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Abstract

The use of tangential blowing to suppress the dynamic stall of a pitching airfoil is

investigated numerically. The laminar two-dimensional, compressible Navier-Stokes equa-

tions are solved time-accurately using a Beam-Warming algorithm. A slot is located at

four different positions along the surface of a NACA 0015 airfoil and air is injected in a

nearly tangential sense along the upper surface. Suction control is also employed at one of

these slot locations to directly compare with tangential-blowing control.

Solution sensitivity to grid refinement, time-step size, numerical smoothing, and

initial conditions is investigated at a Reynolds number of 2.4 x 10i. Initial-condition and

initial-airfoil-acceleration effects are analyzed for various pitch rates. Compressibility of

M.. = 0.2 solutions is investigated two ways: 1) by comparing the expansion term in

the vorticity-transport equation with other terms in the equation to determine its relative

significance, and 2) by computing solutions at Mo = 0.1 and 0.05 at a Reynolds number of

1.0 x 10'. Numerical simulation uncertainties ofjet-orientation angle and jet velocity profile

are investigated. The numerical simulations are compared with available experimental

data. Studies are conducted to establish the effects of slot position, slot width, blowing-

initiation angle, blowing velocity, pulsed blowing, and blowing at different pitch rates.

Of the four slot locations investigated, results for the conditions considered indi-

cate that constant tangential blowing applied at 0%-5% chord region (5%-chord location

is more effective than 0% location) is the most effective location for tangential-blowing

control of dynamic-stall onset. The greatest angle of blowing initiation for successful

dynamic-stall-vortex-formation control coincides with the pressure plateau near the lead-

ing edge which precedes by a degree or two the formation of the dynamic-stall vortex. This

result suggests a possible control strategy based upon detection of this pressure plateau.

Tangential-blowing-control effectiveness is found to depend on momentum blowing coef-

ficient (assuming a constant blowing angle during the pitch-up maneuver) such that, for

the same mass flow rate, smaller slot widths give longer dynamic-stall-vortex-formation

delay. In the direct comparison made between suction control and tangential control, suc-

xx



tion control was found to delay dynamic-stall-vortex formation to a greater angle of attack

than tangential-blowing control; however the stronger shear layer produced from blowing

control produced a smoother chord-wise loading distribution at the low-Re, conditions

considered.
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NUMERICAL SIMULATION OF DYNAMIC-STALL SUPPRESSION

BY TANGENTIAL BLOWING

I. Introduction

Extremely high aerodynamic forces are temporarily generated by a streamlined body

rapidly pitched beyond its steady stall angle of attack. The term used to describe the

aerodynamic events that an airfoil or wing experiences undergoing this unsteady motion is

dynamic stall The dynamic stall phenomenon arises in several applications: wind turbine

blades, helicopter rotor blades, jet engine compressor blades, and rapidly pitched aircraft

wings.

Recognition of the fact that lifting surfaces being pitched up produce Cl... val-

ues higher than static values has been reported in the literature as early as the 1930's

(Kramer, 1932). Silverstein et al. (1938) observed a significant increase in C*... when

an aircraft was pitched up at a non-dimensional pitch rate of 0.01. Harper and Flanigan

(1950) also demonstrated the lift benefit of an aircraft moving at a high pitch rate. In

terms of analysis and prediction of dynamic stall, Carr (1985) credits Harris and Pruyn

(1968) and Ham and Garelick (1968) with making early significant progress analyzing

the phenomenon. All four of these researchers were studying the phenomenon from the

perspective of rotary aircraft aerodynamics. Harris and Pruyn sought to isolate the cause

of an under-prediction of rotor lift on high performance helicopters. They found that when

the rotor blades were in the retreating portion of their cycle (i.e., blade moving in a di-

rection opposite to the helicopter travel direction-in this region of the helicopter rotor

disk, the maximum blade pitch angle is attained), the blades were producing more lift than

expected. Ham (Ham and Young, 1966) studied the problem of high blade torsional

loads and vibration levels associated with high performance helicopters. Using potential

flow theory, he was able to provide theoretical support to experimental evidence that a

leading edge vortex is shed during the dynamic stall process (Ham, 1968).
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While much of the early work in analyzing dynamic stall considered oscillating air-

foils, recently, motivated by an emphasis on fighter supermaneuverability, research has also

been conducted on airfoils pitched up at large amplitudes in a non-oscillatory manner (Os-

hima and Ramaprian, 1992; Walker, et al., 1985a). Dynamically pitched airfoils

exhibit maximum lift coefficients two or three times the static maximum lift (Albertson,

et al., 1987; Jumper, et al., 1987). This significant increase in maximum lift, albeit

transient, is considered to be an exploitable aerodynamic resource for high performance

fighters. Hence, greater understanding of the physics associated with dynamic stall is de-

sired by the Air Force with a view toward aircraft maneuverability enhancement (Fant,

1992). For example, a fighter's operating envelope can be increased through relaxation of

the stall limit (Figure 1.1) provided the dynamic stall phenomenon is harnessed (Lang

load
factor dynamic structure pitch power

I ftl lsso it

CLnM

SMiach
number

Figure 1.1 Increase in fighter operating envelope using potential dynamic stall technology
implementation (Lang and Francis, 1985)

and Francis, 1985). At low speeds, high angle-of-attack performance is crucial for close-

in aerial combat since it is associated with tighter, faster turns. An improved ability to

quickly point an aircraft and shoot could also result from such an expansion of the oper-

ating envelope-a combat capability of perhaps greater importance than enhanced turn

performance, according to Lang and Francis.

Aside from an interest in a deeper understanding of the basic physics involved in

dynamic stall, a larger area of interest is control of unsteady flows during the initial stages
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of separation. Lang and Francis (1985) write, "The ability to manage and control the time

dependent, separated flows which earmark the aerodynamic environment is of paramount

importance if true supermaneuverable flight is to be achieved." Though 3-D effects are

often important in dynamic stall, there is evidence that control techniques developed in

2-D are extendible to 3-D (Carr and McCroskey, 1992). With the extendibility of

2-D results in mind, the research presented in this dissertation is motivated by the Air

Force requirement of controlling the time-dependent flow present in the dynamic stall

phenomenon.

Some experiments have been conducted to investigate control of dynamic stall. Active-

leading-edge suction (Karim and Acharya, 1993), passive suction (Addington, et

al., 1992), and leading-edge slats (Carr and McAlister, 1983) have all been shown to

suppress dynamic stall to varying degrees. In addition, air blown tangentially (Lovato,

1992) and perpendicularly (Luttges, et al., 1985) over the suction surface have also

demonstrated beneficial control effects.

To a lesser extent, control of dynamic stall has been investigated computationally

(Visbal, 1991; Ghia, et al., 1992). Tangentially-blown air at the rounded trailing

edge (referred to as a Coanda surface) of an oscillating circulation control airfoil has been

investigated (Shrewsbury and Sankar, 1990). Control applied at the trailing edge did

not significantly change the formation of the leading-edge vortex.

There has yet to be a numerical study presented in the literature in which tangential

blowing is applied near the leading edge of a pitching airfoil in order to control dynamic

stall. It is this gap in the literature toward which this research is directed. Specifically,

the research focus presented in this dissertation is the numerical simulation of the effect of

tangential blowing over an airfoil undergoing dynamic stall. This is done in an attempt to

suppress formation of (i.e., control) the dynamic stall vortex. The flow regime of interest is

one of low speed and low Reynolds number. A compressible Navier-Stokes code (Visbal,

1986a) written, well validated, and used by Visbal for several numerical studies on dynamic

stall (Visbal, 1991; 1990a; 1990b; 1986b; Visbal and Shang, 1989; 1987) is

used at low Mach numbers. In addition to investigation of tangential blowing effects on

dynamic stall, results are presented from a brief study of leading-edge (0.05c) suction
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(after experimental work of Karim and Acharya (1993). Based on these studies, a control

strategy is recommended.
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II. Background

To date studies have categorized the impact of parameter variation (e.g., Moo, Rec,

fl+, geometry) on dynamic stall, but the underlying flow physics causing the dynamic

stall behavior is still not fully understood (Carr and McCroskey, 1992). This section

will present results from studies undertaken to better understand dynamic stall. Both

experimental and computational observations will be presented with emphasis on control

of dynamic stall. In addition to these observations, a brief examination is made of the

sequence of events that comprise the dynamic stall phenomenon for one specific represen-

tative case.

2.1 Ezperimental and Computational Observations of Dynamic Stall

Carr (1989) classifies stall into two categories: light and deep stall. Light stall is

characterized by trailing edge separation, laminar flow near the leading edge, a separation

bubble in the laminar region followed by turbulent flow over the airfoil, and a viscous layer

with thickness on the order of the airfoil thickness. In contrast, deep stall is characterized

by vortex-dominated flow on the top of the airfoil with the viscous layer thickness on the

order of the airfoil chord. Carn shows that airfoil profile has a significant effect on dynamic

stall for light stall instances (such as found for helicopters) while deep stall (such as for an

airfoil dynamically pitching to high-a-which is the type stall investigated in this research)

is fairly insensitive to airfoil profile.

Lovato (1992) gives an overview of experimental observations made in the area of

dynamic stall. Based on these observations, several flow variables pertinent to the dynamic

stall process have been identified. The effect of a variation in these (a, fl+, Re., (X/c)#,.)

on the aerodynamic loads and the flow structure about an airfoil or wing is presented in

tabular form (Table 2.1). In this table, u,,. is the maximum reverse-flow velocity near the

surface (3% chord above top surface) for airfoil pitch axis at 40% chord and was obtained

from hot-wire measurements (Walker, et al., 1985b). These data were taken to help

quantify vortex strength. Vortex dwell time is the length of time the stall vortex stays close

to the top surface before convecting downstream. Note that for the range of a and 010
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Parameter T a T Ao+ T Re, T (X/c)p,,o-
C, T T 4 independent
C5  T T 4 independent
Cd T T independent

act, T T T asymptotically
(secondary to fl+ effects)

ac. T T T asymptotically
(secondary to f0+ effects)

u. (for (X/c),p1 . = 0.4) independent T
vortex dwell time T T independent

vortex nature tighter tighter, multiple independent
I__ _ _vortices at 0+l > 0.4 1 11

Table 2.1 Effect of parameter variation on dynamic stall (Lovato, 1992)

considered in the collection of experiments summarized, an increase in a and [I+ results

in an increase in aerodynamic loading and correspondingly, a strengthening of the vortical

structures above the body surface. An increase in Reynolds number induces a decrease

in aerodynamic loads and results in the dynamic stall vortex being convected downstream

sooner. Moving the pitch axis aft delays dynamic stall in a similar way as increasing the

pitch rate, however there are considerably different vortex dynamics involved once the

dynamic-stall vortex has formed (Helin and Walker, 1985).

There have been several experimental studies aimed at control of dynamic stall.

Many of the dynamic-stall-control investigations have used static-stall control techniques

as a starting point, thus it is appropriate to briefly address boundary-layer control for

the static case. When low-momentum fluid particles in a boundary layer face an adverse

pressure gradient, then eventually the particles near the wall slow down until their velocity

relative to the surface is zero. At this point, the flow outside the boundary layer separates

from the surface. Schlichting (1960) classifies some of the more common laminar-flow

boundary-layer control techniques into four categories: 1) solid-wall motion, 2) boundary-

layer acceleration, 3) suction, 4) geometric (such as laminar-flow airfoils).

Since a boundary layer owes its existence to a difference between velocity of the fluid

particles and the velocity of the surface, the solid-wall motion technique seeks to diminish
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that velocity-difference by moving the wall in the streamwise direction. With the reduction

or elimination of the velocity difference comes a suppression or elimination of separation.

Boundary-layer acceleration employs some device (such as a leading-edge slat or a

slot on the surface through which high-velocity fluid passes) to increase the momentum of

the fluid particles in the boundary layer. These high-momentum fluid particles are better

able to battle the adverse pressure gradient than the low-momentum fluid particles which

are present without control, and thus separated flow is suppressed.

The suction technique removes the low-momentum fluid particles present in the

boundary layer. Higher-momentum particles from the flow outside the boundary layer

then take the place of these low-momentum particles being sucked away, and thus sup-

press separation.

The goal in using a geometric method of boundary layer control is to sufficiently alter

the surface such that the adverse pressure gradient is diminished. For example, laminar

airfoils move the maximum thickness point aft resulting a less adverse pressure gradient

which in turn, promotes attached flow.

Motivated by successful static-stall blowing-control results, dynamic-stall control was

accomplished by McCloud et al. (1960) who used blowing to increase helicopter-rotor

performance. They experimented with blowing at the leading edge and mid-chord of a

helicopter rotor blade. Successful control was demonstrated for leading-edge blowing yet

mid-chord blowing was ineffective.

Carr and McAlister (1983) reported on three different ideas of control. First, they

reported that a backward-facing step on the top of the airfoil is ineffective in controlling the

flow reversal that leads to dynamic stall. Second, they found that while vortex generators

installed at X/c = 0.2 were effective in delaying static stall, they had no appreciable effect

on dynamic stall. They did however find successful delay of dynamic stall (specifically

studied for helicopter applications) by using a leading edge slat attached to an airfoil

experiencing dynamic stall.

Beneficial effects have been observed for pulsed, perpendicularly-blown air timed to

the onset of dynamic stall for an oscillating airfoil (Luttges, et al., 1985). The slot

2-3



through which air was pulsed was located at X/c = 0.2. The blowing in this case was

being used as a nonmechanical replacement of longitudinal vortex generators at the same

chord-station. The flow visualization data taken reveals significant control of dynamic stall

at lower angles of attack present in helicopter applications. The most beneficial control

occurred for blowing during the pitch-up part of the oscillatory cycle. Freymuth et al.

(1989) demonstrated that formation of the dynamic stall vortex can be arrested by use

of a rotating circular cylinder in the leading edge of the airfoil. Their motivation for using

a rotating nose is that this device eliminates or reduces the amount of clockwise vorticity

that is generated at the airfoil nose. Without this source of vorticity the dynamic-stall

vortex, which consists of clockwise vorticity, will not form thus controlling dynamic stall.

Ahmed (1992) has proposed the use of a rapidly deforming material on the leading

edge (to 25% chord) of rotor blades to actively control dynamic stall. The goal here is to

modify the pressure distribution in such a way so as to suppress dynamic stall.

Lovato and Troutt (1992) have experimented with pulsed, tangential blowing through

three slots of an airfoil undergoing dynamic stall at blowing frequencies which successfully

control the free shear layers present in static airfoil separation. The idea here is to generate

free-shear-layer vortices which force vortex pairing to occur in a way that reduces the size

of the separation region above the airfoil. The limited results presented show a benefit of

this approach.

Addington et al. (1992) were able to suppress dynamic stall at low pitch rates

(0+ < 0.05) using passive suction. Suction at a volume flow rate greater than or equal to

the rate of fluid accumulation under the leading-edge shear layer was found to be extremely

successful for suppressing dynamic stall vortex formation (Karim and Acharya, 1993).

The researchers note that as long as the reverse flow region under the leading-edge shear

layer remains thin (e.g., for higher pitch rates and lower Reynolds numbers) then this

suction method of control is quite effective.

Numerical studies have been performed on the basic dynamic stall problem using

Navier-Stokes solvers. Mehta (1977) produced low-Re. results in good agreement with

experiment for an oscillating airfoil undergoing dynamic stall. Visbal has studied the
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dynamic-stall problem for laminar and turbulent flow over an airfoil experiencing con-

stant pitch (Visbal, 1990a and 1990b; Visbal and Shang, 1989; Visbal, 1986b).

In these studies he has numerically investigated the effect of various important variables

(e.g., Mo, Rec, fl+, (X/c)p,0 t) on dynamic stall. Dindar and Kaynak (1992) investi-

gated the effect of turbulence modeling on dynamic stall computations. They compared a

non-equilibrium turbulence model (Johnson-King) with two equilibrium turbulence models

(Baldwin-Lomax and Cebeci-Smith). The Johnson-King model proved significantly better

for simulating both light and deep dynamic stall.

Computational studies investigating control of dynamic stall have also been con-

ducted. Visbal (1991) presented a preliminary investigation for controlling dynamic stall

using two techniques: 1) via a moving wall condition (motivated by Freymuth's experimen-

tal study (Freymuth, et al., 1989) using a rotating cylinder in the airfoil leading edge)

and 2) by use of uniform suction (suction velocity 4% of free-stream velocity) on the airfoil

upper surface. Both techniques were effective. Visbal concluded from his brief study that

distributed suction performed better than suction which was concentrated at a slot. Ghia

et al. (1992) demonstrated a benefit to modulated suction (maximum suction velocity

5% of free stream). It is worth noting that their vorticity-stream function formulation

required that they expel the same amount of mass out of the airfoil into the flow field as

that removed from the flow field by suction, thereby insuring mass conservation in the flow

domain.

Based upon the body of numerical and experimental work reviewed, some detailed

statements regarding the onset of dynamic stall can be made. This is accomplished in the

next section through the consideration of a representative case.

2.2 A Closer Look at the Dynamic Stall Phenomenon

This section will examine in more detail the fluid mechanics associated with dynamic

stall. Based upon a series of numerical simulations (for flow over a NACA 0015 airfoil

pitching about the quarter-chord at a constant non-dimensional pitch rate of 0.2 in low-

speed (M,,- = 0.2), low Reynolds number (Rec = 1.0 x 10')), Visbal (1991, 1990a)

has provided a very detailed description of the events which comprise the dynamic-stall
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phenomenon. In this section a similar discussion is presented, based upon the same pitch-

rate and Mach-number conditions applied at Re, = 2.4 x 10". Figure 2.1 shows a sequence

7Zý 00

(a) t+ = 1.854, a = 20* (b) t+ = 2.028, a = 220 (c) t+ = 2.290, a = 250

(d) t+ - 2.465, a - 270 (e) t+ = 2.727, a = 300 (f) t+ = 2.988, a = 330

A6ZŽ

(g) t+ - 3.250, a = 360 (h) t+ = 3.599, a = 400 (i) t+ = 3.948, a = 440

Figure 2.1 Vorticity contours for pitching NACA 0015 airfoil; 361x201 grid, Rec = 2.4 x
104, M.. = 0.2, Wi+ = 0.2

of instantaneous vorticity contours (not equally spaced) about the pitching airfoil. These

results were obtained numerically using a Navier-Stokes code developed by Visbal (1986a).

Though details of the dynamic stall process are very sensitive to several flow parameters,

this one case serves well for discussion of the typical events that characterize this complex

phenomenon.

Flow field vorticity as the airfoil pitches to a = 200 is shown in Figure 2.1(a). Positive

vorticity (counterclockwise direction denoted by solid curves in the figure) exists along
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the bottom surface of the airfoil. This positiv-e vorticity rolls up at the sharp trailing

edge of the airfoil, which is consistent with a vorticity-based description of airfoil lift

(e.g., Bertin and Smith, 1979:106-109). Predominantly negative vorticity (clockwise

direction denoted by dashed curves) is present above the airfoil upper surface. As a is

increased (Figure 2.1 (b) - (i), both positive and negative vorticity are shed into the

wake and advected downstream, though more positive vorticity is shed than negative-a

behavior consistent with increasing airfoil lift. In addition, positive vorticity is generated

at the surface due to the presence of negative vorticity above the surface. A vortex near a

surface inducing vorticity of opposite sign at the surface is typical (Lighthill, 1963:93)

and is observed throughout the remaining stages of the pitch up maneuver.

The unstable negative-vorticity shear layer which originates at the airfoil leading

edge breaks down into five distinct vortical structures with increasing a (Figure 2.1(b) -

(c)). The distinct vortex forming near the leading edge is called the dynamic stall vortex.

It is fed by the leading-edge shear layer throughout much of the pitch-up maneuver while

the other aft vortices are detached from the feeding sheet. Of all the five clockwise vortices

forming, the dynamic stall vortex has the greatest amount of vorticity associated with it.

It continues to grow, eventually advecting downstream as the airfoil pitches up to high a

(Figures 2.1(c) - (i)).

In Figures 2.1(c) and (d) the dynamic-stall vortex and the other four aft-shear-layer

vortices are distinct and still detectable. The four aft-shear-layer vortices are drastically

changing shape and strength, however. The vorticity in the aft-most shear layer vortex is

kept over the top of the airfoil by the presence of the strong trailing-edge counterclockwise

vortex. Even so, some of the negative vorticity advects past the strong trailing-edge vortex

(Figure 2.1(d)), and is shed into the wake.

The three aft-most clockwise vortices (Figure 2.1(d)) combine into one vortical struc-

ture by a = 300 (Figure 2.1(e)). This one structure remains over the aft portion of the

airfoil as it pairs up with the strong counterclockwise trailing-edge vortex as shown in

Figures 2.1(f) - (i).
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By a = 360 (Figure 2.1(g)), the dynamic stall vortex has finally detached from its

feeding shear layer. There is a strong eruption of positive vorticity between the dynamic-

stall vortex and a secondary leading-edge vortex that is forming. This region of positive

vorticity is generated at the surface by the clockwise dynamic-stall vortex as it migrates

away from the surface. The secondary leading-edge vortex also breaks away from the

leading-edge shear layer and combines with the dynamic stall vortex (Figures 2.1(h) and

(i)) while yet a third leading-edge vortex is seen forming from the leading-edge shear layer

at a = 440 (Figure 2.1(i)).

As previonsly stated, the specific details (such as precise location and strength of

the dynamic-stall vortex, number of distinct vortical structures the unstable shear layer

breaks into) are dependent on several flow parameters (e.g., Re., fl+, geometry). How-

ever, the general events seen for this case shown in Figure 2.1 such as the unstable shear

layer, the formation of a dynamic-stall vortex, the severe vortex-vortex and vortex-surface

interactions, are the events of which the dynamic-stall phenomenon is comprised.

2.3 A Closer Look at the Onset of Dynamic Stall

To make practical use of the dynamic stall phenomenon described in the previous

section, there are basically two approaches to its control: 1) to delay the formation of

dynamic-stall vortex or 2) maintain the position of the energetic dynamic-stall vortex

over the top of the airfoil after it has formed. The first approach has been demonstrated

numerically and experimentally. At the time of this publication, it is still questionable

whether or not the second approach can be accomplished. The current investigation takes

the first approach, i.e., to delay dynamic stall by delaying the onset of dynamic-stall vortex

formation. It follows then that the first step is to isolate the root causes of dynamic-stall

vortex formation. The same case as presented in section 2.2 will again be used for this

analysis.

Visbal (1991) presented computations which indicate that at low Reynolds number

(Re, = 1.0 x 10"), the thin reversed-flow region is a major instigator of the shear-layer roll

up which progresses to dynamic-stall vortex formation. Other investigators (Karim and

Acharya, 1993) have experimentally demonstrated that, under certain conditions, when
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the reverse-flow fluid under the strong clockwise shear layer is removed at the accumulation

rate via suction near the airfoil leading edge, dynamic stall is delayed significantly.

