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VARIATIONAL PRINCIPLE MODELING OF

CLASS IV FLEXTENSIONAL TRANSDUCERS

INTRODUCTION

One approximation method that can accurately estimate a quantity of interest using

relatively crude representations for the physical behavior of the system is the variational
principle technique. This modeling method is applied to flextensional transducer analysis by

coupling a variational principle developed for the resonance frequency of the piezoelectric
driving element to one for the resonance frequency of the shell, carefully ensuring that the

boundary conditions at the driver-shell interface are satisfied. The in-vacuo mode shapes and
resonance frequencies for a Class IV transducer calculated in this manner are compared with

finite element models and experimental data for the first two even-even modes of the

transducer. There is good agreement between the methods in the calculation of the resonance
frequencies of these modes, even though the mode shapes calculated variationally do not agree

exactly with the finite element predictions.

Fluid-loading effects on the transducer are introduced by coupling the in-vacuo variational

transducer model to a variational principle for the surface pressure on a radiating body. This

surface variational principle is derived from the Helmholtz integral equation. The surface

pressures determined using this variational formulation and the finite element method for a
single Class IV transducer are compared for the first two even-even resonant modes. It is

shown that the agreement for the surface pressure is better for the first mode, but in both cases
the agreement is still reasonable. Possible reasons for these discrepancies are discussed, as well

as options for calculating the far-field pressures from the variationally determined surface

pressures. Accesion For
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VARIATIONAL PRINCIPLES

OBJECTIVE: TO OBTAIN ACCURATE ESTIMATES OF PHYSICAL
QUANTITIES WITHOUT THE CONSTRAINT OF SATISFYING THE

EQUATIONS OF MOTION OR BOUNDARY CONDITIONS EXACTLY

EQUATIONS I IBOUNDARY EXAMPLE: RESONANCE FREQUENCY
OF MOTION CONDITIONS OF CIRCULAR MEMBRANE

P. 
2

VARIATIONAL PRINCIPLE (VP)
FOR PHYSICAL QUANTITY

I tvarlationat solution

TRIAL FUNCTIONS

(APPROXIMATIONS TO
SYSTEM BEHAVIOR)

0.5 r ct eolution

ESTIMATE OF
PHYSICAL QUANTITY

1 2SIMPROVE TRIAL FUNCTION J Varlaoal pamm"f a

FIGURE I

A variational principle (VP) provides accurate estimates of some physical quantity without

having to satisfy either the equations of motion or the boundary conditions exactly. The

equations of motion and the boundary conditions are combined using the generalized method of

E. Gerjuoy, A.R.P. Rau and L. Spruch ["A Unified Formulation of the Construction of
Variational Principles," Rev. Mod. Phys. 55, pp. 725-774, (1983)] into a variational expression.

Approximations to the behavior of the system, or trial functions, are incorporated into the VP to

yield the estimate. The accuracy of this estimate can be improved by refining the trial

functions. This is accomplished either by allowing the trial functions to satisfy some of the

boundary conditions or by adding more terms to the trial function (Rayleigh-Ritz method).

An example of a typical variational calculation is shown on the right. The lowest

dimensionless resonance frequency w for the axisymmetric motion of a circular membrane is

well known, as is the exact solution for the displacement (a zeroth order Bessel function) [A.L.

Fetter and J.D. Walecka, Theoretical Mechanics of Particles and Continuous Media, McGraw-

Hill, New York, pp. 219-244 (1980)]. Nonetheless, it is illustrative to calculate the resonance

frequency variationally, using a displacement of the form cos (ar), where r is the radius of the

membrane, and varying the parameter a. The best variational solution occurs when the

minimum frequency is reached. The frequency estimate is very good, even though the trial

function is not an exact representation of the true displacement. This fundamental property of

VPs makes them attractivc for calculations involving complex physical systems.
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VARIATIONAL TRANSDUCER MODEL (IN-AIR)

PIEZOELECTRIC DRIVER SHELL

lNEW°ows. GAUSS' E. DRIVER BC SHELLEQ. sHELL BCI

SPIEZOELECTRIC VP FOR SHELL VP FOR

RESONAFNGUE 2RGEC RSNACFEUNY

I I
DRIVER DISPLACEMENT Ui SHELL DISPLACEMENTS
ELECTRIC POTENTIAL 0 u,v,w

DRIVER MOELI INTERFACE 6Cl SHELL.MODELI

IN-AI•R TRANSDUCER.ODEL
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FIGURE 2

The development of a variational model for flextensional transducers is illustrated above.

