IDA DOCUMENT D-1524

IDA - FEMA - DoD
RESOURCE PREPAREDNESS SEMINAR ONE

Volume II: Appendices

James S. Thomason, Seminar Coordinator

May 1994

Prepared for
Office of the Under Secretary of Defense for Policy

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

IDA Log No. HQ 94-45542
DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes. They normally embody results of major projects which (a) have a direct bearing on decisions affecting major programs, (b) address issues of significant concern to the Executive Branch, the Congress and/or the public, or (c) address issues that have significant economic implications. IDA Reports are reviewed by outside panels of experts to ensure their high quality and relevance to the problems studied, and they are released by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and panels composed of senior individuals addressing major issues which otherwise would be the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals responsible for the project and others as selected by IDA to ensure their high quality and relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure that they meet the high standards expected of refereed papers in professional journals or formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record substantive work done in quick reaction studies, (b) to record the proceedings of conferences and meetings, (c) to make available preliminary and tentative results of analyses, (d) to record data developed in the course of an investigation, or (e) to forward information that is essentially unanalyzed and unevaluated. The review of IDA Documents is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for the Department of Defense. The publication of this IDA document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of that Agency.

Review of this material does not imply Department of Defense endorsement of factual accuracy or opinion.
PREFACE

This two-volume draft paper is a transcript of the first seminar in a planned series of six held in 1992 and 1993 on Resource Preparedness. The statements and comments do not necessarily represent the views and opinions of the Institute for Defense Analyses, the organization represented by any speaker, or any department or agency of the United States government.

Volume I consists of a summary of the seminar followed by a transcript of the proceedings. Volume II contains the appendices, including the figures and viewgraphs accompanying each presentation as well as the agenda and list of participants.
CONTENTS

VOLUME II APPENDICES

PREFACE.......................................................................................... iii

Appendix A: Seminar Agenda
Appendix B: Participants List
Appendix C: Prepared Materials
Appendix C1: Mr. Horace Auberry, Wellco Enterprises, Inc.
Appendix C2: Mr. Glen Ailshie, SoPakCo.
Appendix C3: Mr. John Novak, Raytheon Corp.
Appendix C4: Mr. Lane Bonner, Siebe North, Inc.
Appendix C5: Mr. James Miller, Survival Technology, Inc.
Appendix C6: Mr. Jon Campbell, Grumman Corp.
Appendix C7: Complementary Briefing, Mr. Novak
APPENDIX A

SEMINAR AGENDA
AGENDA
IDA-FEMA-DoD RESOURCE PREPAREDNESS SEMINAR ONE
Friday, February 21, 1992, 900 am
Institute for Defense Analyses, Bd. Rm, 1801 N. Beauregard St., Alex., VA

900   Welcome to Seminar Series (Dr. Jim Thomason, Mr. Joe Moreland, Mr. Joe Muckerman)
   Administrative Coordination (Mr. Fred Breaux)

915   Overview of First Seminar and Introduction of Speakers (Dr. Jim Thomason, Mr. Harrell Altizer)

925   First Industry Speaker: Mr. Horace Auberry, WellCo Enterprises

955   Second Industry Speaker: Mr. Glen Ailshie, SoPakCo

1025  Recess and Refreshments

1035  Third Industry Speaker: Mr. John Novak, Raytheon Corp.

1105  Fourth Industry Speaker: Mr. Lane Bonner, Siebe North Co.

1130  Recess

1135  Fifth Industry Speaker: Mr. James Miller, Survival Technology Co.

1205  Sixth Industry Speaker: Mr. Jon Campbell, Grumman Melbourne Systems

1235  Discussion of Next Steps, Summary, Recommendations (Dr. Jim Thomason)

1250  Closing Remarks (Mr. Joe Muckerman, Mr. Joe Moreland)

100   Adjourn for Buffet Lunch in Bd. Rm. at IDA
APPENDIX B

PARTICIPANT LIST
LIST OF PARTICIPANTS

LTC. Ronald L. Aguirre
OASD(RDA) ATTN: SARD-RP
The Pentagon, Room 3E327
Washington, D.C. 20310-0103

Mr. Glenn Ailshie
Vice President, Manufacturing
SoPakCo, Inc., P.O. Box 1047
Mullins, South Carolina 29574

Dr. Henry C. Alberts
Center for Acquisition Management Policy
Defense Systems Management College
Fort Belvoir, VA 22060-5426

Mr. Harrell Altizer
17940 Gulf Blvd.
Unit 16-A
Redington Shores, FL. 33708

Mr. Horace Auberry
Welco Enterprises, Inc.
P.O. Box 188
Waynesville, North Carolina 28786

Mr. Mike Austin
Mobilization Preparedness, FEMA
500 C Street, S.W., Room 621
Washington, DC 20472

Mr. Donald Bennett
OSD(P)
The Pentagon, Room 1D464
Washington, D.C. 20301

Mr. Robert E. Blouin
Maritime Administration
400 7th Street, S.W., Room PI-1303
Washington, D.C. 20590

Mr. Lane Bonner
Director, Government Sales, Siebe-North, Inc.
4090 Azalea Drive
Charleston, South Carolina 29405

Mr. Albert Bottoms
104 Reynard Drive
Charlottesville, Virginia 22901-2024

Mr. Fred Breaux
4209 Selkirk Drive
Fairfax, Virginia 22032-1431

Mr. Jon Campbell
Grumman Melbourne Systems (JSTARS)
P. O. Box 9650
Melbourne, FL. 32902-9650

Mr. Mark F. Cancian
OSD (PA&E)
The Pentagon, Room 2C281
Washington, D.C. 20301

Mr. R. James Caverty
U.S. Department of Energy, IE-20
1000 Independence Avenue, S.W.
Washington, D.C. 20585

Dr. Richard Cheslow
Institute for Defense Analyses
1801 North Beaurgard Street
Alexandria, Virginia 22311

Ms. Deborah Christie
Office of the Assistant Secretary of Defense (PA&E)
The Pentagon, Room 2E330
Washington, D.C. 20301-1800

Mr. William Clark
Defense Systems Management College
Executive Institute
Ft. Belvoir, Virginia 22060-5426

Mr. John Coan
Department of Commerce
14th & Constitution Avenue, N.W.
Washington, D.C. 20230
LIST OF PARTICIPANTS

Mr. Glenn Coolon  
Office of Energy Emergency Operations, (DOE)  
1000 Independence Avenue, S.W., IE-24  
Washington, D.C. 20585  

Mr. James F. Miskel  
Mobilization Preparedness, FEMA  
500 C Street, S.W., Room 622  
Washington, DC 20472  

Mr. Robert Fabne  
Defense Logistics Agency  
Cameron Station, ATTN: DLE-PRS  
Alexandria, VA 22304-6100  

LtCol. William Finnicum, U.S. Army  
Joint Staff, J-4, Mobilization Division  
The Pentagon, Room 2D828  
Washington, D.C. 20318-0300  

Mr. Dan Goure  
OUSD(P)/S&R  
The Pentagon, Room 1E801, #5  
Washington, D.C. 20301  

Dr. David Graham  
Institute for Defense Analyses  
1801 North Beauregard Street  
Alexandria, VA 22311  

Mr. James Grichar  
Federal Emergency Management Agency  
500 C Street, S.W., Room 624  
Washington, D.C. 20472  

Dr. Paul Halbern  
OASD(P&L)  
The Pentagon, Room 2D461  
Washington, D.C. 20301  

Col. Gary Hopkins  
OASD (FM&P) R&R/TFR/MP&R  
The Pentagon, Room 3D826  
Washington, D.C. 20301-4000  

Mr. Robert E. Johnson  
Bureau of Mines, MS 1003  
810 7th Street, N.W.  
Washington, D.C. 20241  

Mr. Nicholas Lancaster  
The Pentagon, Room 1D460  
Washington, D.C. 20301-2200  

Dr. Jay Mandelbaum  
OASD(P&L)  
The Pentagon, Room 2C263  
Washington, D.C. 20301  

