite View creation, regardless of the order of the command line arguments.
To illustrate this, consider the following example:

PBT -o -e3 -c J.users/guest.usr -kn

In this example, all of the "built-in" default values affecting Composite View creation are
modified: the default depth value is changed to 3, the initial Current Object value is changed
to be _/.users/guest.usr, and the default link kinds to include in Composite Views is
changed to be all non-implicit links. This means that the one Composite View to be created
at PBT startup will use these new defaults, even though the -o argument precedes the other
command line arguments that specify these defau!t changes.

4.3.2 Creation of Local View Windows

As with Composite Views, any number of Local Views can also be created dynamically,
throughout a PBT session. In addition, any number of such Views can also be created

Page 28

30 November 1992 STA RS-UC-05203/001 /00

start object's path:

L users/horton.usr

maximum distance from start object:
[:

• pp , I.........RESET _] NCEL I

Figure 20: Local View Control Panel

"automatically" at the beginning of a PBT session, based upon user-bpecified command line
arguments. Both methods for creating Local Views will be discussed below.

4.3.2.1 Dynamic Creation of Local Views

To dynamically create a Local View, the user can select the Create Local View option
from the global Display command button's pulldown menu (shown in figure 18). Alterna-
tively, one can select the Create Local View option from the popup menu for any object in
any existing View window. In either case, selecting the option will cause the control panel
shown in figure 20 to appear.

There are two fields in this panel:

9 The pathname of the starting object for the Local View.

* The maximum distance from the starting object.

If the Create Local View menu item from an object's popup menu was used to initiate the
View creation process, then the default value of the start object's pathname is that of the
selected object; otherwise, the pathname of the Current Object will be used as the default.
In any case, the user may modify this pathname before applying the panel.

The default distance from the start object can be customized either via the Setup command
button or via a command line argument when starting up the browser. See section 4.11 for
more details.

Should the browser detect any problem with the values read from the control panel, such as
the specification of a pathname for a non-existent object, then an alert box describing the

Page 29

30 November 1992 STARS-UC-05203/001/00

problem will be displayed. After clicking the Alert's Ok button, the user may correct the
error and reapply the panel.

4.3.2.2 Creating Local Views at PBT Session Startup

To create one or more Local Views at PBT startup, the user can specify the -1 com-
mand line argument. The PBT will attempt to create one Local View for each -1 argument
that the user has specified.

The syntax of the -1 argument is as follows:

-1[distance] [pathname]

The distance in the -1 argument can be any non-negative integer value. If it is omitted,
then the default distance value will be used instead. (Note that this default value can also
be specified as a command line argument. See section 4.11 for more details.)

The pathname in the -1 argument specifies the starting object of the Local View. If omitted,
then the initial value of the Current Object will be used.

The following example illustrates how this command line argument can be used to create
two Local Views:

PBT -11 J.users/guest.usr -1

The first View explicitly uses J.users/guest.usr as the start of the View and I as the
maximum distance from this start object.

1 1e second View uses the "built-in" default values for the start pathname and maximum
distance: - and 2, respectively.

Note that the default link type restriction, the default distance value, and the initial value
of Current Object can themselves be specified in other command line arguments. If any or
all of these default values are specified in the command line, then these values will be used
for initial Local View creation, regardless of the order of the command line arguments. To
illustrate this, consider the following example.

PBT -1 -il -c _/.users/guest.usr

In this example, all of the "built-in" default values affecting Local View creation are modified:
the default distance value is changed to 1 and the initial Current Object value is changed to
be _/.users/guest .usr. This means that the one Local View to be created at PBT startup
will use these new defaufts, even though the -1 argumeit precedes the other command line
arguments that specify these default changes.

Page 30

30 November 1992 STARS-UC-05203/001/00

4.3.3 Creation of Topology Regions in View Windows

One way to move about a large graph within a View window is via the scroll bars that are
present in every View window. A second method for moving the section of the graph being
displayed involves the use of the Topology region of the View, as illustrated above in figure 2.
This region is not part of the View window when first created, but can be added to the View
at any time simply by clicking in the View's Topology command button; if the Topology
region is already being displayed in the View, then clicking in the Topology button will
cause the region to be hidden.

The darkened area within the Topology region identifies the portion of the whole graph that
is being displayed in the left ("Main") region of the View window. If the left mouse button
is clicked anywhere in the Topology region, the section of the graph shown in the Main
graph region will be moved such that the location in the graph at the place clicked will be
displayed, centered in the Main region if possible. As a side-effect, the darkened area within
the Topology region will move as well to reflect what is displayed in the Main region.

Not: that the Topology region may not be big enough to display the entire graph, even in
miniaturized form, as is shown in figure 2. In such cases, the Topology region's own scroll
bars may be used to scroll around the Topology region.

4.4 Filtering Objects and Links Within View Windows

Once a graph of objects and links has been displayed in a Local or Composite View window,
the PBT allows the user to specify a set of objects and/or links to be filtered out, i.e.,
made invisible. Selected objects can either be specified by by basic kind (e.g., file or non-
file object), or by their object type names-the names used to label the objects within the
Views; such filtering of objects also hides those links originating and/or terminating at the
filtered out objects. In addition, the user can specify a set of links, either by category (e.g.,
composition or reference) or by link type name, and the PBT will redraw the graph without
including such links.

This filtering of the objects and/or links in an existing View is initiated by selecting the
View's Filter command button. This causes the Filter pulldown menu shown in fig-
ure 21 to appear. After this, the type of hiding/revealing that takes place depends upon the
command option (i.e., menu item) selected.

4.4.1 Hiding/Revealing Objects Based Upon Object Kind

The Suppress Objects By Object Kind and Unsuppress Objects By Object Kind
menu items both have the same cascaded submenu, shown in figure 22. By selecting one of
the menu items in these submenus, the user can choose to hide (or reveal) any single kind
of object, or to hide (or reveal) selected kinds of objects. (In anticipation of a conforming
ECMA PCTE environment, Process is one kind of object that is included, even though, in

Page 31

30 November 1992 STARS-UC-05203/001/00

Suppress Nodes By Object Kind *

Suppress Nodes By Object Type Name...
Suppress Links By Link Category
Suppress Links By Link Type Name...
Unsuppress Nodes By Object Kind
Unsuppress Nodes By Object Type Name...

Unsuppress Links By Link Category
tUnsuppress Links By Link Type Name...

Figure 21: Filter Command Button Menu

Files

SDSes

Processes
1 Ordinary (Non-File) ObJects
I AII Kinds

Figure 22: lUn]Suppress by Object Kind Submenu

the PBT implementation on top of Emeraude V12, such objects do not yet exist.)

4.4.2 Hiding/Revealing Links Based Upon Link Category

The Suppress Objects By Link Category and Unsuppress Objects By Link Category
menu items both have the same cascaded submenu, shown in figure 23. By selecting one
of the menu items in these submenus, the user can then choose to hide (or reveal) selected
categories of links. (In anticipation of a conforming ECMA PCTE environment, existence
and designation link categories are included, even though, in the PBT implementation on
top of Emeraude V12, such link categories do not yet exist.)