Around 10% chord at a = 200 (Figure 2.1(a)), the shear layer emanating from the

leading edge has lifted noticeably from the upper surface. The flow near the surface at this

location is moving upstream toward the airfoil leading edge. A close-up of this region is

provided in Figure 2.2. This figure shows velocity vectors (relative to the airfoil surface)

overlayed by vorticity contours for the 10% - 25% chord region of the airfoil prior to and

after a = 200 along with accompanying C. plots. In the leading-edge region, negative X/c

values represent lower-surface (i.e., pressure side) locations. The vorticity contours in this

figure are the same for all plots, however, they are not the same contour levels shown in

Figure 2.1.

The pre-separation reverse flow which is possible for unsteady flow (Sears and

Telionis, 1975) extends past the 10%-chord region toward the leading edge for a = 170

(Figure 2.2(a)). For the lower angles of attack (up to a - 180), this thin layer of reversed

flow present along the top surface has little effect on the inviscid flow outside the shear layer,

and thus, little effect on the instantaneous surface pressure (Visbal, 1991). However,

around a = 190, the reverse-flow region has thickened resulting in the formation of a

plateau in the pressure distribution (Figure 2.2(c)) in the 5%- to 15%-chord region. The

reverse flow continues to creep toward the airfoil leading edge in the presence of a large

adverse pressure gradient. This forward propagation of reversed flow is retarded by the

strong feeding shear layer which obtains its strength from the highly favorable pressure

gradient at the airfoil leading edge.

At a = 20' (Figure 2.2(d)), dynamic-stall vortex formation is imminent as indicated

by the pressure peak at X ;: 0.18c. By this time, at the X - 0.16c chord station, the

shear layer is thicker than at the previous snapshot (t+ = 1.767) and is beginning to bend.

At a = 210 (Figure 2.2(e)), the dynamic-stall vortex has just formed. This is evident

in both the Cp plot and the vorticity contours for the 15%- to 20%-chord region. Associated

with this infant dynamic stall vortex are two important features - 1) a kink (Visbal,

1990a) in the shear layer at the 16%-18% chord location and 2) a clockwise rotation for a
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segment of the positive-vorticity shear layer about a center of rotation for the dynamic-stall

vortex just aft-chord of this kink. The kink becomes the dividing point between the feeding

shear layer and the dynamic-stall vortex. The clockwise rotation of the shear layer in the

X t 0.16c to 0.21c region is an important feature, since its motion produces another kink

which develops aft of the first kink as seen in Figure 2.2(f) at X ; 0.21c. This second kink is

the dividing point between the dynamic stall vortex and the aft-chord shear layer (which

breaks into distinct vortices once cut off from the feeding shear layer (Figure 2.1(c))).

Thus, these two important flow features observed at t+ = 1.941 (Figure 2.2(e)) are key

to the formation of the dynamic-stall vortex, which is a region of vortical flow that is

distinct from both the feeding shear layer and the shear layer aft of the dynamic stall

vortex (Figure 2.1(b)). Figure 2.2(f) shows the more fully developed dynamic stall vortex

at a = 220.

Figure 2.3 shows the pressure, velocity and vorticity which exists in the X = 0.10c

to 0.25c region at a = 19.60, 19.80, and 20.00 - angles prior to the angle of shear-layer

kinking which occurs near the leading edge at a z 210 (Figure 2.2(e)). For each a in

Figure 2.3, the first frame shows pressure-gradient vectors overlaid by pressure contours

(not equally spaced - see figure caption for levels). The pressure-gradient-vector arrows

point in the direction of increasing pressure and are perpendicular to the pressure contour

levels. These pressure-gradient vectors give a sense for relative strengths of the pressure

gradient throughout the region of interest. The vectors observed at the bottom of each

region are anomalies (i.e., near the surface, pressure gradient-vectors should be parallel

with the surface) which appear because of the high-aspect-ratio cells (- 130) of the mesh

at the airfoil surface (the first six cells in this region show this behavior). In regions where

the mesh aspect ratio was more reasonable (e.g., ,,- 8 in the 0.05c region of this grid), this

anomalous behavior does not exist. The second frame, for a given a, shows velocity vectors

(relative to the airfoil) overlaid with the same pressure-contour levels presented in the first

frame. The third frame is a plot of velocity vectors (same scale as in the second frame)

overlaid with vorticity contours (as in Figure 2.2, except not identical vorticity-contour

levels or velocity-vector scales).
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At a = 19.8* (Figure 2.3(b)), a low-pressure pocket appears in the solution at X z

0.16c, 0.012c above the surface. From a = 19.60 to 20.0*, the adverse pressure gradient

in the 0.18c < X < 0.23c region grows very rapidly (Figure 2.3(a)-(c)). The same strong

adverse pressure gradient in this region is depicted in the surface Cp plot at a = 200

(Figure 2.2(d)).

The two sketches shown in Figure 2.4 serve as an aid in explaining why the first shear-

8

66

-------------
, ( --+0=

(a) (b)

Figure 2.4 Sketch of velocity profile and simplified model of fluid particles at the critical
chord-wise station based on case having Re, = 2.4 x 10', M". = 0.2, fl+ = 0.2,
X - 0.17c

layer kink (Figure 2.2(e)) develops. These sketches are meant to conceptually represent the

flow at a = 200 (Figure 2.1(d) and Figure 2.3(c)) where the kink first develops (X ; 0.17c).

Figure 2.4 (a) is a sketch of the velocity profile, overlayed with the zero-valued vorticity

contour (w = 0). A conceptual model of the individual fluid particles about the w = 0

contour at this station is depicted in Figure 2.4 (b).

For this two-dimensional case, vorticity near the wall (where %, ; 0) is given by the

following

W = V,- UY -tty

The fluid particles are illustrated (Figure 2.4 (b)) as circular cylinders possessing transla-

tional (up-chord or aft-chord) and rotational (clockwise or counterclockwise spin) motion.

Particle 4 has the greatest up-chord velocity of the eight particles shown, so u. = 0 at this
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point. Hence, this particle resides on the w = 0 contour. The three particles below particle

4 have up-chord velocities and positive vorticity. Particles 5 through 8 lie above the w = 0

contour, and thus have negative vorticity. Particles 5 and 6 are depicted with up-chord

velocities, particle 7 has zero velocity relative to the airfoil, and particle 8 is shown with

an aft-chord velocity.

Figures 2.2(d) and 2.3(c) show that a strong adverse pressure gradient begins at X ;t

0.17c and extends aft-chord to X st 0.25c. Based upon this simplified model, it is obvious

that particles 4 through 8 will tend to rotate together about particle 7 instantaneously. This

coordinated rotation of particles 4 - 7 will tend to accelerate particle 4 up-chord. Particles 3

and 5 are spinning in opposite directions and will also tend accelerate non-spinning particle

4 up-chord. To "fill in" for accelerating particle 4, fluid particles aft-chord of this station

will be entrained and accelerated up-chord as well, especially along the w = 0 contour. It

must be noted that these translational and rotational motions occur in the presence of a

strong adverse pressure gradient which is also forcing these particles up-chord. Observe

that this rapid evacuation of near-wall fluid just aft-chord from this station will cause the

shear layer to collapse toward the surface (Figure 2.1(e)). This leads to a rapid pooling

of fluid just up-chord of this region. Since the flow under consideration is approximately

incompressible (Mo, = 0.2), conservation of mass dictates that particle 4 (and any trailing

fluid particles along the w = 0 contour) must move away from the surface. Also, the

low-pressure pocket that is centered approximately 0.01c above the surface (Figure 2.3(b),

(c)) induces the fluid particles to lift away from the surface and thus an abrupt upsurge

of fluid and eruption of positive vorticity occurs (Figure 2.1(f)). All of these combined

events (rotation of particles 4 through 8 about particle 7, abrupt upsurge of fluid just

up-chord of this critical station, and the rapid thinning of the reverse-flow layer under the

negative-vorticity shear layer just aft-chord of this critical station) constitute a self-feeding,

unstable situation which induces the two main features of dynamic stall vortex formation

- 1) the kinking of the strong negative-vorticity shear layer and 2) the clockwise rotation

of a segment of the negative-vorticity shear layer about a center of rotation just aft-chord

of this kink.
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2.4 Statement of the Problem

From the previous discussion, it is apparent that control techniques which eliminate

the pooled fluid (Karhm and Acharya, 1993) or retard the accumulation of fluid near the

critical station (say by retarding the reverse flow as recommended by Visbal (1991)) have

promise of being effective at delaying the kinking of the shear layer and thereby delaying

dynamic stall. Based upon this description of dynamic stall vortex formation, tangential

blowing through a small slot at or near the leading edge, investigated experimentally

by Lovato (1992) for dynamic stall and studied by Williams (1961) to control static

stall, offers an alternative approach to control of dynamic stall. To date no numerical

experimentation using tangential blowing near the leading edge to control dynamic stall

has been conducted and thus is the principal focus of investigation in this dissertation.

Also, control via suction is examined numerically in order to assess the relative merits of

tangential-blowing versus suction control.
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III. Formulation of the Numerical Model

In this chapter, both the compressible, laminar-flow governing equations in two di-

mensions and the associated boundary conditions will be presented. Following that, the

numerical scheme used to solve the governing equations will be presented. The dynamic

stall phenomenon contains strong viscous and inviscid flow interaction thereby dictating

the need to solve the Navier-Stokes equations. It is assumed that the fluid is Newtonian

and that Stokes' Law applies.

3.1 Namier-Stokes Equations

The strong conservative form of the two-dimensional, compressible Navier-Stokes

equations can be written in general curvilinear coordinates as follows (Visbal, 1986a).

OU DO OF = (V 1 + V2 ) 0 (W 1 + W2 ) (3.1)S+ o,+
Di NC 017 of 87

The flux vectors are given by

(P )i ( &i
Pu pu& + .P F PuVr + 17.P

p I pVU + fVP pvV + 17P

pe (pe + P)U - &P (pe + P) r- _tPp

0 0

bluf + b2V( cIN + C2VV

V' b2u 4 + b3V V2 JjP c3uq + c4t,

bjuuj + b2(vuJ + ut,)+ cluuq + c2uVi + c3Vu,,+

b3vVJ + b4T( c4VV, + C5Tq
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0 0

cIue + c3Ve diui, + d2v,

W" 2Uj+ CVjW 2 = jP d2U. +d43V,

CIUU( + C2VUe + c3UVe+ djuu, + d2(vuq + uv,)+

c4vvj + csTj d3vv, + d4Tq

U and V are contravariant velocity components given by

ai = & +&U +4 f V = ne+ 3 U +,,V.

The grid and reference-condition-dependent constants b, c, and d are listed in Ap-

pendix Section A.1.

The coordinate transformations from the physical Cartesian system to a computa-

tional system are defined as

Applying the chain rule gives the following metric relationships.

f. = JYl 4, = ft = J(-zfy,, + Jz,,)

I/. = -J '1 = Jze nt = J(z(e - EZ)

S= ( 3- =
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3.2 Boundary and Initial Conditions

The boundary conditions used for flow about a pitching airfoil are given in this

section. At the surface, no-slip adiabatic conditions are used (Visbal, 1990b).

OT OP
U = Ub -- = 0 - = -pab" f (3.2)

Ub is the airfoil surface velocity and ab is the acceleration of the surface given by the

following.

Ub = E X (rb - ro)

dfl
ab = x x (rb - ro) - nW(rb - ro)

where ro and rb are the position vectors from the inertial reference frame to the center

of rotation and to a point on the airfoil, respectively (Figure 3.1). To avoid an infinite

k grid fixed relative to

U...

Figure 3.1 Conventions for pitching airfoil (Visbal and Shang, 1989)

acceleration, the airfoil accelerates to it's final constant pitch rate (flo) according to the

following equation (Visbal and Shang, 1989).

0(t) = no(1 - e-61o), t > 0

where to is the time required for the airfoil to reach 99 percent of its final pitch rate (1o.
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For the inflow far-field boundary, free stream conditions are imposed.

p=p. u=Ucosa v=U,,sina P=P.

At the outflow far-field boundary, the pressure is set to the free-stream value and the

rest of the flow variables are extrapolated.

For the current simulation, an O-grid structure is proposed. As such, periodic bound-

ary conditions are imposed at the O-grid cut by overlapping five grid points in the C-
direction.

The flow field for time-periodic flow at zero angle of attack is used as the initial

condition.

3.3 Boundary Conditions at the Jet Slot

Implementation of tangential blowing has experimentally been accomplished by using

flush slots on a wing through which air is blown from a high-pressure plenum under the

surface (Lovato and Troutt, 1992; Lachmann, 1961). Since the slots are flush with the

surface, this type of blowing may be more precisely referred to as nearly tangential blowing

since there must be some nonzero blowing angle (0) specified from the surface tangent at

the slot in order for mass flow through a flush slot (of width a,) to exist (Figure 3.2). (For

brevity, whenever "tangential blowing" is used in this document, nearly tangential blowing

is implied.)

To numerically simulate the effect of a tangential jet, the wall velocity boundary

condition for the non-control case (Equation 3.2) is locally altered in the following manner.

U = Ub + U.I,0
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S t surf.ce

Figure 3.2 Slot-blowing conventions.

where Ud,,t is the velocity relative to the wall (Visbal, 1991) given by the following.

Uio,= vi (cos O + sin ,fi) (3.3)

The pressure boundary condition (Equation 3.2) was not modified at the slot.

For the suction cases, the tangential-blowing angle is 900 and the magnitude of the

jet velocity (vi) is set to the negative of the suction velocity magnitude (v.).

Mass flow rate (th) and momentum blowing coefficient (C,.) are dependent upon the

blowing angle due to the conventions used in Figure 3.2. Mass flow rate across a surface

is given by

m = JpV.ndA (3.4)

Thus, assuming a constant vj profile (Equation 3.3) and a constant jet density, Equation 3.4

becomes the following for mass flow per unit span of the jet at the slot.

nj = pvja, sin 0 (3.5)

A typical definition for momentum blowing coefficient is the following (Lachmann, 1961).

CO =_ qj (3.6)
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Substituting Yh of Equation 3.5 into Equation 3.6 gives

C_ = 2Et ( sin. (3.7)

For the computations it is assumed that the blowing angle and the blowing- or

suction-control velocity remains fixed throughout the pitch-up maneuver. (The one excep-

tion to this is for the pulsed-blowing study (Section 4.2.6) in which the blowing velocity

is specified to be either 2.83U.. or zero.) Thus, when experimental results which use a

plenum-pressure boundary condition at the slot are compared to the computational re-

sults (using slot velocity boundary conditions) presented in this publication, the difference

between these slot boundary conditions needs to be accounted for.

3.4 Numerical Scheme

The Beam-Warming scheme (Beam and Warming, 1978) is a popular technique

for solving the unsteady Navier-Stokes equations and has been previously used to conduct

dynamic-stall research. Since it is an implicit algorithm, the time step constraint is for

the sake of accuracy and not for stability (as is the case with explicit methods). In this

section, the Beam-Warming scheme is applied to the governing equations for compressible

flow.

The Beam-Warming algorithm is an alternating direction implicit (ADI) scheme

which employs approximate factorization after flux terms have been linearized in time.

This approach, when applied to Equation 3.1, leads to the need for the following flux

Jacobians.
A E B OF R=OV1 S=OW2iu_ ýu_ ou t Ou ',

Elements which make up the flux Jacobians are given in Appendix Section A.2.

The Beam-Warming algorithm in factored form for first-order Euler implicit time

differencing is given below (Visbal, 19S6a).

[I + A!(8jA- - Oj"R-)] DU = R" (3.8)
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[I + Ai(OB" - OmS")] AVU = D" (3.9)

(R O=A of" , OV" own) (3.10)

Er+, = U" + A"U (3.11)

Second-order accurate central differences are used for spatial derivatives. Therefore,

fourth-order explicit and second-order implicit spectral damping are used to damp high

frequency numerical oscillations (a numerical phenomenon which occurs when central dif-

ferences are used in moderate to high-Re. flow) and enhance stability behavior (Visbal,

19S6b). In the C-direction, the fourth-order explicit damping term is as follows.

-ALiieC4 64 jjj(JU)

where
S= If + +C + 42 + (+. 21

The explicit damping coefficient (e4) is of order 0.01. The second-order implicit damping

term is as follows.

The implicit damping coefficient (E2) is chosen to be e2 _ 2U4. (For all calculations in this

research, e2 = 2e4.) The ti-direction damping terms are similar.

This code has been validated for a variety of steady and unsteady problems (Towne

and Buter, 1994; Rizzetta and Visbal, 1992; Visbal, 1991; Visbal, 1990a and

1990b; Visbal and Shang, 1989; Visbal, 1986b).

To avoid the expense of regridding at every time level, a grid which is fixed relative

to the airfoil was used. As described by Steger (1978), once the initial grid is generated,

subsequent physical-coordinate locations and grid speeds can be computed from the pre-

scribed airfoil motion. Nearly orthogonal body-fitted 0-grids were generated about the

airfoil surface using the hyperbolic grid generator Hypgen (Chan and Steger, 1991).

An extensive grid study was conducted on mesh sizes ranging from 203 to 505 points in the
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C-direction and 101 to 301 points in the i7-direction. Each grid was applied to a physical

domain which extends nominally 30-chord lengths away from the airfoil. The 385x201 grid

used in much of this research has minimum f- and q-spacings of 0.000082c and 0.00005c,

respectively.

The Visbal code (1986a) requires 7.8 Mwords of memory for the 385x201 grid and

takes 1.6 CPU sec/iteration on the CRAY Y-MP8/864 computer. This translates to a data

processing rate of 2.1 x 10- CPU sec/iteration/grid point. For the nominal time step of

At+ = 0.001 for the 385x201 grid, the time-periodic initial condition (Section 3.2) requires

15,000 - 20,000 iterations (-s7 - 9 CRAY Y-MP hours) to settle down to a Ct oscillation

of - ±0.02. One pitch-up maneuver (at 11+ = 0.2) to a = 360 takes 3,300 iterations (,-,1.5

CRAY Y-MP hours).
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IV. Results and Discussion

Calculations were conducted over the physical domain depicted in Figure 3.1 for a

variety of test conditions as shown in Table 4.1. Note that the natural case (i.e., no control)

was computed at all listed conditions. Six of the O-grids listed in Table 4.1 that were used

Table 4.1 Summary of Selected Computations

Grid Rec(x10") MA. f1+ Slot X/c Control"
343x201 2.4 0.2 0.2 0.0, 0.2, 0.4 c
351x201 2.4 0.2 0.2 0.0, 0.05 c

2.4 0.2 0.2 0.05 s
361x201 2.4 0.2 0.2 0.0, 0.05 c

1 2.4 0.2 0.2 0.05 s
385x151 2.4 0.2 0.2 N/A N/A
385x201 1.0 0.05 0.2 N/A N/A

1.0 0.1 0.2 0.0 c
2.4 0.2 0.05 0.0, 0.4 c
2.4 0.2 0.2 0.0, 0.4 c
2.4 0.2 0.2 0.0 p

385x301 2.4 0.2 0.2 N/A N/A
505x201 1.0 0.1 0.2 N/A N/A

2.4 0.2 0.2 0.0, 0.4 c

"c = constant blow, p = pulsed blow, a = auction

for this research are shown in Figure 4.1. As the delay/suppression of dynamic stall onset

is of principal interest, the NACA 0015 airfoil studied was usually pitched only to an angle

of attack sufficiently past the onset point so as to assess the relative merits of the respective

control strategies. For the series of cases considered herein, this angle is typically 360.

The discussion of results is divided into three major sections: 1) natural (i.e., the

baseline against which the control computations are compared), 2) control via tangential

blowing, and 3) control via suction. Solution accuracy issues for each major section are

addressed in the Appendices B, C, D, E. For the blowing and suction control sections,

effects of various free parameters are investigated (e.g., slot location, slot velocity, slot-

velocity angle). The different control strategies are compared with one another and to the

natural case
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(a) 343x201 grid (b) 351x201 grid (c) 361x201 grid

(d) 385x201 grid (e) 385x301 grid (f) 505x201 grid

Figure 4.1 Six of the grids used as part of the grid refinement analysis

4.1 Natural Case

This section presents results for the natural case (i.e., no control) which will be used

as a reference state (Sections 4.2 and 4.3). In this section, the effects on the solution of

the initial acceleration profile and the initial condition prior to pitch up are presented.

Compressibility effects present in the computations for low-Ma, flow are then presented.

Finally, the results for the computations are compared with experimental data.

For Mo, = 0.2 cases, solution accuracy considerations with respect to numerical arti-

facts present in the computations is addressed in Appendix B. The 385x201 and 361x201

grids were found spatially adeqiate (Appendix B.1) for the natural-case analysis. A time

step of At+ = 0.001 was determined adequate to preserve time-accurate solutions (Ap-

pendix B.2) and an explicit dissipation coefficient of E4 = 0.01 was found satisfactory for

all natural cases (Appendix B.3).

For the M,, study, At+ = 0.0005 and 0.00025 were determined necessary for M,, =

0.1 and 0.05 cases, respectively (Section 4.1.3.1). The 385x201 grid possessed adequate

spatial resolution for W = 0.2 at Re, = 1.0 x 104.
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4.1.1 Initial Acceleration Effect. In order to avoid a nearly infinite acceleration to

get to the constant pitch rate of flW, the exponential acceleration introduced in Section 3.2

is used. In terms of the computational time t+, the equation governing the acceleration to

the constant pitch rate is given by

n(t+) -4.64
S= -e 'o (4.1)

where t+ is the nondimensional time required for the airfoil to reach 99% of its final constant

pitch rate (W). Visbal (1986b) presented t+ effects on a 113x51 grid at M1, = 0.2,

Re, = 1.0 x 104, (1+ = 0.6. He concluded the t+ effect is limited to the early stages of

dynamic stall (well before dynamic-stall onset). For the nominal flow conditions of this

research (M.. = 0.2, Re. = 2.4 x 10"), a brief study was conducted using t+ values half

and double the nominal value of t+ = 0.5 for the 385x201 and 361x201 grids. Equation 4.1

is plotted in Figure 4.2(a) for the three values of to+. In Figure 4.2(b) - (c), the pitch-rate

-. t-.,Iio0 20 : - O[s , -o

(.0 02 0.=

Fiur 4-.25 Ac-0.25io proil q-0.25 t+ ale

Oh '~0.1. 0.3

02

0.1

30 OCO t 0 4

(a) (b)f 0.2 (c) f1-0.6

Figure 4.2 Acceleration profile for three t4 values

profiles are also shown (fl+ versus a) for two pitch rates using the same three values of t+.

By a = 100 and 270 for (o+ = 0.2 and 0.6 pitch rates respectively, all acceleration profiles

are completed to at least to 99% of the final constant pitch rate.

Researchers (Koochesfahani and SmiUanovski, 1993; Gendrich, et al., 1993)

have experimentally and computationally shown that for high enough pitch rates in con-

junction with acceleration periods that end well ahead of the leading-edge separation point

(i.e, for separation t+ > 1.25 times period of acceleration), the dynamic-stall phenomenon

is essentially insensitive to the acceleration profile. The lack of sensitivity is attributed
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to the domination of motion-history effects over initial-acceleration effects (Koochesfa-

hani and Smiljanovski, 1993). Gendrich et al. (1993) published results for a NACA

0012 airfoil being pitched at W+ = 0.2 about the quarter chord in a Re, = 1.6 x 10i,

M.. = 0.1 flow (acceleration period ending at a = 1.2% 4.5% 18.00 - leading-edge separa-

tion occurring in the range 16* < a < 200). Based on integrated-loads, surface-pressure,

and surface-pressure-gradient data, they conclude that the initial-acceleration history has

little influence on the subsequent dynamic-stall flow field.