Mr. John S. McCreary  
Central Intelligence Agency, Nat'l Warning Staff  
The Pentagon, Room 1C921  
Washington, D.C. 20340-3080  

Mr. Michael Means  
Headquarters, Raytheon Corp.  
Hartwell Road  
Bedford, MA. 01730  

Mr. Rick Meyers  
Department of Commerce  
14th & Constitution Avenue, N.W.  
Washington, D.C. 20230  

Maj. Carmen Mezzacappa  
Office of the Chief of Staff (AF/XOWXW)  
The Pentagon, Room 2E949  
Washington, D.C. 20310  

Mr. J.H. Miller, President  
Survival Technology  
2275 Research Blvd.  
Rockville, Maryland 20850  

Mr. Joseph Morland  
Mobilization Preparedness, FEMA  
500 C Street, S.W.  
Washington, DC 20472
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Organization</th>
<th>Address/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC. Nicholas MotowyiaK</td>
<td>Joint Staff (J-5), Strategy Division</td>
<td>The Pentagon, Room 2E949, Washington, D.C. 20318-5126</td>
</tr>
<tr>
<td>Mr. Joseon E. Muckerman</td>
<td>Director, Emergency Planning, ODUSD (Security Policy)</td>
<td>The Pentagon, Room 1D460, Washington, D.C. 20301-2200</td>
</tr>
<tr>
<td>Mr. John Novak</td>
<td>Program Manager, Headquarters, Raytheon Corp.</td>
<td>Hartwell Road, Bedford, MA. 01730</td>
</tr>
<tr>
<td>Mr. R. P. Oliver</td>
<td>Department of Labor, Bureau of Labor Statistics</td>
<td>600 E Street, N.W., Room 9216, Washington, D.C. 20212</td>
</tr>
<tr>
<td>Mr. Edward Purcell</td>
<td>Office of the Deputy, CNO, for Logistics, (OP-403P2)</td>
<td>The Pentagon, Room 4C535, Washington, D.C. 20310</td>
</tr>
<tr>
<td>LTC. Cliff Ripperger</td>
<td>Office of Competitive Strategies, PDUSD (SNR/OSC)</td>
<td>The Pentagon, Room 1E801, Number 5, Washington, D.C. 20301-2000</td>
</tr>
<tr>
<td>Mr. Lawrence E. Salikin</td>
<td>Federal Emergency Management Agency</td>
<td>500 C Street, S.W., Room 507, Washington, D.C. 20472</td>
</tr>
<tr>
<td>Miss Tara Santmire</td>
<td>Institute for Defense Analyses</td>
<td>1801 North Beauregard Street, Alexandria, Virginia 22311</td>
</tr>
<tr>
<td>Dr. Douglas P. Scott</td>
<td>Federal Emergency Management Agency</td>
<td>500 C Street, S.W., Room 621, Washington, D.C. 20472</td>
</tr>
<tr>
<td>Mr. John Starns</td>
<td>Joint Staff, J-4 (Logistics)</td>
<td>The Pentagon, Room 2E828, Washington, D.C. 20301</td>
</tr>
<tr>
<td>Ms. Anne Marie Suprise</td>
<td>OSD/FEMA</td>
<td>500 C Street, S.W., Room 622, Washington, D.C. 20472</td>
</tr>
<tr>
<td>Dr. An-ten Tai</td>
<td>Institute for Defense Analyses</td>
<td>1801 North Beauregard Street, Alexandria, Virginia 22311</td>
</tr>
<tr>
<td>Dr. James Thomasen</td>
<td>Institute for Defense Analyses</td>
<td>1801 North Beauregard Street, Alexandria, VA. 22311</td>
</tr>
<tr>
<td>Mr. John Todaro</td>
<td>Dir., Production Base, OASD (P&amp;L) DASD (PR) PB</td>
<td>The Pentagon, Room 2A318, Washington, D.C. 20301-8000</td>
</tr>
<tr>
<td>Mr. Rod Vawter</td>
<td>DASD-Production Resources Production Base Div.</td>
<td>5203 Leesburg Pike, 2 Skyline Place, Suite 1406, Falls Church, VA. 22041-3466</td>
</tr>
<tr>
<td>Dr. Richard White</td>
<td>Institute for Defense Analyses</td>
<td>1801 N. Beauregard Street, Alexandria, VA. 22311</td>
</tr>
</tbody>
</table>
LIST OF PARTICIPANTS

Col. George Williams
Joint Staff, Mobilization Division
The Pentagon, Room 2D838
Washington, D.C. 20318-4000

Mr. Robert R. Wilson
Federal Emergency Management Agency
500 C Street, S.W., Room 622
Washington, D.C. 20472
APPENDIX C
FIGURES AND PREPARED NOTES
FIGURES AND PREPARED NOTES

This appendix contains the prepared notes, outlines, figures, and viewgraphs submitted by the industry speakers as a part of their presentations. All figures are referenced in the transcript in Volume 1. Note that Mr. Ailshie's comments (Appendix C-2) refer to the questions submitted to the speakers prior to the seminar. They are, therefore, not directly referenced to the transcript. Mr. Auberry's and Mr. Bonner's comments (Appendix C-1 and C-4, respectively) were submitted in textual format but have been edited by IDA into the figure/slide format included here.

Appendix C-7 contains the viewgraphs accompanying Mr. Novak's complementary briefing given after the close of the seminar. The transcript (Volume I) does not contain Mr. Novak's briefing comments but the viewgraphs are included here for the reader's background and information.
APPENDIX C-1
MR. HORACE AUBERRY
WELLCO ENTERPRISES, INC.
### Wellico Who?

- Shoes
- Shoe machinery
- Shoe manufacturing Technology
- $30,000,000 public company
- Technically a large business

**Figure C-1-1**

### Wellico’s Defense Role

- Manufactures combat boots
- Develops combat footwear
- Makes specialized machinery
- Licenses to competitors
- 65% sales direct to D.O.D.
- 20% D.O.D. related
- 15% Other
- 15% Export

**Figure C-1-2**
### Events - July '90

<table>
<thead>
<tr>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>C-3 Contract awarded May 90</strong></td>
</tr>
<tr>
<td>- Minimum sustaining rate</td>
</tr>
<tr>
<td>- 1200 pair per day, 1/3 capacity</td>
</tr>
<tr>
<td>- All leather combat boot</td>
</tr>
<tr>
<td>- 32 hour average work week</td>
</tr>
<tr>
<td><strong>Desert Boot Development</strong></td>
</tr>
<tr>
<td>- 1989 U.S. Army Natick contract</td>
</tr>
<tr>
<td>- General Schwarzkopf initiative</td>
</tr>
<tr>
<td>- 80 pair in field test</td>
</tr>
</tbody>
</table>

*Figure C-1-3*

### Events - August, 1990

<table>
<thead>
<tr>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>No panic</strong></td>
</tr>
<tr>
<td><strong>Good depot inventory position, jungle and combat boot</strong></td>
</tr>
<tr>
<td><strong>Use jungle boot for Desert Shield</strong></td>
</tr>
<tr>
<td><strong>Commence contract action for new jungle boot</strong></td>
</tr>
<tr>
<td><strong>Desert Boot Development</strong></td>
</tr>
<tr>
<td>- Additional prototypes to Natick</td>
</tr>
</tbody>
</table>

*Figure C-1-4*
### Events - September 1990

<table>
<thead>
<tr>
<th>Desert Boot Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Quick fix decision</td>
</tr>
<tr>
<td>- Jungle boot pattern</td>
</tr>
<tr>
<td>- Change to tan</td>
</tr>
<tr>
<td>- Eliminate steel plate and vent eyelets</td>
</tr>
<tr>
<td>- Spec changes developed</td>
</tr>
</tbody>
</table>

