Best Available Copy
NMR RELAXATION STUDIES OF MICRODYNAMICS IN
CHLOROALUMINATE MELTS

Pamela A. Shaw, W. Robert Carper, Charles E. Keller
and John S. Wilkes

Frank J. Seiler Research Laboratory, USAF Academy,
CO 80840-6528, USA

INTRODUCTION

Room temperature molten salts consisting of mixtures of AlCl₃ and 1-ethyl-3-methylimidazolium chloride (MEI CI), are of interest as aprotic solvents for studying a wide range of both organic and inorganic compounds [1-7]. These chloroaluminate molten salts possess considerable potential as battery electrolytes and various types of electrochemical agents [8-10].

The composition of a chloroaluminate melt has a considerable effect on its physical properties. The variations in physical properties of the melt are due to a combination of factors including ion-ion interactions [4], and Lewis acid-base properties. Chloroaluminate melts with AlCl₃ present in excess (mole fraction, N, of AlCl₃ > 0.5) are termed acidic with AlCl₃⁺ and AlCl₂⁻ the predominant anions.

The use of NMR relaxation methods provides useful information about the dynamics and structure of various chemical systems and chloroaluminate systems in particular. In a previous work[11], ³¹C NMR relaxation measurements were used to investigate the motion and interactions of the MEI cation. The results indicate that AlCl₃⁺ in a Na⁺ₐ,MEI⁺ₐ,NaAlCl₃ melt forms a complex by interacting with the C-2, C-4 and C-5 hydrogens on the MEI⁺ ring. This investigation was followed by studies [12,13] in which the Dual Spin Probe method [14] supported the existence of MEI(AlCl₃)ₕ⁺ complexes in neutral (AlCl₃ = MEICl) and NaCl-buffered melts. ²⁷Al, ²³Na and ¹³C NMR relaxation results confirmed the presence of the chloroaluminate-MEI⁺ complexes and yielded ²⁷Al and ²³Na liquid state quadrupole coupling constants[12,13].

Application of the Dual Spin Probe(DSP) relaxation method typically requires knowledge of ¹³C dipolar relaxation rates which are defined by (1), the basic equation in which the ¹³C nucleus is relaxed by 'H[15]:

\[R_{1,d} = N_n (\gamma_C/\gamma_H) T_{CH} \tau_{ef} \]

where \(R_{1,d} = 1/T_{1,d} \) is the dipolar relaxation rate, \(N_n \) is the number of hydrogens attached directly to the carbon atom, \(\gamma_C \) and \(\gamma_H \) are gyromagnetic ratios and \(T_{CH} = 1.09 \ \text{Å} \). \(\tau_{ef} \) is the effective correlation time and varies exponentially with temperature. Equation (1) is operative while under the "extreme narrowing condition" \((\omega \tau_{ef} < < 1) \) which is usually applicable for small molecules including the chloroaluminate melts[11].

\[R_{1,d} = \eta R_1/1.988 \]

(2)

The other part of the DSP method requires knowledge of quadrupolar relaxation rates for nuclei such as ²⁷Al and ²³Na. If there is a distortion from tetrahedral or cubic symmetry, nuclei such as ²⁷Al and ²³Na will be under the influence of an electric field gradient which produces the quadrupole interaction. The quadrupolar relaxation rate in the "extreme narrowing region" is given by(3) [15,17]:

\[R_1 = \left[3\pi^2 (2l+3)/10l(l-1) \right] e^2 Q q/\hbar^2 r_e \]

(3)

where \(l = 3/2 \) for ²³Na and 5/2 for ²⁷Al, eq is the nuclear quadrupole moment, \(e^2 Q q/\hbar^2 \) is the maximum component of the electric field gradient tensor, and \(z \) is the asymmetry parameter of the electric field gradient tensor(\(z = 0 \) for AlCl₃).
The quadrupole coupling constant, QCC, is given by:

\[QCC = \left(\frac{e^2}{4\pi\hbar} \right) \]

