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FOURER INTEGRAL METHODS OF PATTERN ANALYSIS

Abstract

The source of radiation f(r) and its amplitude pattern g(k) are a
pair of Fourier Transforms, f(r) == g(k), where g(k) = Jf(r)elkeTqy
and £(r)oc fg(k)e~1¥°T3as, If esch point of £y (r) spreads out into
a function fg(r), the resultant source is the convolution (Faltung),
fy(r)*fy(r), while its pattern is the product g, (k)g, (k). By means
of this theorem the solution of various problems can be writterr down
by inspection. For the mattress array, f,*f,*f,%fy % g 2:2+8s, Where
fo, 18 the polarization and f,, f,, fy are the linear arrays along the
three edges. Other problems are: (a) Two identical antennas, (b) Bino-
mial distribution of points, (¢) Uniform distribution of points (grat-
ing), (d) Trapezoidal or triangular distribution, (e) Effect of a linear
phase error, Series Expansions: g(u) = Zukuk/k! where u = (2n/\)sin 6
and u) = [: x¥f(x)dx. From this 1s derived the beam width W (in
radians) for_n db down on the main lobe. W = A¥Yn(1l - Bn)\/d where
A = 0.152d Vi, /uas B = (1 - u,ps/31e")/34.7 and d = 2a. For uniform
illuminatian, i, = 2/(k+*1) and W = 0.529 ¥n(1 - n/86.8)A/d, correct
to = 0.54 in W down to 25 db.
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A,

INFRODUCTION

1. Purpose and Scope of Report

The development of high gain antennas for microwaves has brought
into existence problems which resemble those in opties. Although
the exact solution must be in agreement with electromagnetic
theory, the simpler scalar theory of physical optics or sound is
sufficient for many problems, particularly when the overall dimen-
sions of the antenna contain several wavelengths, Since the
radiation pattern of an antenna at a large distance can be ex-
pressed as a Fourier integral of the currents over the antenna, it
is natural that certain theorems concerning the Fourier Transform
are found to be useful in yielding short-cut solutions. These
three dimensional theorems, when reduced to one dimension, are
analogous to those of the Operational Calculus which has long been
used in electrical circuit theory.

The present papery is the first of three sections on Methods of
Diffraction Pattern Analysis by the author and co-workers, Follow-
ing an elementary introduction, several Fourier Integral Theorems
are developed which form the basis for a number of short-cut
methods. These are illustrated by numerous practical examples
which include the effect of linear phasing and polarization.
Section II lists tables of functions which are particularly useful
in calculating the diffraction patterns of linear arrays.‘ Opera-
tional methods are extended to solve for the effect of phase
errors across the aperture on the diffraction pattern. Section III
deals with the scattering cross section of various shaped objects.

Analogy between Nicrowave Antennasand Optical Reflectors

In this section it is assumed that the reader is familiar with
geometric optics and with Huygens' wave theory as presented in the
usual college textbook. The representation of phase angle ¢ as a
rotating vector, eiw, is a useful concept in studying interference
and diffraction, while the concept of radiation from a dipole is
essential in any electromagnetic problem.

Figures 1 to 4 illustrate a number of microwave antennas whose
action is explained by elementary optics. In Fig., 1, rays which
start from the focus of a paraboloidal reflector are reflected
parallel to the axis, according to the laws of geometric optics.
Thus, the use of paraboloidal reflectors in flash lights, search
lights, reflecting telescopes, sound detectors and reflectors for
microwaves, 18 based on the assumption that geometric optics is
valid. Although geometric optics is simple to apply, its justifi-
cation and its limitations depend upon the more fundamental
Huygens' wave theory which is illustrated in Fig. 2. Huygens'
Principle also explains the formation of a cylindrical wave from
an array of point sources, (Fig, 3a) and the formation of a plane
wave from a broadside array (Fig, 3b). The paraboloid and the
parabolic cylinder, two types of reflectors commonly used in
microwaves, are compared in Fig. 4. In Fig. 4b a linear array of
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Figure 1. Paraboloidal Reflector.
Law of Reflection

[r= 4
}T
=
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Figure 3a. Linear Array of Point
Sources Form Cylimirical
Wave

Point
Source

(a)

Directrix
. Reflected
A 4~ Plane
Of---- 1 Wave Front
|T
D

Figure 2. Paraboloidal Reflector
Optical Path, FA + AT =
DA + AT = constant N

i

Figure 3b. Broadside Array of Point
Sources Form Plane Wave

Source

(b)

Figure 4. Comparison of (a) Paraboloid of Revolution and
(b) Parabolic Cylinder.

OPTICAL EXPLANATION OF MICROWAVE ANTENNAS
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dipoles FF, placed at the focus of the parabolic cylinder, emits
a cylindrical wave which is reflected as a plane wave,

B. POINT SOURCES

1. Radiation from a Point Source

The intensity of a wave in three dimensional space at a large
distance R from a small source, varies according to the usual
inverse square law, while the amplitude2 varies as 1/R. An actual
source may be a collection of point sources or an equivalent con-
tinuous distribution of point sources placed at a reflector.

In the case of longitudinal waves such as sound, the typical point
source is a tiny sphere whose radius pulsates so as to emit a
spherical wave. Surfaces of constant amplitude 4re spheres con-
centric with the source.

In the case of electromagnetic waves which are transverse waves,
the electric field E, the magnetic field H and the direction of
propagation are perpendicular to each other, The typical point
source is a dipole which may be considered to be a very short wire
of length L carrying a sinusoidal current of I amperes. At dis-
tances large compared to A/2mn, where A\ is the wavelength, the
electric field in volts per meter is given by:

E = 60rn _IL sin y (1)
A R

¥ is the angle between the line of sight and the dipole, and R
is the range in meters. The ratio L/A is assumed small. When a
collection of dipoles have parallel axes it is possible to treat
them first as point sources, inserting the polerization factor
sin y at the end.