NOTE: The removal of links from the graph does not affect the set of objects being displayed;
i.e., objects will be displayed even if they are totally disconnected from the rest of the objects
in the graph.

4.4.3 Hiding/Revealing Objects Based Upon Object Type Name

If the Suppress Objects By Object Type Name menu option is selected, the PBT will pop
up a dialog box shown in figure 24. The user can then entcr the object type name to
be hidden, or an object type name pattern describing a set of such names (as defined in
section 4.2 above) to be hidden as a group. These names are the ones used to label the
various objects within View windows, e.g., common-root, toolset, group, user. etc. As with

Page 32

30 November 1992 STARS-UC-05203/001/00

I Composition Links

Reference Links
Implicit Links

'Existence Links
Designation Links

All Non-Composition Links
All Links

Figure 23: [Un]Suppress by Link Category Submenu

Enter name pattern for node(s) to be suppressed (all names]:
S.............................

....... :
e I

Figure 24: Suppress Object Name Dialog Box

the filtering of objects by more general object kinds, discussed in section 4.4.1 above, links
emanating or terminating at hidden objects will also be hidden.

Similarly, if the Unsuppress Objects By Object Type Name menu option is selected, the
PBT will pop up a dialog box shown in figure 25. The user can then enter the name of
object type to be revealed, or a name pattern describing a set of such names.

Enter name pattern for node(s) to be unsupr•essed [all names]:

LI] _

Figure 25: Unsuppress Object Name Dialog Box

Page 33

30 November 1992 STARS-UC-05203/001/00

Enter name pattern for link(s) to be suppressed [all names]:

Figure 26: Suppress Link Name Dialog Box

Enter name pattern for link(s) to be unsuppressed [all names]:

Figure 27: Unsuppress Link Name Dialog Box

4.4.4 Hiding/Revealing Links Based Upon Link Type Name

If the Suppress Links By Link Type Name menu option is selected, the PBT will pop up
a dialog box shown in figure 26. The user can then enter the link type name to be hidden,
or a link type name pattern describing a set of such names (as defined in section 4.2 above)
to be hidden as a group.

Similarly, if the Unsuppress Links By Link Type Name menu option is selected, the PBT
will pop up a dialog box shown in figure 27. The user can then enter the name of link to be
revealed, or a name pattern describing a set of such names.

4.5 A Priori Filtering of Links

The previous section described how one can remove objects and/or links from an existing
graph in a View in order to focus on what may be most important to a user at any given
moment. This section discusses a PBT capability that allows the user to prune objects and
links from a graph as the graph is being constructed.

The user can (optionally) create and mali tain a set of link type name patterns (e.g., *list).
If such a list of patterns has been specified at the time that a Local or Composite View is
constructed, the PBT will ignore any link that does not match at least one of the specified

Page 34

30 November 1992 STARS-UC-05203/001 /00

patterns when it creates new Views.

Any existing, non-empty list of link name patterns affects the construction of Composite
Views in the following manner: If any of the composition links that make up the tree of
objects rooted at the specified starting object do not match any of the listed patterns,
then the entire subtree of objects "below" that unmatched composition link will be omitted
from the constructed graph. In addition, any other categories of links emanating from any
objects in the "reachable" portion of the composition tree, will, likewise be excluded from
the constructed graph if they don't match at least one of the specified patterns.

Any non-empty list of link type name patterns affects the construction of Local Views in the
following manner: Objects will be included in the constructed graph only if they are within
the specified distance from the start object traversing only those links whose type names
match at least one of the specified patterns. Also, the only links included in the constructed
graph will be those matching one of the specified patterns.

It is important to note that the filtering/unfiltering of objects and links discussed in the
previous section apply only to those objects and links that are included in the initially
constructed View. That is, it is not possible to add objects and/or links that were excluded
from the graph initially without modifying (or eliminating) the list of link name patterns
and "recomputing" the graph by creating a brand new View.

The PBT supports the following link type name-oriented operations:

* Displaying the current set of link type name patterns.

* Specifying new patterns.

* Deleting existing patterns.

* Loading patterns from existing PCTE file objects.

* Saving the existing set of link name patterns in PCTE file objects.

All of these operations are initiated by selecting menu items off the global Links command
button's pulldown menu, shown in figure 28.

Any of these operations can be invoked at any time during a PBT session. In addition, the
PBT supports the capability of optionally loading an initial set of link name patterns from
a single PCTE file object at PBT startup.

4.5.1 Displaying Link Type Name Patterns

Selecting the Display Link Type Name Patterns menu item pops up a text window that
contains the current list of name patterns, as illustrated in figure 29.

Page 35

30 November 1992 STARS-UC-05203/001/00

Display Link Type Name Patterns

Add Link Type Name Pattern...
Delete Link Type Name Pattern(s)...

Load Link Type Name Patterns...

Save Link Type Name Patterns...

Figure 28: Links Menu

Ui i

env-replica
*-prs
Sys-sys
! grp
env-persons
env-users
env-projects
env-groups
*nmember-of

Figure 29: Display Patterns Text Window

Page 36

30 November 1992 STARS-UC-05203/001/00

Enter link name pattern to be added [no default]

...

_(1K

Figure 30: Add Pattern Dialog Box

Enter link name pattern to be deleted [all patterns)

Figure 31: Delete Pattefn(s) Dialog Box

4.5.2 Adding Link Type Name Patterns

Selecting the Add Link Type Name Pattern menu item causes a dialog box to pop up, as

shown in figure 30. The user can then enter a new link name pattern to be added to the

current set of such patterns.

4.5.3 Deleting Link Type Name Patterns

Selecting the Delete Link Type Name Pattern(s) menu item causes a dialog box to pop

up, as shown in figure 31. By default, all existing patterns will be deleted. This means

that there will be no more pruning of links and objects based upon pattern matching in

subsequently constructed Views-at least not until another list of pauterns is constructed.

If the user enters a specific link name pattern, then only that pattern will be deleted.

4.5.4 Saving Link Type Name Patterns

Selecting the Save Link Type Name Patterns menu item causes a dialog box shown in

figure 32 to pop up. This allows the user to identify the PCTE file object in which to save

the current set of link name patterns. If this file object already exists, its contents will be

overwritten by this list of patterns. Otherwise, the PBT will create this file object.

Page 37

30 November 1992 STARS-UC-05203/001/00

Ente name ofPT ilin which to save patterns:

SEner on PeTE Filern

Figure 32: Save Patterns Dialog Box

-. .. C. -.---.

Enter name of PCTE File containing patterns:

Ju ser s/h arto n.u srp a t t ern s a

S ,

Figure 33: Load Patterns Dialog Box

4.5.5 Loading Link Type Name Patterns

Selecting the Load Link Type Name Patterns menu item causes a dialog box shown in
figure 33 to po- up. This allows the user to identify a PCTE file object containing a set of
patterns to b, ised for filtering purposes. If any patterns already exist at the time a new
set is loaded, the new set is merged with the existing set.