**Figure C-1-5**

### Events - October 1990

- C-3 contract for new black jungle boot
- Now need jungle boot due to high mobilization use
- Two options exercised on jungle boot
- 67% of total contracts converted to new desert boot

**Figure C-1-6**

### Events - November 1990

- Panic - all out acceleration
  - DPSC week-end call
  - Overtime
  - Air freight
  - Premium payment to subcontractors, etc.
  - Wellco commitment - 3,000 pair per day by February
  - Significant shipments in December
  - Rush one pair size 11 1/2R for General Schwarzkof

**Figure C-1-7**
### Events - December, 1990

- General Schwarzkopf unhappy
  - Boot procurement paralyzed
  - Industry given one week to respond
  - General chooses Weilco ND914 from nine submitted

**Figure C-1-8**

### Events - December, 1990 - January 15, 1991

- Tech data contract with Natick
  - 103 sizes of patterns
- 184 pair confirming test boots produced
- ND914 procurement
  - Tech data to DPSC January 13th
  - Solicitation January 14th
  - Letter contract January 15th
  - Decision to continue full speed on first model
  - Convert to new model as soon as practical
  - Wellco first shipment 5000 pair January 15th

**Figure C-1-9**

### Wellco Overall Performance

- From 1,200 pair per day to 3,000 in three months
- Barely made commitment overall
- Ahead December and January
- Slightly behind February and March

**Figure C-1-10**

### Hampered by

- Labor only bottle neck
- Introduction of three new items in as many months

**Figure C-1-11**

C-1-4
### Industrial Preparedness Measures

- C-3 MSR contract in place
- New C-3 in October short-cut procurement
- Use of existing options allowed immediate procurement

*Figure C-1-12*

### DPSC - Natick Co-Operation and Performance

- General S boot one month from prototype to procurement
- Normally two years
- Phone approval of minor deviations

*Figure C-1-13*

### Downside

- Chaos
- Letter contracts
- Cost plus attitude creates lasting inefficiency
- Getting paid in the aftermath
  - 51,012,000 for acceleration - agreed - no interest
  - 1,092,000 computer clin mix-up, interest
  - 663,000 mods - mostly agreed - no interest
  - 70,000 between bill/final price - no interest

*C-1-14*
Below is information provided in response to the questions for discussion purposes:

1. Did you experience any difficulties in maintaining or increasing production of military items during Desert Shield/Storm because of laws and regulations at the local, state and federal levels?

SO-PAK-CO was able to ramp up to required quantities without any delays caused by laws or regulations.

SO-PAK-CO presented a plan to DPSC at a scheduled meeting on November 9, 1990 to support ODS. This plan included various deviations to the specification to increase production, immediate acceleration of all existing contracts and our plan to produce 2.1 mm cases/month which complied with our Industrial Preparedness Plan.

The Government was unable to furnish ample GFM to support 2.1 mm cases and therefore requested our plan be revised to 1.3 mm cases/month. This is an increase in excess of 7 times our normal production during peacetime. In addition to this figure, SO-PAK-CO was scheduled to produce in excess of 11mm retort pouches a month at our two processing facilities.

It was necessary for SO-PAK-CO to make various building improvements and acquisition of equipment, to meet this immediate surge requirement, as follows:

Additional ramps to accommodate the thirty six trucks a day we would be shipping out at our maximum production level.

Refurbishing warehouses to meet Government standards throughout Mullins in order to have ability to receive the 25-30 trucks of incoming product on a daily basis.

Re-design the final assembly operation in order to give a more efficient run at this higher speed and to make room for the additional lines which would be set-up to comply with 60,000 cases a day.

At the assembly facility, SO-PAK-CO also vacuum packs crackers. We receive the crackers in bulk as GFM and are required to vacuum pack these items. In order to increase from a level of 102,000 cracker packs/day to 720,000 packs/day we enlarged our cracker facility and acquired additional machinery to meet the demands.
Increasing employment from 750 to in excess of 3,000 in order to meet this demand.

2. Did the Government (at any level) help you by providing waivers, priorities, etc?

During our meeting on November 9th, SO-PAK-CO presented various deviations which would be necessary to meet the ramped-up requirement.

The Government was timely on most deviations requested. However, there were times when a delay on a deviation did cause delay in production. A recommendation would be to streamline this process and allow the Contractor to go directly to Natick - the drafter of the specifications, along with the Contracting Officer.

Below is a sample of key requests presented in order to comply with the increased demand:

Priority was required on receiving trucks shipping out MRE's. Our contracts are FOB origin and therefore were Government furnished trucks. At our maximum scheduled capacity it was necessary to ship out production on a daily basis. Without DCAS-Atlanta meeting this schedule, a delay of two days would have shutdown our operation due to lack of storage space.

Code changes on the pouches to increase production.

Payment needed to be made within 10 days because of our extended cash flow, since approximately 30% of the components are Contractor Furnished Material.

Inspection of product needed to be performed immediately following production rather than the normal 24 hour time frame.

3. From your viewpoint and experience, how should surge orders be handled in the future if increased deliveries of production items (military or civilian) are requested, or if a dormant product is resurrected?

In regards to surge requirements it might be recommended to increase their stock level so when a surge/mobilization does occur it will not trigger off an immediate panic. By increasing these stock levels with a turn over no longer than three years, the surge would be more of a phase in type process.

As mentioned, SO-PAK-CO presented our detailed plan on November 9, 1990 with a price submitted the following week. DPSC felt that their only avenue was to award letter contracts which have caused SO-PAK-CO horrendous
experiences in the past and we have gone on record well before ODS that we would not be interested in a letter contract. A detailed audit along with negotiations carried over the next three months until we received a firm fixed price contract to start in April. In the meantime, however, SO-PAK-CO accelerated and met the production requirements as outlined in our November 9th meeting. SO-PAK-CO's plan which began by acceleration of final cases in November, would have resulted in producing more cases than our two competitors combined. During ODS the Government purchased "warehouses" of commercial products for support items at market prices. This was products which were not being purchased by the consumer. We need to review how we go about contracting during times of urgency, and maintain this industry in order to avoid these type of purchases.

4. What can the Government (at any level) do to allow you to reach your maximum physical capacity, operating around the clock, within six, twelve or twenty four-months?

In order for the Contractor to ramp up to maximum physical capacity, we first must be maintained during peacetime.

Meals, Ready-To-Eat (MRE's) are an essential component of our national defense. In order to create an industrial base, DoD encouraged several companies to invest in excess specialized equipment needed to produce MRE's. In return, the government has annually purchased a "sustaining level" of MRE's in order to maintain a mobilization capability.

Efforts to radically reduce MRE procurement could destroy this already fragile industry. DoD is proposing to cut FY 1992 MRE purchases to 1.2 million cases, a figure which is less than half of the annual rate prior to Operation Desert Storm. If this occurs, there will not be a MRE Industry available to support the necessary surge requirements we are discussing.

Operation Desert Storm underscored the need to maintain a strong industrial base for MRE's. The MRE suppliers and assemblers were able to respond quickly and effectively to the military's demand for food rations.

Following Desert Storm, the House of Senate Armed Services Committees recognized MRE's as one of several products considered by the Defense Department to be "war stoppers." The Committee noted in the FY 1992 Authorization Conference Report that:
The experience of Operation Desert Storm underscores the importance of maintaining the production capability in the industrial base for critical items of military supply and material. During Operation Desert Storm a number of items were identified as potential "war stoppers," including ... Meals, Ready-To-Eat ... The Defense Department considers an item to be a war stopper if it is critical to carrying out the mission of the military services and has a large surge mobilization requirement, but peace-time buys are insufficient to maintain a mobilization capability. 

If the Government reduces its MRE purchases to the proposed level of 1.2 million cases, one or more of the three MRE assemblers will be forced out of business. This action will reduce the maximum potential MRE output for future mobilizations and put the Government in the vulnerable position of dealing with a single supplier for an essential war item, assuming that even one supplier could be maintained at this low rate.

