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EXECUTIVE SUMMARY

OVERVIEW OF DECONVOLUTION METHODS

This investigation was motivated by the success of speckle interferometry, which was first
proposed by Labeyrie [1] in 1970 as a means of achieving partial correction for the degrading
effects of atmospheric turbulence. Using this relatively simple computational procedure, in which
spatial-frequency information from an ensemble of images is combined with a statistical description
of the turbulence power spectrum, astronomers have been able to obtain near-diffraction-limited
autocorrelation functions of celestial objects. Knowledge of the autocorrelation function is
particularly useful when studying systems having a relatively simple composition, such as binary
stars [2,3,4].

Speckle interferometry is a subset of a reconstruction technique known as deconvolution,
which was first applied by Nathan [51 to improve images received from the early Ranger and
Mariner missions. An estimate of the undistorted image, I, is obtained from the distorted image,
I', through a Fourier domain multiplicative operation that makes use of a priori knowledge of the
sensor's optical transfer function (OTF)

I-= F-1 F{II}

This process effectively deconvolves the camera's point spread function from the recorded data.
Perfect results are obtained in the limit of infinite signal-to-noise (S/N), as long as the OTF is non-
zero out to the band limit of the receiver. Under finite noise conditions it can be shown that a
Wiener deconvolution filter incorporating a minimum mean-square estimator produces an optimal
reconstruction [6].

Descriptions of data-recovery techniques designed to ameliorate the effects of temporally and
spatially invariant blurring can be found in a number of standard texts [7,8]. Nonstationary
processes can generally be handled using a similar mathematical formalism; however, in this case a
more detailed characterization of the pupil-plane transfer function is required to achieve good
performance.

This report investigates two practical applications of the Fourier deconvolution process. The
first deals with the correction of atmospheric turbulence effects that are encountered by ground-
based optical telescopes. The second application demonstrates the feasibility of recovering near-
diffraction-limited images from a lightweight space telescope, incorporating a sparse-aperture
construction.
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APPLICATION OF DECONVOLUTION TO TURBULENCE COMPENSATION

Adaptive optics for atmospheric turbulence compensation has been an active area of research
within the military community for over two decades [9,10], and more recently, these concepts have
also been successfully applied in the field of astronomy [11]. The traditional approach to this
problem involves the use of a phase sensor, which measures the wavefront of the electric field in
the aperture plane of the system, and a deformable mirror, which applies the conjugate phase.
Turbulence is an example of a physical process that is nonstationary in both space and time; to
achieve good correction at visible wavelengths it may be necessary to actuate the mirror at several
hundred positions at an update rate in excess of 1 kHz.

For applications involving imaging (as opposed to beam propagation), aberrations introduced
by the atmosphere can be reduced by using a time-dependent system transfer function to perform a
real-time deconvolution of the image information. The advantage of this approach, as compared
with a full adaptive-optics system, is that an active control element is not required to eliminate
turbulence-induced phase distortions. Section 3 of this report compares the performance
characteristics of these two alternatives using experimental data obtained as part of the Laboratory's
Short Wavelength Adaptive Techniques (SWAT) program [12]. The analysis shows that
deconvolution can produce an image that is comparable to that obtainable with a full adaptive-optics
system, but a much longer dwell time is usually required to achieve the same level of performance.

APPLICATION OF DECONVOLUTION TO SPARSE-APERTURE IMAGING

Sparse-aperture telescopes are highly advantageous in situations where the costs associated
with the deployment of a normal receiver would be prohibitive. Under ideal conditions all the
mirror segments would be stationary and have the same phase, in which case the optical transfer
function is real and time-independent. This imaging geometry would appear to be well suited for
image deconvolution techniques, and Section 4 addresses the relevant performance issues.

As an aid in this part of the investigation, a three-petal telescope structure having a 10% fill
factor is used as a model to study the reconstruction process and its sensitivity to sensor noise. It
is demonstrated that a receiver of this type can produce pictures that are comparable to those
generated by a filled aperture of the same diameter, provided that an average signal-to-noise ratio of
10 can be maintained over the entire image. The results of this study are very promising and lend
strong support to the feasibility of constructing inexpensive, lightweight surveillance satellites
employing folded-mirror architecture.
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1. INTRODUCTION

Image reconstniction is important in any application in which the sensing apparatus or the
intervening mealum significantly corrupts the recorded data. Deconvolution processes are the
oldest and best understood [5,6]. although alternative methods involving nonlinear and iterative
computational methods can provide better performance when real-time data processing is not a
requirement [13,14,15,16,17]. For many practical problems, however, Fourier domain
deconvolution is the method of choice, because acceptable results can usually be obtained with a
minimum of computational effort.

Speckle interferometry is an example of a deconvolution process that uses statistical
information about the atmosphere to form an estimate of the effective modulation transfer function
(MTF) that is stationary in space and time [4]. This technique has been successfully applied in the
field of astronomy for over 20 years, but until recently it has not been possible to obtain a two-
dimensional time-dependent description of the aperture-plane wavefront. A solution to this
problem has been developed by investigators within the adaptive optics community, who have
fielded a number of devices for wavefront characterization [9, 10]. Furthermore, the use of laser
guide stars has recently been demonstrated [12,18,19] and can be used to generate a bright
turbulence probe in situations where the object body is unable to supply sufficient light for this
purpose. The motivation exists, therefore, to take a fresh look at the process of combining
aperture- and image-plane data.

This report describes two practical applications of the Fourier-deconvolution process in
which detailed knowledge of the system's instantaneous optical transfer function (OTF) is
effectively utilized. In the first example, speckle imagery is combined with wavefront-sensor data
to produce diffraction-limited images of celestial objects; the results are shown to compare
favorably with the output of a fully operational adaptive optics system. The second application
involves a sparse-aperture collection system that could be incorporated into a lightweight space
telescope; this discussion includes an assessment of the practical utility of sparse-aperture receivers
in a realistic S/N environment.



2. OVERVIEW OF DECONVOLUTION METHODS

Although the first known use of Fourier deconvolution predates its application in speckle
interferometry by several years, for the purpose of this report it will be instructive to discuss the
basic deconvolution concepts as they relate to the reconstruction of astronomical images that have
been corrupted by atmospheric turbulence. Of particular interest is the evolution from techniques
that employ a statistical description of the atmospheric OTF to methods that incorporate detailed
characterizations that are resolved in both space and time. A review of the basic principles
governing the formation of a focal-plane image in the presence of turbulence is provided in the
Appendix.

2.1 SPECKLE INTERFEROMETRY

In 1970 Labeyrie [1] proposed a way to process an ensemble of short-exposure images to
obtain a diffraction-limited autocorrelation function. This technique is based on the observation
that an image-plane speckle pattern can be thought of as a kind of multiple-exposure picture
containing many complete representations of the original object. Since a spatial displacement in
real space corresponds to a phase shift in Fourier space, the phase-invariant properties of the object
can be extracted through a fairly simple transformation. This process is now described.

The original implementation of speckle interferometry involved the use of photographic plates
that were exposed for short periods so that the individual turbulence realizations could be frozen
during the exposure time; see Figure 1. The intensity function, I', recorded by each plate is related
to the object function, I, in the following manner:

I'= i1® PSFe ® PSFt 1

where PSFC is the point spread function for the diffraction-limited system and PSFt is the
instantaneous point spread function due to turbulence. In the next step, each plate is illuminated by
a collimated monochromatic beam that forms an image referred to as a "specklegram" in the Fourier
plane. The intensity distribution of a single specklegram is equal to the square of the Fourier
transform of the speckle pattern

I1-{i,}12 =1-{I}2 MTF2 MTFY , (2)

where MTFc and MTFt represent the modulation transfer functions of the aperture and short
exposure turbulence, respectively. When the same specklegram plate is exposed to a number of
speckle images in this manner, the ens,,mble average is formed:

(I iti'i 12) = 12~ MTF~2 (MTF2)(3
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SPECKLE IMAGE "SPECKLEGRAM'

0 1
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0 /

AUTOCORRELATION FUNCTION

Figure 1. Processing steps used to generate a diffraction-limited autocorrelation function from an ensemble of
speckle images. In the original version of this process, the specklegram was formed optically using Fourier
transform optics.

For isotropic turbulence, the time-averaged MTF will have circular symmetry, and its shape will be
governed principally by the turbulence coherence length, r,. If the statistical properties of the
atmosphere change slowly with time, the data ensemble can be made as large as necessary to

achieve the desired signal-to-noise ratio. Furthermore, an independent measurement of (MTFt2 )

can be obtained by imaging a bright star in the neighborhood of the object under investigation.

To justify the final step of the restoration process, observe that the diffraction-limited
autocorrelation function of a point source is the Fourier transform of the square of the aperture
MTF

S= F -11{ M TF 2} , (4)
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and the diffraction-limited autocorrelation function of the object intensity distribution is

Ri=-T1{l{II 2 MTF (5)

When this result is combined with Equation (3) it can be seen that

Ri = -1 ( FII112)(6)

The numerator of the transform operand is the specklegram defined in Equation (3). To

accomplish this operation the specklegram plate is digitized, divided by an estimate of (MTFt2 ),

and the transform of the resulting ratio is then computed numerically. With modem cameras and
computational equipment it is far more convenient to digitize each realization of I' and perform all
subsequent summation and Fourier transform operations on a real-time digital computer.

