NAVAL POSTGRADUATE SCHOOL
Monterey , California

AD-A284 307 |
UHTEIRL g

Data Link Level Interconnection
of Remote Fiber Distributed Data
Interface Local Area Networks
(FDDI LANs) Through the

Critical Data Link (CDL)

by
Selcuk Karayakaylar
June 1994

Thesis Advisor: Shridhar B. Shukla

Approved for public release, distribution is unlimited.

84-29487 DTIC QUALITY LIEPECTEL 3
?mmmmmmmmﬂ 5

N
. B
et

[ ,,Aé' 7
i bl
e

L




i e s |

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188
Public repartng burden lu'z‘.t.t:l.bﬂm of .n:l‘o:nonon ”:' ﬂmu'ﬂn to n:vM-q‘q “:' :‘o;v“ o:'v m‘g:ome ml‘u:ho he trme to:7 m wz‘m ::gm :'.::m :‘.::‘ :.:,'.::.
b - of 9 wogeitions q thes 3 Services. O ion Operations and Reports, 1213 jetferson
Oevn nu.ﬁ-u Swite 1204, Arlington, Vv unun: and 10 the Office o' uwmtmimx not'*on lcdumon 'ml'(l nm 0198). Washington, OC 20%03.
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
4 June 1994 Master’s Thesis
4. TITLE AND SUSBTITLE S. FUNDING NUMBERS

DATA LINK LEVEL INTERCONNECTION OF REMOTE FIBER
DISTRIBUTED DATA INTERFACE LOCAL AREA NETWORKS

| (EDDI LANs) THROUGH THE CRITICAL DATA LINK (CDL)

6. AUTHOR(S)
Karayakaylar, Selcuk

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. :::g?‘l;n::za ﬁ:ﬁamunou
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSOIINéIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.

12a. OISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION COOE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This thesis deals with the features and performance of a network interface device to interconnect two
remote Fiber Distributed Data Interface (FDDI) Local Area Networks (LANs) through the Critical Data
Link (CDL) which is a full-duplex, jam-resistant, point-to-point microwave communications system for use
in imagery and signals intelligence collection systems. In particular, OPNET, a commercially available
network engineering tool is used to model a medium access level remote bridge interface connecting two
LANs. The effectiveness of two different load balancing techniques used to distribute traffic over the
multiple channels of the CDL has been studied. Also, the effect of different jamming patterns on the bit
error rate seen by the users has been studied.

DTIC QUALITY INGSTIIED &

14, SUBJECT TERMS 15. NUMBER OF PAGES

FDDI, LAN, CDL, MAC, LLC, bridge, simulation 187
16. PRICE COO¢E

17. SECURITY CLASSIFICATION [ 18. SECURITY CLASSIFICATION ] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRA(CT

OF REPORT Of THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NN 7540-01.280-$500 Standard form 298 (Rev 2.89)

i Prowrmed By SNV W@ 119 )




Approved for public release; distribution is unlimited

Data Link Level Interconnection of Remote Fiber
Distributed Data Interface Local Area Networks
(FDDI LANSs) Through the Critical Data Link (CDL)

by

Selcuk Karayakaylar
Lieutenant Junior Grade, Turkish Navy
B.S.E.E., Turkish Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
June 1994

‘Selcuk Karayakaylar

Approved by: W/‘”A’ (A

-—-——/

Shridhar B. Shukla, Thesis Advisor

~

" Gilbert Lundy, Second }éader

LYV 0.8Y [prgor

Michael A. Morgan, Chairmary/Department of Electrical
and Computer Engineering




ABSTRACT

This thesis deals with the features and performance of a network interface
device to interconnect two remote Fiber Distributed Data Interface (FDDI) Local
Area Networks (LANs) through the Critical Data Link (CDL) which is a full-duplex,
jam-resistant, point-to-point microwave communications system for use in imagery
and signals intelligence collection systems. In particular, OPNET, a commercially
available network engineering tool is used to model a medium access level remote
bridge interface connecting two LANs. The effectiveness of two different load bal-
ancing techniques used to distribute traffic over the multiple channels of the CDL
has been studied. Also, the effect of different jamming patterns on the bit error rate

seen by the users has been studied.

Accesalon For L,
| BTIS 3RA&I ¥ |

DTil T48 0

Utnamrio noed ]

Juot!lieationo ]

By __
Diatrivrtiens .
Arntlo i1t e Tsder
S ocndfer

ves Pist Spcain
i 13\ Siecaind

a?‘/ l i




IL

IIL

TABLE OF CONTENTS

A. PROBLEM STATEMENT ......................
B. SCOPE . .. ... . . e
C. BENEFITS . . . .. .. .. i
D. ORGANIZATION ... ... ... i it

INTERCONNECTION OF FDDI LOCAL AREA NETWORKS
THROUGHCDL ........... ...,

A. OVERVIEW . .. ... . .. ittt i

B. ISSUES IN HIGH SPEED LAN INTERCONNECTION . ... ..
1. Preliminary . ... ... .... .. .. . ... .. . ...
2. BridgesversusRouters , . . .. .................

C. PROPOSED BRIDGINGMETHOD . . .. ... .. ........
1. CurrentStandards ... .......... ... ... ....
2. RemoteBridging . ........................

D. UNIQUENESS OF THE CDL ENVIRONMENT ... ... .. ..
Description . ... ... ... ... .00t eninne...
System Requirements . . . . .. .................
Asymmetry between Command and Return Link . .. .. ..
Considerations on Link Utilization .. .............
5. TheEffectsof Jamming . ....................

MODELING CDL NETWORK INTERFACE IN OPNET ... .. ..
A. OVERVIEW ... ... ... ... .. . i i

B. REVISEDFDDILANMODEL ...................
1. FDDILANModelinBrief . . . .. ... .. ..........

2. Modifications on FDDI Station Model .. ... ... ... ..

a. Preliminary. .. ......... .. .. .. .. ...

b. Source Node Modifications . . ...............

c. Sink Node Modifications . .................

C. BRIDGEMODEL . ... ... ...ttt
1. Preliminary .. ........ ... ... ...,

Lol o o

iv




2. TheCPNI . ... .. ... ittt it it 19

a. StationModel ... .. .. ... ... ... ... ... 19

b. Source Node Modifications . . ............... 22

c¢. MAC Node Modifications . . . .. ............. 22

d. Sink Node Modifications . . ... ............. 23

3. TheSPNI . ... .. . . . .ttt 24

a. StationModel .. ... ... ... .. ... .. ... ... 24

b. Source Node Modifications . ................ 26

c. MAC Node Modifications . . . ............... 26

d. Sink Node Modifications . ................. 26

D. CDLMODEL . .... ... ittt ettt 27
1. OPNET Model for Point-to-Point Links .. ... ... .. .. 27

a. Preliminary. .. .. .. .. ... ... ... ... 27

b. Transmitters . . .. ..................... 28

c. Receivers . .. ... ... ... ... ... 28

d. Transceiver Pipeline Stages . . . . ... .......... 28

2. Error Modeling over Multiple Links . . . .. .......... 30

a. Modifications on Error Allocation Pipeline Stage . . . . . 30

b. Jammer Implementations . . ... ... .......... 31

E. LANINTERCONNECTION ... .................. 33
1. Addressing through The Remote Bridge . ... ........ 36

2. Load Balancing over Multiple Links . . . . ... ........ 37

a. Circular Allocation Algorithm . ... ... .. ... ... 43

b. Empty Selection Algorithm . . .. ... .......... 43

F. FAITHFULNESSOFTHEMODEL ................. 44
IV. MODELTESTING ............ 000t iniueninno.. 47
A. OVERVIEW . .. .. ... .. ittt it iiin. 47
B. PERFORMANCEMETRICS. . ... ... ... .. ........ 47
C. TRAFFICMONITORING ... ... ... .. ... .. ...... 48
1. Overview . .. .. ... ...ttt 48

2. Setup . ... e e e e e e e e 48

3. Results. .. ...... ... .. . . . ... ... 49

D. RETURNLINK PERFORMANCE ................. 52
1. Overview . .. .. .. ... . ..ttt 52




2. First Test . . . . . . . o i i i e e e e e e e

a. Setup . .. ... ... . e

b. Results . . . .. . . . i e,

3. Second Test . . . . . .. . o i i i i e e e

a. Setup . . ... ...

b. Results . . .. ... .. . . .

E. COMMAND LINK PERFORMANCE . . . . ... ... ......

V. CONCLUSIONS AND RECOMMENDATIONS . ... ... ......
A. CONCLUSIONS . . . . . e e e e e e e e

B. RECOMMENDATIONS . . . . . . . e e et e e
APPENDIX A: CPNISOURCE “C”CODE . .. ... ... .........
APPENDIX B: CPNIMAC “C" CODE . . . . . . . . i i i i
APPENDIX C: CPNISINK “C>CODE .. ... ... ... ... .. .....
APPENDIX D: SPNISOURCE “C*CODE . . .. .. ... .. .. ......
APPENDIX E: SPNI MAC “C” CODE EXCERPT ... ... ........
APPENDIX F: SPNISINK “C>CODE . ... ... ... ...
APPENDIX G: CDL MODEL ERROR ALLOCATIONCODE .. ... ...

APPENDIX H: SAMPLE ENVIRONMENT FILE FOR PULSED
JAMMER . . . . . e e

APPENDIX I: SAMPLE ENVIRONMENT FILE EXCERPT FOR
CHANNEL-SWEPT JAMMER . ... .. .. ... . ... ... . ...

REFERENCES . . .. .. .. . . . i i e
INITIAL DISTRIBUTION LIST . ... .. .. ... . ... .........

vi




W 00 ] O B W N

N N N BN N e e et i ek et b b b e
oW N = O W0 00Ot W= O

N
[

LIST OF FIGURES

Protocols relayed by the bridges and routers . . . ... ... ... .. 4
Remote MAC bridge architecture 5] . .. ............... 7
FDDI LAN ring representation . . .. .. ............... 15
Ten-station FDDI LAN, fddi_net_10 . ... ... .. ........ 15
FDDI station model, fddi_station . . . ... .. ... .. .. .... 16
Source process model, “fddi_gen” . . . . ... ... ..., 16
MAC process model, “fddi_mac” . .................. 17
Sink process model, “fddi_sink” . ... ... ... .. ... .. 17
Collection Platform LAN Network Interface (CPNI) . . . . .. .. .. 20
Surface Platform LAN Network Interface (SPNI) ... ... ..... 25
The attributes used for jamming patterns. . . . .. ... ... .... 32
Pulsed jammer representation . . ... ... ............ .. 34
Channel-swept jammer representation . . . . ... ... ........ 34
Interconnected network model, fddi_ecdl . . . ... .. .. ... ... 35
Modified packet format, “fddi llc_fr" . ... .............. 35
Modified packet format, “fddi_mac_fr" .. ... ... ... ... ... 39
Modified ICI packet format, “fddi_mac_req” . .. ... .. ... ... 40
Return link data rates and new attributes for 1lc_sink . . . . . . .. 41
Command link datarate . . ... .................... 42
Local throughput of surface LAN ... ................. 50
Traffic directed to the command link . .. ............... 50
Local throughput of collection platform LAN . . . ... ... ... .. 51
Throughput directed to thereturnlink . . .. ... .......... 51
Accumulation of packets on the CPNI buffers with circular

allocation . . . ... ... ... L e e 53
Buffer overflows in the CPNI with circular allocation . .. ... ... 54

vii




26
27
28
29
30
31
32
33
34
35
36

Accumulation of packets in the CPNI buffers with empty selection .
Queing delay of the CPNI buffers with circular allocation . . . . . .
Queing delay of the CPNI buffers with empty selection . . . .. ..
Throughput at the transmit-end of the return link . . . . . ... ..
Average BER of the return link caused by pulsed jammer . . . . . .
.. 58

Average BER of the return link caused by channel-swept jammer

Effect of pulsed jammer on the return link throughput . ... ...
Effect of channel-swept jammer on the return link throughput . . .
Accumulation of packets in the SPNIbuffer . ... .........
Queing delayof the SPNI . . . ... ... ..... .. .......

Throughput of the transmit and receive-ends of the command link . .

viil

. o4

55
55
57
58

59

. a9

61
61
62




ACKNOWLEDGMENT

I wish to thank my thesis advisor Professor Shridhar B. Shukla for his guidance
and encouragement in this research.

OPNET is a registered trademark of MIL 3 Inc.

ix




,E'u'@,_';”'f? e

I. INTRODUCTION

A. PROBL:EM STATEMENT

Tt s thesis deals with data link level interconnection of remote Local Area Net-
works (LANs) through Critical Data Link (CDL). The Critical Data Link (CDL) is a
full-duplex, jam-resistant, point-to-point microwave communications system for use
in imagery and signals intelligence collection systems. The CDL system is designed
to provide a communications protocol between two or more Fiber Distributed Data
Interface Local Area Networks (FDDI LAN). While the collection platform LAN
is in the form of an airborne LAN that provides sensor information, the command
information is provided by a ground-based LAN.

This study is concerned with the modeling of a CDL Network Interface (NI)
using a commercially available network simulation program, MIL 3 Inc.’s Optimized

Network Engineering Tool (OPNET).

B. SCOPE

The scope of this thesis is as follows:

e Model the interconnection of FDDI LANSs in the unique environment of CDL

deployment.
e Evaluate the efficiency of the LAN-CDL interface.

o Establish the necessary basis for running multilink point-to-point protocol in

CDL deployment.




C. BENEFITS

This thesis continues the development of CDL related simulation/modeling
programs started in {1}. In that study, the capabilities of OPNET’s original FDDI
LAN model were enhanced for the use in CDL deployment. We have added:

¢ A model of NI that performs load balancing over multiple links.

e A CDL model with appropriate jamming patterns that faithfully represents

real conditions.

Using these, we have carried out several simulation experiments to determine

the impact of load balancing and jamming on bit throughput.

D. ORGANIZATION

This thesis is organized in five chapters. 1 «r a brief introduction, the discus-
sion of FDDI LAN interconnection through CDL is provided in Chapter II. Chapter
III presents the proposed NI model development in OPNET. The simulation results
are supplied in Chapter IV. The conclusions and recommendations for future studies

are in Chapter V.




II. INTERCONNECTION OF FDDI LOCAL AREA
NETWORKS THROUGH CDL

A. OVERVIEW

This chapter addresses the issues related to the interconnection of FDDI LANs
through the unique environment of the CDL. First, architectural alternatives avail-
able for implementing such a connectivity are discussed. Then, existing bridging
mechanisms are considered to determine the ideal candidate for a NI for such de-
ployment. The system specific features of CDL are also stated briefly in order to

justify the proposed NI architecture.

B. ISSUES IN HIGH SPEED LAN INTERCONNECTION
1. Preliminary

Local area networks are limited in geography, traffic handling capability,
and the number of stations. A single LAN is not likely to meet the needs of many or-
ganizations, specifically military applications which require sophisticated command,
control and communication functions.

This makes the integration of any LAN topology with other LANs through
a communication link necessary. The protocols used to achieve this integration can
be at either the network or data link layers of ISO’s Open Systems Interconnection
(OSI) Model.

Interconnection at the network layer is achieved through routing devices.
At the data link layer it is achieved using bridges. Figure 1 shows the layer hier-

archies. In general, each layer of an architecture is associated with an additional




[ Application—g . Application |

{r Presentation _ I Presentatio;

| Session | Session |
Transpert —f ROUTER {'-TranSport_!
Network [ Network ) [ Network | Network |
Datalink | | DataLink ] (DataLink | | DataLink
Physical (Physical ) { Physical )} | Physical |

A A A A

) Applicationj . Application |
i Presentation ‘TPresentation f
| Session Jl Session |
' Transport | ! Transport |
Network BRIDGE . Newwork |
Data Link (DataLink ) ( DataLink ] | DataLink
Physical ( Physical ; [ Physical | | Physical |

A A A A

Figure 1: Protocols relayed by the bridges and routers.




level of addressing regardless of the functions performed within a layer. Furthermore,
functional distinctions between them are major factors to determine the appropriate
layer of interconnection.

2. Bridges versus Routers

Bridges are Medium Access Control (MAC) level store and forward de-
vices that are independent of higher level protocols. They are transparent to commu-
nicating end stations. This is particularly desirable in many high speed applications.
Bridges make simple forwarding or filtering decisions, based on addressing accord-
ing to the standardized spanning tree algorithm [2]. This algorithm calls for the
automatic discovery of topology changes in the whole network environment.

In a general bridge operation, frames are first received and then condi-
tionally passed to the other LAN depending on a forwarding decision. Effectively,
frames are filtered through the bridge. Thus, the frames having destination and
source addresses in the same LAN are not forwarded. Although two LANs are con-
nected in the frame level, they do not share each other’s local traffic, but only the
cross traffic. The purpose of the bridge is to allow hosts attached to other LANs to
communicate as if they were in the same LAN.

In contrast to bridges, routers are network layer store and forward devices
that rely on an entire higher level protocol suite, and they are explicitly addressed by
the communicating end stations [3]. They are capable of searching alternate routes
having lower transmission delays and using the best path between two nodes in the
network. Since they can tolerate failures in links and stations, routers are designed
to enhance availability through the entire network with the penalty of additional
processing overheads introduced by the network layer. Therefore, bridges become

more important in a high speed network environment.




Recently, both technologies have begun to converge such that simultane-
ous operation of MAC level bridging and multiple protocol routing services are pro-
vided in a simple device. These devices are called as brouters [4]. Consequently, the
individual attractive features of both architectures are supported with the brouters.

In this study, the NI developed for an FDDI LAN interconnection is
intended to be a generic model. Other high speed interface models can be developed

either for ATM or newer networking technologies, as they reach maturity.

C. PROPOSED BRIDGING METHOD
1. Current Standards

Throughout the networking evolution, bridging standardization proce-
dures addressed the interconnection of separate LANs at geographically close points
of attachment with local MAC bridges [2]. As LANs became more prevalent both
in commercial and military applications, the need to interconnect geographically
separated LANs proved inevitable.

An emerging IEEE standard is being developed to satisfy this funda-
mental necessity [5]. This draft standard specifies how a cluster of remote LANs
can be bridged with remote bridges in the MAC level. Moreover, the proposed stan-
dard provides all functionalities of local MAC bridges to remote MAC bridges with
special additions.

2. Remote Bridging

Remote MAC bridges, possibly not constrained to the same geographic
area, interconnect locally situated LANs to the one or more remote MAC bridges
by using a non-LAN communication medium as depicted in Figure 2. MAC service
support of remote bridges performs the equivalent communication functions of the

conventional local bridges across a non-LAN medium. This communication medium,




LAN Port Virtual Port

Higher Layer Entities
(Bridge Protocol Entity,
A Bridge Management, etc.) A

I SO

\ MAC Re i i RB
MAC \'. lay Battty / Protocol
Service : v Support
T % ”
\\_/hmml Sublayer Service / / v
MAC Entity - '/ Serviee
‘ \ ./ Support
g | 3
l ' ! Growp Communications !
| | =
| .
| ! B
/F LAN // {Nn-l.AN commugicetions l

Figure 2: Remote MAC bridge architecture [5].

which may be any type of point-to-point link, is operated and controlled by the
group communications entity within the remote MAC bridge.

The group communications entity, which is represented in the virtual
port level, is an abstract communication functionality supported by protocols and
procedures. As will be stated in the next section, a promising candidate protocol
for CDL deployment is the Internet Standard Point-to-Point Protocol (PPP) and
its imbedding into this entity is being addressed in further studies [6].




The spanning tree algorithm and its associated procedures are reempha-
sized in the draft standard for remote MAC bridges in order to preserve the active
topology and provide automatic reconfiguration in the entire network.

Remote bridge functions enforced by the spanning tree topology also
include forwarding process and learning process associated with filtering database
as in the case of local MAC bridges. The forwarding process filters the frames
coming from local LAN on the basis of permissible destination addresses contained
in the filtering database, while forwarding the frames coming from other LANs to
their destinations. The learning process updates the filtering database by observing
the source addresses of received frames.

The developed model that will be discussed in the next chapter is evalu-
ated in relation to the proposed remote MAC bridging functionality. However, it is
not intended to be the implementation of a full-fledged remote MAC bridge. Since
topology is restricted to a pair of FDDI LANs and probable topology changes are
not modeled in this generic implementation, bridge functions are fitted into two sep-
arate stations existing in the interconnected network model. As a result, subsequent
processes for these functions are preferred to be simple forward and filter decisions

based on @ priori knowledge of the addressing database maintained in these stations.

D. UNIQUENESS OF THE CDL ENVIRONMENT
1. Description
As noted before, CDL is a full-duplex, jam-resistant, point-to-point mi-
crowave communication system that provides real-time connectivity and interoper-
ability between multiple collection platforms and surface terminals. In our study,
CDL is assumed to be a bundle of unidirectional point-to-point bit pipes associated

with certain data rates along the communication medium. The bit pipes carrying




information from surface terminals to the collection platform are grouped together
as the command link. The link which performs the same functionality in the oppo-
site direction is called the return link. The return link carries information such as
voice, platform status, and data gathered by sensors from the collection platform.
2. System Requirements

The first set of requirements is simply related to NI architecture and its
operation. Our model assumes the presence of FDDI LANs on both ends of the CDL
link itself. In this thesis, the NI functions required when CDL link is established are
addressed. Thus, the setup procedures such as link establishment and authentication
are ignored in order to simplify the model simulation sequence. The second set of
requirements refers to the typical CDL scenarios. The NI implementation should
be generic so that different scenarios can be supported with a single type of NL
Some of the scenarios may require the LAN to be interconneceted to multiple LANs
permitting multicasting of collected data while others may require relaying of data
from one LAN to another. The third set of requirements determines the issues
related to data types and quality of service (QoS). QoS, associated with the link,
is expected to be provided in the NI using different buffering schemes. Dynamic
monitoring of link quality will be deployed as a subsequent subprotocol of PPP in
the further developments of our model.

3. Asymmetry between Command and Return Link

The number of bit pipes, and consequently data rate of the return link
depend upon the particular CDL configuration used. The information is assumed
to be multiplexed, formatted, and transmitted as a composite stream to the surface
LAN at various data rates from 10 Mbps to hundreds of Mbps in the full-capacity
configuration. Several channel hierarchies are also assumed to be available for each

data rate with each channel being an independent data stream.

9




As previously stated, the command link handles the transmission of user
commands from the surface LAN to the collection platform LAN. Contrary to the
return link, the command link is assumed to employ a fixed data rate of 200 Kbps.
The asymmetry cited in the duplex point-to-point link, enforces separate perfor-
mance evaluation of the links that will be examined in the Chapter IV.

4. Considerations on Link Utilization

The major issue to be addressed in this unique network architecture is
efficient utilization of the communication link. In CDL deployment, the link is time-
critical, bandwidth is expensive, and prone to errors due to the probable interference
and jamming in the operational environment.

The implementation of an interconnection mechanism as multiple chan-
nels for the return link requires proper management of these channels. There are
several studies about high speed protocol controllers which investigate and propose
high performance [7-9].

One of these approaches is the realization of a distributed multilink sys-
tem which offers a load balancing mechanism for protocol controllers in order to
increase the total throughput of a high speed data link control system. The pro-
posed method for distribution of frames to multiple links evaluates several transmis-
sion allocation algorithms. Qur model employs two of the most efficient algorithms
which are implemented in the NI. First, we modeled the circular allocation algo-
rithm, which calls for the allocation of frames to the NI transmitters in a circular
order regardless of the state of individual transmitter buffers [7]. Secondly, we im-
plemented the empty selection algorithm, which requires the selection of an empty
area in transmitting-waiting buffers for frame allocation [7). The decision process,
based on determining the next candidate for transmission allocation, is also carried

out by NI in order to provide transparency to end stations.

10




Although load balancing is aimed towards the efficient multiple link uti-
lization, side effects introduced by this procedure must be examined carefully. The
slippage among multiple links due to different transmission capacities causes non-
deterministic arrival times of data on the receiving end. For this reason, after the
frames are received, reordering of them is unavoidable. Thus, the trade-off is in-
creased receive-end buffer size necessary for this process or efficient multiple link
utilization. Our model does not address the issues about resequencing of frames on
the receiving end. Instead, a simple time division multiplexing procedure is per-
formed for transmission such that consecutive frames coming from the same station
are sent through the same transmission channel regardless of the load balancing
algorithm in use. Thus, the reordering problem is solved automatically with this
simplification.

5. The Effects of Jamming

Another feature intrinsic to CDL is varying bit error rate (BER) affecting
links severely due to the nature of the deployment environment. A constant BER
can not be assumed in the model during the existence of the link. The exact system
performance must be evaluated in the presence of jamming for any typical military
application. Therefore, the link efficiency must be investigated under two different

types of jamming models which are described in the next chapter.

11




12




III. MODELING CDL NETWORK INTERFACE IN
OPNET

A. OVERVIEW
As discussed in Chapter 11, the necessity to integrate two FDDI LANs to each
other in CDL scenario, enforces crucial changes in the modular structure of OPNET

model. All of these changes are implemented in three phases:

e Applying the model modifications necessary to implement individual traffic,

throughput etc. for separate FDDI LANs,

e Modeling the linking nodes in order to accommodate the generic remote MAC

bridge features in relation to CDL, and
e Linking two FDDI LANs in CDL perspective.

This chapter provides the detailed model development in the order above. The
explanation of FDDI protocol and model in OPNET will not be presented here.

The whole documentation for simulation development is available in the eleven
volume set of manuals provided by MIL 3, Inc. In addition to these manuals, [1]
serves as an extensive tutorial, particularly, for FDDI LAN development. The ex-
periences gained through previous studies are readily documented in the aforemen-
tioned thesis.

The faithfulness of the developed model will also be discussed in the last section

of the chapter.

13




B. REVISED FDDI LAN MODEL
1. FDDI LAN Model in Brief

OPNET provides a built-in model for FD'DI LANs. The modifications
achieved in a recent study for model development are focused on validating the FDDI
protocol in OPNET [1]. It includes the synchronous and asynchronous transmission
characteristics of the model. The individual throughput, mean delay and end-to-
end delay features for the synchronous, prioritized asynchronous and total traffic in
an FDDI LAN were modeled and examined. FDDI multicasting capability and a
rudimentary linking node for the interface development are also introduced in [1].

OPNET’s FDDI LAN model is implemented in a hierarchy. Each LAN is
represented as a ring of FDDI stations connected to each other. Figure 3 shows the
complete ring representation of an FDDI LAN. The internal structure of a 10-station
FDDI LAN ring is depicted in Figure 4.

Each station is represented as an FDDI station model which includes
nodes connected to each other. An FDDI station model is illustrated in Figure
5. Each node is defined by process models that are represented as state transition
diagrams. Figures 6-8 show this modular model structure. The detailed explana-
tions of the models will not be reviewed here for the reasons mentioned before. A
brief introduction to revised FDDI model in OPNET is intended to lead to a better
exposition of the model enhancement made in this thesis.

The ultimate source that determines the behavior of a state in a process
model, is “C” language codes embedded in that state. Thus, the modifications
implemented throughout this thesis refer to code changes as well as the illustration

of interconnected FDDI LAN model.

14




&

ring0

Figure 3: FDDI LAN ring representation.

Figure 4: Ten-station FDDI LAN, fddi_net_10.

15




phy tx
llc src mac phy rx
Pu—
llc_sink

Figure 5: FDDI station model, fddi_station.

I..}‘@iﬁ%ii[/f—\\\]@éiiﬁigix

Figure 6: Source process model, “fddi_gen”.

16




o R e e e e —_—

(STRIP)

(spawn_token) '

(default)

Figure 7: MAC process model, “fddi_mac”.

(defauls
-7

(default)
- TEEsTsEsTE - DISCARD

/

-~ /

Figure 8: Sink process model, “fddi_sink”.

17




2. Modifications on FDDI Station Model
a. Preliminary

The built-in FDDI LAN model in OPNET is designed such that
only a single LAN’s statistic can be obtained at the end of the model simulation.
This restriction forces revision of the FDDI station model, and subsequently, its
associated process models.

Some of the packet formats, used by all FDDI stations, are also
modified in order to enhance the functionality of these models in relation to the
interconnection.

Throughout the description of model development, OPNET objects
are highlighted with a typewriter font as a technical convention. While node models
are highlighted with a typewriter font, process models and simulation attributes are
set off in double quotes with the same font. Similarly, packet formats are highlighted
in italics and double quotes within the text.

b. Source Node Modifications

The message traffic, in form of packets is generated in 1llc_src
which employs the “fddi_gen” process model. The information packet generated
to be sent to mac is defined as “fddi_llc_fr”. This packet format is also same for
the packets sent from mac to 1lc_sink. Moreover, the necessary interface between
1lc_src and mac is provided by “fddi_mac_req” interface control information (ICI)
packet format. After an information packet is received in mac, “fddi_llc_fr” changes
its form to “fddi_mac_fr". Regardless of the functional differences between them, all
of these packets are modified in order to be used in a bridge model. Consequently,
three lines of code is added in the ARRIVAL state of “fddi_gen” process model to
set the new fields of “fddi_llc_fr" and “fddi_mac_req” packet formats.

18




The details about the modifications on packet formats will be stated

in Section E of this chapter.
c. Sink Node Modifications

The packets are counted and the statistics are gathered in the
llc_sink, or in other words “fddi_sink” process model. All statistics related to a
LAN are updated through the global variables in this process model. In the case of
a second LAN, this global nature must be restricted to individual LANs to provide
a realistic representation of the whole network. Thus, all statistical attributes in
INIT and STATS are renamed to make them private for the first FDDI LAN. A
similar procedure is performed again for a second “fddi_sink” process model. This
process model is named as “fddi2_sink”, and it is embedded into 11c_sink nodes
of the second FDDI LAN that will be interconnected. Furthermore, the DISCARD
state is modified such that statistics are gathered only for local traffic on the basis

of incoming frames’ source addresses.

C. BRIDGE MODEL
1. Preliminary
The generic remote MAC bridge that interconnects two FDDI LANs is
composed of two separate NIs. Since symmetric modifications are done for both
LANSs, for simplicity, the NI in the colllection platform LAN is referred as CPNI,
and the NI in the surface LAN is referred as SPNI in our FDDI-CDL model.
2. The CPNI
a. Station Model
This represents the FDDI station model functioning as an NI in

the collection platform LAN. Figure 9 is an illustration of the CPNI employing

19




EE
&
%l

document to printer
(printsr page is reset)

[nessage #4)

Figure 9: Collection Platform LAN Network Interface (CPNI).




simplified 137.088 Mbps mode return link hierarchy in the OPNET user interface
window. When compared to the built-in FDDI station model of Figure 7, first
major distinction seen is the implementation of 11c_sink as a queue module. This
alteration is the fundamental step in creation of a bridge link. The other differences
from the original model include point-to-point transmitter and receiver nodes.

This particular station examines the destination addresses of frames
coming from both LANs. Based on the addressing, frames are either destroyed or
forwarded to destination. If the frames are destined for the local LAN, they are
simply passed to the local MAC level as in the FDDI protocol. The frames destined
for surface LAN are streamed through transmitters’ buffers from 11c_sink. Since
the CPNI also has the full functionality of an ordinary FDDI station, any frame
sourced from either LAN may be destined for this station address.

While the frames destined to the CPNI coming from its local LAN
are treated within mac, the overhead of MAC access for the frames coming from
remote LAN via pr_1, is prevented in Logical Link Control (LLC) level. These
frames are evaluated in the 11c_src and conditionally passed to the mac for trans-
mission along the local LAN, or forwarded t;o 1llc_sink for destruction. Therefore,
the frames destined for the CPNI do not need to be repeated. Instead, they are
by-passed to 11c_sink for higher layer’s access.

The point-to-point transmitters, named pt_1 thru pt_4, are the
return link transmission sources. Information gathered in collection platform LAN
is conveyed to the stations on surface LAN by these transmitter nodes. Transmission
allocation procedure is realized according to the load balancing algorithm in use.

Conversely, the point-to-point receiver node, pr_1 is connected to

llc_src and it serves as the command link gate to the collection platform LAN.

21




b. Source Node Modifications

The source node of the CPNI includes “cp_fddi_gen” process model.
This process model differs from “fddi_gen” due to the modifications implemented
in its ARRIVAL state. In this state, frames coming from the surface LAN are de-
termined first. If there are incoming frames, the CPNI postpones its own frame
generation until no more frames are received. Then, the received frames’ destina-
tion addresses are checked. Any frame destined for the CPNI is simply forwarded to
1lc_sink for destruction. Thus, these frames are not sent to mac like the rest of the
incoming ones. The necessary interface along with the information packet is sup-
plied to mac with “fddi_mac_req” ICI packet format. During this ICI packet transfer,
“pri” field is set to the highest priority which is assigned to the synchronous trans-
mission. This procedure is essential to keep the bridge model realistic. In FDDI,
these priorities relate to LAN bandwidth allocation. Since priorities are only local
to each LAN and FDDI frames do not contain an explicit priority field (unlike IEEE
802.5), there is no way to determine to which priority level the frame received from
the other LAN belongs. Therefore, once the NI receives these frames, it always
sends them as synchronous traffic on its LAN. The “.C” code for “cp_fddi_gen” is
provided in Appendix A.

c. MAC Node Modifications

The mac of the CPNI employs “cp_fddi_mac” as its process model
(Appendix B). The modifications made to the original model are categorized in four
groups as below.

(1) “static” Declarations. Since we use common basic pro-
cess models in stations with different names, the functions and variables used by

the process models are made ‘ ‘static” to prevent name conflicts.

22




(2) INIT State. The token can be generated by any of the
stations in the original OPNET FDDI model. To simplify the simulation sequence,
the INIT state code is changed such that only the NI is capable of generating the first
token. This takes effect only if the simulation environment file is set as described in
Chapter IV.

(3) FR_REPEAT State. The frames coming from the phys-
ical layer are inspected on the basis of destination addresses in this state. The
modifications in FR_REPEAT refer to the implementation of major bridge func-
tions. While the frames addressed to the surface LAN are forwarded to 11lc_sink,
the ones having a local destination address are propagated in the local LAN. Thus,
the local traffic is effectively filtered by the NI.

(4) ENCAP State. The original source address of a frame
coming from llc_src needs to be preserved in this state. Furthermore, a simple
check is made for default values of source and destination addresses in “fddi_mac_req”
ICI packet format. Thus, “fddi_mac_fr" packets containing the same source and
destination addresses are not erroneously composed in this state.

d. Sink Node Modifications

Several modifications are required to the 1lc_sink of the NI as
described below. This node uses the “cp_fddi_sink” process model and acts as
an interface between the FDDI LAN and CDL. As a result, all three states of this
process model are modified. The modified “.C” code is in Appendix C.

(1) INIT State. All the global statistics’ arrays which are used
in the analysis tool are defined here. Consequently, the statistics array needed for
the traffic monitoring of return link in each priority, is also defined in this state.

(2) DISCARD State. Notwithstanding its name, the

“cp_fddi_sink” process model’'s DISCARD state does not discard all the frames.

23




The source and destination addresses of the frames are inspected here. The frames
having the NI address as their destination are destroyed. Moreover, if they are gen-
erated by local stations, the related statistics are updated. The frames destined for
the remote LAN are not destroyed. Instead, they are counted and enqueued in the
subqueues of 11c_sink for transmission. The transmitters’ status are continuously
monitored before and after the transmission with OPNET statistical interrupts de-
scribed in Section D. The allocation of frames to transmitters using different load
balancing algorithms is also performed in this state. The details of this procedure
are provided in Section E.

(83) STATS State. This state refers to the documentation of
statistics at the end of the simulation. It is this state that must generate the return
link related statistics.

3. The SPNI
a. Station Model

This model is one of the FDDI stations located in the surface LAN.
The SPNI employing the same return link hierarchy mentioned above, is depicted
in Figure 10. This station has the same function_a,lity of the NI as in collection
platform LAN, but in the reverse direction. As clearly seen, there exists symmetry
in the number of transmitters and receivers with respect to its correspondent in
collection platform LAN. The node, 11lc_src accesses mac via pr_1 thru pr_4 that
are the downstream gates of surface LAN. The frames destined for the SPNI are
distinguished by 1llc_src and forwarded to the 1lc_sink directly. This process
prevents the additional MAC access creating a significant overhead.

Although the SPNI serves as a receive end-point for the return link,

it is also capable of generating its own frames like other FDDI stations.