The primary constituents of such a transducer are a driver, usually consisting of piezoelectric

ceramic, attached to an elastic shell. The extensional motion of the driver causes the shell to

move in a flexural mode, hence the term flextensional. To obtain a variational model for the

transducer as a whole, variational expressions for the resonance frequency of the individual

parts are first derived. Newton's and Maxwell's equations for the piezoelectric material,

expressed in the notation of B.A. Auld [Acoustic Fields and Waves in Solids Wiley-

Interscience, New York (1973)], are combined with appropriate electrical and mechanical

boundary conditions to yield a VP for the resonance frequency of the driver. The appropriate

independent variables for this VP are the driver displacement Ui and the electric potential D.

Similarly, shell equations, such as the generalized equations in A.W. Leissa ["Vibration of

Shells," NASA Sp-288, Washington, D.C., 1973], and boundary conditions, e.g. free, clamped,

etc., yield a VP in terms of the normal shell displacement w and two tangential displacements u

and v. The models for the piezoelectric driver and elliptical shell for a Class IV transducer have

been verified independently against experimental data and previous models [G.A. Brigham, "In-
plane Free Vibrations of Tapered Oval Rings," J. Acoust. Soc. Am. 54. pp. 451-460 (1973)].

Once the individual VPs have been verified, they may be combined, using interface boundary

conditions, into a variational model for the transducer which yields highly accurate estimates

for the eigenfrequencies but less accurate mode shapes.
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CLASS IV GEOMETRY

#Y
S Shell

Shrank

2a

FIGURE 3

The simplified model geometry for the Class IV flextensional transducer is shown here.

The transducer consists primarily of a piezoelectric stack driver and an elliptical or oval shell.

The driving stack consists of rectangular slabs of piezoelectric ceramic with thickness t. The

slabs are electroded on both ends, with the voltage alternating so that each pair of slabs is

expanding along the x axis. This requires that the piezoelectric material constants must be

rotated properly to ensure the correct poling direction is maintained. The motion and electric

potential of the driver are modeled in Cartesian coordinates (x,y,z). As a first-order

approximation, we can ignore the dependence of the stack motion on the coordinates y and z,

leaving only pure extensional motion along the x axis. Insulators at the ends of the stack ar-

included as purely elastic constituents. The driver is connected to the shell by a metallic shank

which, for modeling purposes, is considered to be an additional mass on the driver.

The shell is a metallic elliptic cylinder, with a semi-major axis length a, a semi-minor axis

length b and uniform thickness h. The shell motion is modeled in elliptical cylinder coordinates

(ý,TI,z) relative to the shell's midsurface where

x=ccosh cosTI y = csinh sinrq z = z c = ,a2 b2

The shell motions depend only on the coordinate TI, which gives the angle between the local

radius of curvature R(TI) of the shell midsurface and the x axis. Thus, at least formally, the shell

motions are independent of the axial (z) and thickness (ý) coordinates, and the axial motion is

uniquely zero.

4
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TRIAL FUNCTIONS FOR DRIVER AND ELLIPTICAL SHELL

* TRIAL FUNCTIONS FOR PIEZOELECTRIC STACK DRIVER

u 1
d -_U (XU n driver displacement

4)- O ¢n COS 2 t2 l electric potential
no, [ 2t J

* TRIAL FUNCTIONS FOR ELLIPTICAL SHELL DISPLACEMENT
V = v+ .V, W=w+tvz

IN THE FORM

v- -[Vcos (n q)+ Vn0 sin (nfl)]
n.1

ETC.

FIGURE4

The trial functions for the driver and shell are detailed here. The driver displacement along

the x axis is described by an odd power series in the Cartesian coordinate x, which ensures that

the two ends of the driver move equally and in opposite directions. The potential is described

as a cosine squared series, which gives the trial functions a value of 0 where the actual potential

is zero and a maximum value where the real potential is V0.

The trial functions for the shell are typical of most geometric shell theories. The form

presented here is consistent with thick shell theory for circular cylindrical shells [I. Mirsky,

"Vibrations of Orthotropic, Thick Cylindrical Shells," J. Acoust. Soc. Am. 36. pp. 41-51

(1964)]. The total normal displacement W is the sum of a normal displacement w, dependent

only on the angle 11, and a transverse normal shear V, also dependent only on the angle ri,

multiplied by ý, the thickness coordinate normal to the midsurface of the shell. Sim.larly, the

total azimuthal displacement V is the sum of a tangential displacement v and a change in

curvature V., multiplied by ý. From the theory of elliptical rings [K. Sato, "Free Flexural