An important caveat is added here regarding the reconstruction of images corrupted by
atmospheric turbulence. As indicated earlier, the high spatial-frequency structure of turbulence
tends to break up the focal-plane image into an array of speckles, each containing a diffraction-
limited replica of the object. Unfortunately, the scale of this pattern is proportional to wavelength
so that if broadband light having a bandwidth of AX is used to form the image, the individual

speckles will be smeared by an average angle of "Aro in the radial direction. Because the width of

the diffraction-limited point spread function is A/D for an aperture of diameter D, good restoration
results can be achieved only if (AA1A)<(r,/D). For this reason astronomers typically use a
fractional bandwidth of the order of 5% when performing speckle interferometry with large
telescopes.

Equation (6) provides a template for all the processing techniques that are discussed in the
remainder of this report. As indicated in Figure 2, the transfer function of a nonideal system
generally attenuates the high spatial-frequency components of the scene. But for frequencies
below the cutoff point, the original OTF can be restored through an appropriate renormalization
process in the Fourier domain. In principle, this type of operation can always be performed as
long as the pupil function is accurately known.

5
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Figure 2. Comparison of receiver transfer functions for diffraction-limited viewing and with the addition of
atmospheric turbulence.

2.2 IMAGE RECONSTRUCTION WITH WAVEFRONT SENSING

Although speckle interferometry has provided astronomers with a powerful tool to overcome
the effects of atmospheric turbulence, the final output is not an uncorrupted image of an
astronomical object, but rather its autocorrelation function. Such information is sufficient for
objects having a simple geometry, such as a binary star, but of limited use for more complex
bodies. The key to extracting true imagery is to somehow estimate the instantaneous OTF as
opposed to its time-averaged modulus. A variety of computational methods for extracting the
transfer function's phase information have been published [20,21,22], and an excellent overview
of work performed at Lincoln Laboratory has recently appeared in The Lincoln Laboratory Journal
[23].

Astronomers are just beginning to make use of crude wavefront sensors to aid in the control
of large mirror segments and have attempted to combine the principles of speckle interferometry
with phase sensor data. Such an approach has been proposed by Rousset, Primot, and Fontanella
[24,25], who assume that the instantaneous aperture-plane turbulence wavefront, ts, is recorded
along with each speckle image; from this information the turbulence OTF can be computed:

OTFt =[tsD ®*] (7)
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When this information is combined with the far-field data, the following estimate of the diffraction-
limited image can be made:

1 ( II'}, (8)

where it is essential that aperture- and image-plane data are simultaneously recorded for each
turbulence realization in the ensemble.

The practical implementation of Equation (8) requires a few minor adjustments to avoid
difficult numerical calculations and mathematical singularities. Note that knowledge of the
turbulence function is limited to the aperture region; the measurable quantities are the aperture OTF
and the total OTF:

OTF, =[P® P*] and OTF=[(Pts)O(Pts)*] (9)

where P represents the pupil function. Since it is also desirable to avoid division by a complex
function, the following form is found to be convenient:

F1= .- I{(MTFc OTF F{F}\J= .- ' MTFc (OTF* F{(}), (8.a)

where the factoring of the expectation value is possible because the MTF of the diffraction-limited
aperture is not time dependent, and the turbulence MTF varies only slowly with time. The final
consideration relates to the magnitude of the composite function that multiplies T{I'} in the
operand of the last equation. At high spatial frequencies this number may exceed the signal-to-
noise ratio by several orders of magnitude, which can result in an output image that is completely
noise dominated. The simplest correction involves the insertion of a constant in the denominator

F1= ,Tc-(~ II (8.b)
t{(M F2 )+E (II

where the value of e must be carefully chosen to maximize the degree of restoration without
significantly increasing the root-mean-square noise. Equation (8.b) represents the general form of
the Fourier-deconvolution operator as applied in this report. A method for constructing an
optimized, frequency-dependent expression for e is developed next.
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2.3 OPTIMAL RECONSTRUCTION OF IMAGES WITH ADDITIVE NOISE

The fundamental flaw in the technique just outlined is that restoration of the midrange
frequencies will also enhance the noise within that spectral region. Fortunately, this flaw is not
fatal to the concept as long as suitable modifications are introduced.

The general problem can be treated as one of optimal estimation in which one wishes to
reproduce a given signal as accurately as possible in the presence of additive noise. The signal in
this case is defined as the noise-free image produced by a circular aperture of diameter D,

Ic=I®PSFc . (10)

The actual image formed by the system contains two principal components: the first derives
from the convolution of the pupil point spread function, the turbulence point spread function, and
the object function; the second is represented by an additive noise contribution, n(xy). In the data
processing step the sensor output is convolved with a two-dimensional operator, g(xy), which is
optimized to recover the diffraction-limited image

i=g®{I®PSFc®PSF1+n}=g®{I'+n} (11)

To achieve optimal performance, g is formulated so that the error function

is minimized over some two-dimensional region.

Problems similar to those presented in Equation (12) have been treated previously [6,8,26],
but the inclusion of two different point spread functions introduces a complication that requires a
somewhat more general approach. To simplify the notation it is assumed for the moment that the
signal is a function of the single spatial variable, x. For a noncausal filter, the squared error at
position x is equal to

e2(x) = 12 (x) - 2Ic(x)1(x) + 12(x) (13)

It was assumed in Equation (11) that the best estimate of the image is

I(x) =g(x)®{r'(x)+n(x)} = Jg(u) {r(x-u)+n(x-u)} dt (14)

The expectation value of the squared error can be written

(e2(x)) = ¶e(O)- 2Jg(u) ¶ct+n(u)du + Jfg(u)g(v)9tt+n(u-v) dudv , (15)
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where the integration associated with the expectation operator has been performed first to produce a
set of correlation functions, which are represented in this expression by the variable 9t. The
parameter %,, is the autocorrelation of the diffraction-limited output, 91,+, is the autocorrelation of
the sum of the telescope's output signal and the associated noise, and 9tc,+n is the cross-
correlation function. Because the noise is assumed to be uncorrelated with the input signal, the
cross-correlation function in the second term can be replaced with 9tc,t so that

(e2(x)) = 91c(O)- 2fg(u) 93c,t(u) du + fjg(u) g(v) 9 1,+,(u- v) dudv . 5.a)

Differentiating with respect to g(u) for all values of u gives the optimization condition

J9g(u)9Zt+n(x-u)du=9c,t(x) , (16)

where the left side is recognized as a convolution operation. The Fourier transform of this
expression yields the result

G(s) - F{I(x)1 F*{I'(x)} !T{I,(x)} F*{I'(x)} (17)|
G(I IF{I'( + n(X)112 =I~FI',(X)1t2 + IFtn(X)112  (7

Equation (17) represents the operator with an output that most nearly matches the noise-free
image formed by the diffraction-limited aperture. Combining this result with the Fourier
transforms of Equations (10) and (11) gives a complete description of the transformation

-1MTFc OTF* 9F{I,+n} MTFc -(T f'n(8
)}t;2 FIF(MTF2) + Ff IFI~}

where Fo = [F{I}I2 and Fn = Y{Fn}I2 are the power spectral density functions associated with the
object and the system noise, respectively. If the uncorrupted image is unresolved by the receiver
(as would be the case for an isolated star) and the noise is assumed to have no spatial structure,
then Fn/IFo will be a constant equal to the square of the signal-to-noise ratio of the optical power.
The appropriate form for more complex scenes is developed in Section 4.

9



3. THE APPLICATION OF FOURIER-DECONVOLUTION
TECHNIQUES TO TURBULENCE COMPENSATION

At visible wavelengths the earth's atmosphere severely limits the ability of ground-based
telescopes to form clear images of celestial objects. The physical effect, which is referred to as
"atmospheric turbulence," is the result of thermally induced changes in the air's index of refraction.
Light that passes through a turbulent medium experiences random and spatially nonuniform
variations of phase across its wavefront. As described in Section A-2, the effective resolution of a
terrestrial telescope is limited by the turbulence coherence length, ro, which is typically of the order
of 20 cm under good seeing conditions.

The introduction of speckle interferometry in the early '70s [1] represents the first attempt by
the astronomical community to ameliorate the effects of atmospheric turbulence. As indicated
earlier in Section 2, however, this technique can only be used to extract the object's autocorrelation
function. To form real images, some means must be found to accurately measure the wavefront
phase in the pupil plane of the telescope. Wavefront sensors capable of performing this type of
measurement have been developed by researchers in the field of adaptive optics [9,11].

Two methods of turbulence compensation are currently available to the astronomer. The first
is accomplished through the use of a complete adaptive-optics system that incorporates a
mechanical device, known as a deformable mirror, to remove any phase distortions present in the
pupil plane. In the second approach, phase measurements are computationally combined with the
uncorrected focal-plane imagery using the techniques described previously. This section addresses
the hardware implementation of these two concepts and provides a comparison of performance
using data collected in two star-imaging experiments.