Figure 4.3(a) shows the lift coefficient for the three to values at the nominal pitch-

3.0 c..C, C

2.0-5.

,* i t. - . . . .1 .5 -2.5,

1.0 - ___ t;=O,25 A

o~~~~~st --. . . . . 5- . .

0.0 010 2 30 (.000 0.25 0.50 075 x/C 1.00

(a) 0-t+ = 0.25, A-t+ = 0.50, O-t+ = 1.0 (b) a = 220

Figure 4.3 Effect of to+ variation on C, and Cp; 361x201, Rec = 2.4 x 10i, M.0 = 0.2,
0o= 0.2

rate and flow conditions computed about the 361x201 grid (At+ = 0.001, e4 = 0.01). The

symbols in the figure indicate the point on each C, curve where &I+ = 0.99Wo. Around

a = 200, the difference in these three t+ values appears as an apparent 20-30 angle-of-

attack shift for C,. This a-shift leads to a 26% difference in C,. Cp for the suction-side

surface is shown in Figure 4.3(b) at a = 220. Note that the dynamic-stall-vortex suction

peak is essentially at the same location and possesses virtually the same strength for the

two lower t+ values, however the curves show that there is a small lag in the largest-valued

t+ solution. The isovorticity contours at a = 220 and 250 (Figure 4.4) clearly show that

there is no a-shift of 20-30 in the formation of the dynamic-stall vortex (even though at

a = 25%, C1 for t+ = 1.0 is 22% greater than C, for the other too values), though a minor

shift in a can be detected (estimated to be less than a half of a degree). Since the flow
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(a) to+ =0.25 (b) to+ = 0.5 (c) to+ =1.0
a = 220

(d) t+ = 0.25 (e) t 0.5 (f) to+ 1.0
a = 250

Figure 4.4 Effect of to+ variation on isovorticity contours; 361x201, Re. = 2.4 x 10',
Mo = 0.2, Wo = 0.2

near the forward part of the airfoil does not change much with to+ (Figures 4.3(b) and

4.4), the C, variation that is observed results mostly from the varied flow that exists aft

of the dynamic-stall vortex region. This difference is not of primary importance for this

research since emphasis is placed upon control techniques which suppress formation of the

dynamic-stall vortex.

As the non-dimensional pitch rate is increased from flo - 0.2 to 0.6, the t+ ef-

fect becomes insignificant (after the acceleration period) as evidenced by C, and C. plots

(Figure 4.5), as well as the isovorticity contours at angles of attack substantially beyond

dynamic-stall vortex formation (Figure 4.6). This behavior is consistent with the obser-

vations of Koochesfahani and Smiljanovski (1993) that at high enough pitch rates, initial

accelerations effects are dwarfed by motion-history effects.

4.1.2 Initial Condition Effect. For the moderate pitch rate being investigated

here (flj+ = 0.2), an initial-condition effect appears in the integrated loads, much as the
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Figure 4.5 Effect of to variation on C1 and Cp; 361x201, Re, = 2.4 x 10i, M.0 = 0.2,
fl+ = 0.6

0 000

(a) td = 0.25 (b) td = 0.5 (c) to+ = 1.0
a = 360

~o '7k 0 0 No 0

(d) to+ = 0.25 (e) to+ = 0.5 (f) to+ = 1.0
a = 500

Figure 4.6 Effect of to' variation on isovorticity contours; 361x201, Re, = 2.4 x 10",
M. = 0.2, fl+ = 0.6
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initial-acceleration effect makes its appearance (Section 4.1.1). For low-Re,, low-Me, flow,

the solution about a NACA 0015 airfoil at a = 0" is periodic as depicted in Figure 4.7(a).

Though the sequence of events that characterize dynamic stall are invariant with respect to

G•0 &0 •4.0

A fee 2A - 3.0-

0.0 IS. 2.0

4005 10 
C

40t• 1.1--0

401: O.S
-4015

1.0 a0o0, 1 0 15 it I M a 3 b ig 0 t V8i b9 al

(a) a =00 (b) n+ = 0.2 (c) fl+ = 0.6

Figure 4.7 Starting solution C, limit cycle and its effect for two pitch rates; 385x201,
Re, = 2.4 X 10i, M.0 = 0.2.

the choice of starting position on this cycle (Ghia, et al., 1992), the timing of dynamic-

stall development varies according to the initial position of the trailing-edge wake and

thus has an impact on the aerodynamic-loading variation with a (Figure 4.7(b)). An

effect of the trailing-edge vortex at higher angles of attack was predicted by Shih et al.

(1992), however they did not specifically tie a trailing-edge-vortex effect to the initial

condition. This initial-condition effect makes sense since the development of the trailing-

edge vortex is dependent upon the initial-wake position. Recall that the trailing-edge

vortex was previously identified as being critical to the vortex dynamics associated with the

development and movement of the vortices born out of the shear layer aft of the dynamic-

stall vortex-which is severed from the leading-edge vorticity source upon formation of

the dynamic-stall vortex (Section 2.2). This oscillatory initial condition manifests itself in

the form of a periodic oscillation superposed on a "smooth" C,-a curve (Figure 4.7(b)).

Surface Cp data and isovorticity contours (Figure 4.8) show that dynamic-stall-vortex

formation is, for practical purposes, uneffected by variation in initial condition. Though

this effect is less significant at turbulent Reynolds numbers, simulations of this type at

laminar Reynolds numbers and moderate to low pitch rates must clearly document the

choice of initial condition in order that they be accurately interpreted by other researchers
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and so that any timed control strategy be optimally configured. For the purposes of the

current research, point A in Figure 4.7(a) was used for all computations.

For the same Re,, the degree of sensitivity to initial conditions decreases with in-

creasing pitch rate (less than 1% initial condition dependence was observed at W+ = 0.6

- Figure 4.7(c)), thus some previous researchers (Ghia, et al., 1992) did not observe

dramatic initial-condition dependence. At this high pitch rate, as is the case for the ef-

fect of the airfoil initial acceleration (Section 4.1.1), motion-history effects dominate the

initial-condition effect.

0.0

(a) (b) IC A (c) ICB

Figure 4.8 Effect of initial condition on C. and isovorticity contours (a = 220);385x201,
Re, = 2.4 X 10i, M.. = 0.2, no+ = 0.2.

4.1.3 Compressibility Assessment. Oftentimes experimental investigation into

the dynamic-stall phenomenon is conducted in very low-speed wind tunnels or in water

tunnels, motivated by a desire to obtain flow-visualization data. The experimental data

to which comparisons are made in Section 4.1.4 is one such situation where the data

were obtained in a low-speed tunnel (M. < 0.05), though the computation is conducted

at a higher Mach number (Mo, = 0.2). Compressibility effects on dynamic stall have

been observed as low as M.o = 0.2 (Carr and McCroskey, 1992; Fung and Carr,

1991). Thus, there is a question about whether or not it is appropriate to compare

Moo = 0.2 computations with M.4 < 0.05 experimental data. To address this question,

two approaches are taken: 1) generate solutions at lower Mach numbers to compare to the

M,. = 0.2 solution, and 2) through analysis of the vorticity-transport equation, compare

the relative magnitude of the compressible term that appears in the equation to the other
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terms (such as the convective and viscous-diffusion terms). The issue of compressibility

will first be addressed by obtaining code results that are "incompressible."

4.1.9.1 Computations at M,. < 0.2. One way to address the question of

the appropriateness of using a compressible code at M.. = 0.2 to compare with M., < 0.05

wind-tunnel data is to use an incompressible code to generate a dynamic stall solution and

then compare the compressible and incompressible code results. This was attempted by

using the method of pseudocompressibility (also referred to as artificial compressibility)

(Chorin, 1967); however, this method was abandoned for two reasons. First, pilot cal-

culations determined that the method would take a factor of ten times the computer time

that it takes to perform the compressible calculation for the pitch-rate and flow condi-

tions used in this research (Section F.5). Second, the experimental data to be compared

against were taken in a wind tunnel (a compressible fluid) and not in a water tunnel (an

incompressible fluid), thus solving the incompressible Navier-Stokes equations introduces

the question of whether important compressible physics are being left out of the problem,

especially at high-a near the leading-edge region where the local Mach number may be too

high to be considered incompressible.

Another way to address the compressibility question is to use the compressible solver

at a lower M,, thereby retaining all the compressible physics. This approach is hampered

by difficulties associated with the application of compressible codes at low M.,. As M.. is

reduced to values near zero (i.e., speed of sound = a -, co), explicit schemes are limited

in time step by the CFL condition as follows (Anderson, et al., 1984:502).

At+ < 1
- (luI/AX) + (IVI/Ay) + a-/[I/(Ag)2] + [1/(Ay) 2]

Thus, for explicit schemes the time-step gets prohibitively small for practical calculations

as a -+ c0. The Beam-Warming scheme used in this research, being an implicit scheme,

is not subject to a formal CFL constraint. However as a practical matter, time steps are

usually limited to 5 - 10 times those for explicit schemes due to excessive truncation error

(Anderson, et al., 1984:503). Volpe (1993) demonstrated that compressible codes

may successfully be used for low-M.. flow; however, there is a need to decrease mesh-
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cell size to offset the relatively large truncation error terms. Volpe showed that for an

impulsively started cylinder, essentially incompressible results may be obtained by running

a compressible code at M.o = 0.1. Based on these encouraging results, this approach of

using the same compressible solver at lower MO was employed in the current study to

assess the validity of comparing M.o = 0.2 computations with M.. < 0.05 experimental

data.

To keep the same Re. and fl' necessarily dictates another time-step and grid study

at a lower Mo,, (Appendix D). Since, in general, lowering Re. or raising Wlo relaxes grid

requirements, the approach used was to keep fo+ the same, but to lower Re, from 2.4 x 10"

to 1.0 x 104 for the lower-Moo runs. This avoided the need to generate new, finer grids

which likely would have made the low-MmO study resource-prohibitive.

Adequate spatial and temporal resolution is demonstrated for the 385x201 grid at

At+ = 0.0005 and 0.00025 for the M. = 0.1 and Me,, = 0.05 cases, respectively (Ap-

pendix D), at Re, = 1.0 x 10" and WO+ = 0.2. These cases are compared with the M.. = 0.2

result for the same Re. and fI+ (Figure 4.9(a)). The agreement in C1 is good between these

3.0 -- - - -3.0 ., .. . , , •

2.5- 2.5-f .

2.0 2.02.5 2.5 -.

1.0 1.0

M.=•2 M,0.0 - __ t;=o.s
0.5 M.I=0.2, h1=O.01 0.5M.=4.1, At"=0.0005•, .. t'=l.0

0 0..M.=00 h,=o0.00
0.0 5 10 15 20 25 0.0 1. 15 20 2a5 30 35

(a) (b)

Figure 4.9 Effect of M.. on C, and effect of t+ on C, (at M,, = 0.05); 385x201, Re, =

1.0 X 104, fIo+ = 0.2

solutions out to a = 290. The largest discrepancy in C, in this a range occurs at a = 16.50

where the Mo = 0.2 solution is 6.4% below the incompressible solution. Prom that angle

on, the M.. = 0.2 solution tends to lag the incompressible solution by about 0.50. Note
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that as M.. decreases, the same initial acceleration of the airfoil (t+ = 0.5) generates a

more pronounced spike in C, at the early angles of attack (Figure 4.9(a)). As explained in

Section 4.1.1, if this initial acceleration is reduced by increasing t+ from 0.5 to 1.0 (Fig-

ure 4.9(b)), the spike is seen to be reduced. As previously demonstrated (Section 4.1.1),

this acceleration effect has essentially no effect on the timing of events once beyond the

initial acceleration period (Figure 4.10).

0. 0.75 0) ( Xc I

(a) (b) to+ 0.5 (c) 4o+ 1.0

Figure 4.10 Effect of to on C,, and isovorticity contours (a =250); MUM20, Re.
1.0 x 104, M~,, = 0.05, Wl = 0.2

The C,, curves for these three M.., solutions are nearly identical to a = 200 (Fig-

ure 4.11 (a)), at which point only a small discrepancy is evident in the region of the leading

edge suction peak. At a =220, the effect of compressibility in the M,, = 0.2 solution is

-5.0- M.=O02 -5.0o M_=0.2
- "---...=.1 if;I M_-=0.1

----------M_-.5 ----- M..=0.05

-2.5!~ -2.5-

0.0 0.0-

02. .u ". 117100 0.1M 0.95 0.0 075 10X/C */
(a) a =200,220 (b) a = 250

Figure 4.11 Effect of M.. on C,,; 385x201, Re = 1.0 X10 4 , n+ 0.2

evident in the form of a reduction in the suction levels near the leading edge and in the
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region of the dynamic-stall vortex (X s 0.2c). The relatively minor difference in solutions

continues to be evident at a = 250 (Figure 4.11(b)) as the lower-M,. computations again

have a greater suction peak associated with the dynamic-stall vortex, although the pressure

gradient just aft of the suction peak is the same for all Mach numbers. The location of

the dynamic-stall-vortex suction peak is only about 3% more aft in terms of chord length

for the M.o = 0.2 case than the other two lower-M. cases. The isovorticity contours for

a = 25* (Figure 4.12) highlight the similarity in the solutions for all three Mach numbers

well past the stall-onset region. At this a, the compressibility effect manifests itself as

a slight shift in dynamic-stall vortex location (M.. = 0.2 dynamic-stall-vortex center is

slightly more aft-chord than the M.. = 0.05 vortex center).

(a) M. = 0.2, At+ = 0.001 (b) Moo = 0.1, At+ = 0.0005 (c) M.. = 0.05, At+ = 0.00025

Figure 4.12 Effect of Mo, on isovorticity contours (a = 250); 385x201, Re. = 1.0 x 10",
II+ = 0.2

Figure 4.13 presents the Cp plots for a = 27° and a = 300. At these angles (well

beyond the stall-onset angle of attack) the compressibility effects become more pronounced,

however the same basic character in Cp curves is preserved, indicating essentially the same

event history over the range of Mach numbers considered. The first appearance of any

significant difference between the M. = 0.1 and M.o = 0.05 solutions occurs at a = 30°

(Figure 4.13(b)).

Similar results to these Re. = 1.0 x 104 results are expected at Re. = 2.4 x 104 since

minor variation in Re. should have little to do with this compressibility issue. Thus for

the conditions considered in this study, the effect of compressibility is not significant.
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Figure 4.13 Effect of M.. on C.; 385x201, Re, = 1.0 x 104, fl+ = 0.2

4.1.3.2 Compressibilit assessment ma the vorticity-transport equation.

As an alternate means of quantifying the role of compressibility, the vorticity variation

was analyzed using the vorticity-transport equation. The vorticity-transport equation is

derived by taking the curl of the momentum equation. For two-dimensional compressible

flow about an airfoil (assuming constant viscosity and no body forces), the nondimensional

vorticity-transport equation is as follows.

we= [-uw. - V + I + VIA + [-Py + Pip)] + [ (w... + w.,)] (4.2)

The left-hand-side term is the local time rate of change of vorticity (i.e., the z com-

ponent of vorticity, since flow only in the x-y plane is considered) at a given location in

the flow field. On the right-hand side, the first term represents the vorticity transported

by convection. The second term is an expansion term. Note that if the flow is truly in-

compressible at a given point, this term is zero since u. + vy = 0 for incompressible flow.

The third term is the barodlinic-torque term which represents the vorticity produced when

the pressure and density gradients are not oriented in the same direction (since in 2-D,

Vp x VP = pPP + pPP). The last term on the right-hand side represents the diffusion of

vorticity.
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To determine the relative importance of compressibility effects at Moo = 0.2, the

expansion term is compared to the other terms in this equation. For convenience contour

plots for each of khe terms are presented in Figure 4.14(a) using contour levels that match

(a) w (b) w( (c) convection

(d) expansion (e) baroclinic (f) viscous

Figure 4.14 Isovorticity contours and contours of vorticity-transport equation terms;
361x201, a = 200, Re. = 2.4 X 104, Mo, = 0.2, n+ = 0.2

previously used levels (e.g., Figure 4.4). The rest of the contour plots in Figure 4.14(b)-(f)

use ten equally distributed contour levels between ±1000 to provide a relative comparison of

the terms of the vorticity-transport equation. Dynamic-stall onset occurs around a = 200

as evidenced by the lifting shear layer near the leading edge (Figure 4.14(a)). Clearly, the

process is dominated by convection (Figure 4.14(c)). The effect of viscous diffusion is also

significant near the leading-edge surface (Figure 4.14(f)). A very slight amount of vorticity

production occurs near the leading edge due to the expansion term (Figure 4.14(d)), and the

baroclinic torque term (Figure 4.14(e)) produces almost no vorticity. Once the dynamic-

stall vortex has formed (Figure 4.15(a)), the expansion term (Figure 4.15(d)) increases in

magnitude, however as at the lower angle of attack, the effects of convection (Figure 4.15(c))

and diffusion (Figure 4.15(f)) are much more pronounced. Also as before, the baroclinic-

torque term (Figure 4.15(e)) is insignificant.
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(a) w (b) wt (c) convection

(d) expansion (e) baroclinic (f) viscous

Figure 4.15 Isovorticity contours and contours of vorticity-transport equation terms;
361x201, a = 22*, Re, = 2.4 x 104, Moo = 0.2, f0+ = 0.2

Figure 4.16 presents profiles of V. V and the vorticity-transport-equation terms at

X = 0.10c. All the vorticity-transport-equation terms are plotted using the same scales

for five at's.

Figure 4.16(a) indicates that V - V increases as a is increased and is small for the

conditions shown. This is in agreement with previous conclusions.

A comparison of the various vorticity-transport-equation term profiles at this 10%-

chord station (Figure 4.16(b)-(f)) supports the previous-made claim that dynamic-stall-

vortex formation and development is convection dominated.

Summarizing, for the natural case at these conditions (Mo, = 0.2, Re. = 2.4 x

104, 0+ = 0.2), the compressibility effects are negligible when compared to the vorticity

transported by convection (by far the greatest) and by diffusion. This finding is consistent

with the result presented in Section 4.1.3.1 where M.. is lowered from 0.2 to 0.05.

4.1.4 Comparison with Experment. As a means of assessing the accuracy of the

natural solution, velocity-magnitude profiles along the surface were compared with M., <
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Figure 4.16 Profiles of V • V and vorticity-transport equation terms for natural case at
X = 0.12; 361x201, a = 150,200,220,250,270, Rec = 2.4 x 104, Moo = 0.2,
A02 0.2

0.05 results obtained experimentally (Lovato and Troutt, 1992) at a pitch rate of us+ =

0.05 (Figure 4.17(a)). While the qualitative agreement is reasonable, some undershoot

in velocity is present. One source of difference is that the grid used to generate the

numerical results (385x201) was validated for flW = 0.2 out to a = 330 (in terms of C., after

a = 250 significant differences between the 385x201 and 505x201 grids become apparent),

not AI = 0.05 out to a = 200. For this low pitch rate at a = 140 (Figure 4.17(b)), the shear

layer in the region 0.12c < X < 0.35c is already relatively far from the upper surface into

an area of the mesh which may be too sparse for accurate resolution of the high-gradient

flow. Therefore, after a = 140 (Figure 4.17(c)), it is unlikely that the numerical solution

will be very precise for this grid, pitch rate and flow condition.

4.2 Control via Tangential Blowing

As discussed in Section 2.3, the key to delaying dynamic stall onset is to inhibit fluid

from pooling under the shear layer. The tangential-blowing approach introduces high-

momentum fluid near the surface to delay the reverse-flowing-fluid pooling. This section
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Figure 4.17 Comparison of computed velocity profile (M,, = 0.2) with experiment
(M.. < 0.05) at X = 0.1c (Lovato, 1992) and isovorticity contours for
the computed solution (385x201); Rec = 2.4 x 104, fl+ = 0.05 (Note: a,, is

the coordinate direction normal to the wall).

presents several results for the tangential-blowing-controltechnique. Slot-location and slot-

width effects are presented first followed by the effect of jet-velocity-magnitude variation.

Next, results are shown for various blowing initiation angles of attack (Gb). Solution

sensitivity to blowing angle (4) and jet velocity profile is then demonstrated. Following

that is a comparison between pulsed and constant blowing. Finally, compressibility effects

for the constant-blowing case is presented.

Solution accuracy consideratiors with respect to numerical artifacts present in the

tangential-blowing computations is addressed in Appendix C. The baseline grids (351x201,

361x201, 385x201) possess adequate global- and slot-grid resolution for tangential blowing

study (Appendix C.1). A time step of At+ = 0.001 is adequate for the tangentiad-blowing

cases considered (Appendix C.2) as it is for the natural cases (Appendix B.2). When

v, < 4U,., e4 = 0.01 is satisfactory to maintain solution stability; however, for higher jet

velocities, e4 requires doubling to maintain stability (Appendix C.3).

4.2.1 Slot-Location and Width Effects. One of the key issues which arises when

attempting to control the flow over an airfoil with blowing is slot placement. Experimental

(Karim and Acharya, 1993; Freymuth, et al., 1989; Carr and McCalister, 1983)

and computational (Ghia, et al., 1992; Visbal, 1991) studies have demonstrated the

utility of control devices (suction, moving wall, leading-edge slat) placed in the leading-edge

area where the dynamic-stall vortex forms. Experimental studies (Lovato and Troutt,
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1992) have also shown some benefit to pulsed blowing simultaneously through multiple

slots located at 0.0c, 0.2c, and 0.4c. Based on the previous dynamic-stall control work, slot

locations at 0.0c, 0.05c, 0.2c, and 0.4c are investigated. Once slot location is established,

then a brief study is made of slot width effects. Unless otherwise stated, the following

nominal conditions were used for the slot study: M,. = 0.2, Rec = 2.4 x 10', 11+ = 0.2,

vi = 2.83Uoo. A uniform jet velocity profile is used at a blowing angle (0) that is 100 from

the surface tangent (Figure 3.2). The time step used in the computations is At+ = 0.001

and the damping coefficient used is e4 = 0.01 (except for high-vj cases where e4 is noted

to be 0.02).

The 343x201 grid (Figure 4.1(a)) was first used to investigate blowing at 0.0c, 0.2c,

and 0.4c slots. Along with the slot locations, the selected initial blowing velocity (vj =

2.83Uoo) and slot width (0.0105c) were based upon experimental work (Lovato, 1992;

Lovato and Troutt, 1992). Figure 4.18 shows C, for the natural case compared with

3.0

C,
2.5-

2.0-

1.5

1. naturWl

0.5 --------- 0.2c
_ _ __. 0.4c

0.C . 1'0 15 20 25 30 A 3 5

Figure 4.18 Effect of tangential blowing at X = 0.0c, X = 0.2c, X = 0.4c slots on C,;
343x201, vi = 2.83Uo, 4 = 10*, Re, = 2.4 x 10', Moo = 0.2, fl = 0.2

tangential blowing at each of the three slots of the 343x201 grid. The relatively poor C,

results for the 0.2c slot, as compared to the other two slots, led to the dismissal of the 0.2c

slot location from further consideration.