We understand that DoD is resisting additional MRE purchases because of the overhang of unused MRE's from Operation Desert Storm. This is a short-term problem and it should not be dealt with in a manner which jeopardizes our long-term mobilization capability. Excess MRE's can be used as part of a variety of domestic and international humanitarian efforts, including the current effort to aid the former Soviet Republics.

The Government must establish a realistic minimum sustaining rate. In 1990, DoD completed a study which found that an annual procurement of 3.1 million cases was "insufficient to sustain the industry." In light of this information, it would be inappropriate to reduce annual MRE procurement below the 3.6 million case figure specified in the FY 1992 Appropriations Bill.

DoD should fully utilize MRE's during military training maneuvers. This action would not only boost peace-time MRE consumption, it would improve troop training and provide valuable feedback on the product.

DoD should also work with other agencies such as the State Department, FEMA, USDA, and HHS to identify appropriate on-going non-military uses for MRE's. These uses might include domestic and international disaster assistance and emergency food support for the homeless.
5. How can Industry and Government (at all levels) work together to accelerate production of existing items or to produce new systems when appropriate, for national security purposes?

It is imperative, as mentioned above, that the base be protected. The MRE is a small and fragile industry and if the discussed cutbacks are incorporated the base for the MRE would be destroyed.

The Government and Contractors needs to work together and be more innovative in our current procurement system of MRE's. In 1985 and again in 1989 we proposed what we believe would be a innovative approach of buying rations, called the Total Systems.
APPENDIX C-3
MR. JOHN NOVAK
RAYTHEON
Patriot Presentation to Institute for Defense Analysis

21 February 1992
Patriot System Status

- Production
  - On or Ahead of Schedule
  - 125 Fire Units and 5400 Missiles Delivered

- Quality
  - Worldwide Readiness > 98%
  - Field Reliability > 2 Times Specification
  - Factory Reliability Acceptance 7 Times Specification

- Current International Programs
  - NL, GB, Italy, Japan, Saudi Arabia, Israel

- ATBM Capability
  - Deployed Worldwide
  - 17 of 17 Test Successes
  - Successfully Fought Difficult Warlike Threat in Desert Storm

- Growth Capability
  - Inherent Architecture Supports Significant Growth Against Air/TBM Threat

Figure C-3-2
Performance Validated

- Over 2,000 Search/Track Tests Over Full Envelope
- Over 200 Live Firings Over Full Envelope versus Aircraft Targets
- 17 for 17 Successful TBM Flight Tests
- Multiple Successful Operational Tests in Europe and United States
- In Production Since 1980
  — Production Reliability More Than 7 Times Specification
- Deployed Since March 1985
  — Deployed/Operational Reliability More Than 2.5 Times Specification
- Combat Proven Against TBMs in Desert Storm in 1991
Patriot In Desert Storm

- Air Defense was a First Priority Along with 82nd Airborne

- Patriot - One of the First Assets Deployed
  - The Only Existing ATBM Capable System
  - Went by Priority C-5, C-141 Airlift and Sealift

- Defended Debarkation Air Fields, National Strategic Assets and Troops
  - In Saudi Arabia, Israel and Turkey
  - Most Units Placed in Fixed Positions
  - Some Units Moved with Troops

- Patriot Saved Lives and Substantially Influenced the Course of the War
  - ≈ 90% Effective in Saudi Arabia
  - A Little Less Than 50% Effective in Israel
  - Outstanding Readiness of Equipment and People
  - No Spare Parts Problems
Accelerated Responses to Support Operations Desert Shield/Desert Storm

- Production Deliveries of ATM Capable (PAC-2) Missiles Accelerated 5 Months Earlier Than Original January 91 Requirement
  - 550 Missiles Delivered Before Start of Desert Storm

- New ATM Software Tested and Deployed 5 Months Ahead of Plan
  - From January 1991 Plan to August 1990 Fielding
  - Included Modifications to Handle Longer Range Threat
  - Flight Tests Conducted at WSMR Prior to Deployment

- Two Additional Software Changes Developed, Tested and Deployed During Desert Storm
  - Included Enhancements Based on Observed Characteristics of Threat

- 42 Raytheon Personnel Deployed to Theater for Training and Maintenance Support
  - 23 to Saudi Arabia / 15 to Israel / 4 to Turkey

- Spare Parts Supported on Demand Direct from Factory Floor
  - Demand was Light Throughout Desert Storm
Patriot Hardware and Software Accelerated for Desert Storm

- Raytheon Directed to Accelerate PAC-2 Missile Production Early August 1990
  - Production Delivery Plan Moved from January 1991 to August 1990
  - Committed to Deliver 420 PAC-2 Missiles by 1 January 1991
  - Actual Missile Deliveries

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment</td>
<td></td>
<td>95</td>
<td>185</td>
<td>303</td>
<td>420</td>
<td>601</td>
</tr>
<tr>
<td>Delivery</td>
<td>9</td>
<td>95</td>
<td>190</td>
<td>307</td>
<td>424</td>
<td>619</td>
</tr>
</tbody>
</table>

- Availability of Material was Key to Production Acceleration
  - Raytheon and Vendors Had Material in Stock
  - All Vendors and Subcontractors Were in Full Production
Key Factors Leading to Successful Acceleration of Patriot PAC-2 Missiles

- Teamwork: Project Office - Raytheon - Key Vendors
- Multiple Sources for Key Items
  - Warhead
  - Initial Warhead Assemblies were Constructed Utilizing Different Vendor Sub Assemblies
- U.S. Military, Commercial and Charter Air Transportation of Material
- Material Inventory Available
## Threat Characteristics

<table>
<thead>
<tr>
<th>PAC-2 Design Threat</th>
<th>Pre-War Information</th>
<th>Actual Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM Range</td>
<td>INF Constrained (Less Than 500 km)</td>
<td>Longer (Able to Reach from Iraq to Saudi/Israel)</td>
</tr>
<tr>
<td>TBM Velocity</td>
<td>Consistent with Range</td>
<td>Consistent with Range</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Very Accurate (Predictable)</td>
<td>Inaccurate (Predictable)</td>
</tr>
<tr>
<td>Slow-Down</td>
<td>Small/Predictable</td>
<td>Small/Predictable</td>
</tr>
<tr>
<td>Deviations Off Trajectory Path</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Effective Size (to Radar)</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Warhead Vulnerability</td>
<td>Well Known</td>
<td>Assumed Same as Design Threat</td>
</tr>
<tr>
<td>Other Objects</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

**Figure C-3-9**
Theater Missile Defense Lessons Learned from Desert Storm

- In Place Production Base Is Vital for Required Surge Capability
- Patriot Hardware Reliability Resulted in Exceptionally High System Readiness
- Software Driven Systems Allow Quick Response to Unexpected Threat Characteristics
- The TBM Threat Is Real and Growing
  - Can Inflict Severe Damage to Soft Targets, Such as Cities
  - Accuracy is Unimportant When Used as a Weapon of Terror
  - Active Defense is Critical Element of the Solution
- Improved ATBM Capability Is Highly Desirable
  - Greater Lethality Against "Difficult" Threats
  - Larger Footprint to Extend Area Protection / Provide Redundant Coverage
  - Higher Intercept Altitude to Kill TBMs Farther Away from Impact Area
  - More Flexible Launcher Placement to Protect Outlying Assets and Ease Employment
- Improved Deployability Is Highly Desirable
  - Eliminate Dependency on C-5 Airlift
  - Reduce Airlift Sorties and Setup Time
- Real Time Data Collection is Critical for Future Conflicts
- Troop Training Proved to be Excellent
Summary

- Patriot Continues to Be a Model of Success for the U.S., Germany, the Netherlands, Japan and Israel

- Patriot is a Critical Element of U.S. Contingency Operations
  - Is Multithreat Capable (A/C, TBMs, CMs) to Provide Flexible Defense with a Common System

