Aviation Epidemiology Data Register:
Age-Specific Medical and Nonmedical Attrition Rates
Among Fort Rucker Civilian Aviators

By
Kevin T. Mason
and
Samuel G. Shannon

Aircrew Protection Division

July 1994

Approved for public release; distribution unlimited.

United States Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

KEVIN T. MASON
LTC, MC, MFS
Director, Aircrew Protection Division

Released for publication:

ROGER W. WILLY, O.D., Ph.D.
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC, SFS
Commanding
An epidemiological analysis of the coronary angiography outcomes of Fort Rucker civilian aviators could not be completed without first conducting an analysis of attrition from aviation service due to medical and nonmedical causes. Longitudinal data on flying duty medical examinations and aeromedical boards conducted on Fort Rucker area civilian aviators was reviewed using the U.S. Army Aviation Epidemiology Data Register (AEDR). The AEDR records of 847 Fort Rucker civilian aviators were reviewed over nine calendar years from 1985 to 1993. By the end of 1992, 528 (62.3 percent) remained in aviation service, 251 (29.6 percent) were lost to nonmedical attrition, and 68 (8.1 percent) were lost to medical attrition. Of the 847, 196 (23.14 percent) had operational military affiliation (dual-status service as civilians and reserve component aviators), while 651 (76.86 percent) did not. Controlling for age, there was a higher risk for nonmedical and medical attrition among those without operational military affiliation (χ^2 Mantel-Haenszel, $p<0.0001$). Medical attrition was uncommon up to 50 years of age. Cardiovascular disease accounted for three-fourths of the cases of medical attrition. Overall, there was a threefold higher rate of medical attrition among those without operational military affiliation.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Method</td>
<td>3</td>
</tr>
<tr>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>Discussion</td>
<td>7</td>
</tr>
<tr>
<td>Conclusions</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>

List of tables

Table

1. Distribution of attrition stratified by age and military affiliation .. 4
2. Mean years of civilian service stratified by age and cause of attrition .. 5
3. Major causes for medical attrition .. 6
This page was left blank intentionally
Introduction

In mid-1993, the Commander, U.S. Army Aeromedical Center, and the Chief of Staff, U.S. Army Aviation Center, Fort Rucker, Alabama, requested a review of the coronary angiography outcomes among Fort Rucker civilian aviators. During this review (Mason and Shannon, 1994), it was discovered there was a significant attrition of civilian aviators due to nonmedical causes, and this appeared to exceed the attrition due to medical causes. This finding was preliminary, and contradicted the belief that the Fort Rucker civilian aviator cohort was stable with attrition primarily due to medical reasons. This report analyzes their attrition from aviation service.

Method

The Aviation Epidemiology Data Register (AEDR) was queried for flying duty medical examinations (FDMEs) completed on all aviators with the rank and/or service component of "civilian" from 1 January 1985 through 1 March 1994. The first and last FDMEs completed while in civilian status in the Fort Rucker area were identified. They were stratified into age groups based on their age at the first Rucker civilian examination. An aviator was presumed to remain in aviation service through the end of calendar year 1992 if they had a FDME in 1993 or early 1994. Dual-status civilians, those also serving in the Individual Ready Reserve, Army Reserve or Army National Guard, were coded to have operational military affiliation. Retired military aviators and nonmilitary civilians were coded to have no operational military affiliation. The waiver and suspension file (morbidity and mortality diagnosis index) was reviewed to analyze diagnoses associated with a history of medical attrition. SAS® PROC FREQ was used for data analysis (SAS Institute, 1993).

Results

Records of 847 civilian aviators were reviewed. By the end of calendar year 1992, 528 (62.3 percent) remained in aviation service, 251 (29.6 percent) were lost to nonmedical attrition, and 68 (8.1 percent) were lost to medical attrition.