Vibrations of an Eliptical Ring in its Plane," J. Acoust. Soc. Am. 57. pp. 113-115 (1975)], it is

known that the motion of the shell splits into four distinct categories that can be characterized in

terms of their symmetry about the major and minor axes as even-even, even-odd, etc. To

represent this, we parametrize the motion of the shell using trial functions which are odd and

even (denoted by the superscripts o and e) in the tangential coordinate rq.
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IN-AIR COUPLING OF DRIVER AND SHELL

0 PIEZOELECTRIC VARIATIONAL PRINCIPLE AND SHELL
VARIATIONAL PRINCIPLE MUST BE SOLVED SIMULTANEOUSLY
UNTIL CONVERGED RESULT FOR THE RESONANT FREOUENCY IS
OBTAINED

* BOUNDARY CONDITIONS AT SHELL-DRIVER INTERFACE
SV, P In W .Pz

UdV, P,

V(17, z=-h/2)=- u (xa) = (x a) b S1 .2 o s2 n ( 7, z - V 2 = 1 e2  c os2 ? 7 a

FIGURE 5

As discussed previously, the driver and shell boundary conditions must be coupled to give a

complete flextensional transducer model. It is therefore important to ensure that the boundary

conditions at the shell-driver interface are satisfied as well as possible. These conditions are

shown in the bottom illustration [G.A. Brigham, "Analysis of the Class-IV Flextensional

Transducer by Use of Wave Mechanics," J. Acoust. Soc. Am. 5&. pp. 31-39 (1974)]. The shank

is assumed to move in unison with the driver, and flexure of the shank is neglected; thus, the

driver displacement Ud is translated through the shank to the interior surface of the shell. We

can then match the shell displacements with the driver displacements at the interface surface as

detailed in the lower equations, where e is the eccentricity of the midsurface of the shell. The
normal driver stress P, is similarly matched to the normal and shear shell stresses as well as

possible. Because it is, in general, not possible to match both stresses and displacements

simultaneously, any unmatched stress contributions are compensated for via additional work

terms in the variational principle for the transducer's resonance frequency.
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MODE SHAPES OF THE TWO LOWEST
EVEN-EVEN FLEXURAL RESONANCES
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FIGURE 6

The first two variationally determined even-even flexural mode shapes are shown here as a

function of position along the main (x) axis. The variational calculations are compared to finite

element results provided by Dr. Rick Morrow of General Electric Corporate Research and

Development, Schenectady, New York. The modal displacements are exaggerated by a factor

of 400 in order to illustrate the behavior. The first mode agreement is very good across the

surface of the shell and clearly represents a flexural mode where the motion is dominated by the

normal component of the shell displacement. The difference between the finite element and

variational results for the first mode shape is less than 5%. The second mode is not represented

as well, which is to be expected. The second even-even mode is clearly a higher order flexural

mode of the shell. The variational principle does not pick up the additional bending in the

second mode which occurs between five and six inches, although this does not appear to be a

major discrepancy. As anticipated, the largest displacement is along the minor axis of the shell

for both modes, with very little motion along the major (driver) axis. Although in practice the

transducer consists of three shells, each with a length of 3.2 inches, stacked on top of each

other, we are neglecting the dependence of the resonant modes on the length. This is justifiable

since the lowest modes do not appear to have much axial motion associated with them.
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RESONANCE FREQUENCIES FOR CLASS IV (MOD 30) IN AIR

RESONANCE FREQUENCIES (HZ)

1ST EVEN-EVEN 2ND EVEN-EVEN BREATHING

VARIATIONAL 1732 5408 5927

2D FINITE ELEMENT (NUSC) 1786 5441 6233

3D FINITE ELEMENT (GE) 1657 5330 5898

EXPERIMENT 1625 5024 5783

FIGURE 7

While the variational principle yields results for the mode shapes which are fairly good, the

results for the resonance frequencies should be (and are) even better. This illustrates the

fundamental property of variational methods, that the variational principle will yield results

which are more accurate than the trial functions used to obtain them. Here the variational

resonance frequencies for a Sanders Model 30 transducer in air are compared to 2 and 3

dimensional finite element calculations (performed at NUSC in 1990 by Susan LaShomb using

the program FEDESC) and experimental values. The variational calculations appear to be

better than the 2D finite element model but not as good as the 3D model. Discrepancies

between the calculations could be due to minor differences between the NUWC finite element,

GE finite element, and variational material parametrizations and geometries. The NUWC

model uses an older Mod 30 configuration than either the GE or variational models; the GE

model also includes losses not present in the others. It should also be noted that the

experimental values quoted are merely typical for this model of Class IV transducer; there is

some variation in these values depending on which specific transducer was measured or what

method of measurement was used [M.B. Moffett and R.S. Janus, "Flextensional Acoustic

Projector Nearfield Measurements," NUSC Technical Memorandum No. 861171 (15 Sept.

