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1. OVERVIEW

This document is the final report for Fusion of Correlated Sensor Observations, an effort
conducted by Kaman Sciences Corporation (KSC) under Rome Laboratory’s Broad Agency
Announcement (BAA) number 90-04. This effort was performed for

Dr. James H. Michels
Rome Laboratory
RL/OCTM
Griffiss AFB, NY 13441
(315) 330-4432

1.1 Background

Over the last few years, Dr. James Michels of RL/OCTM has been investigating an
original approach in signal processing. He has described this approach and results to date in a
series of Rome Laboratory Technical Reports (Michels 89, 90a, 90b, 91, 92a, and 92b). This
investigation has developed:

e A synthesis procedure for simulating muitichannel autoregressive (AR) processes in
which intertemporal and interchannel correlations are controlled parametrically.

e Extensions to this synthesis procedure to handle non-Gaussian Spherically Invariant
Random Process (SIRP) noise and unconstrained quadrature components.

e Statistical diagnostics for analyzing the expected performance of various multichannel
estimating algorithms.

e A mulitichannel signal detection algorithm based on a generalized likelihood ratio using
an innovations approach. Two ratios currently exist, one for Gaussian processes and one
for non-Gaussian SIRPs.

1.1.1 The Multichannel Signal Processing Simulation System

Kaman Sciences has designed and implemented a Graphical User Interface-based fourth
generation system for analyzing the algorithms developed during this investigation. This
- Multichannel Signal Processing Simulation System (MSPSS) is described in the Kaman
Sciences report Man Machine Interface Experiment (Kaman 91a).

The MSPSS is comprised of two major subsystems, a menu-based subsystem and the
User Front-end Interface (UFI) based subsystem. The menu-based subsystem interacts with the
user by a series of menus and prompts that can be displayed on a line-oriented "glass
terminal.” It is implemented as a collection of Fortran programs providing the desired signal
processing capabilities. Multichannel data is passed between these programs by user-defined
files. The menus themselves are unix c-shells where the bottom-level menu automatically
compiles, links, and executes the desired program. Figure 1-1 shows an example of the
invocation of a Fortran program from the menu-based subsystem.

The structure of the menu-based subsystem provides the user with a great deal of
analytical flexibility. The individual Fortran programs provide certain analytical capabilities,
but minimal constraints are imposed on the order in which the user can invoke these
functions. A number of diagnostic capabilities are provided, including parameter estimation




The user invokes the menu-based
% mchan multichannel syssem from the Unix shell
MAIN MENU
Single Channei Muitichannel

M1 - Process Synthesis M1 - Process Synthesis
M2 - Filtering Methods M2 - Filtering Methods

M3 - Diagnostics M13 -- Diagnostics
L1 — List data files L2 -- show the change log
Enter a command or Q to quit M11 The user chooses a submenu

MULTI-CHANNEL (M/C) PROCESS SYNTHESIS MENU

MO -~ Generate Gaussian noise

M1 — Method 1 (MC1) process synthesis

M2 - Method 2 (MC2) process synthesis

-~ Method 2 process synthesis with unconstrained quadrature components
— State space process synthesis

- Apply Levinson-Wiggins-Robinson algorithm
-stphyMuln-Chamcl(M/C)sxsnllsms

- Plot M/C data

- Perform Nuttall-Strand or Vieira-Morf estimation

M9 - Perform Yule-Walker estimation

M18 - Split a M/C input 'M24 -- Join inputs
MI19 —~ Add M/C signals  M25 -- Subtract M/C signals

M20 -- Convert data to ASUCI file M26*-- Convert ASCII file to data
M21 - Counvert AR to state space

M22 - Display complex data M27 -- Display coefficient file
M23 -- Catenate M/C signals M28 — Sum channels

M29 -- Perform SVD
L1 - List data files L2 -- show the change log
* denotes options that are not yet availsbie
Enter a command or Q to return to the MAIN meau: M4
Linking program mcss], piease stand by ... - A Fortran program is called
£77 -0 -C -pipe <g89 sund/mcssl.o -Lsund -lmc -lvec -lmat -lmc
-L/home/marlin/tom/lib/sun4 -Ifsl -s -0 bin/sund/mcss1

Doymwamwwtdxepuudomndommseeds(y/n)m]"

The user interacts with the Fortran program

Figure 1-1: Invoking a Fortran Program from the Menu-Based System




for certain models, correlation function estimation, and graphical display of data. Thus the
user is provided with a system that supports an exploratory style of analysis.

The UFI-based subsystem is designed for more repetitive analyses characteristic of the
determination of detection probabilities for given false alarm probabilities and given
algorithms. In such analjses, the user needs to invoke certain signal processing synthesis and
analysis functions in a predetermined order with certain parameters. The UFI-based
subsystem supports this need by allowing the user to construct an “experiment” specified by
various algorithms and parameters. Once an experiment has been completely described, a
computer program for performing an experiment is automatically generated, compiled, and
executed. Since these are simulation experiments, the generated program can run for quite
some time. Typically, a single experiment will be used to analyze the performance of the
signal detection algorithm in terms of the false alarm probabxhty and the probability of
detection. A detailed example of the use of this subsystem is provided in the Software User’s
Manual for the Multichannel Signal Processing Simulation System (Kaman 92a).

1.1.2 Recent Research

Some research performed in parallel with the development and use of the MSPSS has
some interesting implications for Dr. Michels’ approach.

RL has been sponsoring work in sensor fusion (Al-Ibrahim 91, Chair 86, and Hoballah
89). In the sensor fusion problem several sensors, perhaps geographically distributed, each
- process a signal they receive. These sensors send their outputs to a centrally located fusion
center which then must decide if a signal is present. The fusion center combines the results of
each of the individual sensors to form a decision for the overall system. One can view each
channel in a multichannel processing problem as corresponding to the input to & sensor in the
sensor fusion problem. Thus, Dr. Michels’ algorithm is a promising approach for the sensor
fusion problem, but further research is needed to determine quantitative benefits.

RL has been sponsoring some work on Kalman filtering (Roman 93). In Dr. Michels’
software detection algorithm, linear filters are applied to the multichannel radar returns before
calculating the loglikelihood ratio upon which the signal detection is based. The tapped delay
line filters in use when this effort began can be replaced by other filter structures. In
particular, a Kalman filter is applicable. Once again additional research is needed to determine
" the benefits of using the new Kalman filter being sponsored by RL in Dr. Michels’ signal
detection algorithm. '

Signal detection algorithms are traditionally evaluated in terms of the faise alarm
probability (the percentage of instances in which the algorithm results in a decision that a
signal is present when no signal is in fact present) and the probability of detection (the
probability that the algorithm will register a signal when in fact a signal is present). In a
simulation approach for evaluating a signal detection algorithm, a very large number of
samples needs to be used to accurately explore the tails of probability distributions, since the
false alarm probability is itself a "tail probability.” Recent research has proposed
approximating these tails based on a Pareto distribution (Chakravarthi 92 and Rangaswamy
93). This approach promises at least an order of magnitude improvement in throughput in Dr.
Michels’ studies, but, once again, further research is needed to validate this claim.