Of the 847, 196 (23.14 percent) had operational military affiliation, while 651 (76.86 percent) did not. The mean cohort entry age of those with operational military affiliation was 37.46 years (standard error=0.4462). The mean cohort entry age of those with no active military affiliation was 44.26 years (standard error=0.3298). This difference in age was significant (Student t-test, p<0.0001). The analysis was stratified by age groups to control for age differences as shown in Table 1.

Table 1 shows the flying status of civilian aviators stratified by age at entry into the cohort and military affiliation. Among those less than 30 years old, there were no losses due to medical attrition. There was a threefold higher rate of nonmedical attrition among those with no operational military affiliation compared to those with operational military affiliation (p<0.0001).
Table 1.
Distribution of attrition stratified by age and military affiliation.

<table>
<thead>
<tr>
<th>Entry age</th>
<th>Military affiliation</th>
<th>N</th>
<th>Remaining in aviation service</th>
<th>All cases of attrition</th>
<th>Subtotals for attrition cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nonmedical attrition</td>
</tr>
<tr>
<td><30</td>
<td>No</td>
<td>36</td>
<td>19 (52.8%)</td>
<td>17 (47.2%)</td>
<td>17 (47.2%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>19</td>
<td>16 (84.2%)</td>
<td>3 (15.8%)</td>
<td>3 (15.8%)</td>
</tr>
<tr>
<td>30-39</td>
<td>No</td>
<td>109</td>
<td>69 (63.3%)</td>
<td>40 (36.7%)</td>
<td>36 (33.0%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>108</td>
<td>85 (78.7%)</td>
<td>23 (21.3%)</td>
<td>21 (19.4%)</td>
</tr>
<tr>
<td>40-49</td>
<td>No</td>
<td>346</td>
<td>215 (62.1%)</td>
<td>131 (37.9%)</td>
<td>112 (32.4%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>61</td>
<td>47 (77.0%)</td>
<td>14 (23.0%)</td>
<td>12 (19.7%)</td>
</tr>
<tr>
<td>>=50</td>
<td>No</td>
<td>160</td>
<td>72 (45.0%)</td>
<td>88 (55.0%)</td>
<td>49 (30.6%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8</td>
<td>5 (62.5%)</td>
<td>3 (37.5%)</td>
<td>1 (12.5%)</td>
</tr>
<tr>
<td>All ages</td>
<td>Nc</td>
<td>651</td>
<td>375 (57.6%)</td>
<td>276 (42.4%)</td>
<td>214 (32.9%)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>196</td>
<td>153 (78.0%)</td>
<td>43 (22.0%)</td>
<td>37 (18.9%)</td>
</tr>
<tr>
<td>Total</td>
<td>All</td>
<td>847</td>
<td>528 (62.3%)</td>
<td>319 (37.7%)</td>
<td>251 (29.6%)</td>
</tr>
</tbody>
</table>
Among aviators with an age ranging from 30 to 39 years, medical attrition was uncommon, accounting for 6 of 217 cases (2.8 percent). Nonmedical attrition remained significantly higher among those with no operational military affiliation (χ^2, $p=0.015$).

Among those with an age from 40 to 49 years, medical attrition remained uncommon, accounting for 21 of 407 cases (5.2 percent). Nonmedical attrition remained significantly higher among those with no operational military affiliation (χ^2, $p=0.036$).

Beginning at 50 years and older, medical attrition dramatically increased by fivefold compared with those 40 to 49 years old, accounting for 41 of 168 cases (24.4 percent). The risk of medical attrition was the same, whatever the military affiliation. Nonmedical attrition remained nearly threefold higher in those without operational military affiliation (significance could not be calculated due to the small size of some cells). The total risk for attrition in this age group was high, due to medical and nonmedical causes, accounting for 91 of 168 cases (54.2 percent).

Overall, there was a threefold higher rate of medical attrition among those without operational military affiliation (9.5 percent versus 3.1 percent). The excess in medical attrition occurred primarily between the ages of 30 and 49. Controlling for age, there was a higher risk for nonmedical and medical attrition among those without operational military affiliation (χ^2 [Daniel-Hantsz]; $p<0.0001$).

