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SUPERCRITICAL
GASEOUS DISCHARGE WITH HIGH FREQUENCY OSCILLATIONS

LUIST CROCCO (%)

R1aSSUNTO. ~ [a conoscenza del comportamento di un effusore supercritico quando le condizioni a monte Jil-
Ueffusare sono oscillatorie ¢ importante in conncssione con vari probl mi relativi ai proputsors a reazione.
Tsien ha recentemente analizzato (a questione nel caso ds piccola ampiezza i oacillazione e per unag distri-
buzione lineare di velocitd nella parte subsonica dell'effusore. Egli ha dato la snluzione nei due casi estremi
i frequenze molto basse o molto alte facendo uso di alcune ipotes: reatrittive. Qus lo studio viene estrao ad
ipoteai pit generali; inoltre nel caso di oscillazioni iseniropiche viene data la soluzione per tutte le frequenze.

Introduction

Many gas ow systems, with or without combustion,
are terminated by a discharge nozzle. When the
stability of these systems is studied, it is necessary
to determine the behavior of the nozzle under vscilla-
tory conditions, which may be quite different from
the corresponding behavior in steady state. The
problem has recently been treated by Tsien (ref. 1)
for supercritical discharge, this case being the most
interesting for its applications to the stability of
combustion in rockets or in combustors for jet de-
vises. Tsien has investigated the case in which
the oscillations in the incoming flow are isothermal,
and therefore nou isentropic, and has computed the
departures from the steady state behavior in the
range of low frequencies, as well as the asymptotic
response to very high frequencies. Unfortunately
the frequencies appearing in the study of high fre-
quency instability are likely to be in the interme-
diate range, where none of Tsien's solutions can be
used. Also the isothermal condition is not represent-
ative of most of the actual cases. The purpose of
the present paper is the extension of Tsicn's treat-
ment to the non-isothermal case, and especislly the
determination of the nozzle behavior in the interme-
diate range of frequencies.

The equations

Calling p, ¢. u the pressure, density and velocity
in steady state, completely determined by the shape
of the nozzle, and p + p’, p + p', ¥ + u’ the cor-
responding values in unsteady conditions; and
assuming the perturbations p’, ¢’, w to be small
compared with the unperturbed quantities, ‘Tsien
has written the continuity and momentum equa-
tions in the following form, retaining only the first-
order terms in the perturbationa

Z beinu the distance slong the nozzle and ¢ the tine.
The third equation between the dependent va-
riables p’, p, p" ¢ und 1’ u i3 the energy cquation or,
more sunply, the equation expressing the constance of
entropy of any tiuid mass when we tollow its motion :

iy a e
(355435 % =larmusul (5~ §)=om

where &’ ia the entropy perturbation, ¢, is the constant
volume specific heat, and v the adiabatic index.

In these equations u, dujdr and pleu are to be
considered known functions of r, determined by the
nozzle shape. o to the linearity of equations {1},
[2), [3) the harmanic form of oscillatory time depend-
ence can be chosen, and, using the complex repre-

tation, the dependent variables can be written as
r fos
- =glx)e
7 ? ()
LA T (4]
G
u’ @t

“—=v(.t)e

where w iy the angular frequency and ¢, 8, v are
complex functions of x alone. At the nozzle entrance,
z = z,, the three functions have certain values
e 800 W The problem in which we are interssted is
finding the distributions of ¢, §, v along the nozzle,
but expecially determining the relations between
9os 3 w. These relations will in fact constitute the
boundary conditions to be applied to the rest of the
flow system as a result of the nozzle presence (1).
Equation {3} is immediately integrated as

the arbitrary function f being in general determined
by the known time dependance of the entropy st

_)_.(.ﬁl.).;.ul(f_’.+“_' =0 (11 2=z, For the ex tial time d d assumed
AR AR LAY “) + FOrthe exp P
u’ ’ u’y du u’
> ';)+(%*’7)5+“5;(7)= (1) fostend of thesw boundary condits
. {2] Tsicn bas d to duce & « T tunction » relat-
-f_fﬂ_l’_l(ﬁ) ing the fractionsl varistion of mass flow to the fractional va-
p dz pudx\p riation of The definition of Tsien's tranater funct:
can be easily extended to the non b i casmw. H
we prefer not to use this concept which has no direct utility
(%) Prof dai Motort A { alle Bcuoin d I in the ‘The p p dure is closely related
Asronaution dell’Universith di Roms. Attusimente Robert H. to the conventional use of the « Impedence « Iu acoustio
Goddard, F Jot Propul Center, Pr a, N. Y treatments.
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in equations {4] we obtain 2By - @8 —(y - il —z) ',l/f .
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where the constant ¢ represents the wnplitude of
the entropy oscillation divided by~ With the
assumption {4} and the relation [3] equations {1]
and [2] are reduced to the following system of ordi-
nary differential equations int v and §