- Near Term ATBM Growth is Focused on Quickly Fieldable Patriot Improvements

- Longer Term Improvements Integrate SDI's Theater Missile Defense Activities with Patriot P31
  - Patriot Provides the Lower Tier of ATBM Defense Plus Aircraft and Cruise Missile Defense

- A Warm Production Line is Critical to Production Surge Capability
Acceleration Difficulties Due to Laws and Regulations at the Local, State, and Federal Levels

- Restrictions Upon Shipping Explosive Materials

**Solution:** Locate Certified Explosive Carriers
Government Support by Providing Waivers, Priorities or Other Help

- Minor Waivers were Presented and Approved by Patriot Project Office
  — Quality and Reliability were Never Compromised

- Major Waiver to Documentation Baseline was Approved to Permit Retrofitting of Existing Missile Rounds in Inventory

- Priorities for Military Aircraft for Shipping Missile Forebodies to Germany

- Locating and Providing Use of Government Owned X-Ray Machine for Warhead Inspection
Government Handling of Surge Orders

- Contractual Direction - Immediate
- Define Customer - Contractor Team Players
Government Actions to Allow Contractor to Reach Maximum Capacity

- Maintain a Warm Production Baseline
- Assist in Identifying Unique Fabrication Processes and Maintain Capability
- Assist in Identifying Sole Source Vendors for High Technology Items and Maintain Technology
Government/Industry Cooperation to Accelerate Production for National Security Purposes

- Working Together to Identify Systems That May Need to Be Accelerated in the Future
- Identify and Maintain Fabrication Process Capability
- Identify and Maintain Unique High Technology Items
- Identify and Maintain Inventory of Long Lead Material
APPENDIX C-4
MR. LANE BONNER
SIEBE NORTH, INC.
2 August 1990 - Iraqi forces invade Kuwait.

Comments: Like other defense contractors, we speculated that the U.S. would become involved, and that we might eventually be asked to provide accelerated product delivery.

1 September 1990 - (Approximately) DPSC commenced weekly and monthly verbal requests for up-to-the minute production and shipping schedules.

29 October 1990 - DPSC routinely issued a new solicitation for an annual MSR procurement/contract.

Comments: Because of the necessity of correcting certain errors which we detected in the specification, the bid closing was extended from 13 November to 20 November.

9 January 1991 - Effective date of the award of contract DLA100-91-C-4064, although not signed by the contracting officer until 1 February 1991. Contract was for 827,148 pairs of chemical protective gloves.

Comments: Although boldly hand-lettered with a "DESERT STORM" legend across the top of page 1, this contract included the usual clause, "Acceleration of delivery is permitted only as authorized by the procuring contracting officer." (This was typical, since these contracts are of the MSR type.) First delivery was due at destination 60 days after award.

16 January 1991 - Air offensive began.

Comments: Still no request for accelerated production.

1 February 1991 - DPSC issued Solicitation DLA100-92-R-0205 for a total of 708,408 pairs.

Comments: Clearly, this was planned as an exigency procurement:
1) Rubber-stamped with "DESERT SHIELD" (sic) legend.
2) Offers due only 7 days after issuance of the solicitation.
3) Acceleration of delivery permitted.
4) Delivery to be completed in four monthly increments. "Liquidated Damages" (penalty) for late deliveries.

24 February 1991 - Ground offensive began.

28 February 1991 - Cease-fire became effective (at 8:00 A.M. Riyadh time).

Comments: At no time between receipt of offers (8 February) and the end of the war was there any indication that a contract was about to be awarded, nor was there the customary request for "Best and final" offers.

17 April 1991 - Offerors submitted "Best and final" offers on the "exigency" procurement.

10 May 1991 - Award made (as modification to existing contract DLA100-91-C-4064).

Comments: We immediately took steps to increase production. Additional personnel required for 3 shift versus 1 shift production were hired, trained, and put to work.

6 July 1991 - Contracting Officer ordered accelerated production stopped, remaining unproduced quantities to be delivered at MSR rate upon completion of basic contract.

Figure C-4-1. Chronology Desert Shield/Storm - Siebe North, Inc.
• DoD was extremely slow in assessing its potential additional needs for chemical warfare gloves. By the time it did so, the war was nearly over.

• When an exigency procurement was finally promulgated, the products to be provided would have only become available at a date after General Schwarzkopf’s “worst case” estimate of a 60 day ground war - even if a contract had been promptly awarded.

• The defense procurement process - at least at DPSC - is so hampered by process, regulation, and lumbering pace, that it seems almost incapable of decisive action.

Figure C-4-2. Conclusions: Desert Shield/Storm - Siebe North, Inc.

We were not (and would not have been) hampered in increasing production because of laws and regulations at local, state, and federal levels.

Figure C-4-3. Effect of Laws and Regulations

The government did not help us, but could have done so, by providing waivers, priorities, etc:

a) It could have rescinded the prohibition against acceleration deliveries.

b) It could have employed the Defense Priorities Allocations System (DPAS) to good use by assigning a higher priority (DX), and/or by reminding contractors and subcontractors of their DPAS obligations.

c) It could have prioritized government laboratory testing of our products. (Pre-shipment samples are tested for war-agent permeation resistance at Aberdeen Proving Ground. A contract clause allows 30 (working) days for such testing; it is currently taking about 70 (calendar) days; and the testing actually could take less than 2 (working) days, including sample preparation, paperwork, etc.)

Figure C-4-4. Possible Government Help
From our viewpoint and experience, surge orders in the future could be better handled in several ways, all involving better planning and preparation.

a) The contracting activity should be required to have developed an approved exigency procurement plan for every key item.

b) Every "MSR" type contract could require mandatory acceptance of an exigency procurement clause (what's one more clause!). Such a clause could be rather simple and straightforward, with a conditional price not to exceed a predetermined level, the final price to be negotiated at a later date.

Figure C-4-5. Future Improvements

We could reach our maximum physical capacity, operating around the clock, within 6-9 months (or less) without government help (based on present circumstances).

Figure C-4-6. Time Reach Capacity

The procurement process today is one primarily conducted by arm's-length formalities - as if between opposing lawyers in divorce court. "Cooperation" and "Work together" almost seem to be foreign words and phrases. (Having said that, it is equally important to note that our relationships at DPSC with the Contracting Officer and his assistant could hardly be better, to the extent that a formalized process permits. It is thus the "system" we criticize.)

Figure C-4-7. Government/Industry Relationship
APPENDIX C-5
MR. JAMES MILLER
SURVIVAL TECHNOLOGY, INC.
Desert Storm Scale-Up
Survival Technology, Inc.

# of Units
(Millions)


0 1 2 3 4 5 6
Direct Labor Employees
DoD Production

After Operation Desert Storm

# of Employees

Jul 90  Oct 90  Jan 91  Apr 91  Jul 91  Aug 91

Figure C-5-4
LESSONS LEARNED

- PreStocking/PreStaging of critical components and raw materials necessary to insure enhancement and sustainability of "Surge" requirements.
- Stand-by production equipment, molds and special tooling, coupled with alternate sources of supply, must be established and maintained.
- Increased automation will enhance/insure capability to meet "Surge" requirements.
EFFECTS OF COLD INDUSTRIAL BASE
Prime and Sub Tier

- Extended Component Lead Time
- Lack of Trained Labor Force
- Deterioration of Equipment and Facilities
- FDA/GMP Implications
- Longer Production Start Up
- Significant Costs
HOW CAN GOVERNMENT & INDUSTRY WORK TOGETHER

- Maintain On-going Dialogue
- Prior Planning
- Commercialize Non-critical Specifications
- Best-Value Procurement
- Multi-year Funding/Contracting
- Identify Alternative Markets for Auto-injectors
POTENTIAL NEW MARKETS

- Chemical Weapon Demil. Program
- FMS to Allied Foreign Governments for Protection of Military/Civilian Populations
APPENDIX C-6
Mr. JON CAMPBELL
GRUMMAN CORP.
Operation Desert Storm Briefing