OPNET 24.A (c) 1993 MIL 3, Inc.  Node Editor: spni

1

g

‘

|

1iLN;

o) = "- (daldll 8 - o ————————
i ©; detumnd ;
—y poo— - e

spooling bardcopy document to printer
(pranter page 1s tesst)

Seloce abject _§ ____[Jrdic Gbject _J}(nessage M|

Figure 10: Surface Platform LAN Network Interface (SPNI).

25




The transmitter, pt_1 is command link access node. This node han-
dles the frames coming from 11c_sink and delivers them to the collection platform
LAN. The forwarding and filtering decisions based on addressing, are implemented
in 11c_sink as in the CPNI.

Symmetric modifications are carried out in the process models of
spni with respect to the CPNI Since much of the details are provided before, only
major distinctions for each node will be stated below.

b. Source Node Modifications

The source node of the SPNI employs “sp_fddi_gen” as the pro-
cess model. The modifications implemented in this process model are the same
as “cp_fddi_gen” with one exception. In the ARRIVAL state, the frames having
destination addresses in collection platform LAN are passed to 11c_sink. This in-
spection is based on the permanent database maintained in the NIs as can be seen
in the “.C” code supplied in Appendix D.

c¢. MAC Node Modifications

The process model “sp_fddi_mac” has the same alterations as
“cp.fddi_mac” process model’s case in INIT and ENCAP states. The same vari-
ables and all functions are also defined as “static”. The difference appears in
FR_REPEAT state. Thus, “.C” code provided in Appendix E includes only this
modified state. In this state, the frames belonging to the collection platform LAN or
addressed to the SPNI are passed to 11c_sink, while others are simply propagated.
This decision is also made on the basis of a priori knowledge of addresses.

d. Sink Node Modifications
The changes in INIT and STATS states of “sp_fddi_sink” are

symmetric to the ones in “cp_fddi_sink” process model. Furthermore, DISCARD

26




state modifications differ from “cp_fddi_sink” process model’s DISCARD state.
In this state, the frames destined to the SPNI are destroyed and related statistics
are updated for the surface LAN. Since there is no multiple link deployment for
the command link, transmission capacity allocation is based on FIFO queue of
llc_sink. For this reason, load balancing algorithms are not employed here. The
“.C” code for “sp_fddi_sink” is provided in Appendix F.

D. CDL MODEL
1. OPNET Model for Point-to-Point Links
a. Preliminary

OPNET system models are composed of distributed subsystems
which need a communication mechanism among them. There are several meth-
ods available in OPNET for the communication between two subsystems, the most
prevalent being the packet-based one. In the OPNET environment, a packet is
a data structure facilitating information transfer from one subsystem to another.
While packet streams, represented as the physical connections, provide transmis-
sion between nodes in the same subsystem, the ultimate transfer of information to
other subsystems is employed in the form of communication links.

As mentioned in Chapter I!, CDL deployment requires point-to-
point link management because of the physical constraints of the environment.
Point-to-point links, either simplex or duplex, allow packets to be transmitted be-
tween a single pair of nodes. Each link consists of several transmission channels
between the source and destination node that it connects. In OPNET, these nodes

are referred to as transmitters and receivers.

27




b. Transmitters

These nodes serve as the exit points of a station for packets forwarded
on point-to-point data transmission links. They are composed of multiple channels,
each of which is tied to a receiver channel in a remote station via point-to-point
link.

Transmitters are built-in FIFO queues with infinite capacity per channel.
These queues regulate the transmissions in a channel so that only one packet is
transmitted on the link at any time. '

The status of any transmitter can be monitored with OPNET statistical
interrupts. These interrupts are represented via statistics wires in the OPNET user
interface window. Particularly, the “buxy” statistic, which is fed back to a node from
a transmitter plays the most important roie for any transmission capacity allocation
process.

c. Receivers

As opposed to transmitters, these nodes act as entry points of a
station for packets received on point-to-point data transmission links. They employ
the reverse functionality of the transmitters. After reception of packets on channels
in the remote station, the packets are forwarded through output streams to the
attached node of the receiver node for further processing.

d. Transceiver Pipeline Stages

In OPNET, point-to-point links can be configured to model packet
transmission in several ways. Each link includes a series of default or user-definable
submodels called pipeline stages. The source code for all the default models is

provided in <opdir>/stdmod/base directory.

28




In any pipeline stage of the model, the data related to each packet
is used in the various computations related to its transmission. These computations
are performed in order to identify the reception time and whether or not a packet
is received correctly.

Point-to-point links are based on a four stage pipeline that supports
the transfer of packets from a transmitter to a receiver. These stages are described
below in brief.

(1) Transmission Delay. This is the first stage of the transceiver
pipeline. In this stage, the amount of time required for the transmission of an entire
packet is calculated. This computation is performed independently for each packet
transmission on the basis of channel “data rate” and length of the packet. OPNET
employs the default transmission delay model, “dpt_txdel” for this pipeline stage.

(2) Propagation Delay. After the first stage, packets are passed
to the propagation delay pipeline stage. The purpose of this stage is to calculate
the amount of time for the packet to reach the receiver in the destination node.
The parameter necessary for this computation is the “delay” attribute of the point-
to-point link. The default propagation delay model provided by OPNET is called
“dpt_propdel”.

(3) Error Allocation. Since the packets are prone to errors
during transmission, the third stage of the transceiver pipeline allocates errors for
transmitted packets. The default model, “dpt_error”, uses the “ber” attribute of
the point-to-point link for this process. The algorithm implemented in this model
generates a random number of errors with a fixed BER during the whole period of
the simulation.

(4) Error Detection and Correction. This is the final stage

of point-to-point transceiver pipeline. The purpose of this stage is to determine

29




whether or not the received packet can be accepted and forwarded to its destination.
The comparison is based on the “ecc” attribute of the receiver node. This attribute
represents the probability of bit error that can be tolerated for acceptability. If it
is set to zero, default model “dpt_ecc” only accepts error-free packets. Setting a
non-zero threshold for this attribute corresponds to error correction procedure for
the received packet.
2. Error Modeling over Multiple Links
a. Modifications on Error Allocation Pipeline Stage

As stated earlier, error modeling over point-to-point links is carried
out in tke error allocation stage of transceiver pipeline. Since the default pipeline
stage model uses a constant BER as the simulation progresses, a realistic model must
be developed for the CDL link. For this purpose, default error model “dpt_error”
is modified, and the new model is renamed as “cdl_pt_error”.

In OPNET, the necessary modifications for a pipeline stage model
are done in the “op_models” directory. And, after these modifications, the cus-
tomized model file must be compiled separately. So, “cdl_pt_error” model is

compiled with the following command:
cc -¢ = /fop_models/cdl_pt_error.ps.c -1/<opdir>/sys/include

This procedure is necessary to link other OPNET libraries. Oth-
erwise, binding errors result during the generation of simulation file. Appendix
G is the file “cdl_pt_error.ps.c”, containing the modifications described in this
section.

In contrast to the default model, “cdl_pt_error” performs error
allocation with a varying BER. Thus, the link attribute “ber” is disregarded in this

stage. Instead, new attributes are specified to accomplish a dynamic error allocation

30




stage. Six different attributes are added for each channel in the extended attributes
menu of the point- to-point link. These attributes are depicted in Figure 11, and
defined below.

(1) “jam_ber”. This attribute is the maximum BER on the
transmission channel of a point-to-point link during jamming.

(2) “ber_bet_jam_len”. This attribute corresponds to the max-
imum BER on the transmission channel of a point-to-point link in the duration
between two consecutive jamming pulses.

(3) “jam_length”. This is the duration of a jamming pulse af-
fecting the transmission channel of a point-to-point link.

(4) “interval_bet_jam_len”. Thisistheduration between two
consecutive jamming pulses affecting the transmission channel of a point-to-point
link.

(5) “init_jam_offset”. This attribute is the initial offset time
on the transmission channel of a point-to-point link. This offset is required for the
channel-swept jammer which will be described later.

(6) “jammer_type”. The last one of the extended attributes
specifies the type of the jamming model of which CDL link is exposed to.

b. Jammer Implementations

There are two distinct jamming models implemented in this study.
These are pulsed jammer and channel-swept jammer, respectively. Regardless of the
jamming type in use, a transmitted packet is first time-stamped in simulation time
domain. This time-stamp is used to dr’.crmine whether or not a packet is subjected
to jamming. After this decision, further procedures are carried out for each jammer

type independently.

31




e,

)

5314

c

"

1]
!

[ad[3]

{

Figure 11: The attributes used for jamming patterns.

32




(1) Pulsed Jammer. In this model, all transmission channels
are exposed to separate pulse trains in time. This configuration is achieved by
setting up proper values for previously described extended attributes in the simula-
tion environment file. Appendix H is a sample environment file configured for this
particular model.

In order to provide a rhore realistic representation, the durations of
jamming pulses and BERs during these periods are also randomized with uniform
distribution. Because of this stochastic process, first four of the extended attributes
are actually the maximum values that can occur during transmission. Consequently,
each transmitted packet is subjected to a different BER according to its presence in
simulation time domain. Figure 12 is an illustration of a pulsed jammer.

(2) Channel-Swept Jammer. The jammer implemented with
this model sweeps each transmission channel consecutively in the simulation time
domain. Again, the necessary configuration for this procedure is provided by the
extended attributes’ values which are specified in the simulation environment file.
As opposed to the previous jammer model, the channel-swept jammer does not
randomize the durations of jamming pulses to maintain consecutive pulse scheme
in order. However, BERs are still randomized with uniform distribution. A proper
offset must be specified in the “init_jam_offset” extended attribute of the point-

to- point link to provide consecutive pulses as depicted in Figure 13.

E. LAN INTERCONNECTION

FDDI-CDL interconnection can be realized using the modifications described
so far. Figure 14 shows the ultimate interconnected model. While the top simplex
point-to-point link from surface LAN (ringl) to collection platform LAN (ring0)

represents the command link, other four links in the reverse direction represent the

33




Channel | ENNETRE SNENS 2 SSE B 2

!
l
t

Channel 2

Channel3 [NV  PEEDVANNE

Channei ¢+ (HENNNE BN GNN EER e _
EREE Jamming pulse >

Simulation time

Figure 12: Pulsed jammer representation.

00 ==

Channel 1

=
Channei2 __ R N -]

B
Channel 3 N ] N e
BN

Channel 4 - R R
Jamming pulse >

Simulation time

Figure 13: Channel-swept jammer representation.




!

f

1l

A
4D +

i F\A im
r,*;_)s
3

: “—

T24.A () 1993 MIL 3, Inc. _ Network Editor: fddi_cdl

Figure 14: Interconnected network model, fddi_cdl.

35




simplified return link hierarchy. In this section, specific features of this model of
LAN interconnection are stated.
1. Addressing Through The Remote Bridge

The interconnection mechanism is based on the forwarding decision made
by the inspection of station addresses. The stations that reside on LANs have unique
addresses. Qur model employs 10-station FDDI LANs on both sides of the CDL
link. In order to simplify MAC bridge functions, these addresses are permanently
installed in the filtering databases of the CPNI and the SPNI. These stations, acting
as NIs, have the maximum station number of each LAN. Thus, filtering decision
is based on the comparison of these NI addresses. If the number of stations or
their addresses need to be changed, those NIs’ filtering databases must be updated
according to the new address assignments. Besides, the DISCARD state of process
models of 11c_sink nodes of the station models in both LANs must also be modified
appropriately to obtain individual LAN statistics.

The address information is sent to the nodes with several packet formats
in OPNET modeling environment. The packet format, “fddi_mac_fr", allocates
16 bits to represent station addresses. In current bridging standards [2, 5), the
addresses are represented as 48 bits within a frame. Thus, the mentioned packet
format is modified to include 48-bit source and destination addresses. Furthermore,
the necessity to include source and destination addresses in “fddi_llc_fr" packet
format results in the same modification. This packet format is used in 1lc_src
nodes of Nls to prevent unnecessary MAC access as mentioned in Section C.

For interface control purposes, “src_addr” field is also added in the
original “fddi_mac_req” ICI packet format. This address is used by the mac to keep

the original source address of a frame unmodified during the data transfer between

36




LANSs. Figures 15-17 show the resulting packet formats in the parameter editor of
OPNET user interface window.
2. Load Balancing over Multiple Links

As stated before, the return link is composed of multiple channels. In
our model, simplified return link hierarchy is represented as four simplex point-to-
point links, each having one transmission channel. Data rates for each channel on
both links are specified as in Figures 18 and 19.

This multiple channel hierarchy requires an algorithm for transmission
capacity allocation. The selected algorithm eventually leads to load balancing over
multiple links. In the OPNET model implemented, this procedure is carried out
by 1lc_sink of the CPNIL. The node, 11c_sink, is in the form of a queue module
consisting of four subqueues. Thus, the transmission capacity allocation process is
basically allocating frames to these subqueues that are attached to the individual
transmitters. In other words, the subqueues act as buffers. Instead of allocating
frames to the transmitter buffers directly, this method is chosen to monitor the
effects of load balancing algorithm in use. As stated in Section D, point-to-point
transmitter buffers are built-in queues with infinite capacity. This approach would
not be realistic for a bridge model. In a real bridge, insufficient transmission queue
sizes can cause dropping of frames. In the CDL NI model, the frame currently being
transmitted resides in the transmitter buffer until its transmission is completed.
Other frames waiting for transmission reside in the finite subqueues of 11c_sink.
Then, these frames are forwarded to the related transmitter when the “busy” signal
goes low, meaning that the transmitter channel is idle. This is accomplished by
OPNET statistical interrupts, and the allocation algorithm calls for the continuous

monitoring of this signal.

37




Figure 18: Modified packet format, “fddi_llc_fr".

38




Figure 16: Modified packet format, “fddi_mac_fr".

39




c_req.

Figure 17: Modified ICI packet format, “fddi_

40




el e N e S T T T I e

TIc_sink) Actributes
failure intrpts

TecOvery 1Ntrpts

priorsty

SUpeT priority

icon name

excended attrs. .
load balancing algoritha :

data trate - 8,568,000 (bps)

aters
data rate : 42,840.000 (bps)

[
data rats : 42.840,000 (bpe)
actrs

Ed‘n cats : 42,840,000 (bpe) II

Figure 18: Return link data rates and new attributes for 11c_sink.

41




BB
OEE
EDI
A M
IF"H
EACIET -
Lol

I_JL_J..i
I HI

S —

”y_=
U [ |y[+Z]
Llajste e MNP

charnw] () aters

‘ data rats : 200.000 (bps)

Figure 19: Command link data rate.

42




The algorithm can be specified for the model from the simulation envi-
ronment file. So, an extended attribute, “loa& balancing algorithm”, is defined
for the CPNI as in Figure 18. Regardless of the load balancing algorithm in use, a
frame is allocated to a buffer, each time “cp_fddi_sink” process model is executed.
Then, the order of subqueues is determined with an incrementing index according
to the allocation algorithm employed. Every subqueue has an associated source
address field, so that previously allocated frame’s source address is maintained in
that subqueue. Two algorithms are implemented as described below.

a. Circular Allocation Algorithm

Before allocating frames in a circular order to 11¢_sink subqueues,
the source address of an incoming frame is inspected first. If that frame is sent
from a station address which has been previously allocated to that subqueue, the
new frame is also buffered in the same subqueue. Thus, consecutive frames from
the same source are sent over the same transmission channel. Otherwise, allocation
is still done circularly ignoring the state of individual subqueues. Because of the
different channel data rates, some buffers can fill up and even lead to frame loss,
unless the sizes of these buffers are selected adequately.

b. Empty Selection Algorithm

This algorithm refers to the allocation of frames to subqueues hav-
ing the maximum empty slots. The frequency of the occurrence of empty slots is
directly proportional to the data rate of transmission channel. Thus, the buffer
sizes needed for this algorithm are likely to be less than the ones needed for the
previous algorithm. Allocation of consecutive frames sent from the same station is

still implemented in the same manner as the circular allocation algorithm.

43




F. FAITHFULNESS OF THE MODEL

The CDL NI model is developed with the extensive features provided by OP-
NET. Modifications to the original models are carried out step-by-sten, so that the
original modularity is not sacrificed with new enhancements.

The OPNET FDDI protocol model is studied and validated in {1]. Further
model improvements of this thesis are realized on the basis of the results of this
previous study. During the CDL model development, specific system requirements
were primarily considered and adapted to OPNET modeling environment.

In a real CDL deployment, depending on the deployed channel hierarchy, an
aggregate bit stream at the high frequency is obtained using multiplexing of the
independent transmission channels. Then, at the receiving end, demultiplexing is
carried out. Qur CDL system implementation does not model the link between
the output of the multiplexer and the input of the demultiplexer. Instead, the
multiplexer input and the demultiplexer output are modeled and monitored. In
other words, the link is not modeled at the aggregate bit stream level, but at the
individual channel level. This permits us to view the link as a set of independent
channels rather than a single stream of bits without loosing the realistic nature of
the link.

The corruption of packets in a real jamming environment is of an irregular
nature. The bits in a data stream may be inverted, or random sequences of bit
patterns may be added to the information packet. In the OPNET modeling en-
vironment, error allocation is done by inverting the bits present within a packet.
So, the jammer modeling is based on this constraint. In other words we can not
model loss of the CDL framing synchronization in OPNET. However, this study
is targetted at the data link layer and above. Therefore, this limitation does not

present a problem. Despite this limitation, since our jamming models use a varying

44




BER within the random durations in the simulation time domain, the desired error
allocation feature is still provided. In the model, the error allocation process within
a link is such that a random number of errors are introduced in a randomly selected
packet in each channel. This is essentially what real jamming of the aggregate CDL
bitstream will result in. Two types of jamming models are investigated in order to
evaluate system performance in a wider variety of scenarios.

Finally, interconnection is realized in terms of an upcoming bridging standard

[5], so that dependahility of the model is ensured.

45







IV. MODEL TESTING

A. OVERVIEW

This chapter provides several test results in relation to the enhanced capabili-
ties of our model. These tests include the monitoring of traffic in the whole network
for individual LANs and the evaluation of transmission capacity allocation algo-
rithms for the return link. The effects of different jamming patterns on the return

link are also demonstrated. Similarly, the command link performance is studied in

brief.

B. PERFORMANCE METRICS

During the simulation tests, a moderate traffic load is offered for both LANs
that are interconnected. The behavior of the OPNET’s FDDI model with varying
traffic loads was studied previously [1]. Therefore, the tests are primarily run and
evaluated for NI functional characteristics and the CDL link performance during
jamming,.

The transmission capacity allocation algorithms related to the load balancing
over multiple links are monitored in the 11c_sink node of the CPNI. The buffers
within this node are observed in order to evaluate these algorithms’ efficiency with
the “pksize” and “delay” probes in the OPNET analysis editor. These probes
are simply used to determine the advantages and drawbacks of the load balancing
implementations. The “pksize” attribute’s name is misleading in OPNET probe
editor and it refers to the number of packets residing in a subqueue. Thus, while
“pksize” probe is the means to determine the required buffer sizes, the transmission

waiting periods of the packets in the buffers are monitored with the “delay” probe.

47




The average BER of the return link is monitored on the SPNI receivers with
“avg_ber” probes for each transmission channel. In this study, the BER of the
command link during jamming is not investigated. The utilization of multiple links
under different jamming patterns is also examined on the transmit and receive-ends

of the link. Results of the different simulation experiments follow in the next section.

C. TRAFFIC MONITORING
1. Overview
The modifications made within this thesis to the OPNET FDDI model
provide the individual monitoring of two interconnected LANs. For CDL deploy-
ment, the collection platform LAN is likely to direct most of the traffic to the return
link, although there may be still an amount of local traffic under consideration. On
the other side, the surface LAN directs some of its traffic to the command link while
introducing a significant amount of traffic locally. For the reasons specified above,
each LAN must be monitored independently to provide a realistic representation of
the entire network.
2. Setup
The simulation was set up to display local traffic within one LAN and
the traffic directed to the remote LAN. Both LANs consist of ten FDDI stations,
generating packets at a constant rate. The stations generated 20000-bit packets at
an arrival rate of 250 packets per second, so that 50 Mbps of the traffic load is
expected for a LAN. The stations £9 and £19 are specified as the CPNI and the
SPNI, respectively. While the surface LAN can send packets to all stations in the
interconnected network model, the collection platform LAN is designated to direct
its total traffic only to the return link. Both LANs are capable of generating 90

percent asynchronous traffic at different priorities. Target Token Rotation Time

48




(TTRT) was set to 4ms, and necessary synchronous bandwidth was determined as
0.08955675 as the required OPNET parameter. This value is a function of TTRT;
it is computed by following the necessary steps as described in [1] and amounts to
0.358227 ms/station.

As mentioned before, the initial tokens are launched by the NIs. Thus,
in the simulation environment file, the “spawn station” attribute is disabled by
setting it to 20. This number is chosen arbitrarily, but it must be greater than the
maximum station number that exists in the entire network model. This is just an
OPNET hack to keep the “fddi_mac” process model of original “fddi_station”
unchanged.

Furthermore, the “accelerate_token” attribute is also disabled by set-
ting it to zero. When this flag is enabled, the token is blocked in the station which
has no packets to transmit. This procedure leads a faster simulation, and it is not
part of the real FDDI protocol. The interconnected model is not allowed to use this
shared flag, because of the tokens belonging to different LANs.

3. Results

Figure 20 shows the local throughput observed in the surface LAN. The
random generation of destination addresses with uniform distribution led a consid-
erable amount of traffic to the local stations. Figure 21 is the throughput directed
to the command link from the surface LAN. In both cases, 90 percent of the traffic
belongs to the asynchronous transmission as expected.

Figures 22 and 23 show the traffic contributed to the whole network
by the collection platform LAN. While there is no local traffic appearing within
this LAN, all traffic is directed to the return link with the specified proportion of

asynchronous transmission.

49




1.78

1.3

1.8

Q tesal 3 (dps) (x2 }
] i i ' i
-—-r'*../—-q N
P ; 5\"—%
( el j
of | T ‘i o ——
,,_/ i
i t
/ ] |
i
L
!
!
i
___/-3/\’- ‘ : ; v
' i i ; i i
H £ R ! . i i
[ ] (9] ©“2 ©s LR .5 L N 1 8.7 .0 ¢.9 1
time (ge¢se)

Figure 20: Local throughput of surface LAN.

o symeh ¢L threughput (ps) (xiesdT)
O Wy cL Brvepiput (Bps) (x1e087)
G tetal ci trenghput Dps) (niee?)

: ] : ;
r"\.ﬁ\‘k -;‘.‘____‘/" ! :
o i H i o s BRI S
A A et i :
] L
! ! i :
l
! ‘: '
1 | !
| ! ?
* ]
| o
I | f ?
1 1T
~] ! 4 b
¢ [ ¥} .2 .j .4 .9 .6 .7 .. .9 1
tme (see)

Figure 21:

Traffic directed to the command link.

50




o synch Wsvagipes-¢ (ye)
O wyme Wsupput-t Gye)
Q tetal Racnghpuetd (hys)

ANt L e it 2 e > i

Sime-series data: symeh threughput-0 (bps) vs. time (see)

Rl vevansune

trase_somme « 3

abgeassa: time (ses)

gdinate: symeh thrvaghput-¢ (bps)
lmgth » 8

absedsss: tims (see)
rdisate: asyme by
lamgeh = §

abseissa: tine (ses)
tetal

tine (see)

Figure 22: Local throughput of collection platform LAN.

o syaeh 55 threaghput (bps) (xlee8?)
O asyme B Wrvaghput (Mps) (zies¥?)
Q tetal ML thrveghput (dps) (xlev8?)

T ——— ——— - ———

| | i
r\y--w‘- l“f*‘ Gt PPt 00 o O

l l :

t t i

j i
— M M ol : I A
0 X 0.2 X 0. X3 s O8] O X 1
tme (see)

Figure 23: Throughput directed to the return link.

51




D. RETURN LINK PERFORMANCE
1. Overview

The station acting as the CPNI in the collection platform LAN is capable
of buffering packets in its 11c_sink node. The buffering is realized in terms of a
transmission capacity allocation algorithm for the efficient utilization of the return
link. The tests run in this section are related to the evaluation of these algorithms
and the link throughput under jamming.

Two tests are described here. The first test is monitoring of packets
accumulated in the buffers with two distinct allocation algorithms. The second test
is observing the multiple link throughput at both ends of the CDL link.

2. First Test

a. Setup
This test is based on the evaluation of different types of load bal-
ancing over the multiple links. Both FDDI LANs are configured with the same
parameters as it is done for the traffic monitoring tests. In the simulation environ-
ment file, the “load balancing algorithm” attribute is also set appropriately for
two different runs. This attribute is set to “0” for the circular allocation algorithm
as it is set to “1” for the empty selection. Besides, the 11c_sink subqueue capacities
are set to hold a maximum of 200 packets. This was intended to observe the buffers’
saturation and overflow as the traffic is directed to the return link at a constant

rate.

b. Results

Figure 24 shows the accumulation of packets in the buffers when
the circular allocation algorithm is in use. As seen, the first transmission channel

having the lowest data rate causes its buffer to fill up quickly. Consequently, the

52




© tingh. £9. Lla_siak{0). phoiae
O cingt. £9. Lie_siak(1].phsaae
O sings. £9. Lis_sank{2). phsase
A Tings. £9. Lis_siak{2]. phsise

1.28
tme (see)

Figure 24: Accumulation of packets on the CPNI buffers with circular allocation.

continuous overflow of this buffer is unavoidable with the specified buffer size as
depicted in Figure 25.

Conversely, the empty selection algorithm results in equal utilization of
buffers for the same traffic load without introducing any overflow as shown in Figure

26.
The queuing delays of the packets observed for each buffer using both

algorithms are shown in Figures 27 and 28. As compared to the empty selec-
tion algorithm, the circular load balancing provides a faster transmission rate for

the channels having higher data rates and introduce a longer queuing delay for

53




© cingd. £3. Lis_siak(9). ovartiovs
O €ing8. £9. Lle_stak(1]. evartiove
© ting0.£9. Lis_ssnk(2]. overtiows
8 tangt. £9. Llo_siak([1]. evartiovs

s

tne (see)

Figure 25: Buffer overflows in the CPNI with circular allocation.

o cing®. £3. Lo _sisk(0].pksize
© vingt. £3. Lla_sinkt(1).pksise
O rangd. £3. Lis_sink(1).phsise
4 Ting®. £3. Ll _s1mh(3). phsise

1.28
time (ses)

Figure 26: Accumulation of packets in the CPNI buffers with empty selection.

54




© zingd. £9: 110 _s208{0). belep
O tingt.£9. M0 _simk(1]. delip
Q cingh. £3. Lio_smb(2]. delep
A cing®. £9. Lle_stak(3]. bl
X

.3

3

] .25 0.5 0.78 b 1.28
tine (see)

Figure 27: Queing delay of the CPNI buffers with circular allocation.

« £tag0. £9. Lis_sisk(0]. beliw
© £ingt. £9. Lle_sink{1]. deley
QO cing®. £9. Lis_s1ak(2]. delep
A rings. £9. 1la_sink(3). delep

- : —

T
<
L

[ .7 1 1.8
time (see)

Figure 28: Queing delay of the CPNI buffers with empty selection.

53

e A e e e Lo st R RIS S o gt 2 ot et e i ST




the slower channel. Primarily, the insufficient buffer sizes are the major drawback
in the circular allocation algorithm, even though multiple links are still efficiently
utilized.

As opposed to the circular allocation, empty selection algorithm does
not require greater buffer sizes. It also offers an efficient utilization scheme with the
penalty of more queuing delay for the channels with higher transmission capacities.

3. Second Test
a. Setup
This test is intended to verify the effects of jamming models on
the return link. The same simulation configuration is used in this test as before.
Moreover, as defined in Chapter III, the jamming related attributes are set up prop-
erly to model two different jammers. The environment file used for the pulsed
jammer simulation is provided in Appendix H. For the channel-swept jammer sim-
. ulation, the same type of jamming attributes are set to identical values except
“init_jam_offset”. This attribute is doubled for each channel so that consecutive
pulses can be created with proportional offsets. The jamming related attributes of
the environment file for the channel-swept jammer simulation is in Appendix I.
The propagation delay of the CDL model is also specified as a typical
value of 60 ms in the “delay” attribute of each link.

b. Results

Figure 29 shows the throughput of each transmitter channel in the
CPNI end of the return link. As expected, identical number of bits are injected into
the return link for the channels having the same data rates. The packets awaiting

transmission in the buffers do not contribute to this statistic.

56




o cing®. 9. pe_1(0]. bt _theuput (xierd?)
O ringd. £9.90_2(0].bit_hruput (xievd?)
Q cangd. £9. 93 _2{#].3it_\hsugas (z1ee87)
A cingh. £3.p¢_4{0].bat_thowput (xlev8?)
.18 -

.5 —

tame (ses)

Figure 29: Throughput at the transmit-end of the return link.

The average BERs introduced by the pulsed jammer and the channel-
swept jammer are depicted in Figures 30 and 31, respectively. As monitored in the
receivers of the SPNI, all of the links are equally degraded in the channel-swept
jaxiuner’s case due to the consecutive pulses. In the presence of pulsed jammer, the
links exposed to the longer duration of jamming pulses are affected more severely.

Consequently, since the packets are corrupted due to jamming dur-
ing the transmission, the throughput attained in the receive-end is not the same as
the transmit-end of the return link. The effects of two different jamming models on

the received throughput can be seen in Figures 32 and 33.

37




o ciagl.£9.px_1(0). avy_ber (xd. 803)
© £1093.29.p5_2({0]. avg_ber (x0. 0071
O cangl. £9.pr_3(0}. svg_ber (x0.083)
A vingl. £9.pr_¢(0). avg_ber (x0.001)

1.7%

3.8

1.2%

. ;:'\\ |,

I o T

s
\ M Nt —— ~—
i
o \_‘*Lw S g
o [ ] l.‘l‘ ‘.15 .75 . 1 1.28

tine (set)

Figure 30: Average BER of the return link caused by pulsed jammer.

o cingl. £3.pr_1{8]. avg_ber (x0.0081)
O cingl. £9.9r_1{0). sog_ber (x0.0001)
G ciagl. £5.92_3(0). avg_her (n9.0003)
A cingl. £9.92_¢{0]. svg ber (x0.0001)

—_———

.78 1 1.28
time (see)

-
bl
-]
°
v

Figure 31: Average BER of the return link caused by channel-swept jammer.

58




o tingl.£9.92_2(0]. 540 _thrugut (x1eve6)
© Tangl. 29,98 2(0]. DA% _Mrnput (x1e+06)
O tingl. £9.92.3{0). 040 _anpet (x10006)
A cingl. £9.95_6{0].Dis_thrwet (zies06)

|

[ ] .28 [ B ] .75 1 1.28
time (see)

Figure 32: Effect of pulsed jammer on the return link throughput.

o ciagl. 29.pz_1(0].bic_chrwat (nieet)
O cingld. £9.95_2(0].bit_thruput (Rlev86)
O tangl. £9.pr_3(6].bit_thrwput (s1ev86)
A cingl. £3.9¢_6(0] . bit_thswpst (xleedf)

[ 15 .9 .r 3 1.28
time (ve0)

Figure 33: Effect of channel-swept jammer on the return link throughput.

59




E. COMMAND LINK PERFORMANCE

Although the command link is modeled with respect to the CDL system re-
quirements, its performance is not studied in as much detail as the return link in our
simulations. As described before, the command link employs a relatively low fixed
data rate in its channel hierarchy compared to the return link. Since multiple links
are not modeled for this particular link, no algorithm for transmission allocation
is developed in 1lc_sink node of the SPNI. As a result, the packets waiting for
transmission to the collection platform LAN are accumulated in the single buffer of
the SPNIL

Figure 34 shows the number of packets buffered over time. The accumulation
is faster due to the lower transmission capacity of the command link. This is also
emphasized with the buffer queuing delay as depicted in Figure 35. The asymmetric
data rates existing in the CDL link require a greater buffer size for the SPNI. This
buffer size must be evaluated with respect to the amount of traffic injected into the
CDL by the surface LAN.

Similarly, the information transferred over the command link is monitored in
both NIs of the interconnected model. Figure 36 is a simple illustration of the link
throughput in transmit and receive-ends when the command link is not exposed to

any jamming.

60




cingt. 9. Lio_siok. pisiss (x1000)

1.3

—

A

7

time (see)

Figure 34: Accumulation of packets in the SPNI buffer.

tingl. £9. Lle_sink. delap

0?7 ¢ % ;/

i

[ X} ;
i i
|

(%] i

(¥ ] y
: i
! !
' 1

o :
i

.
] 01 0.2 [X] [X) [X3 [ X3 “r [X) (X}
tine (ree)

Figure 35: Queing delay of the SPNIL

61




@ cingl. £9.98_1(6].Dbit_thruput (x100000)
O ringd. £3.9r_1(0].Dit_thrupus (x100000)

N o
L] ;
L/

1/

WL

Rl

AL

time (see)

Figure 36: Throughput at the transmit and receive-ends of the command link.

62




V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In this thesis, we have presented a performance analysis of a network interface
device that interconnects two remote FDDI LANs using the CDL. The efficiency of
the CDL model is evaluated with two different jamming patterns that faithfully rep-
resent the real environmental conditions. The distribution of load over the multiple
links is also investigated using different transmission capacity allocation algorithms
so that the overall link utilization can be maximized. The need for such algorithms
is based on the near-capacity return link traffic load that is expected in the intercon-
nected network. It is seen that the circular allocation algorithm is able to provide
a faster transmission for the channels having higher data rates with the penalty of
increased buffer size for the slower channels. When the empty selection algorithm
is in use, identical buffer sizes can be selected for any transmission channel, if the
drawback of longer queuing delays for faster channels are acceptable.

This thesis lays the foundation for simulating the multilink point-to-point pro-
tocol over the CDL in the further development of the network interface features for

the CDL project.

B. RECOMMENDATIONS

Further developments of our model will include:

1. Simulation of a link monitoring protocol over the return and command

link. This capability will facilitate feedback to the LAN applications

63




(end-systems) about the link status and permit end-to-end performance

analysis.
2. Incorporation of a forwarding/filtering database in the NI.

3. Incorporation of a traffic generation in the LAN end-systems that is closer

to the characteristics of real traffic patterns.

4. Accurate estimation of NI buffer capacity for individual channels with

various effective BERs over the link.

Since the tool-specific token acceleration feature is disabled during our simu-
lations, a new mechanism need to be employed for a faster simulation in a larger

network model.

64




APPENDIX A
CPNI SOURCE “C” CODE

“cp_fddi_gen.pr.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET’s text editors.