(4)

The DSP method has been applied to chloroaluminate melts[12, 13] and has provided evidence that the ring hydrogens of MEI⁺ interact with the tetrachloroaluminate anion. The existence of these complexes has been supported by linear plots of \(^{13}C \) dipolar relaxation rates(\(R_{1\text{d},} \)) vs. quadrupolar \(^{27}Al \) relaxation rates(\(R_1 \)) that pass through the origin as predicted by equation (5):

\[R_{1\text{d},}(^{13}C)/N_{\chi} [(^{13}C)_{Y_c} (^{13}C)_{Y_2}]^{2} = R_1(^{27}Al)/\alpha \chi^2 \]

(5)

where \(\alpha = \left[3\pi/10 \right] (2I^2 + 3)/I(I^2 - 1) \left[1 + (z^2/3) \right] \), and \(QCC = \chi \).

In this study, the DSP method is applied to melts containing MEICI, AlCl₃, and EtAlCl₂. The inclusion of EtAlCl₂ provides a "baseline" as there is a covalent bond between the ethyl group and aluminum in EtAlCl₂. The existence of covalent bonding (or complexation) between quadrupolar and dipolar nuclei in a molecule results in a linear plot of eqn. (5) that passes through the origin. In the MEICI-EtAlCl₂ melts reported herein, we observe a linear plot of eqn. (5) that passes through the origin when applied to the terminal CH₃ carbon in EtAlCl₂ and one of the peaks in the \(^{27}Al \) NMR of the melts.

RESULTS AND DISCUSSION

The ability of both AlCl₃ and EtAlCl₂ to form \(C_{2n} \) dimers[19, 20] led us to examine the \(^{27}Al \) spectra of: (1) neat EtAlCl₂, (2) mixtures of MEICI-EtAlCl₂, and (3) ternary melts (\(N = AlCl₃/MEICI/EtAlCl₂ [21] \)). The neat EtAlCl₂ \(^{27}Al \) NMR spectrum contains two peaks [21]. Peak 1 is a broad downfield peak that dominates the spectrum. The second peak (upfield) overlaps peak 1 and is only a fraction of peak 1 in total peak area. Peak 2 collapses into peak 1 as the temperature is lowered from 60 to 25°C. These two aluminum sites are consistent with the extent of monomer-dimer formation in liquid EtAlCl₂[21].

The MEICI-EtAlCl₂ (\(N = 0.5/0.5 \)) melt \(^{27}Al \) NMR spectrum also has two peaks. In this case, peak 1 (downfield) is very broad while peak 2 is very sharp, and has a low peak area. Peak 2 increases slightly in area and peak 1 broadens as the temperature is lowered from 70 to 0°C. We have previously[21] made the tentative assignments of EtAlCl₂ for peak 1 (downfield) and Et₂AlCl₃ for peak 2.

EXPERIMENTAL

Materials

The 1-ethyl-3-methylimidazolium chloride (MEICI) and chloroaluminate molten salts were prepared as described previously [1]. Ethylaluminium dichloride (EtAlCl₂) was obtained from Aldrich. All materials were stored under anhydrous helium gas atmosphere in a dry box. All molten salt preparations and manipulations were performed in the dry box. Samples were loaded into 5 mm sample tubes, capped in the dry box, removed, and sealed immediately with a torch.

NMR Measurements

\(^{13}C \) and \(^{27}Al \) NMR spectra were recorded on a Varian XL-300 spectrometer at 75.43 or 78.15 MHz. Temperature measurements were calibrated against methanol or ethylene glycol and are accurate to within 0.5°C. Pulse widths(90°) were typically 8.6 (75.43 MHz) and 7.6(78.15 MHz) μs. Longitudinal relaxation times were measured by the the inversion-recovery method

(180°-τ-90°-T) with \(T > 10T_1 \). At least 12 delay times(τ) were used and the results fitted to a three parameter exponential. NOE measurements were made using the gated decoupler method[18]. It is likely that the error in the NOE measurements is in the 5-10% range[18].