The motion of a vibrating sound source, or the current in a
radiating dipole, may be represented by one coordinate of a point
which moves in a circle with a uniform angular velocity, w = 2nf,
This is represented by a vector which has turned through a phase
angle ¢ = wt, which i1s equivalent to multiplication by eliW@t,

Radiation from a Collection of Point Sources p

Y R

4
-X
Fig. B Source point at A, Field point at P,
The range relative to the origin 1is
AR = r-he




In Fig. 8 the typical point source A is a distance r from the
origin and a distance R from the field point P which in turn is a
distance Ry from the origin. Since the radiation travels from A
to P in the time R/c, the phase at P is retarded by an amount wR/c.
The field at P due to a number of such point Sources will be, ac—
cording to Huygens' Principle, the sum of the individual fields*®’®

B ‘Z%n elw (t=-R/c) (2)

If we 1et R = R;-AR and take out the factor common to all terms,

(2) becomes
E « elw(t-Rg/c) Z A, elwiR/c
(9

. 1-AR/R,

The external factor represents a spherical wave traveling outward
with a velocity of light, since the phase is constant if R, = ct,
and the amplitude dimishes as 1/Rg. A small section of the
spherical wave may be considered part of & plane wave ¥ith a
normal n in the direction OP. Henceforth we shall omit the ex-
ternal factor and consider only the contribution within the sum-
mation sign, which is proportional to the amplitude of the re-
sultant plane wave, As Ry becomes sufficiently large the ratio
AR/Ry in the denominator becomes nefligibly small, but the AR in
the exponent must be retained as the phase ¢ relative to the
origin is not small.

® = w AR = 2nfAR = 2n AR (4)
¢ ¢ A

An approximate value of AR 1s the component of T in the direction
of n as shown in Fig. B

AR = r cos y = F- (8)

(-7 1s the scalar product of the two vectors r and n, while y
is the angle between them). If *he phase change per unit length in
the direction of n is designated by the vector propagation con-
stant k, then (4) reduces to

@ = 2mn.7 = k.7 (6)
e

and the field (3) 1s proportional to a function of k.
g() =JFA kT ™

Thus, the amplitude of the equivalent plane wave at a unit dis-
tance from the origin is g(k), which is the sum of the individual
phase vectors, weighted according to the strengths of the source
points,
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3. Examples of Diffraction Patterns®Derived from Point Sources

We shall now consider the examples of isotropic point sources
1llustrated in Fig. 6. By definition, a unit {isotropic) point
source placed at the origin (Case 1), radiates a unit amplitude
at a unit distance regardless of direction. Hence, glk) = 1,
When the point scurce 1s displaced a distance ¥y from the origin
as in Case 2, the phase angle is advanced by an amount @ sk.r,
= (2nr,/\) cosy. Note that @ has the same value for all lines of
sight that make an angle y with T,. The locus of these directions
forms the cone illustrated in Case 2.

When two equal point sources of equal sign (Case 3), or of op-
posite sign (Case 4), are placed at * T;, the diffraction patterns
are respectively the sum and difference of two exponential terms.

1E'F1+ -1&’?1
e

Case 3. g (k) =e =2¢0s keFy=2cos @ (8)

1k-ry -1ke¥ _
Case 4. g (¥ =e te 12214 sin keT4=21 sin ¢ (9)
One must remember that for any arrangement of point sources along
a line, the pattern 1s identical over the cone of directions
shown in Case 2,

The diffraction pattern for the uniform line source (Case B8),
extending from -F, to Ty, may be obtained by integrating the
patterns of a uniform density of point sources of the type of
Case 2,

F1 1k.F ? 19
47 =j[ e dr . ‘/f
& -Fy -0 lEfcos Y

2 sin ¢ sin ¢ (10)
= 2!‘1
|klcos Y

This is the diffraction pattern of a single slit commonly derived
in optics. Other examples of point sources will be taken up after
the discussion of the properties of Fourier Transforms.

C. THE SOURCE AND ITS PATTERN AS A PAIR OF FOURIER TRANSFORMS
1, General

We will now proceed to show that the source function and its
diffraction pattern are Fourier Transforms. Let us designate the
source function by f£(f). This may either be the set of source
points [Anrn] described above or a continuous function f(F)
of the position vector r. The amplitude diffraction pattern (7)
now takes the form of a Fourier Integral °,’

*The teym diffractson pattern as employed in optics is here used
interchangeably with the term radiation pattern which is employed
in radio.

768-1 8




£(F) = [AqF,)

g = Zan elkeF

o —— —
Case 1. Unit Point Source g =1
at the origin
Case 2. Unit Point Source
at F = ¥,
g(]-‘) - eik‘? = eim
9 = krycosy = (2rr,/A)cosy
) X
o 8
Case 3. Two Point Sources,
+1 at ¥, , +1 at -F, - LA - :_521
°
+1
+1 5 ‘f| o‘R'F—b
Zeros for ¢ = n/2, 3n/2, etc.
Case 4. Two Point Sources,

+1 at ¥, -1 at-F,

g(k) = ek Ty L othkeTy o 44 g4n ?

Zeros for 9 = 0, N, 2n, etc.

+1
-1 n
-} i
Case 5. Uniform Line Source
from -F, to +F,
.
.f.

FIGURE 6. DIFFRACTION PATTERNS
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L4 - =
g% .f "etk'Tar = 27, sino
-F, °
Zeros for o = n, 2n, 3n, etec.
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g® = fr(?)e“"'ﬂw (11)

The integration is carried out over the volume occupied by the
source, the element of volume being dV.

As previously mentioned, g(i) may be considered to be the ampli-
tude of a plane wave emitted by the source in the direction of
n or k. If we reverse these waves they will, by the principle of
reversibility in optics, retrace their paths exactly, converging
to the source function f(r). Thus, we may represent f(Tr) as the
sum of plane waves.

£(r) = fg(i)e—li'Fdo (12)

The integration is carried out over the surface of a unit sphere,
the element of solid angle being do. Note that the k in the phase
factor is reversed because of the reversal of direction. We have
here ignornd a normalization factor on the right side of (12).

Equations (11) and (12) are symmetric in their mathematical form
and are known as a pair of Fourier Transforms. This fact is some-
times denoted by the double arrow symbol

r(M = ¢(@ (13)

Again, the statement that " g(k) is the Fourier Transform of £(r)"
may be denoted by

g® =T £(r) (14)

Fourier Transforms in Various Coordinate Systems

When the amplitude function is known over a simple geometric
surface such as a sphere or a cylinder, it can be expanded in a
series of orthogonal functions, each of which has its own Fourier
Transform. These are given by Stratton®.