Table 2 shows the mean number of years in civilian aviation service stratified by age on cohort entry and type of attrition. The total period of observation for Table 2 was from 1985 to 1992 (8 calendar years). Those with nonmedical attrition have less mean years of aviation service than those with medical attrition, until age 50, when the mean years of aviation service is the same for both groups.

<table>
<thead>
<tr>
<th>Age</th>
<th>Remaining in aviation service by end of 1992</th>
<th>Nonmedical attrition</th>
<th>Medical attrition</th>
</tr>
</thead>
<tbody>
<tr>
<td><30</td>
<td>5.35</td>
<td>2.35</td>
<td>N/A*</td>
</tr>
<tr>
<td>30-39</td>
<td>6.18</td>
<td>3.54</td>
<td>5.50</td>
</tr>
<tr>
<td>40-49</td>
<td>5.95</td>
<td>3.31</td>
<td>5.10</td>
</tr>
<tr>
<td>>=50</td>
<td>6.44</td>
<td>3.56</td>
<td>3.61</td>
</tr>
</tbody>
</table>

* No cases of medical attrition in this age group.
Table 3 shows the major causes of medical attrition. Cardiovascular disease accounted for 50 of the 68 cases (73.5 percent) of medical attrition. Since some civilians had multiple disqualifications, the most aeromedically significant diagnosis causing medical termination from aviation service was listed for each case. For example, a civilian aviator might have three disqualifications, such as a history of cerebrovascular accident, hypertension, and hearing loss. Hypertension and hearing loss are potentially waiverable, while cerebrovascular accident generally is nonwaiverable. Although hypertension may be a risk factor for cerebrovascular accident, hypertension is infrequently life-threatening and can be controlled by waiverable medications. Cerebrovascular disease may result in sudden death or permanent disability. In this example, cerebrovascular accident would be the most aeromedically significant diagnosis.

Table 3
Major causes for medical attrition.

<table>
<thead>
<tr>
<th>Most aeromedically significant disqualifying diagnosis</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic, significant coronary artery disease</td>
<td>28</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>6</td>
</tr>
<tr>
<td>Recurrent ventricular tachycardia</td>
<td>5</td>
</tr>
<tr>
<td>Coronary angiography indicated, but declined by patient</td>
<td>5</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>3</td>
</tr>
<tr>
<td>Profound hearing loss</td>
<td>3</td>
</tr>
<tr>
<td>Dementia</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes mellitus on oral hypoglycemic medications</td>
<td>2</td>
</tr>
<tr>
<td>Hypertension on nonwaiverable medications</td>
<td>2</td>
</tr>
<tr>
<td>Chronic low back pain</td>
<td>2</td>
</tr>
<tr>
<td>Sudden death due to coronary artery disease</td>
<td>1</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>1</td>
</tr>
<tr>
<td>Recurrent supraventricular tachycardia</td>
<td>1</td>
</tr>
<tr>
<td>Intraocular cataract</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol dependence</td>
<td>1</td>
</tr>
<tr>
<td>Major depression</td>
<td>1</td>
</tr>
<tr>
<td>Personality disorder</td>
<td>1</td>
</tr>
<tr>
<td>Pituitary adenoma</td>
<td>1</td>
</tr>
<tr>
<td>Ocular melanoma</td>
<td>1</td>
</tr>
<tr>
<td>Esophageal carcinoma</td>
<td>1</td>
</tr>
</tbody>
</table>
Discussion

The Fort Rucker civilian cohort is composed of several subgroups. The majority are retired or former military aviators flying Army aircraft while working for several flight instruction and maintenance contractors to the Department of the Army. Others are Department of the Army civilian aviators working in education and training, aircraft testing and evaluation, aviation standardization and safety, and research and development. Only a few are civilian-trained aviators with no history of military aviation training before working at Fort Rucker. A majority are eligible for military health care due to operational military affiliation or retired military status.