4.5.6 Loading Link Type Name Patterns at PBT Session Startup

By default, there are no link name patterns defined when the PBT session is started. How-
ever, the the -t command line argument can be used to specify a PCTE file object from
which to load a- init; ' t of patterns. The syntax of the -t argument is as follows:

-t pathname

NOTE: It is not considered to be an error for more than one instance of the -t argument to
be specified in a command line argument list; however, all but the last ("rightmost") such
argument will be ignorr.'.

Page 38

30 November 1992 STARS- UC-05203/001 /00

SDisplay Current object
Set Current Object...

Figure 34: Current Object Menu

4.6 Current Object-Oriented Operations

Current Object-oriented operations include:

"* Displaying the PBT session's Current Object.

"* Identifying a PCTE object by pathname as the new Current Object.

"* Setting a particular object within an existing View to be the Current Object via point-
and-click mouse operations.

The first two of the above operations are are initiated by selecting menu items off the global
Obj ects command button's pulldown menu-more specifically, by selecting menu items from
the top-level Current Object menu item's cascaded submenu (see figure 4). This cascaded
submenu is shown in figure 34.

The third and final Current Object-oriented operation-making a specific object in a specific
View into the Current Objcct-is invoked by selecting the Set Current Object menu item
off the pop up menu for any object in any View. (See figure 42 for an example of such a
menu.)

4.6.1 Setting the Current Object

As noted in section 4.1 above, objects can be identified via Current Object-relative path-
names. In order to make such a capability most useful to the PBT user, the PBT allows
the user to dynamically change the designated Current Object at any point within the PBT
session. The PBT also supports the setting of the Current Object as part of the PBT startup
processing, via command line arguments.

4.6.1.1 Dynamic Setting of the Current Object

To set the Current Object to be any object shown in any existing View window, the
user simply selects the object's icon and selects the Set Current Object menu item in
the popped up menu.

The alternative method for Current Object is to select the Set Current Object submenu
item from the global Objects button's pullidown mcnu. This will pop up the dialog box

Page 39

30 November 1992 STARS-UC-05203/001 /00

'~~~~~~~~'~~~ ?4~ ~ ''.

Identify object to be made the CtrrentObject Eno default]:

Figure 35: Set the Current Object Dialog Box

........ '

Figure 36: Current Object Pathname Text Window

shown in figure 35, at which point the user types in the pathname identifying the object to
be made current.

4.6.1.2 Setting of the Current Object at PBT Session Startup

By default., the initial Current Object value is "-". To set the Current Object at PBT
startup to some other object, the user can use the -c command line argument, the syntax
of which is as follows:

-c pathname

NOTE: It is not considered to be an error for more than one instance of the -c argument to
be specified in a command line argument list; however, all but the last ("rightmost") such
argument will be ignored.

4.6.2 Displaying the Current Object

In order to display the pathname associated with the Current Object, the user selects the
Display Curreat Object submenu item from the global Objects button's pulldown menu.
This pops up a text window, as illustrated in figure 36.

Page 40

30 November 1992 STARS-UC-05203/001 /00

Display Current Working Schema

Display SDSes in Metabase

Figure 37: SDSes Submenu

4.7 Current Working Schema-Oriented Operations

The schema-oriented operations supported by the PBT include the following:

"* Setting the current working schema.

"* Displaying the current working schema.

"* Displaying the entire list of SDSes in the PCTE object base.

All of these operations are initiated by selecting menu items off the global Objects command
button's pulldown menu--more specifically, by selecting menu items from the top-level SDSes
menu item's cascaded submenu (see figure 4). This cascaded submenu is shown in figure 37.

4.7.1 Setting the Current Working Schema

The PBT allows the user to dynamically modify the current working schema at any point
within the PBT session. The PBT also supports the setting of this working schema as part
of the PBT startup processing, via command line arguments or via a UNIX environment
variable.

4.7.1.1 Dynamic Setting of the Current Working Schema

To modify the working schema during a PBT session, the user selects the Modify Current
Working Schema item from the Objects command button's pulldown menu. This pops up
the dialog box, as illustrated in figure 38, with the current set of adopted SDSes as the initial
value of the list of SDSes. The user can then add to and/or edit this list before ending the
dialog.

Should there be any problems with this list, such as the specification of an unknown SDS
name, then an appropriate alert box will pop up and the working schema will be unchanged.

NOTE: The PBT requires the working schema to include the env and pbt SDSes. Therefore,
the PBT automatically adds these two SDSes to the end of any user-specified list that omnits
them.

Page 41

30 November 19(.2 STARS-UC-05203/001 /00

Enter name(s) of SDS(s) for current working schema

[erw pact pbt

Figure 38: Set PCTE Working Schema Dialog Box

4.7.1.2 Setting the Current Working Schema at PBT Session Startup

By default, the working schema at the start of a PBT session is the following:

env pact pbt

To set the Current Object at PBT startup to some other object, the user can either use the
-s command line argument or the PBTWS environment variable.

The syntax of the -s argument is as follows:

-s working-schema

NOTE: It is not considered to be an error for more than one instance of the -s argument to
be specified in a command line argument list; however, all but the last ("rightmost") such
aigument will be ignored. Also note that if there are more than one SDSes in the working
schema list, then the working schema argument should be quoted, as in the following example:

-s "c-prog pact dsmcs"

If the PBT.MS environment variable has been set prior to invoking the PBT, then its value
is assumed to be a list of SDS names to adopt as the initial working schema at the start of
the PBT session.

The following is an example of an esh session fragment in which an initial value for PBTWS
has been set:

esh$ PBTWSf"c.prog pact env dsmcs vmcs"
esh$ echo $PBTYWS
c.prog pact env dsmcs vmcs
esh$ export PBTWS
esh$ PBT &
<16146>
esh$l

Page 42

30 November 1992 STARS-UC-05203/001/00

S

Qui t

[eny pact pbt

Figure 39: Current Working Schema Text Window

NOTE: The -s command line argument takes precedence over the PBTWS environment vari-
able.

4.7.2 Displaying the Current Working Schema

To display the current working schema, the user selects the Display Current Working
Schema item from the Objects command button's pulldown menu. This pops up a text
window containing the current set of adopted SDSes, as illustrated in figure 39.

4.7.3 Displaying SDSes in Metabase

To display the list of all of the SDSes in the metabase---or at least all of the SDSes fot
which the PBT has read access rights-the user selects the Display SDSes in Metabase
item from the Objects command button's pulldown menu. This pops up a text window
containing the list of such SDSes, _s illustrated in figure 40.

4.8 Object-Oriented Operations

The PBT also supports a number of operations that can be applied to objects found within
View windows. For such operations, the user selects the object not by typing in its pathname,
but rather by depressing the left mouse button on the object's icon. Such operations include:

* Displaying the full PCTE pathname for the selected object.

a Displaying the object's attributes.

e Setting the PBT session's current object to be the selected object.

* Generating a new Composite View rooted at the object.

* Generating a new Local View starting at the object.

* Invoking an action for the selected object.

Page 43

30 November 1992 STARS-UC-05203/001/00

$tp
Stpl

TEACHIES
archi ving
c-prog - in current working schema
dmcs
dqm
dsmcs - in current working schema
env - in current working schema

gbt

paStet in current working schem

C . View..