iy d 8

“B?+“li;§+“"8=0
dv ¢t d8 | ( du L . du
wry T waz Tl ey pas
_ (iiu . c? ( R * dr (6}
=oly; 7 un—_x_u')exp ~iw ,,T)

in which ¢ is the sound velocity. It is casily seen
that these equations present a singularity at n = c,
that is at the sonic throat; where therefore only one
family of solutions remains regufar.

Equations [6) could be discussed and solved nume-
rically for general nozzle shape. However the nu-
morical integration can be avoided if, following Tsien,
wa confine our attention to nozzles in which « increa-
ses linoarly with z in the subsonic portion of the
nozzle, this condition heing not too restrictive since
many actual nozzles have practically linear velocity
distribution nosr the sonic throat: and since this is
the region in which an analytical solution is particul-
acly useful, We take therefure

a~
&

u Ca ry— M,
= P

(7]

a
&

with ¢, representing the gu-called critical spund speed
reacherd at the throav, where ¢ = x,, and { == r, — 5y
rapresenting thy longth of th2 subsonic portion of the
nozzle.

Moreover we take with Tsien 8 new independent

variable
] 1w \2
= () =(%) 19

in terms of which we have

c’=r.‘(."+ ‘_L:_r z)

2 2
e 9)
2 t“ _z-
s, 4 204 log -
where z, rep s the assigned valus of [8] at the

nozzle entrance; and we define a reduced anguiar
frequency

e lo |
B= co Cy — U, 0o

Introducing {?]. (8], [9}. [10] in equations [8] we
find, eliminating dv de:

and climinuting v with the beip of {11] from one of
the cquations 6] we abtain

s(l—z) 'Fs«(2+

dz?
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Equation {I2] is & won homoreneous complex
hypergeometrie equation, with singwlarities &t z = U,
2= 1, and 2 ~= %, Of these singulatities only the one
at z = Lis imaportang {or our problem, since the other
are vut of the runge of variability of z, which musts
be contained between a non-vanishing minimum
at the entrance of the nozzle and s finite maximum
at its exit. ‘The singular point z = lis & particular
case of the moure general singularity of eéguations [6).

The condition at the sonic thros?

‘Fsien has observed that since the motion is super-
sonie in the diverging part of the nozzie no wave
can be transmitted backwards to the throat, and
therefore the propagation of tho oscillations must
always take place townrd the downstream direction.
He has therefore wsed the condition that the propa-
gation veloeity £ (r) must always be poritive, o
is defined by the formula

T esk(E) -

substituting from [4] we bave U -— ¢ «w 8/(d 8/dx).
The e melition that U must remain of the swme sign
throughout the nozzle means that it must never
vaaish, and therefore (4 §/dz).3 must remain finite.
‘Fhis condition is not satistied if the solution ix sin-
gular, with tho important eonsoquence that only a
solution which is regular is compatible with the condi-
tion of downstream propagation. This conclusion.
which is trus for the most general case considered in
equations (6], allows & more ise and mat! ti-
cally more dofinite oxprossion of the condition at
the throat. The samse result is obtained on & more
physical basis by considering that a wave of finite
amplitude at the sonie throat cannot send but infi-
nitesimal waves upstream, since the upstream pro-
pagation velocity is zero, and therefore only waves
of infinite amplitude at the sonic throst can send
finite waves npetream. The absence of upwards
moving wavea is therefore connected with the sup-
pression of all singularities at the sonic throat (1)

(1) The Author is indebted to dr. L.-LyEs tor & more rigo-
rous discussion of the condition of nu-dunh.rll-v_. based oR con-
yontlopal mcthods of non-steady one gusdy
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Solution for low [requencies
in the non-isothermal case

Tiien haa treated the cads of isothermal oncilla-
tions. Hia treatment is immediately extended tc
the non-isothermal case,  Assuming & prescribed

tomperaturs oscillation at the entrance of the nozzle

T

1‘ 4 -7

Y (131

we have hetween @, und §, the relation
o —8 =0 [14]

)n the other hand equation [5] given
=yl =a (15}

and therefore we obtain the relation

0—a
b= {16]

which dotermines the ampliturde of the denwity oscilla-
tion at the entrance of the nozzle when 0 and o
are assignod. Of course one could prescribe, instead
of arbitrary values of 0 and a, arbitrary values of
and 3, and determine the corresponding values of 8
and a.