The case of rectangular coordinates is quite simple. Let the
amplitudes of the i, jJ and k components of the vector k be u,
v and w, If x, y and z are the corresponding components of T,
the phase becomes

@ = kF = (uatvitwk) e (xityjtzk) = (uxtvy+wz) (18)

The volume element dV 1s dxdydz while the volume element in
diffraction space, assuming a varsation in wavelength, becomes
dudvdw/ (21)*. If we divide the numerical factor (2n)~" inte two
symmetrical factors (210""/2 we arrive at the usual three dimen-

sional transforms'
1
J(Z?r f(x,y,z)e1(uX+Vy+'z)dxdydz (18)
(2n) s/ ¢

g (u,v,w) =

762-1




___] -1{uxtvytwz)
t(x,y,z) = gu,v,wie 4 dudvdw (17
(2n) 3/ z

In case f(x,y,z) has zero thickness in the i,j ur k direction
glu,v,w) will be 1ndependent of the corresponding %,v or w vari-
able due to the fact that this varjable vanishes from the ex-
pression for the phase, (16). Thus, in the case of two dimensions,

which is particularly useful for broadside arrays

1

gn,v) = a‘//’f‘(x.y)ei(“xh'y)dxdy (18)
1

£ (x,y) = ;/f g (u,v) e~ (X*vy) gqy, (19)

In the case of one dimension, used in the analysis of linear
arrays

1

g(u) = E-i/f(x)em’(dx (20)
1

f(x) = r—z_;/g(n)e"i"xdu . (21)

Usually in antenna problems we wish to keep the frequency constant
which imposes the condition that

2
u's v Wt o= ki (22)

This condition restricts the ditfraction space to the surface of
the sphere mentioned in connection with the inverse transform (12).

Again, we may wish to keep the direction fixed and merely vary the
frequency. In case the direction is along the x-axis, the one
dimensional problem reduces to the frequency spectrum g(w) of
a transient f(t) as treated in electrical circuit theory . There
is a change of scale arising from the relationships ¢ * ux * wt,
x * cte

1

g (w) ,I;_;/f(t)ei"’tdt (23)
1

O Sewe14tau (24)

The normalization constants for any of the above equations are
chosen so that there 1s conservation of energy or conservation of
power in both the source space and diffraction space.

8 762-1




3.

S |t tav

Effect of Scaling

S lg| far (28)

If the amplitude of a function f(x) is multiplied by the factor
s while it is made narrower 1n the same ratio so as to preserve
its area, its Fourier Transform will be simply broadened by the
factor s, while its peak is unchanged. In mathematical notation,
let

f(x) == g) (26)
then sf(sx) o= g(w's) (27)

To prove this, let sx = x' and u/s = u', then ux = u'x', The
Fourier Transform of sf(sx) is

1 f sf(sx)elWqx = 1 ft‘(x')e"“"'dx' = g(u')

fon” Von

which proves (27). This principle may be applied to any of the
three dimensions independently,

Fourier Transforms of Even and (0dd Functions

Since elUX= cos ux *+ 1 sin ux, g(u) can be writtemn in the form

a
g (u) '___[f f(x) cos ux dx*i[
fox L' -2

£(x) sin ux dx

a
a

= Boluw) + 1g (w, (28)

The first integral is zero for an odd functlon and therefore
applies only to an even function, f,, while the second applies
only to an odd function, f_. The presence of the i indicates that
the two transforms are 80" out of phase., This was discussed in
more deta1l'® in R.L. Report T-7. It follows that the power
pattern 1s the sum of squares of the individual patterns.

P(w) = g(u) E(W = (go*1g,) ®e-18,) * 8¢ * 8o (20)

This 1s a real positive function with no zeros since ge and g,
are unlikely to have coincident zeros.

It will be the policy in the remainder of this paper to use
particular coordinate systems only when they simplify the prodblem.




5. Fourier Transform of the Complex Conjugate

The power P(k) in the dif'fraction pattern is of practical im-
portance in antenna theory and measurements. This is the square of

the absolute magnitude of g(k) or the product of its complex
conjugates.

PR = |g®]® = gWE® (30)

Now, to find the complex conjugate E(R) we simply replace the
quantities in {(11) by their complex conjugates which includes
reversing the 1 in the exponent. Thus,

-

£ - ff@e ™ Tav (31)

We may make the exponent positive again by reversing all k's or
reversing all r's. These changes lead respectively to the trans-
forms

f@®) = 2D

FF = 2® (32)

6. Effect of a Linear Phase Change

Let g (k) be the diffraction pattern when the source function
f,(?)‘is real, i.e. all source points are vibrating in phase. The
effect, then, of exciting them by means of a plane wave of wave-
length A\, traveling in the direction h,, is to introduce a linear
phase lag g, at each point (See Fig. 7).

Fig. 7. Path Difference when Excited by Plane Wave

0C-0B = T.n-Fefi,= Te(n-ny) = T-N

0B 2n
9. = 2n—— =-— F.n_. = r-k : (33)
[+] xo )\0 [o] (¢}

We then have a complex source function

£ = e EOr, ) (34)




1ch results in the diffraction pattern

e®@ - [t T v fr.@me T T av. g @y (m)

By adding k, to each abscissa, we obtain

g(ktk) = gy (k). (36)

Thus, the effect of a linear phase error is to shift each point in
the diffraction pattern g,(k) from the direction associated with
k to that of (k+k,). This theorem for three dimensional space
corresponds to the Heaviside shift theorem in the operational
calculus of electric circuits.