Based on the 343x201-grid C, results, a 385x201 grid (Figure 4.1(d)) was next con-

structed. This grid provided for slots at only X = 0.Oc and 0.4c and the possessed a more

refined mesh in the area of dynamic-stall vortex formation. The isovorticity contours at
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X = O.Oc X = 0.4c
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(a) a = 200

(b) a = 220

(c) a = 25°

Figure 4.19 Effect of tangential blowing at X = 0.Oc and 0.4c slots on vorticity contours;
385x201, vj = 2.83U., 4=10°, Re. = 2.4 x 104, Mo = 0.2, fI4 = 0.2

a = 20*, 220 and 25° (Figure 4.19) demonstrate that for dynamic-stall suppression, blowing

at X = O.Oc is superior to blowing at 0.4c. Blowing at 0.4c has little effect on the pooling

that occurs due to the large adverse pressure gradient near the leading edge (Section 2.3).

An observed benefit of 0.4c blowing over 0.Oc blowing is that much of the oscillation

in C5 due to trailing-edge vortex-shedding (Section 4.1.2) is suppressed (Figure 4.18). This

is easily seen in Figure 4.19(a) where blowing at 0.4c introduces relatively strong negative-

vorticity (dashed contours) along the upper surface which counteracts the strong positive

trailing-edge vortex.
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The shear layers resulting from the two vorticity sources (i.e., the leading-edge

stream-wise pressure gradient (Acharya and Metwally,1992) and the transpiration ve-

locity from the 0.4c slot) can be observed in Figure 4.19(a) for the 0.4c-blowing case. The

shear layer emanating from the leading-edge region terminates at X ý- 0.85c, slightly above

the 0.4c-originating shear layer which persists past the airfoil trailing edge. This negative-

vorticity shear layer resulting from blowing at the 0.4c slot reduces the trailing-edge vortex

effect on airfoil integrated loads.

Using the 385x201 grid, the numerical solution for simultaneous blowing at the 0.Oc

and 0.4c slots was computed. Blowing simultaneously at the 0.Oc and 0.4c slots reduces

oscillations in the C,-a curve (Figure 4.20) just as 0.4c-alone blowing does primarily due to

3.0

2.5 - ,

2.0

1.5 /

1.0 natural

0.5 ......... 0.4c
. . 0.Oc & 0.4c

0.0-- 1'0 15 20 25 30 35

a

Figure 4.20 Effect of tangential blowing at X = 0.0c, X = 0.4c slots (individually and
simultaneously) on C,; 385x201, vi = 2.83U,,o, 0 = 100, Re, = 2.4 x 10',
M.o = 0.2, flW = 0.2

removal of the trailing-edge vortex effect (Figure 4.18). Simultaneous blowing also delays

dynamic-stall vortex formation (Figure 4.21), just as O.Oc-alone blowing does. The re-

duction in trailing-edge vortex shedding effect by 0.4c-blowing is even more pronounced at

lower pitch rates, as shown in Figure 4.22, since the trailing-edge vortex shedding produces

a greater initial-condition effect for the natural case at lower pitch rates (Section 4.1.2).

However, no significant additional benefit is obtained by the 0.4c blowing from the per-

spective of dynamic-stall-vortex-formation delay (Figure 4.21(b)). Thus, from a practical

standpoint, simultaneous blowing at X = 0.Oc and 0.4c may not be warranted (especially

in applications at higher Re, where the trailing-edge vortex shedding is not a factor).
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X = 0.Oc X = 0.Oc & 0.4c

natural blowing blowing

(a) a = 22

00 ýO

(b) a = 250

Figure 4.21 Effect of X = O.Oc and 0.4c simultaneous tangential blowing on vorticity
contours; 385x201, vi = 2.83U.o, q = 100, Ree = 2.4 x 104, M. = 0.2,
fl+= 0.2

2.0

C,

1.0

0.5 natural
,! -. . ,C

-. .. O.Oc&0.4c

O.C 10 1.5 a 20

Figure 4.22 Effect of tangential blowing at X = 0.Oc, X = 0.4c slots (individually and
simultaneously) on C, for a low pitch rate (fl+ = 0.05); 385x201, vi =

2.83Uo,4,= 10, CO = 0.0292, Re, = 2.4 x 104, Moo = 0.2
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To this point in the analysis, the best slot position for control is the X = O.Oc slot.

A further refinement of slot location in the leading-edge region was motivated by the work

of Karim and Acharya (1993) who examined dynamic-stall control using leading-edge

suction. They varied their slot position from X = 0.02c to 0.05c and found no significant

qualitative differences in their control effectiveness. For suction control, they concluded

that as long as the slot position is in a location that still removes the reverse-flowing

fluid in order to prevent pooling under the shear layer near the leading edge, then the

control technique is not dependent on slot position. To evaluate this finding for the case

of tangential blowing and to compare blowing with suction control, two grids-351x201

and 361x201 (Figures 4.1(b) and (c) respectively)-were constructed (Section 4.3). These

grids provide for slots at only X = O.Oc and 0.05c and have differing slot widths at the

X = 0.05c slot.

The 351x201 grid, with a width of 0.0107c at the X = 0.05c slot (compare with

0.0105c width for the X = O.Oc slot for all grids), was used to investigate slot location

effectiveness. The velocity at the X = 0.0107c slot was adjusted slightly to vi = 2.78U.. to

match mass flow with the X = O.Oc slot (vi = 2.83U..). A comparison of the isovorticity

contours between the X = O.Oc and 0.05c slots (Figure 4.23) shows that the an extra 2*-3*

of dynamic-stall-vortex-formation delay is obtained by placement of the slot at X = 0.05c

instead of 0.0c. The leading-edge blowing extends onset angle by .14% while 0.05c-blowing

extends it by -,27% for these conditions. This X = 0.05c-chord location is more strategic

than the O.Oc location because it more directly keeps the reverse-flowing fluid from pooling

under the shear layer in the X - 0.15c region (natural case, Figure 2.2(f)).

As greater control is applied, the region of pooled fluid moves toward the leading

edge (X ; 0.09c region for vi = 2.83U.. at X = O.Oc blowing; X ; 0.06c region for

= = 2.78U., at X = 0.05c blowing (Figure 4.23)). Thus it appears that the optimum

location for the blowing slot is between the leading edge and the region of natural-case

reverse-flowing-fluid pooling. Since the region of pooled reverse-flowing fluid moves up

chorl as control is applied, it makes sense to anticipate this movement and locate the slot

closer to the leading edge rather than nearer to the natural-case location of this pooled

fluid. The optimum choice of location, however, will depend not only upon parameters
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natural X = O.Oc X = 0.05c
blowing blowing

(a) a = 220

_ 0

(b) a = 25o

(c) a - 27°

Figure 4.23 Effect of tangential blowing at X = 0.0c and 0.05c slots on vorticity contours;
351x201, vi = 2.8U., 4=10, Re, = 2.4 x 104, M. = 0.2, fl' = 0.2
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that affect the location of pooled fluid (e.g., pitch rate, pitching center-of-rotation location,

Moo, geometry) but also upon the amount of mh or C(, that is available for use (which in

practical applications means the amount of high-pressure air from some source such as the

bleed air from a jet engine compressor).

Pressure coefficients for O.Oc and 0.05c blowing are shown in Figure 4.24 for a = 220.

-10.0

Cp____ naturl
-7.5 . O.Oc blowing

,'......... O.O05 blowing

-5.0

-2.5

0.0L

Figure 4.24 Effect of tangential blowing at X = O.Oc and 0.05c slots on Cp for constant
rh; 351x201, a = 22%, qS = 10%, Rec = 2.4 x 104, M". = 0.2, n+ = 0.2

The 0.Oc blowing occurs in a very favorable pressure gradient region while the 0.05c blowing

is located in a naturally adverse pressure gradient region for a's near dynamic-stall-vortex

formation. More investigation needs to be made to determine if the optimum slot location

is just aft of the suction peak near the a at which leading-edge shear-layer lift off occurs

(a ; 200 for the nominal conditions). Based upon examination of the dynamic-stall-vortex-

formation region for the 0.05c-blowing case (Figure 4.25), it appears that the reverse-

flowing fluid pools up chord of the 0.05c slot due to the extremely severe adverse pressure

gradient at a = 270. Static-stall control investigation (Williams, 1961:86) established

that the optimum slot position lies in the first 1%-chord of medium- and moderately-

thick airfoils, thus it is possible that further dynamic-stall-vortex-formation delay may be

obtained by moving the slot still further up chord of the X = 0.05c position.

Slot-width effects for tangential blowing were addressed using the 351x201 and 361x201

grids having a, = 0.0107c and 0.00717c at the 5%-chord slot respectively. To compare with
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C.
-40

0.0

(a) (b) vorticity contours (c) velocity vectors and
vorticity contours

Figure 4.25 Effect of tangential blowing on Cp, vorticity contours, and velocity vectors
at a = 270; 351x201, vj = 2.83U.., q = 100, Re, = 2.4 X 10i, Moo = 0.2,
1+ = 0.2

one another, constant C,. (= 0.0427) and constant th (= 0.0052pUoc) cases' were com-

puted. C, curves (Figure 4.26) indicate that matching C,, (assuming a constant € for the

3.0 .3.0

CI C
2.5- 2.5 P

2.0. 2.0-

1.5 1.5 •

1.0. 1.0.

, nural M361x201, nfural
0.5 . 361x201,vi=4.14 at 0.05c 0.5 . 361 x201, vj=4.14 at 0.05c

---------.351x201. v=3.39 al 0.05c ......... 351x201, v1=2.78 at 0.05c

0.C 5 1'0 1'5 20 25 3 . 35  0. 5

(a) constant C,. = 0.0427 (b) constant rh = 0.0052pooU.e

Figure 4.26 Effect of tangential blowing at X = 0.05c slot on C, for constant C. and
constant ih; € = 100, Re, = 2.4 x 10", M., = 0.2, fl0 = 0.2

entire pitch-up) provides nearly identical solutions for the different slot widths while 1 jr

the same rh, the smaller slot exacts slightly better results. The isovorticity contours (Fig-

ure 4.27) confirm the conclusions drawn from the C, plots, however differences between

matching C,. and mh appear minor. In this figure, the first column pictures are the base-

line to which constant C,. (second column) and constant ih (third column) for the larger

'All C, and ih values given assurne pi = p•.
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baseline constant C,. = 0.0427 constant mh = 0.0052pooUooc
361x201, vi = 4.14U., 351x201, vi = 3.39U,. 351x201, vi= 2.78Uoo

(a) a = 270

(b) a = 300

Figure 4.27 Effect of slot width on isovorticity contours; • - 10, Re. = 2.4 x 10",
M,, = 0.2, A+ = 0.2

5%-chord slotted airfoil are compared. (Note that e = 0.02 for the high-vi solutions, so

e = 0.01-the nominal value-is used only for the vi = 2.78 solution on the 351x201 grid.)

The incompressible flow assumption (i.e., pi = p,,) made in order to specify a con-

stant v, throughout the pitch-up maneuver is a poor assumption to make for large slot

jet velocities (say, vi > 3U.,). For 50 < a < 27% the actual jet densities (averaged over

all slot points at a giver a) vary between 94% to 70% that of free-stream density (Fig-

ure 4.28(a)) for the three different cases being considered in this slot-width study. (Note

that the subscripts "s" and "b" in the figure refer to the "small" and "big" slotted airfoils

(i.e., 361x201 and 351x201 grids), respectively.) Figure 4.28(b) shows that the disparity

between the "constant" C,. cases and "constant" ih cases is reasonably benign since each

case suffers, to some degree, from the breakdown of the incompressible assumption. Even

though constant th is not strictly enforced in these cases, it is clear 'hat if Th is kept con-

stant, then small-slot blowing will provide even better control than large-slot blowing for
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(a) p variation (b) C,, and ih variation

Figure 4.28 Breakdown of incompressible-flow jet assumption for blowing at X = 0.05c
slot; Re, = 2.4 x 104, M.o = 0.2, fl+ = 0.2

these flow and pitch rate conditions (i.e., for the same mh a smaller slot achieves a higher

Summarizing, the slot study in this section has shown that the best location for the

slot appears to be between the leading edge of the airfoil and the natural-case location of

the reverse-flow pooled fluid. In anticipation of up-chord movement of this pooled-fluid

location with greater control application, a location closer to the leading edge (though

not exactly at X = 0.0c) is probably best. The slot-width study has confirmed that for

dynamic-stall control, just as in the static-control case (Williams, 1961:78), momentum

blowing coefficient (C.) is the parameter that should be matched to get similar control

performance from different sized slots at the same location (assuming 0 is constant during

entire pitch-up maneuver). Hence, in a practical application where a limited amount of

high-pressure bleed air is available, a small slot is better (within the constraints of other

factors such as the maximum pressure available) since for the same mh, a small slot exacts

a higher C,. than a larger slot.

4.2.2 Jet Velocity Effects. Tangential velocity was varied to study its effect

on dynamic-stall-vortex-formation control at the 0.05c and 0.Oc slots. The nominal flow

and pitch-rate conditions used for this jet-velc *ty-variation study are Rec = 2.4 x 104,

M,,= 0.2, Mo = 0.2. The nominal time step used is At+ = 0.001 and the dissipation
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coefficient used is e = 0.01 (except for the O.05c-blowing, v, = 4.17U,. case which used

S= 0.02). The blowing angle for all cases in this section is = - 100. Table 4.2 shows

the six cases used in this study. The mass-flow rates and momentum-blowing coefficients

listed in the table for these cases are calculated using incompressible-jet-flow assumptions

(Section 4.2.1).

Table 4.2 Six Cases of Jet-Velocity-Variation Study
0.Oc slot 0.05c slot

1.415 0.00258 0.00365 1.39 0.00258 0.00359
2.83 0.00516 0.0146 2.78 0.00516 0.0144
4.25 0.00775 0.0329 4.17 0.00775 0.0323

For high jet velocities (say, vi > 2.5Uo, at X = 0.05c), dynamic-stall-vortex formation

is delayed as indicated by loads data (Figure 4.29) and isovorticity contours (Figure 4.30).

The reason for this delay is that the high-momentum jet fluid adds stream-wise momentum

3.0 .. ,

C,
2.5.

1.5

0.5 ......... v,-=2.78 U.
v1=4.17 U_

0.o - -• -'0 "' s. . . Io"
0.0 5 10 15 20 5 A 0 3

a

Figure 4.29 Effect of variation in tangential-blowing jet velocity at 0.05c slot on C,;
351x201, 0 = 10*, Re, = 2.4 x 104, M,, = 0.2, A+ = 0.2

to the flow near the surface which acts against the strong adverse pressure gradient that

exists in the region near the slot. Recall for the natural case (Section 2.2), that as the

airfoil pitches up and the pressure gradient in the 0.10c < X < 0.25c region becomes more

adverse, fluid is drawn up-chord underneath the shear layer. This thin reverse-flowing fluid

pools underneath the shear layer at X ;z 0.15c (Figure 2.2(d)). Once the fluid accumulates
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natural vi = 1.39U.. vi = 2.78U.. = 4.17U..

(a) a - 22

(b) a 250

00
(c) -- 270

(d) a = 300

Figure 4.30 Effect of variation in tangential-blowing jet velocity at 0.05c slot on isovor-
ticity contours; 351x201, 0 = 10*, Rer = 2.4 x 10", M. = 0.2, 0'o = 0.2
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to a sufficient thickness, the shear layer kinks, and so begins the rapid, self-promoting

process by which the dynamic-stall vortex forms (Section 2.2).

The isovorticity contours for the 0.05c-blowing, low-v, case (Figure 4.30(a)) show

that counterproductive effects occur when blowing at too low a velocity. Apparently, there

are two flow features working together in this case. First, the jet is located in a region of

a naturally occurring adverse pressure gradient at a ,t 200 (Figure 2.2(d)). Second, with

vi = 1.39U.., the momentum of the jet fluid is so low relative to the momentum of the

fluid being introduced into for a s 200 (natural V < 2.1U. for a = 220-Figure 4.31(b)),

that the jet flow is actually causing a net decrease in the momentum of the fluid in its

0.10 I 0.10 1 V !
_ 15 sis 1

I/ .. .. n0.. . 201
0.06 . .------ 0.062 .-... 22

Ii

0.06 '10.06 'j

0.04. 0.04I' i

00•• '• ............... ......
0.0. 0.02

. 0. . 1. v/ 0"0% 3 . 1.0 1.5 2.ov/U

(a) X = o.Oc (b) X = 0.05c

Figure 4.31 Velocity profile for natural case (a = 15%, 20, 220); 351x201, Re. = 2.4 x 10",
M.. = 0.2, 11+ = 0.2

vicinity. Therefore, a less-severe adverse pressure gradient than in the natural case (such

as that which exists around the quarter chord) is now capable of initiating the dynamic-

stall-vortex-forming process (i.e., the reverse-flowing fluid pooling under the shear layer

followed by the kinking of the shear layer). The result is that the fluid pools slightly

sooner (i.e., at a slightly lower a) and further aft of the natural case (X ; 0.26c for the

low-iv case, compared to X -_ 0.15c for the natural case).

For the conditions investigated in this study, the greater the jet velocity, the longer

dynamic stall is delayed. However, it appears that with vi = 4.17U. at the 0.05c slot

(Figure 4.30(d)), the slight improvement in control that is gained over the vI = 2.78U.
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case may not be worth the 50% increase in mass flow required to achieve this small gain.

Hence, for the flow and pitch-rate conditions considered, it appears that vi ; 4Uo. is near

the practical limit for 0.05c blowing, assuming there is enough rh available from the high-

pressure source to blow even at this velocity. As previously mentioned (Section 4.2.1), this

slot location still may not be optimum. Thus, the apparent useful maximum vj may be

higher for slots further up-chord.

For the O.Oc-blowing, high-vi case as in the 0.05c-blowing case, dynamic-stall vortex

formation is delayed longer at the highest blowing velocity (Figure 4.32). However, unlike

natural vi = 1.415Uoo vi = 2.83Uo vi = 4.25U,,

(a) a = 220

1 __

(b) a = 250

Figure 4.32 Effect of variation in tangential-blowing jet velocity at O.Oc slot ,,n isovorticity
contours; 385x201, 4 = 100, Rec = 2.4 x 104, M., = 0.2, f0+ = 0.2

the 0.05c-blowing case, 0.Oc-slot blowing at the low velocity (v, = 1.415U,.) does not cause

the fluid to pool at a position aft of the natural-case pooling location, but rather slightly

ahead of the natural-case location (X ; 0.13c for the 0.Oc-blowing low-v, case, compared

to X ; 0.15c for the natural case). Apparently, since the natural-case pressure gradient at

X = O.Oc is extremely favorable (Figure 2.2(d)), then the low jet momentum at X = 0.Oc

(relative to the natural case momentum (Figure 4.31(a)) for a = 200) has little effect on

the flow.

Higher blowing velocities were not investigated at the 0.Oc slot, however, it seems

likely that there is an optimum vi for which dynamic-stall-vortex-formation control im-
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provements are balanced with m and C,, limitations as discussed at the end of Section 4.2.1.

Also, at the X = 0.Oc slot the airfoil surface curvature is large. It is likely that when ex-

tremely high blowing velocities are used, the jet could cause a separation region at the

leading edge thereby inducing prematurely, the formation of the dynamic-stall vortex. Ob-

viously, optimum slot location (Section 4.2.1) and blowing velocity are closely linked. This

upper limit issue on O.Oc-blowing jet velocity needs further investigation.

Blowing at either the O.Oc or 0.05c slot significantly strengthens and alters the shear

layer as shown in Figure 4.33. As a representative example, this figure shows velocity

0.10. 0.10.'6

sna 15 sinc I
-- s1---i----20

S0.08 ..------ 0. 22 ii

0.06 ' 0.060.04 - X 0.04 
i k.

. . I '

0.02- 0.02

00%ý 0.0 0.5 1.0 1.s 2.! • ' 0o0%'.oz 0.s 1.0 1.5 2.ov /u .

0.02 0.02.

Sn/C \15 s'/C 15
-- -2 -- - 20S......... 22 k ..... 2

I\ ./'

/I '.1• -

0.01 55Oi

0 . -•0. .0 -40. .0 0.oi0 0.0 0 . - -400 .0 .0 0.0

(a) natural (b) 0.05c blowing

Figure 4.33 Velocity and vorticity profile for natural and 0.05c-blowing cases (vi =

2.78U.., 4 = 100) at X = 0.1c (a = 150,200,220); 351x201, Re, = 2.4 x 104,

M= = 0.2, f 0.2

magnitude profiles with the associated vorticity profiles over three angles of attack at the
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X = 0.1c station. Near the wall, where v. z 0, the vorticity in the z-y plane2 is simply

w ki -u, (which is also proportional to wall shear stress). Obviously, with the introduction

of blowing, greater negative vorticity is generated at the wall aft of the slot since the

jet significantly increases the wall velocity gradient, thereby producing a stronger shear

layer. As the jet velocity is increased, the near-wall velocity gradient increases, producing

additional negative vorticity. This stronger shear layer (in terms of levels of vorticity and

velocity) stays closer to the surface than the natural shear layer (Figure 4.30(a)) thereby

inhibiting fluid from flowing up chord (compared to the natural case). The high-velocity

jet also causes additional profile inflections (and thus a change of sign of vorticity for each

inflection) which introduce positive vorticity into the shear layer (0.003 < 8,7/c < 0.008

region for a's shown at this station) as observed in Figure 4.33(b).

The jet-velocity-variation study presented in this section indicates that in general (to

a practical upper limit), the higher the jet velocity, the gr. ter the duration of dynamic-

stall-vortex-formation delay.

4.2.3 Effect of Delaying ab. As a means of refining the control of dynamic-

stall-vortex formation by blowing, a study was conducted to determine the latest angle

of attack at which control must begin. For the NACA 0012 airfoil pitching at fl+ = 0.15

(Rec = 3.0 x 101) in a free stream with velocity 40m (Moo,, z 0.12), Karim and Acharya

(1993) found that shear-layer lift up (which occurs just prior to dynamic-stall-vortex

formation) occurs at a ; 180. They reported that for suction control, as long as ab < 200,

then the dynamic-stall vortex is successfully suppressed.

For the NACA 0015 airfoil at nominal conditions (M,, = 0.2, Rec = 2.4 X 10', 0o+ :

0.2), a ; 200 (Figure 2.1(a)) is the angle at which shear-layer lift up occurs. (Note that

this is also the angle at which a constant-pressure plateau is present (Figure 2.2(d))-an

observation that has significant control-strategy implications and will be discuised shortly.)