In Trien's case 9 = 0,

At low frequencies we can expand all quantitios
in powers of i 8. since syuations {11} and [12] contain
nnaly thiv combination of ¢ and 8.

Weo tako thereforo

3z, ) =3 () +iBAIN() + ... (17

v(z, ) mw® (2} + Byl {2) + .... [18]
Replacing [17] in equation [12] and equating the
coofficionts of the same powera of i, tho equation

breaks up into

L L L

2t =13 o —2so— =0 [19)
ik L 2 dim

il =) —m —23 - e TP

1 41( I l)
— §O e PR -
M2y i & E 2oy g

[20)

‘The aolution of {10] which is non singularat 2 = 1
ia 8® == const, and thoreforo, nince the anlution [17)
must hold at 3 o 0, from (18] we abtain

3 %E—-‘;—. (21}

Introducint this value in equation [20], and inte.
geating thin fiest order aquation in d 8M1/d: wo abtain

the expression

1 3
(1—z 'dz ==-"“"?_"l llogz —2) —
_ef 1 Yo = LU 11 c [22)
Tyl g L Ao S ey b

where the intogration constant ¢ hins 1o be determin-
ed in such o way that the right hand side of equn-
tion {22} vanishen at <= 1, 8o that d3M/dz wmay
remnain finite ut this point,  We obtain

d 3 0 logz4+l—z

TS (=
_ [Iugz-}-l—-:

2y(y—D | (1—2p2

=1 (23]

It is immediately checked that this expression in
regalar at 2 == 1. An additional integration. with
the condition following from (16] and {21]

30, = 0 24]

would give the (non-singular) expression for 3 (z).

Replacing now (17), {18] in equation {11]) and again
rquating the evofficients of the name powers of {f
one obtaina, with the use of {21, {23], {24)

'-“’=—%(;-;:~,- :.‘:: +1) + (26)
5y (t: ‘"“" +1)

and therefore, reenlling {17), [18):

vo VO EiBvB 4., v—1 @

3, Taeypl LT T d=e t (20)
+ ;{—c'-v.m ST ERR )
This q ity, repr ing the compl ratio

botween the fractionsl varistions of velocity and
density at the entranco of the nozle, and anslogous
to the reciprocal impedonce of ncoustics, can 56 used
as boundary condition for the rost of the flow system
in oscillatory stato. Wo nee that [26) depends only
on §, 3 and the ratio 8/a. The first term of the series
{20] applies to the atoaly atate and contains as
pacticilar cnses the isuthermal cose 8 = O where
the velocity cannot chango (w = 0); the iventropio
cuse @ = 0, w/8, m (y — 1}/2. and the isopicnig case
6 =g, 3 = 0. Equation (26] shows that even for
moderate § the b tary dition imposed by the
noxrie can change considerably since both the phase
andt the amplitudo ratio between velocity and denaity
fluotuations are affected considerably.

The same procedurs can be used, without sub.
wtantial difficuity, to compute higher order terms
ir 7§,
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Solution for high frequencies
in the non-isothermal case

Following a pracedure similar to the ane wsed by
Taien wo first dotermine the particular solution §*
of equation [12] tuking

]

Y

<]

s°(z»=z¢:)(-:‘.—)

and replacing it in equation {125 An equation for
Z (2) i ohtained which can he aolved by series tuking

Z(2) = 29 () + 7 20 () o

and equating tho coellicients of the same powers of 18,
The result is

7]
t,_f_(.i)—T LIS S
w=—2{2) (VEm =t B
2 oz

]

Replacing [27] in equation {11], the correspond-
ing value of v is.found to be zero (by pushing the
expansions to higher powers it is actually found
that the fimt non vanishing term in tho series for v
corresponding to the particular solution [27] is the
term in (i8)—%. The 8 fulfils the condition of
regularity at z =1, hut not the condition {16]
at 2 = 2,