In the case of a linear array excited by a wave traveling along
the wave guide, the phase @ is shifted by an amount ¢, = 2rr,/\,,
where A, i1s the wave guide wavelength. Thus, the resultant
diffraction pattern is a new function of ¢,

g(® = g, (9-9,) (37)

where g; () 1s the pattern for an array in phase. (We are here
using g(9p) and g(k) interchangeably although they really are
different due to the scale factor between ¢ and k). Since g, (9)
has a maximum when ¢ is zero, 3(0-¢°) will have a maximum when
(p-9,) = 0, or when

cos Y = —;— = _;.E. (38)
g

V, is the velocity in the guide. This 1s 1llustrated in Fig, 8a
where a waveiet travels a distance OA in the guide while it is
traveling a distance OB outside. The 1ine AB igs a common wavefront
for all wavelets along the guide. The same construction is used to
explain the critical angle at the boundary of a dielectric,
bow waves f'rom boats on the water, or the shock waves from bullets
the air, Fig. 8c.

AR

- Y
B

() WAVE GUIDE (b) CRITICAL ANGLE IN GLASS (c)BOW WAVES FROM
BOAT OR BULLET

Fig. 8. Huygens' Wave Construction for Linear Phase Errors

T62-1 11




If A = \_, then the peak intensity occurs when Y is zero and the
result is an end-fire array. An interesting example of an end fire
1s the case of two point sources with a spacing, d = A\/4 and with
a phase difference of t/2, or *+ n/4 from that of the origin. The
solution 1s to shift the curve g, (¢) = cos ¢ to the right an
amount @, = u/4, so that the peak value occurs at Y = O, and the
first and only zero at y * 180°,

D. THE CONVOLUTION THROREM
1. Derivation of f,‘f,:;: 2182

The convolution theorem, known in mathematics as the Parseval
theorem, is a powerful tool for solving many diffraction problems,
The following derivation for three dimensional space holds equally
well for one or two dimensions. Let us consider the two source
functions f, (r) and fqe(8) of Fig. 9.

£, (P = [a,Tp) » f2 (8) = [by8y) (39)

Thus, f,(r) 1s a "set® of source points with weights &, and
position vectors ?n in three dimensional space, while f,(f) has
weights b, and position vectors s,. Note that the square bracket
is employed for a "set" instead of the Z which would have denoted
a sum,

The convolution of f; and f3, also termed the resultant or the
"Faltung” (folding), consists of spreading each point of one
of the functions out into the other function. This is illustrated
in Fig. 10a. Thus, the point a,T, is spread into the series
an[by (T *8y)] while the convolution f 18 given by

= 1.%0 = [a [by(Fpt5y)]] (40)

The star between two functions indicates their convolution. This
is symmetrical with respect to f; and fo, the typtcal term having
a weight a, b, and a position vector (¥, +8,). (See Fig. 10b).
Substitution of these values in (7) yields the diffraction pattern

L ] T +-
g *Y a, T bge' (o' (43)
But this 1s 1dentical with the product of the transforms of
fg and fg,
ik-r 150;. .
g 8, " (Z‘n‘ h) (Zb'e ) (42)
1k «(Tp*8y)

8ince in either case the typical term is a b e « Thus
we arrive at the convolution theorem which states that the trans-
form of the convolution is the product of the transforms.

£.% —= 8.8, (43)




o by
by
(8 £, (F) = [agF,] (®) £, (5) = [byfn)

Figure 9. Point functions f, (f) and f, (S), where T and § are
position vectors in three dimensional space.

m
/
/ On bm
/
// \
p
(7 // \
/
\ \
\ /’ /.,6‘ / \
\ / ® / ‘
\ v e — s AL !
o~ I C
/ fn _ P SigN
= i ¥ "
0 ()
Figure 10a. Convolution of f, and f, Figure 10b. Typical term in convolution.
£ = fl*fa Weighted points a,b,, at

position ®, + §,.

FIGURES 9, 10. CONVOLUTION OF POINT SOURCES IN SPACE
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Thas theorem holds equally well for continuous functions. It is
quite apparent that we may form the convolution of a third func-
tion fg with f, vhich 1s already the convolution of f; and f,.
Again, the order of operations is immaterial.

% L ]
f’.' rg fa e s o ff\-'i*fn : Z1EZ28ae o bgn (4“3‘

Due to the symmetry between the f and g functions, the above
convolution properties hold if we interchange the f's and g's.

fify 3= 81”89 (46)

The convolution theorem is so simple that frequently by the time
one has clearly stated the problem the solution can be written
down, Numerous illustrations of the method are given later in
the paper,

Integral Representation of the Convolution

We shall now derive a mathematical expression for the convolution.
Let us change notation, replacing ¢ by F,, S by Ty, letting Tt
stand for the vector sum (T ,+r,). We now allow the volume
element f, (ry)dV,;, considered as a mass point, to spread out into

the function f,(r,)« The convolution f(¥) is the integral over
all such elements of volume,

£(F) = £, (F) * £, (F) = [0, (Fy) 0, (Fy) av,
(46)
= [£1(G) 10 (F-F4) av,

If the functions were constrained to one dimension we would have
the usual expression for the convolution of f,(x) and f, (x)

£(x) = £,(0 % () =[1,(@ 1, (x-a)da (47)
where 0 is a variable of integration,

The Parseval Formulas. Conservation of Energy

Writing (46) as the transform of gig.

112G, G-F av, = [a @ g @ e 3E Fao (48)

1r |r| = 0
[ GO (7o) av, = fo: (D g, @ do

Now let f,(-T4) = ?ﬁ(-?,), whereupon g, (k) becomes 2. (B according
to (32),
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Droppang the subscript 1,
Jt®T®d - fe@im@ds
r
JIE@1? do = [lg®@]? do (49)

The above Parseval formulas are usually developed in the lit-
erature for one dimension only. Eq. (49) is really a statement of
the conservation of energy between the source space and diffrac-

tion space, or between antenna primary patterns and secondary
patterns.

. The Power Diffraction Pattern as the Transform of f(?)‘?(—?)

In most measurements and experaments involving diffraction pat-
terns, the phase of the pattern is not detected, only the power
P(k) = g(X)Z(X) being significant, But according to (30), (32) and
(43), P(k) is the transform of the convolution of f(¥) and o)
showang that this is the significant characteristic of the antenna

tEFF) == g@E® = P® (50)

The same equation is obtained from the Parseval Formulas (468, 48)
by substatutang g(k) for g, (K) and E(k) for g, (k).