Signal, clutter, and noise are often modeled based on certain probability distributions. A
powerful algorithm has recently been developed for determining the probability distribution
from which a small random sample is drawn (Ozturk 90a, 90b, 90c). The Ozturk algorithm




provides the MSPSS with an imporant additional diagnostic capability.

To explore the implications of sensor fusior, Kalman filtering, the Pareto distribution
approach, and the Ozturk algorithm for Dr. Michels’ signal detection algorithm, new
capabilities were added to the MSPSS. The result of incorporating these capabilities was an
enhanced simulation system for exploring the performance of a sensor fusion approach using
an innovations-based technique.

1.2 Objective

The objective of this effort was to incorporate additional functionality into the
Multichannel Signal Processing Simulation System (MSPSS) that Kaman Sciences
Corporation has developed to support the analysis described in Multichannel Detection Using

the Discrete-Time Model-Based Innovations Approach, (Michels 91). Additional functions
included the following:

e The ability to support analys.. of a sensor fusion algorithm
e A multichannel Kaiman filter

e The use of extreme value theory to set thresholds accurately with much lower sample
sizes

e The Ozturk algorithm for determining a probability distribution from a random sample.

1.3 Tasks Performed

This effort consisted of four major tasks. Some related minor additional tasks were also
performed under this effort.

1.3.1 Task 1: Sensor Fusion Capabilities

Under this task, we added two programs to the menu-based subsystem and four analysis
sequences to the UFI-based subsystem. One of the menu-based programs estimates the
covariance matrix, and the other estimates Autoregressive coefficients for each channel. Two
of the UFI-based analysis sequences test the Autoregressive (AR) coefficients and covariance
estimation algorithms. The other two sequences analyze sensor fusion detection algorithms;
. they differ depending upon whether temporally correlated noise (or clutter) is assumed to be
present or not.

These new modules, in combination with previously existing modules, provide the user
with the capability to analyze single channel processes within each element of a vector
process. This capability allows the user to

e Form scalar linear estimates of AR coefficients for each channel process

e Subsequently process each single channel innovations process at a fusion center to
remove residual correlations across channels.

1.3.2 Task 2: Kalman Filtering

When this effort begen, a software filter and algorithm implementation of a muitichannel
Kalman filter was being developed for Rome Laboratory under contract F30602-92-C-0081,
titled State-Space Models for Multichannel Detection (Roman 93). This task implemented in
the MSPSS the algorithms developed under that contract. Kaman Sciences began by
examining the source code and the reports produced by the RL contract developing the




multichannel Kalman filter. We then developed code conforming to our conventions and
interfaces based on the algorithms developed in the RL contract.

These algorithms were first implemented in the menu-based subsystem of the MSPSS.
They were then implemented in the UFI-based subsystem. New capabilities consisted of

e The synthesis of state space processes in the menu-based system
e The estimation of state space model parameters
e The implementation of a Kalman filter

e The implementation of a signal detection algorithm based on the state space model and
Kalman filter.

1.3.3 Task 3: Extreme Value Method

Under this task, the extreme value theory method for the threshold level selection,
described in (Rangaswamy 93), was implemented. This method is included as an alternative
to the previous threshold selection method contained in the detection modules of MSPSS
software.

Kaman Sciences first developed software implementing the extreme value theory as a
module in the diagnostic menu-based software. This only involved adding an additional
likelihood function module, since the previous likelihood function module calculates threshold
values and detection probabilities as well. Once it was tested, the extreme value module was
then modified to run under the User Front-End Interface (UFI). Kaman Sciences wrote
additional detection sequences that parallel the previous functionality, but use the extreme
value method.

134 Task 4: Ozturk Algorithm

Ozturk’s algorithm, as described in (Ozturk 90a, 90b, 90c), (Shah 93), and (Slaski 93),
was implemented under this effort. This implementation resulted in two programs under the
diagnostic menu-based system. Ozturk’s algorithm is applicable io single-channel real data.
The smaller program provides a front-end for converting many realizations of multichannel
data into a single realization of single channel real data by calculating a quadratic form.

The second program calculates Ozturk’s statistic. It performs both a goodness-of-fit test
and estimates a probability distribution from the input data. The distribution of Ozturk’s
statistic is not known in closed form. Thus, this program includes an extensive Monte-Carlo
capability for determining the expected value and confidence regions for the statistic under a
wide range of null hypotheses. An important capability of Ozturk’s algorithm is the ability to
graphically display the results. The algorithm combines a formal statistical test with more
intuitive graphical analysis. Our implementation includes an integrated graphical display.




2. THE MULTICHANNEL SIGNAL PROCESSING SIMULATION
SYSTEM

The Multichannel Signal Processing Simulation System (MSPSS) was developed by
Kaman Sciences to support certain RL/OCTM research. This section briefly overviews the
problems that can be analyzed with the MSPSS, the software design, and how new
capabilities are added to the system.

2.1 Signal Detection as Statistical Hypothesis Testing

The MSPSS simulates correlated random vectors which characterize several channels of
data. The data gathered at any point in time consists of a real, imaginary, or complex vector
with a component for each channel. A single realization or trial of the stochastic process
generating this data consists of an ordered sequence of vectors.

The signal detection problem can be cast in the form of a problem in statistical
hypothesis testing. Let x denote a vector stochastic process representing the radar return, s
denote a signal, ¢ denote the clutter, and n denote white noise. Consider deciding between the
null hypothesis

® Hy xmc+n
and the alternative
® Hy: xms+cCc +n
To accept the alternative hypothesis is to decide that a signal is present.

Neyman-Pearson theory is generally used to evaluate a decision algorithm in statistical
hypothesis testing. A test statistic is defined for summarizing the data in a single realization of
the stochastic process. If this statistic is in some critical region, then the alternative hypothesis
is accepted. Otherwise the null hypothesis is accepted. The probability of accepting the
alternative when the null is true is called the significance level; this probability should be as
low as possible. The probability of deciding in favor of the alternative when in fact it is true
is known as the power of the test. Statistics are designed to maximize the power of the test
for a given significance level and sample size. Alternatively, they are designed to minimize
the sample size for a given significance level and power.

Because of the physical interpretation of this particular statistical test, different
terminology is used in radar theory. The probability of erroneously concluding a signal is
present is the false alarm probability. So the false alarm probability is the same as the
significance level. The probability of detecting a signal, when there is in fact a signal, is the
probability of detection, or the detection probability. Therefore the detection probability and
the power of the test are alternate names for the same probability.