Therefore a solution of the homogrneous cqua-
tion corresponding to [12] must be determined.
If wo take 8 = exp (iPA{:)) and repluco in this
homogenoous oquation, we find that tho dorivative
d Mz =2 y (2} satisties the Riceati’s equation

2+if

i3 a. .
ToF l)+2(l+m)zy-—aﬁ-(l——-)y'.

rly
z(l—12) i
Introducing in this equation the weries

y(2) =y (2} + ;‘-’- Yo () +

and equating the terma with equal powers of if we
obtain

. 1 AT IR
""‘"(wnu—n(' -3 ”T"')m’
. y+1 Ly _

v ql/‘+ v+ 1 L":_l( ? de”
[ 2 [29)
1 ]
=R

where only the solutiona remaining regular at x m 1
have heen considered. The solution of equation [12)
ran be put now under the form

a..o“p( ‘”ﬁ.”"’""“ [: ymdn+....)+ 3 (%]

where the constant C is determined by the condi-

tion {16) at z == z, und is exprossed hy

1- 1
€= =y(0 "%)+77?%-} '-.C’l"l'l'

v =1

-y 131

Coming now to oquation [11) and reealiing that §°
does not bhring any contribution to v up to terms
of order (£ 3)"3, up to this order we con expruss v us

v= (1)"’-}- TIE LRSS ...)

Cmcp( iﬂf: yods + I: yVdz + ) 321
] e R

and. aftor substitution in equation [11) and compa-
rison of terms with asme powers of i 3, wo find

: y+1l—z,
L R [33)
Wmy—1—29%—(y+ D1 —2)y"

y' being given by [28), [29].

Finally computing v at 2 = z, from |32} and recal-
ling the condition {16] we find

0 —2
Y Yowyg =l e wY
L =T =" +l'ﬂ( Y °—°Z_‘*‘_'..'._’!:;!+
2 2 2
e—2 )
+._0____.;£,,,m 4. (8>D [34)

with 7,9, n 't given by equations |33, [28], [20] at

Higher order terms in expansions {27}, (30], 3]
und [34] con easily be comviuted. Again we 3ce
that v./8, dopends only on B. . and 69. For{ :0
and B+ 0 [34] gives Tsivn's owult.

Practical range of 3

It is interesting to investigate if equatione [26]
or [34] ean bo used for stability computations of
practical combuation aystems. [t seems to day ests-
blished that high froquencies appesring in unstable
combustion are close to the natural modes of oscilla-
tion of the combustion system, that is — for in-
stance —— to the organ-pipe frequencics if the com-
busti hamber is of elongated form. The funds.
mental organ.pipe mode has an angular frequency
w = no,/L, ¢, represonting the sound velooity in
the chamber and £ ita lenght. Hence from (10] we
have B m r o, I/{rqy —wu,} L. Now ¢,(cg — w,) is
clone to one, so that, if the length of the subeonic
portion of the nozxle is around 1/3 of the length of
the chamber, B is around unity for the fundamental
mode, around two for the second mode and so on-
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Thig approximato computation shows therefore that
unless the geometry of the system is quite different
from the assumed ono the gesyits of the provious
woctions 1o nog_give much help if the frequencies
are_efoso 1o the_nswursl moden of vweittation of the
chamber, a3 — for instance —in the wtindy of « sercam-
ing » conditions in rucket muotors,

Solutions for sll {requencies
in the isentropic case

Fortunately it is possible to tako advantage of the
analytical properties of equation [12] to vxtend the
computationg to the-whale range of froqurnuﬁn
arlerto avoid the complicatioi tonnected with the

determination "o Tho purticulal Tt of ecqin.

Tion L13], we have here considerad anly tho iseutropig

actual phonomenon, _ With o= Wwhon [12] =
reidueod to an homogeneous hypergeometric equa-
tion, of which the sulution remaining non-singular
at z == 1 is given by the known hypergeomnetric series
in powers of 1 — 2

F(ﬂ.b;c;l—:)zl-e-“_;b(l_,) +

ale-= Db+ D{—2P
cle+ ) 7 T (9]

with a, b, ¢ given by

c-a+b+l=2(l+—';5-):

Fi
in in (6]
ub-m(l +3)-

tu prineiple, therefore, our problem is solved taking
8= CF(a,bic:l—2z) [37)

and computing v from cquation {11} with @ = 0 and
with d F'dz obtained from the differentiation of [35].
The ratio v./8, in therefore determined and is incle-
pendent of C.