[ L

oMb w

© 0~

10
11
12

13
14
18

16
17
18
19

21
22
23

26
26
v

/% Process model C form file: cp.fddi_gen.pr.c */
/% Portions of this file Copyright (C) MIL 3, Inc. 1992 /

/* OPEET system definitions ¢/
#include <opnet.h>

#include “cp_fddi_gen.pr.h"
FSH_EXT_DECS

/+ Header block */

#define MAC_LAYER_OUT_STREAM 0

#detine LLC_SINK_OUT_STREAM 1 /#+18APRO4s/
/% detine possible service classes for frames */
#detine FDDI_SVC_ASYXC 0

#define FDDI_SVC_SYNC 1

/* detine token classes */

#detine FDDI_TK_NONRESTRICTED 0

#define FDDI_TK_RESTRICTED 1

/* State variable definitions =/
typedef struct

{

FSH_SYS_STATE

Distributions sv_inter_dist_ptr;
Distributions* sv_len_dist_ptr;
Distribution# sv_dest_dist_ptr;
Distributions sv_pkt_priority_ptr;
0bjid sv_mac_objid;
Objid sv_my_id;

int sv_low_dest_addr;
int sv_high_dest_addr;

65



30
an
32
33

37
38
3

41
42
43

45

47
48
419

61
52

56
66
57
58

int

int

int

int
double
double
double
Icis
Icis
Icis
Packet®
} cp.1ddi_gen_state;

#define pr_state_ptr
$define inter_dist_ptr
#define len_dist_ptr
#detine dest_dist_ptr
#define pkt_priority_ptr
#define mac_objid
#define my_id

#detine low_dest_addr
#define high_dest_addrx
#define station_addr
$detine src_addr
#define low_pkt_priority
#define high _pkt_priority
#define arrival_rate
#define mean_pk_len
#define mac_iciptr
#define mac_iciptrt
#detine lic_ici_ptr
#define pkptri

sv_station_addr;
sv_src_addr;

sv_low_pkt_priority;
sv_high_pkt_priority;

sv_arrival_rate;
sv_mean_pk_len;
sv_async_mix;

sv_mac_iciptr;
sv_mac_iciptri;
sv.llc_ici_ptr;

sv_pkptri;

({cp_tddi_gen_state+) SimI_MNod_State_Ptr)
pr_state_ptr->sv_inter_dist_ptr
pr.state_ptr->sv_len_dist_ptr
pr_state_ptr->sv_dest_dist_ptr
pr_state_ptr->sv_pkt_priority_ptr
pr_state_ptr->sv_mac_objid
pr_state_ptr->sv_my_id

pr_state_ptr->sv_low_dest_addr
pr.state_ptr->sv_high_dest_addr

pr_state_ptr->sv_station_addr
pr.state_ptr->sv_src_addr

pr.state_ptr->sv_low_pkt_priority
pr.state_ptr->sv_high_pkt_priority

pr.state_ptr->sv_arrival_rate

pr.state_ptr->sv_async_mix

pr.state_ptr->sv_mac_iciptr
pr-state_ptr->sv_mac_iciptri
pr-state_ptr->sv_1llc_ici_ptr
pr.state_ptr->sv_pkptri

/% Process model interrupt handling procedure */

void
cp_2d4di_gen ()
{

Packet  spkptr;

int pklen;

int dest_addr;

int i, restricted;
int pkt_prio;

FSK_ENTER (cp_fddi_gen)

66




e
70
71
72
73
74
78
76

78

(4

80
81

83

87
88
88

o1
92
93

97

100
101
102
103
104

106

FSM_BLOCK_SVITCH

{

/s */

/%s state (INIT) enter executives *s/

FSM_STATE_ENTER_UNFORCED (0, stateO_enter_exec, “INIT")
{
/% determine id of own processor to use in finding attrs s/
my_id = op_id_sel? ();

/% determine address range for unifora desination assigoment +/
op_ima_obj_attr_get (my_id, “low dest address”, &low_dest_addr);
op_ima_obj_attr_get (my._id, "high dest address", &high_dest_addr);

/* determine object id of connected ’mac’ layer process */
mac_objid = op_topo_assoc (my_id, OPC_TOPO_ASSOC_OUT,
OPC_OBJMTYPE_MODULE,
NAC_LAYER_OUT_STREAM);

/% determine the address assigned to it */
/¢ which is also the address of this station */
op_ima_obj_attr_get (mac_objid, “station_address", &station_addr);

/* set up a distribution for generation of addresses */
dest_dist_ptr = op_dist_load (“uniform_int", low_dest_addr,
high_dest_addr);

/% added 26DEC93 */

/% determine priority range for uniform traffic genmeration s/
op.ima_obj_attr_get (my_id, "high pkt priority"”, &high_pkt_priority);
op.ima_obj_attr_get (my_id, “low pkt priority", &low_pkt_priority);

/¢ set up a distribution for generation of priorities */
pkt_priority_ptr = op_dist_load (“uniform_int", low_pkt_priority,
high_pkt_priority);

/* above added 26DECS3 »/

/* also determine the arrival rate for packet gemeration */
op_ima_obj_attr_get (my_id, “arrival rate", &arrival_rate);
/* determine the mix of asynchromous and synchronous */

/* tratfic. This is expressed as the proportion of #*/

/* asynchronous traffic. i.e a value of 1.0 indicates */

/¢ that all the produced traffic shall be asynchronous. */
op.ima_obj_attr_get (my_id, "async_mix", &kasync_mix);

/% set up a distribution for arrival generations */

67




106
107
108
109
110

111
112
113

114
115

116
117

118
119
120
121
122
123
124

125

126
127

128
129
130
131

132
133
134

136
136
137
138
13%
140
141
142

0.0);

it (arrival_rate != 0.0)
{
/% arrivals are exponentially distributed, with given mean #*/
inter_dist_ptr = op_dist_load (“"comstant", 1.0 / arrival_rats,

/¢ determine the distribution for packet size */
op_ima_obj_attr_get (my.id, “mean pk length*,

&mean_pk_len);

xfer) »/

/% set up corresponding distribution */
len_dist_ptr = op_dist_load (“"constant", mean_pk_len, 0.0);

/* designate the time of first arrival */
1ddi_gen_schedule ();

/* set up an interface control information (ICI) structure &/
/* to communicate parameters to the mac layer process */

/+ (it is more efficient to set one up now and keep it ¢/

/* as a state variable than to allocate one on each packet

mac_iciptr = op_ici_create (“fddi_mac_req");

}

/*¢ blocking after enter executives of unforced state. »#/
FSK_EXIT (1,cp_fddi_gen)

/%% state (INIT) exit executives ss/
FSM_STATE_EXIT_UNFORCED (0, stateO_exit_exec, "INIT")
{
}

/+s state (INIT) transition processing »s/
FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
/* ./

/%+ state (ARRIVAL) enter executives ¢s/

FSK_STATE_ENTER_UNFORCED (1, statel_enter_exec, "ARRIVAL")
{
/* This station should receive frames from the other lan as long as */
/* there are frames in the input streams addressed to this lan »/
/e¢check if the 1terrupt type is stream interrupt *//+12APR94e/
if(op_intrpt_type() == OPC_INTRPT_STRNM)

{

68




143
144
146
146
147
148
149
160
161
152
163
154
166
156
157
168
1589
160
161
162
163
164
1656
166
167
168
168
170
171
172
173
174
176
176
177
178
179
180
181
182
183
184
1856
186
187
188
189
190
191
192
103

/¢ if it is, get the packet in the input stream causing interrupt s/
pkptri = op_pk_get(op_intrpt_stm());

/% get the destination address of the frame */

/+ 16APRO4 s/

op.pk._nfd_get(pkptrl, “dest_addr", &dest_addr);

/% check if this frame destined for the local bridge station */
if(dest_addr == station_addr)

/* if it is, send the packet to llc_sink directly s/
/* in order to prevent overhead of mac access %/
op_pk_send(pkptri,

LLC_SINK_OUT_STREAM) ;/*19APR94+/

else

16APRO4 &/

*/

/%12APR94+/

are assumed to haves/

accumulate */

their destinations s/

FDDI_SVC_SYNC);

FDDI_TK_NONRESTRICTED);

}
}

/% this packet is to send to mac */

{

/% determine the source address of the frame */
op_pk_nfd_get(pkptrl, "src_addr*, &src_addr);

/% set up an ICI structure to communicate parameters to */
/* MAC layer process s/

mac_iciptri = op_ici_create("fddi_mac_req");

/% place the original source address into the ICI »//#

/* "2ddi_mac_req" is modified so that it contains the original

/% source address from the remote lan %/
op_ici_attr_set(mac_iciptri, “src_addr", src_addr);
/* place the destination address into the ICI #/

op_ici_attr_set(mac_iciptri, "dest_addr", dest_addr);
/* assign the service class and requested token class =/
/% At this moment the frames coming from the remote lan

/* the same priority as synchronous frames in order not to
/* packets on the bridge station mac and instead to deliver
/% as soon as possible */

op_pk_ntd_set(pkptri, "pri“, 8);

op_ici_attr_set(mac_iciptri, "svc_class®,

op_ici_attr_set(mac_iciptri, "pri", 8);
op.ici_attr_set(mac_iciptri, "tk_class",

/* send the packet coupled with the ICI */
op_ici_install(mac_iciptri);
op_pk_send(pkptri, MAC_LAYER_OUT_STREAN);

/* otherwise, generate the frame :12APR94 ¢/

else

{

/* determine the length of the packet to be generated */

69




194

196
196
197
198
199

201
202

203
204

205
208

207
208

209
210
211

212
213

214
215
216
217
218
219
220
221
222
223
224
228
226
227
228
229

230
231
232

233
234

pklen = op_dist_outcome (len_dist_ptr);

/% determine the destination &/
/¢ dont allow this station’s address as a possible outcome */
gen_packet:
dest_addr = op_dist_outcome (dest_dist_ptr);
if (dest_addr (= -1 &%k dest_addr == gtation_addr)
goto gen_packet;

/% 26DECS4 & 29JAN94: determine its priority s/
Pkt_prio = op_dist_outcome (pkt_priority_ptr);

/* create a packet to send to mac ¢/
pkptr = op_pk_create_fmt (“f£ddi_llc_fr");

/% assign its overall size. */
op_pk_total_size_set (pkptr, pklen);

/* assign the time of creation */
op_pk_ntd_set (pkptr, "cr_time”, op_sim_time ());

/% place the destination address into the ICI s/
/* (the protocol_type field will default) &/
op_ici_attr_set (mac_iciptr, “dest_addr", dest_addr);

/% place the source address into the ICI #//+# 17APR94s/
op.ici_attr_set (mac_iciptr, “src_addr”, station_addr);

/* assign the priority, and requested token class */
/% also assign the sexvice class; 20JAN94: the fddi_llc_fr »/
/* format is modified to include a "pri* field. */
if (op_dist_uniform (1.0) <= async_mix)
{
op_pk.nfd_set (pkptr, "pri", pkt_prio); /+ 20JAN94 =/
op_ici_attr_set (mac_iciptr, “svc_class",

FDDI_SVC_ASYNC);
op.ici_attr_set (mac_iciptr, “pri™, pkt_prio); /+* 20JANS4 »/
}
slse{
op_pk.nfd_set (pkptr, "pri", 8); /% 29JAN94 */
op_ici_attr_set (nac_iciptr, “gvc_class",
FDDI_SVC_SYNC);
op_ici_attr_set (mac_iciptr, "pri“”, 8); /* 29JAM94 ¢/
}
/* Request only nonrestricted tokens after transmission */
op.ici_attr_set (mac_iciptr, “tk_class”,
FDDI_TK_BONRESTRICTED);

/+ Baving determined priority, assign it; 26DECS3 ¢/
/% op_ici_attr_set (mac_iciptr, “pri", pkt_prio); =/

70




236 /¢ send the packet coupled with the ICI */

236 op_ici_install (mac_iciptr);
237 /% check if destination address is in the remote lan */
238 if(dest_addr > 9)
239 /¢ if it is, this packet is to send llc_sink directly =/
240 op_pk_send (pkptr, LLC_SINK_OUT_STREAM);
241 /+18APR94s/
242 else
243 /¢ it not, the packet is destined for local lan, so send to mac
244/
245 op_pk_send (pkptr, MAC_LAYER_OUT_STREANM);
246 /% schedule the next arrival =/
247 tddi_gen_schedule ();
248 }
249 }
250 /#* blocking after enter executives of unforced state. *%/
251 FSM_EXIT (3,cp_1ddi_gen)
282 /+** state (ARRIVAL) exit executives #+/
253 FSM_STATE_EXIT_UNFORCED (1, statei_exit_exec, “ARRIVAL")
254 {
255 }
256 /+* state (ARRIVAL) transition processing #*+/
257 FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
258 /% */
2569 }
260 FSM_EXIT (0,cp_tfddi_gen)
261 }
262 void
263 cp_fddi_gen_svar (prs_ptr,var_name,var_p.ptr)
264 cp.fddi_gen_state *prs_ptr;
265 char svar_name, $svar_p_ptr;
266 {
267 FIN (cp_fddi_gen_svar (prs_ptr))
71




268
269
270
a7
272
273
274
275
276
277
ars
279
280
281
282
283
284
286
286
287
288
289
290
291
292
293
294
296
296
297
298
299
300
301
302
303
304
3085
306

307
308

309
310
311
312

svar_p_ptr = VOS_NIL;

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

it

(Vos_String Equal (“inter_dist_ptr" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_inter_dist_ptr);
(Vos_String_Equal (“len_dist_ptr" , var_name))
svar_p_ptr = (char &) (&prs_ptr->sv_len_dist_ptr);
(Vos_String_Equal (“dest_dist_ptr" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_dest_dist_ptr);
(Vos_String_Equal (“pkt_priority_ptr"* , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_pkt_priority_ptr);
(Vos_String_Equal (“mac_objid" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_mac_objid);
(Vos_String_Equal (“my_id" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv._my_id);
(Vos_String_Equal (“low_dest_addr" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_low_dest_addr);
(Vos_String_Equal ("high_dest_addr" , var_name))
svar_p_ptr = (char ) (kprs_ptr->sv_high_dest_addr);
(Vos_String_Equal ("station_addr" , var_name))
svar_p_ptr = (char ¢) (&prs_ptr->sv_station_addr);
(Vos_String_Equal (“src_addr" , var_name))
svar_p_ptr = (char *) (&pra_ptr->sv_src_addr);
(Vos_String_Equal ("low_pkt_priority" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_low_pkt_priority);
(Vos_String_Equal (“high_pkt_priority" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_high_pkt_priority);
(Vos_String_Equal ("arrival_rate" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_arrival_rate);
(Vos_String_Equal ("mean_pk_len" , var_name))
svar_p_ptr = (char ¢) (&prs_ptr->sv_mean_pk_len);
(Vos_String_Equal ("async_mix" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_async_mix);
(Vos_String_Equal (“mac_iciptr" , var_name))
svar_p_ptr = (char ¢) (&prs_ptr->sv_mac_iciptr);
(Vos_String_Equal (“mac_iciptr1" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv.mac_iciptri);
(Vos_String_Equal ("llc_ici_ptr" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_llc_ici_ptr);
(Vos_String_Equal ("pkptri" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_pkptri);

FOUT;

}

void

cp.fddi_gen_diag ()
{

Packet *pkptr;

72




313
314
315
316

317

318
319

320
321
322
323
324
325

328

327

328

329
330

3
332
333
334
336

336

337
338
33¢
340
341
342

343
344
345

M7

int pklen;

int dest_addr;
int i, restricted;
int pkt_prio;

FIN (cp_tddi_gen_diag ())

FOUT;
)}
void
cp.1ddi_gen_terminate ()
{
Packet *pkptr;
int Pklen;
int dest_addr;
int i, restricted;
int pkt_prio;

FIN (cp_fddi_gen_terminate ())

FOUT;
)

Compcode
cp_1ddi_gen_init (pr_state_pptr)
cp_fddi_gen_state sspr_state_pptr;

static VosT_Cm_Obtype obtype = OPC_NIL;
FIN (cp_tddi_gen_init (pr_state_pptr))

it (obtype == OPC_NIL)
{
it (Vos_Catmem_Register (“proc state vars (cp_fddi_gen)",
sizeof (cp_fddi_gen_scate), Vos_Nop, &obtype) == VOSC_FAILURE)
FRET (OPC_COMPCODE_FAILURE)
}

it ((epr_state_pptr = (cp_fddi_gen_stater) Vos_Catmem_Alloc (obtype, 1)) ==
OPC_NIL)
FRET (OPC_COMPCODE_FAILURE)
else

{

3




348
349
360
351

352
363

385
3568

357
358
359

360
361
362

(spr_state_pptr)->current_block = 0;
FRET (OPC_COMPCODE_SUCCESS)
}

/* static added 2DEC93, on advice from MIL3 %/
static
1ddi_gen_schedule ()

{

double inter_time;

/% obtain an interarrival period according to the ¢/
/% prescribed distribution s/
inter_time = op_dist_outcome (inter_dist_ptr);

/% schedule the arrival of next generated packet ¢/

op.intrpt_schedule_self (op_sim_time () + inter_time, 0);
}

4




b e e, it o o3 e i e R TR C L ———— S LA e Ml et i A et e e TR IR A

APPENDIX B
CPNI MAC “C” CODE

“cp_fddi_mac.pr.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET’s text editors.

[ N

7
8
9
10
11
12
13
14
16

/* Process model C form file: cp_fddi_mac.pr.c */
/% Portions of this file Copyright (C) MIL 3, Inc. 1992 s/

/+ OPNET system definitions */
#include <opnet.h>

#include “cp_fddi_mac.pr.h"
FSM_EXT_DECS

/¢ Header block */
/* Define a timer structure used to implement ¢/
/% the TRT and THT timers. The primitives defined to */
/* operate on these timers can be found in the */
/% tunction block of this process model. */
typedetf struct
{

int enabled;

double start_time;

16 double accum;
17 double target_accum;
18 } FddiT_Timer;

19
20
21
22

23
24

a5
26
27
28

/% Declare certain primitives dealing with timer.s »/
double £ddi_timer_remaining ();

FddiT_Timers 2ddi_timer_create ();

double fddi_timer_value ();

/% Scratch strings for trace statements */
char str0 [512), stri (512];
/¢ define constants particular to this implementation s/

#define FODI_MAX_STATIONS 612

/% detine possible values for the frame control field s/
8define FODI_FC_FRANE O

75




FIlIIlllllIIIIIIIIIIlIIlIIIIIIllIIIIIIllIIlIIlllIIlIIlIllIlllllllllllllllllllll-------—g—

20 #define FDDI_FC_TOKEN 1

30 /* define possible service classes for frames */
31 #detine FDDI_SVC_ASYEC O
32 #detine FDDI_SVC_SYNC 1

33 /* detine input stream indices ¢/
34 #define FDDI_LLC_STRM_IN 1
35 #define FDDI_PHY_STRN_INK O

36 /* detine output stream indices ¢/
37 #detfine FDDI_LLC_STRM OUT 1
38 #define FDDI_PHY_STRM_OUT O

39 /* define token classes =/
40 #define FDDI_TX_NONRESTRICTED 0
41 $#define FDDI_TK_RESTRICTED 1

42 /» Ring Constants #/
43 #define FODI_TX_RATE 1.0e+08
44 $define FDDI_SA_SCAN_TIME 28.0e-08

46 /* Token transmission time: based on 6 symbols plus 16 symbols of preamble */
48 #define FDDIC_TOKEN_TX_TIME 88.0¢-08

47 /* Codes used to differentiate remote interrupts */
48 #define FDDIC_TRT_RIPIRE 0
49 #define FDDIC_TK_INJECT 1

50 /+ Define symbolic expressions used on transition »/

61 /# conditions and in executive statements. ¢/

62 #define TRT_EXPIRE \

63 (op_intrpt_type () == OPC_INTRPT_REMOTE &% op_intrpt_code () == FDDIC_TRT_EXPIRE)

54 #$define TK_RECEIVED \

66 phy_arrival && \
66 frame_control == FDDI_FC_TOKEN

87 #detine RC_FRANE \

58 phy_arrival &% \
69 frame_control == FDDI_FC_FRAME

60 #define FRAME_ARRIVAL \

61 op_intrpt_type () == OPC_INTRPT_STRN &k \

62 op_intrpt_strm () == FODI_LLC_STRN_IN

63 #define STRIP my._address == src_addr

64 /¢ Define the maximum value for ring_ id. This is the #/

76




/% maximum number of FDDI rings that can exist in a #/
/+ simulation. Note that if this number is changed, */
/¢ the initialization for fddi_claim_start below must */
/% also be modified accordingly. ¢/

69 #define FDDI_MAX_RING_ID 8

2288

70 /* Declare the operative TTRT value ’T_Opr’ which is the final s/

71 /% negotiated value of TTRT. This value is shared by all stations s/
72 /* on a ring so that all agree on its value. */

73 double f£ddi_t_opr [FDDI_MAX_RING_ID];

74 #define Fddi_T_Opr (fddi_t_opr [ring idl)

76 /¢ This flag indicates that the negotiation for the final TTRT ¢/
76 /+ has not yet begun. It is statically initialized here, and +/
77 /% is reset by the first station which modifies T_Opr. s/

78 /¢ Initialize to 1 for all rings.e/

79 static

80 int fddi_claim_start [FDDI_MAX_RING_ID] = {1,1,1,1,1,1,1,1};

81 #define Fddi_Claim_Start (fddi_claim_start [ring_idl)

82 /+ Declare station latency parameters. */

83 /¢ These are true globals, so they do not need to be arrays. */
84 double Fddi_St_Latency;

856 double Fddi_Prop_Delay;

86 /¢ Declare globals for Token Acceleration Mechanism. ¢/
87 /+ Hop delay and token acceleration are true globals. ®/
88 double Fddi_Tk_Hop_Delay;

89 static

90 int Fadi_Tk_Accelerate = 1;

91 /¢ These are actually values shared by all nodes on a ring, */

92 /¢ so they must be defined as arrays. */

93 double fddi_tk_block_base_time [FDDI_MAX_RING_ID];

94 #define Fddi_Tk_Block_ Base_Time (fddi_tk_block_base_time [ring idl)

96 int fddi_tk_block_base_station [FDDI_MAX_RING_ID];
96 #define Fddi_Tk_Block_Base_Station (fddi_tk_block_base_station [ring_idl)

97 int fddi_tk_blocked [FDDI_MAX_RING_ID];
98 8define Fddi_Tk_Blocked (fddi_tk_blocked [ring_id])

99 int £ddi_num_stations [FDDI_MAX_RING_ID];
100 $define Fddi_Num_Stations (fddi_num_stations (ring_id])

101 int fddi_num_registered [FDDI_MAX_RING_ID];
102 sdefine Fddi_Num_Registered (fddi_num_registered [ring_id])

103 Objid £ddi_address_table [FDDI_MAX_RING_ID] [FODI_NAX_STATIONS];
104 #define Fddi_Address_Table (fddi_address_table [ring id])

7




105 /+ Below is part of the OPBUG 2081 patch; FB ended here, before. -Nix s/

106 /+ Event handles for the TRT are maintained at a global level to */
107 /+ allow token acceleration mechanisam to adjust these as necessary »/
108 /* when blocking and reinjecting the token. TRT_handle simply +/

109 /¢ represents the TRT for the local MAC &/

110 Evhandle fddi_trt_handle [FDDI_MAX_RING_ID] [FDDI_MAX_STATIONS];

111 #define Fddi_Trt_BEandle (fadi_trt_handle [ring_idl)

112 #define TRT_handle Fddi_Trt_Handle [my_address)

113 /* Similarly, the TRT data structure is maintained on a glcbal level. ¢/
114 FddiT_Timers fddi_trt [FDDI_MAX_RING_ID] [FDDI_MAX_STATIONS]);

115 #define Fddi_Trt (2ddi_trt [ring id])

115 #define TRT Fddi_Trt [my_address)

116 /» Rogistoft to record the expiration time of each TRT when token is blocked. */
117 double fddi_trt_exp.time [FDDI_MAX_RING_ID) [FDDI_MAX_STATIOKS];
118 #define Fddi_Trt_Exp_Time (fddi_trt_exp_time [ring_id})

119 /# the ’Late_Ct’ flag is declared on a global level so that it can be */
120 /* set at the tim ewhere the token is injected back into the ring. */
121 int fddi_late_ct [FDDI_MAX_RING_ID] (FDDI_MAX_STATIONS];

122 #define Fddi_Late_Ct (2ddi_late_ct [ring id])

123 #define Late_Ct Fddi_Late_Ct [my_address)

124 /+ Convenient macro for setting TRT for a given station and absolute time. »/
125 #define TRT_SET(station_id,abs_time) \

126 £ddi_timer_set (Fadi_Trt [station_id], abs_time - op_sim_time()); \

127 Fddi_Trt_Handle [station_id] = op_intrpt_schedule_remote (abs_time, \

128 FDDIC_TRT_EXPIRE, Fddi_Address_Table [station_id]l);

129 /¢ State variable definitions ¢/
130 typedef struct

131 {

132 FSH_SYS_STATE

133 int sv_ring_ igd;

134 FddiT_Timers sv_THT;

135 double sv_T_Req;

136 double sv_T_Pri [8];

137 Objid sv_my_objid;

138 int sv_spavn_token;
139 int svy_my_address; .
140 int sv_orig_src_addr;

78




141 Packets sv_tk_pkptr;

142 double sv_sync_bandwidth;
143 double sv_sync_pc;

144 int sv_restricted;

145 int sV_res_peer;

146 int sv_tk_registered;
147 Icie sv_to_llc_ici_ptr;
148 int sv_tk_trace_on;

149 } cp_fddi_mac_state;

150 #define pr_state_ptr ((cp_tddi_mac_state¢) SimI_Mod_State_Ptr)
151 #define ring_id pr_state_ptr->sv_ring_id

162 #detine THT pr.state_ptr->sv_THT

1563 #detine T_Req . pr_state_ptr->sv_T_Req

154 #define T_Pri pr_state_ptr->sv_T_Pri

156 #define my_objid pr.state_ptr->sv_my_objid

156 #define spawn_token pr.state_ptr->sv_spawn_token
1567 #define my_address pr_state_ptr->sv_my_address

158 #define orig_src_addr pr_state_ptr->sv_orig_src_addr
159 #detine tk_pkptr pr_state_ptr->sv_tk_pkptr

160 #define sync_bandwidth pr.state_ptr->sv_sync_bandwidth
161 #detine sync_pc pr._state_ptr->sv_sync_pc

162 #define restricted pr_state_ptr->sv_restricted

163 #define res_peer pr_state_ptr->sv_res_peer

164#define tk_registered

166 #define
168 #define

167 /* Process model interrup

168 void

169 cp_fddi_

170 {

171 /¢ Packets and ICI’s »/

to_llc_ici_ptr
tk_trace_on

mac ()

172 Packet+ mac_frame_ptr;
173 Packet* pdu_ptr;

174 Packets
176 Packet®

pkptr;
data_pkptr;

176 Icis ici_ptr;

pr_state_ptr->sv_tk_registered
pr.state_ptr->sv_to_llc_ici_ptr
pr.state_ptr->sv_tk_trace_on

t handling procedure */

177 /* Packet Fields and Attributes */

178 int req.pri, svc_class, req_tk_class;
179 int frame_control, src_addr, dest addr;
180 int pk_len, pri_level;

181 /¢ Token - Related ¢/

79




182 int tk_usable, res_station, tk_class;
183 int current_tk_class;
184 double accum_sync;

185 /¢ Timer - Related ¢/
186 doudble tx_time, timer_remaining, accum_bandwidth;
187 double tht_value;

188 /+ Niscellaneous ¢/

189 int i;

190 int spawn_station, phy_arrival;

191 char error_string [512];

192 int num_frames_sent, num_bits_sent;

193 /e 26DEC93: loop management variables, used in RCV_TK ¢/

194 /+ and ENCAP states. -Fix s/
195 int NUM_PRIOS;

198 int punt;

197 int q.check;

198 FSM_ENTER (cp.fddi_mac)

199 FSNM_BLOCK_SWITCH

200 {

201 /+ */
202 /++ state (INIT) enter executives s/

203 FSM_STATE_ENTER_FORCED (0, stateO_enter_exec, “INIT")

204 {

205 /+ Obtain the station’s address . This is an attribute #/

208 /* of this process. Addressing is simplified by /

207 /+ simply using integers, and only one mode. */

208 /% This mode is 16 bit addressing unless the */

209 /+ packet format ’fddi_mac_fr’ is modified. ¢/

210 my_objid = op_id_selt(); /% 29DEC93 »/
211 op_ima_obj_attr_get (my_objid, “station_address”, &my_address);

212 /+ Register the station’s object id in a global table. #/
213 /¢ This table is used by the mechanism which improves */
214 /+ simulation efficiency by ’jumping over’ idle periods */
215 /¢ rather than circulating an unusable token. ¢/

216 fddi_station_register (my_address, my_objid);

217 /+ Obtain the station latency for tokens and frames. ¢/

218 /¢ Default value is set at 100 nanoseconds. */

219 Fddi_St_Latency = 100.0e-09;

220 op_ima_sim_attr_get (OPC_IMA_DOUBLE, “station_latency”, &Fddi_St_Latency);

80




221 /+ Obtain the propagation delay separating stations. ¢/

222 /* This value is given in seconds with default value 3.3 microseconds. &/
223 Fddi_Prop_Delay = 3.3¢-06;

224 op_ima_sim_attr_get (OPC_IMA_DOUBLE, “prop_delay", &Fddi_Prop_Delay);

226 /¢ Derive the Delay for a ’hop’ of a freely circulating packet. */
226 Fddi_Tk_Hop_Delay = Fddi_Prop_Delay + Fddi_St_Latency;

227 /¢ The T_Pri [] state variable array supports priority */

228 /+ assignments on a station by station basis by ¢/

229 /¢ establishing a correspondence between integer priority s/

230 /* levels assigned to frames and the maximum values of the */

231 /* token holding timer (THT) which would allow packets to be &/
232 /¢ sent. Eight levels are supported here, but this can easily #/
233 /+ be changed by redimensioning the priority array. s/

234 /¢ By default all levels are identical here, allowing */

236 /+ any frame to make use of the token, so that in fact ¢/

236 /* priority levels are not used in the default case. */

237 /+ 01JAN94: (8-i) is a quick attempt to impart different weighting s/
238 /¢ scales on each priority level, and is not necessarily realistic.-Nix =/
239 /* Be aware of integer-double arithmetic conflicts ie, 1/8 = 0. -Nix */

240 op_ima_obj_attr_get(my_objid, “T_Req", &T_Req);
241 for (i = 0; i < 8; i++)

242 {
243 T_Prili] = ((double)(i + 1.0)/8.0) * Fddi_T_Opr;
244 /¢ printf(“MAC INIT: T_Pri[¥d] is %1f; */

245 /¢ Fddi_T_Opr is ¥1f\n", i, T_Prilil, Fddi_T_Opr); */
246 }

247 /% Create the token holding timer (THT) used to restrict the */
248 /* asynchronous bandwidth consumption of the station #/
249 THT = fddi_timor_create ();

260 /+ Create the token rotation timer (TRT) used to measure the */
261 /¢ rotations of the token, detect late tokens and initialize */
252 /+ the THT timer before asynchronous tranmsmissions. */

263 TRT = fddi_timer_create ();

254 /+ Set the TRT timer to expire in one TTRT */

266 TRT_SET (my_address, op_sim_time () + Fddi_T_Opr);

2586

257 /+ Initialize the Late_Ct variable which keeps track. ¢/
258 /* of the number of TRT expirations. s/

259 Late_Ct = 0;

260 /¢ initially the ring operates in nonrestricted mode ¢/
261 restricted = 0;

81




262 /+ Create an Interface Control Information structure #/
263 /¢ to use when delivering received frames to the LLC. s/
264 to_llc_ici_ptr = op_ici_create ("fddi_mac_ind");

265 /¢ The ’tk_registered’ variable indicates if the station s/
266 /¢ has registered its intent to use the token. */
tk_registered = 0;

ae7

208
269
270
an
272
273
274

275
276
277
278
279

280
281
282
283

285
286
287
288
289
290
291
292

293
294

296
ass

/®
/*
/®
/*
/*

Determine if the model is to make use of the token ¢/
’acceleration’ mechanism. If not, every passing of the */
token will be explicityly modeled, leading to large ¢/
number of events being scheduled vhen the ring is idle s/
(i.e, no stations have data to send). »/

op_ima_sim_attr_get (OPC_IMA_INTEGER, “accelerate_token”,
&Fdadi_Tk_Accelerate);

/*
/*
/®

Obtain the synchronous bandwidth assigned »/
to this station. It is expressed as a */
percentage of TTRT, and then converted to seconds */

op.ima_obj_attr_get (my_objid, “sync bandwidth", &sync_pc);
sync_bandwidth = sync_pc * Fddi_T_Opr;

/e
/e
/*
/e
/
/*
/®
/e
/*

Coly one station in the ring is selected to &/

introduce the first token. Test if this station is it. »/

If so, set the ’'spawn_token’ flag. */

op_ima_sim_attr_get (OPC_IMA_INTEGER, “"spawun station”, &spawn_station); s/
spavn_token = (spawn_station == my_address); s/

It the station is to spawn the token, create s/

the packet which represents the token. */

14APR94 :the bridges will spawn token in both rings &/

-Karayakaylar ¢/

spawn_token =1;

it
{

(spawn_token)

tk_pkptr = op_pk_create_ftmt ("fddi_mac_tk");

/e

assign its frame control field »/

op_pk.ntd_set (tk_pkptr, “fc", FODI_FC_TOKEN);

/e

the first token issued is non-restricted »/

op.pk._nfd_set (tk_pkptr, "class", FDDI_TK_NONRESTRICTED);

207 /¢ The transition will be made into the ISSU_TK =/
298 /¢ state where the tk_usable variable is used. */
299 /¢ In case any data has been generated, prset */
300 /+ this variable to one. ®/

82




301 tk_usable = 1;
302 }

303 /+ When sending packets the variable accum_bandwidth is */
304 /+ used as a scheduling base. Init this value to zero. ®/
306 /¢ This statement is required in case this is the spawning */
306 /+ station, and the next state entered is ISSUE_TK #/

307 accum_bandwidth = 0.0;

308 )}

309 /++ state (INIT) exit executives s/

310 FSN_STATE_EXIT_FORCED (0, stateO_exit_exec, "INIT")
311 {

312 )

313 /++ state (INIT) transition processing #+/
314 FSX_INIT_COND (spawn_token)

315 FSK_DFLT_COND

316 FSM_TEST_LOGIC (“INIT")

317 FSH_TRANSIT_SVITCH

318 {

319 FSH_CASE_TRANSIT (0, 2, state2_enter_exec, ;)

320 FSK_CASE_TRANSIT (1, 1, statel_enter_exec, ;)

321}

322 /e */

323 /es gtate (IDLE) enter executives s+/

324 FSH_STATE_ENTER_UNFORCED (1, statel_enter_exec, “IDLE")
325 {

326 )}

327 /e+ blocking after enter executives of unforced state. ¢¢/
328 FSM_EXIT (3,cp.tddi_mac)

320 /e+ gtate (IDLE) exit executives ss/

330 FSH_STATE_EXIT_UNFORCED (1, statei_exit_exec, "“IDLE")

331 {

332 /¢ Determine if a trace is activated for the FDDI model */
333 tk_trace_on = op_prg_odb_ltrace_active (“fddi_tk");

83




334 /+ Trap packets arriving from physical layer so that their s/

335 /¢ FC field can be extracted before evaluating conditions */

336 it (op.intrpt_type () == OPC_INTRPT_STRM &% op_intrpt_strm () != FDDI_LLC_STRM_IN)
337 {

338 /¢ Acquire the arriving packet. #/

339 pkptr = op_pk_get (FDDI_PHY_STRM_IN);

340 /¢ Determine the type of packet by extracting */
341 /+ the frame control field. %/
342 op_pk_ntd_get (pkptr, “fc“, &frame_control);

343 /¢ Physical layer arrival flag is set. */

344 phy_arrival = 1;

345 }

346 else{

347 /# The interrupt is not due to a physical layer arrival. s/
348 phy_arrival = O;

349 /* If the interrupt is a remote interrupt with specified code, it signifies s/
350 /* the reinsertion of the token into the rirng after an idle period. This only s/
351 /* occurs if the coken acceleration mechanism is active. #/

352 it (op_intrpt_type () == OPC_INTRPT_REMOTE && op_intrpt_code () == FDDIC_TK_INJECT)
383 {

364 /* create a new token ¢/

356 tk_pkptr = op_pk._create_fmt ("fddi_mac_tk");

356 /+ assign its frame control field #/
3567 op_pk_ntd_set (tk_pkptr, "fc", FDDI_FC_TOKEN);

368 /* the token is non-restricted =/
359 op_pk_nfd_set (tk_pkptr, “class", FDDI_TK_NONRESTRICTED);

360 /¢ insert it into the ring #/

361 op_pk_send (tk_pkptr, FDDI_PHY_STRM_OUT);
362 }

3e3 }

364 /++ state (IDLE) transition processing *+/
366 FSN_INIT_COND (TK_RECEIVED)

368 FSN_TEST_COND (RC_FRAME)

367 FSK_TEST_COND (TRT_EXPIRE)

368 FSM_TEST_COND (FRAME_ARRIVAL)

369 FSM_DFLT_COND

370 FSM_TEST_LOGIC ("IDLE")




371 FSH_TRANSIT_SWITCH

ar2 {

373 FSH_CASE_TRANSIT (0, 3, state3_enter_exec, ;)

374 FSH_CASE_TRAESIT (1, 4, state4_enter_exec, ;)

376 FSHM_CASE_TRANSIT (2, 7, state7_enter_exec, ;

376 FSM_CASE_TRAXRSIT (3, 8, stateS_enter_exec, ;

377 FSN_CASE_TRANSIT (4, 1, statel_enter_exec, ;)

378 }

379 /+ */

380 /++ state (ISSUE_TK) enter executives *¢/

381 FSN_STATE_ENTER_FORCED (2, state2_enter_exec, "ISSUE_TK")

382 {

383 /+ If the token is sent without having been used, and the station %/
384 /* has no data to send, then indicate this fact to the */

385 /¢ token acceleration mechanism which may have an */

388 /¢ oppurtunity to block the token. %/

387 it (!tk_usable && op_q_stat (OPC_QSTAT_PKSIZE) == 0.0)

388 {

389 /+ Note that if the token cannot be blocked, */

390 /+ this procedure will forward the token physically. s/

391 £ddi_tk_indicate_no_data (tk_pkptr, my.address, accum_bandwidth);
392 }

393 else{

394 if (tk_trace_on == OPC_TRUE)

aps { ’

396 sprintf (str0, “Issui-y token. accum _bw (%.9f), prop_del (%.92)%,
397 accum_bandwidth, Fddi ' vop_Delay);

398 op_prg_odb_print_major (str0, OPC_NIL);

399 }

400 /* Send out the token packet using the accumulated &/

401 /¢ consumed bandwidth as a scheduling base. */

402 /+ In the case of the initial spawning of the token #/

403 /¢ this will be zero; otherwise this variable will &/

404 /* reflect the bandwidth consumed since the last capture ¢/

405 /* of the usable token. Propagation delay is also accounted for. */
406 op_pk_send_delayed (tk_pkptr, FDDI_PHY_STRM_OUT,

407 accum_bandwidth + Fddi_Prop_Delay);

408 }

409 }

410 /¢+ state (ISSUE_TK) exit executives s/

411 FSM_STATE_EXIT_FORCED (2, state2_exit_exec, "ISSUE_TK")
412 {

413 )

T




414 /+* gtate (ISSUE_TK) transition processing ss/
4156 FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
418 /* */

417 /++ state (RCV_TK) enter executives *+/

418 FSM_STATE_ENTER_FORCED (3, state3_enter_exec, "RCV_TK")

419 {

420 /+ The arriving packet, when received in the IDLE state */

421 /¢ is placed in the variable ’pkptr’. Since it is now @/

422 /+ known that it is a token, it can be placed in ’tk_pkptr. */

423 tk_pkptr = pkptr;

424

426 /» Load the token’s class into the temporary variable ’'tk_class.’ #/
426 op_pk_nfd_get (pkptr, “"class", &tk_class)};

427 /s If the token is restricted, determine for which station. */
428 if (tk_class == FDDI_TK_RESTRICTED)

420 {

430 /+ Place the station address in the variable ’res_station’ »/

431 /¢ which may factor in to the determination of token usability. =/
432 op_pk_nfd_get (tk_pkptr, “res_station", &res_station);

433 }

434 /+ Determine if the token is usable: */

435 /¢ assume by default that it is not #/

436 /» Subsequent conditions may override this. &/
437 tk_usable = O;

438 /+ The token can only be usable if there are frames enqueued */
439 /¢ 27TDEC93: the entire bank of subqueues must be checked, */

440 /¢ starting at the highest priority (corresponding to ./
441 /* synchronous traffic), and stopping when a packet is */
442 /¢ found. Then the loop is broken. -Nix s/

443 NUM_PRIOS = 9;
444 for (i = WUM_PRIOS - 1; i > ~1; i~-)

45 {
446 it (op_subq_stat (i, OPC_QSTAT_PKSIZE) > 0.0)
4“1 {

448 /* examine the attributes of the packet at the s/
449 /+ head of the queue. %/
460 1ddi_load_frame_attrs (&dest_addr, &svc_class, &pri_level);

451 /* If synchronous data is queued, the token is s/

452 /% necessarily usable, regardless of timing conditions. */
453 if (svc_class == FDDI_SVC_SYNC)

454 {

86




455 tk_usable = {;

456 break;
457 )
458 else{

459 /* Otherwise, if asynchronous data is queued, it must s/
460 /* meet several criteria for the token to be usable. s/

461 /+ The token is only usable only if it is early. »/

462 if (Late_Ct == 0)

463 {

464 /+ The token’s class must be nonrestricted, unless ¢/

466 /+ this station is involved in the restricted transfer. */

468 if (tk_class == FDDI_TK_NONRESTRICTED ||

467 <res_station == my_address |!