2.2 The Signal Detection Algorithm

Figure 2-1 shows the general structure of the signal detection algorithm implemented in
the MSPSS. This is a model-based innovations approach to signal detection. The filters are
derived from certain models of the signal, clutter, and noise. If the model for the null
hypothesis filter accurately describes the sum of clutter and noise, and the input is clutter and
noise, then the output of the nuil hypothesis filter, vo(n), will be uncorrelated both in time
and across channels. The outputs are estimates of the innovations for the model underlying the
filter. Similarly, if the model for the alternative hypothesis filter accurately describes the sum
of the signal, clutter, and noise, the output v, (7 ) will be an estimate of the innovations for the




alternative hypothesis model, uncorrelated both in time and across channels, when the input to
the filter contains signal, clutter, and noise.

. Null Hypothesis Yo(n)

Filter FO
x(n) ; &
— > Model Parameter alculate A
Estimates Loglikelihood —>
; Statistic
. Alternat.e Hypothesis |
Filter F1 vy(n)

Figure 2-1: System Structure of the Signal Detection Algorithm

Theloglikelihoodstaﬂsticisbasedondlenﬁmaﬁesoftheinnovaﬁonsprodwdbythe
twoﬁlm.lfthissuﬁsﬁcisaboveapredeﬁnedthruhold.onedecidsasigulispresent.
Otherwise, the alternative hypothesis is rejected, and one decides no signal is present.

. The structure of this algorithm is very general and raises many questions. Different
modelscanbeusedforthesignal.clutter,andnoise.Someoftlmemodelsanbeusedto
approximate other models. For example, if the signal and clutter are Autoregressive (AR)
processes and the noise is white, their sum is an Autoregressive Moving Average (ARMA)
ptocus.AnARMApromscanbeapproﬁmawdbyahighorderARprocess.Ontheother
hand, a State Space model can exactly describe an ARMA process. How does this choice of
model impact the performance of the algorithm? :

Modeils may also be chosen on the basis of processing considerations. For example,
suppose the sum of the signal, clutter, and noise are approximated by a vector AR process
described by Equation 2-1:

p
x(n)=- Y A¥ (k)x(n-k)+e(n). (2-1)

kel
where x (1), x(2), ..., x(N) is the AR process and e(n) is 8 random (possibly complex) zero-
mean vector with covariance matrix L. If the off-diagonal elements of £ are non-zero, the time
samples x(n) are correlated across channels. The matrix AR coefficients A¥ (k) lead to




correlation of the process both in time and across channels. The off-diagonal components of
the matrix AR coefficents may be non-zero. If they were all zero, Equation 2-1 would be
equivalent to Equation 2-2:

P.

z(n)m= ¥ a’(K)x(n-k)+g(n), (2-2)

kwl
j=1,2,..,J (J is the number of channels). The model given by Equation 2-2 has the
advantage that the corresponding tapped delay line filters Fo and F, can process each channel
separately in the signal detection algorithm. This model can be implemented with considerable
parallelism, thus gaining an increase in processing speed. But is this increase in processing
speed accompanied by & decrease in the detection probability for given false alarm
probabilities?

In practice, model parameters will not be known exactly. This raises a host of new
questions. For each model, what parameter estimation algorithms are available? How do they
perform in various circumstances? For example, Dr. Michels has found that the conditions that
increase the accuracy of estimates of the AR weights increase the variability of estimates of
the driving noise covariance matrix (Michels 92b). How robust is the signal detection
algorithm to errors in parameter estimation and model mismatch? These questions probably do
not have one simple answer. Rather, the signal detection performance of any one instantiation
of the algorithm shown in Figure 2-1 will vary with process characteristics such as temporal
correlation. A full analysis of the model-based innovations approach to signal detection will
have to explore the variability in performance with changes in the underlying stochastic
processes. Detection probabilities and thresholds will need to be known for given faise alarm
probabilities and sample sizes in implementing the signal detection algorithm. A complete
analysis of the signal detection algorithm will also provide these needed parameters.

The Multichannel Signal Processing Simulation System provides the analyst with tools to
answer these questions via Monte-Carlo simulation. Capabilities are provided to synthesize
signal, clutter, noise, and their sum as described by a variety of models. The user specifies the
number of process realizations to generate, as well as the number of time samples in each
realization. Diagnostic capabilities are provided for analyzing the realizations of the generated
stochastic processes. The user can calculate means, variances, covariance matrix estimates,
- correlation functions, model parameter estimates, and Fast Fourier Transformations (FFTs).
Graphical capabilities are provided for users operating under a X Windows interface.
Functions are provided for manipulating radar returns such as adding them, splitting a
multichannel return into several single channel returns, combining single channel returns into
multichannel returns, and so on.

Finally, the MSPSS implements the signal detection algorithm described earlier. Tapped
delay line and Kalman filters are provided, with user-definable parameters, for removing
temporal and cross-channel correlation. Several loglikelihood statistics can be calculated for
different models. Thresholds, detection probabilities, and variances in estimates of these
paremeters can be calculated.

2.3 Using the MSPSS

As was explained in Section 1.1.1, two major subsytems comprise the Multchannel
Signal Processing Simulation System (MSPSS), the menu-based subsystem and the UFI-based
subsystem. The use of the UFI-based subsystem is extensively described in the Sofiware
User's Manual for the Multichannel Signal Processing Simulation System (Kaman 92a) and
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will not be further examined here.

As shown in Figure -1, invoking the menu-based subsystem presents the user with a
choice of two sets of three menus. These menus provide the user with a wide range of
capabilities. The bottom-level menu initiates execution of a Fortran program. The programs
in this system share common conventions for user interaction. Figures 2-2 and 2-3 show an
example. The user is prompted for various parameters specifying the synthesis or analysis
process. In the example the user describes the synthesis of an Autoregressive process by a
"shaping function" approach. The user can receive help messages for prompts that are not
self-evident, but a full knowledge of the processing depends on an understanding of the
underlying mathematical models.

The menu-based subsystem provides the user with a graphical display capability, as
illustrated in Figures 2-4 through 2-6. This capability requires a X Windows interface. The
plotting routine first asks the user for the source of the input file and various parameters for
the graph (Figure 2-4). An user-friendly windowing interface then appears, permitting the user
to manipulate the plot (Figure 2-5). Outputs sent to the screen can aiso be saved as a
Postscript file or printed (Figure 2-6).

An outline of the steps required to add capabilities to the MSPSS is provided in
(Vienneau 93). Both the menu-based and UFI-based subsystems are described.
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The menus are displayed

&nammmdanmwthAleem.mz

MSIRP -- MulnchnnclARPrmGewamnwxdlSlRPs

Version 1.7
Do you want to set the pseudo random generator seeds (y/n) [N} ?
Number of channels ? : A Carriage Return obtains help

Enter the number of channels to be generated in each output signal or
enter a zero to quit the program.