Fig. 1. \(^{13}C \) Dipolar R1's vs \(^{27}Al \) R1's(25 to 70°C) for Al peak 1 (127-131 ppm from Al(\(\text{H}_2\text{O})_2^{+} \)).
In this study, we first apply the DSP method to the CH$_3$ carbon in EtAlCl$_2$ and 27Al NMR peaks 1 and 2 from several melt combinations and neat EtAlCl$_2$. Fig. 1 contains the results for 27Al peak 1 (downfield) and Fig. 2 contains the results for 27Al peak 2. The fact that both plots are linear and pass through the origin, indicate that:

1. the DSP method is appropriate for these systems and
2. the species associated with each peak contains EtAlCl$_2$.

Furthermore, the slopes of these lines can be used to calculate the relative quadrupole coupling constants for the EtAlCl$_2$-containing species in solution. The QCC values obtained from Fig. 1 (Al peak 1) are 171, 119, 106 and 93 MHz for the (.5/.5), (.35/.40/.25), (.25/.40/.35) melts and neat EtAlCl$_2$, respectively. The QCC values obtained from Fig. 2 (Al peak 2) are 6.9, 20, 11 and 93 MHz for the (.5/.5), (.35/.40/.25), (.25/.40/.35) melts and neat EtAlCl$_2$ (repeated).

Results of the Dual Spin Probe method (eqn. [5]) applied to the (.5/.5), (.35/.40/.25) and (.25/.40/.35) melts indicate interactions between the Al-containing species in peak 2 (102.5-103.0 ppm relative to Al(H_2O)$_6^{2+}$) and both the NCH$_3$ and ethyl terminal CH$_3$ groups of MEI. Fig. 3 contains the plots for the NCH$_3$ group in each melt and Fig. 4 contains data for the terminal CH$_3$ on the MEI ethyl group.

Fig. 2. 13C Dipolar R1's vs 27Al R1's (25 to 70°C) for Al peak 2 (102.5-103.0 ppm from Al(H_2O)$_6^{2+}$).

Fig. 3. 13C Dipolar R1's vs. 27Al R1's (25 - 70°C) for NCH$_3$ carbon vs Al peak 2 (25 - 70°C).

Fig. 4. 13C Dipolar R1's for ethyl CH$_3$ carbon vs 27Al R1's (25 - 70°C) for Al peak 2.

The QCC's obtained from the slopes in Fig. 3 (MEI NCH$_3$) are 1.7, 2.3 and 4.4 MHz for the (.5/.5), (.35/.40/.25) and (.25/.40/.35) melts. The QCC's from
Fig. 4 (terminal CH$_3$ on the MEI ethyl group) are 1.6, 6.9 and 1.3 MHz for the (.5/.5), (.35/.40/.25) and (.25/.40/.35) melts.

Finally, there is no correlation between the ring hydrogen dipolar R1's and any of the 27Al peak R1's. This result is directly opposite to that found in MEICl-AlCl$_3$ systems [11,12].

CONCLUSIONS

Application of the DSP probe method to these mixed melt systems indicates a lack of complexation between the ring hydrogens of MEI$^+$ and any of these aluminum containing species. These and previous results [21] suggest that the formation of various charged dimers containing EtAlCl$_3$ takes precedence over the formation of complexes between EtAlCl$_3$ and the MEI$^+$ ring hydrogens. However, there is evidence of interaction between the various Al-containing species and the CH$_3$ groups (NCH$_3$ and terminal CH$_3$ in the ethyl group) of MEI$^+$ in these melts.

ACKNOWLEDGMENTS

This work was partially supported by a National Research Council and Summer Faculty Research Associateship to W. R. C. and a summer Graduate Fellowship to P. A. S.

REFERENCES