468 restricted)

469

470 /¢ Test the frame’s priority assignment against the current TRT */
471 /* This test uses the priority indirection table T_Pri */

472 /+ so that only packets whose T_Pri [pri_level] exceeds */

473 /+ the TRT can be transmitted. In other words, by */

474 /+ assigning lower values to T_Pri for a given priority ¢/

478 /* level, packets of that level will be further restricted */

476 /* from using the ring bandwidth. ¢/

477 it (T_Pri [pri_level] >= fddi_timer_value (TRT))

478 {

479 tk_usable = 1;

480 break;

481 }
482 )}
483 }
484 }
4856 } /% closes the "if (op_subq_stat (OPC_QSTAT_PKSIZE) > 0.0" statment ¢/
486 } /* closes the "for" loop */

487 /+ If the token is usable, timers must be readjusted. s/

488 if (tk_usable)

489 {

490 /* The timer adjustment depends on whether the token is early or late. */
491 if (Late_Ct == 0)

492 {

493 /¢ Transfer the contents of TRT into THT. */

494 f£ddi_timer_copy (TRT, THT);

495 /* Disable the THT timer. s/
496 £4di_timer_disadle (TET);

497 /* Reset TRT to time the next rotation. ¢/

498 op_ev_cancel (TRT_handle);
499 TRT_SET (my_address, op_sim_time () + Fddi_ T _Opr);

87




500 }

501 else{
502 /+ If the token is late, set the THT to its expired s/
5§03 /¢ value, and disable it. This will prevent any »/
504 /+ asynchronous transmissions from occuring. */
505 2ddi_timer_set_value (THT, Fddi_T_Opr);

806 tddi_timer_disable (THT);

507 /¢ clear the Late token counter (note that TRT is not modified, */
608 /+ so that less than a full TTRT remains befors TRT expires again. */

609 Late_Ct = O;
510 }
511 }

6512 /# If the token is not usable, different adjustments are made. */

513 else{

614 /+ Again, the adjustments depend on the lateness of the token */

5156 it (Late_Ct == 0)
516 {

B17 /¢ 1If the token is not late, the TRT is reset to time the next rotation. %/

518 op_ev_cancel (TRT_handle);

619 TRT_SET (my._address, op_sim_time () + Fddi_T_Opr);

520 }
521 else{

522 /¢ clear the Late token counter (note that TRT is not modified, */
523 /# so that less than a full TTRT remains before TRT expires again. »/

524 Late_Ct = 0;
825 }

626 /+ also, account for the time needed by the token */

527 /* to traverse the station, since it is about to be sent.
528 /* Note: station latency is not inclusive of token s/
520 /+ transmission time, but only of the time required to ¢/
530 /* process and repeat the token’s symbols.

531 accum_bandwidth = Fddi_St_Latency;
532 }

533 }

634 /s gtate (RCV_TK) exit executives ss/

5356 FSM_STATE_EXIT_FORCED (3, state3_exit_exec, "RCV_TK")

536 {
637 }

538 /*s state (RCV_TK) transition processing t¢/

539 FSK_INIT_COND (tk_usable)
540 FSM_DFLT_COND

88

*/

+/




541 FSM_TEST_LOGIC (“RCV_TK"),

542 FSM_TRANSIT_SWITCH

543 {

544 FSM_CASE_TRANSIT (0, 9, state9_enter_exsc, ;)

546 FSM_CASE_TRANSIT (1, 2, state2_enter_exec, ;)

548 }

547 /» */

548 /++ gtate (FR_RCV) enter executives s+/

549 FSM_STATE_ENTER_FORCED (4, state4_enter_exec, “FR_RCV")

5660 {

651 /+ A frame has been received from the physical layer. Note that */
552 /* at this time, only the leading edge of the frame has arrived. */

863 /+ Extract the frame’s source address (this will be used to */
§54 /+ determine whether or not to strip the frame from the ring). +/
556 op_pk_ntd_get (pkptr, “src_addr", &src_addr);

558 )}

6567 /+s state (FR_RCV) exit executives s/

558 FSM_STATE_EXIT_FORCED (4, state4_exit_exec, “"FR_RCV")
559 {

$60 }

561 /+s sgtate (FR_RCV) tramsition proco-sxng s/
562 FSM_INIT_COXD (STRIP)

563 FSM_DFLT_COND

564 FSM_TEST_LOGIC (“FR_RCV™)

566 FSM_TRANSIT_SWITCH

5686 {

567 FSM_CASE_TRANSIT (0, 5, state5_enter_exec, ;)

668 FSM_CASE_TRANSIT (1, 6, state6_enter_exec, ;)

569 }

570 /» 74

§71 /++ state (FR_STRIP) enter executives #+/

572 FSM_STATE_ENTER_FORCED (5, state5_enter_exec, "FR_STRIP")

6§73 {

674 /* Destroy the frame which has nov circulated the entire ring. */
676 op_pk_destroy (pkptr);

576 }

89




577 /e+ state (FR_STRIP) exit executives e¢/

578 FSM_STATE_EXIT_FORCED (5, stateS_exit_exec, “FR_STRIP")
579 {

580 }

581 /e¢ state (FR_STRIP) tranmsition processing s/
682 FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
583 /= s/

584 /¢ state (FR_REPEAT) enter executives *+/

585 FSM_STATE_ENTER_FORCED (6, state6_enter_exec, “FR_REPEAT")
586 {

587 /¢ Extract the destination address of the frame. */

588 op_pk_nfd_get (pkptr, “desi_addr®, &dest_addr);

589 /¢ If the frame is for this station, make a copy */

590 /¢ of the frame’s data field and forward it to #/

581 /+ the higher layer. s/

592 /* 14APR94 : In oxder to send the frames which are */

593 /¢ addressed to the remote lan, check the address database */

694 /% of remote lan. Frames addressed to the remote lan shouldn’t &/
595 /+ be repeated in the local ring -- This is a simple forwarding +/
596 /* decision algorithm, one of the bridge’s function ¢/

697 /+ - Karayakaylar ¢/

598 if((dest_addr == my_address)||(dest_addr > my_address))

699 {

600 /* record total size of the frame (including data) ¢/

601 pk_len = op_pk_total_size_get (pkptr);

602 /* decapsulate the data contents of the frame ¢/

603 /¢ 29JAN94: a new field, "pri", has been added to s/
604 /¢ the fddi_llc_fr packet format in the Parameters */
605 /% Editor, so that output statistics can be ./
606 /* generated by class and priority. -Nix +/
607 op_pk_nfd_get (pkptr, "info", &data_pkptr);

608 op_pk_nfd_get (pkptr, “pri%, &pri_level);

609 /¢ The source and destination address are placed in the */
610 /+ LLC’s ICI before delivering the frame’s contents. */
611 op_ici_attr_set (to_llc_ici_ptr, “src_addr®, src_addr);
612 op_ici_attr_set (to_llc_ici_ptr, “dest_addr", dest_addr);
613 op_ici_install (to_llc_ici_ptr);

614 /¢ Because, as noted in the FR_RCV state, only the ¢/

615 /¢ frame’s leading edge has arrived at this time, the »/

616 /¢ complete frame can only be delivered to the higher */

617 /* layer after the frame’s transaission delay has elapsed. ./

618 /+ (since decapsulation of the frame data contents has occured, */

90

)




619 /* the original MAC frame length is used to calculate delay) */
6820 tx_time = (double) pk_len / FDDI_TX_RATE;
621 op._pk_send_delayed (data_pkptr, FDDI_LLC_STRM_OUT, tx_time);

622 /+ Note that the standard specifies that the original /

623 /* frame should be passed along until the originating station */
624 /* receives it, at which point it is stripped from the ring. */

625 /+ However, in the simulation model, there is no interest */

626 /+ in letting the frame continue past its destination unless */

627 /* group addresses are used, so that the same frame could be */

628 /& destined for several stations. Here the frame is stripped */

629 /s for efficiency as it reaches the destination; if the model */
830 /* is modified to include group addresses, this should be changed »/
€31 /# so that the frame is copied and the original repeated. */

632 /* Logic is already present for stripping the frame at the origin. */
633 op_pk_destroy (pkptr);

634 }

635 /% 14APR94 : the frames belong to this ring should be repeated. */
636 /* Thus, local traffic is constrained.-- This is filtering decision */
637 /* One of the bridge’s function - Karayakaylar */

638 olse{

639 /* Repeat the original frame on the ring and account for */

640 /+ the latency through the station and the propagation delay #/

641 /+ for a single hop. */

642 /+ (Only the originating station can strip the frame). */

643 op_pk_send_delayed (pkptr, FDDI_PHY_STRM_OUT,

644 Fddi_St_latency + Fddi_Prop_Delay);

645 }
646 }

647 /»+ state (FR_REPEAT) exit executives s»/

648 FSM_STATE_EXIT_FORCED (6, state6_exit_exec, “FR_REPEAT")
649 {

650 )}

651 /e+ state (FR_REPEAT) transition processing s+/
6562 FSH_TRANSIT_FORCE (1, statel_enter_exec, ;)
653 /» - s/

654 /++ state (TRT_EXP) enter executives #s/

6566 FSM_STATE_ENTER_FORCED (7, state7_enter_exec, "TRT_EXP")
656 {

657 /¢ The timer is reset and allowed to continue running. &/
658 TRT_SET (my_address, op_sim_time () + Fddi_T_Opr);

669 /+ The late token counter is incremented. This will e/

91




660 /¢ prevent this station from making any asynchronous */
661 /¢ transmissions when it next captures the token. */
862 Late_Ct++;

663 }

864 /++ state (TRT_EXP) exit executives ss/

665 FSM_STATE_EXIT_FORCED (7, state7_exit_exec, "TRT_EIP*)
866 {

667 }

668 /*+ state (TRT_EXP) transition processing *+/
669 FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
670 /s ./

671 /s+ state (ENCAP) enter executives #»/

672 FSM_STATE_ENTER_FORCED (8, stateS_enter_exec, "ENCAP")

673 {

674 /+ A frame has arrived from a higher layer; place it in ’pdu_ptr’. */
676 pdu_ptr = op_pk_get (op_intrpt_strm ());

676 /% Also get the interface control information */

677 /* associated with the new frame. */

878 ici_ptr = op_intrpt_ici ();

679 if (ici_ptr == OPC_NIL)

880 {

681 sprintf (error_string, "Simulation aborted; error in object (%d)",

682 op_id_sel? ());

883 op_sim_end (error_string, "fddi_mac: required ICI not received", ™ ", " ");
684 }

685 /+ Extract the requested service class »/

686 /+ (e.g, synchronous or asynchronous). */

887 if (op_ici_attr_exists (ici_ptr, “svc_class"))

688 op.ici_attr_get (ici_ptr, “svc_class", &svc_class);
889 else svc_class = FDDI_SVC_ASYNC;

690 /¢ Extract the destination address. */
691 op_ici_attr_get (ici_ptr, “dest_addr®, &dest_addr);

692 /* Extract the original source address from ICI :16APR94 »/
693 op.ici_attr_get (ici_ptr, “src_addr”, Rorig_src_addr);

694 /¢ If the frame is asynchronous, the priority and ¢/

695 /* requested token class parameter may be specified. ¢/
6906 if (svc_class == FDDI_SVC_ASYNC)

92




897 {

698 /+ Extract the requested priority level. */
699 if (op.ici_attr_exists (ici_ptr, “pri"))
700 op_ici_attr_get (ici_ptr, “pri", &req_pri);
701 else req pri = 0;

702 /+ Extract the token class (restrictred or non-restricted). #/
703 if (op_ici_attr_exists (ici_ptr, “tk_class"))

704 op_ici_attr_get (ici_ptr, “tk_class", &req.tk_class);

705 else req_tk_class = FDDI_TK_NONRESTRICTED;

706 }

707 /* Check for the default ICI values;if they are not present */
708 /+ compose the frame:21APR94 */
709 if( dest_addr != orig_src_addr){

710 /* Compose a mac frame from all these elements. */

711 mac_frame_ptr = op_pk_create_fmt ("fddi_mac_fr");

712 op_pk_nfd_set (mac_frame_ptr, “svc_class", svc_class);

713 op.pk.nfd_set (mac_frame_ptr, “dest_addr", dest_addr);

714 /*op_pk_nfd_set (mac_frame_ptr, “src_addr", my_address);s/

716 /* here original source address should be kept in mac frame :16APRS4s/
716 op_pk_nfd_set (mac_frame_ptr, "src_addr", orig_src_addr);

717 op.pk_nfd_set (mac_frame_ptr, “info", pdu_ptr);

718 printf("\ndest_addr = %5d\n",dest_addr);

719 printf(“orig_src_addr= ¥5d\n",orig_src_addr);

720 it (svc_class == FDDI_SVC_ASYNC)

721 {

722 op.pk_nfd_set (mac_frame_ptr, "tk_class", req_tk_class);
723 op.pk.nfd_set (mac_frame_ptr, "pri", req_pri);

724 }

725 /¢ 04JAN94: if the frame is synchronous, assign it a separate ¢/
726 /+ priority so that it may be assigned its own subqueue, and */
728 /+ thereby be assigned its own probe for monitoring. ~-Nix ./
729 if (svc_class == FDDI_SVC_SYNC)

730 {
731 op_pk_ntd_set (mac_frame_ptr, "pri“, 8);
732 }

733 /+ Assign the frame control field, which in the model */
734 /+ is used to distinguish between tokens and ordinary */
735 /¢ frames on the ring. ¢/

736 op_pk._nfd_set (mac_frame_ptr, “fc", FDDI_FC_FRAME);

737 /¢ Enqueue the frame at the tail of the queue. */

738 /% 27DEC93: at the tail of the prioritized queue. +/
739 /+ 04JANS4: must distinguish between synch & asynch. */
740 if (svc_class == FDDI_SVC_ASYINC)

T41 {

93




742 op.subq_pk_insert (req_pri, mac_frame_ptr, OPC_QPOS_TAIL);
743 )

744 if (svc_class == FDDI_SVC_SYNC)

745

746 op_subq_pk_insert (8, mac_frame_ptr, OPC_QPOS_TAIL);

T4T  }

748 /¢ if this station has not yet registered its intent to */

749 /* use the token, it may do so nov since it has data to send */
760 it (!tk_registered)

781 {

762 tddi_tk_register ();

763 tk_registered = {;

754 }

765 } /+ end of if(dest_addr != orig_src_addr) statement */

766 /*¢ gtate (ENCAP) exit executives s/

7867 FSM_STATE_EXIT_FORCED (8, state8_exit_exec, “ENCAP")
788 {

789 }

760 /++ state (ENCAP) transition processing »+/
761 FSM_TRANSIT_FORCE (1, statel_enter_exec, ;)
762 /* s/

763 /++ gtate (TX_DATA) enter executives *+/

764 FSM_STATE_ENTER_FORCED (9, stateS_enter_exec, "TX_DATA")
765 {

766 /+ In this state, frames are transmitted until the ¢/
767 /* token is no longer usable. Frames are taken from */
768 /+ the single input queue in FIFO order. */

769 /+ Reset the accurulator used to keep track of bandwidth */

770 /* consumed by the transmissions. Because all the transmissions »/
771 /¢ are scheduled to happen at the appropriate times, but */

772 /+ these schedulings occur instantly, this accumulator serves */
773 /+ as the scheduling base for the transmissions. */

774 /+ In other words, each successively transmitted frame */

776 /# is delayed relative to the previous one by the time which ¢/
776 /¢ the latter took to send. At the end of transmission (e.g, ¢/
778 /+ when the token is no longer usable), this accumulator */

94




779 /¢ serves to delay the forvarding of the token. */
760 accum_bandwidth = 0.0;

781 /¢ Note that, because all tranmsmissions are */

782 /% scheduled, the value of the THT timer will not progress */

783 /¢ between shcedulings (these all happen in zero time), and so s/

784 /+ the variable ’tht_value’ is used to emulate the timer’s progress. /
785 tht_value = fddi_timer_value (THT);

TBG /% SEEEEEHEEEAEREERSEESSSEREEESESEEERRRAIASAEASSES0S 8/
787 /¢ 30MAR94: print T_Prilil. THT data s/
788 /= for (i = 0; i < 8; it++) s/
789 /+ { */
790 /¢ printf(“TX_DATA: T_Pril¥%d] = %d, THT = %d, Fddi_T_Opr = ¥%d\n", i, T_Pri[i], tht_value */
791 /e } ./

792 /% Reset an accumulator which reflects the consumed */
793 /¢ synchronous bandwidth. */
794 accum_sync = 0.0;

795 /¢ Reset counters for transmitted frames and bits. */
796 num_frames_sent = 0;
797 num_bits_sent = O;

798 /+ The transmission sequence must end if the input queune */

799 /* becomes exhausted. Other termination conditions are */

800 /» embedded in the loop. */

801 /+ 27DEC93: modify the loop to accomodate subqueue structure. */
802 /+ A “for" loop is imposed over the original “while" loop. */
803 /* First, reset the break marker, "punt". -Nix s/
804 punt = 0;

805 for (i = NUM_PRIOS - 1; i > -1; i--)

goe {

807 while (op_subq_stat (i,0PC_QSTAT_PKSIZE) > 0.0)

808 {

809 /* Remove the next frame for transmission. */

810 pkptr = op_subq_pk_remove (i, OPC_QPOS_HEAD);

811

812 /= Obtain the frame’s service class. =/

813 op_pk_nfd_get (pkptr, "svc_class", &svc_class);

814

815 /# Synchronous and asynchronous frames are treated differently. =/
818 if (svc_class == FDDI_SVC_SYNC)

817 {

818 /¢ Obtain the frame’s length, and compute */

819 /+ the time required to transmit it. «/

820 pk_len = op_pk_total_size_get (pkptr);

821 tx_time = (double) pk_len / FDDI_TX_RATE;

822 /¢ Check if synchronous bandwidth allocation for this */

95




823 /* station would be exceeded if the transmission were to occur. ¢/
824 if (accum_sync + tx_time > sync_bandwidth)

826 {

826 /+ The frame could not be sent without exceeding /

827 /+ the allocated synchronous bandwidth, ¢/

828 /* so it is replaced on the quene. */

829 /+ 2TDEC93: in this case, i is the highest priority, */
830 /* which is reserved for synchronous traffic. -Nix /
831 op.subq_pk_insert (i, pkptr, OPC_QPUS_HEAD);

832 /+ Exit the transmission loop since the frame »/

833 /# transmission request cannot be honored. %/

834 punt = 1;

835 break;

836 }

837 else{

838 /¢ Send the frame into the ring after other frames have completed. */

839 /¢ Also, account for its proagation delay; because the token propagation ¢/
840 /* delay and the frame propagation delay must be consistent, and the »/

841 /+ token propagation delay is specified as a ring parameter (i.e, stations */
842 /¢ are assumed to be equally spaced), the ring is intended to run with */

843 /+ the "delay"” attributes of point-to-point links set at zero. %/

844 op_pk_send_delayed (pkptr, FDDI_PHY_STRM_OUT, accum_bandwidth + Fddi_Prop_Delay);

845 /* increase the consumed bandwidth to reflect this */

846 /+ transmission. Also increase synchronous consumption. */
847 accum_bandwidth += tx_time;

848 accum_sync += tx_time;

849 /* Increase counters for transmitted bits and frames. &/
850 num_frames_sent++;

851 num_bits_sent += pk_len;

852 }

853 }

854 elsef{

866 /+ The request enqueued at the head of the queue is */

866 /¢ asynchronous. It may only be honored if the THT timer =/
857 /* has not expired. s/

868 if (tht_value >= Fddi_T_Opr)

859 {

860 /* replace the packet on the queus and exit the transmission loop. */
861 op_sudbq_pk_insert (i, pkptr, OPC_QPIS_HEAD);

862 punt = 1;

863 break;

864 )

865 else{

866 /+ Obtain the priority assignment of the frame. */

867 op_pk_nfd_get (pkptr, "pri", &pri_level);

868 /¢ If the packet’s assigned priority level ¢/
869 /¢ is too low for it to be serviced, then exit the loop */

96




870 /+ atter replacing the packet in the queuns. */
871 if (T_Pri [pri_level] < tht_value)

872 {

873 op.subq_pk_insert (i, pkptr, OPC_QPOS_HEAD);
874 punt = 1;

875 break;

876 }

877 /+ Obtain the frame’s length, and compute the time */
878 /+ which would be required to transmit it. &/

879 pk_len = op_pk_total_size_get (pkptr);

880 tx_time = (double) pk_len / FDDI_TX_RATE;

881 /+ Determine the requested token class to be ¢/
882 /¢ released after this frame is transmitted. #*/
883 op_pk_nfd_get (pkptr, "tk_class", &tk_class);

884 /+ If the station is in restricted mode, then it may */

886 /+ exit this mode if the class is now nonrestricted s/

886 /¢ or if the Trestricted peer is not the addresses. */

887 if (restricted)

888 {

889 /¢ Determine the destination address for the new packet. */
890 op._pk_nfd_get (pkptr, "desi_addr", &dest_addr);

891 if (tk_class == FDDI_TK_NONRESTRICTED ||

892 res_peer != dest_addr)

893 {

894 /+ Exit restricted mode ¢/

895 restricted = 0;

896

897 /+ Nodify the token to reflect the mode change. */

898 op_pk_nfd_set (tk_pkptr, “class”, FDDI_TK_NOERESTRICTED);
899 }

900 }

901 else{

902 /¢ Determine the class of the current captured token. */
903 op._pk_nfd_get (tk_pkptr, “class”, &current_tk_class);

904 /+ When not in restricted mode, this mode may be entered */

905 /+ if the passed packet has the appropriate token class requested, */

906 /+* and the token is not already restricted. */

907 if (tk_class == FDDI_TK_RESTRICTED && current_tk_class != FDDI_TK_RESTRICTED)
908 {

909 /+ Enter restricted mode. ¢/
910 restricted = §;

911 /# Store the address of the resticted peer station. ¢/
912 op_pk_ntd_get (pkptr, "dest_addr", &res_peer);

97




913 /+ Modify the- token to reflect the mode change. %/
914 op_pk_nfd_set (tk_pkptr, “class", FDDI_TK_RESTRICTED);
915 op_pk_nfd_set (tk_pkptr, "res_station", res_peer);
916 }

917 }

918 /* Send the frame once previous transmissions have completed. */
919 /= Account for propagation delay as well. */
820 op_pk_send_delayed (pkptr, FDDI_PHY_STRM_OUT, accum_bandwidth + Fddi_Prop_Delay);

921 /# Increment THT emulation variable, and consumsed bandwidth accumulacor. &/
922 tht_value += tx_time;
923 accum_bandwidth += tx_time;

924 /+ Increase counters for transmitted bits and frames. &/
925 num_frames_sent++;
926 num_bits_sent += pk_len;

927 }

928 }

929 } /% closes the ’while’ loop */

930 if (punt == 1) /* If the ’while’ loop was broken, */
31 {

932 punt = 0; /% then reset the ’break’ marker, ./
933  bdreak; /* and break out of the ’for’ loop too. */
93¢ )

935 } . /* closes the ’for’ loop. */

936 /* Since the token is about to be sent, its transmission time =/
937 /* must be reflected in the accumulated bandwidth. This is not */
938 /¢ done in the ISSUE_TK state because when the token is merely */
939 /* repeated, full transmission delay is not required, only #/
940 /+ a small delay for repeating. */

941 accum_bandwidth += FDDIC_TOKEN_TX_TIME;

942 /+ If the station has no more data to send (synchronous or s/

943 /¢ asynchronous), it should indicate this to the token acceleration */
944 /* mechanism by deregistering its interest in the token. */

945 /+ 27DEC94: the original code must be modified to include a check */
946 /* of subqueues. -Nix ./
947 q_check = {;

948 for (i = NUM_PRIOS - 1; i < ~-1; i--)

949 {

9580 it (op_subq_stat (i, OPC_QSTAT_PKSIZE) == 0.0)
951 {

952 q.check = 0;

853 3

954 else {

9656 q_check = 1;

956 break;

98




9567 }
968 }

969 it (tk_registered &% q_check == 0)
960 {

961 tk_registered = 0;

962 fddi_tk_deregister ();

963 }

964 }

965 /»+ state (TX_DATA) exit executives s/

966 FSM_STATE_EXIT_FORCED (9, state9_exit_exec, “TXI_DATA")
067 {

968 }

969 /++ state (TX_DATA) transition processing *¢/
970 FSM_TRANSIT_FORCE (2, state2_enter_exec, ;)
971 /» ./

972 /++ state (CLAIN) enter executives *s/

973 FSH_STATE_ENTER_UNFORCED (10, statelO_enter_exec, "CLAIN")
974 {

976 /+ Obtain this station’s object id which is used */

976 /% to access the station’s attribute assignments. */

977 my_objid = op_id_self ();

978 /+ Using the object id, obtain the ring id. s/

979 /¢ The ring id is used by macros defined in the */
980 /* header block to obtain “ring-global" values, */
981 /¢ values shared by all stations on a ring. */

982 op_ima_obj_attr_get (my_objid, "ring_id", &ring_id);

983 /* Initialize global variable values. */
984 Fddi_Tk_Blocked = 0;

9856 Fddi_Num_Stations = 0;

986 Fddi_Num_Registered = 0;

987 /* Using the object id, obtain the value of ’T_Req’, */
988 /* the value of TTRT requested by this station. */
980 op_ima_obj_attr_get (my_objid, "T_Req", &T_Req);

990 /+ 30MAR: workaround; Fddi_T_Opr is never initialized in the #/

991 /+ original code. -Nix ./
992 Fddi_T_Opr = 600;

99




993 /* The lowest value of T_Req becomes T_Opr for the ring as a whole. %/
994 if (T_Req < Fddi_T_Opr || Fddi_Claim_Start)

995 {

996 /¢ The T_Req for this station is lower than any other to date */

997 /* so it is installed in the T_Opr variable. #/

998 Fddi_T_Opr = T_Req;

999 /* The flag indicating that the claim process is just s/
1000 /* beginning may now be cleared. »/

1001 Fddi_Claim_Start = 0;

1002 )

1003 /¢ Request a self interrupt from the Smulation Kernel at the current
1004 /» time so that after all stations have executed their claim states, %/
1005 /# they can proceed with initializations. This is necessasary */

1006 /# because some initializations are based in the value of T_Opr +/

1007 /* and it must therefore be known that all stations have settled s/
1008 /* on a tinal value. */

1009 op_intrpt_schedule_self (op_sim_time (), 0);

1010 }

1011 /#+ blocking after enter executives of unforced state. *+/
1012 FSM_EXIT (21,cp_tddi_mac)

1013 /#s gtate (CLAIM) exit executives ¢/

1014 FSM_STATE_EXIT_UNFORCED (10, statelO_exit_exec, "CLAIM")
1015 {

1016 }

1017 /+# state (CLAIN) transition processing *¢/
1018 FSM_TRANSIT_FORCE (0, state0_enter_exec, ;)
1019 /» ./

1020 }

1021 FSM_EXIT (10,cp_tddi_mac)
1022 }

100




1023
1024
1028
102¢
1027

void

cp-1ddi_mac_svar (prs_ptr,var_name,var_p_ptr)
cp.1ddi_mac_state *prs_ptr;
char svar_name, »*var_p_ptr;

{

1028 FIN (cp_fddi_mac_svar (prs_ptr))

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
10456
1046
1047
1048
1049
1060
1061
1062
1063
1054
10686
1066
1057
1068
1069
1060
1061

1062
1063

1064
1065
1068

svar_p_ptr = VOS_NIL;

it (Vos_String_Equal (“ring id* , var_name))
evar_p_ptr = (char s) (&prs_ptr->sv_ring_id);

i? (Vos_String Equal (“THT" , var_name))

svar_p_ptr = (char ¢) (&prs_ptr->sv_THET);

it (Vos_String Equal (“T_Req* , var_name))
svar_p_ptr = (char ) (&prs_ptr->sv_T_Req);

if (Vos_String_Equal ("T_Pri" , var_name))
svar_p_ptr = (char *) (prs_ptr->sv_T_Pri);

it (Vos_String_Equal (“my_objid® , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_my_objid);

iz (Vos_String Equal (“spawn_token" , var_name))
svar_p_ptr = (char #) (&prs_ptr->sv_spawn_token);
if (Vos_String Equal ("my_address” , var_name))
svar_p_ptr = (char ¢) (&prs_ptr->sv_my_address);

it (Vos_String Equal (“orig_src_addr” , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_orig_src_addr);
it (Vos_String_Equal (“tk_pkptr" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_tk_pkptr);

it (Vos_String_Equal ("sync_bandwidth” , var_nams))
svar_p_ptr = (char *) (&prs_ptr->sv_sync_bandwidth);
it (Vos_string Equal (“sync_pc" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_sync_pc);

it (Vos_string_Equal (“restricted” , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_restricted);

it (Vos_sString_Equal (“res_peer" , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_res_peer);

it (Vos_String Equal (“tk_registered” , var_name))
*var_p_ptr = (char *) (&prs_ptr->sv_tk_registered);
it (Vos_String_Equal (“to_llc_ici_ptr” , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_to_llc_ici_ptr);
it (Vos_String_Equal (“tk_trace_on” , var_name))
svar_p_ptr = (char *) (&prs_ptr->sv_tk_trace_on);

FOUT;
}

void
cp-1ddi_mac_diag ()
{

101




1037
1068
1069
1070
1071
1072

1073
1074
1075
1076

1077
1078
1078
1080

1081
1082
1083

1084
1086
1086
1087
1088

1089
1090
1091
1082
1093

1004

1095
1096
1097
1098

1099
1100
1101
1102

1103
1104
1106

/% Packets and ICI’s ¢/
Packet® mac_frame_ptr;
Packet® pdu_ptr;
Packet* pkptr;

Packet* data_pkptr;
Icie ici_ptr;

/* Packet Fields and Attributes s/

int req_pri, svc_class, req_tk_class;
int frame_control, src_addr, dest_addr;
int pk_len, pri_level;

/* Token - Related &/

int tk_usable, res_station, tk_class;
int current_tk_class;

double accum_sync;

/% Timer - Related */
double tx_time, timer_remaining, accum_bandwidth;
double tht_value;

/% Miscellaneous */

int i;

int spawn_station, phy_arrival;
char error_string [512];

int num_frames_sent, num_bits_sent;

/* 26DEC93: loop management variables, used ir RCV_TK s/
/% and ENCAP states. -Nix s/
int NUM_PRIOS;

int punt;

int q.check;

FIN (cp_fddi_mac_diag ())

/* Print out values of timers, and late token counter. */
/* Also print out data about restricted mode. */

/* (This code may be executed by the simulation debugger */
/* by invoking the command ’modprint’). #»/

sprint? (str0, "Timers (count upwards): TRT (%.9g), THT (%.8g)*“,
24di_timer_value (TRT), 2ddi_timer_value (THT));

sprintf (stri, “Late_ct (%d)", Late_Ct);

op._prg_odb_print_major (str0, stri, OPC_NIL);

if (restricted)

sprint? (strO, “token is in restricted dialog with (%d)\n", res_peer);
else sprintf (strO, “token is unrestricted\n");

102




1108 op_prg_odb_print_major (str0, OPC_NIL);

1107 FOUT;
1108

()

1109 void

1110 cp_fddi_mac_terminate ()
1111 {

1112 /¢ Packets and ICI’s */
1113 Packet* mac_frame_ptr;
1114 Packet* pdu_ptr;

1115 Packet* pkptr;

1116 Packet* data_pkptr;

1117 Icis ici_ptr;

1118 /# Packet Fields and Attributes */
1119 int req_pri, svc_class, req_tk_class;
1120 int frame_control, src_addr, dest_addr;
1121 int pk_len, pri_level;

1122 /+* Token - Related s/

1123 int tk_usable, res_station, tk_class;
1124 int current_tk_class;

1125 doudble accum_sync;

1126 /¢ Timer - Related */
1127 double tx_time, timer_remaining, accum_bandwidth;
1128 double tht_value;

1129 /+ Kiscellaneous */

1130 int i;

1131 int spawn_station, phy_arrival;
1132 char error_string [512];

1133 int num_frames_sent, num_bits_sent;

1134 /+ 26DEC93: loop management variables, used in RCV_TK
1136 /+ and ENCAP states. -Nix

1136 int WUM_PRIOS;
1137 int punt;
1138 int q_check;

1139 FIN (cp_tddi_mac_terminate ())

: 103

s/
./




1142 Compcode

1143 cp._?ddi_mac_init (pr_state_pptr)