Number of channels ? 1

Number of points to be generated and saved ? 1000

Enter the number of trials to be generated ? §

Add a signal component (y/n) [Y] ? n Values in square brackets []
Add a clutter component (y/n) [Y] ? are default values

ENTER PARAMETERS FOR THE CLUTTER.

Order of the AR process ? 3

Do you want the driving noise to be a Gaussian or SIRP process (g/s) [G] ?
Specify Cholesky. L-D-U. or SVD decomposition (c/Vs) [C] ?

Do you want the process to be real. imaginary. or complex (rfi/c) [C] ?
Use Gaussian or Exponential shaped function (gle) [G] ?

Enter row 1 of the amplitude matrix:

Enter arow ? 1.0

Enter row-1 of the one-lag temporal correlation matrix:
Enter a row ? 0.5

Enter row 1 of the lag matrix:

Enterarow 70

Reference doppler frequency ? 0.5

Enter the sample interval ? 0.01

A complex AR( 3 ) process will be generated.

The driving noise will be Gaussian,

Gaussian shaped function,

Amplitude matrix: 1.0000e+00

Temporal correlation: 5.0000e-01

Lag matrix: O

Reference doppler frequency: 5.0000e-01 Hz.

Sample interval: 1.0000e-02 seconds.

Are these parameters okay (y/n) [Y] ? Many programs echo user inputs.

Figure 2-2: Generating an AR Process with the Menu-Based System




" Correlation lag values:
R(0)=(1.0000e+00,0.0000e+00)

R(1)=(4.9975¢-01.1.5705¢-02)
R(2)=(6.2377¢-02,3.9244e-03)
R(3)=(1.9445¢-03,1.8381e-04)

Determinants of principle minors:
(1.0000e+00.0.0000e+00)(7.5000e-01.0.0000e+00)(5.2734¢-01,4.3757¢-10)(3.6500e-01.6.8065¢- 10)
Coefificients for the AR process:

a(1)= (-6.5593e-01.-2.0613e-02)

a(2)= (3.2748e-01.2.0603e-02)
a(3)= (-1.2445¢-01.-1.1764e-02)

White noise covariance matrix (WNCM): (6.9214e-01.0.0000e+00)
WNCM Cholesky decomp.: (8.3195e-01.0.0000e+00)
Add a white noise component (y/n) [Y] ? N
Total output file name ? rivar The user saves the results in
Title of this dataset ? An AR process a file for later analysis
Clutter output file name ?
No file name entered, is this okay ? y
Output coefficient file name ? rivar.coef
Title of this dataset ? AR Coefficients
Clutter AR coefficients and covariances written to file.
Enter the number of points to be generated before saving data ? 5000
ok?
MULTI-CHANNEL (M/C) PROCESS SYNTHESIS MENU

The user returns to the menus

Figure 2-3: Generating an AR Process (Continued)
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MULTI-CHANNEL (M/C) DIAGNOSTICS MENU

Perform estimation of state space parameters
Perfarm M/C correlation (temporal)
-~ Perfarm M/C correlation (ensemble)
D10 - Perform M/C coxrelation {quadrature, temporal)
D11 — Perform M/C correlation (quadrature, ensemble)

82388?889

D15 - Split 2 M/C input D21 -- Join inputs

D16 - Add M/C signals D22 -- Subtract M/C signals

D17 ~ Convert data to ASCII file  D23*-- Convert ASCII file to data
D18 - Display complex data D24 -- Display coefficient file

D19 — Test modified Bessel function D25 -- Calculate detection probability
D20 - Calculate SIRP quadratic form D26 -- Sum channels

L1 - List data files L2 -- show the change log

* not yet implemented
EneraomndamentotheMAIdez -

KPLT - cmvetbmxywextﬁleandplotmdquenwmdows

Version 1.7

Input file name ? rivar The file to plot

Title: An AR process )

First trial to plot ? 1

Number of trials to plot ? 1

X axis title [Time] ?

X axis range ?

Y axis title (Magnitude] ?

Data smoothing ? 0

lephxdmmked Imaginary, Magnitude, or Angle [R] 7 r
converting data ...

Chmelswmn.l ) ]
Trials written: 1 , The plot window appears here
ok?

Figure 2-4: Plotting a Data File
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3. .NEW CAPABILITIES

The signal detection algorithm described in Section 2 has been implemented over a senes
of efforts developing the Multichannel Signal Processing Simulation System. Typically, each
effort has implemented a new model or a capability recently developed by RL/OC and their
contractors. Under the present effort, new capabilities were added to the MSPSS in the areas
of

e Sensor fusion
e State space models and Kalman filtering
e The Extreme Value Method for estimating tail probabilities
e Ozturk’s algorithm
New capabilities were first implemented in the menu-based subsystem. When appropriate,

they were then implemented in the UFI-based subsystem. This section defines the capabilities
implemented under this effort.

3.1 Sensor Fusion

Signal processing algorithms typically process large volumes of data. These demands
often stress current computer processor technology. One method for meeting this demand is
for concurrent processors to analyze data in parallel. A multichannel system could consist of
sensors for each channel. Distributed processing would be performed by each sensor, with
subsequent processing being performed at a fusion center.

Previously, the multichannel detection approach consisted of processing the observation
data vector using multichannel prediction error filters to obtain a whitened error residual.
These processes were obtained by the simultaneous removal of the temporal and cross-channel
correlation information. This approach required the use of all the multichannel data at the
processing center and is referred to as the centralized approach. In contrast, the method
developed here is a decentralized approach which individually processes data on each channel
to first form separate error signals on each channel before passing these signals to a central
processor for whitening across channels. The performance of this scheme is suboptimal to the
centralized approach, but represents applications for which the data is first preprocessed on

. each channel (or sensor) to reduce the redundant information content before transferal to the

centralized processor. In space-time signal processing, this case is referred to as the factored
approach in which temporal and spatial processing is performed distinctly. Finally, the
computational requirements of the decentralized approach are less than the centralized case.

3.1.1 Muitichannel Synthesis of AR Processes

The processes analyzed by the decentralized approach are generated using the existing
multichannel MSPSS synthesis procedure. No new process synthesis routines were developed.
The radar return is generated as the sum of signal, clutter, and noise. Either signal or clutter
may be absent. The noise is synthesized as white noise, while the signal and clutter are AR
processes. The sum of white noise and AR processes is an ARMA process, which may be
approximated as a higher order AR process.