Many contract civilian and Department of the Army civilian aviators are dual-status, serving also as reserve component aviators in the Individual Ready Reserve, Army Reserve, or Army National Guard. Some are Department of the Army civilian technicians whose jobs are tied to operational military status as reserve component aviators. During weekdays, they operate Army Reserve and Army National Guard aviation support facilities in the Fort Rucker area. During reserve duty weekend drills or activation for military training, they become military aviators in the same facilities.

We have heard often in conversations among local aircrew members the belief that the Fort Rucker civilian aviator cohort is a stable population. Military aviators and flight surgeons end their tours at Fort Rucker and return years later to find a familiar cadre of civilian pilots still there. What they evidently miss among those familiar faces is the significant turnover in the civilian population. During the study period, nearly 40 percent of the civilian aviators left the cohort.

Another widely held notion is that medical termination from aviation service is the main cause of attrition in the Fort Rucker civilian cohort. This study found medical attrition accounted for only 21 percent of all cases of attrition (68 of 319). Most of the medical attrition cases were found in aviators between the ages of 50 and 72.

The finding that cardiovascular disease was the most common cause for medical attrition was not unexpected. In a study of U.S. airline pilots (Dark, 1983), cardiovascular disease was the leading cause of medical denial issuances for flying duties out of nine major disease categories, accounting for 42.6 percent of all flying duties medical denial actions.

The finding that medical attrition was related to aging was not unexpected. In a study of U.S. airline pilots (Dark, 1983), the annual rate for medical denial from airline pilot duties went from 1.0 per 1,000 per year for ages 25 to 39, to 5.8 per 1,000 per year for ages 45-49, to 14.4 per year per 1,000 for ages 55-59.

U.S. airline pilots are required to retire at age 60. Fort Rucker civilian pilots are allowed to continue flying as long as they remain medically and aeronautically qualified. During this study period, some Fort Rucker aviators remained in aviation service up to the age of 72.
The reasons for nonmedical attrition could not be determined by this study. Reasons may include involuntary workforce reductions, low employment seniority, low wages, irregular work hours, inability to develop secondary sources of income in the Fort Rucker area, dissatisfaction with the repetitive nature of training flights, or development of nonflying career interests. It is possible some cases of nonmedical attrition were due to unreported sudden death or permanent disability. When they leave, another aviator must be hired and trained. The Army must pay for this additional training cost that varies from 4 to 40 hours of flight training.

We noted a recurrent career pattern during data collection. This career pattern was that of the active duty military aviator who retired, transitioned to the Fort Rucker civilian aviator cohort, and then left the cohort in 1 to 3 years due to nonmedical reasons. This implies the recently retired military aviator may seek temporary employment in the Fort Rucker civilian workforce until they complete second career plans.

Conclusions

The Aviation Epidemiology Data Register records of 847 Fort Rucker civilian aviators were reviewed from 1985 to early 1994. Of these aviators by the end of 1992, 528 (62.3 percent) remained in aviation service, 251 (29.6 percent) were lost due to nonmedical attrition, and 68 (8.1 percent) were lost due to medical attrition.

Controlling for age, there was a higher risk for nonmedical and medical attrition among those without operational military affiliation ($\chi^2_{[Mann-Whitney]}$, $p<0.0001$). Medical attrition was uncommon up to age 50. Cardiovascular disease accounted for three-fourths of the cases of medical attrition. Overall, there was a threefold higher rate of medical attrition among those without operational military affiliation.
References

Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Chairman
National Transportation Safety Board
800 Independence Avenue, S.W.
Washington, DC 20594

Executive Director, U.S. Army Human Research and Engineering Directorate
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: SFAE-IEW-JS
Fort Monmouth, NJ 07703-5305
Director
Federal Aviation Administration
FAA Technical Center
Atlantic City, NJ 08405

Commander, U.S. Army Test and Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005

Naval Air Systems Command
Technical Air Library 950D
Room 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Director
U.S. Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST Tech Reports
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425