1144 cp_1ddi_mac_state *spr_state_pptr;

1145 {

1146 static VosT_Cm_Ubtype obtype = OPC_NIL;

1147 FIN (cp_tddi_mac_init (pr_state_pptr))

1148 if (obtype == OPC_NIL)

1149 {

1150 if (Vos_Catmem_Register ("proc state vars (cp_fddi_mac)*,

1151 sizeof (cp_fddi_mac_state), Vos_Nop, &obtype) == VOSC_FAILURE)
1152 FRET (OPC_COMPCODE_FAILURE)

1153 }

1164 it ((epr_state_pptr = (cp_fddi_mac_states) Vos_Catmem_Alloc (obtype, 1)) == OPC_NIL)
1165 FRET (OPC_COMPCODE_FAILURE)

1166 else

1157 {

1158 (spr_state_pptr)->current_block = 20;

1169 FRET (OPC_COMPCODE_SUCCESS)

1160 }

1161 }

1162 /+* The procedures defined in this section serve *s/
1163 /#* to simplify the code in the main body of the s/
1164 /»* process model by providing primitives for timer »s/
1166 /+* manipulation.. s/

1168 static

1167 fddi_timer_disable (timer_ptr)

1168 FdAdiT_Timers timer_ptr;

1169 {

1170 /+ if the timer is already disabled, do nothing */
1171 if (timer_ptr->enabled)

1172 {

1173 /¢ disable the timer */

1174 timer_ptr->enabled = 0;

1176 /* reassign the accumulated time so far */

1176 timer_ptr->accum = op_sim_time () - timer_ptr->start_time;
1177 }

1178 }

104




1178 static

1180 fddi_timer_enable (timer_ptr)

1181 FddiT_Timer+ timer_ptr;

1182 {

1183 /¢ if the timer is already enabled, simply return */
1184 it (!timer_ptr->enabled)

1185 {

1186 /+ reenable the timer s/

1187 timer_ptr->enabled = 1;

1188 /¢ ser the start time to the current time %/

1189 /+ less the accumulated time so far »/

1190 timer_ptr->start_time = op_sim_time () -~ timer_ptr->accun;
1191 }

1192 }

1193 static

1194 tddi_timer_expired (timer_ptr)

1195 FddiT _Timer* timer_ptr;

1196 {

1197 it (tddi_timer_remaining (timer_ptr) <= 0.0)
1198 return {;

1199 else return 0;

1200 }

1201 static

1202 double

1203 2ddi_timer_remaining (timer_ptr)

1204 FddiT_Timer* timer_ptr;

1206 {

1206 /¢ if the timer is enabled, update the accumulated time */
1207 if (timer_ptr->enabled)

1208 {

1209 timer_ptr->accum = op_sim_time () - timer_ptr->start_time;
1210 }

1211 /¢ return the timer remaining before expiration */
1212 /¢ a non-positive value indicates an expired timer ¢/
1213 return (timer_ptr->target_accum - timer_ptr->accum);
1214 )

1215 static

1216 double

1217 £4di_timer_value (timer_ptr)

1218 FAdiT_Timer* timer_ptr;

1219 {

1220 /¢ if the timer is enabled, update the accumulated time */
1221 if (timer_ptr->enabled)

1222 {

1223 timer_ptr->accum = op_sim_time () - timer_ptr->start_time;

105




1224 }

1225 return (timer_ptr->accum);
1226 }

1227 static

1228 2ddi._timer_set_value (timer_ptr, value)

1229 FAdiT_Timer* timer_ptr;

1230 double value;

1231 {

1232 timer_ptr->accum = value;

1233 }

1234

1236 static

1236 24di_timer_copy (from_timer_ptr, to_timer_ptr)
1237 FAdiT_Timexr* from_timer_ptr;

1238 FAdiT_Timer* to_timer_ptr;

1239 {

1240 Vos_Copy_Memory (from_timer_ptr, to_timer_ptr,
1241 sizeof (FddiT_Timer));

1242 )}

1243 static

1244 24di_timer_set (timer_ptr, duration)
1245 FddiT_Timexr* timer_ptr;

1246 {

1247 /* clear out accumulated time %/
1248 timer_ptr->accum = 0.0;

1249 /¢ assign the timer duration */
1250 timer_ptr->target_accum = duration;

1251 /* assign the current time */
1252 timer_ptr->start_time = op_sim_time ();

1263 /¢ enable the timer +/
12564 timer_ptr->enabled = 1;
1255 }

1268 static

1287 FddiT_Timers*

1268 £ddi_timer_create ()
1269 {

1260 FAdiT_Timer* timer_ptr;

1260 /¢ allocate memory for a timer structure ¢/

1261 timexr_ptr = (FddiT_Timer*) malloc (sizeof (FddiT_Timer));

1262 /+ initialize the timer in the disabled mode */
1263 £ddi_timer_init (timer_ptr);

106




1264 /+ return the timer’s address */
1265 return (timer_ptr);
1266 )}

1267 static

1268 fddi_timer_init (timer_ptr)

1269 FAAiT_Timer* timer_ptr;

1270 {

1271 /* the timer is initially disabled ¢/
1272 timer_ptr->enabled = O;

1273 /¢ the accumulated time is zero ¢/
1274 timer_ptr->accum = 0.0;

1275 /+ the target accumulated time is infinite */
1276 timer_ptr->target_accum = VOS_DOUBLE_INFINITY;

1277 /* the start time is now #/

1278 timer_ptr->start_time = op_sim_time ();

1279 }

1280 static

1281 fddi_station_register (address, objid)

1282 Objid objia;

1283 int address;

1284 {

1286 /* Fill an entry in the table which maps station */
1288 /+ addresses to OPNET object ids */

1287 FIN (fddi_station_register (address, objid))

1288 Fddi_Address_Table [address] = objid;

1289 /* Keep track of total number of stations on the ring */
1290 Fddi_Num_Stations++;

1291 FOUT
1292 }

1203 static

1294 24di_tk_register ()

1205 {

1296 /* Register the station’s intent to use the token. */
1297 /* This should be done whenever an unregistered #*/
1298 /+ station obtains new data to transmit. */

1209 FIN (fddi_tk_regsister ())

1300 /# increase the number of registered stations ¢/
1301 Fadi_Num_Registered++;

1302 /¢ if the token is currently blocksd, unblock it */

1303 if (Fdadi_Tk_Blocked &k Fddi_Tk_Accelerate)
1304 {

107




1306
1306

1307
1308
1309
1310
1311
1312
1313
1314
1316

1318
1317

1318
1319

1320
1321
1322
1323
1324
1325
1320

1327
1328
1329
1330
1331
1332
1333
1334
1338
1338
1337
1337
1338

1330
1340

1341
1342
1343
1344
1345
1346

2d44i_tk_unblock ();
}

FOUT

}

static

2ddi_tk_deregister ()

{

/% Cancel the station’s intent to use the token. =/
/% This should be done whenever a registered »/

/* station exhausts its transmittable data. @/
FIN (£4adi_tk_deregsister ())

/¢ decrease the number of registered stations ¢/
Fddi_Num_Registered--;

FouT
}

static

2d4di_tk_indicate_no_data (token, address, delay)
Packet* token;

int address;

double delay;

{

FIN (fddi_tk_indicate_no_data (token, address, delay))

/¢ The calling station is indicating that it has captured ¢/
/¢ the token, but has no data to send. If no other stations =/
/¢ have data to send either, the token may be blocked to gain @/
/* simulation efficiency. */

iz (Fadi_Fum_Registered == 0 && Fddi_Tk_Accelerate)

{

2ddi_tk_block (token, address);

)}

else{

/* If the token cannot be blocked, send it into the ring. */
op_pk_send_delayed (token, FDDI_PHY_STRM_OUT,

delay + Fddi_Prop_Delay);

}

FOUT
}

static

2ddi_tk_block (token, address)
Packet® token;

int address;

{

int i;

108




1347 FIN (fddi_tk_block (token, address))

1348 /* Record the address of the blocking station and blocking time. */
1349 Fddi_Tk_Block_Base_Time = op_sim_time ();
1350 Fddi_Tk_Block_Base_Station = address;

1361 if (tk_trace_on == OPC_TRUE)

1352 {

1363 sprintf (str0, "Blocking Token: station (%d), time (%.9f)",
1354 Fddi_Tk_Block_Base_Station, Fddi_Tk_Block_Base_Time);

1356 op_prg._odb_print_major (str0, OPC_NIL);

1356 }

1357 /» Indicate that the token is blocked */
1358 Fddi_Tk_Blocked = {1;

1359 /» discard the token packet; another one will be #/
1360 /* created when the token is unblocked. »/
1361 op_pk_destroy (token);

1362 /* Cancel TRT timers at all MAC interfaces; otherwise these */

1363 /+ timers may continue to expitr during the idle period, =/

1384 /+ generating unnecessary events. %/

1365 if (tk_trace_on == OPC_TRUE)

1366 {

1367 sprintf (str0, "Canceling timers for (J%d) stations*, Fddi_Num_Stations);
1368 op_prg_odb_print_major (stxr0, OPC_NIL);

1369 }

1370 for (i = 0; i < Fddi_Num_Stations; i++)

1371 {

1372 /+ Retain the time at which the TRT would have expired; */
1373 /+ this is used for calculations when the token is */
1374 /* reinjected into the ring. =/

1376 Pddi_Trt_Exp_Time [i] = op_ev_time (Fddi_Trt_Handle [i]);

1376 /+ Cancel the TRT expiration event. */
1377 op_ev_cancel (Fddi_Trt_Handle [i]);
1378 }

1379 FOUT
1380 }

1381 static

1382 fddi_tk_unblock ()

1383 {

1384 double elapsed_time, first_tk_rx, last_tk_rx;

1386 doudble tk_lap_time, next_time, current_time;

1386 double dbl_num_hops, aum_tk_rx, floor (), ceil ();
1387 int i, num_hops, next_station;

109




1388

1389
1380

1391
1392

1393
1354
1385
1396
1396

1387
1398
1389
1400
1401
1402
1403
1404
14056
1408
1407
1408
1409
1410
1411
1412
1413
1414

1415
1416
1417
1418
1419
1420
1421

1422
1423
1424
1425
1420
1427

1428
1429

FIN (2ddi_tk_unblock ())

/% reset the blocking indicator s/
Fddi_Tk_Blocked = 0;

/% Get the current time, used for many calculations below */
current_time = op_sim_time ();

it (tk_trace_on == OPC_TRUE)

{

sprintf (str0, "Unblocking tokea for ring (%d)", ring_id);
op_prg_odb_print_major (str0, OPC_NIL);

}

/* For all stations on the ring, adjust TRT timer and Late_Ct flag. ¢/

for (i = 0; 1 < Fddi_Num_Stations; i++)

{

if (tk_trace_on == OPC_TRUE)

{

sprintf (str0, "adjusting state of station (%d)", i);

op_prg_odb_print_minor (““, str0, OPC_NIL);

}

/* Calculate number of hops separating station i from block base station. ¢/
/% In special case where i is the base station, the token must run a full */
/* lap befote returning. */

it (i != Fddi_Tk_Block_Base_Station)

{

num_hops = (i - Fddi_Tk_Block_Base_Station) ¥ Fddi_Num_Stations;

if (num_hops < 0)

num_hops = Fddi_Num_Stations + num_hops;

}

else num_hops = Fddi_Kum_Stations;

/* Calculate first time at which token would have been received by statiom i.
/* Bote that initial release of token from base station takes a different */

/* amount of time than repeating of token by other stations. Thus, the first »/
/* hop is assumed, and the base time is augmented by the time required to */
/¢ complete it. s/

first_tk_rx = Fddi_Tk_Block_Base_Time + FDDIC_TOKEN_TX_TIME + Fddi_Prop_Delay +
(oum_hops - 1) ¢ Fddi_Tk_Hop_Delay;

it (tx_trace_on == OPC_TRUE)

{

sprintf (str0, “station is (%d) hops from base", num_hops);

sprint? (str1, “first receipt of token would be at (¥%.9f)", first_tk_rx);
op.prg_odb_print_minor (str0, stri, OPC_NIL);

}

/* Case 1: the token would not yet have been received by station i. &/
it (first_tk_rx > current_time)

110

*/




1430
1431
1422
1433
1434

{

/% Case 1a: the TRT at station i would not yet have expired. */
it (Fddi_Trt_Exp_Time [i] > current_time)

{

/% Late_Ct remains at its original value; only the TRT needs 3/

1435 /* to be started again, with the same expiration time. */

1436 TRT_SET (i, Fddi_Trt_Exp_Time [i])

1437 if (tk_trace_on == OPC_TRUE)

1438 {

1439 sprintf (str0, “Restoring TRT to previous exp. time (%.9f)", Fddi_Trt_Exp_Time [il);
1440 op_prg_odb_print_minor (“Token would not be received and TRT not expired”, str0, OPC_NIL);
1441 }

1442 }

1443 /* Case 1b: the TRT at station i would have expired. */

1444 olse

1445 {

1446 /» Late_Ct would have been set; also the timer would have been rescheduled +/

1447
1448
1449

1450
1451
1452
1453
1454
1455
1456

1467
1458
1459
1460
1461
1402
1463

1404
1466
1466
1467
1468
1469
1470

1471
1472
1473
1474
1475

/¢ for an entire TTRT at the time of expiration. +/
Fddi_Late_Ct [i] = {;
TRT_SET (i, (Fddi_T_Opr + Fddi_Trt_Exp_Time [i]))

if (tkx_trace_on == OPC_TRUE)

{

sprintf (str0, “Restoring TRT to proper exp. time (%.92)", Fddi_T Opr + Fddi_Trt_Exp_Time [
op_prg_odb_print_minor ("Token would not be received and TRT would have expired”, stx0, OPC
}

}

}

/% Case 2: the token would have been received (perhaps more than once). */
else

{

/¢ Calculate the number of ti<es the token would have been received */

/* not including the first receipt. =/

tk_lap_time = Fddi_Tk_Hop_Delay * Fddi_Num_Stations;

num_tk_rx = floor ((current_time - first_tk_rx) / tk_lap_time);

/¢ Calculate the latest time at which the token would have been received. ¢/
last_tk_rx = first_tk_rx + (num_tk _rx * tk_lap_time);

/¢ Clear Late_Ct and schedule timer to expire at last receipt of token */
/% plus one full TTRT. s/

Fddi_Late_Ct [i] = 0;

TRT_SET (i, (last_tk_rx ¢ Fadi_T_Opr))

it (tk_trace_on == OPC_TRUE)
{
sprint? (str0, "token received (Y%g) times, last receipt at (%.917)",
aum_tk_rx ¢+ 1.0, last_tk_rx);
sprint? (stri, “Restoring TRT to proper exp. time (¥%.91)",

111




1476 last_tk_xx + Fddi_T.Opr);

1477 op.prg_odb_print_minor ("Token would have been received; Late_Ct is cleared”,
1478 stri, str0, OPC_NIL);

1479 }

1480 }

1481 )}

1482 /+ compute the time since the token was blocked &/
1483 elapsed_time = current_time - Fddi_Tk_Block_Base_Time;

1484 /» compute the number of hops completed on the ring. For the first hop #/
1485 /¢ the token is transmitted directly, not repeated. For all remaining s/
1486 /» hops, the delay is the station latency plus the propagation delay. =*/
1487 /¢ Thus, the first hop is assumed, and the remaining time for additionals/
1488 /+ hops is computed beginning at the time where the token enters the */
1489 /+ base station’s downstream neighbor. =»/

1490 dbl_num_ hops = 1.0 +

1491 (elapsed_time - FDDIC_TOKEE_TX_TIME - Fddi_Prop_Delay) / Fddi_Tk_Hop_Delay;

1492 /+ If the token was unblocked in less time than it would have taken to */
1493 /+ be fully transmitted by the base station, dbl_num_hops will be */
1494 /+ negative. However, 1 full hop would still be required before the */
1495 /+ token could be used, since the station had already committed to */
1496 /+ issuing the token. Thus, the actual of number ¢«  hops should never */
1497 /* be less than 1. If it is, round it to 1. =/

1498 if (dbl_num_hops < 1.0)

1499 dbl_num_hops = 1.0;

1500 else

1501 {

1602 /* In all other cases, round the number of hops up to the nearest */
1503 /+ integer value. If already an integer, then leave as is. ¢/

1604 dbl_num_hops = ceil (dbl_num_hops);

1505 }

1506 /¢ Obtain an integer equivalent of dbl_num_hops. %/
1607 num_hops = dbl_num_hops;

1508 /+ Based on the number of hops and the base station, compute the */
1509 /+ next station where the token will appear. %/
1510 next_station = (num_hops + Fddi_Tk_Block_Base_Station) % Fddi_Num_Stations;

1611 /+ Compute the time at which the token will appear thers. +/

1612 /# Again, assume the first hop occurred, and measure time ¢/

1618 /¢ from there forwvard. s/

1614 next_time = Fddi_Tk_Block_Base_Time + (FDDIC_TOKEN_TX_TIME + Fddi_Prop_Delay) +
1615 (dbl_num_hops - 1.0) * Fddi_Tkx_Hop_Delay;

1816 if (tk_trace_on == OPC_TRUE)

1617 {

1618 sprintf (str0, “Re-introducing token at station (J%d), at time (X.91)",
1619 next_station, next_time);

112




15620 op_prg_odb_print_minor (str0, OPC_NIL);
1621 }

1622 /* reinject the token at that station %/
1623 2ddi_tk_inject (next_station, next_time);

152¢ FOUT
1626 }

1526 static

1527 £4di_tk_inject (address, arv_time)

1628 int address;

15629 double arv_time;

1630 {

1531 /¢ Re-insert the token into the ring after an idle period. */
1532 FIN (2d4di_tk_inject (address, arv_time))

1833 /* The token is recreated and reinserted onto the ring */
1634 /¢ at the specified station which is not necesssarily the #*/
1635 /¢ station nov requesting the token. %/

1636 /¢ The station which will reinsert the token is */

1637 /* asked to do so by means of a remote interrupt. »/

1638 op_intrpt_schedule_remote (arv_time, FDDIC_TK_INJECT,

1639 Fddi_Address_Table [address]);

1540 FOUT
1641 )}

1542 static

1643 2ddi_load_frame_attrs (dest_addr_ptr, svc_class_ptr, pri_level_ptr)
1644 int sdest_addr_ptr, *svc_class_ptr, spri_level_ptr;

1546 {

1646 int NUM_PRIOS, i; /% 26JAN94 +/

1547 Packet spkptr;

1548 FIN (fddi_load_frame_attrs (dest_addr_ptr, svc_class_ptr, pri_level_ptr))

1549 /+ remove next packet in queue */

1560 /* 27TDEC94: loop structure superimposed to handle a bank of subqueues.

1651 /¢ Extract the packet with the highest priority, that is, the packet
1652 /+ at the head of the highest-numbered subqueue containing packets.

1663 /¢ Note that the C language vector numbering convention numbers the

1564 /¢ subqueunes from 0 te 7, while FDDI convention is to number the

1566 /¢ corresponding asynchronous priorities from 1 to 8. This is

15668 /* reconciled in the statistical outputs available in the Analysis
1657 /¢ Editor, where labels are assigned accordingly. A4lso note that
15568 /* synchronous traffic is assigned priority 8 as an artifice to allow
1569 /* routing through a separate subqueue, by which statistics may be
1660 /¢ gathered for traffic by class and by priority. -Nix

15661 NUM_PRICS = 8;

1662 for (i = NUM_PRIOS - 1; i > -1; i--)

113

*/
s/
s/
*/
/
./
./
*/
»/
*/
*/




1563 {

16564 if (op_subq_stat (i, OPC_QSTAT_PKSIZE) > 0.0)
1566 ’ {

1668 pkptr = op_subq_pk_remove (i, OPC_QPOS_HEAD);
1667 break;

1568 }

1569 3

1670 /¢ extract the fields

1671 op_pk_ntd_get (pkptr,
1572 op_pk_ntd_get (pkptr,

1673 /* only read priority
1574 it (ssvc_class_ptr ==
1676 op_pk_ntd_get (pkptr,

1676 /* replace the packet
1877 op_subq_pk_insert (i,

1678 FOUT
1579 }

of interest s/
"dest_addr", dest_addr_ptr);
“svc_class”, svc_class_ptr);

level if frame is asynchronous #/
FDDI_SVC_ASYIC)
“pri", pri_level_ptr);

on the proper subqueue */
pkptr, OPC_QPOS_HEAD);

114




APPENDIX C
CPNI SINK “C” CODE

“cp_fddi_sink.pr.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET’s text editors.

/* Process model C form file: cp_fddi_sink.pr.c »/
/% Portions of this file Copyright (C) MIL 3, Inc. 1992 ¢/

N e

/* OPNET system definitions */
#include <opnet.h>

#include “cp_fddi_sink.pr.h"
FSM_EXT_DECS

0N dWwN

6 /+ Header dlock */

7 /* Globals »/

8 /* array format installed 20JAN94; positions 0-7 represent the asynch priority levels, PRIORI
® /¢ represents synch traffic, and grand totals are as given in the original.

10 #define PRIORITIES 8 /% 20JAN94 &/
11 #define XMITTER_ONE 0 /+10MAY94+/

12 #define XMITTER_TWO 1

13 #define XMITTER_THREE 2

14 #define XMITTER_FOUR 3

16 static /* OSFEBS4 #/

16 double £ddi_sink_accum_delay = 0.0;

17 static /¢ OSFEB94 »/

18 double fddi_sink_accum_delay _a[PRIORITIES+1)={0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
10 static /+ OSFEB94 */

20 int 2ddi_sink_total_pkts = 0;

21 static /+ OSFEB94 #/

22 int fddi_sink_total _pkts_a[PRIORITIES + 1] = {0, 0, 0, O, O, O, O, O, 0};

23 static /+ OSFEBS4 ¢/

24 double 1ddi_sink_total_bits = 0.0;

26 static /+* OSFEB94 ¢/

26 double fddi_sink_total_dbits_a[PRIORITIES+1]={0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
26 static /+ OGFEBS4 =/

27 double 2ddi_sink_peak_delay = 0.0;

28 static /¢ OSFEB94 »/

29 doudle 24di_sink_peak_delay_a[PRIORITIES+2)={0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

115




30 static /+ OSFEBS4 &/
31 int tddi_sink_scalar_write = 0;

32 static /% OSFEBS4 »/
33 int pri_set = 20; /% 20JAN94 »/
34 static

35 int subq_index = 0; /+ EAPR94 »/

38 static

37 int prev_src_addr([4]={0, 1, 2, 3}; /*25APR94s/
38 double buffer[4]={0.0,0.0,0.0,0.0}; /+10MAYD4+/

39 /+ statistics used for CDL throughput */

40 static /* 20APR94 »/
41 int £ddilpi_total_pkts = 0;
42 static

43 int f£ddilpi_total_pkts_a[PRIORITIES + 1] = {0, 0, 0, 0, 0, 0, O, O, 0};

44 static

45 doubdble 2ddilpi_total_bits = 0.0;

46 static

47 double fddilpi_total_bits_a[PRIORITIES + 1] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

48/+ Externally defined globals. */
49 extern double fddi_t_opr [J;

50 /#12JAN94:attributes from the Environment file »/
51 double Offered_Load; /% 12JAN94 =/
62 doudble Asynch_Offered_Load; /+ 12JANS4 */

63 /¢ transition expressions */
54 #define END_OF_SIN op_intrpt_type() == OPC_INTRPT_ENDSIN

B5 /¢ State variable definitions s/
56 typedef struct

87 {

68 FSM_SYS_STATE

69 Gshandle sv_thru_gshandle;

60 Gshandle sv_m_delay_gshandle;

61 Gshandle sv_ete_delay_gshandle;

62 Gshandle sv_thru_gshandle_a[10];
63 Gshandle sv_m_delay_gshandle_a[10];
64 Gshandle sv_ete_delay_gshandle_a(9]);
€56 Gshandle sv_t_gshandle;

66 Gshandle sv_t_gshandle_a[10];

67 Objia sv_my_id;

68 } cp._1ddi_sink_state;

69 8define pr_state_ptr ((cp_1ddai_sink_states*) SimI_Mod_State_Ptr)

116




70 8define thru_gshandle pr-state_ptr->sv_thru_gshandle

71 #define m_delay_gshandle pr-_state_ptr->sv_m_delay_gshandle

72 #define ete_delay_gshandle pr-state_ptr->sv_ete_delay_gshandle
73 #define thru_gshandle_a pr_state_ptr->sv_thru_gshandle_a

74 %define m_delay_gshandle_a pr_state_ptr->sv_m_delay_gshandle_a
76 #define ete_delay_gshandle_a pr_state_ptr->sv_ete_delay_gshandle_a
76 #define t_gshandle pr_state_ptr->sv_t_gshandle

77 #define t_gshandle_a pr_state_ptr->sv_t_gshandle_a

78 #define my_id pr_state_ptr->sv_my_id

79 /+ Process model interrupt handling procedure #/

80 void

81 cp_fddi_sink ()

82 {

83 double delay, creat_time;

84 Packet* pkptr;

86 Packet* pkptri ; /+5APR94s/
86 int src_addr, my_addr;

87 int dest_addr;/«14APR94x/

88 Icis from_mac_ici_ptr;

89 double fddi_sink_ttrt;

90 int zxmit_subq._index;/+«SAPRS4s/
91 int load_balance_code; /+*6APR94*/
92 int i,subq_no; /*25APR94+/

93 int index; /*10MAYS4 s/

94 FSM_ENTER (cp_fadi_sink)

96 FSM_BLOCK_SWITCH

{

96 /» s/
97 /++ state (DISCARD) enter executives s/

98 FSM_STATE_ENTER_UNFORCED (0, state0_enter_exec, “DISCARD")
99 {

100 /¢ determine type of interrupt:1OMAY94 */

101 switch (op_intrpt_type())

102 {

103 case OPC_INTRPT_STAT:

104 /+ the interrupt is caused by the transmitters’ status &/
106 {

108 index = op_intrpt_stat();

107 switch(index)

108 {

117




109 case XMITTER_ONE:

120 {

111 burfer[0] = op_stat_local_read (XMITTER_ONE);
112 break;

113 }

114 case XNITTER_TWO:

115 {

116 bufter[1] = op_stat_local_read (XMITTER_TWO);
117 break;

118 }

119 case IMITTER_THREE:

120 {

121 butter[2] = op_stat_local_read (XMITTER_THREE);
122 break;

123 )}

124 case XINITTER_FOUR:

126 {

126 buffer[3] = op_stat_local_read (XNITTER_FOUR);
127 break;

128 }

129 default:

130 {

131 op_sim_end("s++ FDDI-CDL : FATAL ERROR","Unexpected stat interrupt",”","“);
132 }

133 }

134 break;

136 }

136 case OPC_INTRPT_STRN:

137 /¢ the interrupt is caused by the incoming packets */
138 {

139 /¢ get the packet and the interface control info */
140 pkptr = op_pk_get (op_intrpt_stmm ());

141 from_mac_ici_ptr = op_intrpt_ici ();

142 /+ 20JANG4: get the packet’s priority level, which #/
143 /* will be used to index arrays of thruput and delay s/

144 /* computations. ./
145 /* pri_set = op_pk_priority_get (pkptr); doesn’t work here ¢/
146 op_pk_ntd_get (pkptr, "pri", &pri_set); /% 29JAN94 o/

147 /+ determine the time of creation of the packet */
148 op_pk_ntd_get (pkptr, “cr_time", &creat_time);

149 /¢ 18APR94:determine the destination address of the packet */
160 op_pk_nfd_get (pkptr, "dest_addr“, &dest_addr);

1561 /* 20APR94:determine the source address of the packet */
162 op_pk_nfd_get (pkptr, "src_addr", &src_addr);

163 /¢ TAPR94:determine id of own processor to use in finding */
164 /+* load balancing attribute and station address of the bridge node ¢/

118




155 my_id = op_id_self();

156 /+ TAPR94: determine which load balancing algorithm is in use s/
1567 op_ima_obj_attr_get ( my_id, "load balancing algorithm", &load_balance_code );

158 /+ 14APRO4 : also get my own address ¢/
159 op_ima_obj_attr_get ( my_id, “station_address", &my_addr);

160 /% destroy the packet */

161 /» op_pk_destroy (pkptr); */

162 /+ OSFEBS4: rather, enqueue the packet. This will be the ¢/
163 /+ first step toward developing a LAN bridging structure. %/
164 /¢ -Eix */
165 /+ op_subq_pk_insert (pri_set, pkptr, OPC_QPOS_TAIL); s/

166 /¢ 14APR94: check the frame passed to "llc" is destined for */

167 /+ this station. If it is destroy the packet and update the local traffic */
168 /+ statistics; if not, allocate the packets %/

169 /* to the transmitters since they are destined for the remote lan */

170 /+ update also incoming return link statistics for the frames */

171 /* which will be gqueued in llc_sink to be sent to remote lan.s/

172 /# -Karayakaylar s/

173 if((dest_addr == my_addr)2k(src_addr < my_addr))

174 {

176 /¢ add in its size ¢/ .

176 tddi_sink_total_bits += op_pk_total_size_get (pkptr);

177 £4di_sink_total_bits_alpri_set] += op_pk_total_size_get (pkptr); /* 20JAN-20APRS4 */

178 /+ accumulate delays */

179 delay = op_sim_time () - creat_time;

180 f£ddi_sink_accum_delay += delay;

181 £ddi_sink_accum_delay_alpri_set] += delay; /+ 20JAN-20APR94 »/

182 /* keep track of peak delay value */
183 if (delay > 1ddi_sink_peak_delay)
184 £ddi_sink_peak_delay = delay;

185 /* 20JAN94: keep track by priority levels as well 23JAN-20APR94 &/
186 if (delay > fddi_sink_peak_delay_alpri_set])
187 2ddi_sink_peak_delay_al(pri_set] = delay;

188 op_pk_destroy (pkptr);

189 /¢ increment packet counter; 20JAN94 ¢/
190 fadi_sink_total _pkts++;
191 2ddi_sink_total_pkts_alpri_set]++;

192 /¢ if a multiple of 25 packets is reached, update stats */

193 /+ 03FEBS4: [0]~>[7] represent asynch priorities 1->8, /
194 /* respectively; {8] represents synchronous traffic, ./

119




196
196
197
198
199

200
201
202
203
204
208
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223

224
225
228
227
228

230

231
232

234
236
23¢
237
238

/* and [9] represents overall asynchromous tratfic.-Rix s/
if (£4di_sink_total_pkts % 26 == 0)

{

op_stat_global_write (thru_gshandle,

£ddi_sink_total_bits / op_sim_time ());

op.stat_global_write (thru_gshandle_alpri_set],
fddi_sink_total_bits_al0] / op_sim_time());
op_stat_global_write (thru_gshandle_a[0],
£ddi_sink_total_bits_ali] / op_sim_time());
op.stat_global _write (thru_gshandle_a[1],
f4di_sink_total_bits_afpri_set] / op_sim_time());
op_stat_global_vwrite (thru_gshandle_a[2],
fddi_sink_total_bits_a[2] / op_sim_time());
op.stat_global_vrite (thru_gshandle_a[3],
fddi_sink_total_bits_al3] / op_sim_time());
op_stat_global_write (thru_gshandle_a(4],
f4di_sink_total_bits_af4] / op_sim_time());
op.stat_global_vrite (thru_gshandle_a[f],
£ddi_sink_total_bits_a[5] / op_sim_time());
op.stat_global_write (thru_gshandle_a(6],
fddi_sink_total_bits_a[6] / op_sim_time());
op.stat_global_write (thru_gshandle_a[7],
£ddi_sink_total_bits_a[7] / op_sim_time());
op_stat_global_write (thru_gshandle_al[s],
£ddi_sink_total_bits_al8] / op_sim_time());

/* 30JAN94: gather all asynch stats into one overall tigure */
op_stat_global_write (thru_gshandle_als],
(2ddi_sink_total_bits - £ddi_sink_total_bits_a[8]) /
op_sim_tine());

/* (£ddi_sink_total_bits_a[0] + f£ddi_sink_total_bits_a[i] +
/ £ddi_sink_total_bits_a[2] + fddi_sink_total_bits_a[3] +
/* 1ddi_sink_total_bits_al4) + fddi_sink_total_bits_a[6] +
/ £ddi_sink_total_bits_al6] + fddi_sink_total_bits_a[7]) /
/% op_sin_tine());

op.stat_global_vwrite (m_delay_gshandle,
2ddi_sink_accum_delay / fddi_sink_total_pkts);

op.stat_global _write (m_delay_gshandle_a[0],
fddi_sink_accum_delay_a[0] / fddi_sink_total_pkts_a[0]);
op.stat_global_write (m_delay_gshandle_ al[i],
2ddi_sink_accum_delay_a[1]) / fddi_sink_total_pkts_al1]);
op_stat_global_write (m_delay_gshandle_a(2],
£ddi_sink_accum_delay_a[2] / 2ddi_sink_total_pkts_a(2]);
op.stat_global_write (m_delay_gshandle_a[3],
2ddi_sink_accum_delay_a[3] / fadi_sink_total_pkts_al(3]);

120

»/
«/
./
*/
s/




239 op_stat_global _write (m_delay_gshandle_al4],

240 fddi_sink_accum_delay_a[4] / fddi_sink_total_pkts_a(4]);

241 op.stat_global_write (m_delay_gshandle_a[f],

242 £ddi_sink_accum_delay_a[5] / fddi_sink_total_pkts_a[5]);

243 op_stat_global_vwrite (m_delay_gshandle_a[6],

244 2ddi_sink_accum_delay_a[6] / fddi_sink_total_pkts_a[6]);

245 op_stat_global_write (m_delay_gshandle_a[7],

24¢ 2ddi_sink_accum_delay_a[7] / 2ddi_sink_total_pkts_al7]);

247 op_stat_global _vwrite (m_delay_gshandle_a[8],

248 2ddi_sink_accum_delay_a[8] / fddi_sink_total_pkts_a[8l);

249 /+ 30JAN94: gather all asynch stats into one figure */

250 op.stat_global vwrite (m_delay._gshandle_a[9],

251 (£ddi_sink_accum_delay - f£ddi_sink_accum_delay_a(8]) /

262 (fddi_sink_total_pkts - fddi_sink_total_pkts_a(8]));

283 /% (fddi_sink_accum_delay_a[0] + fddi_sink_accum_delay_al[1] + =/
254 / £ddi_sink_accum_delay_a[2] + fddi_sink_accum_delay_a[3] + =/
285 /e 2ddi_sink_accum_delay_a[4] + fddi_sink_accum_delay_a[5] + »/
256 /¢ fddi_sink_accum_delay_al6] + fddi_sink_accum_delay_a[7]) / «/
287 / (2ddi_sink_total _pkts_a[0] + fddi_sink_total_pkts_al1] + s/
268 /+ fddi_sink_total_pkts_a[2] + fddi_sink_total_pkts_a[3] + s/
259 /* fdadi_sink_total_pkts_a[4) + fddi_sink_total_pkts_a[5] + */
260 /e fddi_sink_total_pkts_a[6] + fddi_sink_total_pkts_a(7])); */

261 /* also record actual delay values */

262 op.stat_global_urite (ete_delay_gshandle, delay);

263 op._stat_global_write (ete_delay_gshandle_alpri_set], delay);

264 }

265 } /¢ end of if(dest_addr == my_addr)&k(src_addr < my_addr) statement */

266 /+ 20APR94:destroy the packets coming from the remote lan destined for thiss/
267 /+ station. These packets are not counted for local traffic.s/

268 else if(dest_addr == my_addr)

269 op_pk_destroy(pkptr);

270 /* 20APR94: check the frame passed to “1llc" is destined for remote lan */
271 /¢ This will allow only the packets to be counted for CDL traffic.e/

272 /* -Karayakaylar ¢/

273 else

274 {

276 /¢ add in its size ¢/
276 £4dilp1_total bits += op_pk_total_size_get (pkptr);
277 £ddilp1_total _bits_alpri_set] += op_pk_total_size_get (pkptr); /¢ 20APRO4 */

278 /* increment packet counter; 20APR94 s/
279 2ddilpi_total_pkts++;

121




280 24dilpi_total_pkts_alpri_set]++;

281 /+ if a multiple of 25 packets is reached, update stats s/
282 /¢ [0]->[7] represent asynch priorities 1->8, ¢/