Figure 40: SDSes in Metabase Text Window

D Display Pathname!Dipa Attributes

Set Current Object

s Create Composite View...

mfCreate Local View...
iPe~rform Action.•,,

Figure 41: Non-File Object Menu

P Displaying the object's contents. a

The first six of these operations can be applied to any type of object found in every Vi.I
window. The last operation can only be applied to PCTE files. To control which operations
can be applied to particular types of objects, the PBT pops up a menu showing exactly the
set of operations meaningful to the selected type of object. That is, figure 42 shows the
menu popped up for file objects, while figure 41 shows the menu popped up for all other
(non-file) objects.

Page 44

30 November 1992 STARS-UC-05203/001/00

tOperations On File Objects..
Display Pathname

Display Attributes
Set Current-Object

C(eate Composite View...
Create Local View...

Perform Action...

Display Contents...

Figure 42: File Object Menu

'Qui t

Figure 43: Object Pathname Text Window

4.8.1 Dispk A,,ng the Pathnamne

When the Display Pathname menu item is selected, the PBT will pop up a text window

with the pathname displayed in it, as illustrated in figure 43.

4.8.2 Displaying Object Attributes

When the Display Attributes menu item is selected, the PBT pops up a text window with

all the attributes in it, as illustrated in figure 44.

4.8.3 Displaying PCTE File Contents

Any PCTE file object containing pure ASCII text can be displayed using the PBT's "built-

in" file contents viewer-a standard Motif text window. In addition, if there is a pbt-viewer

link from a file object to a PCTE static context, then that static context can be used as a

sr ,ialized display program for that file object.

When the Display Contents menu item is selected for an ASCII file object which has

no pbt-viewer emanating from it, the PBT immediately pops up a text window with the

contents in it, as illustrated in figure 45. If the object does not have any contents or if the

Page 45

30 November 1992 STARS-UC-05203/001/00

sys-ovmer: 100
sys-group: 1002
sys-inode: 33277
env-ivol: 0
env-1 no: 2159
sys-nlink: 1
sys-nclInk: 1
sys-nrllnk: 0sys-nslink: 0
sys-nconip: 0
sys-size: 90
sys-dey: 1798
sys-cdate: ???
sys-mdate: ???

: sys-adate: ???
4 sys-rep: 0

env-title:

Figure 44: Object Attribute Values Text Window

contents are not pure ASCII text, then the PBT instead pops up an appropriate alert box
indicating the problem.

When the Display Contents menu item is selected for an file object whichs does have at
least one pbt-viewer link emanating from it, the PBT pops up a Viewer Selection Control
Panel, such as the one shown in figure 46. This allows the user to choose between the standard
PBT viewer (the Motif text window) and any of the specialized viewer tools. NOTE: The
key values for the pbt-viewer links are assumed to be meaningful enough to identify the
viewer program; therefore, these key values are used as the selection list line contents in the
popup control panel.

The mechanism for invoking the viewer tool is as follows:

If the "tool" is an ASCII text file, then it is assumed to be an esh script, and the shell will
be invoked to interpret the script. Otherwise, the tool will be invoked directly.

The pathname of the pbt-viewer link's source object is passed to the invoked program.

If the pbt-viewer link ha&, a non-null value for the (string) pre-args attribute, then this
attribute value will be passed to the invoked program as the argument preceding the sou "ce
object's pathname.

If the pbt-viewer link has a non-null value for the (string) post-args attribute, then this
attribute value will be passed to the invoked program as the argument following the source

Page 46

30 November 1992 STARS-UC-05203/001/00

QIt

Sco -smith
cd

=

els
C-1-I
co ,users
els
els smith
els horton
els guest
evi guest/.profile
els -1 guest/.proflle
PBT&

Figure 45: PCTE File Contents Text Window

m4'5 7-4..VseA~v flnI7',tA•A.

viewer choices:
U my-viewer

Built-in PBT Viewer

Figure 46: Viewer Selection Control Panel

object's pathname.

4.8.4 Invoking Actions on PCTE Objects

Section 4.8.3 described how the existence of pbt-viewer links emanating from file objects
can be used to invoke display programs that are (presumably) specialized for the type of file
object. The PBT also supports a more generalized mechanism that can be used for any type
of PCTE object-via pbt-action links. Like pbt-viewer links, pbt-action links terminate
at static contexts. However, the source of a pbt-act ion can be any PCTE object.

These action programs are invoked by selecting the Perform Action menu item in any
object's popup menu. However, if an object has no such action links emanating from it,
then this menu item is "desensitized" and, therefore, cannot be selected. Figure 47 shows
what the menu will look like if at least one action exists. When the Perform Action is
selected, the PBT pops up an Action Selection Control Panel, such as the one shown in
figure 48. This allows the use! to choose which action program to invoke.

The mechanism for invoking the action tool is the same as for invoking viewer tools when

"Page '17

30 November 1992 STARS-UC-05203/001 /00

F;rationsOnnFile Objects

Display PathnameIDisplay Attributes

Set Current Object
Create Composite View...

I Create Local View...

Perform Action...
Display Contents...

Figure 47: Object Menu With Actions

action choices:
first-action
second-.action

Figure 48: Action Selection Control Panel

displaying file contents:

If the "tool" is an ASCII text file, then it is assumed to be an esh script, and the shell will
be invoked to interpret the script. Otherwise, the tool will be invoked directly.

The pathname of the pbt-action link's source object is passed to the invoked program.

If the pbt-action link has a non-null value for the (string) pre-args attribute, then this
attribute value will be passed to the invoked program as the argument preceding the source
object's pathname.

If the pbt-viewer link has a non-null value for the (string) post-args attribute, then this
attribute value will be passed to the invoked program as the argument following the source
object's pathname.

4.9 Link-Oriented Operations

The PBT currently supports the following operations on links found within View windows:

* Displaying the pathriame within that View of the link's target object.

* Displaying the link's non-key attributes (if any).

Page 48

30 November 1992 STARS-UC-05203/001/00

IOperations On Composition Links
D is p lay Attri b utes
Display Full Llnkname

Go To Link Source
Go To Link Target

Figure 49: Link Operations Menu

Quit

Sdsrics-authorsname:"N d~s-fmm" s-fi rst-narre: "T"iH_

Figure 50: Link Attribute Values Text Window

"* Scrolling the graph such that the link's source object is approximately centered within
the View window,

"* Scrolling the graph such that the link's target object is approximately centered within
the View window.

All of these operations are accessed by selecting the icon associated with the link. This pops
up an Operations on Links Menu, such as the one for composition links shown in figure 49.

4.9.1 Displaying Non-Key Link Attributes

If the Display Attributes menu item is selected, the PBT will pop up a text window such
as is shown in figure 50; however, if there are no non-key attributes for the link, then an
alert box will be popped up instead.

4.9.2 Displaying Full Linknarne

If the Display Full Linkname menu item is selected, a text window such as is shown in
figure 51 will pop up, containing the pathnanie by which the link's target object is known
in that View.

Page 49

30 November 1992 STARS-UC-05203/001 /00

* The maximum length to display sections of pathnames before breaking the name onto
anoLher line.

* Whether to display PCTE exception information automatically when PCTE exceptions
are raised during the processing of PBT commands.