Joint STARS

Grumman Melbourne Systems Division

C-6-1
Desert Storm Preparation
Deployment Orders

Notification: 17 December, 1990

Orders: Deploy two developmental Joint STARS aircraft, trained crews, spares & support equipment within 30 days
Pre-Deployment Tasks

- Both aircraft updated to 8.3 & initial sensor 4 capability
- OFD baseline performance re-established & tested on both aircraft
- Air Force flight crews trained
- In-flight refueling qualified for KC-10 tanker
- Additional capabilities & features to improve operational effectiveness added to both aircraft
  - ECCM
  - Backup UHF
  - Long-range SCDL
  - Enhanced SAR
  - HAVE QUICK
  - JIDS installation
  - Other misc capabilities
Pre-Deployment
Integration & Test Flight Record (17 Dec 90 - 9 Jan 91)

- Total Flights 19
  - Engineering
  - Training
  - Air Refueling

- Total Hours 88.5 hr

- Average Flight Hours 4.6 hr
Preparation Summary

- All pre-deployment tasks accomplished

- Both aircraft, all equipment & crews launched by 11 January - In Only 25 Days
E-8A Desert Storm Operations
Joint STARS Aircraft Operations

- Two E-8As deployed 11 January, air-refueled enroute, arrived Riyadh, 12 January

- Daily sorties began 14 January, combat sorties began 17 January

- Flying one aircraft each day
- Operational missions averaged 10.5 hours
- Flying dusk to dawn
System Performance

- System performance exceeded expectations
- MTI performance against tactical/operational targets was excellent
- SAR performance at long range was excellent & valuable asset in providing targeting to the Air Force & Army
Deployed Contractor Personnel

Grumman - 41
- Mission Crew
- Data Analysis
- Ground Engineering
- PME & GSE Maintenance
- Logistics Management

CUBIC - 2
- Army GSM Field Support

PAR - 1
- Mission Crew

Norden - 6
- Mission Crew
- Sensor Ground Engineering

Greenwich Air Services - 15
- Aircraft Maintenance

65 - Total In-Country
21 - Additional Rotation Personnel
# ILS Maintenance Status

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorties Scheduled</td>
<td>54</td>
</tr>
<tr>
<td>Sorties Flown</td>
<td>54</td>
</tr>
<tr>
<td>Average Duration</td>
<td>10.4 hr</td>
</tr>
<tr>
<td>Air/Ground Aborts</td>
<td>4/3</td>
</tr>
<tr>
<td>Breaks</td>
<td>5</td>
</tr>
<tr>
<td>Average Fix Time</td>
<td>3.8 hr**</td>
</tr>
<tr>
<td>FMC Rate</td>
<td>80.2%</td>
</tr>
<tr>
<td>One Aircraft Availability Rate</td>
<td>90.1%</td>
</tr>
<tr>
<td>MC Rate</td>
<td>80.2%</td>
</tr>
<tr>
<td>NMCM Rate</td>
<td>9.9%*</td>
</tr>
<tr>
<td>NMCS Rate</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

* NMCM rate includes engine change (no QEC kit): 445 manhours
** Does not include engine change
Joint STARS - Desert Storm Operations
Status as of: 4 Mar 91

Figure C-6-12
JOINT STARS
DEPLOYMENT HISTORY

- EARLY LOOK DEPLOYMENT
  RAF MILDENHALL, U.K.
  ONE E-8A AIRCRAFT, FORTY CONTRACTORS
  TEN DAYS
  FOUR FLIGHTS
  FEBRUARY 1990

- OPERATIONAL FIELD DEMONSTRATION
  RAF MILDENHALL, U.K.
  GEILENKIRCHEN AIR BASE, GE
  RAMSTEIN AIR BASE, GE
  BRETIGNY-SUR-ORGE AIR BASE, FR
  ONE E-8A AIRCRAFT, FORTY-FIVE CONTRACTORS
  SIX WEEKS
  SIXTEEN FLIGHTS, GROUND DEMOS ON OFF-DAYS
  SEPTEMBER-OCTOBER 1990
DISCUSSION TOPIC ONE
DIFFICULTIES BECAUSE OF LAWS OR REGULATIONS

• NO MAJOR PROBLEMS

• MELBOURNE CIVILIAN AIRPORT RESTRICTIONS
  - NIGHTTIME ENGINE RUNS
  - WET RUNWAY RESTRICTIONS
  - FLEW NEW YEARS EVE

• FAR REGULATIONS - COST & PRICING
  - SHIFT TO COMMERCIAL CONTRACT TERMS
  - COST IMPACT

• RULES
  - DO/DX RATING
  - PASSPORTS, TDY ORDERS, CHEMICAL WARFARE TRAINING

• CONTRACT ANTICIPATION - INSTANT COST PLUS
  - RISK TAKING
  - PHASED AUTHORIZATION
    -- PRE-DEPLOYMENT
    -- DEPLOYMENT
  - SUBCONTRACTORS

• ANTICIPATED THE CALL

LEARNED FROM EARLY LOOK AND OFD
DISCUSSION TOPIC TWO
GOVERNMENT HELP WITH WAIVERS, PRIORITIES, etc

- TEAM JOINT STARS EFFORT
- ESTABLISHED CONUS COMMAND POST
CONUS COMMAND POST

- MISSION:
  - SUPPORT 4411 JOINT STARS SQUADRON

- TEAM STRUCTURE
  - USAF COMMAND POST CONTROLLER (24 HRS)
  - GRUMMAN PROGRAM MANAGER (2)
  - COMMAND POST CONTROLLER (24 HRS)
  - PME MANAGER (SUPPLY OPS) (2)
  - MATERIAL MANAGER (2)
  - AIRCRAFT LOGISTICS MANAGER (24 HRS)
  - 4411 JOINT STARS SQUADRON LOGISTICS MANAGER
  - PROCUREMENT MANAGER
  - FAMILY SUPPORT MANAGER
  - SECRETARY
  - THREE OFF-SITE EXPEDITORS

- PHONES, FAXES, COMPUTER TERMINALS

- DAILY COMMUNICATION WITH 4411 JOINT STARS SQUADRON
CONUS COMMAND POST
RESUPPLY OPERATIONS

- IN-COUNTRY REQUESTS TO COMMAND POST

- COMMAND POST
  - NOTIFY IN-HOUSE ACTIONEES
  - POST AND MAINTAIN STATUS
  - REQUEST SHIPMENT CLEARANCE FROM USAF

- USAF AIRLIFT CONTROL AGENCY, WRIGHT-PATTERSON, AFB
  - SHIPMENT AUTHORIZATION

- COMMAND POST
  - COORDINATED SHIPMENT TO CHARLESTON OR DOVER
  - FORWARDED INFORMATION TO 4411 JOINT STARS SQUADRON

- CHARLESTON - DESERT EXPRESS
  - DAILY FLIGHTS

- DOVER
  - DAILY FLIGHTS
  - JOINT STARS PRIORITY WAS 48 TO 84 HOURS

Figure C-6-17
DISCUSSION TOPIC TWO

- USAF IN COMMAND POST - SHIPPING AUTHORIZATION
- DESERT EXPRESS (CHARLESTON AFB, S.C.) OR DOVER AFB, DE
  - EXPEDITERS TDY
- FOREIGN SOURCES (CANADIAN & BRITISH)
  - WAIVED ENTRY PROTOCOL
- BOX MARKINGS
  - JOINT STARS STICKERS
- PASSPORT PROCESSING
  - SAUDI EMBASSY IN WASHINGTON, D.C.
DISCUSSION TOPIC THREE
HANDLING SURGES IN FUTURE

- CONTINGENCY OPERATIONS
  - 2 E-8A AIRCRAFT UNTIL IOC ACHIEVED

- CONOPS

- TRAINING

- CONTRACT
  - SUBCONTRACTOR SUPPORT

- GOVERNMENT PRIORITIZATION REQUIRED
Desert Storm Operations
Summary

- System performance exceeded expectations

- System reliability & availability exceeded operational requirements
"Another war will not be fought without Joint STARS"