E. EXAMPLES OF CONVOLUTIONS IN SPACE

1. Effect of a Displacement

The effect of a displacement of the origin of a source function
f1(¥) to a position T, can be considered to be the convolution of
;O and ) Y (?)

]
£(F) = £,(F-T) = T, £y (F) (81)

The resultant diffraction pattern is then the product of the two
patterns

g® = efTo g (p (82)

Note that this introduces a linear phase error into the diffrac-
tion pattern,

Effect of a Linear Phase Error

This effect, discussed earlier, is the same as the above example
with the roles of f and g, and those of k and T reversed. The
resultant source function is the product

£(F) = e %o ¢ (5

while the resul tant diffraction pattern is that derived earlier
by a direct method. (See (38).

g(®) = g (R-E,) (82a)
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3.

Effect of Polarization

If the currents in an antenna are all parallel we may consader
that each scalar point has been spread out into a dipole. The
resultant source function is the convolution of the scalar source
functioh f(F) and the dipole, so that the diffraction pattern is
the product of the scalar diffraction pattern and the factor
sin ¥ of (1).

Broadside Natiress Type Array

The mattress type array of Fig. 3b consists of two rectangular
layers of equally spaced dipoles with their axes parallel and with
corresponding dipoles in the front and back layers arranged for
end-fire. If all dipoles are equally excited, the mattress is the
convolution of four functions, the polarization f, and the three
linear arrays along the three edges., The diffraction pattern is
therefore the product of the four patterns according to (44).

L L L]
fo 1 f2 f3 o= g, 81828 (53)

This equation applies to a much wider class of antennasthan the
conventional mattress type, since the individual axes may have any
orientation, and the spacing, amplitude and phase along any one
linear array may be arbitrary. The case of a three dimensional
grating with inclined axes is treated by Stratton.

Two Identical Antennas

The arrangement of two identical antennas placed with centers at
¥ T, 1s simply the convolution of one of the antennas with two
points located at * r,. The diffraction pattern is then the
product of the pattern g, (k) for one of the antennas and the
interference pattern for two point sources, either in phase, as
in Case 4, (Fig. 8),or with an arbitrary phase difference 9, due
to the length of feed 1ine. If we also include the polarization
factor we can write the complete pattern as the product of three
factors

g(® = g1(k) cos(k-T2-9,) sin y (34)

The next paragraph discusses a special case,

Double Slit Source Considered as a Convolution

The double slit source of optics, illustrated in Fig. 11, can be
considered to be the convolution of a pair of points situated at
+a and a single slit of width 2b. The over-all diffraction pattern
is the product of the two patterns 2 cos au and 2(sin bu)/u
illustrated in Fig., 6, It is recalled that the first factor is
unity when au is a multiple of n or when the path difference
(2a sin 9) =(2a cos Y)between centers is a whole number of wave-
lengths, so that the two sources are in phase. The second is zero
when bu is a multiple of T or when the variation in path length
(2b sin B) over a single slit is a whole number of wavelengths.

16 762-1




! Daffraction Patterns For:

Two Points, g, (u)=2 cos au
One S1it, g, (u)=2 sin bu

u

Two Slits g(u)= gy g

* 4 cos au sin bu
u

Fig. 11. Double Slat as the Convolution
of Two Points and a S1it

7. Double Slit as the Difference of Two Slits

An alternate method of attack is to make use of the fact that
Fourier Transforms are linear transformations, i.e. the transform
of a sum of functions is the sum of their transforms.

f1 (X) + fQ(X) teoo z g1(||) teaa g,(u) +eoe (55)

Fig. 12 shows how the difference of two slits of widths 2(a*+b) and
2(a-b) is equivalent to the double slit of Fig. 11, The corres-
ponding daffraction patterns in the two figures are also equiv-
alent since they are trigonometric identaties.

2(c+b) —— w 2 () (a-b)
g(u san(atb) u 2 san(a-b)u
/ = —_—— ————
ks, e .
N \\ 4 cos au sinbu
NEG. =
NN

u
—» 2(a-b) =

Fig. 12. Double 8lit as the Difference of Two
811ts of Widths 2(atb) and 2(a-b)
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F,

CONVOLUTIONS OF PAIRS OF POINTS IN ONE DIMENSION

1,

Successive Convolutions of Pairs of Points

Fig. 13 illustretes successive convolutions of pairs of points in
one dimension. The top row shows one pair at *a with a diffraction
pattern cos au. The next row shows 1its convolution with a second
pair of points at * b, the resulting pattern_being cos au cos bu.
The third row is the convolution of the second row with a pair of
points at * ¢, the pattern being cos au cos bu cos cu. This
process may be continued indefinitely.

The final pattern is zero whenever one of the component patterns
is zero. If a, b and ¢ differ slightly, their first zeros differ
slightly so that the pattern is almost zero over a range of
angles., The pattern can become unity at a point other than the
origin only if a, b and ¢ have simple integral ratios. Thus, the
presence of side lobes due to equidistant supports can be reduced
only by a careful study of variable spacing.

Binomial Distribution of Points

Fig. 14 shows the binomial distribution of n points resulting
from (n-1) successive convolutions of a pair of points with
itself, Thus, a = b = ¢ etc. The points are equally spaced and
their amplitudes are the binomial coefficients for terms in the
expansion of (1+1)"/2", The diffraction pattern is simply cosMau.
The position of the zeros and of the points where the pattern is
unity 1s the same regardless of n. If the spacing 2a equals or
exceeds A, strong higher orders are formed as in the case of the
diffraction grating. When 2a is less than A/2 the diffraction
pattern 1s a monotonic decreasing function approximating a Gauss
Error curve, but the array 1s too weakly illuminated near the
ends to be practical.

Grating of 2™ Points (Fig. 15)

Again, 1if b = 2a, ¢ = 2b, etc. we find that (n-1) convolutions
produce a diffraction grating of 2D points of equal amplitude
equally spaced. The resulting pattenn 1is

g(u) = cos au cos 2au cos 4au etc. (56)

Since a high density of points is equivalent to a uniform line
source, it follows that the pattern for a uniform line source of
width 2w can be expressed as an infinite continued product.

sin wu COS wu _ cos wu _ cos wu

u 2 4 8
Grating of n Equal Points as a Convolution (Fig. 16)

A simple derivation of the diffraction grating formu]aiais obtain-
ed as follows. let fn(x) designate an array of n equidistant point
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Types of f(x) £ (u)

- 20 | cos au
cos au cos bu
| |
: : : cos au cos bu cos cu
- 2bh » - 2¢c =

Figure 13. Successive _onvolutions of pPairs of Points
Separations 2a, 2b, 2c, etc.