1986); C.J. Dubord and D.L. Walters, "Surface Ship Hull/Transducer Interaction Evaluation,"

NUSC Technical Memorandum-No. 871068 (23 March 1987)]. Nevertheless, the variational

results do fall with thc range of available experimental measurements for this transducer.
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VARIATIONAL FLUID LOADING FORMULATION

[_HELMHOLTZ INTEGRAL EQUATION

SURFACE VARIATIONAL PRINCIPLE
(WU, GINSBERG AND PIERCE)

I METHOD OF A3SUMED MODES
FOR PRESSURE, DISPLACEMENT

AND ELECTRIC POTENTIAL

COUPLED FLUID-STRUCTURE
INTERACTION EQUATIONS

(INCLUDING PIEZOELECTRICITY)

I IN-VACUO EIGENMODES FOR
DISPLACEMENT AND
ELECTRIC POTENTIAL

E MODAL FORMULATION OF SVP

FIGURE 8

A variational formulation for fluid-loading effects begins with the Helmholtz integral

equation [M.C. Junger and D. Feit, Sound. Structures and Their Interaction 2nd ed., MIT Press,

Cambridge, MA (1986)], which relates the sound pressure in a fluid to the velocity and pressure

distribution on the surface of a radiating body. X.F. Wu ["Variational Principles for Acoustic

Radiation and Diffraction from Underwater Structures," Georgia Institute of Technology Rept.

No.GTADL-TR-87-102, 24 November 19871 and J.H. Ginsberg, P.T. Chen and A.D. Pierce

["Analysis Using Variational Principles of the Surface Pressure and Displacement Along an

Axisymmetrically Excited Disk in a Baffle," J. Acoust. Soc. Am. 88 pp. 548-559 (1990)]

developed a stationary expression for the pressure on the surface of a radiating body with a

prescribed surface velocity by allowing the field point in the Helmholtz integral equation to

approach the surface and carefully taking the limits of the integrals A.nvolved. Structural effects

are incorporated using the so-called method of assumed modes, in this case a basis function

expansion for the pressure, displacement and electric potential of the transducer. This yields a

set of coupled fluid-structure equations reminiscent of finite element formulations [R.R. Smith,

J.T. Hunt and D. Barach, "Finite Element Analysis of Acoustically Radiating Structures with

Applications to Sonar Transducers," J. Acoust. Soc. Am. 4., pp. 1277-1285 (1973)], except that

the structure has not been discretized. The complexity of the problem may be Further reduced

by using previously determined in-vacuo eigenmodes for the structural displacement, leading to

a modal formulation of the surface variational principle (SVP).
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FLUID LOADING IN CLASS IV TRANSDUCER MODEL

* EXPRESS DISPLACEMENTS AND ELECTRIC POTENTIAL IN TERMS
OF IN-VACUO EIGENMODES OF CLASS IV TRANSDUCER

L L
a (I)= X. 0.m(j) 4D(2)X~M 41M(9)

m-1 m-1

0 TRIAL FUNCTIONS FOR SURFACE PRESSURE
N

P XP- cos (nq) ÷ P,,, sin )]

n..1

0 MODAL FORMULATION OF SVP

- [r] [A]] ( Fp) 1

FIGURE 9

The variationally determined eigenmodes of the transducer are denoted byU. (for the

combination of the shell and driver displacements) and by 0. (for the electrostatic potential).
Any arbitrary displacement and potential can now be expressed as a linear combination of these
modes. Because the in-vacuo eigenmodes of the transducer contain shell motions which are of

even and odd symmetry about the major axes, we expand the surface pressure in even and odd

functions of the angle TI as before. Combining these expansions with the coupled fluid-structure

interaction equations yields the modal formulation of the surface variational principle, where

(X) and (P) denote the set of expansion coefficients for the in-vacuo eigenmodes and the
surface pressure, respectively. wo. is the in-vacuo resonance frequency of the transducer. The
matrices [A] and [171 provide the coupling between the transducer motion and the fluid, while

the matrix [A] gives the pressure mode coupling contributions.{F.} and[Fp}represent external

forcing functions. The solution of this matrix equation for a given frequency (0 yields the

variationally determined surface pressure of the radiating body.