Specifically, let x (1), x(2), ..., x (N) be a stochastic process formed by the sum of three
processes:

x(n)ms(n)+c(n)+w(n). n=12 . N (3-1)

17




The sequence of vectors x(n) represent the radar return, s(») is the signal, c(n) is the
clutter, and w (n) is the noise. Each of the subprocesses can be real, imaginary, or complex.
The number of elements in each vector x(n), s(n), c(n), and w(n) is the number of
channels J.

A single sequence of vectors x (1), x(2), ..., x (N) is referred to as a trial or realization
of the stochastic process. Since this is a random process, it will vary from trial to trial. Each
vector x (n) in the sequence of vectors is referred to as a time sample. Again, because of the
random nature of the process, the N time samples vary across a single realization of the
underlying process with a specified temporal and cross-channel correlation.

3.1.1.1 Synthesis of Ganssian Noise
The noise vector w (n) is synthesized as a zero-mean Gaussian white noise process with
covariance matrix L, :
L, =E[w(n)wh(n)]. (3-2)

The noise process is uncorrelated in time, but may be correlated across channels if the off-
diagonal elements of I, are nonzero. By definition, L, is Hermitian. The components of I,
have a physical interpretation. The diagonal elements are the variances of the corresponding
channels, and the off-diagonal elements are the cross-channel covariances.

The user specifies either the Cholesky decomposition, the LDU decomposition, or the
Singular Value Decomposition (SVD) of the covariance matrix. The Cholesky decomposition
is given by Equation 3-3:

. L =C,CH, (3-3)
where C,, is a lower triangular complex matrix. The LDU decomposition is
t, =L,D,LY (34

where L, is a lower triangular matrix with ones along its diagonal and D, is a diagonal
matrix.

The SVD decomposition of L, is given by Equation 3-5:
L, =0, A, 00 (3-5)

A, is a diagonal matrix whose elements are eigenvalues of I,. The columns of Q, are the
corresponding right hand eigenvectors, that is,

L, (Q.),;=(A,);,; Q). (3-6)
The rows of Q¥ are the left hand eigenvectors:
Q) %, = (A )i (). - 3-7)

The eigenvectors in Q, should have a norm of unity. Also, since I, is Hermitian, Qf is the
inverse of Q, .

To generate the white noise vector, the user specifies either C,, L, and D,, or Q. and
A,. For each time sample in a realization of Gaussian white noise, a vector, v, (n), is
generated of statistically independent zero-mean normally distributed random variates. The jth
channel has a variance of either unity, if the user specified a Cholesky decomposition; (D, ), ;,
if the user specified an LDU decompeosition; or (A, ), ;, if the user specified a SVD. (If the
noise is complex, the real and imaginary components of v, (n) are independently generated
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with variances of 92-2- where o? is the desired variance of v, (n).)

The white noise is then generated as
W(Il)'T,. V,,(ll), (3'8)
where T, is either C., L,, or Q..

3.1.12 Synthesis of Sigual and Clutter as AR Processes

The signal and noise are each synthesized as Autoregressive processes. This section
describes the synthesis of the clutter. The signal is synthesized in an identical manner. The
AR process for the clutter ¢ (1), ¢ (2), ..., ¢ (N) is defined by Equation 3-9:

P
c(n)=-Y A¥(k)c(n~k)+e (n). (3-9)

twl

where c(n) is a J x 1 vector process and Al (1), A¥(2), ..., A¥(P) are the J x J AR matrix
coefficients for an AR process of order P. ¢ (n) is the driving noise term. It is a zero mean
process, uncorrelated across time, with covariance matrix I, defined by Equation 3-10:

L =E[c(n)c? ()] (3-10)

The driving noise is synthesized as white noise following the procedure described in Section
3.1.1.1 above. The user specifies either the Cholesky, LDU, or Singular Value Decomposition
of the covariance matrix .. The innovations, uncorrelated both in time and across channels,
are generated with appropriate channel variances. A matrix from the appropriate
decomposition is used to premultiply each time sample from the innovations. This process
yields the driving noise time samples ¢, (n) with the appropriate correlations across channels.

Direct specification of the AR coefficients A (k) and the covariance matrix I, does not
easily permit explicit control of the temporal and cross-channel correlation of the resulting AR
process. Consequently, Dr. Michels has developed a "shaping function” approach for
controlling AR parameters in terms of physically meaningful parameters (Michels 91).

For the stationary zero-mean stochastic process c (1), ¢ (2), ..., ¢ (N), a matrix showing
the correlations across channels for the kth lag is defined by Equation 3-11:

R.(k)=E([c(n)c¥ (n-k)]. (3-11)

Note that if the number of channels is J, R. (k) is a / x J matrix. Furthermore, it follows
from this definition that Equation 3-12 holds:

R.(~k)=R¥(k). (3-12)
The correlation matrix and the AR parameters are related by the Yule-Walker equations.
For exampie, if there are three lags, P = 3, the Yule-Walker equations are given by 3-13:
R.(0) R.(1) R.(2) R.(3)

R.(-1) R.(0) R.(1) R.(2)
H -

R.(=3) R.(<2) R.(~1) R.(0)

Given the correlation matrix R., these equations can be solved for the AR coefficients and the
driving noise covariance matrix. The MSPSS uses the Levinson-Wiggins-Robinson algorithm
to solve the Yule-Walker equations.
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The correlation matrix R is specified by the user through the use of parameters
describing certain shaping functions from which the correlation matrix is calculated. Shaping
functions of a Gaussian and an Exponential form are available. The Gaussian shaping
function for the cross-correlation function is given by Equations 3-14 and 3-15 (Michels 90a):

Wk =1, ; ;P
i) ) Tel .
A, IR A T Py (3-14)

Ui
Acij

Rc.i.j (k)= Kc.a.j

R“"‘j(k)-Rc'j',*‘ (-k). ] >j . (3-15)

K. is a constant proportional to the variances on each channel, A, is the one-lag temporal
correlation parameter, !, is the lag value at which the function peaks, ¢. is the Doppler shift,
and T, is the sampling period. (x* is the complex conjugate of the complex number x.)

The Exponential shaping function is defined by Equations 3-16 and 3-17:

A =i Ing Tk V-1

i) .

Rc-i,j(k).xc.i.j e i) e *F - 4
R

<j (3-16)

R..j(k)=R, ;;*(=k). i>). (3-17)

3.1.2 The Muitichannel AR Model

The synthesis of signal, clutter, and noise has been described in Section 3.1.1. The sum
of these processes is, in general, an ARM . process. However, an ARMA process can be
approximated by a high order AR model. This model may permit correlation between
channels. Some of ihe off-diagonal elements or the AR coefficients may very well be non-
zero. A filter based on this model would be a tapped delay line filter with matrix coefficients.
Such filters were previously implemented in the MSPSS, but they do not support decentralized
sensor fusion analyses.