However this procedure cannot bo fullowed in
practical casen mineo 2, i3 generally quite amall (1)
aml | — 2, in clowo to one, in a region where the
convergence of [15] i ton poor. The difficulty can
he overcome with the help of the properties of the
wolutions of the hypergeometric equations. Simpler
developmenta are obtained using instead of meries (5],
the proportional series

[(n.bxcal—l):iﬂ?-(%(ﬂlh.bml—n-

,Tisda) e+ b (38

= S U= eI o

where ' (£} ref ta the g function of argu.

(1) It the Mach number at the nossle entmaee is .8, 1.2,
o around .96, Lven for Mach sumbet .4, 1-3, le close to .74,

ment .+, Thix particulne solution ean be expreswed
s w linear combination of the neries expressing two
purticular solutions of the hypergeometric cquation
in powers of =,

Ono such relationship, particulaely useful in the
present came, s (ref. 2)

Habicil—2) =
atmems I E bhld-ec—n—biz)
- Fr=alEe—teme—a—hn
[30)
where

gl b'i¢’i2) = —meot (¢ 2V [f (%, bic’si2) —
—atme g+l — B L —c 23— )]
140}
the two functions f being given by the correspond-
ingg sories |38, With the particuiar valuo [36) of ¢,
the value of ¢’ to 1se in {40] in given, following (39),
by ¢ == 2. Now for integer ¢ = n the quantity
in the brackets of equation [40] vanishes {us it in
enaily checked) aned the fiwtor preceding the brackets
becomes  inflnity. The correspondding value of ¢
can be found through a liimting procesa to be (ref. 2),
for n> 1,

gla’ bimzs) = —f (' binz)logs +
st I'—al(s+ o)+ )
+ X (=2 Tt -

sm—l
t . T+ T +b) (b (e +a') +
LY bi—gla+ D—de+m] )

o T+ e+

where & (r) represents, ns sl the logurithmic
derivative of the gamma function with respect o
the srzument

Finally from equationa |38, [39], [41] with a, b, e
wiven by [18} and theretore n == 2 we tind

Jiabie:l =2y e=logs ¥ Aozt 4
4=

142]

& 2y +
- 8] ), 2 P o]
DI e

with the coeflicients ., given by the recurrence
formuln

Ay -y as . 2a41
A, T T Ay F e+ |)""ﬂ(~,+ 1)aia+ n““"‘

nnd with
Domyiata)+d{r+b)—Pl)—(e+ 1. [43]

‘Mhe computation of D, can be performed with
the help of the series oxpression of ¢ (x):

-
1\ (~=1)rB,
T,\’__ el

vl
where B, = 1/8, B, = 130.... nre the Bornoulli’s
numbern.

1
4 (= -lu[l-—--&-‘-‘-{-
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We obtain
351+ 28
D, =l ey LI 1 x4,
SR T | T T 1 s+ 1 Ai+a
= Sty Be fa s a4 iy byt —
e (a + 1)- 2], [44]

The convergence of the last series is very tust for
high values of 8. D, has been thercfure computed
from [44) only for the highest value of 5 needed in
the evaluation of {42]; and for the other values of
D, from the recurrence formula

3 1 | 1
Diyy—D,= mﬁ-:—_:z-——;— =T

The solution [37] can be expressed ns
83=C"f(a,bic;1—2)

with the constants C’ and C connected through [38];
and [42] provides the series expansion suited for
computations at 2 = z,. Actually to solve the pro-
blem of the boundary condition equivalent to the
presence of the nozzle we need only the calculation
of v/8 and therefore. from equation [11], of the
quantity {(1/f) (df'dz} = (UF) (dF/dz), independent
of the vaiues of the integration conatants (' or (”,
and easy to calculate from the inverse ratio of se-
ries {42] or {35) and the series obtained through their

-1 T - - -
:;\\l‘ o TT

Lt

R T T g

differentiation. The rcal and the unaginary part
of this quantity, the tirst divided by 3* and the
second by 8 for converuence of scale, are given for
v = 1.2 in figures | and 2. The numnber of terms
used in the computation are sutlicieny ro give very

accurate values up to z = .2 for series {42} and
reasonable sccurste data up to : = .3: tho corre-
sponding limits for series [33]arez = Nandz = .7,