10



SURFACE PRESSURE ON CLASS IV TRANSDUCER
(1 ST EVEN-EVEN MODE)
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FIGURE 10

A comparison of the variationally computed surface pressures to finite element calculations

provided by GE/CR&D is shown for the first even-even mode (ca. 1 kHz). The pressure has

been normalized to the maximum magnitude of the imaginary pressure component calculated

by the finite element method along the minor axis. As can be seen, there is very good

agreement between the two calculations, except for minor differences in the magnitude of the

imaginary part (approximately 5%). The shape of the surface pressure is consistent with the

pattern of the surface velocity for the first even-even mode, which is normal to the surface for

all angles. Also, the finite element results for the real part indicate a slight change in curvature

not seen variationally. Another indication of the validity of the results is that the surface

pressure goes to zero as we approach the major axis. This is because there is very little

transducer motion at the ends of the shell. This discrepancy might be eliminated with the

inclusion of additional trial functions.

11



SURFACE PRESSURE ON CLASS IV TRANSDUCER
(2ND EVEN-EVEN MODE)
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FIGURE 11

The agreement between finite element results and the variational principle remains good for

the second even-even mode, although there is some degradation relative to the first mode which

is typical of such variational methods. Again, the magnitudes of the variational surface pressure

components are within 5% of the finite element results. The curvature for the imaginary part of

the surface pressure near the semi-minor axis is much more pronounced in the finite element

calculations than in the variational ones. In addition, the curvature for the imaginary part near

the semi-minor axis of the shell (major axis position < 0.7 inch) appears to be in the opposite

sense. Overall, the agreement is better for the real part of the surface pressure. Finally, it is

difficult to assess whether the pressure behavior near the major axis is accurately predicted by

the variational principle or not. It would therefore be beneficial to have additional points closer

to the major axis in order to determine the veracity of the variational calculations.
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4 VARIATIONAL PRINCIPLE MODELING OF CLASS IV
FLEXTENSIONAL TRANSDUCERS-CONCLUSIONS

* VARIATIONAL PRINCIPLES FOR PIEZOELECTRIC DRIVER AND SHELL
ELEMENTS OF CLASS IV FLEXTENSIONAL TRANSDUCERS
HAVE BEEN DEVELOPED AND VALIDATED

* COUPUNG PIEZOELECTRIC AND SHELL ELEMENTS TO MODEL
CLASS IV TRANSDUCER IN AIR YIELDS GOOD RESULTS FOR
RESONANCE FREQUENCIES AND REASONABLE RESULTS FOR THE
MODE SHAPES

"* INCLUDING FLUID LOADING USING SURFACE VARIATIONAL
PRINCIPLE FORMULATION GIVES SURFACE PRESSURE VALUFS
IN GOOD AGREEMENT WITH FINITE ELEMENT PREDICTIONS

"* FAR FIELD PRESSURES CAN BE CALCULATED BY USING
VARIATIONALLY DETERMINED SURFACE PRESSURES IN BOUNDARY
INTEGRAL FORMULATION OR BY MATCHING WITH THE FAR FIELD
EXPRESSIONS AT THE SURFACE

FIGURE 12

In conclusion, we can see that a model of the class IV flextensional transducer based on
variational principles yields good results for the resonance frequencies of the in-air transducer

and the surface pressures on the fluid-loaded transducer. In both cases, the mode shapes
calculated are reasonable, although the agreement for the second even-even mode is not as good

as the first even-even mode. Possible sources of discrepancy between the variational and finite
element treatments are slight differences in the material parameters and in geometry. Also,

modeling the shell as an elliptic cylinder is an approximation; however, the geometric
difference between an elliptic shell of constant thickness and the actual oval shell of the Class
IV transducer is everywhere less than 3%, and the numerical integrations required for the
variational calculation are greatly simplified in elliptic cylinder coordinates.

The surface pressures may be utilized to determine the beam pattern of the transducer in two

ways. The first possibility is to use these pressures in a boundary integral formulation to obtain

the pressure. The second is to match the variational surface pressures with far-field expansions

evaluated at the transducer surface. This latter approach might be complicated, since the far-
field expansion in elliptical cylindrical coordinates requires the use of Mathieu functions [G.A.

Brigham, J.J. Libuha and R.P. Radlinski, "Analysis of Scattering from Large Planar Gratings of

Compliant Cylindrical Shells," J. Acoust. Soc. Am. 61. pp. 48-59 (1977)] and must account for
the finite transducer length. The transformation of this expansion to spherical coordinates could

prove intractable, requiring the use of boundary integral methods anyway.
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