Let x (1), x(2), ..., x(N) be a discrete-time complex-valued process. x(n), n =1, 2, ...,
N, is a J element vector where J is the number of channels. The muitichannel AR process is
described by Equation 3-18:

P
x(a)=- Y A (k)x(n-k)+e(n), (3-18)
kel

where ¢(n) is a J x 1 zero-mean Gaussian white diiving noise vector process with covariance
matrix . Since the AR coefficients A” (i) i X are matrices, the process exhibits cross-
channel correlation. \
The driving noise is modeled by one of three decompositions of L. The Cholesky
decomposition is .
I=CCH, (3-19)

where C is a lower triangular matrix. The corresponding model of the driving noise in
Equation 3-18 is given by Equatior. 3-20:

e(n)=Cv(n), (3-20)

where v(n) is a / x 1 zero-mean unit variance Gaussian noise vector uncorrelated both in
time and across channels.




The LDU decomposition of L is given by Equation 3-21:
La=LDLY. (3-21)
D is a diagonal matrix, and L is a lower triangular matrix with unity along the principle
diagonal. The corresponding model of the driving noise is given by Equation 3-22:
e(n)=Lv(n). (3-22)
In this case, the covariance matrix of v(n) is D.
The SVD of £ is given by Equation 3-23:

I=QAQY, (3-23)

where A is a diagonal matrix whose elements are eigenvalues of L. The columns of Q are the
corresponding right hand eigenvectors, and the rows of Q” are the left hand eigenvectors.
The eigenvectors in 0 have a norm of unity. Also, since L is Hermitian, Q¥ is the inverse of
Q. For the SVD, the model of the driving noise is given by Equation 3-24:

e(n)=Qv(n), (3-24)
where v(n) is a zero-mean Gaussian noise process with covariance matrix A. '

Figure 3-1 shows the prediction error filter used to produce white noise from a signal
synthesized by this model. This filter implements the centralized approzch. The tapped delay
line structure whitens the output, £(n), across channels. 7 is either C, L, or Q in the
Cholesky, LDU, or. Singular Value Decomposition respectively. Thus, the final output of this
filter, v(n), is uncorrelated both in time and across channels.

x(n) x(n-1) x(n-P)
A¥(1) A¥(2) AM(P)
g(n) _ v(n)

Figure 3-1: Tapped Delay Line Filter for the Centralized Approach
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3.121 A Distributed Tapped Delay Line Filter

In this subsection, we now discuss the form of the prediction error filter «.sed in the

decentralized (or factored) signal processing approach. Figure 3-2 shows this filter. We note
that this filter lacks the off-diagonal terms in the matrix coefficients of multichanne; prediction

error filter shown in Figure 3-1 above.

x,(n) xy(n-1) x(n-2) 4 | Xi(n-py)
—_— 2+ T—» 21 —I—. | & —-—1
ath) 2@ Py

¥(n)

9

aJ.“) aJ.(z) m’(p J)
— 21 2 ——t—“ ee | 21 _j
x,(n) X1 L_Ixy(n-2) xon-p,)

Figure 3-2: Decentralized Tapped Delay Line Filter and Fusion Center

The filter is comprised of tapped delay line filters which first remove temporal correlation
in each channel j:
)
gi(n)mx;(n)+ Y a/(k)xj(n=k), j=l.2,..J. (3-25)
kwl
The tapped delay line portion of the filters can be distributed among the sensors for each
caannel. A second phase of the filter, implemented at the sensor fusion site, removes
remaining correlation between channels:
v(n)=T"e(n), (3-26)

where T is either C, L, or Q in the Cholesky, LDU, or Singular Value Decomposition,
respectively.
3.122 Estimation of AR Coefficients

In practice, the filter parameters £ and a;/(k), k =1, 2, .., P;, j = 1, 2, .., J, will be
estimates obtained from the data. These estimates are obtained in two stages. First, the AR

coefficients a; (k) are estimated from the jth channel data. Then, the resulting error signais
from the / channels are used to estimate the covariance matrix I.




Figure 3-3 shows the system structure used in estimating the AR coefficients. The input
is many realizations of the modeled process. A set of AR coefficients, d4; (1), 4;(2), ...,
d;(P;), is estimated for each realization using some suitable single-channel aigorithm. The
MSPSS currently allows the user to choose between the Yule-Walker and Burg algorithms
implemented as described in (Marple 87). The user must specify the order, P,, for these
algorithms; it is not estimated. These estimation algorithms also produce an estimate of the
variance, &7 for each channel. These variance estimates are discarded and not used further.

X1(n) Estimate
—> ay(1)..a,'(P,)
x(n) .
Split
Channels *
XJ(I'I).. Estimate
a, (1)-..a, (P 3) -

Figure 3-3: Estimation of AR Coefficients

Once a set of estimates of AR coefficients is obtained for each trial, they can be
averaged together across trials at the user’s discretion. This average is the desired estimate of
the AR coefficients to be used in the distributed tapped delay line filter shown in Figure 3-2.
The sample variance of these estimates can also be calculated across channels to assess
algorithm performance. Appendix D describes a numerically stable one-pass algorithm useful
in estimating means and variances.

3.12.3 Estimation of the Covariance Matrix

The covariance matrix of the resulting error signals on the / channels is estimated from
the output data from the / channels. As can be seen from Figure 3-4, the covariance matrix
estimation process relies on the previously determined AR coefficients a;(1), a/(2), ..,
a;(P;). These values can either be actual values, if known, or the estimates obtained by the
process described above. The covariance matrix is estimated from the / x 1 vector e(n)
produced by the first phase in the filter.




x1(n-2) Xy(n-p, )

x4(n) xi(n-1) -
—] 21 ] z -—;—-’ | &

a,’(1) a'(2) a"(py)
e - =D
A -

Estimate
z

Join
Channels

a,(1) as(2) a,;(P,)
—l 2-1 —Lb 21 * .| 2 _J
xfn) LDl _Ixi(n-2) x,(n-p,)

Figure 3-4: Estimation of Covariance Matrix

The covariance matrix is estimated for each trial of e(n) as follows. First, the channel
mean is found across time samples:

a -— T & ). (3-27)

n-l

where N is the number of time samples (the mean should be statistically equal to zero). The
variances and covariances are then estimated by Equation 3-28:

z""ﬁ.)::. le(n)-&lle (n) -5 ). ‘ (3-28)

The resulting estimates are averaged across trials to obtain the estimate of L whose
decomposition is used in the filter.
3.2 Model Identification

The sum of noise and clutter, or of noise, clutter, and signal, can be modeled as a state
space process. In the model-based signal detection algorithm described in Section 2.2, the
corresponding filter is a Kalman filter. This approach has been developed in (Roman 93), and
the state space model and Kalman filter were implemented in the MSPSS under this effort.
This implementation provided t'.e following new capabilities:

e Conversion of AR model parameters to state space model parameters
e State space process synthesis based on direct user input of model parameters
e Estimation of state space model parameters

e A Kalman filter that converts the radar return process to Gaussian white noise
(innovations)..




e A signal detection algorithm based on the state space model.