Numerical solutions were obtained for the nominal conditions using a jet velocity of vi =

4.14U,,. at the 0.05c slot (a, = 0.00717c). The time step and dissipation coefficient for

2Here, the z-V coordinate system is assumed to lie on the airfoil surface, and not at the airfoil pivot
point as defined in Figure 3.1.
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the blowing cases in this ab study are At+ = 0.001 and E4 = 0.02, respectively. For these

conditions, the dynamic-stall vortex is similarly suppressed for ab = 00, 50, 100, 150, 200

(Figure 4.34). However, when blowing begins at ab = 220 (Figure 4.34(f)), then dynamic-

(a)a " = 0o (b) ,O = 5. (c) a= 10O

(d) ab = 150 (e) Qb = 200 (f) ab = 220

Figure 4.34 Effect of tangential-blowing ab on vorticity contours (a = 27.00); 361x201,
vj = 4.14U., at 0.05c, • = 100, Re, = 2.4 x 104, M"' = 0.2, W/+ = 0.2

stall-vortex formation is not delayed as it is for the lower ab cases.

Natural-case isovorticity contours are shown in Figure 4.35 for comparative purposes.

0 0

(a) a = 200  (b) a = 220  (c) a = 270

Figure 4.35 Isovorticity contours for natural case; 361x201, Rec = 2.4 x 10i, M". = 0.2,
0o+ = 0.2

The natural-case shear-layer lift up is evident at a = 200 (Figure 4.35(a)). At a = 220
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(Figure 4.35(b)), a dynamic-stall vortex is just forming-this is too late to apply effective

control, although there is some small benefit to doing so (compare Figure 4.34(f) with

Figure 4.35(c)).

One potential control strategy suggested by Metwally (1990) when using suction

control, involves monitoring two pressures in the region where a constant pressure plateau

would form. When the two pressures are within a certain difference band during a pitch-up

maneuver that would produce a dynamic-stall vortex, then this condition would be read as

a pressure plateau and suction control would be applied to delay the dynamic-stall vortex.

The numerical results presented in this section demonstrate that this same strategy is

applicable to tangential blowing.

The fact that dynamic-stall-vortex formation is nearly identical for all ab !5 200

emphasizes the dominant role that the pooled fluid under the shear layer plays (Section 2.2)

in the dynamic-stall phenomenon. The critical time to blow is just after shear-layer lift up,

just before the fluid naturally pools beneath the shear layer. These results also highlight

the speed at which the reverse-flowing fluid pools as there is only 20 difference in Oa between

a successful and unsuccessful control scenario for the current simulation conditions.

4.2.4 Jet Orientation Angle Effect. The choice of velocity boundary conditions at

the airfoil surface (U.,|t) for the numerical simulations in this research (Section 3.3) result

in the choice of a blowing angle .0. This angle is measured from the slot surface tangent,

which is defined by the first and last point of the slot (Figure 3.2). For the majority of

blowing cases contained in this research, the nominal blowing angle is 100. This value was

used as a best estimate of an experimental blowing angle (Lovato and Troutt, 1992)

until the actual blowing angle was later experimentally determined (0 = 12.2* at the 0.Oc

slot for all a's in the pitch-up maneuver (Lovato, 1994)). With the uncertainty of the

proper blowing angle to use for a realistic numerical simulation, three series of computations

were accomplished to investigate the sensitivity of the solution to blowing angle for 0.Oc-

slot blowing at the nominal flow and pitch-rate conditions (Re, = 2.4 x 104, Mo. = 0.2,

fl+ - 0.2). Blowing angles half and double the nominal angle (0) = 5* and 200) were used in

the study. The first series maintained the same slot jet velocity (vi = 2.83U.), the second
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series maintained the same mass flow rate (mh = 0.00516p..UjJc) through the slot, and the

third series maintained the same slot-momentum-blowing coefficient (C,. = 0.0292).

Matching rh or C,. at different blowing angles leads to different slot velocities. If

incompressible flow is assumed (i.e., pi = p.), Equation 3.7 for momentum blowing coef-

ficient reduces to the following.

C1 = 2 sin, (4.3)

Incompressible flow is assumed for obtaining vi when matching values of An and C.. After

making the runs with the value of vi under the incompressible assumption, the validity

of this assumption can be examined as shown in Section 4.2.1 (Figure 4.28). The density

variation along the slot for the low- and high-velocity cases (i.e., vi = 2.016Uoo and vi =

3.995U..) of the constant C,. series show that the incompressible assumption is reasonable

for the low-velocity case (average pJ ; 0.9 8p•, and 0.91p., at a = 50 and 250 respectively),

but not such a good assumption for the high-velocity case (average pi ;- 0.92p,, and 0.82poo

at a = 50 and 250 respectively). To better fix C,. or 7h constant for a pitch-up maneuver,

the code should be modified to use the newest density solved for at the slot (i.e., lag density

one time level) in order to constantly update the jet velocity at each grid point every time

step. However, even with the more crude approach of assuming incompressible flow for the

entire pitch-up maneuver, the calculations are sufficient for gaining insight into the effect

of blowing angle.

For all three series of computations, a significant amount of solution sensitivity was

observed with variation in 0. Figure 4.36 presents isovorticity contours for the constant-

C. series at a = 250. The three cases in this series indicate that lower blowing angles

delay dynamic-stall-vortex formation. This is because the high-momentum fluid is intro-

duced closer to the surface, thereby more effectively suppressing the forward propagation

of reverse-flowing fluid. This delays the pooling of fluid under the shear layer which causes

shear-layer lift off from the surface (Section 2.3), thus delaying the onset of dynamic stall.

Figures 4.37 and 4.38 show the effect seen in C, and C. (about the quarter chord), respec-

tively, for each of the three series. Even though varying 4 produces significant differences in
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(a)= 50 (b)40 = 10° (c) 0 = 20°

Figure 4.36 Effect of blowing-angle variation (using constant C,, = 0.0292) on isovorticity
contours at a = 25*; 385x201, X -0.Oc slot, Re, = 2.4 x 10i, Mo. -0.2,

0o+ = 0.2

303.0• 
2C."..

2.0-20
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o03 0__ Ob --- #.o' o _ __

`08 1 2 25 aA 05 5 15 i i 2 0

(a) constant vj = 2.83U.. (b) constant m = 0.0052pooUaoc (c) constant C.7 = 0.0292

Figure 4.37 Effect of blowing-angle variation on C,; 385x201, X = 0.Oc slot, Re, =

2.4 x 104, Mo. = 0.2, 0+ =0.2

0.0. 0.0 . 0.0 . . ..

Cm ."".00.1 
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(a) constant vi = 2.83Uo, (b) constant 7h = 0.0052pooU..c (c) constant C,( = 0.0292

Figure 4.38 Effect of blowing-angle variation on C(. about the quarter chord; 385x201,

X = 0.Oc slot, Re, = 2.4 x 104, M,, = 0.2, 0+ = 0.2
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flow structure over the leeward surface (Figure 4.36), the large difference is not as apparent

in C, (Figure 4.37(c)) as in isovorticity contours due to cancellation that occurs during the

integration process used to calculate C1. However, compared to C,, the difference in the

solutions is more pronounced for C,. (Figure 4.38(c)) beyond a = 190. The oscillations in

C, are indicative of vortex formation, convection, and interaction with the surface which

occurs during the dynamic-stall process (Figure 2.1). The lower the blowing angle, the less

oscillatory C,. is since the smaller blowing angle results in a stronger shear layer much as

increased blowing velocity at a given 4, does (Section 4.2.2).

One way to address solution sensitivity to blowing angle is to catalog the angle of

attack at which a visible dynamic-stall vortex forms for each case. For example, Figure 4.39

compares the isovorticity contours for the natural case at a = 220 with the constant-C.

(a) natural, a =22 (b) -10', a 25 (c) 0 = 20, a, = 22*

Figure 4.39 Dynamic-stall-vortex formation comparison for natural and two blowing an-
gle cases (using constant C,. = 0.0292); 385x201, blowing at X = 0.0c slot,
Re, = 2.4 x 104, M,, = 0.2, fl+ = 0.2

cases of 4 = 100 and 4 = 200 at a = 250 and 220 respectively. Dynamic-stall vortex

development is approximately the same for all three cases. Using the natural case angle of

attack as a point of reference, blowing angles of 4 = 100 and 4 = 200 delay dynamic-stall

onset by 30 and 00, respectively. The delay in dynamic-stall-vortex formation (DSVF) for

all three series of cases (constant vi, 'h, C•) is shown in Table 4.3. It should be noted

that the DSVF delay values lack some precision since they were estimated from isovorticity

contours at a = 200, 220, 250, 27, 30, 330. Also, as previously mentioned, incompressible

flow at the slot exit is assumed when declaring the cases to be at constant mh or constant C,1.

Nonetheless, some useful observations can be made from these results (with the additional
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Table 4.3 Solution Sensitivity to Blowing-angle () Variation

constant 4, r- M C, DSVF delay
Vi 50 2.83 0.00259 0.0146 20

100 2.83 0.00516 0.0292 30
200 2.83 0.0102 0.0575 00

mh 50 5.64 0.00516 0.0582 90

100 2.83 0.00516 0.0292 30
200 1.44 0.00517 0.0149 -10

CI, 50 3.995 0.00366 0.0292 50
100 2.83 0.00516 0.0292 30
200 2.016 0.00724 0.0292 00

caveat that this study was (lone for blowing at the 0.Oc slot with nominal flow and pitch-rate

conditions of Mo. = 0.2, Re, = 2.4 x 104, fl+ = 0.2).

At a blowing angle of 200, tangential blowing control is not effective from the per-

spective of delaying dynamic-stall vortex formation. In fact, it is counterproductive for

vi = 1.44U... Also, in general, it appears that the lower the blowing angle, the greater the

delay of dynamic-stall-vortex formation. This means that if flush slots are being used to

achieve "tangential" blowing, then the slot cavity through the surface of the wing should

be constructed in such a way to obtain a low blowing angle.

If experiments show that the blowing angle is not controllable, then a comment is in

order regarding the slot location with respect to blowing angle. As previously mentioned at

the beginning of this section, when blowing at the 0.Oc slot (which is in a highly favorable

pressure gradient region) a blowing angle of 0 = 12.20 was observed fcr the entire pitch-

up (Lovato, 1994). However, there may be variation in 4, for a slot which occurs in

a region with a large adverse pressure gradient (e.g., 0.05c). As discussed previously

(Section 3.3), experimentally the slot-plenum pressure is set, which in turn produces a slot

velocity. Computationally, instead of setting a plenum pressure, the jet velocity at the slot

is specified under the assumption that vi and 4, remain constant for the entire pitch-up.

Thus, experimental investigation needs to be made into this issue to gain confidence in the

constant-0 numerical results for blowing in a region with an adverse pressure gradient.

4-39



4.2.5 Jet Profile Effect. The effect of the jet profile on the numerical solution was

investigated. In addition to the nominal uniform-jet-velocity profile used in the previous

studies, a jet profile after Yeh et al., (1989) was employed for the profile investigation.

The formulation for this profile is given below.

vj(i) = V,.,[1 - (2 - i)2]0

where i is the normalized slot length and ranges from 0.0 < i < 1.0. Two values of the

profile-altering parameter#( were considered-#3 = 0.1 for turbulent profile simulation and

p = 0.5 for an elliptical profile. Note that V,,. was chosen for each P such that the jet

mass flow was the same as that which was used in the uniform-jet portion of the study (i.e.,

the average vi = 2.83Uo, for all three cases). Again, as in Section 4.2.4, incompressible

flow is assumed for purposes of tj specification. Relative to the solution differences found

from other parameter variations (e.g., blowing angle of Section 4.2.4), the variation in

blowing profile generates a small difference that is evident in C, (Figure 4.40) for these

3 .0 . . . . . . . . . . .
C1

2.5-

2.0

1.5

1.0 ungorm

0.5 ----------- P=.5

0.0 9 I t l ' '

Figure 4.40 Effect of a variation in slot velocity profile on CI; 385x201, average v =
2.83UOO at X = 0.0c, 0 = 100, Rec = 2.4 x 104, M.. = 0.2, 1+ = 0.2

conditions (M,, = 0.2, Re, = 2.4 x 10", blow at X = 0.Oc with average vi = 2.83Uao,

fA+ = 0.2). Isovorticity contours (Figure 4.41) for a = 250 shows the close agreement as

well. Even out to a = 330 (Figure 4.42), the three blowing profiles give close agreement in

the dynamic-stall-vortex region.
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(a) uniform (b)j =- 0.1 (c)= 0.5

Figure 4.41 Effect of variation in slot velocity profile on isovorticity contours at a = 250;
385x201, average vi = 2.83U.. at X = 0.0c, € = 10, Re, = 2.4 x 104,

M.. = 0.2, + = 0.2

(a) uniform (b)9= 0.1 (c)/ =0.5

Figure 4.42 Effect of variation in slot velocity profile on isovorticity contours at a = 330;
385x201, average vi = 2.83Uo at X = 0.0c, 4 = 10*, Re, = 2.4 x 10i,
M,,= 0.2, fl+ =0.2

4-41



Based on this brief velocity-profile study at the X = O.Oc slot, the simple uniform

velocity profile is deemed acceptable for investigation of the suppression of dynamic-stall

onset using tangential blowing.

4.2.6 Effect of Pulsed Blowiung. Lovato and Troutt (1992) experimentally in-

vestigated the use of impulsively-applied pulsed blowing to delay the onset of dynamic

stall and to control its development to higher angles of attack. Tangential blowing at

vi = 2.83UK, per slot (with three slots blowing simultaneously) was applied to an airfoil

pitching at fl+ = 0.05 at frequencies experimentally determined by Lovato (1992) from a

study of static stall (20, 10, and 5 Hz corresponding to nondimensional frequencies of 1.00,

0.50, 0.25). Pulse duration in their experiment was 0.01 seconds. As previously mentioned

(Section 4.2.1), the three slots of the NACA 0015 airfoil used in the experiment were each

0.0105c wide and located at X = 0.0c, 0.2c, and 0.4c. Flow visualization data indicates

that pulsed blowing diminishes the size of the separation region after the dynamic-stall

vortex forms.

For the computations, blowing at only the 0.Oc slot was first applied at the beginning

of the pitch-up process for a pulse duration of At+ = 0.2 (for fW+ = 0.2 and t+ = 0.5,

blowing for the first pulse stops at a = 1.240). For the conditions of the current study,

the nondimensional fundamental frequency (f+ = fc/Uoo) is f+ = 1.00. Pullsed blowing

was also conducted at sub-harmonic frequencies of f+ = 0.50 and 0.25. The nominal

conditions for all cases were M.. = 0.2, Re. = 2.4 x 104, vj = 2.83U.., j = 10*, W+ = 0.2.

Figure 4.43 shows the blowing history for the f+ = 1.00 case in terms of t+ and a. The

first subharmonic (f+ = 0.50) blowing history has just the first and third pulses of the

f+ = 1.00 case, and the second subharmonic (f+ = 0.25) has only the first pulse of the

f+ = 1.00 case.

No significant variation in the flow structure from the natural flow (particularly

true for the f+ = 0.25 case) was observed over this frequency range. In particular, for the

conditions of the current simulation, a frequency of f+ = 0.25 amounts to blowing only once

at the beginning of the pitch-up cycle. No observable change in the onset and post-onset

flow structure or aerodynamic loading was observed (Figure 4.44), suggesting that pulsed
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Figure 4.43 Pulse history for the f+ = 1.00 case; fl•' 0.2
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Figure 4.44 C1 Comparison of frequency variation for of pulsed tangential blowing at
X = 0.Oc; 385x201, vi = 2.83U. or i = 0, = 100, Rec = 2.4 x 104,

M. = 0.2, fl = 0.2
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natural constant pulsed (f+ = 1.00)

0 ýO

(a) a = 220

(b) a = 250

Figure 4.45 Effect of pulsed tangential blowing on isovorticity contours; 385x201, vi=
2.83U.. or vi = 0, • = 100, Re, = 2.4 x 104, M" = 0.2, f)+ = 0.2

blowing applied far in advance (e.g., for blowing when 0 < a < 1.24°) of the dynamic-stall-

onset angle is ineffective. This observation makes sense in light of Section 4.2.3 results

which indicate that the most critical time for blowing is just before the time that reverse-

flow-fluid pooling will naturally begin.

The difference in flow structure near the natural-dynamic-stall-onset a induced by

constant and pulsed blowing (f+ = 1.00) at the leading edge is presented in the form of

vorticity contours in Figure 4.45. Blowing introduces an additional inflection point into

the boundary layer profiles along the leading edge resulting in a less stable shear layer.

Further, pulsing of the blowing introduces an additional time scale into the flow which

may lead to the formation of modes in the shear layer less stable than those present under

constant blowing conditions. In fact, for the case considered, the temporal and spatial

development of the induced shear layer is far less stable than even the natural-case shear

layer as evidenced by the premature break-up of the aft shear layer (Figure 4.45).
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In addition to changes at low a, the flow-field structure following the development

of the dynamic-stall vortex is dramatically altered by pulsed blowing. Evident in Fig-

ure 4.45(b) is the presence of additional discrete shear-layer vortices of decreased wave-
length; these vortices convect downstream at roughly the same rate as the shear layer

vortex. This flow modification does alter the airfoil loading (Figure 4.44), suggesting that

there may be some measure of benefit to be gained by introducing vorticity of the the

correct amplitude and phase such that the post-onset development of the shear layer is

constructively altered, however post-onset control of dynamic stall is beyond the scope of

this work.

A comparison of lift coefficients indicates that for the conditions considered, con-

stant blowing yields the greatest improvement (Figure 4.46) as well as being far easier to

implement as part of a control strategy.

3 .0 . . . ... . , . ,

CI
2.5.

2.0

1.5

natural

--------------const
0.5 . .------- pulsed, f'=1 .00

0..0 t 110 15 20 A5 03

Figure 4.46 Effect of constant and pulsed tangential blowing at X = 0.Oc on Cl; 385x201,
vi = 2.83Uo,, or vj = 0, q0 = l0°, Re, = 2.4 x 10', Mo, = 0.2, fl+ = 0.2

Based on previous work (Karim and Acharya, 1993; Visbal, 1991) and the
constant-tangential-blowing investigations contained in this document, it is obvious that

pulsed blowing does not directly address the problem of reverse-flow fluid pooling under

the shear layer (Section 2.2) which is key to dynamic-stall vortex formation.

4.2.7 Compressibility Assessment. As in the natural case, compressibility effects
are examined in the same two ways-by comparing solutions at a lower Mo to the M. =

0.2 solution, and by an examination the relative magnitude of terms in the vorticity-
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transport equation. The issue of compressibility will first be addressed by obtaining a

numerical solution at a lower Mach number.

4.2.7.1 Computations at M1. < 0.2. The natural-case results (Section 4.1.3)

indicate that compressibility effects are negligible for the flow conditions (Moo = 0.2,

Re, = 2.4 x 10') and pitch rate (0o+ = 0.2) studied. The 385x201 grid was used to examine

the 0.0c-blowing case with vi = 2.83Uo (blowing angle at 100 off the tangent, constant

profile) at M.. = 0.1 and Re, = 1.0 x 10'. C, for Mo. = 0.2 is quite similar to C, for

M = 0.1 (Figure 4.47(a)). C. values are nearly identical up to a = 200, with the first

3.0
CI , / . -10.0 M.=02

2.5 , CP . .. -- .1

-7.5
2.0-

1.5 -5.0 , cm-26

-- I

1.0 1 -2.5 og22°
------ --. =0.1

0.5 -00

0.0 . 10 135 0 2- 0 - 0.00 0.25 0.50 0.75 Ric I.

(a) (b)

Figure 4.47 Effect of M., on Cg and C. for 0.Oc-blowing case; 385x201, vi = 2.83U"",
= 100, Re, = 1.0 x 10', fl+ = 0.2

significant difference appearing at a = 220 (Figure 4.47(b)) when the dynamic-stall vor-

tex begins to form. Again, as before with the natural case, the compressibility becomes

more prominent after the dynamic-stall vortex grows (Figure 4.48). This one comparison

in conjunction with the extensive natural-case results (Section 4.1.3.1) indicates that for

study of suppression of dynamic-stall vortex formation, Moo = 0.2 results are essentially

incompressible.

4.2.7.2 Compressibility assessment via the vorticity-transport equation.

Contours of the vorticity-transport-equation terms are shown for the 361x201 grid in Fig-

ure 4.49. The conditions used to generate the solution are as follows: Re, = 2.4 x 10',

Moo = 0.2, 1+ = 0.2, vi = 4.14U.. at a blowing angle of 100 off the tangent at the 0.05c
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I0.

0. 0 _ at .Oft3C

(a) (b) M. = 0.2 (c) M. = 0.1

Figure 4.48 Effect of M.. on Cp and isovorticity contours for O.Oc-blowing case at a = 270;
385x201, vj = 2.83U., , = 100, Re, = 1.0 x 104, no+ = 0.2

(a) w (b) we (c) convection

(d) expansion (e) baroclinic (f) viscous

Figure 4.49 Isovorticity contours and contours of vorticity-transport equation terms for
0.05c-blowing case; 361x201, vj = 4.14U., a = 27°, =10, Rec, = 2.4x 104 ,
Moo = 0.2, fl+ = 0.2
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slot. The contour levels shown are the same as those used for the natural case (Figure 4.14).

As in the natural case, all terms are small compared to the convection term. Though the

expansion term is still small for this very-high blowing velocity case (vi = 4.14U", for

M=. = 0.2 flow produces a local Mach number at the slot that is roughly 0.8), it is notice-

ably larger near the slot (X = 0.05c) than it was for the natural case prior to dynamic-stall

vortex formation (Figure 4.14(d)). This indicates that in the vicinity of the jet the flow

is not incompressible (Section 4.2.1) since this term is nonzero only if V. V 0 0 (Equa-

tion 4.2). Also, the vorticity in the shear layer is much greater for this blowing case, and

this will have an effect of magnifying what small, nonzero V . V is present.

Just prior to dynamic-stall-vortex formation the expansion, viscous-diffusion, and

baroclinic-torque terms become more significant (Figure 4.50) than they were at the lower

a (Figure 4.49)-the same trend as for the natural case (Figures 4.14 and 4.15). In fact, the

(a) w (b) wt (c) convection

(d) expansion (e) baroclinic (f) viscous

Figure 4.50 Isovorticity contours and contours of vorticity-transport equation terms for
0.05c-blowing case; 361x201, vi = 4.14Uoo, a = 300, 4 = 100, Re, = 2.4x 104,
M.. = 0.2, fl+ = 0.2

baroclinic-torque term is now significant when compared with the expansion and viscous

diffusion terms whereas with the natural case, this was not so. This is due to the larger

value of VP for the blowing case (Equation 4.2).
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Figure 4.51 presents profiles of V • V and the vorticity-transport-equation terms at

X = 0.10c. All the vorticity-transport-equation terms are plotted using the same scales

for five a's.

s11 /-o.- 15 $ , -a--- -0-1515
/--,, 20-- a-- --- 4.--U2 a2
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Figure 4.51 Profiles of V V and vorticity-transport equation terms for blowing case;
361x201, vi = 4.14UbO, a = 150, 200, 220, 250, 270, Re, = 2.4 x 104, M " = 0.2,0o 0.2

Comparison of V- V for the natural (Figure 4.16(a)) and blowing (Figure 4.51(a))

cases indicates that compressibility effects are now present near the surface due to the

high-velocity jet. Comparison of the expansion term (Figure 4.51(d)) to the other terms

of the vorticity-transport equation demonstrate that compressibility contributes little to

the vorticity budget (just as with the natural case).