283 /* respectively; [8] represents synchronous traftic, s/
284 /+ and [9] represents overall asynchronous traffic.-Nix s/
285 if (£ddilpi_total_pkts ¥% 25 == 0)

286 {

287 op_stat_global write (t_gshandle,
288 1ddilpi_total_bits / op_sim_time ());

289
290
291
292
293
204
285
296
297
298
299
300
301
302
303
304
306
306
307
308

op.stat_global_write (t_gshandle_a[pri_set],

2ddilpi_total_bits_a[0] / op_sim_time());

op_stat_global_write (t_gshandle_a[0],

2ddilpi_total_bits_al1] / op_sim_time());

op.stat_global_write (t_gshandle_a[1],

2ddilp1_total_bits_alpri_set] / op_sim_time());

op_stat_global_write (t_gshandle_a[2],

£ddilpl_total_bits_al2] / op_sim_time());

op.stat_global_write (t_gshandle_a[3],

1ddilpi_total_bits_al[3] / op_sim_time());

op.stat_global_write (t_gshandle_a[4],

£ddilpi_total_ bits_al4] / op_sim_time());

op_stat_global _write (t_gshandle_a[5],

fddilpl_total_bits_al5] / op_sim_time());

op._stat_global_write (t_gshandle_a[6],

2ddilp1_total_bits_a[6] / op_sim_time());

op_stat_global_write (t_gshandle_af7],

1ddilp1_total_bits_al7) / op_sim_time());

op.stat_global_urite (t_gshandle_a[8],

£ddilp1_total_bits_al[8] / op_sim_time());

309 /+ gather all asynch stats into one overall figure */
op_stat_global_write (t_gshandle_af9],

310
311
312

313
314
315
316
317

318

/*
/*
/*
/*
/*

(£ddilp1_total_bits - fddilpi_total_bits_a[8)) /
op_sim_time());

(£ddilpi_total_bits_al0] + fddilpi_total_bits_a[1] +
2ddilpi_total_bits_a[2] + fddilpi_total_bits_a[3] +
£ddilpi_total_bits_al4] + 2ddilpi_total_bits_a[5] +
£ddilpi_total_bits_al6] + fddilpi_total_bits_a[7]) /
op._sim_time());

319 /+ 14APR94 :allocate the packets to llc_sink subqueues &/

320 /» 8APR94 ~Karayakaylars/

122

L 74
s/
s/
*/

*/




321 /# check if load balancing algoritha is circular ¢/

322 /* zero(0) is the circular load balancing code %/

323 if (load_balance_code == 0)

324 {

326 /* BAPR94 s/

326 /+ Apply load balancing to insert the packets in the s/

827 /¢ subqueues, in a circular oxder */

328 i = subq_index % 4;

329 /# check if previous source address is allocated to this queue */
330 /# if so, allocate the packet to that subquene so that consecutive packets #/
331 /* coming from the same station follow the same channel */

332 /* otheruvise, allocate the packet to the next queue for transmission %/
333 if(prev_src_addr[i] == src_addr)

334 {

336 op_subq_pk_insert(i, pkptr, OPC_QPOS_TAIL);

336 prev_src_addr(i] = src_addr;

337 }

338 else

339 {

340 subq_index++;

341 subq_no = subq_index ¥ 4;

342 op_subq_pk_insert(subq_no, pkptr, OPC_QPOS_TAIL);

343 prev_src_addr(subq.no)] = src_addr;

344 )
345 }
348 /* 25APRO4 »/

347 /¢ check if load balancing algorithm is empty allocation */
348 /¢ ocne(1) is the empty allocation load balancing code */
349 if (load_balance_code == 1)

350 {

351 i= subq_index % 4;

352 /* check if previous source address is allocated to this queue */
353 if(prev_src_addr{i] == src_addr)

354 {

366 op_subq_pk_insert(i, pkptr, OPC_QPOS_TAIL);

356 prev_src_addr[i] = src_addr;

357 }

358 else

359 /+ Apply load balancing to insert the packets in the s/
360 /# subqueues by choosing the subqueue which has the maximum current */
361 /¢ number of free packet slots */

362 {

363 subq_no = op_subq_index_map(OPC_QSEL_MAX_FREE_PKSIZE);

364 op_subq_pk_insert(subq_no, pkptr, OPC_QPOS_TAIL);

365 prev_src_addr(subq no] = src_addr;

368 subq_index++;

367 }

368 }

123




369 /+ send the packets to the transmitters s/

370 xmit_subq_index = i;

871 /+ check it this subqueue is empty and transmitter is not busy »/
372 it ((!op_subq_empty(xmit_subq_index))&&(buffer[xmit_subq_index] == 0.0))
373 {

374 /saccess the first packet in the subqueue #/

376 pkptri = op_subq_pk_remove (xmit_subq.index, OPC_QPOS_HEAD);

376 /* forward it to the destination xmitter #/

377 /* associated with the subqueue index */

378 op_pk_send (pkptri, mmit_subq_index );

379 }

380 }/+if(dest_addr > my_addr) statement %/

381 break;

382 }/* end of case OPC_INTRPT_STRM statement s/

383 }/+ end of switch #/
384 )}

385 /#+ blocking after enter executives of unforced state. s*/
386 FSM_EXIT (1,cp_fddi_sink)

387 /e+ atate (DISCARD) exit executives e*/

388 FSM_STATE_EXIT_UNFORCED (0, state0_exit_sxec, "DISCARD")
389 {

390 }

391 /++ state (DISCARD) transition processing »+/
392 FSM_INIT_COND (END_OF_SIM)

393 FSM_DFLT.COND

394 FSM_TEST_LOGIC ("DISCARD*)

395 FSH_TRANSIT_SVWITCH

398 {

397 FSH_CASE_TRANSIT (0, i, statel_enter_exec, ;)

398 FSM_CASE_TRANSIT (1, 0, state0O_enter_exec, ;)

399 }

400 /» s/

401 /s¢ gtate (STATS) enter executives »s/

402 FSH_STATE_ENTER_UNFORCED (1, statel_enter_exec, “STATS")
403 {

404 /* At end of simulation, scalar performance statistics »/
406 /¢ and input parametars are written ocut. ¢/

406 op_stat_scalar_write ("RL Throughput (bps), Priority 1",
407 2£4dilpi_total_bits_af0] / op_sim_time ()); /+20APR94+/

124




408 op_stat_scalar_write (“AL Throughput (bps), Priority 2,

409 2ddilpi_total_bits_a[1] / op_sim_time ());

410 op.stat_scalar_write (“RL Throughput (bps), Priority 3%,

411 2ddilp1_total_bits_a[2] / op_sim_time ());

412 op.stat_scalar_write (“RL Throughput (bps), Priority 4%,

413 £ddilpl_total_bits_al3] / op_sim_time ());

414 op_stat_scalar_write ("RL Throughput (bps), Priority 6%,

415 2ddilpl_total_bits_al[4] / op_sim_time ());

416 op_stat_scalar_vrite (“RL Throughput (bps), Priority 6",

417 1ddilpi_total_bits_a[5] / op_sim_time ());

418 op.stat_scalar_write ("RL Throughput (bps), Priority 7¢,

419 1ddilpi_total_bits_a[6) / op_sim_time ());

420 op_stat_scalar_write ("RL Throughput (bps), Priority 8",

421 $4dilpi_total_bits_al7) / op_sim_time ());

422 op_stat_scalar_write ("RL Throughput (bps), Asynchronous”,

423 (24dilp1_total_bits - £ddilpi_total_bits_a[8)) / op_sim_time ());
424 /* (24dilp1_total_bits_al[0] + £ddilpi_total_bits_ali] + =/
425 /* fddilpi_total bits_al2] + fddilpi_total_bits_a[3] + «/
426 /* 1ddilpi_total_bits_a[4] + fddilpi_total_bits_a[6] + «/
427 / £ddilpi_total_bits_al6] + £ddilpi_total_bits_a(7]) / «/

428 /* op_sim_time ()); ./

429 op.stat_scalar_write (“RL Throughput (bps), Synchronous",
430 1ddilpi_total_bits_al8] / op_sim_time ());

431 op_stat_scalar_write (“RL Throughput (bps), Total",
432 1ddilpi_total_bits / op_sim_time ()); /*204PR94+/

433 /+ Only one station needs to do this #/
434 if (!1fddi_sink_scalar_write)

435 {

436 /¢ set the scalar write flag ¢/

437 2dadi_sink_scalar_write = 1;

438 op_stat_scalar_write (“Mean End-to-End Delay-0 (sec.), Priority 1",
439 24di_sink_accum_delay_a[0] / fddi_sink_total_pkts_a[0]);

125




41

442
443

445

446
47

448
449

450
451

452
4563

454
456
456

467
468
459
460
461
482
463
464

465

466

407
468

4169
470

471
472

473
474

476

/*
/*
/*
/e
/*
/*
/*
/*

op_stat_scalar_write (“Mean End-to-End Delay-0 (sec.), Priority 2",
2ddi_sink_accum_delay_a[1] / fddi_sink_total_pkts_a[1]);

op_stat_scalar_write (“Mean End-to-End Delay-0 (sec.), Priority 3",
fddi_sink_accum_delay_al2] / fddi_sink_total_pkts_al2]);

op_stat_scalar_write (“Mean End-to-End Delay-0 (sec.), Priority 4",
1ddi_sink_accum_delay_al3] / fddi_sink_total_pkts_al3]);

op_stat_scalar_write ("Mean End-to-End Delay-0 (sec.), Priority 5",
£ddi_sink_accum_delay_al[4] / fddi_sink_total_pkts_a{4]);

op_stat_scalar_vrite (“Mean End-to-End Delay-0 (sec.), Priority 6",
f£ddi_sink_accum_delay_a[5] / fddi_sink_total_pkts_al[5]);

op_stat_scalar_write ("Mean End-to-End Delay-0 (sec.), Priority 7",
£ddi_sink_accum_delay_al6] / fddi_sink_total_pkts_al[6]);

op_stat_scalar_vrite ("Mean End-to-End Delay-0 (sec.), Priority 8",
£ddi_sink_accum_delay_a[7] / fddi_sink_total_pkts_al7]);

op_stat_scalar_vrite ("Mean End-to-End Delay-0 (sec.), Asynchronous",
(£ddi_sink_accum_delay - fddi_sink_accum_delay.a[8]) /
(2#4di_sink_total_pkts ~ fddi_sink_total_pkts_a(81));

(2ddi_sink_accum_delay_a[0) + fddi_sink_accum_delay_al1] + ¢/
2ddi_sink_accum_delay_a[2] + f£ddi_sink_accum_delay_a[3] + +/
1ddi_sink_accum_delay_a[4] + fddi_sink_accum_delay_a[s} + +/
2ddi_sink_accum_delay_a[6] + fddi_sink_accum_delay_a(7]) / ¢/
(fddi_sink_total_pkts_al[0] + fddi_sink_total_ pkts.a[1] + */
fddi_sink_total _pkts_al[2]) + fddi_sink_total_pkts_al3] + */
fddi_sink_total_pkts_al[4] + fddi_sink_total_pkts_a[5] + */
fddi_sink_total_pkts_a{6] + fddi_sink_total_pkts_al7])); #/

op_stat_scalar_write ("Mean End-to-End Delay-0 (sec.), Synchronous”,
fddi_sink_accum_delay_a(8] / fddi_sink_total_pkts_a[8]);

op_stat_scalar_vrite (“Mean End~to-End Delay-0 (sec.), Total",
fddi_sink_accum_delay / fddi_sink_total_pkts);

op_stat_scalar_write ("Throughput-0 (bps), Priority 1",
£ddi_sink_total_bits_a[0] / op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Priority 2",
£ddi_sink_total_bits_al1] / op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Priority 3",
£ddi_sink_total_bits_al2) / op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Priority 4",

126




476

477
478

479
480

481

483
484

486
4860

487
488
488
490
491

492
493

494
495
496

497

498
499

501
502

503
504

E06
506

507

£ddi_sink_total_bits_a[3] / op_sim_time ());

op.stat_scalar_write (“Throughput-0 (bps), Priority 5",
2ddi_sink_total_bits_a[4] / op_sim_time ());

op.stat_scalar_write (“Throughput-0 (bps), Priority 6",
f£ddi_sink_total_bits_a[5] / op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Priority 7v,
£ddi_sink_total_bits_al6] / op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Priority 8",
1ddi_sink_total_bits_a[7] / op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Asynchronmous*®,

(£4di_sink_total_bits - f£ddi_sink_total_bits_al8l) / op_sim_time ());

/* (£ddi_sink_total bits_a[0] + fddi_sink_total_bits_a[1] +

/* 1ddi_sink_total_bits_a[2] + 2ddi_sink_total_bits_a[3] +
/* f£ddi_sink_total_bits_a[4] + f4di_sink_total_bits_alf] +
/e 2ddi_sink_total_bits_a[6] + fddi_sink_total_bits_al(7]) /
/+ op_sim_time ());

op_stat_scalar_write (“Throughput-0 (bps), Symchronous",
£ddi_sink_total_bits_al8]) / op._sim_time ());

op_stat_scalar_write ("Throughput-0 (bps), Total",
£ddi_sink_total_bits / op_sim_time ());
op_stat_scalar_vrite ("Peak End-to-End Delay-0 (sec.), Priority 1",
14di_sink_peak_delay_a[0]);
op_stat_scalar_write ("Peak End-to-End Delay-0 (sec.), Priority 2",
2ddi_sink_peak_delay_a[1]);
op_stat_scalar_write (“Peak End-to-End Delay-0 (sec.), Priority 3%,
fddi_sink_peak_delay_a[2]);

op.stat_scalar_write ("Peak End-to-End Delay-0 (sec.), Priority 4",
fddi_sink_peak_delay_a[3]);

op_stat_scalar_write (“Peak End-to-End Delay-0 (sec.), Priority 6",
£ddi_sink_peak_delay_a[4]);

op_stat_scalar_write ("Peak End-to-End Delay-0 (s»~.), Priority 6",
£ddi_sink_peak_delay_a[5]);

op_stat_scalar_write ("Peak End-to-End Delay-0 (sec.), Priority 7",

127

s/
s/
s/
s/
s/



L JCREM A O s el e

508 2ddi_sink_peak_delay_a[6]);

509 op_stat_scalar_vrite ("Peak End-to-End Delay-0 (sec.), Priority 8",
510 2ddi_sink_peak_delay_a[7]);

611 op_stat_scalar_write (“Peak End-to-End Delay-0 (sec.), Synchronous”,
612 £ddi_sink_peak_delay_a[8]);

513 op_stat_scalar _write (“Peak End-to-End Delay-0 (sec.), Overall®,
514 f£ddi_sink_peak_delay);

515 /¢ Urite the TTRT value for ring 0. This preserves ¢/
E16 /+ the old behavior for single-ring simulations. &/
517 op_stat_scalar_write ("TTRT (sec.) - Ring 0",

518 fddi_t_opr [0]);

519 /+* 12JAN94: obtain offered load information from the Environment &/

520 /¢ tile; this will be used to provide abscissa information that @/

521 /¢ can be plotted in the Analysis Editor (see “fddi_sink" STATS @/

522 /* stats. To the user: it's your job to keep these current in ./

523 /+ the Environment File. -Nix s/

524 op.ima_sim_attr_get (OPC_IMA_DOUBLE, "total_offered_load_O", &0ffered_Load);

526 op_ima_sim_attr_get (OPC_IMA_DOUBLE, “asynch_offered_load_ 0", &Asynch_Offered_Load);

526 /% 12JAN94: write the total offered load for this run */
627 op_stat_scalar_vurite (“Total Offered Load-0 (Mbps)",

528 Offered_Load);

529 op_stat_scalar_write (“Asynchronous Offered Load-0 (Mbps)*,
530 Asynch_Offered_Load);

631 }

532 }

633 /#* blocking after enter executives of unforced state. *+/
534 FSM_EXIT (3,cp_fddi_sink)

B35 /#¢ state (STATS) exit executives ¢/

536 FSM_STATE_EXIT_UNFORCED (1, statel_exit_exec, "STATS")
537 {

538 }

639 /+¢ state (STATS) transition processing **/
540 FSM_TRANSIT _MISSING (“STATS")
541 /+ */

128




542 /s+ state (INIT) enter executives ss/
543 FSM_STATE_ENTER_FORCED (2, state2_enter_sxec, "INIT")

544 {

645 /+ get the gshandles of the global statistic to be obtained */
546 /¢ 20JAN94: set array format */

647 thru_gshandle_a[0]
548 thru_gshandle_al1)
549 thru_gshandle_a[2)
660 thru_gshandle_a[3])
651 thru_gshandle_a[4]
562 thru_gshandle_a[5]
553 thru_gshandle_a[6]
554 thru_gshandle_a{7]
665 thru_gshandle_a(8]
566 thru_gshandle_al[$]
657 thru_gshandle

558 m_delay_gshandle_a(0] = op_stat_global_reg (“pri 1 mean delay-0
op_stat_global_reg (“pri 2 mean delay-0
op_stat_global_reg ("pri 3 mean delay-0
op_stat_global_reg ("pri 4 mean delay-0
mean delay-0
mean delay-0
mean delay-0
mean delay-0
mean delay-0
mean delay-0
mean delay-0

559 m_delay_gshandle_a[1]
560 m_delay_gshandle_a[2]
561 m_delay_gshandle_a[3)]
562 m_delay_gshandle_a[4]
§63 m_delay_gshandle_a{5]
564 m_delay_gshandle_a[6]
565 m_delay_gshandle_a[7]
566 m_delay_gshandle_a[g8]
667 m_delay_gshandle_al9)]

568 m_delay_gshandle

569
570
571
572
873
574
576
578
877
578

879 t_gshandle_a[0]
580 t_gshandle_a[1)
681 t_gshandle_a[2]
582 t_gshandle_a(3]
583 t_gshandle_a[4]
584 t_gshandle_a(E]
886 t_gshandle_al6]
§86 t_gshandle_a(7]
887 t_gshandle_a[8]

op.stat_global_reg (“pri 1 throughput-0
op_stat_global _reg (“pri 2 throughput-0
op_stat_global _reg (“pri 3 throughput-0
op.stat_global_reg (“pri 4 throughput-0
op_stat_global_reg ("pri 5 throughput-0
op.stat_global _reg ("pri 6 throughput-0
op_stat_global_reg (“pri 7 throughput-0
op.stat_global_reg (“pri 8 throughput-0
op_stat_global_reg (“synch throughput-0
op.stat_global_reg (“async throughput-0
op_stat_global_reg (“total throughput-0

(bps)™);
(bps)™);
(bps)™);
(bps)™);
(bps)™);
(bps)*);
(bps)*);
(bps)*);
(bps)");
(bps)*);
(bps)™);

ete_delay_gshandle_a[0]
ote_delay_gshandle_a[1]
ete_delay_gshandle_a[2]
ete_delay_gshandle_ a[3]
ete_delay_gshandle_a[4]
ete_delay_gshandle_a[5)
ate_delay_gshandle_a[6]
ete_delay_gshandle_a[7]
ote_delay_gshandle_a[8]
ete_delay_gshandle

t 3
=
= op_stat_global_reg (“pri &
= op_stat_global_reg (“pri 6
= op_stat_global_reg ("pri 7
= op_stat_global_reg (“pri 8
= op_stat_global_reg (“synch
= op_stat_global_reg ("async
= op_stat_global_reg (“total
= op_stat_global_reg ("pri
op_stat_global _reg (“pri
op_stat_global_reg (“pri
op_stat_global_reg ("pri
op_stat_global_reg ("pri
op_stat_global _reg (“pri
op.stat_global_reg ("pri
op_stat_global _reg (“pri

1
2
3
4
5
-]
7

op.stat_global_reg ("total

op._stat_global_reg (“pri 1 RL throughput
op.stat_global_reg (“pri 2 RL throughput
op.stat_global_reg (“pri 3 RL throughput
op.stat_global_reg (“pri 4 RL throughput
op.stat_global reg (“pri 6 RL throughput
op_stat_global_reg (“pri 6 RL throughput
op.stat_global _reg (“pri 7 RL throughput
op_stat_global _reg (“pri 8 RL throughput
op.stat_global_reg (“synch RL throughput

129

end-to-end
end-to-end
end-to~end
end-to-end
end-to-end delay-0
end-to-end delay-0
end-to-end delay-0
end-to-end delay-0
op_stat_global_reg ("synch end-to-end delay-0
end-to-end delay-0 (sec.)");

(zec.)");
(sec.)®);
(sec.)®);
(sec.)");
(sec.)®);
(sec.)*);
(sec.)");
(sec.)");
(sec.)™);
(sec.)");
(sec.)");

delay-0 (sec.)");
delay-0 (sec.)");
delay-0 (sec.)");
delay-0 (sec.)");
(sec.)");
(sec.)");
(sec.)");
(sec.)");
(sec.)");

(bps)™); /#20APRO4s/
(bps)*);
(bps)*);
(bps)*);
(bps)*);
(bps)™);
(bps)*);
(bps)*);
(bps)*™);




§88 t_gshandle_a[0] = op_stat_global_reg (“async RL throughput (bps)");
5§89 t_gshandle = op_stat_global_reg (“total RL throughput (bps)");

590 }

591 /ee gtate (INIT) exit executives *s/

692 FSK_STATE_EXIT_FORCED (2, state2_exit_exec, "INIT")
593 { )

694 }

595 /++ gtate (INIT) transition processing *s/
596 FSN_INIT_COND (END_OF_SIN)

597 FSM_DFLT_COND

§98 FSK_TEST_LOGIC (“INIT")

599 FSM_TRANSIT_SVWITCH

600 { .

601 FSM_CASE_TRANSIT (0, 1, statel_enter_exec, ;)

602 FSM_CASE_TRANSIT (1, O, stateO_enter_exec, ;)

603 }

804 /= */

605 }

6068 FSM_EXIT (2,cp.2ddi_sink)
607 }

608 void

609 cp_fddi_sink_svar (prs_ptr,var_name,var_p_ptr)
610 cp_fddi_sink_state sprs_ptr;

611 char svar_name, $¢var_p_ptr;

612 {

613 FIN (cp_fddi_sink_svar (prs_ptr))

€14 evar_p_ptr = VOS_NIL;

616 if (Vos_String Equal (“thru_gshandle” , var_name))

616 svar_p_ptr = (char ¢) (&prs_ptr->sv_thru_gshandle);

617 it (Vos_String Equal ("m_delay_gshandle" , var_name))
618 evar_p_ptr = (char #) (&prs_ptr->sv_m_delay_gshandle);
619 it (Vos_String Equal (“ete_delay_gshandle” , var_name))

130




620 svar_p_ptr = (char ») (&prs_ptr->sv_ste_delay_gshandle);
621 if (Vos_String Equal (“thru_gshandle_a" , var_name))

622 svar_p_ptr = (char *) (prs_ptr->sv_thru_gshandle_a);

623 it (Vos_String Equal (“m_delay_gshandle_a" , var_name))
624 svar_p_ptr = (char ») (prs_ptr->sv_m_delay_gshandle_a);
626 if (Vos_String Equal (“ete_delay_gshandle_a" , var_name))
626 svar_p_ptr = (char ») (prs_ptr->sv_ete_delay_gshandle_a);
627 it (Vos_String Equal (“t_gshandle" , var_name))

628 svar_p_ptr = (char *) (&prs_ptr->sv_t_gshandle);

629 it (Vos_String Bqual (“t_gshandle_a" , var_name))

630 evar_p_ptr = (char *) (prs_ptr->sv_t_gshandle_a);

631 if (Vos_String Equal ("my_id“ , var_name))

632 svar_p_ptr = (char *) (&prs_ptr->sv_my_id);

633 FOUT;
634 }

635 void

636 cp.2ddi_sink_diag ()

637 {

638 double delay, creat_time;

639 Packets pkptr;

640 Packets pkptrl ; /#6APR94s/
641 int src_addr, my_addr;

642 int dest_addr;/«14APR94s/

643 Icis from_mac_ici_ptr;

644 double fddi_sink_ttrt;

645 int xmit_subq_index;/*SAPR94+/
646 int load_balance_code; /+8APR94+/
647 int i,subq_no; /+25APR94s/

648 int index; /+10MAY94 &/

649 FIN (cp_tddi_sink_diag ())

650 FOUT;
6561 )}

662 void

6563 cp.fddi_sink_terminate ()

664 {

655 double delay, creat_time;

666 Packet® pkptr;

687 Packets pxptrl ; /+BAPR94s/

131




668 int sxc_addr, my_addr;

G669 int dest_addr;/*14APRO4e/

6680 Icis from_mac_ici_ptr;

601 double 2ddi_sink_ttrt;

662 int xmit_subq_index;/e5APR94+/
683 int load_balance_code; /+8APRO4s/
864 int i,subq._no; /*25APR94+/

666 int index; /+10MAY94 ¢/

666 FIR (cp.fddi_sink_terminate ())

687 FOUT;
668 }

669 Compcode

670 cp.2ddi_sink_init (pr_state_pptr)

671 cp.1ddi_sink_state espr_state_pptr; .
672 {

673 static VosT_Cm_Obtype obtype = OPC_NIL;

674 FIN (cp_fddi_sink_init (pr_state_pptr))

676 it (obtype == OPC_NIL)

676 {

677 it (Vos_Catmem_Register (“proc state vars (cp_fddi_sink)*,

678 sizeof (cp_fddi_sink_state), Vos_Nop, &obtype) == VOSC_FAILURE)
679 FRET (OPC_COMPCODE_FAILURE)

680 }

681 if ((epr_state_pptr = (cp_fddi_sink_states) Vos_Catmem_Alloc (obtype, 1)) == OPC_NIL)
682 FRET (OPC_COMPCODE_FAILURE)

683 else

684 {

685 (epr_state_pptr)-~>current_block = 4;

886 FRET (OPC_COMPCODE_SUCCESS)

687 }

688 }

132




APPENDIX D
SPNI SOURCE “C” CODE
“sp_fddi_gen.pr.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET’s text editors.

N =

[ T S

e
7
8

/¢ Process model C form file: sp_fddi_gen.pr.c #/
/% Portions of this file Copyright (C) MIL 3, Inc. 1982 &/

/* OPEET system definitions ¢/
#include <opnet.h>

#include “sp_fddi_gen.pr.h"
FSN_EXT_DECS ‘

/+ Header block =/
#define MAC_LAYER_OUT_STREAN O
Sdefine LLC_SINK_OUT_STREAM 1 /+18APR94s/

/% detine possible service classes for frames */

10 #define FDDI_SVC_ASYNC 0
11 #detine FDDI_SVC_SYNC 1

12 /* define token classes */
13 #define FDDI_TK_NONRESTRICTED 0
14 #define FDDI_TK_RESTRICTED 1

15 /+ State variable definitions */
16 typedef struct

174

18 FSM_SYS_STATE

19 Distributione sv_inter_dist_ptr;
20 Distributions® sv_len_dist_ptr;

21 Distributions* sv_dest_dist_ptr;
22 Distributions sv_pkt_priority_ptr;
23 Objid sv_mac_objid;

24 Objid sv_my_id;

25 int sv_low_dest_addr;
26 int sv_high_dest_addr;

133




a7 int sv_station_addr;

28 int sv_sxc_addr; )

29 int sv_low_pkt_priority;

30 int sv_high_pkt_priority;

31 double sv_arrival_rate;

32 double sv_mean_pk_len;

33 double sv_async_mix;

34 Icis sv_mac_iciptr;

35 Icis sv_mac_iciptrl;

38 Icie sv_llc_ici_ptr;

37 Packets sv_pkptri;

38 } sp_tddi_gen_state;

39 #define pr_state_ptr ((sp.fddi_gen_state*) SimI_MNod_State_Ptr)
40 #define inter_dist_ptr pr.state_ptr->sv_inter_dist_ptr
41 #define len_dist_ptr - pr.state_ptr->sv_len_dist_ptr

42 #define dest_dist_ptr pr_state_pti->sv_dest_dist_ptr
43 #define pkt_priority_ptr pr_state_ptr->sv_pkt_priority_ptr
44 8define mac_objid pr_state_ptr->sv_mac_objid

45 #define my_id pr_state_ptr->sv_my_id

46 #define lov_dest_addr pr_state_ptr->sv_lov_dest_addr
47 #define high_dest_addr pr_state_ptr->sv_high dest_addr
48 #define station_addr pr.state_ptr->sv_station_addr

49 #define src_addr pr_state_ptr->sv_src_addr

50 #define low_pkt_priority pr.state_ptr->sv_low_pkt_priority
561 8define high_pkt_priority pr.state_ptr->sv_high_ pkt_priority
52 #define arrival_rate pr.state_ptr->sv_arrival_rate

53 8define mean_pk_len pr_state_ptr->sv_mean_pk_len

64 #detine async_mix pr._state_ptr->sv_async_mix

56 #define mac_iciptr pr_state_ptr->sv_mac_iciptr

56 #define mac_iciptrt pr_state_ptr->sv_mac_iciptri

67 #define llc_ici_ptr pr.state_ptr->sv_llc_ici_ptr

58 #detine pkptri pr_state_ptr->sv_pkptri

59 /+ Process model interrupt handling procedure s/

60 void

61 sp._2ddi_gen ()

62 {

63 Packet *pkptr;

64 iant pklen;

66 int dest_addr;

66 int i, restricted;

67 int

pkt_prio;

134




68 FSM_ENTER (sp_fddi_gen)

69 FSM_BLOCK_SVWITCH

70 {

71/ ./
72 /%+ state (INIT) enter executives #s/

73 FSN_STATE_ENTER_UNFORCED (0, stateO_enter_exec, “INIT*)

74 {

76 /+ determine id of own processor to use in finding attrs */
76 my_id = op_id_selt ();

T7 /* determine address range for uniform desination assignment s/
78 op.ima_obj_attr_get (my_id, “low dest address”, &low_dest_addr);
79 op.ima_obj_attr_get (my.id, "high dest address”, &high_dest_addr);

80 /+ determine object id of connected ’mac’ layer process */
81 mac_objid = op_topo_assoc (my.id, OPC_TOPO_ASSOC_OUT,
82 OPC_OBIMTYPE_MODULE, MAC_LAYER_OUT_STREAM);

83 /* determine the address assigned to it »/
84 /¢ which is also the address of this station #/
85 op._ima_obj_attr_get (mac_objid, "station_address”, &kstation_addr);

8s /% set up a distribution for generation of addresses */
87 dest_dist_ptr = op.dist_load ("uniform_int", low_dest_addr,
88 high_dest_addr);

89 /+ added 26DEC9S3 */

90 /* determine priority range for uniform traffic generation */

91 op_ima_obj_attr_get (my_.id, “high pkt priority"”, &high_pkt_priority);
92 op_ima_obj_attr_get (my.id, “low pkt priority“, &low_pkt_priority);

93 /¢ set up a distribution for generation of priorities s/
94 pkt_priority_ptr = op_dist_load (“uniform_int*, low_pkt_priority, high_pkt_priority);

95 /+ above added 26DEC93 s/

96 /* also determine the arrival rate for packet generation */
97 op.ima_obj_attr_get (my_id, "arrival rate", Rarrival_rate);

98 /¢ determine the mix of asynchronous and synchronous */

99 /¢ traffic. This is expressed as the proportion of */

100 /¢ asynchronous traffic. i.e a value of 1.0 indicates ¢/
101 /¢ that all the produced traffic shall be asynchronous. */
102 op_ima_obj_attr_get (my_id, “async_mix", Rasync_mix);

103 /* set up a distribution for arrival generations ¢/
104 if (arrival_rate != 0.0)

135




106 {
106 /¢ arrivals are exponentially distributed, with given mean ¢/
107 inter_dist_ptr = op_dist_load (“constant", 1.0 / arrival_rate, 0.0);

108 /¢ determine the distribution for packet size */
109 op_ima_odbj_attr_get (my_id, “mean pk length", &mean_pk_len);

110 /# set up corresponding distribution /
111 len_dist_ptr = op_dist_load (“constant”, mean_pk_len, 0.0);

112 /* designate the time of first arrival */
113 £ddi_gen_schedule ();

114 /¢ set up an interface control information (ICI) structure */

116 /* to communicate parameters to the mac layer process */

116 /* (it is more efficient to set one up now and keep it &/

117 /* as a state variable than to allocate one on each packet xfer) */
118 mac_iciptr = op_ici_create (“fddi_mac_req");

119 }

120 }

121 /#* blocking after enter executives of unforced state. *+/
122 FSM_EXIT (1,sp_tddi_gen)

123 /++ gtate (INIT) exit executives s/

124 FSH_STATE_EXIT_UNFORCED (0, stateO_exit_exec, "INIT")
126 {

126 }

127 /++ state (INIT) transition processing *+/
128 FSH_TRANSIT_FORCE (1, statel_enter_exec, ;)
12’ /= :/

130 /»+ state (ARRIVAL) enter executives *+/

131 FSM_STATE_ENTER_UNFORCED (1, statel_enter_exec, "ARRIVAL")

132 {

133 /¢ This station should receive frames from the other lan as long as */
134 /¢ there are frames in the input streams addressed to this lan ¢/
136 /echeck if the interrupt type is stream interrupt ¢//¢«12APR94s/

136 it(op_intrpt_type() == OPC_INTRPT_STRN)

137 {

138 /¢ if it is, get the packet in the input stream causing interrupt s/
139 pkptri = op_pk_get(op_intrpt_strm());

140 /¢ get the destination address of the frame : 16APR94 ¢/

141 op_pk_ntd_get(pkptri, “dest_addr", &dest_addr);

136




142 /# check if this frame is for the remote bridge station(bridge in surface lan) #/
143 if(dest_addr == station_addr)

144 /+ if it is, send the packet to llc_sink directly s/

145 /¢ in order to prevent overhead of mac access */

146 op_pk_send(pkptri, LLC_SINK_OUT_STREAN);/+19APR94+/

147 olse

148 /¢ this packet is to send to mac ¢/

149 {

150 /* determine the source address of the frame ¢/

151 op_pk_nfd_get(pkptri, “src_addr", &src_addr);

152 /+ set up an ICI structure to communicate parameters to »/

163 /¢ MAC layer process s/

164 mac_iciptrl = op_ici_create("fddi_mac_req");

156 /* place the original source address into the ICI s//+ 16APR94 +/

166 /+» “fd4di_mac_req" is modified so that it contains the original ¢/

157 /* source address from the local lan(collection platform) =/

158 op_ici_attr_set(mac_iciptri, “src_addr", src_addr);

159 /¢ place the destination address into the ICI s/ /#12APR94s/

160 op_ici_attr_set(mac_iciptri, "dest_addr", dest_addr);

161 /* assign the service class and requested token class ¢/

162 /¢ At this moment the frames coming from the remote lan are assumed */
163 /* to have the same priority as synchronous frames in order not to accumulate */
164 /¢ packets on the bridge station mac and instead to deliver their destinations #/
165 /* as soon as possible ¢/

166 op.pk_nfd_set(pkptri, “pri®, 8);

167 op_ici_attr_set(mac_iciptri, “"svc_class", FDDI_SVC_SYNC);

168 op._ici_attr_set(mac_iciptri, "pri®, 8);

169 op_ici_attr_set(mac_iciptri, “tk_class“, FDDI_TK_NONRESTRICTED);

170 /+ send the packet coupled with the ICI s/

171 op_ici_install(mac_iciptri);

172 op_pk_send(pkptri, MAC_LAYER_OUT_STREAN);

173 }

174 }

176 /* otherwise, generate the frame ¢/

176 else

177 {

178 /¢ determine the length of the packet to be generated */

179 pklen = op_dist_outcome (len_dist_ptr);

180 /¢ determine the destination ¢/
181 /* dont allow this station’s address as a possible outcome #/

182 gen_packet: °

188 dest_addr = op_dist_outcome (dest_dist_ptr);

184 if (dest_addr != -1 &% dest_addr == station_addr)
188 goto gen_packet;

186 /¢ 26DECO4 & 20JAND4: determine its priority s/
187 pkt_prio = op_dist_outcome (pkt_priority_ptr);

188 /* cyeate a packet to send to mac ¢/
189 pkptr = op_pk_create_fmt ("fddi_llc_fr");

137




190 /¢ assign its overall size. ¢/
192 op_pk_total_size_set (pkptr, pklemn);

193 /¢ assign the time of creation s/
194 op.pk_nfd_set (pkptr, “cxr_time®, op_sim_time ());

198 /¢ place the destination address into the ICI #/
196 /* (the protocol_type field will default) s/
197 op._ici_attr_set (mac_iciptr, “dest_addr", dest_addr);

198 /¢ place the source address into the ICI #//+ 1TAPRO4s/
199 op.ici_attr_set (mac_iciptr, “src_addr”, stition_addr);

200 /¢ assign the priority, and requested token class ¢/

201 /¢ also assign the service class; 20JAN94: the fddi_llc_fr »/
202 /¢ format is modified to include a *pri* field. ./
203 if (op_dist_uniform (1.0) <= async_mix)

204 {

205 ‘op_pk_nfd_set (pkptr, “pri", pkt.prio); /+ 20JAN94 */
206 op_ici_attr_set (mac_iciptr, “svc_class", FDDI_SVC_ASYNC);

207 op_ici_attr_set (mac_iciptr, “pri”, pkt_prio); /+ 20JANG4 »/
208 }

209 else{

210 op_pk_nfd_set (pkptr, “pri®, 8); /% 20IAN94 &/

211 op_ici_attr_set (mac_iciptr, "svc_class", FDDI_SVC_SYNC);

212 op.ici_attr_set (mac_iciptr, “pri%, 8); /¢ 20JAM94 ¢/

213 }

214 /* Request only nonrestricted tokens after transmission ¢/

215 op_ici_attr_set (mac_iciptr, “tk_class”, FDDI_TK_NONRESTRICTED);
216

217 /* Baving determined priority, assign it; 26DECS3 s/

218 /¢ op_ici_attr_set (mac_iciptr, "pri“, pkt_prio); s/

219 /* send the packet coupled with the ICI ¢/

220 op_ici_install (mac_iciptr);

221 /* check if destination address is in the local lan(collection platform)s/
222 it(dest_addr <= 9)

223 /¢ it it is, this packet is to send llc_sink directly */

22¢ op_pk_send (pkptr, LLC_SINK_OUT_STREAM); /#18APR94s/

226 else

226 /* if not, the packet is destined for remote lan (surface stations)+/

227 op_pk_send (pkptr, MAC_LAYER_OUT_STREAN);

238 /% schedule the next arrival ¢/
229 £44i_gen_schedule ();

230 }

231 )

138




232 /*+ blocking after enter executives of unforced state. *s/
233 FSM_EXIT (3,sp_fddi_gen)

234 /+s state (ARRIVAL) exit executives *+/

235 FSM_STATE_EXIT_UNFORCED (1, statei_exit_exec, “ARRIVAL")
236 {

237 )

238 /+¢ state (ARRIVAL) transition processing s¢/
239 PSM_TRANSIT_FORCE (1, statei_enter_exec, ;)

240 /+

241 )}

242 FSM_EXIT (0,sp_fddi_gen)
243 )

244 void .