3.2.1 A State Space Model

Under the state space approach, the radar returns are modeled as follows. Let x (1), x (2),
... X (N') be a discrete-time complex-valued process representing the radar returns generated as
described in Equations 3-29 and 3-30:

y(n+1)=mFy(n)+Gu(n) (3-29)

x(n)=HYy(n)+D¥ w(n). (3-30)

x(n), u(n), and w(n) are J-element vectors, where / is the number of channels. The process
u (1), ..., u (N) denotes the input, while w (1), ..., w (N ) is measurement noise.

y (n) denotes an M -element vector representing the state variables. The state space can
be thought of as a memory associated with the process. The state variables evolve in
accordance with the first equation above, while the value of the output process at any time is
a transformation of the state variables and measurement noise.

32.1.1 The Innovations Representation of the State Space Model

To implement an innovations-based signal detection method, filters are constructed such
that the outputs of the filters are the innovations under the appropriate hypotheses.
Innovations are defined by a (not necessarily Gaussian) white-noise process. Kalman filters are
used to produce the innovations.

The state-space model can be transformed into the following innovations representation:
a(n+l)mFa(n)+Ke(n) (3-31)

x(n)sH" a(n)+e(n). (3-32)

The process (1), €(2), ..., e(N) defines the innovations, and the process a(1), a(2), ..., a(N)
is the state of the innovations representation. The matrix X is the Kalman filter gain.

Figure 3-5 shows a system block diagram for the state space model. Although the output
process and certain matrix parameters are represented by the same symbols as in Equation 3-
© 29 and 3-30, these parameters may reflect a change in basis. The innovations model is
"correlation equivalent” to the general state space model.

32.12 A Basis Transformation of the Innovations Representation

The innovations representation of the state space model is defined only up to a basis
transformation of the state vector. Let 7 be an invertible M x M matrix representing a basis
transformation of the state vector. Define (n), Fy, Ky, and HY as follows:

B(n)=Ta(n) (3-33)

FgaTFT (3-34)

Ky=TK (3-35)

H{ «H"T. (3-36)
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Figure 3-5: Innm;ations Representation of State Space Process Synthesis

Under this basis transformation, an alternative innovations representation of the state space
model is given by Equation 3-37 and 3-38:

B(n +1)=FyB(n)+Kpe(n) | (3-37)

x(n)=HYB(n)+e(n). (3-38)
The innovations and the output process remain unchanged.

Equations 3-37 and 3-38 are of the same form as Equations 3-31 and 3-32. Both sets of
equations are innovations representations of the same state space model. This demonstrates
- that the innovations representation is unique only up to a basis transformation of the state
space. A practical implication is a difficuity in validating state space estimation algorithms.
The output process may be synthesized with given state space parameters, but estimates of
these parameters obtained from the output process can differ from the parameters used in
synthesis. These differences are acceptable as long as they represent a basis transformation of
the original parameters. Whether this is so or not may be difficuit to determine. In any case,
the model order and the covariance matrix for the innovations are unique.

32.1.3 A State Space Represeutation of An Autoregressive Model

An Autoregressive (AR) model can be cast in the form of a state-space model. Consider
the case of the Pth order AR model x (1), x(2), ..., x(N):

’
x(n)m= Y A¥(K)x(n-k)+e(n). (3-39)

km}

where e(n) is a zero mean driving noise term with covariance matrix £.




In an AR model, the current value of the process is a linear combination of the last P
values and white noise. In a state space model, the current value is a function of the state
variables and white noise. Thus, let the state variables be the past P values of the process:

[ x(n=1)]
x(n=2)

Lx(n -P)]
Since x (n) is a J-element vector, there are M = P x J state variables.

To complete the state space representation of the AR process, let the state-space
parameters be defined as follows:

(_AH (1) <A¥(2) -~ -AH(P =1) =A¥ (P)]
/ 0 0 0
0 1 0 0
Fm - . . . (3-41)
0 0 I 0
o
0
Ge|’ (3-42)
K3
HY a[-AH(1)=A%(2) --- =AH (P)] (3-43)
D" a1 (3-44)

Furthermore, let the input noise and the measurement noise be equal to the driving noise
" process in the AR model:

w(n)=u(n)=g(n). (3-45)

Using these definitions of the relevant parameters, the input process, and the measurement
noise, the AR process is represented in a state space form, as defined in Equations 3-29 and
3-30. This state space representation is also the innovations representation of the state space
model.

32.1.4 A State Space Representation of An ARMA Model

An Autoregressive Moving Average (ARMA) model can also be conceptualized as a
state-space model. Define the ARMA model to be generated by the sum of AR and white
noise processes:

x(n)as(n)+g(n), (3-46)
where
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P
s(n)=-~ 2A”(k)s(n-k)+ee(n). (3-47)

k=]

This is a special type of ARMA model, and the state space representation defined below for
this model is not valid for all types of ARMA models.

In the state space representation, the state variables are the M = P x J variables defined
by past values of the AR process:

(s(n-l)q
s(n-2)
y(ll)- (3'48)
[ s(n-P)]
The state space parameters are defined as in the AR model:
[_AH (1) =A¥(2) - -AH(P 1) -A¥ (P)]
{ 0 0 0
0 1 0 0
F = . . . } (3-49)
| 0 0 1 0
N
0
G=| (3-50)
L 0]
HY a[-AH(1)=AH(2) --- =A% (P)] (3-51)
D? =1 (3-52)

The state space representation of this type of ARMA process is distinguished from an
AR process by the treatment of the input process and the measurement noise:

u(n)meg(n) : - (3-53)

w(n)mg (n)+en) (3-54)

Notice that the resulting state space model is not an innovations representation. Conversion of

this model to an innovations representation requires determination of the Kalman gain for this
system.

Other special cases of the state space model are also of interest, although not defined

here. For example, the multipath model defined in (Michels 91) can be represented by a state
space model.




3.2.2 Innovations Generation

Given a state space model of the process x (n), a Kalman filter can be used to generate
the innovations sequence. Alternatively, the whitening filter associated with the Kalman filter
can be used. The MSPSS uses a steady state approximation to a one-step predictor Kalman
filter followed by a linear transformation. This filter. is shown in Figure 3-6.

x(n) &) v

- T x(nin-1)

HH

a(nin-1) &(n+1n)
z24 - +

Figure 3-6: The Innovations Generation Filter

Formally, let x (1), x(2), ..., x (N ) be the input process to the filter. The first phase is a
Kalman filter, and its output is the process (1), €(2), ..., e(N ). The second phase is a spatial
filler which removes correlation between channels. The output of this second phase, and
therefore the output of the entire filter, is v(1), v(2), ..., v(N).