Very near the surface, in contrast to the natural case (Figure 4.16(f)), the viscous

diffusion term is now significant compared to the other terms. However, beyond 0.012c

above the airfoil at this 10% chord station, this term is insignificant. The baroclinic

torque term is not significant at this station, though closer to the slot, it will become

more significant due to the large pressure gradients in the vicinity of the high-velocity flow

emanating from the slot.
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The profiles and contour plots of the vorticity-transport-equation terms have demon-

strated the lack of significant compressibility in the solution, a result in agreement with

Section 4.2.7.1 results.

4.3 Control via Suction

Motivated by experimental work (Karim and Acharya, 1993) which showed the

benefits of active suction control of dynamic stall for a NACA 0012 airfoil, a numerical

study was undertaken in order to compare suction control directly to tangential blow-

ing. As previously stated, Karim and Acharya demonstrated that the key to dynamic-

stall-vortex-formation suppression is to remove fluid from underneath the leading-edge-

originating shear layer at the same rate as the reverse-flowing-fluid-pooling accumulation

rate (Section 2.3). Numerical studies were conducted prior to the experimental work

of Karim and Acharya, investigating dynamic-stall control via constant suction (Visbal,

1991) and modulated suction (Ghia, et al., 1992), though they did not compare directly

with tangential blowing as is done in this section

This section presents results for dynamic-stall control using a suction slot near the

leading edge (X = 0.05c). First, the effect of suction initiation angle (ab) is examined.

Following that, results from investigation into the effect that varying suction velocity has

on suction control are shown. The effect of slot width is presented next, and last, a direct

comparison is made between control via suction and blowing. The nominal flow and pitch-

rate conditions used throughout this suction study are M.. = 0.2, Rec = 2.4 x 10', and

0+ = 0.2.

The 351x201 and 361x201 grids were found to possess satisfactory spatial resolution

(Appendix E) for the suction-control study. Based on the tangential-blowing time-step

and dissipation-coefficient studies (Appendices C.2 and C.3), the time step and dissipation

coefficient chosen for all the suction-case computations are At+ = 0.001 and C4 = 0.01.

4.3.1 Effect of Delaying ab. As is the case for tangential-blowing (Section 4.2.3),

effective control is accomplished as long as suction is applied before shear-layer lift-off. For
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the natural-case nominal conditions (Moo = 0.2, Re, = 2.4 x 10i, fl+ = 0.2), this lift off

occurs at a ; 200 (Figure 2.1(a)).

Numerical solutions were obtained for the nominal conditions using a suction velocity

of v. = 0.697U. at the 0.05c slot (sa = 0.00717c). As was the case for tangential blowing,

the dynamic-stall vortex was similarly suppressed for ab's ranging to 200 (Figure 4.52) and

not as successfully suppressed when suction begins at ab = 220. Note that the shear layer

(a) a= 00 (b) ab 50 (c) a =10_

(d) ab - 150 (e) a, - 200 (f) ab, 220

Figure 4.52 Effect of suction ab on vorticity contours (a - 33.00); 361x201, v, =

0.697U•, Re, = 2.4 x 104, M( = 0.2, fo+ = 0.2

aft of the leading-edge region is quite different for each suction-ab case while this is not

the case for tangential blowing (Figure 4.34). Blowing produces a strong shear layer which

gives a consistent solution along the aft portion of the airfoil. Figure 4.53 illustrates this

difference in C, at the higher a's.

4.3.2 Suction Velocity Effects. Suction velocity was varied to study its effect

on dynamic-stall-vortex-formation control at the 0.05c slot. The suction velocity (V, =

0.697U.) used for the slot-grid study (Section E) and the ab study (Section 4.3.1) is

halved and doubled to investigate the effect of suction-velocity variation on the solution.
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Figure 4.53 Effect of suction at 0.05c slot on Cl; 361z.201, v, = 0.697Uoo, Ree = 2.4 x 104,

Mo. = 0.2, o+ = 0.2

Mass-flow rate through the slot for tangential blowing is given by Equation 3.5. For

suction, the jet subscripts (j) are exchanged for suction subscripts (a) and the angle at

which the fluid enters the slot is considered to be • = 900 giving the following mass-flow

equation for suction.

Th. = ps as V.

Assuming p, = po,, (Section 4.2.1), the mass-flow rates through the 0.00717c-wide slot for

v./Uoo = 0.3845,0.697,1.394 are th/(po,,U.4c) = 0.0025,0.0050,0.0100 respectively.

As expected, postponement of the dynamic-stall-vortex formation increases with in-

creased suction rates (Figure 4.54). The a-delay from the three velocities ranges from about

50 to about 160 (compare a = 22°-natural case in Figure 4.30(a) with v, = 0.3485U., case

at a = 270 (Figure 4.54) and with v, = 1.394Uo. at a = 380 in (Figure 4.54(d)).

The effect on loading is presented in Figure 4.55. Note that each case begins at

a, = 50 with a discontinuity due to the impulsive start of the suction. Based on the ab

study (Section 4.3.1), this should have no significant effect on the dynamic-stall-vortex

formation.

4.3.3 Mot Width Effects. Karim and Acharya (1993) show that as long as the

reverse-flowing fluid at the surface is not allowed to pool under the shear layer near the

leading edge (Section 2.2), then dynamic-stall-vortex formation will be delayed. They
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natural v, = 0.3485U. tl = 0.697Uc v, = 1.394U,,.

(a) a = 250

~ý_

(b) a = 27'

_________________ (c) a =330 *_ _ _ _ _ _ _

00 I

(d)a = 380

Figure 4.54 Effect of variation in suction velocity at 0.05c slot on isovorticity contours;
361x201, ab = 50, Ree = 2.4 x 10', M.. = 0.2, o+ = 0.2
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1.5
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0.5 ---------- V,=0.697
___ v.-=1.394

00 . .. , .. I.. . . . . . .
5 10 15 20 25 30O 355-

Figure 4.55 Effect of variation in suction velocity at 0.05c slot on C,; 361x201, a, = 50,
Ree = 2.4x104, M.. = 0.2, 0+ = 0.2

varied slot position from X = 0.02c to 0.05c and slot width by a factor of four, and neither

variation had significant effect on the resulting flow field. They concluded that these results

indicate that the suction volume rate is the important parameter, and not suction velocity.

Computations were accomplished to verify this conclusion regarding the effect of

slot width. The 361x201 and 351x201 grids (a, = 0.00717c and 0.0107c, respectively), each

having a slot at X = 0.05c, were used in the study. Suction mass flow (mh = 0.0052p.oUoc)

was matched for the two grids assuming p, = po.. Cl (Figure 4.56) and isovorticity contours

3.0 . .. . .

2.5'-

2.0

1.5

361 x201, naoural
0.5 - 361 x201, v.=0.720 at 0.05c

......... 351x201, v,=0.491 at 0.05c

0 .0 T " 5 - I t) 1 ' ' 0 ' 2- 5 3 '0 A 3 5

a
Figure 4.56 Effect of slot-width variation at 0.05c slot on CI; Rec = 2.4xl04, M., = 0.2,

0o+ = 0.2

(Figure 4.57) demonstrate nearly identical results for the two different slot widths and

thereby confirm the findings of Karim and Acharya.
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C

(a) natural (b) v, = 0.720, a. = 0.00717c (c) vo = 0.491, a. = 0.0107c

Figure 4.57 Effect of slot-width variation on isovorticity contours (a = 36.00); 361x201
(a, b) and 351x201 (c), Re. = 2.4 X I0', Mo. = 0.2, 0+ = 0.2

Static-stall control experiments on a 10%-thick wing (Williams, 1961:91) indicated

that the optimum slot location is before the 2%-chord position. More investigation needs

to be made to see if this static-stall result holds true for the dynamic-stall case.

4.3.4 Suction versus Tangential Blowing. Final implementation of a control

technique (e.g., suction, tangential blowing, moving wall (Freymuth, et al., (1989))

into a real-life application will have the usual system-engineering compromises associated

with it. The advantages and disadvantages of each approach need to be weighed against

each other using the best available data. The purpose of this section is simply to show a

direct comparison between suction control and tangential-blowing control. The nominal

flow and pitch-rate conditions are used for the comparison (M.. = 0.2, Re. = 2.4 x 10i,

= 0.2). The time step used is At = 0.001 and the dissipation coefficient is e4 = 0.01 for

the natural and suction cases, and e4 = 0.02 for the tangential-blowing case. The specified

velocities at the X = 0.05c, 0.00717c-width slot are vj = 4.14U.. and v, = 0.720U.. for

blowing and suction, respectively. These velocities result in the same specified slot mass

flow (ih = 0.0052pooUooc) for blowing and suction, assuming pj = ps = pCO.

Figure 4.58 presents the isovorticity contours of approximately the same dynamic-

stall-onset condition (to the nearest degree of a). It is arguable whether or not "dynamic-

stall vortex" is still an appropriate term to apply to the vortical formations which occur

after leading-edge-shear-layer lift off for the suction-control cases. For example, at a = 330

for the suction case, there is a significant vortex at X ; 0.4c (Figure 4.58(c)) that may
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(a) natural, a - 220 (b) blow, a - 290 (c) suction, a = 330

F:gue 4.58 Isovorticity contour comparison for natural case, tangential-blowing control,
and suction control at 0.05c slot; 361x201, mh = 0.0052po,,Uoc for blowing
and suction, Re. = 2.4x10 4 , Mo. = 0.2, 0+ = 0.2

be akin to a dynamic-stall vortex. However, for describing a-shifts due to control, if the

leading-edge vortical flow which forms shortly after shear-layer lift-off near the leading

edge is used as a common reference point for stall onset, then for these conditions, tan-

gential blowing delays dynamic-stall-vortex formation by - 70 while suction delays it by

S110. These offset angles translate into an increase in the dynamic-stall-onset angle by

approximately 30% and 50% for blowing and suction control.

The shear layer aft of the dynamic-stall-vortex region is stronger for blowing than

for suction and hence remains near the surface up to a = 300 for blowing (Figure 4.59).

This behavior has a dramatic effect on the aerodynamic loading. FRom a comparison

of isovorticity contours (Figure 4.59), C5 and Cm plots (Figure 4.60), it is evident that

the stronger shear layer over the middle-to-aft section of the airfoil upper surface for

blowing results in a reduced trailing-edge-vortex-shedding effect much as the 0.4c-blowing

did (Section 4.2.1). This stronger shear-layer also translates into slightly greater C_... for

the blowing case.

More investigation into high-C4 tangential-blowing cases (employing the same mh by

using smaller slot widths) is required since the blowing cases are directly dependent on

C. (Section 4.2.2) and the suction cases are directly dependent on 1h (Section 4.3.2). In

addition to investigating higher C. cases, there are at least two other questions requir-

ing further study. First, the suction-control experiments (Karim and Acharya, 1993)

showed that as Reynolds number increases (or pitch rate decreases at the same Re,),
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natural vj = 4.14U., ., = 0.72U,,.

0i

(a)a= 250

(a) a = 270

(a) a =300

Figure 4.59 Isovorticity contour comparison for natural case, tangential-blowing coutrol,

and suction control at 0.05c slot over three a's; 361x201, rh = 0.0O52p.,,Uoc
for blowing and suction, Re. = 2.4x104, M, = 0.2, 11+= 0.2

. . , U
5 10 5 ~ U U U-1.30 3

Figure 4.60 C,, Cd, and C0 (about X = 0.25c) comparisons for natural case,

tangential-blowing control, and suction control at 0.05c slot; 361x201, in =
O.O052po(4,e for blowing and suction, Re- = 2.4x104 , Moo = 0.2, 1o+ =0.2
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suction control becomes less effective due to the thicker reverse-flow region. Tangential-

blowing control for dynamic stall at higher Reynolds numbers needs to be investigated

as the tangential-blowing technique may Lot suffer as much from this reverse-flow region

thickness problem.

Second, a certain amount of control over the blowing angle (0) may be possible.

For the flow and pitch-rate conditions studied here, as 0 increased, dynamic-stall control

effectiveness decreased (Section 4.2.3). However, for thicker reverse-flow regions that exist

at higher Reynolds numbers, there may possibly be some benefit to slightly increasing the

blowing angle in order to beneficially affect the thicker reverse-flowing region.

This direct comparison of tangential-blowing and suction control suggests that tangential-

blowing control at high-C,. values may be as effective at flight Reynolds numbers as suction.

Also, real-life control implementation issues are likely to favor blowing control over suc-

tion control (Poisson-Quinton and Lepage, 1961:35-36). Suction control requires the

use of large ducts inside wings which take up precious volume often used for fuel. How-

ever, blowing control requires very little inner-wing volume as small-diameter high-pressure

lines are plumbed to a blowing plenum just under the slot surface. Additionally, the added

weight and space required on board for a low-pressure source for suction control compared

to using jet-engine compressor bleed air for blowing control makes blowing more attractive

as well.
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V. Conclusions

The use of tangential blowing to delay the appearance and development of the dy-

namic stall vortex generated on a NACA 0015 airfoil experiencing constant-rate pitch-up

was investigated numerically. The '-D compressible Navier-Stokes equations were solved

using a well-validated, implicit, finite-difference code (Visbal, 1986a) which uses the

Beam-Warming algorithm. The computations were made for low-Reynolds number, low-

Mach number flow. For the conditions examined, several conclusions are drawn. These

conclusions, along with suggested future research opportunities, are enumerated below.

1. Blowing in a nearly tangential sense through a surface slot near the leading edge of

an airfoil has numerically been demonstrated to be an effective technique to suppress

dynamic stall. As non-dimensional pitch rate (fW0) is decreased, tangential-blowing

control becomes even more effective. By increasing momentum of the flow near the

surface, tangential-blowing control delays dynamic-stall-vortex formation as long as

the blowing keeps reverse-flowing fluid from pooling under the shear layer near the

leading edge.

2. The blowing initiation angle of attack (ab) has no significant bearing on dynamic-

stall-vortex formation so long as ab is less than the angle at which shear layer lift

off occurs (a ,t 200 for the nominal conditions used in this research). Blowing after

this angle is ineffective at suppressing dynamic-stall vortex formation (though the

dynamic-stall-vortex structure is significantly modified). A pressure plateau which

occurs near the leading edge around the lift-off a may be an exploitable characteristic

of the dynamic-stall phenomenon that will permit blowing to be delayed until lift-off

just begins to occur. Further investigation into this matter is warranted.

3. Blowing in the leading-edge region up-chord of the location where fluid will naturally

pool (around 0.18c for the nominal conditions) just prior to dynamic-stall-vortex

formation gives the greatest delay in dynamic-stall-vortex formation. Tangential

blowing through a 0.05c slot of the NACA 0015 airfoil delays dynamic-stall-vortex

formation to a higher a than blowing at a 0.Oc slot. Further investigation is needed
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to determine if blowing between these locations will produce even greater delays in

the angle at which the dynamic-stall vortex forms.

4. For a given blowing angle (0), increasing the jet momentum results in a delay in

dynamic-stall vortex formation.

5. A slot-width study established that for a given blowing angle, tangential-blowing-

control effectiveness for dynamic-stall is directly related to the blowing momentum

coefficient (C,.), as is the case with static-stall control using nearly tangential blowing

(Lachmann, 1961).

6. A direct comparison between tangential-blowing and suction control for the same

mass flow rate per unit span (th) and slot width (and thus, the same CJ) showed that

suction-control delays dynamic-stall-vortex formation to a higher a (50% a-delay for

suction, 30% for blowing). However, since tangential-blowing-control effectiveness

depends directly on C,. (for a given 0, increasing C,, delays dynamic-stall-vortex

formation) and not mh as suction control does (Karim and Acharya, 1993), further

investigation of blowing at higher C,'s for a fixed rh (smaller slot widths) is required.

7. Significant sensitivity to jet orientation angle was observed. For the same C,, a

smaller jet-blowing angle (0) delays dynamic-stall-vortex formation over the range

of O's considered. The slot blowing velocity is a controlled parameter for the com-

putations whereas slot plenum pressure is specified in experiments. Experiments on

jet-blowing-angle behavior during pitch-up for a slot located in a region possessing

a naturally adverse pressure gradient (say, at X = 0.05c) are needed to assess the

constant-0 assumption made in the computations. Furthermore, experiments are

required to discover if 0 can be sufficiently controlled to take advantage of lower-0-

blowing benefits for laminar boundary layers, and potential greater-0-blowing bene-

fits for turbulent boundary layers.

8. Pulsed blowing was applied at a 0.Oc slot for experimentally-determined frequen-

cies deemed most effective for controlling the static-stall separation region (Lovato,

1992). This technique is less effective than simply constant-blowing control. Pulsed

blowing does not significantly delay dynamic-stall onset because it does not affect
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the pool of reverse-flowing fluid; however, pulsing does alter the structure of the

shear layer once the dynamic-stall vortex forms. Compared to constant blowing,

pulsed blowing produces additional vortices on the leeward side of the airfoil aft of

the leading-edge region. The possible benefits of using this technique to control the

flow over the airfoil after the dynamic-stall vortex is formed is beyond the scope of

this work and was not investigated.

9. Aerodynamic-loads dependence eu the initial condition (taken from the time-periodic

solution for a = 00) was demonstrated as the timing of events is dictated to some de-

gree by the initial state of the trailing edge flow. A similar dependence was observed

when the airfoil-exponential-acceleration time constant (t4) was varied. Both phe-

nomena stem from the unsteady trailing-edge vortex shedding which affects a large

aft portion of the airfoil. At higher non-dimensional pitch rates (e.g., 11o = 0.6), the

behavior vanishes due to dominant motion-history effects (as explained by Kooches-

fahani and Smiljanovski (1993)). It is therefore appropriate to document the initial

condition (e.g., give the point in the time-periodic C, curve at which pitch-up begins)

and acceleration profile used to achieve the constant non-dimensional pitch rate for

low Reynolds number simulations of dynamic stall, particularly for low pitch rates

where this effect is more pronounced. However, initial condition and t+ variation (as

long as dynamic-stall onset occurs after t+ = to+) do not affect dynamic-stall-vortex

formation.

10. A term-by-term examination of the vorticity transport equation showed that the

transport of vorticity is overwhelmingly dominated by convection. The baroclinic-

torque and expansion terms are small, suggesting that for the Mach number and

pitch rate examined (Moo = 0.2 and Alo+ = 0.2, respectively), the flow is essentially

incompressible.

11. Computations at M.. = 0.1, 0.05 and 0.2 were qualitatively similar, suggesting that,

for the conditions considered, simulations at M.. = 0.2 are suitable for direct compar-

ison with low-speed experimental data. However, slight compressibility effects begin

to appear (in the form of a lower dynamic-stall-vortex suction peak and a change in

events timing) as the dynamic-stall-vortex begins to form. These computations also
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demonstrated the feasibility of solving the incompressible-flow dynamic-stall problem

using a compressible code rather than using the pseudocompressible technique (which

would require approximately lOx the computer time to solve the same problem).
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Appendiz A. Grid Constants and Flux Jacobians

This appendix contains grid and reference-dependent constants a, b, and c used in

flux terms of Equation 3.1 and flux Jacobian terms for compressible, laminar flow (Visbal,

1986a).

A. 1 Grid Constants

b,=432+c, b2 =1 eV b3= C2+4C b_ 2 cPC+&'2)

34 3 31 Pr

4 2 2333

Ci'4q+, = 2 -~i G1++4eZc vv
4 2 1 4 •3_( 12+72

di= • •2 4 = 47 Y + i, dC = 2 +'4, 2 d, = + 21 )

A.2 Flux Jacobians

AS - U (- (7- 2)C.u -(7 - 1)C.v + Cyu (Y - 1)C.

V& v - (-Y- 1)4U& 3- (7-y-2)4,v (7-y-1)4

(2- e) (-ye - )C. -(-y- 1)u& (ye- O)f, -(y- 1)v, -t J
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Appendiz B. Natural Numerical Artifacts Effects

As with any numerical analysis, great care must be taken to ensure the accuracy

of the computed results. Application of numerical schemes to the discretized form of the

governing equations introduces numerical effects that need to be properly identified in

order that they not mask the real physics of the problem. Previous work (Rizzetta and

Visbal, 1992; Visbal, 1991; Visbal and Shang, 1989; Visbal, 1986b) is relied on

for the selection of implicit boundary conditions and far-field boundary position for the

work contained in this publication, thereby alleviating the need for studies of these issues.

Along with addressing the usual concerns regarding temporal and spatial discretization

errors via time-step and grid studies, the sensitivity of the computed solutions to the

amount of numerical damping is also addressed. The sensitivity of the computed solution

to the aforementioned numerical artifacts is first evaluated for a single flow and pitch-

rate condition given by Mo = 0.2, Re. = 2.4 x 10i, and fA+ = 0.2. For a given flow

and pitch-rate condition, the first step in this rigorous sensitivity study is to start with

the most important parameter to be varied (spatial discretization) while fixing the two

less sensitive variables at nominal values. Once the solution is deemed accurate enough

for the chosen grid, the next step is to vary the temporal discretization while fixing the

least sensitive parameter (dissipation coefficient) until the solution is independent of the

temporal increment. Using this time increment and grid, the final step is the determination

of the value of the dissipation coefficient for which the computed solution no longer varies.

Thus, the order of presentation (spatial discretization, temporal discretization, numerical

damping) in the following three sections coincides with the sensitivity-study-strategy order

employed.

B. 1 Grid Study

Six of the 0-grids listed in Table 4.1 and used in the grid study for this research are

shown in Figure 4.1. High grid density is observable at X = 0.4c (Figure 4.1 (a), (d) -

(f)), X = 0.2c (Figure 4.1 (a)), X = 0.05c (Figure 4.1 (b), (c)), and X = 0.Oc (all meshes).

Stream-wise-direction clustering of points is applied in slotted regions for control cases

(Sections 4.2 and 4.3). The 385x201 grid (Figure 4.1 (d)) has minimum ý- and in-spacings
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of 0.000082c (at the rounded trailing edge) and 0.00005c (at the surface), respectively. For

nominal flow conditions (M,, = 0.2, Ree = 2.4 x 101), between 60 - 70 grid points are

in the boundary layer at X = 0.5c for a = 00. Nominal choices of time step and explicit

damping coefficient for this grid study are At+ = 0.001 and e4 = 0.01. First, consideration

is given to the f-spacing around the airfoil (f- and q-spacing refinements could not be

accomplished simultaneously due to resource constraints).