3.1 HARDWARE IMPLEMENTATION

An adaptive-optics system can be thought of as a highly parallel servo device that
simultaneously nulls the phase fluctuations of the incoming wavefront at many discrete locations
over a two-dimensional field; see Figure 3. Phase errors are sensed by the wavefront sensor,
which transmits control signals to the deformable mirror. To achieve good performance, the high
spatial-frequency correction must be updated at approximately 1 kHz by a mirror having an
actuator spacing that is somewhat smaller than the turbulence coherence length. An excellent
description of the theory and operation of a state-of-the-art adaptive-optics system can be found in
the spring 1992 edition of The Lincoln Laboratory Journal [10,12].

A computational image-reconstruction system based on the application of Equation (18)
requires both the focal-plane image and knowledge of the system's instantaneous OTF and is
accomplished using the system design shown in Figure 4. A comparison of Figures 3 and 4
shows than in the latter design the deformable mirror has been replaced by a computer that
combines the near-field and far-field data to provide a prediction of the image that would have been
seen in the absence of turbulence.

11



The data-reconstruction approach just described is potentially advantageous in reducing
overall system cost and complexity. The relative performance of these approaches in both high
and low S/N conditions is now addressed.

DEFORMABLE
MIRROR

INPUTOTPHASE • ••DEFORMABLE
MIRROR LOOP

A PHASE... . RECONSTRUCTOR

TIL .,.•,....
MIRROR TILT • '-H

MIRROR L•

LOOP PHSE

OUTPUT
PHASE

IMAGE•FOCAL-PLANE

Figure 3. Essential components of an adaptive-optics, phase-compensation system. The first derivative of the
phase difference between the incoming wavefront and the surface figure imposed by the tilt and deformable mirrors is
measured by the phase sensor. Residual phase error is computed by the reconstructor and subsequently applied to the
two active optical elements.
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Figure 4. Implementation of a data-restoration system that combines speckle imagery and wavefront information.
The final image is generated by a computer system that performs the computation indicated by Equation (18).

* 3.2 COMPARISONS OF EXPERIMENTAL PERFORMANCE UNDER HIGH
SIGNAL-TO-NOISE CONDITIONS

Over the last decade a number of adaptive-optics systems have been constructed and
successfully operated. Although most of the original work in this field was performed by
researchers in the defense community as part of an effort to propagate high energy laser beams
from ground to space [9,10], these same techniques have recently been applied to astronomical
imaging systems [11]. As a result of these research efforts, there is conclusive evidence that Strehl
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ratios in excess of 0.2 can be readily achieved when the actuator density and bandwidth of the
deformable mirror are chosen so as to match the spatial and temporal characteristics of the
atmosphere.

The exploitation of computational techniques to derive nonaberrated pictures of celestial
objects from time-resolved speckle imagery and wavefront sensor data is a relatively new concept,
and thus far only a few experimental results relating to this approach have been published [271.
This section describes a pair of imaging experiments that were conducted at the Air Force Maui
Optical Station test facility in 1990 as part of Lincoln Laboratory's SWAT program. These tests
were performed with the aid of a 60-cm telescope and a 241-actuator compensation system and
represent the first direct performance comparison between an adaptive-optics system (as described
by Figure 3) and a passive image reconstructor (outlined graphically in Figure 4). The same
hardware structure was used to provide both sets of data; closed-loop phase correction was
achieved by applying the measured pupil-plane phase distortions to the deformable mirror, whereas
open-loop phase and image data (collected at the beginning of each closed-loop sequence) were
input to the computational reconstructor. The results of two separate compensation experiments
are now described.

3.2.1 Single-Star Compensation Experiment

On 25 June 1990, Vega was used as both the target star and light source for the wavefront
sensor of the SWAT system. This source was sufficiently bright (magnitude 0) to supply
approximately 1,400 photons per subaperture over a dwell time of 2 ms. To further improve the
sensitivity of the phase sensor, the system was programmed to perform the Hartmann centroid
calculation with only the central pair of pixels in each 4-pixel subaperture. The adaptive-optics
system was run in the multipulse accumulate mode (5-pulse accumulation) at a 10-Hz repetition
rate. The ro value, based on the figure error of the uncompensated beam, was of the order of 6 cm
(compared to an aperture-plane actuator spacing of 3.5 cm). The system's spectral bandwidth was
approximately 100 nm centered at 470 rnm.

Figure 5 tabulates the short-exposure Strehl for a sequence of 20 phase-compensation
experiments from data file SW9006252225. For each measurement the uncompensated beam was
recorded with a flat phase- imposed on the deformable mirror, whereas the compensated image
represents the end result of a sequence in which 5 phase measurements and phase corrections were
made within a period of 12.5 ms. On average, the adaptive-optics system improved the Strehl ratio
by a factor of 5.
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Figure 5. Far-field Strehl estimates of the Vega results as a function of experiment number for a series of 20
experiments. The Strehl average for the uncorrected data is 0.07 and the average corrected Strehl is 0.35.

Figure 6 compares a set of images obtained from an ensemble average of 20 open- and
closed-loop adaptive-optics experiments (tilt loops were closed in both cases) with a computational
reconstruction derived from the process outlined in Equation (8.b). As indicated in this figure, the
Strehl of the speckle-reconstruction image is a factor of 2 lower than that achieved with the
compensation system, but is about three times better than the uncorrected-image Strehl. A
comparison of the corresponding point spread functions is given in Figure 7; these results are
consistent with the previous illustration, and the diameter of the beam formed by the adaptive-
optics system is about 50% smaller than the profile of the speckle-reconstruction image.

3.2.2 Binary Star Compensation Experiment

Although the data presented in Figures 6 and 7 appear to clearly demonstrate the efficacy of
speckle reconstruction, they do not prove that complex details can be faithfully recovered from a
non-point-source object. To supply such proof, imagery from the binary star Castor was recorded
on 12 January 1991. The Castor system contains two stars with an angular separation of 11 prad
and a combined visual magnitude of 2.9. For this test the wavefront sensor was operated with a
dwell time of 2 ms, whereas the far-field camera was allowed to integrate for 10 ms during each
frame.
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Figure 6. Comparison of open- and closed-loop images with the speckle reconstruction of 20 uncompensated
frames. The field of view of these images is 19 pradt To obtain the speckle-reconstruction image, the value of e
used in Equation (8.b) is 10-4.
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Figure 7. The point spread function of a speckle reconstruction of Vega is compared with the open- and closed-loop
images obtained with the phase-compensation system. The diameter of the reconstructed image is approximately
50% larger than that obtained with the adaptive-optics system.

Figure 8 compares open- and closed-loop images generated by averaging 40 individual
camera frames from data files SW9101122255 and 2256A. Tilt jitter between frames was
eliminated through the use of a centroid tracker and a fast steering mirror. During this test, the
compensation system demonstrated an ability to improve the tilt-removed Strehl by a factor of
approximately 2.4. This relatively low improvement factor (as compared with the fivefold
improvement achieved in the previous example) is attributed to phase errors resulting from the use
of an extended source for a wavefront reference. A detailed discussion of the origin and magnitude
of this type of anisoplanatic error is given elsewhere [28].

The output of the image recovery calculation is illustrated by the central portion of Figure 8.
As indicated in Equation (8.b), the most critical aspect of this process involves the array product of
the pupil-plane phase data, or OTF, and the Fourier transform of the focal-plane image,
represented by F{I'}. It was discovered that considerable care was required to correctly match
the scale and orientation of these two data sets and that any misalignment resulted in a corruption of
the original image. Once the input matrices were properly aligned and scaled, a Strehl
improvement of approximately 1.8 was observed in the output. This improvement factor is about
25% lower than that achieved by the adaptive-optics system.

Although the comparisons given in Figures 6 and 8 show the images produced by the
adaptive-optics system to be superior to those obtained through computational recovery, it should
be noted that the spectral bandwidth of the focal-plane data was not ideally suited for this recovery
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process. As described in Section 2.1, the scale of the speckle image produced by atmospheric
turbulence is linearly dependent on wavelength. Unless monochromatic light is used, some image
smearing will result. To first order, the reduction in Strehl due to this effect is estimated to be

[Strehl]finite bdwid (AD)2 (19)

Because the SWAT system was operated with a fractional bandwidth of 20% and under turbulence
conditions corresponding to a Dir0 of approximately 10, the Strehl component due to finite
bandwidth is estimated to be 0.25. It is not surprising, therefore, that a significant discrepancy in
performance was observed in these imaging experiments.

On the basis of these results and the comments made regarding spectral bandwidth, it is
highly probable that computational reconstruction can produce images comparable to those
obtainable from an adaptive-optics system under high S/N conditions. Most objects of interest to
astronomers, however, are extremely dim (mv>15), and long integration times (often as long as
1 h) are required to obtain acceptable images. Under these conditions the issues of tracking
stability, wavefront characterization, and efficient telescope utilization become crucial; these
questions are addressed in Section 3.3.