245 sp_2ddi_gen_svar (prs_ptr,var_name,var_p_ptr)
246 sp_fddi_gen_state sprs_ptr;

247 char svar_name, *®var_p_ptr;

248 {

249 FIN (sp_fddi_gen_svar (prs_ptr))

260 svar_p_ptr = VOS_NIL;

261 if (Vos_String Equal (“inter_dist_ptr" , var_name))
262 svar_p_ptr = (char #) (&prs_ptr->sv_inter_dist_ptr);
263 if (Vos_String Equal (*len_dist_ptr"” , var_name))
254 evar_p_ptr = (char ¢) (&prs_ptr->sv len_dist_ptr);
266 if (Vos_String Equal ("dest_dist_ptr" , var_name))
266 evar_p_ptr = (char ) (&prs_ptr->sv_dest_dist_ptr);
257 if (Vos_String Equal ("pkt_priority_ptr" , var_name))
268 evar_p_ptr = (char ¢) (&prs_ptr->sv_pkt_priority_ptr);
269 if (Vos_String Equal ("mac_objid" , var_name))

260 svar_p_ptr = (char #) (&prs_ptr->sv_mac_objid);

261 if (Vos_String Equal ("my_ia” , var_name))

262 evar_p_ptr = (char #) (&prs_ptr->sv_my_id);

263 if (Vos_String Equal ("low_dest_addr" , var_name))
264 evar_p_ptr = (char #) (&prs_ptr->sv_low_dest_addr);
265 if (Vos_String Equal (“high_dest_addr” , var_name))
266 evar_p_ptr = (char #) (&prs_ptr->sv_high_dest_addr);
267 if (Vos_String Equal ("station_addr” , var_name))

139




i oA ey - 3 4 o - DEASRSO i ane

268 svar_p_ptr = (char *) (&prs_ptr->sv_station_addr);

269 if (Vos_String_Equal (“src_addr® , var_name))

270 svar_p_ptr = (char *) (kprs_ptr->sv_src_addr);

271 it (Vos_String Equal (“low_pkt_priority” , var_name))
272 evar_p_ptr = (char *) (&prs_ptr->sv_low_pkt_priority);
273 it (Vos_String Equal (“high_pkt_priority” , var_name))
274 svar_p_ptr = (char *) (&prs_ptr->sv_high_pkt_priority);
276 if (Vos_String_Equal (“arrival_rate" , var_name))

276 svar_p_ptr = (char ) (&prs_ptr->sv_arrival_rate);

277 it (Vos_String_Equal (“mean_pk_len" , var_name))

278 svax_p_ptr = (char *) (&prs_ptr->sv_mean_pk_len);

279 if (Vos_String Equal (“async_mix" , var_name))

280 svar_p_ptr = (char *) (&prs_ptr->sv_async_mix);

281 if (Vos_String Equal (“mac_iciptr" , var_name))

282 svar_p_ptr = (char *) (&prs_ptr->sv_mac_iciptr);

283 if (Vos_String Equal (“"mac_iciptri" , var_name))

284 svar_p_ptr = (char *) (&prs_ptr->sv_mac_iciptri);

286 if (Vos_String Equal (“"llc_ici_ptr" , var_name))

286 svar_p_ptr = (char *) (&prs_ptr->sv_llc_ici_ptr);

287 if (Vos_String Equal (“pkptri® , var_name))

288 svar_p_ptr = (char *) (kprs_ptr->sv_pkptril);

289 FOUT;
290 }

291 void

292 sp_tddi_gen_diag ()

293 { .
294 Packet #*pkptr;

295 int pklen;

296 int dest_addr;

297 int i, restricted;

298 int pkt_prio;

299 FIN (sp_fddi_gen_diag ())

300 FOUT;
301 }

302 void

303 sp_fddi_gen_terminate ()
304 {

306 Packet epkptr;

306 int pklen;

140




307 int dest_addr;
308 int i, restricted;
309 int pkt_prio;

310 FIN (sp_fddi_gen_terminate ())

311 FOUT;
312 }

313 Compcode

314 sp_1ddi_gen_init (pr_state_pptr)

315 sp_fddi_gen_state #spr_state_pptr;

316 {

317 static VosT_Cm_Obtype obtype = OPC_NIL;

318 FIN (sp_fddi_gen_init (pr_state_pptr))

319 if (obtype == OPC_NIL)

320 {

821 itz (Vos_Catmem_Register (“proc state vars (sp_fddi_gen)",

322 sizeot (sp_fddi_gen_state), Vos_Nop, &obtype) == VOSC_FAILURE)
323 FRET (OPC_COMPCODE_FAILURE)

324 }

325 it ((epr_state_pptr = (sp_fddi_gen_state+) Vos_Catmem_Alloc (cbtype, 1)) == OPC_WIL)
326 FRET (OPC_COMPCODE_FAILURE)

327 else

328 {

329 (spr_state_pptr)->current_block = 0;

330 FRET (OPC_COMPCODE_SUCCESS)

331 )

332}

333 /» static added 2DECS3, on advice from MIL3 ¢/
334 static

336 tddi_gen_schedule ()

336 {

337 double inter_time;

338 /+ obtain an interarrival period according to the ¢/
339 /+ prescribed distribution ¢/
340 inter_time = op_dist_outcome (inter_dist_ptr);

341 /+ schedule the arrival of next generated packet »/

342 op.intrpt_schedule_self (op_sim_time () + inter_time, 0);
343 )

141




142




APPENDIX E
SPNI MAC “C” CODE EXCERPT

“sp_fddi_mac.pr.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET"s text editors.

1 /e+ gtate (FR_REPEAT) enter executives s/

2 FSM_STATE_ENTER_FORCED (6, state6_enter_exec, "FR_REPEAT")
3¢

4 /+ Extract the destination address of the frame. */

6 op_pk_ntd_get (pkptr, “dest_addr", &dest_addr);

6 /+ If the frame is for this station, make a copy */

7 /¢ of the frame’s data field and forward it to »/

8 /* the higher layer. s/

9 /+ 14APR94 : In order to send the frames which are &/

10 /* addressed to the remote lan, check the address database */

11 /* of remote lan. Frames addressed to the remote lan shouldn’t #/
12 /% be repeated in the local ring — This is a simple forwarding s/
13 /* decision algorithm, one of the bridge’s function */

14 /¢ - Karayakaylar */

156 i2((dest_addr == my_address)||(dest_addr <= §))

16 {

17 /* record total size of the frame (including data) s/

18 pk_len = op_pk._total_size_get (pkptr);

19 /+ decapsulate the data contents of the frame */

20 /¢ 29JANS4: a new field, “pri“, has been added to ¢/
21 /¢ the 2ddi_llc_fr packet format in the Parameters ¢/
22 /¢ BEditor, so that output statistics can be */
23 /¢ generated by class and priority. -Nix ./
24 op.pk_ntd_get (pkptr, “info”, &data_pkptr);

25 op_pk.ntd_get (pkptr, “"pri“, &pri_level);

26 /+ The source and destination address are placed in the */

27 /¢ LLC’s ICI before delivering the frame’s contents. */
28 op_ici_attr_set (to_llc_ici_ptr, “src_addr", src_addr);

143




29 op_ici_attr_set (to_llc_ici_ptr, “dest_addr”, dest_addr);
30 op_ici_install (to_llc_ici_ptr);

31 /¢ Because, as noted in the FR_RCV state, only the */

32 /+ frame’s leading edge has arrived at this time, the %/

33 /¢ complete frame can only be delivered to the higher ¢/

34 /¢ layer after the frame’s transmission delay has elapsed. */

35 /¢ (since decapsulation of the frame data contents has occured, */
36 /+ the original MAC frame length is used to calculate delay) */
37 tx_time = (double) pk_len / FDDI_TX_RATE;

38 op_pk_send_delayed (data_pkptr, FDDI_LLC_STRN_OUT, tx_time);

39 /¢ Note that the standard specifies that the original */

40 /¢ frame should be passed along until the originating station */

41 /¢ receives it, at which point it is stripped from the ring. */

42 /+ Howsver, in the simulation model, there is no interest s/

43 /+ in letting the frame continue past its destination unless */

44 /* group addresses are used, so that the same frame could bde +/

45 /+ destined for several stations. Here the frame is stripped ¢/

46 /+ for efficiency as it reaches the destination; if the model #/

47 /+ is modified to include group addresses, this should be changed */
48 /+ so that the frame is copied and the original repeated. */

49 /¢ Logic is already present for stripping the frame at the origin. */
50 op_pk_destroy (pkptr);

61}

62 /¢ 14APR94 : the frames belong to this ring should be repeated. ¢/
53 /¢ Thus, local traffic is constrained.-- This is filtering decision */
64 /¢ One of the bridge’s function - Karayakaylar s/

56 else{

66 /+ Repeat the original frame on the ring and account for ¢/

57 /+ the latency through the station and the propagation delay */

68 /¢ for a single hop. ¢/

59 /¢ (Only the originating station can strip the frame). s/

60 op_pk.send_delayed (pkptr, FUDI_PHY_STRM_OUT,

61 Fddi_St_Latency + Fddi_Prop_Delay);

62}

63}

64 /+s gtate (FR_REPEAT) exit executives »s/

65 FSK_STATE_EXIT_FORCED (6, state6_exit_exec, “FR_REPEAT")
68 {

67 }

144




APPENDIX F
SPNI SINK “C” CODE

“gp_fddi_sink.pr.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET’s text editors.

/% Process model C form file: sp_fddi_sink.pr.c */
/* Portions of this file Copyright (C) MIL 3, Inc. 1992 &/

"N e

/* OPEET system definitions */
#include <opnet.h>

#include "sp_fddi_sink.pr.h"
FSN_EXT_DECS

[ N B ]

T /¢ Header dlock */

8 /¢ Globals ¢/

® /s positions 0-7 represent the asynch priority levels, PRIORITIES + 1 ¢/
10 /¢ represents synch traffic, and grand totals are as given in the original.

11 #define PRIORITIES 8 /% 20JAN94 »/

12 #define XMITTER_BUSY O /+10MAYS4 »/

13 static /* OSFEB94 ¢/

14 double 24di2_sink_accum_delay = 0.0;

16 static /* OSFEBS4 */

16 double fddi2_sink_accum_delay_a[PRIORITIES + 1] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
17 static /% OSFEB94 »/

18 int 1ddi2_sink_total_pkts-= 0;

19 static /% OSFEBS4 s/

20 int £4di2_sink_total_pkts_a[PRIORITIES + 1] = {0, 0, 0, 0, O, 0, O, 0, O};

21 static /* OSFEB94 »/

22 double £ddi2_sink_total_bits = 0.0;

23 static /* OEFEB94 +/

24 double £ddi2_sink_total_bits_a(PRIORITIES + 1] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
25 static /% OGFEB94 %/

26 double 1ddi2_sink_peak_delay = 0.0;

27 static /% OSFEBS4 »/

28 doudble £ddi2_sink_peak_delay_a[PRIORITIES + 2] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};
29 static /* OSFEB94 +/

30 int £4di2_sink_scalar_write = 0;

31 static /* OSFEBS4 ¢/

32 int pri2_set = 20; /% 20JAN94 »/

145




33 double busy = 0.0; /% 10MAYS4 s/

34 /¢ Statistics used for command link:21APR94 ¢/

3B static

38 int 1ddilp2_total_pkts = 0;

37 static

38 int £ddilp2_total_pkts_a[PRIORITIES + 1] = {0, 0, 0, 0, 0, 0, O, O, O};
39 static :

40 double 2ddilp2_total_bits = 0.0;

41 static

42 double £ddilp2_total_bits_a[PRIORITIES + 1] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O.

43 /* Externally defined globals. */
44 extern double fddi_t_opr [J;

45 /+12JA¥94:attributes from the Environment file &/
46 double Offered_load; /¢ 12JA994 »/
47 double Asynch_Offered_Load; /+ 12JANO4 7

48 /* transition expressions */
49 #define END_OF_SIM op_intrpt_type() == OPC_INTRPT_ENDSINM

50 /+ State variable definitions #/
51 typedef struct

52 ¢

53 FSN_SYS_STATE

54 Gshandle sv_thru2_gshandle;

56 Gshandle sv_m2_delay._gshandle;

56 Gshandle sv_ete2_delay_gshandle;

57 Gshandle sv_thru2_gshandle_a(10];

58 Gshandle sv_n2_delay_gshandle_a[10];

59 Gshandle sv_ete2_delay_gshandle_a[9];

60 Gshandle sv_t2_gshandle;

61 Gshandle sv_t2_gshandle_a[10];

62 Objia sv_my_id;

63 } sp_fddi_sink_state;

64 #define pr_state_ptr ((sp.2adi_sink_states) SimI_Nod_State_Ptr)
65 8define thru2_gshandle pr_state_ptr->sv_thru2_gshandle

68 #define m2_delay_gshandle pr_state_ptr->sv_m2_delay_gshandle
67 #define ete2_delay_gshandle pr_state_ptr->sv_ete2_delay_gshandle
68 #define thru2_gshandle.a pr_state_ptr->sv_thru2_gshandle_a
69 Sdefine m2_delay._gshandle_a pr.state_ptr->sv_m2_delay_gshandle_a
70 #define ete2_delay_gshandle_a pr_state_ptr->sv_ete2_delay_gshandle_a
73 #define t2_gshandle pr.state_ptr->sv_t2_gshandle

72 8define t2_gshandle a pr.state_ptr->sv_t2_gshandle_a

73 8define my_id pr_state_ptr->sv_my_id

146

, 0.0, 0.0};




T4 /* Process model interrupt handling procedure */

78 void

76 sp_fddi_sink ()

77 {

78 double delay, creat_time;

79 Packet* pkptr;

80 Packet* pkptrl ; /+5APR94+/
81 int src_addr, my_addr;

82 int dest_addr;/+«14APRO4e/

83 Icis from_mac_ici_ptr;

84 double fddi_sink _ttre;

86 FSM_ENTER (sp_fddi_sink)

86 FSM_BLOCK_SWITCH

87 {

88 /= s/
89 /¢ gtate (DISCARD) enter executives ss/

90 FSM_STATE_ENTER_UNFORCED (0, stateO_enter_exec, “DISCARD")
91 (

92 /+ determine the type of interrupt s/

93 switch(op_intxpt_type())

o4 {

95 /* check if transmitter is busy »/

98 case OPC_INTRPT_STAT:

97 {

98 busy = op_stat_local_read (XMITTER_BUSY);

99 break;

100 }

101 /¢ check if a packet has arrived s/

102 case OPC_INTRPT_STRN:

108 {

104 /¢ get the packet and the interface control info */
106 pkptr = op_pk_get (op_intrpt_stma ());

106 from_mac_ici_ptr = op_intrpt_ici ();

107 /+ 20JAN94: get the packet’s priority level, which #/
108 /¢ will be used to index arrays of thruput and delay ¢/

109 /# computations. ./
110 /¢ pri2_set = op_pk_priority_get (pkptr); doesn’t work here s/
111 op_pk_afd_get (pkptr, “pri“, &pri2_set); /% 29JAN94 ¢/

112 /¢ determine the time of creation of the packet ¢/

147




118 op_pk_ntd_get (pkptr, “cr_time”, &creat_time);

114 /¢ determine the dest address of the packet #/ /+18APR94s/
115 op_pk_nfd_get (pkptr, “dest_addr", &dest_addr);

116 /+ TAPRO4:determine id of own processor to use in finding ¢/
117 /+ station address of the bridge node */
118 my_id = op_id_self();

119 /+ 14APRO4 : also get my own address */
120 op_ima_obj_attr_get ( my_id, “station_address”, &my_addr);

121 /* destroy the packet */

122 /+ op_pk._destroy (pkptr); =/

123 /¢ O3FEB94: rather, enqueue the packet. This will be the */
124 /¢ first step toward developing a LAN bridging structure. ¢/
126 /* -Bix */
126 /+ op_subq_pk_insert (pri_set, pkptr, OPC_QPOS_TAIL); ./

127 /+ 14APR94: check the frame passed to "1llc" is destined for */

128 /+ this station. If it is destroy the packet; if not, allocate the packets */
129 /* to the command link transmitter since they are destined for the remote lan */
130 /+ -Karayakaylar */

131 /* determine the packets coming from surface stations, this will */

132 /* be counted for local traffic */

133 /¢ 9(nine) is model specific, this is the "station_number" of */

134 /¢ collection platform bridge station ¢/

135 if((dest_addr == my_addr)a&(src_addr > 9))

136 {

137 /* add in its size */

138 24di2_sink_total_bits += op_pk_total_size_get (pkptr);

139 £d4di2_sink_total_bits_a[pri2_set] += op_pk_total_size_get (pkptr); /+ 20JAN-20APRS4 =/

140 /¢ accumulate delays s/

141 delay = op_sim_time () - creat_time;

142 14di2_sink_accum_delay += delay;

143 24di2_sink_accum_delay_alpri2_set] += delay; /+ 20JAN-20APR94 */

144 /+ keep track of peak delay value */
145 if (delay > £ddi2_sink_peak_delay)
146 244i2_sink_peak_delay = delay;

147 /¢ 20JAN94: keep track by priority levels as well 23JAN-20APR94 ¢/
148 if (delay > £ddi2_sink_peak_delay_a[pri2_set])

149 24d42_sink_peak_delay_alpri2_set] = delay;

180 op_pk_destroy (pkptr);

161 /¢ increment packet counter; 20JAN94 s/

1562 2d44i2_sink_total_pkts++;
153 £d44i2_sink_total_pkts_alpri2_set]++;

148




164 /+ if a multiple of 25 packets is reached, update stats */
155 /¢ O3FEB94: [0]->[7] represent asynch priorities 1->8, s/
168 /¢ respectively; [8] represents synchronous traffic, L 74
157 /¢ and [9] represents overall asynchronous traffic.-Nix s/
168 if (£4di2_sink_total_pkts ¥ 25 == 0)

189 {

160 op_stat_global _write (thru2_gshandle,

161 £4di2_sink_total_bits / op_sim_time ());

162 op.stat_global_write (thru2_gshandle_alpri2_set],

163 2ddi2_sink_total_bits_al0] / op_sim_time());

164 op.stat_global_write (thru2_gshandle_a[0],

165 24di2_sink_total_bits_al1] / op_sim_time());

166 op.stat_global_write (thru2_gshandle_a[1],

167 2d4di2_sink_total_bits_alpri2_set] / op_sim_time());

168 op.stat_global_write (thru2_gshandle_a[2],

169 £ddi2_sink_total_bits_al2] / op_sim_time());

170 op.stat_global_write (thru2_gshandle_a(3],

17 14di2_sink_total_bits_a[3] / op_sim_time());

172 op.stat_global_write (thru2_gshandle_a[4],

173 £ddi2_sink_total_bits_al4] / op_sim_time());

174 op.stat_global_write (thru2_gshandle_a(S],

176 £ddi2_sink_total_bits_al6) / op_sim_time());

176 op_stat_global_write (thru2_gshandle_a[6],

177 £4di2_sink_total_bits_al6) / op_sim_time());

178 op.stat_global_write (thru2_gshanile_a[7],

179 24432_sink_total_bits_al7) / op_sim_time());

180 op.stat_global_write (thru2_gshandle_a[8],

181 2ddi2_sink_total_bits_a[8] / op_sim_time());

182

/% 30JANS4: gather all asynch stats into one overall figure ¢/

183 op.stat_global_write (thru2_gshandle_ a[9],

184 (24d4i2_sink_total_bits - fddi2_sink_total_bits_a[8]) /

185 op.sim_time());

186 /* (£ddi2_sink_total_bits_a[0) + £4di2_sink_total_bits_a[1] +
187 /e £ddi2_sink_total_bits_a[2] + 2ddi2_sink_total_bits_a[3] +
188 /* 24442_sink_total_bits_a[4] + 24412 _sink_total_bits_a[5] +
189 /* £4di2_sink_total_bits_al6] + £d4di2_sink_total_bits_a[7]) /
190 / op_sin_time());

191 op.stat_global_write (m2_delay_gshandle,

192 2d4412_sink_accum_delay / £ddi2_sink_total_pkts);

103 op.stat_global_write (m2_delay_gshandle_a[0],

194 2ddi2_sink_accum_delay_a[0] / 24di2_sink_total_pkts_a{0]);
198 op.stat_global_write (m2_delay_gshandle_ali],

196 24di2_sink_accum_delay_al1] / £4di2_sink_total_pkts_a[1]l);

149

./

s/
./
*/
s/




197 op_stat_global _write (m2_delay_gshandle_a[2],

198 £ddi2_sink_accum_delay_ al2) / £ddi2_sink_total_pkts_a[2]);
199 op_stat_global_write (m2_delay_gshandle_a[3],
200 £4di2_sink_accum_delay_al3] / £4di2_sink_total_pkts_a[3]);
201 op_stat_global_write (m2_delay_gshandle_al4],
202 2ddi2_sink_accum_delay a[4] / £ddi2_sink_total_pkts_a[4]);
203 op.stat_global write (m2_delay_gshandle_al[E],
204 £4di2_sink_accum_delay_a[5] / fddi2_sink_total_pkts_a[5]);
206 op_stat_global_vwrite (m2_delay_gshandle_a[é],
206 £ddi2_sink_accum_delay_al[6] / 2ddi2_sink_total_pkts_a[6]);
207 op.stat_global_write (m2_delay_gshandle_a[7],
208 2ddi2_sink_accum_delay_a[7] / £d4di2_sink_total_pkts_al[7]);
209 op_stat_global _write (m2_delay_gshandle_a[g],
210 £2ddi2_sink_accum_delay_a[8] / 2ddi2_sink_total_pkts_a[8]);

211 /¢ 30JAN94: gather all asynch stats into one figure ¢/
212 op_stat_global_write (m2_delay_gshandle_a[9],

213 (24di2_sink_accum_delay - fddi2_sink_accum_delay_a[8]) /

214 (2ddi2_sink_total_pkts - £ddi2_sink_total_pkts_a[8]));

215 /* (£ddi2_sink_accum_delay_a[0] + 24di2_sink_accum_delay_a[1] + /
216 /* £ddi2_sink_accum_delay_a[2] + £4di2_sink_accum_delay_a(3] + /
217 /e £ddi2_sink_accum_delay_al4] + £d4di2_sink_accum_delay_a[6] + »/
218 /+ £ddi2_sink_accum_delay_a[6] + 2ddiZ_sink_accum_delay_al7]) / =/
219 /* (fadi2_sink_total_pkts_al[0] + £ddi2_sink_total_pkts_a[1] + */
220 /* 2d4di2_sink_total_pkts_a[2] + £ddi2_sink_total_pkts_a[3] + ./
221 / fddi2_sink_total_pkts_a(4] + fddi2_sink_total_pkts_a[5] + »/
222 /¢ £ddi2_sink_total_pkts_al[6] + 2ddi2_sink_total_pkts_al[71)); /

223 /¢ also record actual delay values */

224 op_stat_global _write (ete2_delay_gshandle, delay);

225 op_stat_global_write (ete2_delay_gshandle_alpri2_set], delay);
2268 }

227 }/*end of if(dest_addr==my_addr)&k(src_addr > 9)statement =/

228 /+ 20APR94: destroy the packets coming from the first lan destined */
229 /¢ for this station.These packets are not counted for local traffic.s/
230 else if(dest_addr == my_addr)

231 op_pk._destroy(pkptr);

232 /¢ Other frames passed to "1lc” should be destined for other lan ¢/
233 /+ 18APR94 :allocate the packets to transmitter of command link */
234 else

238 {

236 /¢ add in its size ¢/

237 24dilp2_total_bits += op_pk_total_size_get (pkptr);
238 £4dilp2_total_bits_alpri2_set] += op_pk_total_size_get (pkptr); /+ 20JAN-20APRO4 */

150




239 /+ increment packet counter; 20APR94 */
240 1ddilp2_total_pkts++;
241 24dilp2_total_pkts_alpri2_set]++;

242 /+ if a multiple of 25 packets is reached, update stats */
243 /+ [0)->[7] represent asynch priorities 1->8, =/

244 /* respectively; [8] represents synchronous traffic, */
245 /+ and [9] represents overall asynchronous traffic.-Nix »/
246 it (£ddilp2_total_pkts % 256 == 0)

247 {

248 op_stat_global_write (t2_gshandle,

249 £d4dilp2_total_bits / op_sim_time ());

250 op_stat_global_write (t2_gshandle_alpri2_set],

251 £ddilp2_total_bits_a[0] / op_sim_time());

252 op_stat_global_write (t2_gshandle_a[0],

263 2ddilp2_total_bits_a[1] / op_sim_time());

254 op_stat_global _write (t2_gshandle_al1],

255 2ddilp2_total_bits_alpri2_set] / op_sim_time());

256 op.stat_global_write (t2_gshandle_a[2],

257 1ddilp2_total_bits_a[2] / op_sim_time());

258 op.stat_global write (t2_gshandle_a(s],

259 1ddilp2_total_bits_a[3] / op_sim_time());

260 op_stat_global vwrite (t2_gshandle_a[4],

261 1ddilp2_total_bits_a(4] / op_sia_time());

262 op_stat_global_write (t2_gshandle_a(s],

263 24dil1p2_total_bits_al6] / op_sim_time());

264 op.stat_global_write (t2_gshandle_a[6],

266 1ddilp2_total_bits_a[6] / op_sim_time());

266 op_stat_global_write (t2_gshandle_a[7],

267 1ddilp2_total_bits_al7] / op_sim_time());

268 op_stat_global_write (t2_gshandle_a[8],

269 24dilp2_total_bits_al8) / op_sim_time());

270 /+ gather all asynch stats into one overall figure ¢/

271 op.stat_global_write (t2_gshandle_a(s],

272 (£adilp2_total_bits - f£ddilp2_total_bits_al8l) /

273 op_sim_time());

274 /+ (2ddilp2_total_bits_af0] + £ddilp2_total_bits_a[1] +
278 /e 2ddilp2_total_bits_a[2] + £d4dilp2_total_bits_a[3] + s/
278 /* 23di1p2_total_bits_al4] + tddilp2_total_bits_a[E] + /
277 /* 2ddilp2_total_bits_a[6] + £ddilp2_total_bits_a[7]) / ¢/
278 /e op.sim_time()); s/
279 }

260 /+ 21APR94:allocate packets to the command link transmitter */

151




281 op_subq_pk_insert(0, pkptr, OPC_QPOS_TAIL);

282 /¢ check if this subqueue is empty and transaitter is mot busy #/
283 it ((top._subq_eapty(0))az(busy == 0.0))

284 {

285 /*access the first packet in the subqueus */

286 pkptri = op_subq_pk_remove (0, OPC_QPOS_HEAD);

287 /% forward it to the, transmitter of command link =/
288 op_pk_send (pkptri, 0);

289 }

200 }/¢ end of else */

291 break;

202 }/* end of case OPC_INTRPT_STRM statement */

293 }/+ end of switch »/

204 }

295 /+¢ blocking after enter executives of unforced state. s+/
296 FSM_EXIT (1,sp_fddi_sink)

207 /e+ state (DISCARD) exit executives *#/

298 FSM_STATE_EXIT._UNFORCED (0, stateO_exit_exec, “DISCARD"™)
209 {

300 }

301 /e+ state (DISCARD) transition processing #+/
302 FSN_INIT_COND (END_OF_SIN)

303 FSM_DFLT_COND

304 FSM_TEST_LOGIC (“DISCARD*)

305 FSM_TRANSIT_SWITCH

306 {

307 FSR_CASE_TRANSIT (0, 1, statel_enter_exec, ;)

308 FSM_CASE_TRANSIT (1, O, stateO_enter_exec, ;)

309 )

310 /» */

311 /e» state (STATS) enter executives *+/

312 FSN_STATE_ENTER_UNFORCED (1, statei_enter_exec, "STATS")
313 {

314 /¢ At end of simulation, scalar performance statistics ¢/
316 /+ and input parameters are writtem out. */

816 /¢ This is for command link throughput :21APR94+/

317 op.stat_scalar_write (“CL Throughput (bps), Priority 1,
318 £4dilp2_total_bits_al0] / op_sim_time ());

152




319
320

321

322

324

325
32¢

27

320

331

332

333

334

336
33¢
337

339

340
341

342
343

op_stat_scalar_write (“CL Throughput (bps), Priority 2¢,

2ddilp2_total_bits_al1] / op_sim_time ());

op.stat_scalar_write (“CL Throughput (bps), Priority 3%,

1ddilp2_total_bits_a[2] / op_sim_time ());

op_stat_scalar_write (“CL Throughput (bps), Priority 4",

2ddilp2_total_bits_a[3] / op_sim_time ());

op_stat_scalar_write (“CL Throughput (bps), Priority 5*,

£ddilp2_total_bits_a[4] / op_sim_time ());

op.stat_scalar_write (“CL Throughput (bps), Priority 6",

1ddilp2_total_bits_al6) / op_sim_time ());

op_stat_scalar_write (“CL Throughput (bps), Priority T*,

1ddilp2_total_bits_a[6) / op_sim_time ());

op_stat_scalar_vrite (“CL Throughput (bps), Priority 8%,

2ddilp2_total_bits_al7] / op_sim_time ());

op_stat_scalar_wvrite (“CL Throughput (bps), Asynchronous",
(2ddilp2_total_bits - £ddilp2_total_bits_a[8]) / op_sim_time

/e
/e
/®
/s
/e

(2ddilp2_total_bits_a[0] + £ddilp2_total_bits_a[1] +
£4dilp2_total_bits_af2) + 2adilp2_total_bits_al3] +
£4dilp2_total_bits_a[4] + £ddilp2_total_bits_a[5] +
£4di1p2_total_bits_a[6] + 2ddilp2_total_bits_al7]) /
op_sim_time ());

op_stat_scalar_write ("CL Throughput (bps), Synchronous",

14dilp2_total_bits_a[8] / op_sim_time ());

op_stat_scalar_write (“CL Throughput (bps), Total",

2ddilp2_total_bits / op_sim_time ());

344 /+ Only one station needs to do this for the second ring(Ring 1)/
345 i (12ddi2_sink_scalar_write)

346 (

347 /* set the scalar write flag ¢/
348 £4d4i2_sink_scalar_write = 1;

M;

s/
s/
s/
»/

349 op_stat_scalar_vrite ("Mean End-to-End Delay-1 (sec.), Priority 1*,
350 24di2_sink_accum_delay_al0] / 2ddi2_sink_total_pkts_a[0]);

153

*/




351
352

363
354

365
366

357
3568

358
360

361
362

363
304

365
366
367

368
369
370
an
372
373
374
376

378

ar?