A comparison of CI-a curves, as well as drag polars, indicates that there is good

agreement between three solutions (343x201, 361x201, 505x201 grids) to an angle of attack

of 270 (Figure B.1). The isovorticity contours for these three grids exhibit qualitatively

CI ._1.5 '

2.5-~'

2.0-
1.0

1.5 :

1.0 - 343x201 0.5

. 361x201 343K201
0.5 --------- 505x201 . 361x201

--- -.... 505x201
0.0 b10 1"5 0 2%5 30 35 0.C 5 10 15 20 25 30 35

a aX

(a) (b)

Figure B.1 Effect of mesh refinement on C, and Cd; Re, = 2.4 x 104, M." = 0.2, Wl0 = 0.2

good agreement to a ;t 25° (Figure B.2(a)), after which the 343x201 grid is too sparse to

fully capture the physics in the region of the dynamic stall vortex which has begun to lift

away from the airfoil surface to a more sparsely defined region of the grid (Figure B.2(b)).

The first significant difference that appears in the pressure coefficient plots (Figure B.3)

occurs at a = 20°. At this angle of attack, the steep adverse pressure gradient at X ; 0.2c,

where the dynamic stall vortex begins to form, is not captured as well by the sparser

343x201 grid. At a = 220, the suction peak associated with the dynamic stall vortex

(X s 0.2c) is highest and sharpest for the most refined grid (Figure B.3(b)), though the

361x201 grid comes considerably closer to the 505x201-grid result than does the 343x201

grid. The solutions for the three more refined grids (361x201, 385x201, 505x201) are
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343x201 361x201 505x201

(a) a = 250

(b) a 270

Figure B.2 Effect of mesh refinement on vorticity contours; Re, = 2.4 x 10', M. = 0.2,
fl+= 0.2

C p Cp
343x201 p 343x201

-5.0 - - - - - 361x201 -5.0 - -..... 361x201
-------- 505x201 --------- 505x201

-2.5 ' -2.5

0.0 0.0

o0 0.9 (.50 015 x/c .M 0.00 - oto 2 0.0 0.75 1ic.00

(a) a =15, 200 (b) a = 220

Figure B.3 Effect of mesh refinement on C.; Re, = 2.4 x 10i, M.,- = 0.2, fl' = 0.2
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essentially the same to a = 270 as evidenced by the C1, Cd (Figure B.4) and Cp plots

(Figure B.5). Observe that differences between simulations is most evident in Cp while

field vorticity and integrated quantities (CI and Cd) information tend to be less sensitive

measures of solution accuracy.

3.0

,1.5 .2.s //"" "•" Cd

2.0 /-. ,

1.0-

1.5-

S385X201 361x2O1
0.5 --------- 505x201 385x201

------ . .- 505x201
0.0 . 10 15 2t ;5 30 35b0 5 1*0 15 20 25 30 35

(t a
(a) (b)

Figure B.4 Comparison of C, and Cd for 361x201, 385x201, and 505x201 grids; Re, =

2.4 x 104, Mo. = 0.2, Wo+= 0.2

Cp C.
- 361x201 -- _ 361x201

-5.0 - - 385x201 -5.0 , 385x201
-----505X201-----5520

-2.5 -2.5

0.0 0.0

0 -Xc 00 0.25 ."0 0.75 X/C 1.00

(a) a = 270 (b) a = 300

Figure B.5 Comparison of C, for 361x201, 385x201, and 505x201 grids; Re, = 2.4 x 104,
M.. = 0.2, fl+ = 0.2

The 351x201 and 361x201 grids differ only near the 0.05c slot. They each use 21

points to define the slot region, but the 361x201 grid slot width is 0.00717c while the

351x201 grid has a slot width of 0.0107c. The additional 10 i-direction points are present
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about the 0.05c slot for the 361x201 grid to maintain proper metric smoothness in the slot

region. These two grids give essentially identical solutions (Figure B.6).

100

0.0S 5 O I 0 2 0 3
2.0-

(a) (b) 361x201 grid (c) 351x201 grid

Figure B.6 Effect of slot width variation on C, and vorticity contours (a = 360); Re, =

2.4 x 104 , Moo = 0.2, 0' = 0.2

To ensure that 201 grid points normal to the airfoil is adequate, solutions were also

generated for 385x151 and 385x301 meshes and compared with those obtained for the

385x201 mesh. The normal-grid-point distribution (it-direction) is shown in Figure B.7

along with C, versus a for these three grids. C, is in excellent agreement for all three grids

10' 3.0

10' /-" 2.5

10.1 . .. 2.0-

10,3, -" 1.0.5

1385x151 385xl5l

10 - -385x201 385x201
•.-........ .•'xu 385........---- 385x301

10, 50 1 0 -i 2600 250 30 O. " 10 15 2t 2l 5 30 35

(a) (b)

Figure B.7 Grid refinement in the normal direction and its effect on CI; Re, = 2.4 x 104,
M,. = 0.2, fL+ = 0.2

to an angle of attack of 250 and to an angle of attack of 360 for the 201- and 301-normal-

spaced grids, demonstrating that 201 grid points offers adequate spatial resolution in the

17-direction. As the region of o in the stall-onset range was of principal concern (for the

flow conditions considered, this occurs around 20* - 220 (Figure 2.2) for the natural case at
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fl+ = 0.2), the 385x201 and 361x201 grids were used for the majority of the natural-case

analysis.

B.2 Temporal Discretization Study

The sensitivity of the computed solutions to temporal increment was investigated on

the 385x201 and 505x201 meshes. As previously mentioned, the nominal time step used

for the grid study of Section B.1 was 0.001. Based on C, plots, 385x201-grid solutions

were determined to be relatively insensitive to time step to a = 33* so long as the time

step remained at or below 0.001 (Figure B.8). Isovorticity contours are quite similar far

3 .0 ------ - . . . ..... . •i . . . . . . . . . . . . . " . .. .
3C1Cl 1.5i ,

2.5'

2.0
1.0

1.5

1.0 M=O.000 0.5o
.A=O.00025 h1=O.000

-o-------.At1=0.00025
0.0 5 1'0 it 15 2 -5 30 35 0.0 5 10 15 20 25 30 35a a

(a) (b)

Figure B.8 Effect of time step on C, and Cd; 385x201, Re. = 2.4 x 104, M, = 0.2,

0o+ =0.2

past stall onset up to a = 270 (Figure B.9) for all time steps, after which the temporal

inaccuracies begin to grow. Cp plots also show close agreement to a = 270 (Figure B.10).

Since finer meshes typically dictate smaller temporal increments, the effect of time

step for the 505x201 grid was also examined to ensure that sufficiently accurate results

were used in the grid study (Section B.1) for determining solution independence to spatial

discretization errors. For At+ = 0.001 and 0.0005, C, and Cd show good agreement

to a = 250 (Figure B.11), an angle of attack at which the dynamic-stall vortex is well

formed (Figure B.12(a)). Note that the C, plot and isovorticity contours show acceptable

agreement for these two time steps even out to a = 300 (Figure B.12(b)), however a
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A+= 0.001 At+ = 0.0005 At+ 0.00025

______________________(a)_a = 250 ____________

(b) a = 270

Figure B.9 Effect of time step on vorticity contours; 385x201, Re, 2.4 x 10", M" = 0.2,
0l~ 0.2
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Figure B.10 Effect of time step on C,,; 385x201, Re, 2.4 x 10", MO, = 0.2, Wl = 0.2
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Figure B.11 Effect of time step on C, and Cd; 505x201, Re. = 2.4 x 104, Moo = 0.2,
n+ = 0.2

large disagreement is evident at a = 330 (Figure B.12(c)). Based on this time-step study,

At+ = 0.001 is a small enough time step for the 505x201 grid when studying dynamic-stall

onset for these pitch-rate and flow conditions.

B.3 Dissipation Coefficient Study

Numerical smoothing is necessary for the Beam-Warming algorithm to control oscil-

lations which arise from the discretization of governing equations with central differences

(central differences are not dissipative (Pullium, 1986)). Thus, fourth-order terms (which

are dissipative in nature) are added to the scheme in order to damp out the short wave-

lengths and to keep the scheme spatially second-order accurate. The effect of a variation in

the amount of this numerical smoothing was examined for two grids used for the majority

of the control study (385x201 and 361x201). As previously indicated, the nominal explicit

damping coefficient used for the grid study (Section B.1) and time-step study (Section B.2)

was e4 = 0.01. Figures B.13 and B.14 show the minor effect on C, of halving and doubling

c4 for the 385x201 and 361x201 grids, respectively. As seen in these figures, all three

values for the smoothing factors were found to produce essentially the same result well

beyond the angle of attack at which the dynamic-stall vortex is formed. Thus the nominal

value of C4 = 0.01 was selected for most of the study (the notable exception being the need

to increase C4 when high blowing rates are used, which is addressed in Section C.3).
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Figure B.12 Effect of time step on Cp and vorticity contours; 505x201, Re, = 2.4 x 104,
M = 0.2, fl+ = 0.2
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(a) (b) 4 = 0.005 (c) C4 = 0.01

Figure B.13 Effect of halving dissipation coefficient on C, and isovorticity contours;
385x201, a = 250, Re, = 2.4 X 10', M,. = 0.2, W = 0.2
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(a) (b) c, = 0.01 (c) •4 = 0.02

Figure B.14 Effect of doubling dissipation coefficient on C, and isovorticity contours;
361x201, a = 250, Re,- = 2.4 X 104, M.. = 0.2, fI+ = 0.2
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Appendix C. Tangential Blowing Numerical Artifacts Effects

The study conducted for the natural case (Section B) to insure that the dynamic-

stall physics are not masked by the numerical inaccuracies introduced by the discretization

of the governing equations lays a strong foundation for this section. The introduction of

tangential blowing necessitates that additional investigations be conducted to insure that

the spatial and temporal discretizations along with the dissipation coefficient selected for

the natural case are still valid.

C.I Global and Slot Grid Study

Two grid issues are addressed in this section: 1) the effect that tangential blowing

has on solution accuracy and 2) the effect that tangential blowing in conjunction with slot

grid refinement has on solution accuracy. The 0.Oc slot has a width of 0.0105c as does the

0.4c slot, while the 0.05c slot has widths of 0.0107c and 0.00717c. Unless otherwise noted,

for the blowing part of the grid study presented in this section, the blowing angle and jet

velocity were fixed at nominal values of 0 = 100 and vI = 2.83Uoo, respectively, and the

slot velocity profile was a uniform, constant profile.

Solutions for four grids (Figure 4.1(a), (c), (d), (f)) were computed employing tan-

gential blowing at the airfoil leading edge. The lift- and pressure-coefficient plots along

with the isovorticity-contour plots shown in Figures C.A and C.2 demonstrate that well be-

yond stall onset, all four grids are in close agreement. As in the natural case (Section B.1),

the 351x201 grid shows nearly identical agreement with the 361x201 grid for blowing at

0.Oc (Figure C.3). Three of the grids (Figure 4.1(a), (d), (f)) which possess clustered grid

points at the 0.4c-slot location also demonstrate excellent solution agreement beyond stall

onset (Figures C.4 and C.5). These results indicate that the grids shown to be accurate in

the natural case (Section B.1) are also accurate for the same pitch-rate and flow conditions

when the no-slip boundary condition at the airfoil surface is modified at the slot locations

to simulate nearly-tangential blowing.

Though the results shown in Figures C.1- C.5 demonstrate the global-grid accuracy

for the nominal blowing case, they do not necessarily prove that the grid is locally accurate
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Figure C.1 Effect of tangential blowing at O.Oc slot on C, and C.; v3 = 2.83U., = 100,
Re, = 2.4 x 10 4 , M.. = 0.2, fl+ = 0.2

(a) 343x201 (b) 361x201 (c) 385x201 (d) 505x201

Figure C.2 Effect of tangential blowing at O.Oc on isovorticity contours; vj = 2.83Uo,
= 100, a = 270, Re. = 2.4 x 104, M.. = 0.2, fl+ = 0.2

(a) (b) 361x201 (c) 351x201

Figure 03.3 Effect of tangential blowing at O.0c on Cz and isovorticity contours (a, =36)
vj= 2.83UTo, •6 = 10°, Re• = 2.4 × i04, Moo = 0.2, flo+ = 0.2
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Figure CA Effect of tangential blowing at 0.4c slot on C, and C.; vi 2.83Uo, , = 10°,
Re. = 2.4 x 104, M. = 0.2, f)+ = 0.2

(a) 343x201 (b) 385x201 (c) 505x201

Figure C.5 Effect of tangential blowing at 0.4c on isovorticity contours; vi = 2.83Uo.,
*=10, a = 27%, Re, = 2.4 x 104, M.. = 0.2, 0o+ = 0.2
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in the vicinity of the jet slot. To address this issue, the mesh spacing in the slot region

was halved for the O.Oc and 0.4c slots of the 385x201 grid, producing two other grids

(Table C.1). The mesh spacing in the 0.05c slot region was halved for the 361x201 grid

Table C.1 O.Oc- and 0.4c-Slot Grid Study
Number of Points

Grid O.Oc Slot 0.4c Slot
385x201 25 21
405x201 25 41
419x201 49 21

as well, producing one additional grid (Table C.2). Note that as the slot spacing is halved

at each of the respective slots, the mesh very near the slot is also affected. Additional

grid points are required adjacent to the slot-refinement in order to keep the near-slot grid

spacing as refined as the baseline grids (385x201 and 361x201) while at the same time give

smooth metric variation in the C-direction. Thus, the slot-refined grids are essentially the

same as the baseline grids, except for the region in the vicinity of the slot.

Table C.2 0.05c-Slot Grid Study

Number of Points
Grid 0.05c Slot

361x201 21
391x201 41

Tangential-blowing solutions were obtained using the same conditions employed for

the 385x201 grid at the O.Oc slot (Figure C.1) and the 0.4c slot (Figure C.4). The natural

case was first computed before the blowing case for these grids to insure the solution was

invariant with respect to slot-grid refinement. The O.Oc-slot-refined grid (Figure C.6(a))

and 0.4c-slot-refined grid (Figure C.8(a)) show almost no deviation from the baseline

385x201-grid natural-case solution. For tangential blowing, both of these slot-refined

grids produce nearly identical results (to a = 330) as the baseline 385x201 grid produces

(Figures C.6(b), C.7, C.8(b), C.9). Therefore, computations proceeded on the 385x201

grid.
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Figure C.6 Effect of O.Oc-slot grid resolution on C, for natural and blowing cases; v =

2.83U,, =10, Rec= 2.4 x 10 4, M,,= 0.2, 1+ =0.2
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Figure C.7 Effect of 0.Oc-slot grid resolution on C. and isovorticity contours for blowing
case; vj = 2.83Uo, = 100, a = 33, Re, = 2.4 x 10', M, - 0.2, Wo+ = 0.2
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Figure C.8 Effect of 0.4c-slot grid resolution on C, for natural and blowing cases; vj =

2.83U,., , = 10%, Re. = 2.4 x 10', M.. = 0.2, fl' = 0.2
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(a) (b) 385x201 (c) 405x201

Figure C.9 Effect of 0.4c-slot grid resolution on C. and isovorticity contours for blowing
case; vi = 2.83Uo,, 0 = 10%, a = 330, Re, = 2.4 X 10i, Mo = 0.2, (1' = 0.2

The other baseline grid (361x201) has a smaller slot width (0.00717c) at 0.05c than

the 385x201 grid (0.0105c) has for the 0.Oc and 0.4c slots. Therefore, a higher jet velocity

(vj = 4.14U.o) is employed in order to maintain the same mass flow (mass-flow issues

appear in Section 4.2.1). As with the 385x201 grid and its accompanying slot-refined

grids, the slot-refined version of the 361x201 grid gives the same C, results for the baseline

case and matches the blowing-case C, values to a = 300 (Figure C.10). However, at this

3.0 3.0 .. . . . .. . .
C1 C1

2.5- 2.5

2.0 2.0

1.5 1.5

1.0.
361 x201 361X201

. 3Mlx201 391x201
0.5 0.5

O.C 5 10 1it 25 30 . 35 O.0  5 10 it 25 30 c35

(a) natural (b) blow at 0.05c

Figure C.10 Effect of 0.05c-slot grid resolution on C, for natural and blowing cases (v =

4.14Uo); • = 10%, Re, = 2.4 x 10', Me. = 0.2, A+ = 0.2

high blowing velocity, solution degradation is evident when comparing the baseline grid to

the slot-refined grid at a = 300 (Figure C.11). Though the difference around the dynamic-

stall vortex is quite discernible at this angle of attack, the error in the 361x201 grid is not

severe enough to warrant the extra expense of the additional grid points, especially since
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(a) (b) 361x201 (c) 391x201

Figure C.11 Effect of 0.05c-slot grid resolution on C. and isovorticity contours for blowing
case (ul = 4.14Uoo); 4 = 100, a = 30*, Re, = 2.4 x 104, M". = 0.2, fl+ = 0.2

the errors are insignificant just prior to dynamic-stall-vortex formation. Also, this problem

which exists at these high blowing velocities may be addressed by increasing the numerical

damping as will be noted in a following section (Section C.3). Based on these comparisons,

this 361x201 grid was deemed adequate to properly spatially resolve the local physics of the

flow associated with nearly tangential blowing. The close similarity between the 361x201

and 351x201 grids, in conjunction with the nearly identical agreement between these grids

for 0.Oc blowing (Figure C.3), indicates this 361x201 slot-grid refinement study is valid for

the 351x201 grid as well.

This global- and slot-grid study has verified that the baseline grids (351x201, 361x201,

385x201), determined adequate for the natural case, are also spatially adequate for the

tangential blowing case. Temporal discretization and dissipation coefficient issues are next

addressed in the following two sections.

C.2 Temporal Discretization Study

A brief check was made to verify that a time step of At+ = 0.001 is still adequate

upon application of the tangential blowing case (Section B.2). Figure C.12 compares the

nominal time step with a time step half the value for the 385x201 grid (blowing parameters

set to same nominal values as in the slot-grid study of Section C.1). The comparison shows

that At+ = 0.001 is indeed a low-enough time step for accurate study of dynamic-stall onset

when tangential blowing is applied (using the nominal conditions).
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(a) (b) At+ 0.001 (c) At+ = 0.0005

Figure C.12 Effect of time step on C, and isovorticity contours (a = 250) for 0.Oc-slot
blowing case; 385x201, vi = 2.83U.., • = 10%, Rec = 2.4 X 10i, M., = 0.2,

0o* 0.2

C.3 Dissipation Coefficient Study

For the natural case (Section B.3), the nominal explicit damping coefficient of e4 =

0.01 produces acceptable results. Doubling and halving this value causes almost no dis-

cernible solution difference. When tangential blowing is introduced, the solution becomes

more sensitive to the same range of dissipation coefficient values, especially after the

dynamic-stall vortex is formed.

Halving the nominal dissipation coefficient for 0.Oc-blowing (blowing parameters set

to same nominal values as in the slot-grid study of Section C.1) with the 385x201 grid shows

essentially no difference in C, until a = 250 (Figure C.13(a)). However, the isovorticity

3.0

to

(a) (b) e4 = 0.01 (c) 4 = 0.005

Figure C.13 Effect of dissipation coefficient on C, and isovorticity contours (a = 270) for
0.Oc-slot blowing case; 385x201, vi = 2.83U., • - 100, Re. = 2.4 x 104,
M. = 0.2, o = 0.2

contours for a = 270 (Figure C.13(b)-(c)) show little difference well past dynamic-stall
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vortex formation. The 0.4c-blowing case (Figure C.14) shows good agreement in C, to

a = 320 and the isovorticity contours compare very well far past dynamic-stall vortex

formation.

(a) (b) e4 = 0.01 (c) E4 = 0.005

Figure C.14 Effect of dissipation coefficient on C, and isovorticity contours (a = 270) for
0.4c-slot blowing case; 385x201, vj = 2.83,O, qb = 100, Re, = 2.4 x 104,
M.. = 0.2, o+ = 0.2

The nominal dissipation coefficient was doubled for the 0.05c-blowing case using the

361x201 grid. Recall (Section C.1) that for this 361x201 grid the jet velocity is increased

in order to compare results for the same mass flow (vi = 4.14Uo. for the 0.05c slot,

while vi = 2.83U,, for the O.Oc and 0.4c slots). At this higher jet velocity, numerical

instabilities begin to appear when using the nominal dissipation coefficient (e4 = 0.01)

shortly after dynamic-stall vortex formation (Figure C.15(b)). Since artificial dissipation

C6

0.0

(a) (b) e4 0.01 (c) e= 0.02

Figure C.15 Effect of dissipation coefficient on C, and isovorticity contours (a = 30') for
0.05c-slot blowing case; 361x201, vi = 4.14Uo, qS = 10*, Re, = 2.4 X 104,
4= 0.2, fI+ = 0.2

tends to smooth out high gradients in the flow (be they physically real or numerically
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generated), doubling the nominal coefficient suppresses the numerical instabilities which

cause the high numerically-generated gradients that occur at a = 300 in the dynamic-stall-

vortex region (Figure C.15(c)). Attempting to run the code at e4 = 0.01 and vi = 4.245U.,,

at the 0.05c slot produced such high numerical instabilities that the solution diverged

following dynamic-stall vortex formation. Even with high numerical instabilities present

in the E4 = 0.01 solution, differences in C, are minor far past the onset of dynamic stall

(Figure C.15(a)).

Based on this dissipation coefficient study for tangential blowing, the nominal value

(e = 0.01) found acceptable for the natural case is adequate also for blowing cases when

V <4U...
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Appendiz D. M.o < 0.2 Grid and Time-Step Study

The effect of time-step variation on C, for the 385x201 grid (Figure D.l(a)) is

insignificant when going from At+ = 0.0005 to At+ = 0.00025, however, At+ = 0.001

o3.0 3.0

CI C1
2.5- 2.5

2.0 2.0

1.0 1. .
1A=0.001 MUM

- - - - - At0.0005 50SX201o.5 5a...,'--.oo ..... s5,o
0.5... '--o .00025 1

o0 5 10 i1 20 25 30 35 o0 5 10 it 9 2. 95 ..

(a) (b)

Figure D.1 Effect of time step on C, (385x201) and effect of grid resolution on C, (385x201
and 505x201-At+ = 0.0005); Re, = 1.0 x 10", M". = 0.1, 0+ = 0.2

was deemed too large a time step below M,,o = 0.2. It was determined that, for the pitch-

rate and flow conditions considered, a time step of At+ = 0.0005 is satisfactory for the

385x201 grid. Based on C,, the 385x201 grid is considered spatially adequate when com-

pared to the 505x201 grid for the same time step of At+ = 0.0005 (Figure D.1(b)). The Cp

plots and isovorticity contours support this conclusion as Figure D.2 presents the excellent

agreement between the two different grids to a = 300 and even very good agreement to

a = 360.

The 385x201 and 505x201 grids were also used to compute results at Mo, = 0.05

(Rer = 1.0 x 10' and flW = 0.2 as before). The two grids give nearly identical results

(using At+ = 0.00025) demonstrating that the 385x201 grid possesses sufficient spatial

resolution (Figure D.3). A time-step study was conducted for the 385x201 grid at the

afore mentioned conditions to address temporal discretization errors (Figure D.4 and D.5).