3.3 SYSTEM REQUIREMENTS FOR DIM-OBJECT IMAGING APPLICATIONS

To produce a well-compensated image of a very dim object, three requirements must be
satisfied: (1) a fiducial star in close proximity to the target object must be located to drive the
tracking system necessary for image stabilization, (2) a reference beacon collinear with the target
object must be generated to provide light for the wavefront sensor, and (3) a sufficient number of
short-exposure images must be recorded and subsequently integrated to accumulate a signal that is
well above the photon noise limit. The design constraints that derive from the first two
requirements are identical for the adaptive-optics and computational-reconstruction systems.

3.3.1 Design Requirements for Tracking and Wavefront Sensing

Designers of adaptive optics systems find it convenient to divide the effects of turbulence into
tilt jitter, which can be compensated with a two-axis tracking mirror, and high-spatial-frequency
figure error, which is corrected by the deformable mirror. Each effect has an associated isoplanatic
angle, which defines the allowable separation between the reference source and the target object.
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Figure 8. Comparison of open- and closed-loop images with the speckle reconstruction of 40 uncompensated
frames. The field of view of these images is 72 prad.

Because tilt involves only the lowest spatial frequencies seen by the telescope, its isoplanatic angle
is significantly larger than that for figure; furthermore, the tracking reference can be dimmer than
the figure-error reference by as much as six or seven stellar magnitudes. For wavelengths longer
than 1 pim, there is a high probability that a suitable tracking star can be located for any celestial
object of interest [28].

Natural stars provide a poor reference for wavefront sensing because sufficient light must be
provided to each ro-sized section of the aperture to allow local changes in phase to be accurately
measured. The combination of the brightness requirement (- 10th magnitude) and small
isoplanatic angle (1 10 prad) result in a fractional sky coverage that is well below 1% [28].
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An alternative means of generating a reference source for wavefront sensing was first
proposed in the early '80s. This concept involves the projection of a pulsed laser beam along the
line of sight to the target object and a time-gated measurement of photons that are backscattered by
the atmosphere, which, as indicated in Figure 9, is equivalent to the placement of an artificial
source near the top of the earth's atmosphere. This measurement technique has recently been
experimentally verified [12,18,19], and the results of these tests are found to be in good agreement
with theoretical predictions [29]. An optimal system design, which uses resonant backscatter from
a stable layer of sodium situated at an altitude of 90 km, requires a pulsed laser capable of
transmitting about 10 W of average power to achieve good compensation at 1 pm.

TARGET OBJECT 0 O FIDUCIAL STAR

i • SYNTHETIC
BEACON

Figure 9. Geometry essential for dim-object imaging. The fiducial star is used by the tracking system to stabilize a
long-exposure image of the target object. The synthetic beacon, produced by a laser beam scattered by the
atmosphere, provides the reference source for the wavefront sensor.
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3.3.2 Comparison of Focal-Plane Data-Integration Requirements

Efficient utilization of astronomical telescopes is an important issue when exposure times of
the order of an hour are required to produce high-contrast imagery. In this regard, adaptive optics
systems, which achieve a real-time correction of wavefront errors, have significant advantages
over computational reconstruction techniques.

It has been shown that the spectral-bandwidth requirement for speckle reconstruction is fairly
restrictive, typically resulting in a factor-of-10 reduction in the available broadband radiation. For
very dim targets there is a further loss associated with the probability that an individual speckle
component will contain all the spatial information necessary for the image recovery process.
Whereas an adaptive-optics system essentially collapses all the speckle elements onto a single
image that can be integrated indefinitely, the construction of the Fourier plane specklegram
(described in Section 2. 1) can only occur if each speckle is sufficiently illuminated; photons from
different speckles or different data frames do not interact coherently and only contribute to
background noise.

For a photon-noise-limited detection process, the signal-to-noise ratio of a long-exposure
image corrected by an adaptive-optics system is proportional to the square root of the total number
of collected photons

[S/N]adaptive optics cc M (20)

where M is the number of data frames and N is the average number of photons per frame. A
description of the S/N properties of a speckle-imaging system is less straightforward, but analyses
by Dainty and Greenaway [30] and Beletic [31] have derived the following proportionality for the
midrange spatial frequencies:

[ $/N ]spee reconstrution cc [ -M N(21)

nsp

The parameter, nsp, used in this expression represents the average number of speckles per data
frame, which is proportional to (Diro)2 for a collector having an aperture diameter, D. A
comparison of Equations (20) and (21) shows that only a small fraction of the collected photons
provide useful information for speckle reconstruction:

1

[Effective Throughput]spcke cc 12 (22)

For exposures of a few minutes duration under nominal seeing conditions, this factor can easily be
as small as 10-4.
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On the basis of this analysis, it was concluded that a data reconstruction approach is best
suited for situations in which the target object is relatively bright or when efficient utilization of the
telescope facility is not a concern; in such situations it may be cost-effective to construct a system
having no active control elements. A computational reconstructor would be particularly attractive
for applications in which natural sources for wavefront sensing have a high probability of
occurrence, thereby also eliminating the need for a synthetic-beacon laser.
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4. RESTORATION OF DATA COLLECTED BY THINNED-
APERTURE TELESCOPES

Section 3 discussed the use of speckle interferometry to ameliorate optical distortions due to
atmospheric turbulence, but it was also found that the net information content is very low when
only a few photons are collected during a single atmospheric time constant. There are, however,
other applications of this data-processing concept that do not suffer from the problem of low
throughput efficiency. One such application is the restoration of images generated by thinned-
aperture optical systems.

For the purpose of this analysis, consider the telescope configuration shown in Figure 10.
This three-petal shape represents a lightweight satellite structure that could be stowed compactly
prior to deployment in space. This specific design has a fill factor of 10%.

D20
Figure 10. Illustration of a three-segment thinned aperture having an outer diameter of D and segments of width
DM20. The collection area of this design is approximately 10% of the full aperture.

A sparse array offers two significant advantages compared to conventional filled-aperture
telescopes.

As a result of its much lower weight, it is much cheaper to fabricate and deploy.
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• It can be scaled to very large apertures (i.e., many tens of meters), thus allowing the
construction of very high-altitude, high-resolution systems.

To demonstrate the viability of this design, however, it must first be shown that the quality of the
imagery produced by such a telescope is comparable to that obtainable from a full-aperture system.

Three distinct tasks are performed in this section. First, a data-processing algorithm is
developed that produces an optimal restoration of two-dimensional images that have been corrupted
by aperture thinning and additive noise. Second, this algorithm is applied to the output of a
telescope having a 10% fill factor; a signal-to-noise ratio between 10 and 30 is shown to be
adequate to achieve near-diffraction-limited performance from the restored data. Third, the dwell-
time requirements for an 8-m geosynchronous reconnaissance satellite are computed.

4.1 DATA RECOVERY ALGORITHMS FOR THINNED APERTURES

The modulation transfer functions for a circular aperture and the thinned-aperture
configuration shown in Figure 10 are compared in Figures 11 and 12, respectively. The thinned-
aperture MTF is nonzero over most of the region covered by the filled-aperture transfer function,
but the midrange frequency components have been greatly attenuated. Under ideal (noiseless)
conditions, most of this information contained in the original scene can be recovered through a
process that is described next.

4.1.1 Reconstruction of Noiseless Data

The recovery process for noise-free conditions is relatively straightforward and derives from
standard techniques developed for speckle interferometry. As shown in Figure 13, the structure of
this point spread function is dominated by a single diffraction-limited peak that contains about 10%
of the total power; most of the remaining power is distributed among an array of six arms that
emanate from the central core. Although this function extends over a wide angular region, due to
the well-developed central peak with its near-radial symmetry, chromatic-smearing effects will not
result in significant distortions in the image-reconstruction process. Therefore, unlike the
restrictions necessary for turbulence-induced speckle imaging, sensors having a wide spectral
bandwidth can be used with thinned-aperture telescopes.

For a two-dimensional image, I,,, generated by the thinned array, the best estimate of the

image obtainable from a circular aperture is derived from the simple Fourier space transformation

I (MTF)thined aperture I
'C . . ..~f ap{Iura] } (23)

The multiplicative factor formed by the ratio of the full- and thinned-aperture MTFs is largest at the
midrange frequencies. This operation produces the effective system MTF illustrated in Figure 14.
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Figure 11. Modulation transfer function of a circular aperture.
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Figure 12. Modulation transfer finct ion. of the thinned -ape rture telescope depicted in Figure 10.
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Figure 13. Point spread finction of the three-petal telescope. Approximately 10% of the total power is contained
in the central diffraction-limited peakl
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Figure 14. Effective MTF of a thinned-aperture system incorporating the data processing technique defined in
E•uation (23).