Between .3 and .7 the dotted curve is only interpo-
luted. The hines for 8 = 0 are entirely computed
from the equations

ﬂh;m{ R.I. (*ﬁ) I S

8 dz (r+ D2l —z)¢
4 ez vt .
[J'll;ud-—-f—- (1—~z) ~
~ zlogz (logz ~ 1 —2)]
= +'_:,t_‘);‘.u _zloezllees 1o )J
l 9§ dogz+1—2
lim|— 1. p -
Jml e 50 = T

which ean be derived with the procedure used pre.
viously for small B.

For 5+ 2 the tirt of the two quantities gues
tu zero, but the wecond one takes the expression

lim !»_ I.r. ( ! 'l[l:s )j _—

Be > ,;

9 heing given by cquation (28], Both quantities
tend logarithmically to infinity at : = 0, a value

015~ —— —r

.,
¥
:

005

o2
O
N
$

06 08 z 1

Fra. 1




a2
which can never oceur in practice. The hehavior
ot (1 8,) td 82y, is better scen in tivure 3 whero
this yuantity divided by — /3 is represented an the
complex plane tor various valies ot 2, = lu, rg
From (1 3,) (48 J42), and equation | 11} the yuantty
v.i8, has been computed. Figuros 4 and 5 show
the real und the imaginuey paet of vid, a5 a fimetion
of 8 for different values of . Figu e 6 mives o
representation of w8, i the complex plane. from
which the phast and wmplitude relations between
the veloeity asud deosity fractionzl fluctuntions are
imtnodiatoly deduced.  For s given Mach number
at the nozzlo entrence the ratio of the amplitudes
increasos steadily with increasmg frequencies. while

Vol XXX fase. 00 103d)
2 : % ‘ i T 22005 |
22— ‘
g f=12
ST T T
16— —

\

¢'.
| |
Lot
[ 2 B "G RN TR S

=g

the phase woes from zero o a puxanum which is
always an important friction of = 2 and then de.
creaxes back to zero,

final observations

The computed values of v.;8, are sutficient to
solve problems in the compiete range of prastieal
frequencies and Mach numbers in the isentropic
jproblem and for linear velocity distribution.  Addij.
tional computation are required in other cases.

The isentropic cass with other veloeny distribu.
tions can bo commut i <t wiing from the solution for
the linear distribution. which is still availabie near
2= 1 provided ducde cE 00 and continuing with the

ieal integration of cquations (6] withe=4. In
particuiar at the sonic point ==l we have the relation

(5).-..

that is the same equation miven b+ [11] for finite
(1/8) (d 8/dz) at = = 1, with 8 = w/(du/dZ)cwcq. In
terms of 8 the reiation between y und § at the sonic
point is independent of the nozzle shape.

et
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Tt in interesting to observe that tho fractional .

odtillation of Mach number, given in {6 Isentropic
AN 0f e aamoer
endo by v gy — D 82 i at the throat equal to

v 33—y

and is therotore different from zero for finito 5 The
sonie line 4 therefore oseitlating arouned the throor,

and the amplitide of the oscillationy can be related
t5 the amplitude” of oacillation of pressure, density
T lanperatire ot the nozzlo entrance. )

Fifally we obstrva T with Tsien that, cepecinlly
for short approachen to the threat the onealimen.
sional assumption can ba very much in error, and
that additional errors nre 1o be expected from the
furt that the thiid Jus bevay vonsidered as w friction.
feas, iy ‘Ating, non rencting i,
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3
by L CROCCO
For severa{ problems connected with jot propulsion  nozzie. Under certain restrictive assumptions he
w is requered to know the behavior of a superenitical  has given the solution in the (wo oxtreme cases of
dischanze nozzle when the conditions upstreamm of  very low wnd of very high frequency. Here the
the nozzie are oseillating.  Tsiem  has  reeentiy  <tudy is extended to more general assumptions.
analyzed the question in the case in which the oscilla-  Moregver, in the case in which the upstream oscil-
tion amphituden are small and the velocity axial lations are jsentropic, the solution is given in the
distribution i linear in the subsonse portion of the  compiete range of frequencics,
)
.
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