-— 20 —

CcOoS anu
2

cos  au
3

cos au

Figure 14. Binomial Distribution
Separations a = b = ¢, etc.
> 20 |=
ccs au

cCosS all cos 2au

co ‘u €cos% 28au cos 4au
Figure 15. Uniform Grating of 2" Points
Separations b = 2a, ¢ = 2b, etc.
= u) sin au _ sin wu
4 2w :=2n0 ————— & (1) a = ]

- wu _ sip navu
Bn () sin au sIn au

Figure 16. Diffraction Grating of n Points

FIGURES 13 - 16. CONVOLUTIONS OF PAIRS OF POINTS
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sources of constant amplitude separated by intervals 2a. Then let
each point be spread into a slit of width 2a. The result is one
long slit of width 2w = 2na, the diffraction pattern of which is
(sin wu)/u = (sin nau)/u. But the long slit was formed from the
convolution of the point pattern fn(x) and the single slit of
width 2a, so that the resultant pattern can also be expressed as
the product of the point pattern g, (u) and the single slit pattern
(sin au)/u. On equating the two expressions,

gn(u) sin au sin nau
u = u (87

Hence

8n(w) _ sin wu _ sin nau (88)
sin au sin au

Thie reduces to n when au 1s zero or a multiple of n, i.e. when
waves from adjacent openings differ by a whole number of waves.
The pattern is zero whenever wu is a multiple of n. This causes
(n-2) side lobes to appear betweéeen each of the strong peaks.
(8ee any optics text for illustrations). Midway between the strong
peaks, the envelope of g (u), which is 1/(sin au), is unity so
that the minimum side lobe has a relative amplitude of 1/n or a
relative intensity of (1/n)2. The corresponding intensity pattern
from the slit of width 2w would have been (2/n)? as much, or
4 db lower,

Grating of n Equal Points as a Product

The diffraction grating can also be considered as an infinite
series of points with spacing 2a, which is observed through a
window that is transparent inside the limits * w and opaque out-
side. See Figs. 17, 18. Since f(x) is the product of two functions
the diffraction pattern is the convolution of their patterns
according to (48)

g () =fg, (@) g (u-a) da (88)

Now the pattern for the infinite grating degecnerates to the series
of equally spaced points shown in Fig. 18, so that it acts as a
window of vertical transparent lines of spacing u = n/a. Thus, to
a first approximation, the pattern is the single slit pattern
traced by the line nearest the peak. A. L. Patterson has applied
this Ryint of view to the diffraction of x-rays by small crys-
tals.

N It
' tl I

Fig. 17. Grating as Product of Infinate
Orating and Window of Width 2w
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6.

|
t
——d ybo—

Fig. 18. Orating Pattern as the Convolution
of (sin au)u and the series of
equidistant lines of separation

Mn‘u-"

Grating with Finite Slits or Dipoles

Since an actual diffraction grating consisting of n slits of width
2b 1s the convolution of the point grating f,(x) and the slit of
width 2b, its diffraction pattern is simply the product of (88) by
the single slit pattern (sin duw/u).

g(u) o g,(u) sin bu _ b sin nau sin du
u 8in au bu

(60)

At the peak this reduces to nb which is the total opehing of the
grating. Obviously, any other pattern such as that of a dipole can
be substituted for the pattern from a single opening. In any case
it cannot effect the close side lobes but does help diminish the
higher orders.

0. CONVOLUTIONS OF LINE SOURCES IN ONE DIMENSION

1,

In the following exawples the convolution usually overlaps. Fig,
10 shows how a uniform line source of width 2a can dbe split into
e number of sections, each of which is spread out into a second
uniform line source of width 8b, We will not worry much about the
normaligation constant but will usually let g(0) = 1 which implies
that the ares of f(x) is normalized to unity.

Trapesoidal Illumination (Fig. 19)

The result of the convolution of Fig. 19 is a trapezoidal ampli-
tude distridution, the two bases being 2(b+a) and 8(d-a). The
diffraction pattern is proportional to the product of the patterns
of the two line sources.

sin au sin bu
au bu (e1)

gM) w g18: =

Since the numerator cannot exceed uni}y, the amplitude of the side
lobes cannot exceed a fraction 1/(abu ) of the peake

1_x’ 1

aubu ab (2nsin 0)*

(a2)
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Types of f(x)

fe— 20 —»]

+— 2b 7>,

L M L | B
| T

rl 14 I'. l

f

+-

4;&4

[ I L]

_J

! 2(b-0) te—

/_—_\

44— 2(bta)————»

Figure 19. Trapezoid

N

-— 40 —

Figure 20. Triangle

.'I""

| —

Figure 21. Gable

000 = (1+1)®

-2

Figure 22. S8tep Approximation
fa(x) = (1*1) = 1,4,6,4,1

Figure 23. Chord Approximation
fa(x) = (1+1)°

FIGURES 190 - 3.

a3 M4

(= (1413

g (u)

g, (u) = si:uau

g, (u) - sinu

g - sin aw sin bu
182 —au bu

[etgoes]

p el v agppee

in an
En () sigan

8
= cos au sin au
aun

&ongng
= cos’au [ﬂgugq

CONVOLUTIONS OF UNIFORM LINE SOURCES




3.

4.

Thus, the intensity decreases as (sin 9)-‘, due largely to the
taper at the ends. Convolutions of three line squrces will de-
crease at an even greater rate.