4.1.2 Optimal Reconstruction of Finite-Noise Data

The computational procedure outlined in Equation (23) typically results in an extremely noisy
reconstruction due to the high gain that is applied at spatial frequencies for which the S/N level is
less than unity. This effect can be avoided by using the expression developed for finite-noise
scenarios derived in Section 2.3. From Equation (18) the following expression is obtained:

T i ({MTFh- edapftr (MTF)full ap e rt ic]}} , (24)
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where F = I5Ii}12 and F, = -{n}12 are the power spectral density functions associated with the
object and the system noise, respectively. To complete this discussion the functional form of
Fo[F,, which is proportional to the square of the signal-to-noise ratio of the optical power (or
electrical voltage), must be specified.

For scenes containing normal terrain it has been found that the autocorrelation can be
accurately modeled as a first-order Markov process [32],

9to (tý) = C0. 2 eO]P] ,(25)

where ) represents an angular separation within a two-dimensional object space, 6p is the

correlation angle, and a2, is the intensity variance of the scene. The power spectral density
function is the Hankel transform of this expression:

Fo() M= 2z r2/op (26)
[(2z f)2 + 1/0 2]3/

+

The noise is assumed to be white, but it is important to establish the correct normalization factor.
For a discrete data-collection system the signal will be constant over the dimensions of a pixel,
which correspond to the angular displacement ipi. When the noise is uncorrelated this model

results in a triangular-shaped autocorrelation function having a value of a! at the origin; the
associated power spectral density function in rectangular coordinates is

2 2 ( 2 7)p x

For discrete Fourier transform operations performed over the range -l/2Vjix -< f -< 1/2tpix, it is

convenient to replace Equation (27) with the approximation

F. f)= P5/2,6pix and Ifyj1/2lpix (28)
0 VJXYI > 1/20pi or IfyJ > 1/20pix

which encompasses the same integrated power. Thus, within the region over which the discrete
Fourier transform is performed,
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The system MTF that results for a signal-to-noise ratio (Crolan) of 10 and a correlation length of
15 pixels is shown in Figure 15; comparisons with the circular aperture and unprocessed MTFs are
made in Figure 16.

4.1.3 Data Restoration with a Convolution Operator

For real-time data-processing applications, it may be computationally advantageous to
perform the data restoration with a spatial-convolution operator of limited extent. The form of this
operator is obtained from a simple modification of Equation (24):

c= [Tkernel i-{ (MTF)thined aperture (MTF)full aperture ® (I + n) (30)
(thinne aperture+

convolution kernel

Tkeel is a two-dimensional truncation function that is used to limit the physical size of the
operator; its value is set to unity within the kernel and zero elsewhere.

If this process is to work efficiently, the convolution kernel must be kept as small as
possible; on the other hand, good performance can be achieved only if its size is commensurate
with that of the thinned-aperture point spread function. Since the central core of the MTF is
approximately equal to the width of one aperture section, it is expected that Tk,,n1 should be about
a factor of 20 larger than the diffraction-limited point spread function of the aperture shown in
Figure 10. This point is illustrated in Figure 17, which shows a trace along the horizontal axis
over a span of 20 diffraction-limited beam diameters. The absolute value of the filter function
outside this region is less than 10% of its value at the origin.

The overall performance of a 64x64-pixel kernel (roughly equivalent to 20 diffraction-limited
beam diameters) is illustrated in Figure 18. A comparison with the Fourier deconvolution MTF
(indicated by the solid line) shows that the truncation of the convolution kernel results in a minor
perturbation of the system response function at very low spatial frequencies. Although this effect
introduces some distortion in the final image, it is unlikely that a significant loss of data results.
Through the judicious selection of kernel size and the implementation of appropriate apodisation
procedures, one can achieve a balance between image quality and computational speed that is best
matched to the specific surveillance application.
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Figure 15. Effective MTF of a thinned-aperture system incorporating the data processing technique defined in
Equation (24). In constructing this plot, a signal-to-noise ratio of 10 and a correlation length of 15 pixels are
assumed.
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Figure 16. Comparison of MTFfiwnctions along the (a) vertical and (b) horizontal axes. For the zero-noisie case,
the modified MTF of the thinned aperture replicates the circular-aperture MTF for all nonzero values of the function.
The effective MTF for SIN = 10 is approximately equivalent to that of a circular aperture of diameter D12.
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Figure 17. Representation of the kernel used to perform a convolution reconstruction of the thinned-aperture data.
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Figure 18. Comparison of transfer functions obtained with the full convolution kernel and a 64x64-pixel truncated
kernel
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4.2 EXAMPLES OF IMAGE RECONSTRUCTION FOR A REPRESENTATIVE
RECONNAISSANCE SCENARIO

To complete this discussion, the data processing techniques developed in the preceding
sections are applied to a pair of digitized data frames. The first of these images is a bar pattern
chart that was created to provide a quantitative means to study resolution effects. The second is a
terrestrial scene collected by a down-looking infrared (IR) sensor. The diffraction-limited
resolution of the IR sensor was equivalent to 3 pixels, that is,

1 •R
dpix = 1ý

3 D

where dpix is the ground patch associated with one pixel, D is the aperture diameter, and R is the
distance between the sensor and the object. (This value is 50% smaller than the Nyquist
requirement.) To simplify the comparative analysis of sensor performance, this same viewing
geometry is assumed for the bar patterns.

4.2.1 Analysis of Imagery Derived from Bar Patterns

The first of the data files used in this performance analysis consists of a set of 16 horizontal
and vertical bar patterns representing feature spacings that are varied from 1 to 8 pixels (shown in
Figure 19). Figure 20 gives the image as seen by a noiseless sensor that has been mated to a
telescope having a circular aperture of diameter D. The viewing geometry, as explained
previously, is assumed to provide a diffraction-limited resolution equivalent to 3 pixels. The result
obtained by convolving the point spread function of the full aperture with the original bar pattern is
found to be completely consistent with diffraction theory; the bars that are separated by a single
pixel cannot be resolved in either the horizontal or vertical directions.

The noise-free output from the tri-petal collector is given in Figure 21, where a dramatic
reduction in contrast is seen over the entire image, as well as the loss of the horizontal pattern with
the 2-pixel spacing. In the reconstruction of this image, shown in Figure 22, all the nonzero
frequency components have been completely restored. The degree of restoration is further
illustrated in Figure 23, in which a horizontal line traces through the third set of bar patterns
(corresponding to bar spacings of 5 through 8 pixels) are compared.

Figures 24 through 27 show an equivalent comparison for the case in which Gaussian noise
corresponding to 5% of the full range of the original image has been added to the sensor output
This measurement scenario is roughly comparable to a signal-to-noise ratio of 10 for the original
image; however, as a result of the strong attenuation of the midrange spatial frequencies by the
thinned-aperture MTF, the ratio of the power spectral density functions of the transmitted signal
and the applied noise is close to unity for these scene elements.

A comparison of Figures 25 and 26 shows that the data restoration algorithm defined by
Equation (24) has produced a substantial improvement in the overall quality of the thinned-aperture
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image. Although some of the noise components of the scene are also magnified by this process,
the inclusion of the Fr/Fo term in the denominator of Equation (24) guarantees that the final scene
is signal dominated. A quantitative comparison is given in the horizontal line traces through the
third set of bar patterns in Figure 27. The contrast improvement indicated by the second and third
traces shown in this figure represents a clear demonstration of the efficacy of this data-recovery
algorithm.

Figure 19. Vertical and horizontal bar patterns used to measure the composite resolution of the simulated imaging
device. The bar spacing rangesfrom one to eight pixels.
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Figure 20. Bar pattern chart as seen by the full-aperture system. The system is just able to resolve the pattern in
which the bar spacing is two pixels.
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Figure 21. Bar pattern chart as seen by the thinned-aperture systemn In the vertical direction the system is just able
to resolve the pattern in which the bar spacing is three pixels; its lower limit in the horizontal direction is two
pixels. A substantial reduction in contrast is seen over the entire image.
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Figure 22. Bar patterns produced as a result of processing the thinned-aperture image. Full contrast has been
restored to all spatial frequencies within the resolution limits of the system.
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THINNED APERTURE (Raw Data)

Figure 23. Horizontal line trace through the center of the third set of bar patterns. (Third row from the top in
Figures 20, 21, and 22.) In each trace the bar spacing in the four boxes varies from five to eight pixels. 77te
contrast ratio of the raw data generated by the thinned aperture is approximately 5% of that from the full aperture, but
essentially all the original contrast is restored as a result of the data processing.
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Figure 24. Bar pattern image from the full-aperture system to which random noise having a standard deviation of 12
couns (5% ofthefidl range) has been added.
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Figure 2S. Bar pattern image from the thinned-aperture system to which random noise having a standard deviation
of 12 counts (5% of the full range) has been added
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Figure 26. Processed image of the bar patterns as viewed by the thinned-aperture system. Random noise having a
standard deviation of 12 counts (5% of the fidl range) was added to the image prior to the data processing step.
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Figure 27. Horizontal line trace through the center of the third set of bar patterns. (Third row from the top in
Figures 24, 25, and 26.) In each trace the bar spacing in the four boxes varies from five to eight pixels. Noise
corresponding to 5% of the full range of the original image has been added to the outputs of the circular-aperture
system and the raw data from the thinned-aperture system.