378
379

380

381

382
383

364
386

/®
/®
/e
/*®
/*
/*
/®
/*

op.stat_scalar_write ("Mean End-to-End Delay-1(sec.), Priority 2",
fddi2_sink_accum_delay_a[1] / £ddi2_sink_total_pkts_a[1]);

op_stat_scalar_write (“Mean End-to-End Delay-1 (sec.), Priority 3",
2ddi2_sink_accum_delay_al[2] / fddi2_sink_total_pkts_a[2]);

op.stat_scalar_write ("Mean End-to-End Delay-1 (sec.), Priority 4",
£ddi2_sink_accum_delay_al[3] / f£ddi2_sink_total_pkts_a[3]);

op_stat_scalar_write ("Mean End-to-End Delay-1 (sec.), Priority 5",
£d4di2_sink_accum_delay_al[4] / £ddi2_sink_total_pkts_a[4]);

op_stat_scalar_write ("Mean End-to-End Delay-1 (sec.), Priority 6",
2ddi2_sink_accum_delay_a[5] / f£ddi2_sink_total_pkts_a[5]);

op.stat_scalar_write (“Mean End-to-End Delay-1 {sec.), Priority 7",
£ddi2_sink_accum_delay_a[8] / £ddi2_sink_total_pkts_a[6]);

op_stat_scalar_write (“Mean End-to-End Delay-1 (sec.), Priority 8",
£ddi2_sink_accum_delay_al[?7] / 2£ddi2_sink_total_pkts_a[7]);

op_stat_scalar_write ("Mean End-to-End Delay-1 (sec.), Asynchronous®,
(£4di2_sink_accum_delay - f£ddi2_ sink_accum_delay_ a[8]) /
(2ddi2_sink_total_pkts - fddi2_sink_total_pkts_a[8]));

(£ddi2_sink_accum_delay_al[0] + fddi2_sink_accum_delay_ali] + =/
£ddi2_sink_accum_delay_al[2] + fddi2_sink_accum_delay_a[3] + =/
2ddi2_sink_accum_delay_al4] + fddi2_sink_accum_delay_a[5] + ¢/
£ddi2_sink_accum_delay_a{6] + f£ddi2_sink_accum_delay_a(7]) / »/
(£3di2_sink_total_pkts_a{0] + f£ddi2_sink_total_pkts_a[1] + */
£ddi2_sink_total_pkts_a[2] + £ddi2_sink_total _pkts_a(3] + ./
2ddi2_sink_total_pkts_a[4] + fddi2_sink_total_pkts_a[5] + */
£ddi2_sink_total_pkts_a[6] + £ddi2_sink _total pkts_a[7])); =/

op_stat_scalar_write ("Mean End-to-End Delay-i (sec.), Synchronous",
2ddi2_sink_accum_delay_al[8] / f£ddi2_sink_total_pkts_a{8]l);

op_stat_scalar_write ("Mean End-to-End Delay-1 (sec.), Total",
£ddi2_sink_accum_delay / fddi2_sink_total_pkts);

op.stat_scalar_write ("Throughput-1 (bps), Priority 1*,
1d4di2_sink_total _bits_a[0] / op_sim_time ());

op.stat_scalar_write (“Throughput~1i (bps), Priority 2",
£1ddi2_sink_total_bits_al1] / op_sim_time ());

op.stat_scalar_write ("Throughput-i (bps), Priority 3",
1ddi2_sink_total_bits_al[2] / op_sim_time ());

op.sta%_scalar_vrite (“Throughput-1( bps), Priority 4",

154




391

382
393

364
3986

396
397

398
398
400
401
402

403
404

406
400
407
408

409
410

411
412

413
414

4156
416

417
418

£ddi2_sink_total_bits_a[3) / op_sim_time ());

op_stat_scalar_write (“Throughput-i (bps), Priority 5",
2ddi2_sink_total_bits_al4] / op_sim_time ());

op.stat_scalar_write (“Throughput-i (bps), Priority 6",
£ddi2_sink_total_bits_a[5] / op_sim_time ());

op_stat_scalar_write (“Throughput-i (bps), Priority 7",
£ddi2_sink_total_bits_al[6] / op_sim_time ());

op.stat_scalar_write (“Throughput-i (bps), Priority 8",
£dai2_sink_total_bits_a[7] / op_sim_time ());

op_stat_scalar_write ("Throughput-i (bps), Asynchromous",

(£ddi2_sink_total_bits - £4di2_sink_total_bits_al8]) / op_sim_time ());

/+ (£ddi2_sink_total_bits_a[0] + fddi2_sink_total_ bits_a[1] +

/* £ddi2_sink_total_bits_a[2] + fddi2_sink_total _bits_a[3] +
/% 2ddi2_sink_total_bits_a[4] + £ddi2_sink_total_bits_af[5] +
/* £ddi2_sink_total_bits_a[6] + fddi2_sink_total_bits_al[7]) /
/% op_sim_time ());

op_stat_scalar_write (“Throughput-i (bps), Synchronous",
£24di2_sink_total_bits_al8) / op_sim_time ());

op.stat_scalar_write ("Throughput-i (bps), Total",
£ddi2_sink_total_bits / op_sim_time ());
op_stat_scalar_write ("Peak End-to-End Delay-1i (sec.), Priority 1",

2ddi2_sink_peak_delay_a[0]);

op_stat_scalar_vrite (“Peak End-to-End Delay-1 (sec.), Priority 2",
2ddi2_sink_peak_delay_al[1]);

op_stat_scalar_write (“Peak End-to-End Delay-1 (sec.), Priority 3",
1ddi2_sink_peak_delay_a[2]);

op.stat_scalar_write ("Peak End-to-End Delay-1 (sec.), Priority 4",
£ddi2_sink_peak_delay_a[3]);

op_stat_scalar_write (“Peak End-to-End Delay-i (sec.), Priority 5",
£ddi2_sink_peak_delay_al[4]);

op_stat_scalar_srite ("Peak End-to-End Delay-1 (sec.), Priority 6",
2ddi2_sink_peak_delay_al[5]);

155

s/

*/
»/
*/
./




419 op_stat_scalar _write (“Peak End-to-End Delay-1 (sec.), Priority 7%,
420 24di2_sink_peak_delay_al6]);

421 op_stat_scalar_write (“Peak End-to-End Delay-1 (sec.), Priority 8",
422 £ddi2_sink_peak_delay_al7]);

423 op_stat_scalar_write ("Peak End-to-End Delay-1 (sec.), Synchronous*,
42¢ £ddi2_sink_peak_delay_al8]);

425 op.stat_scalar_write (“Peak End-to-End Delay-1 (sec.), Overall”,
426 2ddi2_sink_peak_delay);

427 /+ VUrite the TTRT value for ring 0. This preserves %/
428 /¢ the o0ld behavior for single-ring simulations. &/
429 op_stat_scalar_vwrite (“TTRT (sec.) - Ring 1",

430 £ddi_t_opr [11);

431 /+ 12JAN94: obtain offered load information from the Environment »/

432 /¢ file; this will be used to provide abscissa information that s/

433 /¢ can be plotted in the Analysis Editor (see “fddi_sink" STATS @/

434 /+ state. To the user: it’s your job to keep these current in s/

435 /¢ the Environment File. -Nix */

436 op_ima_sim_attr_get (OPC_IMA_DOUBLE, "total_offered_load_i", &0ffered_Load);

437 op_ima_sim_attr_get (OPC_IMA_DOUBLE, “asynch_offered_load_ 1", &Asynch_Offered_Load);

438 /% 12JAN94: write the total offered load for this run ¢/
439 op.stat_scalar_write (“Total Offered Load-1 (Mbps)“,

440 Offered_Load);

441 op_stat_scalar_write (“Asynchronous Offered Load-1 (Mbps)",
442 Asynch_Offered_Load);

443 }

444 )

445 /+* blocking after enter executives of unforced state. e»/
446 FSM_EXIT (3,sp_fddi_sink)

447 /+» state (STATS) exit executives s#+/

448 FSM_STATE_EXIT_UNFORCED (1, statel_exit_exec, "STATS")
449 {

460 }

481 /e¢ state (STATS) transition processing *+/
462 FSM_TRANSIT_MISSING (“STATS")
453 /» s/

156




454 /»s gtate (INIT) enter executives s+/
455 FSN_STATE_ENTER_FORCED (2, state2_enter_exec, “INIT")

488 {

457 /+ get the gshandles of the global statistic to be obtained s/
468 /¢ 20JAN94: set array format »/

459 thru2_gshandle_a[0]
460 thru2_gshandle_a[1]
461 thru2_gshandle_a(2]
462 thru2_gshandle_a[3]
463 thru2_gshandle_a(4]
464 thru2_gshandle_al[b)
465 thru2_gshandle_a[6]
466 thru2_gshandle_al[7]
467 thru2_gshandle_a[8]
468 thru2_gshandle_a[9]
469 thru2_gshandle

op_stat_global_reg ("pri 1 throughput-1
op_stat_global_reg ("pri 2 throughput-i

(bps)*);
(bps)*);

op_stat_global_reg ("pri 3 throughput-i (bps)”);

op_stax _global_reg (“pri 4 throughput-1
op.stat_global_reg (“pri 6 throughput-1
op_stat_global_reg (“pri 6 throughput-1i
op_stat_global_reg (“pri 7 throughput-1
op_stat_global_reg (“pri 8 throughput-1
op.stat_global_reg (“synch throughput-1
op_stat_global_reg ("async throughput-1
op_stat_global_reg (“total throughput-1

(bps)*);
(bps)*);
(bps)*);
(bps)*);
(bps)*);
(bps)*);
(bps)*);
(bps)*);

470 n2_delay_gshandle_a[0] = op_stat_global_reg ("pri

471
472
473
474
475
476

477 m2_delay_gshandle_a{7]

478

479 m2_delay_gshandle_a[9]
480 m2_delay_gshandle

481
482
483
484
485
486
487
488
489
490

491
492
493
494
495
498
497
498

m2_delay_gshandle_a[1]
mn2_delay_gshandle_a[2]
a2_delay_gshandle_a[3)
m2_delay_gshandle_a[4]
m2_delay_gshandle_a[5)
m2_delay_gshandle_a[6]

n2_delay_gshandle_a[8]

ete2_delay_gshandle_a(0]
ete2_delay_gshandle_a(1]
ete2_delay_gshandle_a[2]
ete2_delay_gshandle_a(3]
ete2_delay_gshandle_a[4]
ete2_delay_gshandle_a(5]
ete2_delay_gshandle_a[6])
ete2_delay_gshandle_a[7])
ete2_delay_gshandle_a[8]
ote2_delay_gshandle

t2_gshandle_a[0] =
t2_gshandle_af1) =
t2_gshandle_a[2] =
t2_gshandle_a[3) =
t2.gshandle_a[4) =
t2_gshandle_a[5) =
t2_gshandle_a[6] =
t2_gshandle_af7] =

op_stat_global_reg (“pri 1
op_stat_global_reg ("pri 2
op_stat_global_reg (“pri 3
op_stat_global_reg ("pri 4
op_stat_global_reg ("pri §
op_stat_global_reg ("pri 6
op_stat_global_reg ("pri 7
op.stat_global_reg (“pri 8

op_stat_global_reg ("pri
op_stat_global_reg ("pri
op_stat_global_reg ("pri
op.stat_global _reg ("pri
op_stat_global _reg (“pri
op.stat_global_reg ("pri
op.stat_global_reg (“pri

op.stat_global _reg ("synch mean delay-1
op.stat_global_reg ("async mean delay-1
op_stat_global_reg ("total mean delay-1

= op_stat_global_reg (“pri 1
= op_stat_global_reg (“pri 2
= op_stat_global_reg (“pri 3
= op_stat_global _reg (“pri 4
= op_stat_global_reg (“pri &
= op_stat_global_reg (“pri 6
= op_stat_global _reg ("pri 7
= op_stat_global_reg ("pri 8
= op_stat_global_reg (“synch
= ("total

op.stat_global_reg

157

CL throughput
CL throughput
CL throughput
CL throughput
CL throughput
CL throughput
CL throughput
CL throughput

(sec.)¥);
(sec.)*);
(sec.)®);
(sec.)");
(sec.)¥);
(sec.)™);
(sec.)*);
(sec.)");
(sec.)");
(sec.)");
(sec.)");

1 mean delay-1
2 mean delay-1
3 mean delay-1
4 mean delay-1
5 mean delay-1
6 mean delay-1
7 mean delay-1
8 mean delay-i

(sec.)");
(sec.)");
(sec.)");
(sec.)");
(sec.)”);
(sec.)");
(sec.)");
(sec.)");
(sec.)™);
(sec.)");

end-to-end delay-1
end-to-end delay-1i
end-to-end delay-i
end-to-end delay-1
end-to-end delay-1
end-to-end delay-1
end-to-end delay-1
end-to-end delay-1
end-to-end delay-1
end-to-end delay-1

(bps)™);
(bps)*);
(ops)™);
(bps)*™);
(bps)");
(bps)™);
(bps)*);
(bps)™);




499 t2_gshandle_a[8) = op_stat_global_reg ("synch CL throughput (bps)”);
8500 t2_gshandle_a[9] = op_stat_global_reg (“async CL throughput (bps)*);
5§01 t2_gshandle = op_stat_global_reg (“total CL throughput (bps)");

502 }

503 /e+ gtate (INIT) exit executives *+/

504 FSH_STATE_EXIT_FORCED (2, state2_exit_exec, “INIT")
808 {

506 }

507 /++ state (INIT) transition processing *+/
508 FSM_INIT_COND (END_OF_SIN)

509 FSM_DFLT_COND

510 FSM_TEST_LOGIC (“INIT")

611 FSHN_TRANSIT_SVWITCE

512 {

513 FSN_CASE_TRANSIT (0, 1, statel_enter_exec, ;)

514 FSN_CASE_TRANSIT (1, 0, stateO_enter_exec, ;)

515 }

516 /» s/

617 }

618 FSN_EXIT (2,sp_fddi_sink)
619 )}

520 void

521 sp_fddi_sink_svar (prs_ptr,var_name,var p_ptr)
522 sp_1ddi_sink_state *prs_ptr;

523 chaxr svar_name, *svar_p_ptr;

52¢ {

526 FIN (sp_1ddi_sink_svar (prs_ptr))

626 svaxr_p_ptr = VOS_NIL;

527 it (Vos_String_Equal (“thru2_gshandle" , var_name))

$28 svax_p_ptr = (char =) (&prs_ptr->sv_thru2_gshandle);

629 if (Vos_String_Equal (“m2_delay_gshandle"™ , var_name))
630 svar_p_ptr = (char ¢) (&prs_ptr->sv_m2_delay_gshandle);
631 if (Vos_String Equal (“ete2_delay_gshandle” , var_name))

158




532 svar_p_ptr = (char *) (&prs_ptr->sv_ete2_delay_gshandle);
633 it (Vos_String_Equal (“thru2_gshandle_a“ , var_name))

834 svar_p_ptr = (char s) (prs_ptr->sv_thru2_gshandle_a);

636 if (Vos_String_Equal (“m2_delay_gshandle_a" , var_name))
536 evar_p_ptr = (char #) (prs_ptr->sv_m2 _delay_gshandle_a);
837 it (Vos_String_Equal (“ete2_delay_gshandle_a" , var_name))
538 svar_p_ptr = (char ») (prs_ptr->sv_ete2_delay_gshandle_a);
639 it (Vos_String_Equal (“t2_gshandle" , var_name))

540 svar_p_ptr = (char *) (&prs_ptr->sv_t2_gshandle);

541 if (Vos_String Equal (“t2_gshandle_a“ , var_name))

542 svar_p_ptr = (char ») (prs_ptr->sv_t2_gshandle_a);

B43 if (Vos_String Bqual (“my_id" , var_name))

544 svar_p_ptr = (char ») (&prs_ptr->sv_my_id);

545 FOUT;
548 }

647 void

548 sp_fddi_sink_diag ()

649 {

560 double delay, creat_time;

6561 Packets pkptr;

562 Packets pkptrl ; /+5APR94s/
853 int src_addr, my_addr;

554 int dest_addr;/*14APRO4*/

565 Ici* from_mac_ici_ptr;

566 doudble fddi_sink_ttrt;

657 FIN (sp_fddi_sink_diag ())

568 FOUT;
569 }

660 void

661 sp_fddi_sink_terminate ()

562 {

5683 double delay, creat_time;

564 Packet® pkptr;

565 Packet® pkptri ; /+6APR94+/
666 int src_addr, my_addr;

567 int dest_addr;/+14APR94+/

588 Icis from mac_ici_ptr;

669 double fddi_sink_ttrt;

159




870 FIN (sp.fddi_sink_terminate ())

§71 FOUT;
872 }

73 Compcode

574 sp_144i_sink_init (pr_state_pptr)

575 sp_tddi_sink_state s+pr_state_pptr;
576 {

877 static VosT_Cm_Obtype obtype = OPC_NIL;

§78 FIN (sp_fddi_sink_init (pr_state_pptr))

579 it (obtype == OPC_NIL)

680 {

681 it (Vos_Catmem_Register (“proc state vars (sp_fddi_sink)",

582 sizeof (sp_fddi_sink_state), Vos_Nop, Zobtype) == VOSC_FAILURE)
583 FRET (OPC_COMPCODE_FAILURE)

584 }

686 if ((spr_state_pptr = (sp_fddi_sink_states) Vos_Catmem_Alloc (obtype, 1)) == OPC_NIL)
586 FRET (OPC_COMPCODE_FAILURE)

587 else

688 {

589 (spr_state_pptr)->current_block = 4;

590 FRET (OPC_COMPCODE_SUCCESS)

501 }

692 }

160




APPENDIX G
CDL MODEL ERROR ALLOCATION CODE

“cdl_pt_error.ps.c”

The line numbering in this appendix is within this thesis only, and does not corre-
spond with that seen in OPNET’s text editors.

1 /® cdl_pt_error.ps.c ¢/
2 /+ Customized error allocation model for point-to-point link transceiver pipeline s/

3 /ee seesss s SEE0LERESEESHES 6005404850808 45088 80508/
4 /s Last modified by Selcuk Karayakayl s/
B /e 22APR4 */
6 /essssnsesnsnesess SEESEEENEES T Y Y
7 #include <opnet.h>

8 #include <math.h>

9 /s Detine a convenient macro for computing #*/
10 /+ factorials using the gamma function #/
11 #define log_factorial(n) lgamma ((doudle) n + 1.0)

12 void
13 cdl_pt_error (pkptr)
14 Packets pkptr;

16 {

16 Objid 1link_objid;

17 double Pe, ¥, p.accum, p_exact;

18 double log_p1, log_p2, log_arrange;

19 double duty_cycle; /* 31MARO4 */

20 double jam_length, jam_ber,int_bet_jamlen, ber_bet_jamlen;/s20MARO4*/
21 double time_stamp; /* time stamp for the packet arriving time =/
22 double offset; /* 1APRO4 o/

a3 int invert_errors = OPC_FALSE, seg_size, num_errs;

24 int jammer_type;/*26APRO4s/

25 /#int channel_index;s/ /¢ 4APR94 &/

26 /%% Compute the number of errors assigned to the given packet s/

27 /+* based on its length and the bit error probability. 474

28 FIN (cdl_pt_error (pkptr))

29 /*Nake a time stamp to see whether the packet is in jamming period or mot s/
30 time_stamp = op_sim_time();
31 /sprintf(“time_stamp = %16.127\n", time_stamp);s/

32 /* Obtain object id of point-to-point link carrying transmission. */
a3 link_objid = op._td_get_int (pkptr, OPC_TDA_PT_LINK_0BJID);

161




g8

37

39

41

412
43

45
46
47

418
419

50
51
52
63

66
56
57

69
o
¢1
62
63

66
67
es
e
70
71
72
73
T4
76
76

/¢ Obtain the channel index for the particular link s/
/¢ Determine which channel the packet is on #//#30MAR+/
/% channel_index = op_td_get_int (pkptr,0PC_TDA_PT_CH_INDEX);+//+4APRO4s/

/% Dbtain the bit-error probability of the chaunel. */
/% op_ima_obj_attr_get (link_objid, "ber”, &pe); ¢//¢ignore this attribute 31MARS4s/

/% Obtain the extended attributes for the point-to-point link »/
/% These attributes are appended in order to simulate jamming features */
/% 29MARD4 »/

op.ima_obj_attr_get (link objid, "jam_length”, &jam_length);
op.ima_obj_attr_get (link _objid, “jam_ber”, &jam_ber);

op.ima_obj_attr_get (link _objid, “interval_bet_jam_len", &int_bet_jamlen);
op.ima_obj_attr_get (link_objid, "ber_bet_jam_len”, &ber_bet_jamlen);
op.ima_obj_attr_get (link objid, "init_jam_offset”, &offset);
op.ima_obj_attr_get (link_objid, “jammer._type”, &jammer_type);

/* Obtain the length of the packet. ¢/
seg_size = op_pk_total_size_get (pkptr);

/¢ Determine the jammer type in use:26APR94 ¢/
/* Check if pulsed jammer is in use ¢/
if (jammer_type == 0)

{

/+ Randomize the jamming durations */
/% These durations are randomized with uniform distridbution */
/¢ in range [0, duration(. User should be awvare of these */
/% attributes specified in the environment file. They are max values %/
/* for those particular durations ¢/
jam_length = op_dist_uniform(jam_length);
int_bet_jamlen = op_dist_uniform{int_bet_jamlen);
}
/* Otherwise, channel svept jammer is in use. Jamming durations s/
/* should not be randomized to keep consecutive pulses in order. =/

/* Compute duty cycle for jammming */
duty_cycle = jam_length + int_bet_jamlen;

/* Check time stamp if it is in the initial jam offset period */
/¢ All BER’s are uniformly distributed in range [0, ber[, so that ¢/
/* realistic representation is provided; User should be aware of */
/% these attributes specified in the environment file. They are max values +/
/* for those particular berss/
if (time_stamp < offset)
Pe = op_dist_uniform(ber_bet_jamlen); /# the packet is still not in the jamming ¢/
/% period s/
else
{
/* Check packet is in jamming period */

162




7
78
(£
80
81
82
83

100
101
102
103

104
106
106

107
108
109

110
111
112
113
114
115

116
117
118
119

if ( fmod(time_stamp,duty_cycle) <= jam_length )
pe = op_dist_uniform(jam_ber); /¢ the packet is in jamming period, */
/% random “pe" to be computed as jam_ber »/
else
pe = op.dist_uniform(ber_bet_jamlen); /¢ packet is in unjammed period
/* random “pe" to be computed as ber_bet_jamlen */
}

/*This part computes num_errs for the packet */
/% Case 1: if the bit error rate is zero, so is the number of errors. =/
it (pe == 0.0 || seg_size == Q)
num_errs = 0;

/¢ Case 2: if the bit error rate is 1.0, then all the bits are in error.s/
/% (note however, that bit error rates should not normally exceed 0.5).%/
else if (pe >= 1.0)

num_errs = seg_size;

/% Case 3: The bit error rate is not zero or one. %/
else
{
/% If the bit error rate is greater than 0.5 and less than 1.0, invert
/* the problem to find instead the number of bits that are not in error
/* in order to accelerate the pexrformance of the algorithm. Set a flag
/* to indicate that the result will then have to be inverted.
it (pe > 0.5)
{
pe = 1.0 - pe;
invert_exrors = OPC_TRUE;
}

/+ The exror count can be obtained by mapping a uniform random number
/¢ in [0, 1[ via the inverse of the cumulative mass function (CMF)
/¢ for the bit error count distribution.

[}
/# Obtain a uniform random number in [0, 1[ to represent */
/+ the value of the CDF ac the outcome that will be produced. s/
T = op_dist_uniform (1.0);

/* Integrate probability mass over possible outcomes until r is exceeded.
/% The loop iteratively corresponds to “inverting" the CMF since it finds

/* the bit error count at which the CMF first meets or exceeds the value r.

for (p.accum = 0.0, num_errs = O; num_errs <= seg_size; num_errs++)

{

/* Compute the probability of exactly ’num_errs’ bit errors occurring.

/* The probability that the first ’‘anum_errs’ bits will be in error
/¢ is given by pow (pe, num_errs). Here it is obtained in logarithmic
/* form to avoid underflow for small ’pe’ or large ’num_errs_jam’.
log_p1 = (double) num_errs * log (pe);

163

s/
*/
*/
=/
»/
s/
*/
s/
s/
s/
s/
./
./
./




120
121
122
123

124
126
126
127
128
129
130
131
132
133
134

136
136
137

138
139
140
141
142

143
144
146
148
147

148
149
150
161
152

/% Similarly, obtain the probability that the remaining bits will not
/* be in error. The combination of these two events represents one

/% possible configuration of bits yielding a total of ’num_errs’ errors.
log_p2 = (doudle) (seg_size - num_errs) ¢ log (1.0 - pe);

/e
/*
/*
/®
/*

/* Add this to the probability mass accumulated so far for previously
/¢ tested outcomes to obtain the value of the CMF at outcome=num_errs+/
p-accum += p_exact;

/*’num_errs’ is the outcome for this trial if the CMF meets or exceeds
/% the uniform random value selected earlier.
if (p_accum >= )

}

/+ 1f the bit error rate was inverted to compute correct bits instead, then ¢/
/* rTeinvert the result to obtain the number of bits in erxor.

if (invert_errors == OPC_TRUE)

num_errs = seg_size - num_errs;

}

/* printf(“num_of_errors = %5d\n", num_erxrs); */
/* Set number of bit errors in packet transmission data attribute. s/
op_td_set_int (pkptr, OPC_TDA_PT_WUM_ERRORS, num_errs);

Compute the number of arrangements that are possible with the same
number of bits in error as the particular case above. Again obtain
this number in logarithmic form (to avoid overflow in this case).
This result is expressed as the logarithmic form of the formula for
the number N of combinations of k items from n:
log_arrange = log factorial (seg_size) -
log_factorial (num_erxs) -
log_tactorial (seg_size - num_errs);
/% Compute the probability that exactly ’num_erxrs’ are present
/% in the segment of bits, in any arrangement.
p-exact = exp (log_arrange + log_pl + log_p2);

n!/(n-k) 'k!

./
s/

s/

s/

*/

«/




APPENDIX H

SAMPLE ENVIRONMENT FILE FOR
PULSED JAMMER

# cdl4_1b0jam0. et

# sample simulation configuration file for

# two interconnected 10 station network in the

# existence of pulsed jammer interference (137.088 Mbps channel hierarchy )
# with circular allocation load balancing algorithm

#see Attributes related to loading used by "fddi_gen" sse»

# station addresses

¢.xring0.20.mac.station_address:
*.ring0.f1.mac.station_address:
¢.ring0.22.mac.station_address:
*.xring0.13.nac.station_address:
¢.ring0.f4.mac.station_address:
».ring0.25.mac.station_address:
.ring0.f6.mac.station_address:
.ring0.17.mac.station_address:
.ring0.18.mac.station_address:
.ring0.19.mac.station_address:

O W ~NOAONdWN=O

LN BE BN J

.ring1.10.mac.station_address: 10
.ringi.f1.mac.station_address: 11
.ringl.12.mac.station_address: 12
.ringl.f3.mac.stxtion_address: 13
.ringl.f4.mac.station_address: 14
.ringl.26.mac.station_address: 15
.ringl.28.mac.station _address: 16
.ringl.17.mac.station_address: 17
.ringi.f8.mac.station_address: 18
.ringl.29.mac.station_address: 19

LR BN N N I BN B BN BN

.ring0.¢.mac.ring_id :0
s.ringl.®*.mac.xring _id :1

# Specitic stations may be tailored by specifying the full name:
# for example, top.ring0.f19.llc_src.async_mix : .5

# This means all stations must be specified, or individuals

# may be named after the generic is specified.

# destination addresses for random message generation
#"top.ring0.20.11c_src.lov dest address"
#"top.ring0.£0.11c_sxrc.high dest address” :

165




“¢.ring0.¢.1lc_src.lovw dest address": 10
"s.ring0.*.llc_sxc.high dest address”: 19
“s.ringl.s.llc_src.lov dest address“: 0
“e¢.ringi.¢.llc_src.high dest address™: 19

# range of priority values that can be assigned to packets; FDDI
# standards allow for 8 priorities of asynchronous traffic. HNIL3'’s
# original model is modified to allow each station to generate multiple
# priorities, within a specified range.
“e.#.1lc_src.high pkt priority" : 7
“e.¢.1lc_src.lov pkt priority" : 0

# arrival rate(frames/sec), and message size (bits) for random message
# generation at each station on the ring.

“e¢.s. ¢ arrival rate” : 250

“¢.s. ¢ mean pk length” : 20000
#"ring0.29.¢.arrival rate”: Y
#"ring0.29.+.mean pk length": o
#"ringl.£9.%.arrival rate": 0
#"ringl.19.¢.mean pk length": 0

# TAPR94 - S.Karayakaylar

# determine which load balancing algorithm is in use in the CPNI
# User should specify the algorithm before simulation.

#

# O (zexo) ----> circular load balancing algorithm (default)

# 1 (one) —--> empty allocation algoritham

#

“top.ring0.19.11lc_sink.load dbalancing algorithm™: 0

# 15APRO4 :determine the station address of the network interfaces in
# both rings.

# CPNI

"top.ring0.£9.11lc_ sink.station_address": 9

# SPE1

“top.ring1.19.11lc_sink.station_address": 19

# 12DEC93: total offered load is the sum of all stations’ loads (Mbps).
# Compute this by hand; this value is useful for generating
# scalar plots where offered load is the abscissa.

total_offered_load_O : 50
asynch_offered_load O : 45
total_offered_load_1 : 5O
asynch_offered_load_i : 45

# set the proportion of asynchronous traffic
# a value of 1.0 indicates all asynchronous traffic
"e.s.¢ . async_mix" : 0.9

166



#sss Ring configuration attributes used by “2ddi_mac" #+#

# allocate percentage of synchronous bandwidth to each station

# this value should not exceed 1 for all stations combined; OPNET does not
# enforce this; O1FEB94: this must be less than 1; see egquation below
“e¢.s.nac.sync bandwidth” : 0.089556756

#"top.ring0.19.mac.sync bandwidth": 0.0

# Target Token Rotation Time (one half of maximum synchronous response time)
# (This is commented out for compatibility with the f£ddi_script, which

# sets T_Req on the simulation command line; remove the comment pound-sign
# belov to make this environment file self-sufficient.)

# SUN(SAi) + D_Max + F_Max + Token_Time <= TTRT

# Povwers gives TTRT = 10 ms as necessary for voice transmission; in “BO¥eS"“,
# D_Max + F_Nax + Token_Time = 1.97888 ms.

“s.s.mac.T_Req" : .004

# Index of the station which initially launches the token

# 1TAPRS4 : -Karayakaylar

# This index should be greater than the maximum station number

# Bridge stations spawns token for interconnected simulation by default.
“spawn station": 20

# Delay incurred by packets as they traverse a station’s ring interface
# see Povers, p. 361 for a discussion of this (Povers gives 1lusec,

# but 60.0e-08 agrees with Dykeman & Bux)

station_latency: 60.0e-08

# Propagation Delay separating stations on the ring.

# It propagation delay is 6.085 microsec/km, this corresponds to

# to a 50 station ring with a circumference of 50 km.

# (The value given for propagation delay corresponds to Powers, and to
# Dykeman & Bux)

prop.delay: 5.085e¢-06

# CDL link related attributes -Karayakaylar TAPRS4
& The attributes below are specified with respect to the jammer type
# There are two types of jamming models which the CDL is exposed to.

8 (1) Pulsed jammer (jammer_type = 0)
# (2) Cannel-swept jammer (jammer_type = 1)
]

¢ NOTE:For pulsed jammer init_jam_offset may be zero, whereas a proper
# offset should be specified for channel-swept jammer.

167




# jeam_length, jam_ber, interval_bet_jam_len, bexr_bet_jam_len are maximum
# values in the case of pulsed jammer since they are randomized in the

# exror allocation pipeline stage.

# For channel-swept jammer canly jam_ber and ber_bet_jam_len attributes are
# maximium values to be randomized.

# veturn link 1s_0 to 1s.3

# command link 1ls_4

*.1s_0.jam_length: 0.06
*.1s_1.jam_length: 0.02
*.1s_2. jan_length: 0.01
¢.1s_3. jam_length: 0.09
*.1s_4.jam_length: 0.06
¢.1s_0.jam_ber: 20-3
*.1s_1.jam_ber: 2¢-3
*.1s_2.jam_ber: 20-3
*.18_3. jam_ber: 2¢-3
*.1s_4.jam_ber: 0.0

*.1s_0.interval_bet_jam_len: 0.03
*.1s_1.interval_bet_jam_len: 0.03
*.1s_2.interval _bet_jam_len: 0.03
¢.1s_3.interval_bet_jam_len: 0.03
¢.1s_4.interval_bet_jam_len: 0.03
#.1s_0.ber_bet_jam_len: 2e¢-6
*.1s_1.ber_bet_jam_len: 20-6
s.1s_2.ber_bet_jam_len: 2e-6
¢.1s_3.ber_bet_jam_len: 2e-6
¢.1s_4.ber_bet_jam_len: 0.0

¢.18_0.init_jam_offset: 0.0

¢.1s_1.init_jam_offset: 0.0

*.1s_2.init_jam_offset: 0.0

¢.1s_3.init_jam_offset: 0.0

*.1s_4.init_jam_offset: 0.0

¢.1s_0. jammer_type:
¢.1ls_1.jammer_type:
¢.1s_2. jammer_type:
®.1s_3.jammer_type:
*.1ls_4.jammer_type:

00000

# Return and command link propagation delays are specified as 60 msec.
¢,1s_0.delay: 0.06

*.1s_1.delay: 0.06
s.1s_2.delay: 0.06
¢.1s_3.delay: 0.06
¢.1s_4.delay: 0.06

#s¢¢ Simulation related attributes

# Token Acceleration Mechanism enabling flag.

# It is reccomended that this mechanism be enabled for most situations
8 16APR94 : for bridged 1ddi cdl_interconnection network this flag

# must be zero. Othervise, program fault occurs. -Karayakaylar

168




accelerate_token: 0

# Run control attributes

seed: 10
duration: 1

vexbose_sim: TRUE

upd_int: .1

os_tile: cdl4_1b0jam0

# (This is commented out for compatibility with the fddi_script, which

# sets the output vector file on the simulation command line; remove the
# comment pound-sign below to make this environment file self-sufficient.)
ov_tfile: cdl4_1b0jam0

# Opnet Debugger (odb) enabling attribute
# debug: TRUE

169




170




APPENDIX I

SAMPLE ENVIRONMENT FILE EXCERPT
FOR CHANNEL-SWEPT JAMMER

# cdl4_lbijami.ef

# sample simulation configuration file for

# two interconnected 10 station network in the

# existence of channel-swept jammer interference (137.088 Mbps channel hierarchy )
# with empty selection load balancing algorithm

# CDL link related attributes -Karayakaylar 7APR94
# The attributes below are specified with respect to the jammer type
# There are two types of jamming models which the CDL is exposed to.

g

# (1) Pulsed jammer (jammer_type = 0)
# (2) Channel-swept jammer (jammer_type = 1)
t

# NOTE:For pulsed jammer init_jam_offset may be zero, whereas a proper

# offset should be specified for channel-swept jammer.

# jam_length, jam_ber, interval_bet_jam_len, ber_bet_jam_len are maximum
# values in the case of pulsed jammer since they are randomized in the

# erxror allocation pipeline stage.

# For channel-swept jammer only jam_ber and ber_bet_jam_len attributes are
# maximium values to be randomized.

# return 1link 1s_0 to 1s_3

# command link 1s_4

*.1s_0.jam_length: 0.02
¢.1s_1.jam_length: 0.02
*.18_2.jam_length: 0.02
¢.1s_3.jam_length: 0.02
¢.1s_4.jam_length: 0.02
¢.1s_0. jam_ber: 2¢-3
¢.1s_1.jam_ber: 20-3
*.18_2. jam_ber: 2¢-3
*.1s_3.jam_ber: 2e-3
¢.1s_4.jam_ber: 0.0

¢.1s_0.interval _bet_jam_len: 0.06
*.1s_1.intexrval bet_jam_len: 0.06
*.1s_2.interval _bet_jam_len: 0.06
¢,1s_3.interval_bet_jam_len: 0.06
¢.1s_4.intexrval_bet_jam_len: 0.06
¢.1s_0.bexr_bet_jam_len: 20-8
s.1s_1.ber_bet_jam_len: 2¢-6

171




3

.2.ber_bet_jam_len:

~3.ber_bet_jam_len:

.&.bexr_bet_jam_len:

_0.init_jam_offset:
ini

.

C REEEEEEEEEEE

_1.init_jam_offset:
~2.init_jam_offset:
.dnit_jam_offset:
.init_jam_offset:
ammer_type:
ammer_type:

AR R R Y
)
WO s w
\-n-u.\-io.l.a.u
8
%i

A b e

172




LIST OF REFERENCES

. Nix, E. E., “Modeling and Simulation of a Fiber Distributed Data Interface
Local Area Network (FDDI LAN) Using OPNET for Interfacing Through the
Common Data Link (CDL),” Master’s Thesis, Naval Postgraduate School,
Monterey, California, June 1994.

. ISO/IEC 10038:ANSI/IEEE, Std 802.1D, International Organization for Stan-
dardization, July 1993.

. Seifert, W. M., “Bridges and Routers,” IEEE Network, vol. 2, no. 1, pp.
57-64, Jan. 1988.

. Perlman, R., Interconnections, Reading, MA: Addison-Wesley, 1992.

. “Standards Project: Remote MAC Bridging,” Institute of Electrical and Elec-
tronics Engineers, Draft-P802.1G/D8, Mar. 1993.

. Simpson, W., “The Point-to-Point Protocol (PPP),” Request for Comments
(RFC) 1548, Dec. 1993.

. Takeshi, A., “Distributed Multilink System for Very-High-Speed Data Link
Control,” IEEE J. on Selected Areas in Commun., vol. 11, no. 4, pp. 540-
549, May 1993.

. Marsden, P., “Internetworking IEEE 802/FDDI LAN’s via the ISDN Frame
Relay Bearer Service,” Proc. of the IEEE, vol. 79, no. 2, Feb. 1991.

. Mongiovi, L., “A Proposal for Interconnecting FDDI Networks Through B-
ISDN,” Proc. of INFOCOM, pp. 1160-1167, June 1991.

173




174




INITIAL DISTRIBUTION LIST

Defense Information Center
Cameron Station
Alexandria, VA 22304-6145

Library Code 052
Naval Postgraduate School
Monterey, CA 93943-5000

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor Shirdhar B. Shukla, Code EC/Sh
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor Gilbert Lundy, Code CS/Ln
Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943-5118

Professor Paul Moose, Code EC/Me

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93940-5121

Mark Russon, UNISYS

Mail Station F2-G14

640 North 2000 West

Salt Lake City, UT 84116-2988

CDL Program Manager
Defense Support Project Office
Washington DC 20330-1000

175

No. Copies




10.

11.

12.

13.

Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanliklar, Ankara, Turkey

Golcuk Tersanesi Komutanligi
Golcuk, Kocaeli, Turkey

Deniz Harp Okulu Komutanligi
81704 Tuzla, Istanbul, Turkey

Taskizak Tersanesi Komutanligi
Kasimpasa, Istanbul, Turkey

Selcuk Karayakaylar

Kardesler sk. Huzur Apt.
A-Blok 11/10

80700 Dikilitas, Istanbul, Turkey

Department of Electrical and Computer Engineering

176

No. Copies