* Whether "delete View" and/or "terminate the browser session" requests need to be
confirmed.

As discussed in section 4.3.2, the user can control the maximum distance from the start
object whenever a Local View is created by modifying the "maximum distance" text field
of the Local View Control Panel (see figure 20). The PBT gives the user control over the
initial value of the "maximum distance" field. 2 is the "built-in" default maximum distance.

As discussed in section 4.3.1, the user can control the maximum depth of a composition tree
whenever a Composite View is created by modifying the "maximum depth" text field of the
Composite View Control Panel (see figure 19). The PBT gives the user control over the
initial value of the "maximum depth" field. (NOTE: 2 is the "built-in" default maximum
depth.)

Another aspect of Composite View creation is the specification of the kinds of links to be
included in the Views. This is controlled via the "link kinds" radio buttons in the Composite
View Control Panel. The PBT gives the user control over which radio button is initially set.
The "built-in" link kinds value is composition links only.

As seen in all of the Local and Composite View window examples above, SDS names are
not used within node and arc labels. However, the PBT allows the user to modify this
default PBT behavior. Figure 52 contains a View created when SDS name inclusion has
been requested.

When object pathnames are displayed in text windows such as that of figure 43, the PBT
breaks each pathname when sections of the name exceed a "maximum pathname segment
length" number of characters. By default, this cutoff length value is 72.

Normally (i.e., by default) when PCTE exceptions are raised during the execution of a user-
initiated PBT action, an alert box is raised to inform the user of a problem, but the exact
PCTE exception is ignored. (See section 4.10 on displaying the most recent PCTE exception
information.) The user may also indicate that the type of PCTE exception be automatically
displayed (in the xterm window from which the PBT was invoked) when these exceptions
are detected.

When object pathnames are displayed in text windows such as that of figure 43, the PBT
breaks each pathname when sections of the name exceed 72 charactc:s. However, the PBT
allows the user to modify this default length value.

Normally (i.e., by default) when PCTE exceptions are raised during the execution of a user-
initiated PBT action, an alert box is raised to inform the user of a problem, but. the exact

Page 51

30 November 1992 STARS- JC-05203/001/00

Display Objecs Links Status Setup... Quit

Composite View: _/.users/horton.usr

Filter Topology Dulete Viw

C -
./mw-proffle env-sctxCm

alyases.eny-e env-f-ite

env-user IR
ad .enw-member-of invgroup-a
history.env-e eny-f I e

patt-rns.euw-e eny-f 1I e

Figure 52: Graph Including SDS Names

PCTE exception is ignored. (See section 4.10 on how to display the most recent PCTE
exception information.) However, the user may instead indicate that the type of PCTE
exception always be displayed (in the xterm window from which the PBT was invoked)
when these exceptions are detected.

By default, all requests to delete specific View windows and requests to terminate the entire
PBT session must be confirmed by the user, to prevent unintentional operations. This is
done for the benefit of less experienced PBT users. However, for users with more experience
(or less patience), the PBT allows the user to "turn off" the confirmation processing.

All of the customizable aspects of PBT behavior can be changed dynamically, during a PBT
session, via the Setup command: Clicking on the global Setup command button in pops up
the Setup Control Panel shown in figure 53. Changing specific components within this panel
and applying the changes will effect the rest of the PBT session. Note that these changes
will affect all View windows, not just the one whose global menu bar was used to pop up
the control panel.

Any or all of the customizable aspects of PBT behavior can also be set via PBT command
line arguments, as follows:

Page 52

30 November 1992 STARS-UC-05203/001 /00

.%u r .

Default maximum depth in Composite Views:

2

Default maximum distance in Local Views:1'

Maximum length of pathname lines:

Should SDS names be included in graph labels:

OVes 0 No

Should PCTE exception info automatically be displayed:

0 Yes 0 No

Should quitting the browser be confirmed:

Should deleting views be confirmed:

YVes * No

Default links to include in composite views:

* Composition Links Only <> All Links

0, All Non-implicit Links

APPLY RESET 7CANCEL

Figure 53: Setup Control Panel

Page 53

30 November 1992 STARS-UC-05203/001/00

The -i<distance> argument will set the default maximum distance for Local Views. For
example, the following argument will set this maximum distance to 3:

-i3

The -k<link types> argument will set the default types of links to include in Composite
Views. The linkttypes component of the -k argument can take on the same set of values as
it can for the -o argument (see section 4.3.1.2), namely: the following values:

"* c (i.e., -kc) will include composition links only

"* n (i.e., -kn) will include all non-implicit links

"* a (i.e., -ka) will include all types of links

The -e<depth> argument will set the default maximum depth for Composite Views. For
example, the following argument will set this maximum distance to -1 (meaning no maximum
depth is used):

-e- 1

The -p<length> argument will set the maximum length of pathname line sections when
using the "display object pathname" commands. For example, the following argument will
set this maximum length to SO:

-p5 0

All the other customizable aspects of PBT behavior fall into the yes or no category, i.e., yes
the PBT does something, or em no it does not. To set or reset these aspects, the -y<flags>
and -n<flags> arguments can be used (where -y indicates that "yes, the corresponding flags
should be considered set," and -n indicates that "no, they should be considered reset). The
allowable <flags> values are the following:

"* s - controls the automatic display of PCTE exception information

"* q - controls the confirming of "terminate thu browser" requests

"* d - controls the confirming of "delete View" reque-ts

"* i - controls the inclusion of SDS names in View icon labels, etc.

For example, the consider the following command line arguments:

-nqd -yis

These two arguments modify all of of these yes or no types of customizable behaviors: "No,"
don't confirm either terminate or delete requests, but "yes," include SDS names in Views,
and "yes," automatically display exception information.

Page 54

30 November 1992 STARS-UC-05203/001/00

4.12 Terminating the Browser Session

Clicking the Quit button any View window destroys all browser windows created in that
PBT session, and terminates the browser.

Page 55

30 November 1992 STARS-UC-05203/001 /00

A Appendix: Customizing the PBT X Resources

The following is the current contents of the color-oriented X Resource File
PCTE-Browser.color. (In the version of this file for a black and white display,
PCTE-Browser.blackn..white, all of the lines specifying foreground and background colors
have been removed.)

#--lItem: PCTE Browser Tool (PBT)
*-- I $Revision:"1.0"$
#--I$State: Prototype $

#--IThe Version Description Document (VDD) included with this release provides
#--Idetailed information regarding the condition of the software. Ths "User
#--IFeedback" section of the VDD describes how to obtain additional information.

--_I

#--IDistribution Statement "A", per DoD Directive 5230.24
#--lAuthorized for public release; distribution is unlimited.