4.2.2 Application of the Thinned-Aperture Data Collection and Processing
System to a Representative Terrestrial Image

As a further demonstration of the practical utility of a thinned-aperture system when used in
conjunction with an appropriate data processor, a Landsat image of Logan Airport in Boston,
Massachusetts, was employed in a series of imaging simulations. The original 256x256-pixel
picture has a sample spacing of 29 m and covers a 7.4-km2 field of regard. The satellite's band-3
data from its Thematic Mapper, which provides imagery within the 630- to 690-nm spectral region,
was selected for this analysis. These data were collected with a 41-cm aperture from an altitude of
700 kin; therefore, the point spread function of the instrument had a negligible effect on the image
resolution. The correlation length of this data set was computed to be approximately 75 m.

To accurately assess the capability of the processing technique, these Landsat data were first
convolved with a circular-aperture point spread function comparable to the dimensions of a single
pixel. Specifically, the relationship between the satellite's aperture diameter, altitude, and viewing
wavelength was established by the following expression:
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The resulting picture, shown in Figure 28, provides a baseline against which the reconstructed
images can be compared.

The raw data that would be generated by an aperture having the three-petal geometry
illustrated in Figure 10 is shown in Figure 29. The sixfold symmetry of this system point spread
function is clearly in evidence, and the smearing is severe enough to destroy all but the grossest
details of the image. The degree of recovery achievable using the optimized Fourier-deconvolution
process defined in Equation (24) is indicated in Figures 30 and 31. In the first of these
illustrations, a signal-to-noise ratio (ao/c,) of 10 was assumed. The improvement is significant
and image details of the order of a few pixels are discernible, but the overall quality is clearly
inferior to that obtainable with a circular aperture. The final picture (Figure 31) represents the
output of the deconvolution process for a thinned-aperture image having a signal-to-noise ratio of
100. Comparing Figures 28 and 31 shows that the two are virtually indistinguishable. In general,
a signal-to-noise ratio of 30 permits an acceptable level of recovery.

2319-21.

Figure 28. Visible image of Logan Airport in Boston. The image dimensions are 256x256 pixels and each pixel
represents a ground displacement of 29 m. Original data were convolved with the point spread function for a circular
aperture so that the resulting image quality is d•raction limited
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Figure 29. Image of Logan Airport as seen by the thinned-aperture optical system Smearing effects are due to the

extended arms of the aperture point spread fUnction.
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Figure 30. Processed image for a signal-to-noise ratio of 10.
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Figure 31. Processed image for a signal-to-noise ratio of 100. This image is virtually indistinguishable from that
obtained with a circular aperture.

4.3 SIGNAL-TO-NOISE CALCULATIONS FOR A REPRESENTATIVE
RECONNAISSANCE SCENARIO

The degree to which the recovery process can reproduce the full-aperture output is highly
dependent on the signal-to-noise ratio achieved by the system. This point is perhaps best made by
comparing the MTF functions for S/N ratios (in units of optical power) of 10, 30, and 100, as
shown in Figure 32. The net system resolution is reduced by about a factor of 2 for a signal-to-
noise ratio of 10; this number probably represents the lower limit of utility for this process. (In
generating this plot a VOpix ratio of 15 was assumed, which is consistent with a system having a
1-m ground resolution and a scene having a correlation length of 15 m [33].)

In view of this result, it would be useful at this point to perform a first-order calculation of
the signal-to-noise ratio for a nominal set of viewing conditions. This computation requires the
establishment of a number of new parameters, including the average source radiance, the radiance
contrast, the sensor dwell time, sensor quantum efficiency, and the sensor noise level.
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Figure 32. Comparison of horizontal-axis MTFs for SIN ratios of 10 to 100. A resolution comparable to about
one-half of the full aperture is achieved for SIN = 10.

For an unresolved-target viewing scenario, illustrated in Figure 33, a square detector of
dimension d collects light originating from a ground patch of area (dpix)2 = (dR/j) 2, where D -s the
aperture diameter and fis the telescope focal length. The collector subtends a solid angle equal to
(ir/4)(D/R) 2 with respect to the ground.

D

dpixd

Figure 33. Light-collection geometry for a telescope with a collection aperture, D, and focal length, f
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This geometry results in the following expression for the number of electrons generated by the

sensor within the spectral bandwidth )q1<A<A2:

N, - if3 dn(2 e(A.)NQ;L) dA~ (32)

geometrical efficiency spectral radiance
factor

where the following definitions apply:

d = detector size (m)
f/# = camera f/number

a = net system transmission

P = telescope thinning factor

71(A,) = detector quantum efficiency

N(A) = spectral radiance (W/m2-sr-m)

e6';) = source reflectivity (reflected solar radiation) or emissivity (blackbody radiation).

To satisfy the Nyquist criterion the detector size should be approximately equal to f2D, in which

case Equation (32) can be rewritten

Ne BA'("i(LeXNXd ,((2.a

where kc is the center of the spectral bandwidth. For some missions it may be advantageous to
intentionally degrade the sensor's resolution to increase the total field-of-view or reduce the data

bandwidth. As a result, the dimensions of the pixel ground patch would establish the detector size,
so that d = jýi/J and the following form will obtain

2r 3dd D2 r2b
INe = 4R 2  c i7J)" e(X" N((A)N (32.b)

Equation (32.a) is appropriate for high-altitude IR systems, whereas (32.b) is applicable for most
low-altitude missions.

The dwell time of the system can be computed from the orbital period of the satellite. For a
circular orbit [34]
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T1=2r(R+R6 )3  (33)0 Ge

where
G = 6.67x10-11 nt-m2/kg2 is the gravitational constant

Me = 5.98x10 24 kg is the mass of the earth
Re = 6.36x10 6 m is the radius of the earth
R = satellite altitude.

If the motion of the satellite is used to generate two-dimensional images in a "push broom"
fashion, the pixels on the ground are scanned at a velocity of

V = 2yRe (34)
TO

It follows that the dwell time is equal to

"rd = n ld , (35)
V

where the parameter nd represents the number of pixels in the detector array along the direction of
motion that are used for TDI (time delay and integration). For low-altitude satellites the orbital
period is almost independent of the satellite altitude, in which case the dwell time is proportional to
RID.

At this point it is necessary to establish expressions for the spectral radiance. For blackbody
radiation [35]

2hc 2(6
N(X) = ) {exp(hc/.akT)_ 1 (36)

where
c = velocity of light = 3.00x10 8 mI/s
h = Planck's constant = 6.63x10-34 W-s2

k = Boltzmann's constant = 1.38x10-23 W-s/K

T = source temperature = 300 K.

For most scenes the image contrast is driven primarily by temperature fluctuations in the local
terrain. To a good approximation, the signal can be characterized as the product of the derivative
of Equation (32.a) with respect to temperature and the scene standard deviation, aT:
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signal = dNe I I3Td2AcUT X(2h 2C e[T(hc/AkT) A (37)

The value of aT is typically in the range 10 to 5°C [33].

The noise generated by the sensor includes several terms, the most important of which are
quantum noise, nQ, due to photon-arrival statistics; additive temporal noise, nAT, which is
primarily due to readout-amplifier fluctuations; and multiplicative fixed pattern noise, nMFP [36].
The magnitude of the first and third effect is dependent on the average number of collected
electrons

nQ =0,i , and (38)

nMFp = Uc Ne , (39)

where Uc is the array uniformity following a two-point response correction. The total noise
(standard deviation of the temporal and spatial fluctuations) is the square root of the sum of the
variances

noise = 19 n F = N 2 (40)

For a diffraction-limited IR system sampled at the Nyquist frequency, the average number of
electrons collected by a pixel during a dwell time rd is

Ne f -J7(X,) e(X) dh 2. (41)16 hc_&e p hc A T -j

Nominal values for 17, nAT, and Uc for large InSb arrays are 0.5, 250 rms electrons, and 1%,
respectively.

For reflected solar radiation the expression is more complex because a number of additional
parameters are involved, such as the angle between the sun and the normal to the earth's surface.
To first order the source can be modeled as a 5900 K blackbody with an emissivity that
incorporates all the geometrical factors involved in the reflection of light from the sun to the
satellite. By comparing data given in the Infrared Handbook [37] with the output of a blackbody
having unity emissivity, the following approximation is developed from Equations (32.b) and (36):
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2rT d 2 1)2 2hc
2h _J____(X)_[3A_(42

Ne -4 [ 5{exp(hc/lkT)-1} , (42)

where T = 5900 K. In this case the contrast is due to fractional changes in the terrain reflectivity,
ar, which is perhaps of the order of 0.1. Thus the signal is expected to be

2rxI~ d~ 2 12signal= frd d2ixD ar • /•)31-6 -- dc

4R2 [3l A5 {exp(hc/IkT) -(11

The noise for this system is obtained by substituting Equation (42) into (40); nominal values for 77,
nAT, and Uc for large Si arrays are 0.8, 5 rms electrons, and 0.25%, respectively.