Gen M. McPeak
Chief of Staff
United States Air Force
1 February 1991
APPENDIX C-7
VIEWGRAPHS
COMPLEMENTARY BRIEFING
MR. JOHN NOVAK
RAYTHEON
Raytheon Missile Systems Division

Maintaining the Industrial Base for Tactical Missiles
Raytheon Missile Systems Division
Segment of Industrial Base

Mission Areas
Air Defense
Interdiction ...Precision Guided Munitions

Elements
Missiles — Ground to Air
Ship to Air
Air to Air
Air to Ground
Submunitions
Radar — Ground Based
Ship Based
Fire Control
C² / Commo
Raytheon Missile Systems Division

- **Ground Launched**
  - Patriot System
  - Hawk System
  - Stinger
  - Bat

- **Air Launched**
  - Sparrow
  - Sidewinder
  - AMRAAM

- **Ship Launched**
  - SM-2
  - Aegis ER
  - Seasparrow

- **Other**
  - Maverick
  - AAAM
  - Phoenix

Figure C-7-3
# Critical Technologies and Manufacturing Processes for Missile Systems

<table>
<thead>
<tr>
<th>Critical Technology</th>
<th>Critical Manufacturing Process</th>
<th>Critical Technology</th>
<th>Critical Manufacturing Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR/Radar Domes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Warheads</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>S&amp;A Devices</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rocket Motors</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Control Actuation Sys.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thermal Batteries</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Composites</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Microwave Devices/Assy's</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TWTs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IR Detectors</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VHSIC/ASIC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multichip Modules</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MMIC/MMIC Modules</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fiber Optics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Displays</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Counter Stealth Technology</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Image Processing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Homing Guidance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Autopilots</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ECCM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Data Fusion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Simulation/Modeling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ada Software</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Super Computers</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Radomes

Critical Processes

- Radome Lay Up and Billet Fabrication
- Prescription Grinding
- Ring Bonding - Adhesives
- Boresight Testing
- Unique Manufacturing Tooling
- Environmentally Controlled Bonding Process
Warhead

Critical Processes

- Explosive Materials
- Outside Casing and Liner Fabrication
- Explosive Train Assembly
- Loading and Handling
- Tailored Fragments
- Arena Testing
Rocket Motor

Critical Processes
- Motor Case Tooling
- Thermal Liner and Ablative Covering
- Propellant Material
- Machining and Plating Process
- Propellant Loading Process
- Environmental Controlled Manufacture

SOLID PROPELLANT ROCKET MOTOR
Thermal Batteries

Critical Processes
- Unique Process Fabrication
- Pellet Pressing
- Unique Raw Materials
  - Heat Source and Anode
- Manufacturing Assembly

Limited Vendor Base
Safe and Arming Devices

Critical Processes
- Unique Teflon/Metal Plating Operations
- Unique Mechanical/Materials Interface

Limited Vendor Base
Microwave Devices and Assemblies

Critical Processes

- Stripline, Microstrip and Thin Film Processing
- Microwave Components
  Oscillators, Filters, T/R Devices
- Unique Materials and Processes
  i.e., Toroids, Ceramics, Garnets
- Element Lenses and Extrusions
  Require Complex Machining Processes
- Monolithic Microwave Integrated
  Circuit (MMIC) Technology
Traveling Wave Tubes Packaged for High Density Missiles and Systems

Critical Processes
- Special Manufacture and Assembly Process
- Fast Warm Up Technology
- Missile Packaging and Environmental Requirements
- Stringent Specifications
- Tight Assembly Tolerances
- Material Process Control
- Environmental Facility Requirements
Strict Tolerance Machined Assembly and Applications

Critical Processes
- Castings - Product Unique
- Forging and Extrusions
- Dielectric Windows
- Transmitter Tanks
- Heat Shield Wrapping
- Ground Based Antenna Structure Tolerance Control
- Integrated Wave Guide Assemblies
Critical Technologies for Future Weapon Systems

Advanced Material Radomes and IR Domes

IR Detectors

Composites

MMIC Modules

Multichip Modules
# Commercial Availability of Critical Technologies and Manufacturing Processes

<table>
<thead>
<tr>
<th>Critical Technology</th>
<th>Critical Manufacturing Process</th>
<th>Critical Technology</th>
<th>Critical Manufacturing Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR/Radar Domes</td>
<td>MMIC/MMIC Modules</td>
<td>Warheads</td>
<td>Fiber Optics</td>
</tr>
<tr>
<td>Warheads</td>
<td>Displays</td>
<td>Rocket Motors</td>
<td>Counter Stealth Technology</td>
</tr>
<tr>
<td>S&amp;A Devices</td>
<td></td>
<td>Control Actuation Sys.</td>
<td>Image Processing</td>
</tr>
<tr>
<td>Rocket Motors</td>
<td></td>
<td>Thermal Batteries</td>
<td>Homing Guidance</td>
</tr>
<tr>
<td>Control Actuation Sys.</td>
<td></td>
<td>Composites</td>
<td>Autopilots</td>
</tr>
<tr>
<td>Composites</td>
<td></td>
<td>Microwave Devices/Assy's</td>
<td>ECCM</td>
</tr>
<tr>
<td>Microwave Devices/Assy's</td>
<td></td>
<td>TWTs</td>
<td>Data Fusion</td>
</tr>
<tr>
<td>TWTs</td>
<td></td>
<td>IR Detectors</td>
<td>Simulation/Modeling</td>
</tr>
<tr>
<td>IR Detectors</td>
<td></td>
<td>VHSIC/ASIC</td>
<td>ADA Software</td>
</tr>
<tr>
<td>VHSIC/ASIC</td>
<td></td>
<td>Multichip Modules</td>
<td>Super Computers</td>
</tr>
</tbody>
</table>

**Raytheon**

**UNCLASSIFIED**

**Figure C-7-14**
## Other Availability of Critical Technologies and Manufacturing Processes

<table>
<thead>
<tr>
<th>Critical Technology</th>
<th>Critical Manufacturing Process</th>
<th>Critical Technology</th>
<th>Critical Manufacturing Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR/Radar Domes</td>
<td>MMIC/MMIC Modules</td>
<td>Raytheon</td>
<td></td>
</tr>
<tr>
<td>Warheads</td>
<td>Fiber Optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S&amp;A Devices</td>
<td>Displays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocket Motors</td>
<td>Counter Stealth Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Actuation Sys.</td>
<td>Image Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Batteries</td>
<td>Homing Guidance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composites</td>
<td>Autopilots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwave Devices/Assy's</td>
<td>ECCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWTs</td>
<td>Data Fusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR Detectors</td>
<td>Simulation/Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHSIC/ASIC</td>
<td>ADA Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multichip Modules</td>
<td>Super Computers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**UNCLASSIFIED**
Critical Issues Which Impact
Production Lead Time After
Production Restart

- Component Availability
- Training
- Process Re-Qualification
- Reestablishment of Vendor Base
- Environmental Requirements
- Sunset Parts
- Test Equipment
- Flexible Machinery and Robotics
UNCLASSIFIED

Lead Times After Production Stoppage

Production Lead Time (Years)

Elapsed Time - Production Stoppage

- 1 - 2 Years
- 2 - 4 Years
- 4 - 6 Years
- > 6 Years

- Component Availability
- Training Supervision
- Process Re-Qualified
- Test Equip Redsn & Revalidation
- Workforce Training
- Loss of Vendor Base
- Machine Rebuild
- Environmental Req'ts

Figure C-7-17
Sunset Parts

- Discontinued Product Lines - Program Unique
- Hybrids
- Transistors
- Memory Devices
  - ROM
  - PROMS
- Integrated Circuits
Systems and Subsystem Test Equipment

Critical Processes
- Program Specific
- Multi Levels of Assembly and Spec Requirements
- MIL Spec Test Requirements
- Stringent Low Level Test Philosophy
- Emphasis on Thermal and Vibration Testing (LET)
- Maintenance, Calibration and Engineering Support
- Depot Support
Flexible Machinery/Robotics