Triangular Illumination (Fig. 20)

When a = b, the trapezoid degenerates to the triangle of Fig. 20
with an overall wadth of 4a and a pattern

glu) = [sln au] 2
au (e3)

Gable Illumination (Fig. 21)

The gable amplitude 1llumination Fig. 21 is the sum of a triangle
of height A and a rectangle of height B. The pattern is:

sin_au B sin 2 au
T %au (64)

Aﬁprox:uat:on of £(x)®by its Value at n BEquidistant Points

If an amplitude function f(x) is listed at n equidistant points
fa(x), the diffraction pattern g,(u) corresponding to fn(x) will
sho' strong minima and maxima analogous to the orders of a dif-
fraction grating. In order to keep the errors small the phase
between adjacent points must be kept small. These errors are
partially corrected in the methods described below.

5. Approximation of £(x) by Steps

In Fig. 22 the amplitude function f(x) is divided into rectangular
steps of equal width 2a and heights f,, equal to the value of the
ordinate at the midpoints of the intervals. The resulting approx-
imation is the convolution of the point function f,(x) and the
uniform line source of width 2a, so that the approximate pattern
is the product of the transform of f, (x) and the single slit:

gn(u) sin au
au (88).

The g,(u) is calculated exactly as in the preceding paragraph. The
added factor (sin au)/au improves the approximation by suppressing
the orders introduced by the grating, f,(x). Fig. 22 is drawn for
the case in which f (xl is prOportionel to 1, 4, 6, 4, 1, the
binomial expansion (1*1)

Approximation of £(x) by Chords
Fig. 23 shows how a function, which is zero at its end points, can

be approximated by a series of connecting chords. These are
equavalent to the convolution of fn(x) and a triangle of width 4a.

" The diffraction pattern is the product

g (W [s_in_eu_] )

au (66)
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8hould f(x) have end points not zero, say f, and fny then a
straight line function (A+Bx) connecting f, and f, can first be
subtracted from f(x). The pattern of (A+Bx) is then calculated
independently and added to the solution (68).

R, BEFFECT OF A GAP IN A LINE SOURCE

Occasionally an array is constructed as in Fig. 94 with a narrow
gap at the center. The effect of the gap is to 1ncreaue the in-
tensity of the first side lobe from a fraction p to a fraction
approximating

(pre)® /(1-9* (67)

vhere q is the fraction of the area of the amplitude function f(x)
cut out by the gap.

(x)

-a +a
ql fa(x)

Fig. 3 GOap in Array
Ratio of Areas is q

(p+q)

Fig. 368 Gap Increases First 8ide
Lobe by Raising Axis

This is due to the fact that the actual amplitude f(x) of the
array is the difference of the original function f5 (x) and the
gap fo(x) . The pattern g, (u) for the gap is so droad that it has
the effect of elevating the axis of Fig. 88 by the fraction q.
8ince the amplitude of the first aide lobe was originally -p, the
new side lobe has a relative amplitude -(p+q)/(1-q), and a rel-
ative intensity of (p*q)*/(1-q)". The second side lobe, on the
contrary, is reduced and may even vanish,
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This formula holds exactly when the central point source is
blocked out from an odd-numbered n-point diffraction grating, in
which case q = 1/n. The 1ntenaity of the side lobes midway between
two orders was previously l/n o« The odd ones are now increased to
4/(n-1) while the even ones vanish. When applied to a 3 point
array the relative intensity of the one and only side lobe in-
creases from 1/9 to 1.

I. INTEGRATION BY PARTS

This method can be employed when there are discontinuities in
f(x) or 1ts derivatives at only a few points, x . Between two
such points, integration by parts yields:

Xg

iux iux . 2
g(u) L f(x)e dx . e i _b__ ,.D _,_]f(x) (68)

Xg

T1u (du) 2 (iu) ®
Xy b 3%

On summing over all intervals the contributions cancel except for
the negative difference of D"f(x), AD"f(x), at each discontinuity.

k
1uxk 2
g(u) - Ze A [.1.p _ bV .,.. Jrxp
1u[ e (m * ] ‘ (60)
 §

We have so far ignored the patternZA,‘ei“" due to a set of
radiant points.

Let

x
F(x) - g £ (x)dx, (70)

o

then each radiant point can be considered as a discontinuity in
F(x). 8Since

r(x) . DF(x)

the complete formula is
k

g (u) Z & Al1_p ., (p_’_... F(xy)
iu iu (71)

1

vhere x; 18 now the position of either a radiant point or a dis-
gcontinuity in f(x). Thus, 1f D"F(x) is the lowest order derivative
contnining a discontinuity, the leading term in g(u) will vary as
1/u and the envelope of the power pattern will vary as 1/u*"

The corresponding condition on f(x) is that D"f(x) is the lowoot
order derivative which becomes infinite. Usually the illumination
and 1te derivatives are continuous except at the ends of the
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anterval. If f(x) 1s also an even function with a range * 1,

g(@) - sin @ 1__61)2 + (2’ -....] £(1) 4 cos @ [D _(2)3“.. f
9 2 Q 9 o \9

Several examples of Egs.

Y
(72)

(71) and (72) are given in Fig. 26

f(x) g (u)
} ]
@ E I iua -iau
e te = 2 cos au
-a +a
/) /// iuva ~iau
(2) e -e 2 sin au
(3) m eiua-z“_e-iau- 4 (sin au)’
- +0 (1u) 2 - u
o
4) aeiau_ (eiau-l)
0 a iu (au) 2
]
(6) sin ¢ ﬂ-k)_(?_lz)’ cos ¢ [-2k
-1 [} + ? ? + ) ®

Fig. 26 Examples of Diffraction Patterns Derived by Eqs. (71,72)

Examples (1),

and second derivatives respectively.
in (2) and (8) could also be obtained from (72).

combine two or more orders

J. SERIES FOR DIFFRACTION PATTERN

(See qu 71) .

of discontinuities.