An estimate of the achievable signal-to-noise ratio for an 8-m thinned-aperture telescope
placed in geosynchronous orbit is given in Table 1. In developing this chart the dwell times of the
two sensors have been adjusted to achieve an acceptable signal-to-noise ratio, from which it can be
seen that the stare time is dominated by the requirements of the visible system. It was discovered,
however, that an S/N greater than 10 could not be achieved with the IR system, because its
composite noise is dominated by detector nonuniformities at high signal levels.

The results of this calculation are positive in that signal-to-noise ratios of the order of 10
could be achieved with relatively modest dwell times. Although the evidence at this point is far
from conclusive, there is reason to believe that the image restoration techniques described in this
report can be successfully applied to large-aperture telescopes having fill factors as small as 10%.
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TABLE 1
Parameter List For Baseline S/N Calculation

Visible IR
Parameter Symbol Sensor Sensor

Detector Material Si InSb

Center Wavelength C 0.6 lIm 4 I±m

Satellite Altitude R 1,000 km 1,000 km

Aperture Diameter D 10 m 10 m

Detector Array Size n d 1024 x 1024 1024 x 1024

System Transmission a 0.5 0.5
Thinning Factor /0 0.1 0.1

Quantum Efficiency ?1 0.8 0.5

Temporal Noise nAT 5 electrons 250 electrons

Corrected Uniformity Uc 0.25% 1%

Pixel Dimension dpix 20 cm 20 cm

Effective Dwell Time 'd 32 msec 32 msec

Correlation Length p 2 m 2 m

Ground Emissivity e ---- 0.9
rms Thermal Signal aT ---- 3 °C

rms Reflectivity Signal ar 0.1

Signal-to-Noise Ratiot S/N 33 10

t Designates optical power ratio, equivalent to electrical voltage.
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5. CONCLUSIONS

This report offers convincing evidence of the utility of Fourier deconvolution in extracting
improved imagery from nonideal optical receivers. Although it is shown that the quality of the
recovered data is ultimately limited by the cut-off frequency of the system's optical transfer
function, highly-attenuated frequency components can usually be recovered as long as the SNR
exceeds the gain required for restoration. These conditions are met for many scenarios of practical
interest.

This computational technique has been successfully applied to images of celestial objects
collected by a ground-based telescope and has also been incorporated into a reconnaissance
simulation involving a thinned-aperture optical satellite having a 10% fill factor. For both
applications, a significant improvement over the resolution of the raw data has been demonstrated.
In particular, the results of the reconnaissance simulation lend strong support to the feasibility of
constructing inexpensive, lightweight surveillance satellites employing folded-mirror architecture.
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APPENDIX-CHARACTERIZATION OF AN OPTICAL SYSTEM

To provide a framework for the computational techniques that are discussed in the main body
of this report, this appendix offers an overview of the physics and mathematics that describe the
formation of an image by an optical system. This discussion is largely based on two excellent texts
by Goodman [33,34], and in keeping with his development of this problem, dependent variables
and normalization parameters are explicitly included throughout this section.

A. I BASIC CONCEPTS

The single-element optical system shown in Figure A-1 incorporates all the spatial
relationships essential to this discussion. The lens is placed at the origin of the coordinate system,
and the object and image planes are located at z = -R and z = f, respectively. It is assumed that R

is much longer than the Fresnel distance, D 2/A, where D and L represent the aperture diameter
and optical wavelength, respectively.

Xo0 U X

R f

OBJECT LENS IMAGE

Figure A-1. Spatial relationship between the object, pupil, and image planes of a simple imaging system. The
object is assumed to be separated from the lens by a distance that is much larger than the Fresnel distance.
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For the geometry indicated, the lens is situated in the Fourier plane of both the object and the
image. The electric field of radiation originating in the object plane is described by the complex
function U, (xo, y). In the plane of the lens the field is given by

Ui(uv)=Uo(- u,-L2 , (A-1)

where

uo(fxfy)= FT{Uo(xo,yo)}

is the Fourier transform of Uo(xo, yo). By applying a change of variables and the similarity

theorem for Fourier transforms, Equation (A-i) may be rewritten as

U (uV)= )2 F uo( .XLo) (A-La)

When the object field is imaged by an ideal lens of infinite extent, the field in the image plane
perfectly reproduces the object, albeit with a magnification factor of M = fIR and an axis
inversion

Ui (, Y) UO Y(A-2)

For a perfect optical system the electric fields in the lens and image planes are related by the
expression

U1 (u, V)=-TFt~~x-Y) - (A-3)

Any distortion of the field in the lens (or pupil) plane will introduce a corresponding
distortion in the image plane. If the pupil function P(u, v) is introduced, the field in the lens plane
is modified in the following way:

U, (u,v)= P(u,v) Uj(u,v) . (A-4)

The resulting image function can be expressed as either a convolution of the image-plane functions
or the Fourier transform of the pupil-plane field
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1i, (Xy)F =- (7 \ [ 1 - P g(A-5)
(Af)y I [(Xf) 2  1 7 f')f)IJJ

For imaging-system applications the quantity of principal interest is the focal-plane intensity

I'(xy) Ui U(x,Y) (A-6)

When the illumination is incoherent, the intensity function is found to be the convolution of the

ideal intensity I(x, y) = i(x, Y) 12 and the squared modulus of the pupil-plane function transform

I'(x'y)=I(xIy)® .FA'1V 2, (A-7)

I -;f)2  1YIf Af )JI
The second convolution term in Equation (A-7) is known as the point spread function (PSF), thus
the more familiar form of this expression is

I'(x,y) = I(x,y) 0 PSF(x,y) (A-7.a)

The effective point spread function of a complex optical system can be obtained by
convolving the PSFs of the individual components or by performing the equivalent operation in
Fourier space by taking the product of their Fourier transforms. The optical transfer function
(OTF) is defined for this purpose as

f JP(u,v) P*(u-(Pf) f, v-(A' f) fy) dudv
OTF( fx., fy)=""* *** (A-8)

J J I P(u,v)I dudv

which is the autocorrelation of the pupil function with a unity normalization at the origin. The OTF
is a complex Hermite function [i.e., OTF(f) = OTF*(-f)] that describes both the intensity and phase
of the frequency components of the electric field transmitted through the system. The modulus of
this function is known as the modulation transfer function (MTFl:

MTF(fx,fy)= OTF(fx,fy)I , (A-9)
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which specifies the attenuation of the field intensity at a specified frequency. (The distinction
between these two quantities is important in the discussion of speckle interferometry.) From
Equations (A-7) and (A-8) it can be seen that the PSE and OTF are Fourier transform pairs:

!F- {OTF(fx. fr)}

PSF(x,y) = _ . (A-10)
f f F-1{OTF(fx,fy)} dxi dyi

where the normalization applied here forces the two-dimensional integral to be one.

An example of the use of the OTF to obtain a description of the far-field image is
demonstrated for a perfect circular collector of diameter D. With this symmetry it is convenient to

define the one-dimensional spatial frequency f = fY + fy2, and the following expression obtains

OTF(f)= 2[ cos1((Lýf)f _If 1 (f)DIf Il )DfI20 f D/1 ff (A-11)

0 if I > D/,f

Notice that the cut-off frequency for a circular aperture is fo = D/A, f, as illustrated in Figure A-2.
The point spread function is computed using the Hankel transform; the result for a circular aperture

is the familiar Airy pattern for the parameter p = Vx2 +y2

PSF(p) = 2 Jl-.iDp/f) (A-12)
-4(sf) L Dp/lf

This function is shown in Figure A-3. The beamwidth (full width at half maximum) is
approximately A f/D.
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Figure A-2. Optical transfer fwnction for a perfect circular aperture of diameterD.

A.2 IMAGE DEGRADATION DUE TO ATMOSPHERIC TURBULENCE

Any modification of the aperture function that results in a variation of the transmission or
optical phase across the aperture will produce an OTF that is lower than the ideal function shown in
Figure A-2. The effect in the focal plane is to produce a beam that is broader than the diffraction-
limited image plotted in Figure A-3. For this reason the OTF has been used by lens designers to
characterize static aberrations associated with optical systems. This technique can also be applied
to stochastic effects, such as those associated with atmospheric turbulence.

Following Goodman's approach, it is convenient to establish a new pupil function

P'(u, v) = P(u, v) t, (u, v) ,(A-13)

where P(u,v) represents the aberration-free collector and t,(u,v) is the phase distortion function.
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Figure A-3. Point spreadfiinctionfor a perfect circular aperture of diameter D.

The ensemble-average OTF is defined to be the ratio of the expectation values of the numerator and
denominator of Equation (A-8):

OTF(f,,fy)=

J fJIP(u'V) I' (I t' U, V12) dUdV

(A-14)

If the phase distortion is the result of a stationary process, the order of integration can be
interchanged so that
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f fjP(u,v) P*(u (A f) fx, v-(f)fy) dudv

OTf, fy) = ----

f J(Its(U, V)2~ dudv

which is the product of the aberration-free optical transicr- function and the average phase-screen
OTF. To simplify the notation to be used in the following discussion, we introduce the parameters
OTFc and OTFl to represent the diffraction-limited and turbulence OTFs, respectively. Thus, the
previous equation can be rewritten

OTF(fx,fy) = OTFc(fx,fy) O-TFt(fx,fy) (A-15.a)

The expression for OTFc for a circular aperture was given in Equation (A- 11).