Critical Processes
- Large Investment Requires Program Stability
- Continued Volume Productions Required
- Loss of Applications Resulted in Degraded Quality and Increased Cost
- Improved Processing Control is Lost
- Better Tolerance Control is Effected
Foreign Sales Potential

- Air Defense Systems
  - High Potential for Foreign Sales
  - Defensive in Nature
  - Stabilizing Factor in Volatile Regions
  - Significant Number of Requests from Foreign Customers

- Interdiction Systems
  - Moderate Potential for Foreign Sales
  - More Likely to be Restricted to Limited Number of Allies
Actions to Facilitate Foreign Sales

- Proactive U.S. Government Support of Overseas Marketing Efforts
  - Viability of Many Production Lines Dependent on Foreign Sales
  - More Critical as U.S. Spending Decreases

- U.S. Government Support for Financing of Foreign Sales
  - Loan Guarantees

- Release Policies which Allow U.S. Companies to Sell Systems with Capabilities Comparable to the Overseas Competition
  - Foreign Nations Desire Modern Configurations and Technology

- "Replace in Kind" Policies
  - Sell Inventory where Restrictions on Release of Technology are Appropriate
  - Replace U.S. Inventory with P31 Configurations
  - Underwrites Production Cost of New System Implementation
Desert Shield/Storm . . . A Recent Example of Industrial Base Mobilization

- August 1990 - Immediate Need for Patriot PAC-2 Missiles for TBM Defense in Saudi Arabia

- But...
  - Only 3 PAC-2 Missiles Existed (R&D Units)
  - First Production Deliveries Not Due Until January 1991
  - Next Version of Deployment Software Not Planned Until January 1991

- Combined Army/Industry Team
  - Accelerated Production Missile Deliveries by 5 Months
    - Initial Deliveries at End of August
    - 550 Delivered Before Start of War
  - Accelerated Testing/Validation of New Software
    - Deployed in August 1990
Keys to Success in Desert Storm Mobilization

- Sustained P3I Program Since Patriot was Fielded
  — ATM PAC-2 was in Process
  — Test Program Validated Production Process
- Proven Workforce and Processes
- Adequate In-Plant Production Inventories
- Multiple Sources for Critical Components and Assemblies
  — Warhead
- Multi Year Contract
  — Vendors at Full Rate, Raw Material Available
  — Capital Investment
- Strong National Support
UNCLASSIFIED

Recommendations to Maintain Missile Industrial Base and Prevent Erosion of Production Lead Times After Shutdown

- Actively Support Foreign Sales
- Promote P3I Programs to Evolve System Capabilities and Protect Engineering Base
- Ensure That New Technology Developments Extend Through Low Rate Initial Production
- Establish Sustaining Manufacturing Technology Programs
- Consolidate Depot Repair/Maintenance Capabilities and Contractor Production Facilities
- Consolidate GFE and Support into the Prime Contract
UNCLASSIFIED

Promote P3I Programs to Evolve System Capabilities and Protect the Engineering Base

- P3I of Existing Systems Often Far More Effective than New Starts
- Planned Evolutions Insure Technical "Edge"
- Continued Reliability and Performance Improvements
- Engineering/Production Experience Levels Improve Over Time
- Core Technical Team Remains Intact
- P3I Program Should Address Application of Advanced Technology and Research
UNCLASSIFIED

Ensure New Technology Developments Extend Through Low Rate Initial Production

- DoD R&D Policy May Advocate Putting Technology "On The Shelf"

- If Such a Policy Is Adopted, it Must Consider
  - Engineering Development
  - System Testing . . . Including Testing with Other Interoperable Systems
  - Production Processes, Materials, Vendor Base Availability
  - Transition from Development to Production (LRIP)

- Incorporation of "On The Shelf" Technology into Weapon Systems in a Crisis Cannot Occur if the Manufacturing Process Is Not Fully Proven Out

- But Some "Silver Bullets"
Establish Sustaining Manufacturing Technology Programs

- If Production Lines Are Partially or Fully Closed
  - Certain Parts, Processes or Materials Unique to DoD May Not Be Obtainable
  - Single or Limited Sources May Gate Mobilization
  - Capabilities May Depend on Offshore Sources for Specific Items

- Sustaining Manufacturing Technology Programs Should Be Established for Major Systems
  - Continued Production Planning for Mobilization
  - Identify Sunset Parts, Unique Processes
  - Foster Technology for Replacement Solutions
  - Develop New Processes or Parts With Emerging Technologies Having Commercial Analogs

- Add Production Mobilization as a Criteria for Implementing New Parts, Materials, or Processes
UNCLASSIFIED

Consolidate Depot Repair/Maintenance Capabilities and Contractor Production Facilities

- Overlapping Capability Currently Exists in Contractor Production Facilities and Government Repair/Maintenance Depots

- Lower Budgets for Depot Repair/Maintenance Projected
  - Tough Decisions Must be Made as to the Most Prudent Location for Depot Activities

- Decision to Utilize Contractor Production Facilities for Depot Repair/Maintenance is Important to the Defense Industrial Base
  - Significant Factor in Maintaining Manufacturing Center of Mass
  - Facilitates Retrofits and P3 Implementations
  - Combines Production and Depot Work for Lower Overall Cost
UNCLASSIFIED

Consolidate GFE and Services into Prime Contract

- "Breakback" of GFE and Services into the Prime Contract Insures Total Product Responsibility
  - Government Program Office, One Contractor, One Lead Laboratory
- Responsibility on Prime to Maintain Mobilization Capability
  - Includes Sunset Parts, Processes
- Facilitates System Level Technical Approaches
  - Maintains Center of Mass
  - Essential in Wartime Environment
- Lowers the Overall Program Cost to the Government
  - Clear Cut Warranty Provisions
  - Reduced Support Burden, Personnel
Conclusions

- The Missile Segment of the Defense Budget
  - Is Critical to National Security
  - Has Many Critical Technologies and Manufacturing Processes with No Commercial or Other Sources

- Factors Critical to Maintaining Industrial Base for Tactical Missiles
  - Proactive Support for Foreign Sales
  - Pre-Planned Product Improvements
  - New Developments Programmed Through LRIP
  - Sustaining Manufacturing Technology Programs
  - Consolidation of Depot Maintenance / Repair and Contractor Production Facilities
  - Contractor Responsibility for Total System
# IDA-FEMA-DOD Resource Preparedness Seminar One, Volume II: Appendices

## Title and Subtitle

IDA-FEMA-DOD Resource Preparedness Seminar One, Volume II: Appendices

## Author(s)

James S. Thomason, Seminar Coordinator

## Performing Organization Name(s) and Address(es)

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311-1772

## SPONSORING/MONITORING AGENCY Name(s) and Address(es)

Office of the Under Secretary of Defense for Policy
The Pentagon
Washington, DC 20301

## Distribution/Availability Statement

Approved for public release; distribution unlimited.

## Abstract (Maximum 200 words)

This seminar examined the role of industry in supporting the Desert Shield/Desert Storm Operation, and identified some of the lessons learned from that experience. This was the first of a series of 8 resource preparedness seminars co-sponsored by FEMA, DoD, and IDA in 1992-93. It set the stage for the remainder of the seminars, which considered what preparedness plans, policies, or programs are appropriate to address industrial preparedness issues in the future global environment. Presentations on the industrial support aspects of Desert Storm were provided by top executives from six firms involved in supporting the fighting forces in the Persian Gulf. These firms represent a range of personnel-support items produced in large quantity for the Gulf War (boots, meals, nerve gas antidote injectors, chemical warfare gloves) and two hardware items that proved critical in the conflict (Patriot missile, JSTARS).

## Subject Terms


---

**REPORT DOCUMENTATION PAGE**

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

**Form Approved**

OMB No. 0704-0188