--_I

#--ICopyright (c) 1992, Paramax Systems Corporation, Reston, Virginia

#--ICopyright is assigned to the U.S. Government, upon delivery thereto,
#---in accordance with the DFAR Special Works Clause.
#-_I

#--IDeveloped by: Paramax Systems Corporation,
#--I
#--IThis software, developed under the Software Technology for Adaptable,

#--IReliable Systems (STARS) program, is approved for release under
#--IDistribution "A" of the Scientific and Technical Information Program

#--IClassification Scheme (DoD Directive 5230.24) unless otherwise indicated.
#--ISponsored by the U.S. Defense Advanced Research Projects Agency (DARPA)

#--lunder contract F19628-88-D-0031, the STARS program is supported by the
#--Imilitary services, SEI, and MITRE, with the U.S. Air Force as the executive

#--Icontracting agent.
*--I

5--IPermission to use, copy, modify, and comment on s software and its
4--[documentation for purposes stated under Distribution "A" and without fee
#--uis hereby granted, provided that this notice appears in each whole or
*--Ipartial copy. This software retains Contractor indemnification to
#--Ithe Government regarding copyrights pursuant to the above referenced

#--ISTARS contract. The Government disclaims all responsibility against
#--Iliability, including costs and expenses for violation of proprietary

#--Irights, or copyrights arising out of the creation or use of this
X--Isoftware.

-- I

#--uIn addition, the Government, Paramax, and its subcontractors disclaim all

Page 56

30 November 1992 STAIIS-UC-05203/001/00

#--Iwarranties with regard to this software, including all implied warranties

#--lof merchantability and fitness, and in no event shall the Government,

8--IParamax, or its subcontractor(s) be liable for any special, indirect or

#--Iconsequential damages or any damages whatsoever resulting from the loss of

$--luse, data, or profits, whether in action of contract, negligence or other

#--Itortious action, arising in connection with the use or performance of this

8--Isoftware.
8--I
#--IgLog $
8-- I

8-- Version Information

8-- PCTE Browser Tool (PBT).

8-- Version: 1.0.

--- Release Date: November 30, 1992.

#-- Compiled under SUN OS 4.1.2 using SunAda 1.0
8---

#-- General Information
--- -

8-- This is a Motif-oriented release of the Paramax STARS PCTE Browser Tool.
8-- which can graphically display user-specified sections of a PCTE object

8-- base. It is an instance of the Paramax STARS Reusable Graphical Browser

8-- (RGB), which itself makes use of the (commercial) SA-Motif Ada bindings
8-- from Systems Engineering Research Corporation (SERC). The PET is currently

8-- operational on Sun-4 workstations under the X Window System, running the

8-- Emeraude PCTE implementation, release 12.2 or 12.3.

8-- See the PBT release 1.0 Users Manual for information on its capabilities.
8---

8-- For further information, contact the authors:
8---

8-- Michael Horton

8-- Paramax Systems Corp.

Valley Forge Labs

8-- 70 E. Swedesford Road

#-- Paoli, PA. 19301

8-- horton~prc.unisys.com (current)

8-- horton@vfl.paramax.com (future)
8-- +1 216 648-2627

8--- Robert Smith

8-- Paramax Systems Corp.
8-- Valley Forge Labs

Page 57

30 November 1992 STARS- UC-05203/001 /00

TO E. Swedesford Road
Paoli, PA. 19301

x-- smitheprc.uxiisys.com (current)

U-- smith~vfl.paxaniax.com (future)