A characterization of OTF, in terms of well-established turbulence parameters is developed
next. For phase-only perturbations the pupil-plane aberrations can be written as

t,(u,v) = exp[iO(u,v)] , (A-16)

where 0(u,v) is a real phase function. From Equation (A-15) it can be seen that the average phase
screen OTF is

"O"•t(fx,fy)=(exp[io(u,v)-io(u-(Af) fx v-(AIf) fy)]) (A-17)

Since 0 is assumed to be stationary, the random variable AO can be defined such that

Ao((Q, f) fX,(X f) fy) 0(u,v) -4(u -(X f) fx, v -( f) f,) , (A-18)

which is independent of the spatial coordinates u and v.

To carry this derivation further, it is necessary to assume a particular form for the phase
probability density function. If 0 is normally distributed with zero mean, then the probability
density function for AO will also be Gaussian:
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p,6 (CO)= r24 a. exp(-0)2/2a,2) (A-19)

The variance parameter ao'2 is a function of the separation distance between the two phase samples
incorporated in Equation (A-18), and is seen to be equivalent to the structure function of 0:

d [op(u~v)-q(u-(2 f)f, V-(.f)fy)]2 = D=((f fx() flf,) (A-20)

Insertion of Equation (A-19) into (A-17) gives the result

OTF(f,,fy)= f exp(ico)) eo2 ,

(A-21)

exp(-c2,/2) = exp{-•D•D((A f)fx, (Aýf) f,)}

A.2.1 Turbulence Effects on a Long-Exposure Image

The structure function for turbulence follows directly from Kolmogorov's [35] description of
the power spectral density of the refractive index as a function of the wavenumber, r,

(2= 1.133c / K- 3  (A-22)

where C2 is the structure constant. The structure constant is typically a function of position along
the propagation path; the integrated turbulence strength yo has the following definition:

110= JC2(z)dz (A-23)
path

The structure function that is derived from Equation (A-22) is

Do(r) =91 2 z 2 Nr 51/3 - 6.88(r/i,,) 513  (A-24)
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The parameter, r,, is the turbulence coherence length defined by Fried [36]:

0 {.423 /1) -3/5 (A-25)

The average OTF for a propagation path characterized by the turbulence parameter, ro, is

UTJFt(f) =exp{-3.4((Af)ffr, 53 (A-26)

This function is plotted in Figure A-4 along with the OTF for a circular aperture of diameter rt. At
this point the motivation for this definition of the turbulence coherence length becomes clear,
because the two transfer functions are seen to be nearly identical at low spatial frequencies. The
point spread function that develops from the application of the Hankel transform to Equation
(A-26) has been derived by Sasiela [37]. The function is most easily expressed as a pair of
asymptotic series that have different regions of validity:

20 H_)n F,[6(n+l)/5]-1,495r, 12n 1.2 f

(4 f n=0 (-! F[6/5] L 'f •1.2ro

P5--•t (p) = . (A-27)

S 2 (-.1)n 61[(5n+6)/6] F1.495 ro - 31.2 f
'4()f)2 ) n! 5 F[6/5] 1[-5n/6] L f ro

For first-order computations within two beam radii of the center, a Gaussian form can be
substituted:

TS-T ¢ (Prf2 exp _( Irro P)2 (-8
PSF ()=t4(X, :> J x f/t: " S(-

As expected, the point spread function for uncorrected turbulence is very similar to the diffraction
pattern generated by a circular aperture of diameter ro. These two functions are compared in Figure
A-5, along with the Gaussian approximation given in Equation (A-28). The Gaussian form
significantly underestimates the beam intensity for large displacement values.

An approximation for the composite point spread function for the aperture and turbulence
follows from the observation made in Figure A-4 that the OTF for a circular aperture is closely
approximated by the function

OTF (f) = exp{-3.44((Af)f/D)'}. (A-29)
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Figure A-4. Comparison of the optical transfer functions for turbulence and a circular aperture of diameter r0 .
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Figure A-5. Comparison of the point spread functions for turbulence and a circular aperture of diameter ro.

The product of Equations (A-26) and (A-29) yields the result

[OTF(f)]long exposue = OTFc(f) O-T-t(f) exp{-3.4[(,f/D)s'3 + ( ,fr) 5 /3] fS/3} . (A-30)

If the same Gaussian-profile approximation developed in Equation (A-28) is applied to Equation
(A-30), the following representation is obtained:

[PSF(p)longexpsure-exP p(2f (A-31)

where

De [D-/53 + r-5/3]-3/' (A-32)
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represents the effective aperture diameter of the optical system and beam propagation path. The
ratio of the on-axis beam intensity to the diffraction-limited value (Strehl ratio) is derived by taking
the ratio of Equations (A-31) and (A- 12) for p = 0:

[Strehl]ong exposure = {1 + (Dir 0 )5/3 1}- (A-33)

A.2.2 Turbulence Effects on a Short-Exposure Image

When the exposure time is short compared to the atmospheric time constant (- 1 ms), low
spatial-frequency perturbations that introduce time-varying displacements of the beam centroid are
eliminated; the same condition results when a tracking system is used for beam stabilization. If the
assumption is made that the random variable associated with the centroid position has a Gaussian
distribution that is statistically independent of any high spatial-frequency distortion effects, then the
OTF of turbulence for short exposures is found to have the form [38]

OT-(f) = exp{-3.44((A f)fro)513[1 - ((ALf)f /D)V13]} (A-34)

Figure A-6 shows a plot of Equation (A-34) for the condition Dlr, = 4.

Although a rigorous expression for the short-exposure beam profile has not been derived (the
application of Sasiela's technique is extremely difficult in this case), it has long been recognized
that short-exposure beams have a diffraction-limited core that is surrounded by an extended halo.
An approximate expression for the far-field point spread function can be developed by
appropriately decomposing the short-exposure OTF into these two components. Because the
screen OTF for an unperturbed field has a constant value of unity, it seems reasonable to define the
constant part of oTF, (f) to be the diffraction-limited component. Solving for the minimum value
of Equation (A-34) results in

[--t (f)]iffraction.limited component = exp{-O.23(D/ro)5 /}_ SI (A-35)

The OTF that describes the remaining energy is given by the difference between Equations (A-34)
and (A-35). Since this function will later be multiplied by the aperture OTF (see Figure A-2) to
obtain the final result, the high-frequency peak can be safely neglected. Following the procedure
established earlier to obtain a Gaussian point spread function approximation, an exponential form
is postulated for the turbulence-limited fraction of the short-exposure OTF:

O-T'F't(f]tbuence-imited8component -33
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where the beam diameter a is treated as a free parameter that is adjusted to obtain a best fit to the
low-frequency peak. Maintaining a good fit over a wide range of Dir0 values is not
straightforward because one must take into account the subtraction of the constant, S0, as well as

the effects of the (;tf/D)V3 term in the exponent of Equation (A-34). A semi-empirical expression
that appears to work well is

D

{ ° -= S}315 (A-37)

Equations (A-35) and (A-36) are compared with the exact expression for the short-exposure
turbulence OTF in Figure A-6.

The net OTF for the optical system and the propagation path is derived by multiplying the
sum of the two turbulence components by the aperture OTF given in Equation (A-29):

OTF(f) = OTF,(f) UTT(f)

= S. exp{-3.44((,Gf)f/D)51/3} + [1- So] exp{-3.44[(Af/D)513 + (,f/a) 5/3] f5/3} 1 (A-38)
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Figure A-6. Short-exposure optical transfer function for Dlro = 4. To a good approximation, the low-frequency part
of thisfunction can be represented by the sum of a constant and an exponential curve that depends on the 5/3 power
of the spatial frequency.
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The second term in this expression can be written more compactly by defining the effective
aperture diameter

D D
DeE D1 3/ DD / (A-39)

1[ + (D/a)5,3],5  [l +(Diro)5 ,3 -[l- S 0](D/r3)4] 1]

which yields the result

[OTF(f)]short exposure = So exp{-3.44((Xf)f/D) 5/1} + [l- So ] exp{-3.n4((QIf)f ID,)5'1J .(A-38.a)

From this form is developed a Gaussian approximation to the far-field point spread function
following the arguments applied earlier in generating Equation (A-28):

( _ _ _ _ = S (frD 2 ) _( D
2 

7+ 
x ( E D e P ) 2

[PsF(P)]hortexposure = So _4 _ ex D 2 1 +[l -Af (DX 2 p•x-

(A-40)

Figure A-7 presents a comparison of this approximation with the transform of Equation (A-34) for
Diro = 4. The Strehl is obtained from the ratio of Equations (A-40) and (A- 12) by setting p to zero:

[Strehl]short exposure= So +[1- So](De/D)2  (A-41)

The accuracy of this expression is better than 10% for Diro values between 0.01 and 20.
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