The At+ = 0.0005 time step (which amounts to 174 time steps per degree a for constant

W) appears inadequate when compared against the At+ = 0.00025 time step for higher

angles of attack (Figure D.4(a)), though C, (Figure D.4(b)) and the isovorticity contours
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Figure D.2 Effect of spatial resolution on C. and isovorticity contours; Re = 1.0 x 10R ,
Moo = 0.1, fI+ -0.2, At+ = 0.0005

1.0 x 1041 M,. = 0.05, fl+ - 0.2, At+ - 0.00025
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Figure D.4 Effect of time step on C, and C,, (a = 250); 385x201, Re, = 1.0 x 10",
M. = 0.05, lo+ 0 0.2

(a) At+ = 0.0005 (b) At+ = 0.00025 (c) At+ = 0.000125

Figure D.5 Effect of time step on isovorticity contours (a - 250); 385x201, Re, = 1.0 x
104, M.. = 0.05, fl+ = 0.2
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(Figure D.5) look quite similar beyond the stall-onset angle. Solution convergence with

respect to time step is reached for At+ = 0.00025 at M. = 0.05.
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Appendiz E. Suction Slot Grid Study

With solid numerical-artifacts groundwork laid for the natural (Section B) and tangential-

blowing (Section C) cases, the only numerical-artifact issue investigated for suction control

is slot spatial-resolution. Thus, the previous natural and tangential-blowing global grid

studies, time-step studies, and dissipation coefficient studies are deemed valid for this

suction-control study.

The 361x201 grid (Figure 4.1(c)) was created for suction-control investigation. An-

other grid (391x201) was created with half the slot-mesh cell size in the 0.05c-slot region as

the 361x201 grid, to verify that the 361x201 grid contains adequate slot spatial resolution

to properly capture the physics in the slot region when suction is applied. Good agree-

ment between these two grids has already been shown for tangential-blowing (Figure C.11).

For suction, solutions for these grids show even better agreement well past dynamic-stall-

vortex formation (Figure E.1). Therefore, based on this comparison in conjunction with

C,

1.o

O.5

0. 0 1W i 0 40

(a) (b) 361x201 (c) 391x201

Figure E.1 Effect of 0.05c-slot grid resolution on C,, and isovorticity contours (a = 420)
for suction case; v, = 0.697U.., Re, = 2.4 x 10i, M.. = 0.2, fl = 0.2

grid-studies already presented for this grid (Sections B.1 and C.1) the 361x201 grid is

deemed to contain adequate spatial resolution to produce grid-independent solutions for

dynamic-stall-onset study for suction control.

Since the 351x201 grid (which is very similar to the 361x201 grid) showed such good

agreement with the 361x201 0.Oc-blowing results (Figure C.3), then this 351x201 grid is

also deemed to contain adequate spatial resolution to properly resolve the flow about the

NACA 0015 airfoil when suction-control is applied to the 0.05c slot.
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Appendiz F. Incompressible Flow Code

In this section, the incompressible, laminar-flow, Navier-Stokes equations in two di-

mensions, the pseudocompressible modification to those equations, and a numerical scheme

used to solve the equations with their associated boundary conditions will be presented.

It is assumed that the fluid is Newtonian and that Stokes' Law applies.

F.I Incompressible Flow Governing Equations

The governing equations for two-dimensional, incompressible, laminar flow can be

readily written in strong conservative form from the the compressible flow equations (Equa-

tion 3.1). With density constant and assuming viscosity constant, then the continuity and

momentum equations become decoupled from the energy equation. Dividing through by

the density results in a system of equations very similar to the system for compressible

flow. In general curvilinear coordinates, the equations are the following. (Note that the

flux vector symbols used in the compressible flow case are again used.)

OU OE OF OV OW
""+"+ (F.1)

U=j . B=3 UO+C'.P F = uk +,qp= ( 0 E) ( 0 )

V=Ju blut+b 2V +c 1 +c 2lN + 1 W=Jv c + 1J++di+d• •

b2uj +b 3V( + C3U, + c4O, c2 u( + c4V( +d2u• +d3V)

The expressions p and zP result from dividing through by density.

p = P/p v = p/p

The terms b, c, and d are the same as before for the compressible equations (Appendix

Section A.1). For this incompressible development, only a non-moving grid is considered,
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thus the metric transformations are

f = f(2,9) it=1(m, Y) it

This gives the same contravariant velocity components (U and T') and metric relationships

as for the compressible case in Section 3.1, except here ,= h = 0.

In Cartesian coordinates the system in Equation F.1 may be written in the following

manner (Anderson, et al., 1984:490).

Os + O -" 0 (F.2)

O, O(U2 + p) 8(UV) [,,(VQ.- ,,,)I Olv(u, + .)) (F.3)
O+ Oz + - = + O+

v + O(Uv) O(v2,+p) 2 + A= (u, + VJ)]+ [+,(,,V - 5(.)]-+• + o + •o (F.4)

System F.1 serves as the basis for the system discretization in general curvilinear

coordinates used for the cylinder simulation (Section F.4). Equations F.2 - F.4 are used

to develop the modified governing equations using pseudocompressibility (Section F.2.1).

F.2 Beam- Warming Scheme for Incompressible Flow

The incompressible Navier-Stokes equations can be solved using the Beam-Warming

algorithm when the paewdocompreasibility (also commonly referred to as artficial com-

pressibility) technique is used. Before applying the Beam-Warming algorithm to the in-

compressible equations, the pseudocompressibility modification is made to the governing

equations.

F.2.1 Pseudocompressible Modification to Governing Equations. The difficulty

with the incompressible Navier-Stokes equations from a computational perspective is that

we now have a hyperbolic-elliptic mixed set of partial differential equations for which stan-

dard time-integration techniques are not readily applicable as they are for the hyperbolic-

parabolic mixed set that characterize the compressible Navier-Stokes equations (Ander-
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son, et al., 1984:479). To circumvent this problem, the continuity equation (expressed

in Cartesian coordinates) is modified from Equation F.2 to

S=0, (F.5)

where i is a manufactured variable referred to in the literature as pseudotime. It has no

physical meaning. It is simply a trick to turn our system of partial differential equations

back into a hyperbolic-parabolic mixed system for which many techniques for flow solution

already exist. P is a term that is set to a large number such that when the modified conti-

nuity equation is satisfied in a pseudotime "steady state" sense; then the actual continuity

equation is satisfied to a degree deemed appropriate for a given problem. This modifica-

tion causes all three unknown flow variables (u, v, and p) to appear explicitly in each of

the three equations that comprise the system of governing equations for incompressible,

laminar flow. The system of equations expressed in Cartesian coordinates is now the mod-

ified continuity equation given in Equation F.5 along with the two momentum equations

given by Equations F.3 and F.4. It is to this system that the Beam-Warming algorithm is

applied.

F.2.2 Steady-State Incompressible Flow. Solving the modified system (Equa-

tions F.3, F.4, and F.5), for a steady-state solution is essentially the same as solving

the compressible Navier-Stokes equations. The main difference is that the incompressible

Navier-Stokes equations are advanced in pseudotime (Tr) instead of computational time (i

- which for our transformation, is actually the same as physical time, t). The step-by-step

process of arriving at the Beam-Warming algorithm for the steady-state solution to the

incompressible, laminar flow equations is outlined in this section.

After switching the time differentiation to pseudotime for the two momentum equa-

tions (Equations F.3 and F.4), the system of equations can be expressed in vector form for

a general curvilinear coordinate system as follows.

OU OE OF OV OW
f(F.6)
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The flux vectors are now the following.

U=3 U B=3 u&+fp FF=3 uV+1-p

V = jV biuc + b2V( + C1Uj + C2Vj W = v ClUj + C3Vj + dIuN + d2v,

b2uJ + bt,( + cA, + 4CA, C2UJ + C 4V + d2 • + d3t,,

Equation F.6 is identical to F.1 except U is now differentiated with respect to pseudo-

time instead of computational time and the modified continuity equation has replaced the

physical continuity equation.

Discretizing Equation F.6 in pseudotime using Euler implicit time differencing gives

the following.

U'+1 - Uh = Ar(-8jE -8,F + 84V + OW)5 ÷1  (F.7)

The terms on the right hand side of this equation are at the k + 1 pseudotime level. For

the Beam-Warming approach, these terms are linearized with respect to pseudotime. For

example, the first term is linearized as follows.

Ek+l = E5 + 0- A' U + o[(Ar)2]

where A' U is defined as

AWU Uk+ - U5 .

F is linearized in a similar way as E. This linearization produces flux Jacobians A and B.

BE OFA=-- B=--3-U TU

where the terms of the incompressible flow flux Jacobians are as follows. Note that for

steady-state calculations, • = /. For time-dependent calculations, Ar= -- '.
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A= q. &+ue. u4

vh V1, f+v%

The viscous flux vectors contain terms that can destroy the tridiagonal nature of the

system when factorizing it into distinct sweeps in the f direction and q direction. This

problem can be avoided by regrouping the viscous flux terms into two expressions involving

only i-derivative and ti-derivative expressions respectively, as was done for the compressible

case. The approximate factorization employed for the compressible case accounts for the

effect of the V1 and W2 viscous flux vectors at each time step through the flux Jacobians

R and S (Equations 3.8 and 3.9). The effect of the viscous flux vectors containing cross

derivative terms (8eV 2 +1 and 8qWj" 1) are ignored at a given time step; this has no impact

on the formal first-order time accuracy of the scheme (Beam and Warming, 1978). Here

for the incompressible case, the same procedure is used.

V = V1 + V2  w =w + w 2

where

Vi = jv blul + b2,j V2 =V CJUV + c2Vj

Sb2uI + b3VJ C3Uf1 + C4vq

0 (0

WI = Jv ClUj + C3V( W2 =Jv du, + d2v,,

c2uj + C41P d2•u + d3V,,
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Linearizng VI(Uj) and W2(U,,) with respect to pseudotime gives the following.

+1= 1" + 1•,-) A"Ue + o[(&r)2 ] = ] w + RsA",1 + o[(,&) 2]

+1 't' + ( a!w)" +[(&r)2] = V + S"A;U, + O[(&r)2]

where Rh = (")" and Sk = ,((w- are the V1 and W2 viscous term flux Jacobians,

respectively. With Uj and U, given by

then the viscous flux Jacobians R and S are given by the following.

_ = 8(0,blUe + b 2 ((p,ue, v +) = V 0 bI b2  (F.8)

0 b2 b3

0 00

O(p,, v,,u, +,,) = V 0 di d2  (F.9)

d 2 03

Thus, Vh+1 and W~h+ 1 are now expressed as follows.

- ý + - (RA"U)

W2 W2 + -7 (SAkU)

Substituting in the linearized values, Equation F.7 now becomes the following.

A"U = A,(-OCE - OEF + 8jV + 01W)" +

ATr(-OiA' - OBA; + OtjR + O,,mS)AkU + O(Ar) (F.10)
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Equation F.10 is rewritten in approximate factored form as follows.

[I + A&'(8Ak - 8OCR)] [I + A'(A8B" - ,j,,S)] AkU = Rh (F.11)

where

S= A i"(-O8 E _ 8,,F + 8 V + 0, W )k

Equation F.12 is solved using a three-step process.

(step 1: f sweep) [I + Ar(OtA' - OBeR)] D = Rh

(step 2: q sweep) [I + &T(aIP Bk - O&,S)J AMU = D

(step 3: update) Uh+l = Us + AMU

F.2.3 Local Time Step. Pulium (1984) indicates that for steady-state solution

to the Navier-Stokes equations, a local time step may be used to accelerate convergence

two to three times. He recommends using a local time step of the form

A'to ( 1 +1•)

where Ato is chosen to be 0(1). For the pseudocompressible technique Ato of 0.1 was

found superior to other values for the case of flow about a cylinder using an 85 x 41 grid

and a&6 value of 400.

F.2.4 Artificial Viscosity. The Beam-Warming algorithm usuafly requires the

addition of dissipative terms to damp out short wavelengths inherent in the scheme (Beam

and Warming, 1978). Fourth-order explicit damping and second-order implicit damping

is added to control numerical instabilities. The fourth-order damping added to the right-

hand side of Equation F.11 is

-EeATJ(86. + 4,,)JU.
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The f-sweep and V-sweep second-order implicit damping operators added to the left-hand

side of Equation F.11 are as follows.

-q-rjATj5JI - eATJ8ý,,,.

The damping coefficients are of 0(1) and q > 2e,.

The scheme, using difference operator notation and including damping terms, be-

comes the following.

[1,+ Ar(6C A' - 841R - e i~e J)] [1 + Ar(84,B" - 8,mS - fibm 1 J)] AkU = W? (F.12)

where

3? = ATF56jE - 6SjF + 6jV + 6,W - e"AeJ(tte + 8,,M,,)JU)".

F.2.5 Outflow Boundary Conditions. The boundary conditions used for the outer

boundary are:

ezcept wake: u = u. v = v. p = p. = p,.q

wakeregon: u. = O v 0 = 0 P = p. = p,.!

In general curvilinear coordinates, the extrapolated boundary conditions become the

following.

t6 = 0 = Utf + u,,,?

The extrapolated conditions in the wake region are represented using second-order finite

difference representations for the derivatives. This leads to a tridiagonal system of equa-

tions to solve for outer boundary points contained in the wake region.

U%1j- 3h-j +U,, - 4tuj,,j + tLj4 _2, =0

2 '"j + 2 0
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-ui-j+ 3u11 (?- + u,~jj = (4ut4* - -U14 2)

P.2.6 Time-Accurate Incompresble Flow. The procedure to obtain a time-

accurate solution to the incompressible Navier-Stokes equations using pseudocompressibil-

ity is presented by Rogers and Kwak (1990). Once the basic equations are obtained, they

use an upwind scheme based on flux-vector splitting to compute the flow. In this section,

the basic equations for incompressible, laminar flow are developed and the Beam-Warming

scheme is applied to the resulting equations.

From Equation F.6, the two momentum equations expressed in general curvilinear

coordinates are as follows.

The flux vectors are now the following.

ft i(~ r=(:+ef (tUfT + .

f i = b lul + b2 V(+ C049+C 2 Vp = i ++ui + p3vi +d du +d 2 vj

b2 u( + b3 •C + csu•-[+ c 4AI ) catu. + c 4V" + d2 •q + d 3v 1 j

The modified continuity equation in general curvilinear coordinates is the following.

8(jp) - _(___)+ (F.14)--ý + I

Letting n represent the computational time (t) level and k represent the pseudo-

time (r) level, then the modified continuity equation becomes the following after Euler

pseudotime differencing at the n + I computational time level.

j(pS+1,k+l pP+l,) = _Ar.6[O¢(J11),, 1,'+1 + O(il),+1,k+1] (F.15)
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The momentum equations are next Euler computational-time differenced at the k 4- 1

pseudotime level to give

+i,+lIk+l - fin = A n+1,k+1 (F.16)

Note that fd+l = -ik = fn. Subtracting r+',' from both sides of Equation F.16 and

rearranging terms gives the following.

-+lk+l _ n+l,+ = Ai +k+l _ (f+ink _ f) (F.17)

Equations F.15 and F.17 can now be expressed in the following vector notation using delta

form.

AkUR+ & = Ai[-OBE - OqF + O9V + oW]n+1'k+l - AnU& (F.18)

/r( ( ) (0

U=j u E=j uU+&p F=J uf+ ,1p Ur=i

a ( o1
V = jV blue + b2v + cU + cAI W = Jv clue + c3v + dij, + d2 v,

b2ut + b3 Ve +C 3 u, +c 4 ,, C2Uj + • 4 Vj +d 2 uq +d 3 ,,/

The flux terms on the right-hand side of Equation F.18 are linearized in pseudotime.

For example, the first term on the right-hand side is linearized as follows.

E =E+ + OEI"+ASUS+l = En+',& + AAkUR+l

The same linearization is done for F. Since we will be iterating in pseudotime until
pseudotime "steady-state" is reached, the viscous terms are lagged in pseudotime and

then neglected as in the steady-state case (Section F.2.2). The resulting time-dependent
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form of the Beam-Warming algorithm for incompressible flow using pseudocompressibility

is the following.

[I + Ai(O(A - OecR)][I + Ai(O,1B - = (F.19)

where

RR+l'k = Ai(8 OE - 0qF +08V + 0.W)n+lk - ArU

Flux Jacobians A and B are found in Appendix Section F.2.2. The usual Beam-

Warming three-step process is used for solving Equation F.19.

(step 1: f sweep) [I + Ai(OtA - L~jjR)jD = -,+l,k

(step 2: q sweep) [I + Ai(t9,B - 8,,mS)]AkU-+1 = D

(step 3: update) Un+1'h+1- =U+1'h + AkUII+l

When this process converges to the desired level of accuracy (i.e., steady state in pseudo-

time), then the result is one computational time step taken, as expressed by Equation F.20.

0 Rn+ = Ai(-OCE - OF + OjV + 0nW)n+' - AC (F.20)

The number of pseudotime sub-iterations required to successfully advance one computa-

tional time step will be addressed in Section F.3.3.

Note that Euler computational-time differencing was used for this development giving

O[Ai] results. If O[(Aj) 2] is desired, this can be easily accomplished by modifying the last

term of Equation F.20. In place of A'U a three-point difference (Q-n+_ - 20" + !C"n-1)

may be substituted.

F.3 Incompressible Flow in Driven Cavity

The driven cavity problem will be used to present incompressible flow results for the

pseudocompressible technique developed in Section F.2. The boundary and initial condi-

tions will first be presented for this problem followed by steady-state and time-accurate

results. For these calculatiuns, the OjjR and 9,,,,S terms (Equations F.8 and F.9) are ne-

F-11



glected, which impacts only the convergence of the scheme, and not the accuracy since the

right-hand-side of the equation is being driven to zero.

F.S.1 Boundary and Initial Conditions. On all four walls of the square cavity

(length of wall L = 1), no-slip boundary conditions are used along with specification of a

zero normal pressure gradient. For the three non-moving walls, the boundary conditions

in equation form are the following.

u=O v=O O-P=0
On

The lid moves at velocity u = t4.1 = 1.

Initially, everywhere within the interior u, v, and p are specified as

u=0 t=0 P=Pe.1=1.

F.3.2 Steady-State Results. The steady-state formulation of the Beam-Warming

scheme was used for a 129x129 grid. Convergence criteria required that V • V < tol, and

S< tol (R of Equation F.12). For this case, tot = 10-i.

Figure F.1 shows velocity vectors and streamlines for steady-state flow in the cavity.

Figure F.2 shows the u and v velocities along a constant y and z station through the

middle of the cavity. These match published results for the same flow conditions using the

vorticity-stream function approach (Ghia, et a.., 1982).

The excellent agreement with published results validates the steady-state pseudo-

compressible technique for this driven cavity problem.

F.S.3 Time-Accurate Results. The time-dependent formulation of the Beam-

Warming ,rheme was used for a 41x41 grid. Convergence criteria required that V -V < tot,

and N!,+ < tol (Itm1 of Equation F.20). For this case, tot = 10-5.
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(a) (b)

Figure F.1 Steady-state solution for driven cavity; 129x129 grid (ReL 1 00,Ar+
0.005, 1 03)

a Li

(a) (b)

Figure F.2 u and v velocities along 1/L =0.5 and w/L =0.5 stations, respectively
(middle of cavity, ReL = 100)

F- 13



Figure F.3 presents velocity vector plots and streamlines at various times for the time-

dependent calculation of incompressible, viscous flow inside the cavity. These compare very

well with the results of Soh and Goodrich (1988).

Figure F.4 shows the drag force (D) acting on the lid as a function of time. The drag

force was computed using the following equation.

D j ('u) da (F.21)

where
(8) = 3ui,, - 4uj- + tLi,.-2 (F.22)

These drag results match Soh and Goodrich's published results. The good agreement

with published results validates the time-dependent pseudocompressible technique for this

driven cavity problem.

As the time-accurate pseudocompressible code advances in time, fewer pseudotime

sub-iterations are required to converge to the desired tolerance. This is shown in Figure F.5.

It was observed that the divergence-free flow criteria (i.e., V. V < tol) was more stringent

than the residual criteria (i.e., R"+' < tol). A closer look at the selection of convergence

criteria is needed to determine to what degree divergence-free flow needs to be enforced to

obtain a good result. It is also quite likely that this criteria will problem and configuration

dependent.

F.4 Incompressible Flow About a Cylinder

Incompressible flow at ReD = 20 about a cylinder was also computed using the pseu-

docompressible technique on an 155x151 grid (Figure F.6(a)). The five-grid-point overlap

necessary for periodic boundary conditions is evident in the streamline plot (Figure F.6(b)).

At this Reynolds number, there exists a steady-state solution. The solution matches that

of Fornberg's (1980) very well (Figure F.6(c)). The solution used tot values for V . V and

R of 10-i and 10-, respectively.
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Figure F.4 Drag on lid at various times (ReL = 200, Ai+ = 0.01, Ar+ = 0.01, B = 400)
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Figure F.5 Pseudotime sub-iterations needed at various time steps (Rez 200, Ai+=
0.01, A+ = 0.01, =400)
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Figure F.6 Grid (155x151), streamlines and C, for cylinder in incompressible flow; ReD =

20, to = 0.1, p = 400, e4 = 1.0, c 2 = 2.0)

F. 5 Difficulties with Pseudocompressibility Technique for Dymamic-Stall Problem

Difficulties were encountered when the pseudocompressible technique described by

Equation F.19 was used to solve a time-dependent problem such as flow over a cylinder

at higher ReD or an airfoil at Rec = 1.0 x 104. The technique that was successful for the

time-dependent driven cavity problem was monotonically convergent for these problems,

however, it was extremely slow (i.e., tens of thousands pseudotime sub-iterations for one

computational time iteration).

Investigation into the problem led to the conclusion that the formulation represented

by Equation F.19 is slow because only the modified continuity equation (i.e., variable p

of U) is explicitly advanced in pseudotime, and the momentum equations (i.e., variables

u and v of U) are only implicitly advanced in pseudotime. Note that the steady-state

formulation of this technique advances all equations explicitly in pseudotime. Therefore,

this formulation of the time-dependent psendocompressible technique makes for a very

slow algorithm.

Other formulations were attempted (Merkle and Athavale, 1987) using approxi-

mate factorisation schemes that advanced all three equations in pseudotime at teach com-

putational time level, but to no avail.

All of these approximate factorization schemes for the time-dependent case suffered

from large approximate-factorization errors due to the introduction of the P term into the

equations (Steger and Kutler, 1977). This makes the system of equations quite stiff.
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The upwinding technique of Rogers and Kwak (1990) (the current state-of-the-art

implementation of the pseudocompressible technique) achieves a nearly diagonally domi-

nant system of equations which speeds up convergence considerably. Even with this up-

winding technique, it is estimated (based on their cylinder results for ReD = 200) that

it will take at least 10x the computer time to compute a pseudocompressible solution to

the Navier-Stokes equations compared to a compressible solution for a 385x201 grid (as-

sumes V. V < 10-2 is maintained for the pseudocompressible solution). A 10x increase in

computer time translates into approximately 85 CRAY-YMP hours for one dynamic-stall

solution ('- 70 hours for the initial condition and '- 15 hours for the pitch-up). This was

considered much too expensive to pursue the pseudocompressible technique any further.

Therefore, based upon this resource estimate, the pseudocompressible approach was aban-

doned in favor of computing the low-M.. solutions using the compressible code based on

Volpe's (1993) findings (Section 4.1.3).
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