18,16

(2), (3) show discontinuities in F(x) and its first
The results
Examples4 and 8§

For moderately small values of u it as feasible to expand the elux
in the Fourier integral in a power series and then to integrate

term by term as follows,

1. Diffraction Pattern g(u) in Terms of Noments of f(x)
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g (u) ¢ff(x) e‘ﬂ‘dx .f 1,2ux giux)' .,...]f(x)dx

= If(x)dx + 1ufxf(x)dx PP L Jx“f(x)dx toee

(73)
n!
Let us designate by 1, the kth moment of f(x),
u - [ 1 o (74)
Then (73) becomes
gu) o 1"_;2 uf oy Uy u' LB u* Caee
k! 2! 4!
B s bg 8
+ 3 - — F mm U L C0e

An even function has only even moments while an odd function has
only odd moments. The idea of a moment is common in mechanics. The
zero moment U, is the area [f(x)dx. The center of gravity, C.g.,
and the square of the radius of gyration, R s of a distribution of
mass points are also simply expressed in terms of moments,

.fo(X)d!. '9 R - Jx"£(x)ax o Me
Jtax  uy ¢ Tt (x) dx ™ ()

Cege =

The series (78) converges when f(x) is positive and confined to
the range + a, for then, i, & afii , and the terms of the series do
not exceed those of the series uoe““, which converges. For the
case when f(x) consists of two points of amplitude # placed at *
8, U = ak and the series (75) reduces to cos au. Again, for
uniform illumination between + a

a
k k1
Mg = J‘ xdx = 22
2 k+1 (77)

and

I G
g Y 'Y - 000 ?

Series for the Power Pattern P(u) = g(u) Z(u)*

The series for the power diffraction pattern is the sum of the
squares of the real and imaginary series of (78) according to (29)

2
LI _cn*i&_lhuo"k . _
P(u) @ B, - (Bola-ts ;'u 3 3 < | " (78)
o7 = oy Py

.3(-) Besns complex comjugete of g(u)

[Mody fia’ ) ult s
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Figure 27. Comparison of Approximations Qver the Main Lobe of:
(a) Two Points. (b) Unifor~ Illumination, (¢) Half Cyecle Cosine




Let us assume that {I; 1s zero, which is true for an even function,
or for any function whose origin is shifted to its center of
gravity, (76). On factoring out u,

4

2
v 1 u W u
P(u) oc 1 _(__l)u'*’ +: (__"’.} + -4 —.s = 1 _ o

Bo Ho 3,
(79)
,—‘{”Ah/ P: - ’((!-f'/ //_ (/:_'\ 1/:
We may empioy the series K 1
2 }/(.—L 7_ , /‘7 / ((/
N = ~log,P(u) = -log,(1-2) = 2 P T T LT
e e 2 Mo (@) VA5
')}/‘1
to obtaan the power drop N in Napiers, é,#c
2
N-l"’u"'+-}- Ho _Lh u-_‘f.? u21+.l 1_u°u4_Ls_=»uz
Ho 4 Ho? 3u, Ho 4 3u22) u,
(81)
The term in parenthesis 1s a small quantaty wh}ch aeproaches zero
as P(u) approaches the Gauss Error curve e~ (I The drop n
in db's 1s 4.343 tames N. N_ AR loul’
3. Widths of Diffraction Patterns W b é{?

The series method can be employed to solve for the w1dths of ﬁz

daffraction patterns. On reversing 17 the series (81)

AT (o ]

- AJ'N_[1-BN]

where A and B are constants. Eq. 82 is an improvement over that in
RL Report T-7' whach was developed as follows. If B is the frac-
tional drop an amplatude measured from the peak, then g(u) 1in (75)
equals (1-f). If we neglect terms above i, and solve for u, then

u’s .Eﬂ. | 26
v Be (83)

If we ainclude the term in y, but assume that it 1s the same as for
the Oauss Error curve, then the following approximation results

or

(82)
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m B g
’J‘uf' (1 ¥ T) (84)

This as equavalent to Egqs. (18) and (98) of Report T-7. In the
followang dascussion we use ¢ = au.

The several approximate formulas are compared in Fig. 27 for the
main lobe of the patterns for three 1}lumination functions:
(a) two points, (b) uniform 11lumination and (¢) the haif cycle
cosine. The simplest approximation 1s Q¢,, based on the Gauss Error
curve, This is fairly good down to half power. Eq. (84), indicated
by 9g, lies inside 9, by a fraction which depends only on n,
Al though 9g may fit some patterns 1t cannot compare with the
surprisingly accurate approximation 9,p based on (82). The percent
error in width usang @,p 18 shown in Fig. 28. For the case of
unaform illumination the error is less than 0.5% down to 28 db,
Paradoxically, the reversed series (82) is more accurate than the
direct series (81), which in turn 1s much closer than the original
arithmetic seraies (79).
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Fig. 28. Percent Error in Width Formula, W = A /n(1-Bn)
For Three Types of Illumination

4. Calculation of Beam Widths

The beam width W in radians of a diffraction pattern is approx-
imated by

wW=2 sing (85)
whach 28 (A/n)u. Thus we may wrate

8R-1




A
w=4 ¥n (1-Bn) — (86)

where A and the diameter, d = 2a, are in 1ike units, and the
constants A and B are defined as follows

(1 Ue
A = 0,308 a\’° B = 1-—°—- (87)
be Su,.t .1 “-

Table 1 Constants For Width Formula

Type of D [] L7777

£ (x) Cos & nx

.3086 528 . 702
0192 012 .0079
n 8 285 11

Table 1 1ists the constants A and B for use in (86). The n in the

table is the range in dbs over which the error in width is less
than 0.5’.

Bach comunt is dimenaionless. For example, for uniform illumina-
tion, Uy * Sa K/ (k*1) and

W = 0.539 F(x--'-;a-é)-)-;- (88)

It is an interesting coincidence that when W° is in degrees, A in
centimeters and d in feet, that A = 0,986 or approximately unity

Thus
n\ A
WO (uniform 1llumination) Vn (I-F') m) (89)

5. Beam Widths of Convolutions

The pattern of a convolution is the product of two patterns
g: 825 which usually approximates a Gauss Error curve even closer
than does either pattern separately. We can thus drop the B in
(86) . 8ince the second moments are additive, it follows that the
width W of the convolution is related to the widths W; and W, of
g1 and gy by the expression

1
'

1 1
—— B ey +

v W' ", (00)




A simple graphical solution 1s given an Fig. 29.

Fig. 20, Relation Between Widths W, W,, and W..

The author wishes to thank Mary Batchelder for the calculations in
Figs. 27 and 28, and Pauline Austin for her careful reading of
the manuscript.

R. C. Spencer
June 30, 1945
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