U-- +1 215 848-2402

U Resource file for the PCTE Browser Tool application

S RGB resource file name =PCTE-Browser

* RGB resource directory path =$XAPPLRESDIR

U customize the views

* - - - - - - - - - -

vshell*scr-..indow. width: 800

vshell*scr-.window height: 400

vshell*scr-.window. scrollingPolicy: AUTOMATIC

vshell*scr..window. scroll~arPlacement: BOTTOM-.LEFT

vahell*scr-.window. scrollflarDisplayPolicy; STATIC

vshell*scr-..indow .bottomAttachment: attach-.form

vshell*fontList: lucidasane-bold-12

vshell*title*fontList: lu.cidasans-bold-14

vshell*menubar-l.*adjustLast: TRUE

vsholl*menubar_.2*adjustLast: TRUE

vshell*tp-.bottom. scrollingPolicy: AUTOMATIC

vshellstp-.bottom. scrolil~arPlacement: BOTTOM-.LEFT

vshelletp-.bottom. a crollBarD isplayPol icy: STATIC

vshall*tp-.right .scrollingPolicy: AUTOMATIC

vshellatp-.right .scroilBarPlacement: BOTTOK-RIGHT

vshelletp-.right. scrollBa~rD isplayPol icy: STATIC

customize the nodes

- - - - -- - - - -

vshell*s cr...indov*nodeFILE . background: red

v shell *acr-.w indow*node-.FILE. foreground: white

vshellescr-..indow*node-.FILE. labelType: PIXKAP

v shell*sacr- window*rxodeFILE. labelPixinap: f..-node. xbm

vshell'scr-.window*nodajFILE .reverseLabelPixinap: f-.node-.inv . bm

vshell*scr-.window*aode-FILE .borderWidth: 0

vshell*scr-window*nodo..FILE. internal~idth: 0

vshell*scr..window*niode_..FILE. interna~lieight: 0

vshell*scr-.window*node..YILE .bottomShadowColor: black

Page 58

30 November 1992 STARS- UC-05203/001 /00

vahell*scr-..indovonode. .FILE. topShadowColor: gray

vshell*scr-.windou*node-.label...FILE. borderWidth: 0

vsahll*scr-..iudov*node-label-FILE.fontList: lucidasa-istyperriter-12

vahell*scr..window*node-.attrib-.FIE.E.height: 60

vuhell*scr..uindow*node-attrib-FILE .width: 100

vshell*scr-.windou*node-.PRLJCESS .labelType: PIXMAP

vshell*scr-..indow*aode...PROCESS .labelPixmap: p-.node. ibm

vshell*scr-.windou*node-.PROCESS.reverseLabelPixmap: p-node..inv. ibm

vshellescr-window*node-.PROCESS.border~idth: 0

vshell*scr...indou*node-.PROCESS. internalWidth: 0

vshell*scr-..indoweaod..YROCESS. internalHeight: 0

vshellescr-.window*node..PROCESS .bottomShadowColor. black

vjhell*scr-.windov*riode-.PROCESS .topShadowColor: gray

vahell*scr-.windov*n~ode-.label-PROCESS .borderWidth: 0

vshell*scr-window*node-labOl-PROCESS . ontList: lucidasanstypewriter- 12

vshell*ucr-..indow*node-.attribPROCESS. height: 60

vshell*scr...indow*uode..att;. ib-PROCESS. width: 100

vshell*scr-..indow*node..OBJECT .background: goldenrod

vshellescr-vindow*node-OBJECT .foreground: white

vshellescr-windog*node-.OBJECT. labelType: PIX1MAP

vshell*scr...indow*node-.OBJECT. labelPixmap: o-node . bm

vshell*scr-.wiridow*node..OBJECT.reverseLabelPixmap: o-.node-inv .zbm

vshell*scr-..indov*node.OBJECT .border~idth: 1

vshell*scr..windov*node..OBJECT. internalWidth: 0

vshell*scr-.winldow*node.OBJECT. internaiHeight: 0

vshell*scr-.windov*node..OBJECT.bottomShadouColor: black

vshell~scr...window*node0OBJECT. topShadouColor: gray

vshelleacr-windou*node-label-OBJECT. borderWidth: 0

vshellescr-window*node..label-OBJECT.fontList: lucidasanstypeuriter-12

vshell*scr..uindow*node-.attribOBJECT .height: 50

vshell*scr..window*node-.attribOBJLCT .width: 100

vshell*scr-.window*node-~GROUP .labelType: PIXHAP

vahellescr-vindou*node..GROUP . abelPixmap: g..node . bm

vahellescr-uindow*node-GROUP. reverseLabelPixmap: g-node-.inv . bm

vshellescr-w.indow*node-GROUP .borderWidth: 0

vshellescr-uindow*node-GROUP. internalWidth: 0

vshell*scr-wiadow*node-.GROUP. internallieight: 0

vshell*scr-..indow*node-.GROUP .bottomShadowColor: black

vshqll*s cr-..iudow*node..GROUP .topShadowColor: gray

vshell*scr-vindow*node-label-.GROUP.borderWidth: 0

vshell*scr-windov*r,)de-.label-GROUP.fontList: lucidasanstypewriter-12

vshell*scr-vindow*node-ttrib-GRQUP .height: 50

Page 59

30 November 1992 STARS- UC05203/O001/00

vshell~ss;r-window*node-attrib..GROUP width: 100

vshel~l*scr-..indow*node-.SDS. 1abel~fype: PIXMAP

vshell*scr-windou*node-SDS labelPixmap: s..node ibm

vshell*scr-..indow*ziodeSDS reverseLabelPixmap: a-node-inv ibm

vshellsscr..viadou*node-SDS borderWidth: 0

vshell*scr...indow*node-SDS. internalWidth: 0

vshollescr..window*node-.SDS internal~eight: 0

vshellescr-wiudou*node-SDS bottomShadowColor: black

vshellescr-windou*node-SDS topShadowColor: gray

vahellescr-jrndouenode-.abel-.SDS .border~idth: 0

vshell*scr-vindowenode-label-SDS fantList: lucidasanstypewriter-12

vshell*scr-w.indou*node-attrib-SDS height: 50

vshell*scr..yindovsnode-attribSDS.vidth: 100

customize the arcs

vshell*scr-vindoveaxc.COMPOSITION_.LINK labelType: pixmap

vshell*scr-..indov*arc-.COMPDSITION-LINK labelPixmap: c-.rel ibm

vshell* scr-w indowvrc_0~hP0SITI0N_.LI!K. .rev ers eLabelPixmap: c-rel-nv .xbm

vshell*scr-window*a~rc-.label-.COMPOSITION-LINK border-width: 0

vahell*scr-windowsarc-label-COMPOSITION-LINK. fontList: lucidasaxnstypewriter-bold-12

vshell*scr-uindov*a~rc-.attrib.OMPOSITION..LINX.neight: 30

vshell~scr-windou*a.rc-.attrib-COKPOSITION-LINK. width: 160

vshe11 *s cr-.w indovsarc- REFEREN CELI NX. 1abelType; pixmap

vshell*scr-windov*arc-REFERENCE-.LINK labblPixmap: r-rel ibm

vshell*scr-windouarc-REFERENCE-LINK reverseLabelPixmap: r-rel-inv Ibm

vsheillecr-..indowearc-label-REFERENCE-LINK border-width: 0

v shell * scr- windo* arc- label -REFERENCE-LINK. .fontLis t: lucidasanstypewriter-bold-12

vshell*ccr-.window*arc-.attrib..3EFERENCE-.LINK. height: 30

vshell*scr-vw'ndow*arc-attrib-.REFERENCE-LINK v'-dth: 150

v she~ll *sCr-wifdow*arc-IMPLICIT-.LINK. labelType: pixmap

vshell*scr-vindow*arcJIMPLICIT-LINK.labelPjzmap: i-rel.xbm

vshell*scr-window*axc-IMPLICIT-LINK.reverseLabelPixmap: i-.rel-inv.xbm

vshell*scr-windou*a~rc-label-IMPLICIT-LINX .bordervwidth: 0

vshell*scr-window*arc-..abel-IMPLICIT-LINK(.IontList: lucidasa~nstypeuriter-bold-12

vshell*scr-window*arc-.attrib-IMPLICIT-LINK. height: 30

v shell* scr-vindow* arc-attr ib-IMPLICIT-LINK. width: 150

vahell*scr-..indowearc-.EXISTENCE-LINK. labelType: pixmap

v shall*sacr-window* arc -EXISTENCE-LI NK. 1labe 1P ixmap: e-rel ibm

vshell*scr-window*arc-EXISTENCE-LI NY. rovers etabelPixmap: e-rel-inv. ibm

vshell*scr-vindov*arc-labelEXISTENCE-LINK border-width: 0

1)age 6 0

30 November 1992 STARS-UC-05203/0O1 /00

vshell*scr-.window*arc-.label-EXISTENCE-LINK .fontL~ist: lucidasaiistypeuriter-bold-12

vshell*scr-window*rc-attrib-EXISTENCE-.LINK .height: 30

vshell*scr-window*arc-attrib..EXISTENCE-.LINK .width: 150

vshe11*scr-.window*arc-.DESIGNATION...LIIK .labelType: pixmap

vshell*scr-.window*arc..DESIGNATIOI..LINK .labelPi~xmap: d-rel . bm

vshell*scr-.window*arc-DESIGNATIOILINK. reverseLabelPixmap: d..rel-inv. ibm

vshell*scr-window*axc-label-DESIGNATION.LINK. border-uidth: C,

vshell*scr-window*arc-label-.DESIGNATION..LINK . ontList: lucidasanstypewriter-bold-12

vshell*scr-window*rc-attrib-DESIGNATION-.LINK.heigat: 30

vshell*srr-window*arc-.attrib-.DESIGNATION..LINK .width: 150

vshell*scr-.window*azc-VIEWER-.REFERENCE-.LINK .labelType: pixmap

vshell*scr-yiudow*arc-VIEWER-REFER~ENCE-~LIIK .labelPixmap: v..xel .xbm

vshell*scr-.window*azc-c.VIEWER-.REFERENCE-LINK .reverseLabelPixmap: v..rel-inv~xbm

vshell*scr-.windcw*arc-.label-VIEWER-REFEzIENCE-.LINK .border-.width: 0

vshell*acr-windov*a~rclablVIel-ER.-REFERENCE-.LINK .fontList: Jlucidasanstypewriter-bold- 12

vshell*scr-window*arc-attribVIEWER..REFERENCE-LINK .height: 30

vshell*acr-..indov~rc-.attrib.2JIEWER-.REFERENCE..LINK. width: 160

vshell*acr..vindow*a~rc-.ACTION-REFERENCE..LINK .labelrype: pizmap

vahell*scr-windov*arc-ACTION-.REFERENCE-.LINK .labelPixmap: a-.rel. . bm

vshell*scr-.window*axc-.ACTION-.REFERFICE..LINK .reverseLabelPixmap: a-rel-inv . bm

vshellescr-..indow*a~rc-label-.ACTIUI REFERENCE-LiNK. border-yidth: 0

vshell*scr-window*a~rc-attrib-ACTION-REFERENCE-LINK .height: 30

¶jshell*scr-window*a~rc-attrib-ACT±ON-REFERENCELIIK. width: 150

vshell*s cr-window*airc-abel..ACTION..REFERENCE-LINK . ontList: luc idasanstypeurit er-bold-12