Commander
USAMRDALC
ATTN: SGRD-RMS
Fort Detrick, Frederick, MD 21702-5012

Director
Walter Reed Army Institute of Research
Washington, DC 20307-5100

HQ DA (DASG-PSP-O)
5109 Leesburg Pike
Falls Church, VA 22041-3258

Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Materiel Systems Analysis Agency
ATTN: AMXSY-PA (Reports Processing)
Aberdeen Proving Ground
MD 21005-5071

U.S. Army Ordnance Center and School Library
Simpson Hall, Building 3071
Aberdeen Proving Ground, MD 21005

U.S. Army Environmental Hygiene Agency
ATTN: HSHB-MO-A
Aberdeen Proving Ground, MD 21010

Technical Library Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010-5423

Commander
U.S. Army Medical Research Institute of Infectious Disease
ATTN: SGRD-UIZ-C
Fort Detrick, Frederick, MD 21702

Director, Biological Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Commander
U.S. Army Materiel Command
ATTN: AMCDE-XS
5001 Eisenhower Avenue
Alexandria, VA 22333
Commandant
U.S. Army Aviation
Logistics School ATTN: ATSQ-TDN
Fort Eustis, VA 23604

Headquarters (ATMD)
U.S. Army Training
and Doctrine Command
ATTN: ATBO-M
Fort Monroe, VA 23651

IAF Liaison Officer for Safety
USAF Safety Agency/SEFF
9750 Avenue G, SE
Kirtland Air Force Base
NM 87117-5671

Naval Aerospace Medical
Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ USCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base, FL 33608

Air University Library
(AUL/LSE)
Maxwell Air Force Base, AL 36112

U.S. Air Force Institute
of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, National Guard Bureau
ATTN: NGB-ARS
Arlington Hall Station
111 South George Mason Drive
Arlington, VA 22204-1382

Commander
U.S. Army Aviation and Troop Command
ATTN: AMSAT-R-ES
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

U.S. Army Aviation and Troop Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400A
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Medical Department
and School
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM
Fort Sam Houston, TX 78234-6200

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433
Commandant, Royal Air Force
Institute of Aviation Medicine
Farnborough, Hampshire GU14 6SZ UK

Defense Technical Information
Cameron Station, Building 5
Alexandra, VA 22304-6145

Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Commander
Applied Technology Laboratory
USARTL-ATCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

Commander, U.S. Air Force Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R
/ILL Documents
Redstone Arsenal, AL 35898

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

U.S. Army Research and Technology Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Commander
USAMRDALC
ATTN: SGRD-ZC (COL John F. Glenn)
Fort Detrick, Frederick, MD 21702-5012

Dr. Eugene S. Channing
166 Baughman's Lane
Frederick, MD 21702-4083

U.S. Army Medical Department and School
USAMRDALC Liaison
ATTN: HSMC-FR
Fort Sam Houston, TX 78234

Dr. A. Kornfield
895 Head Street
San Francisco, CA 94132-2813

NVESD
AMSEL-RD-NV-ASID-PST
(Attn: Trang Bui)
10221 Burbeck Road
Fort Belvoir, VA 22060-5806

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge, Hants S020 8DY UK
Dr. Christine Schlichting
Director
Behavioral Sciences Department
Box 900, NAVUBASE NLON
Groton, CT 06349-5900

Commander, HQ AAC/SGPA
Aerospace Medicine Branch
162 Dodd Boulevard, Suite 100
Langley Air Force Base,
VA 23665-1995

Commander
Aviation Applied Technology Directorate
ATTN: AMSAT-R-TV
Fort Eustis, VA 23604-5577

COL Yehezkel G. Caine, MD
Surgeon General, Israel Air Force
Aeromedical Center Library
P. O. Box 02166 I.D.F.
Israel

Director
Aviation Research, Development
and Engineering Center
ATTN: AMSAT-R-Z
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander
USAMRDALC
ATTN: SGRD-ZB (COL C. Fred Tyner)
Fort Detrick, Frederick, MD 21702-5012

Director
Directorate of Combat Developments
ATTN: ATZQ-CD
Building 515
Fort Rucker, AL 36362