customize outdated flag icons

vshell*outdated-f.lag..up. bitmap: outdated. xbm

vshell*node-label-.SDS .borderWidth: 0

customize popup text windows

*tshell.vidth: 550

*tshell.height: 300

*tshell*fontList: lucidasanstypewriter-12

*tshell*text..menubar*fontList: 'ucidasanstypewriter-bold-12

customize alert windows

#---------------------------

*ashell*fontList: lucidasans-bold-12

Page 61

30 November 1992 STARS-UC-05203/001 /00

*ashell width: 300

*ashell height: 60

customize popup dialog windows

*pshell*keyboardFocusPolicy: POINTER

customize control panel windows

*cshell*fontList: lucidasans-bild-12

*cshell*sb-text fontList: lucidasanstypewriter-12

*cshellsscrollBarPlacoment: BOTTOM-.LEFT

*cshell*keyboaxdFocusPolicy: POINTER

*cshellebuttons*adjustLast: FALSE

*cshellebuttons*adjustMargin: TRUE

*cshellebuttons*packin&: PACK-COLUMN

*cshell*buttons*spacing: 26

*cshell*buttons*marginWidth: 15

*cshellsradio..button-field*ma~rginWidth: 20

X customize "dialog with history" windows

*dshell.width: 460

*dshell*buttons*bottomkttachment: ATTACH-FORM

*dshell*buttons*packing: PACK-COLUMN

*dshell*buttons*adjtistLast: FALSE

*dshe11*buttons*marginWidth: 15

*dshell*historySW rightAttachment: ATTACH-~FORK

*dshell~historySW leftAttachment: ATTACH-.FORM

*dshell*historySW. scrollBarPlacement: BOTTOM-.LEFT

*dshell*scrollBaxPlacoment: BOTTOM-.LEFT

*dshell*scrollearDisplayPolicy: AS..NEEDE-D

*dshell*scrollingPolicy: AUTOMATIC

*dshell*keyboardFocusPolicy: POINTER

set colors of browser components

*background: turquoise

P~age 62

30 November 1992 STARS-UC-05203/001 /00

*sb-.text background: white

vshellftenubar..I*background: pink

vshell*title*background: white

vshell*menubar-.2'ubackground: pink

vahell*ScrolledWindowClipWindow background: white

vshell*bb.background: white

vahell*scr-.window*node-.label-FILE.background: whits

vshelleacr-.window*nod e-.label-.FILE. foreground: black

vshell*scr-..iridow*node-.labOl-PROCESS .background: white

vshell's cr-window*node..label-.PROCESS foreground: black

vshell*scr-vindow*node-.label-OBJECT background: white

vshelleacr-wjndowenode-label-OBJECT. foreground: black

vshell*s cr..window*node..label-.GRCUP background: white

vshell*scr..windov*node-.label-.GROUP. foreground: black

vshell*scr-.window*node-label-.SDS .background: white

vshell*scr-.window*node-.label-SDS .foreground: black

vshell*scr-window*arc-.label-COMPOSITION-.LINK. background: white

vshell*scr-window*axc-labelCOMPaSITION..LINK. foreground: black~

vahell*scr-window*arc-la~oelREFERENCE-.LINK .backgrou~nd: white

vshellescr-window*arc-label-REFERENCE-LINK foreground: black

vshell*scr-iindow*arc.label-.IMPLICIT-.LINk .backgrouncl: white

vshell*scr-gindowearc-.label-.IMPLICIT-.LIUX foreground: black

vshell*scr-windoweazc-label-.EXISTENCE-.LINK background: white

vshell*scr-iindowearc-.label..EXISTENCE-LINK foreground: black

vshell*scr-window*arc-.label-...DSIGNATION-.LINK. background: white

vshellescr-.window*arc-label-.DESIGNATION-LIIK. foreground: black

vshell*scr-window*arc-label-VIEWER-REFERENCE-LINK. background: white

vshell*scr-indow*arc-abel-VIEWER-REFERENCL-INK. foreground: black

vshell*scr-window*arclabel..ACTION-.REFERENCE..LiNK. background: white

vshell*scr-windowerc-label-.ACTION-.REFERENCE..LINK. fore 7round: black

*cshell*single-selection-.list~background: white

*cshell*multi..aelection-list*background: white

*tshellescrolled-text. background: whit,

*defaultVirtualBindings:\

osfBackSpace : <Key>BackSpace\n\

oaf Insert : <Key>Insert\n\

oafDelete : <Key>Delete\n\

B~enu : <Btnl>

Page 63

"30 November 1992 s'rARS-UC-05203/001/00

B Appendix: PCTE Browser Tool Help Message

The following is the output of the PBT when invoked using the -h command line argument:

Available command line arguments:

-h prints this help message, and terminates the PBT session.
-l[<distance>] [<pathname>] creates an initial Local View starting at

object <pathname>.
If the maximum <distance> was omitted, then the default distance
will be used.
If the <pathname> was omitted, then the initial current object
will be used.

-o[Klinktypes>] [<depth>] [<pathnane>] creates an initial Composite View
starting at object <pathname>.

If the maximum <depth> of composite tree was omitted, then the
default maximum depth will be used.
The <link types> value, if included, indicates which types of links
to include in the graph:

c (i.e., -oc) -- composition links only;
n (i.e., -on) -- all non-implicit links;
a (i.e., -oa) -- all types of links.

if the <link types> is omitted, then the default link types
restriction will be used.
If the <pathname> was omitted, then the initial current object
will be used.

-s <working-schema> specifies the list of SDSes to be used as the
initial working schema.

-c <pathname> specifies the pathname of the object to be used as the
initial Current-Object.

-e<depth> specifies the default maximum depth value to be
used when creating Composite Views.

-i<distance> specifies the default maximum distance value to be
used when creating Local Views[214z.

-p<length> specifies the default maximum length of lines to be used
when displaying pathnames.

-y[<flag.list>] means that all of the PBT options specified in
the flag list should be set on. Valid flags include:

s -- automatically display PCTE error info
q -- requests to quit the browser should be confirmed
d -- requests to delete views should be confirmed
i -- SDS names should be included when displaying

link type names and object type names
If the flag list is omitted, then ALL of the PBT options
will be set on.

Page 64

30 November 1992 STARS-UC-05203/001 /00

-n[<flag.list>] means that all of the PBT options specified in the
flag list should b-! set off. Thcý allowable flags are the
same as for the "-y" argument.
If the flag list is omitted, then ALL of the PBT options
will be set of.

-k<link.types> specifies the types of links to include by default
when creating Composite Views. The allowable link types are the
same as in the "-o" argument:

c (i.e., -kc) -- composition links only;
n (i.e., -kn) -- all non-implicit links;
a (i.e., -ka) -- all types of links.

-a <pathname> specifies the pathname of the object from which to read
the initial set of object aliases.

-t <pathname> specifies the pathname of the object from which to read
the initial set of link name patterns.

Page 65