The output of the first phase at each time sample is the difference between the input and
a minimum variance estimate of the input:

e(n)mx(n)=-i(nln-=1). (3-55)

The estimate of the input is based on an estimate of the state variables in the innovations
representation of the state space model:

f(nln-1)=H"a(nln-1). (3-56)

The estimate of the state variables is updated in accordance with the system dynamics:
@G(n+lln)mFa(nin-1)+Ke(n) (3-57)
&(0l~1) =0, (3-58)

where K is the "Kalman gain matrix," and the matrix F embodies the "system dynamics.” The
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product of the gain matrix and the output, Ke(n), is known as the "correction vector.” In
many Kalman filter implementations, the gain matrix is updated for each time sample. The
fact that X is not updated for this Kaiman filter reflects a steady state approximation.

The second phase of the filter is based on a decomposition of the covariance matrix T of
the driving noise process in the innovations representation of the state space model. Let 7 be
‘either C, L, or Q in the Cholesky, LDU, or Singular Value Decomposition of I, respectively.
The output of the second phase is calculated by decorrelating the output of the first phase
across channels:

v(n)=Te(n). (3-59)

When a SVD of £ is used, T"! is equal to T¥. Hence, the inverse of Q is calculated as its
Hermetian transpose.

If the filter parameters embody the state space model from which the input is generated,
the output of this Kalman filter will be a reasonable estimate of the innovations process. In
practice, the true filter parameters are unavailable, and estimates are used for the matrices X,
F,H", and .

3.2.3 Estimation of State Space Parameters

The MSPSS can be used to synthesize AR and ARMA processes, as well as a few more
complex processes (e.g. for multipath). As shown in Section 3.2.1, AR and ARMA processes
can be represented exactly in a state. space model. This section defines the Canonical
Correlations Algorithm, which is used to estimate state space model parameters in the
MSPSS.

Let x (1), x(2), ..., x(N) be a single realization of a stochastic process generated by a
state space model. The Canonical Correlations Algorithm uses data on Np such realizations to
generate an estimate of the state space model order M and the matrices F, K, and H# which
appear in the innovations representation of the state space model (Section 3.2.1.1). The
covariance, I, of the innovations is also computed.

32.3.1 Step 1: Estimate Correlation Matrices

The algorithm is based on estimates of correlation matrices, not the raw data. These
* matrices are easily calculated. Let A, represent the correlations both within a channel and
between channels at lag !:

A =Elx(n)s (n-D)]. (3-60)

Since x(n) is a J-element column vector and its Hermitian transpose is a J-element row
vector, A; is an array with / rows and J columns. A, is a Hermitian matrix only for the zeroth
lag. The Hermitian transpose of correlation matrices for positive lags provides a convenient
method for calculating correlations for negative lags:

Ay =Afl. (3-61)

Given data on N, realizations of a stochastic process, the correlation matrices can be
estimated by averaging the sample correlations over time and across all trials. Two methods
exist, one producing biased estimates of the correlation matrices and the other producing
unbiased estimates. For nonnegative /, the biased estimate is generated as




. 1 Ne 1 N . ‘

Aegm Ly Y Sk -0, (3-62)
1-1 kal+l

where x'(n) is the nth time sample of the vector x(n) from the ith realization of the
stochastic process. The unbiased cstimate is generated as

N

A = N. 'Z‘, N-z,z )z k-1, (3-63)

-l al+l

The correlation matrices Ao, A, ..., A, _, are used to estimate the past and future block
correlation matrices. The estimate of the /L x J L past correlation matrix, in block form, is

[ - : ;] ]
:‘o ‘}l - ‘}L-l -x(n—l)
AL Ao o AL | x(n-2)
Boauml . || 1 |I#a-p a2 .. sfa-L 364
AI-L Az-l. - Re [x(n=L)!
The estimate of the JL x J L future block correlation matrix is
Ae A, - AI-L x(n)
A A o Agy x(n+1)
I T : () Ha+l) . . . 2 (n+L-1)) 3-65)
Aoy A - A Lx(n+L -1),
. J

Notice that the future block correlation matrix, ;.. ., is the block transpose of the past block
correlation matrix, R,., .. Furthermore, both the past and future block correlation matrices

The constant L, which defines the number of block rows and columns in the past and
future block correlation matrices, is a user input. It should be between one and 20, and chosen
" such that the user believes J L to be greater than M, the number of state variables.

3232 Step 2: Cakulate Square Root Matrices

Square root matrices are calculated for the past and future block correlation matices. The
square root is obtained using the Singular Value Decomposition (SVD) of the block
correlation matrices. The SVDs of the past and future block correlation matrices are defined
by Equations 3-66 and 3-67:

Rp.L.=UpSp UL (3-66)

Re.,. =UsSe UL (3-67)

The matrices S, and S; are diagonal matrices composed of the eigenvalues of the block
correlation matrices arranged in decreasing order of magnitude. The eigenvalues of the
matrices in Equations 3-64 and 3-65 are positive. The square roots of matrices S, and Sr can
be calculated on an efement-by-element basis along the principal diagonal. Since the block
correlation matrices are Hermitian, the inverses of U, and U, are their Hermitian transposes.
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Therefore, the following hold:
Rp.L.. =(Up SPRUEYUp SP2UH). (3-68)

Rr.... =(Us SPRUEY(UE S UY). (3-69)

Thus, the square roots of the block correlation matrices can be calculated as shown in
Equations 3-70 and 3-71:

ﬁp":zl..l. =Up S,‘”U,’.’ . (3-70)

R, =UsSPRUE. (3-71)

3233 Step 3: Caiculate The Intermediate Matrix A
An estimate of the J L x J L stochastic block Hankel matrix is found as follows:

A A, A 1 x(n)
A2 ‘&3 ;\Lﬂ x(n+l) |

Hasl . || |Ifa-D Ha-2 . fa-n) GTD
Re Buor - Ayef Lx@ael-D)

The intermediate /L x J L matrix A is defined as follows:
A=RFZ o H  RP'\R = (Up SFPUEYH, L (Up SFRUE). (3-73)

3234 Step 4: Perform the SVD of A
An SVD of A is performed next. The SVD is defined as:
A -UA SA VA’. (3'74)

where S, is a diagonal matrix with the singular values of A along the principal diagonal in
order of decreasing magnitude. All the singular values are positive real numbers between
. zero and unity. Let p,, p,, ..., p;, denote the (ordered) singular values. These singular values
are the correlations between the normalized past and the normalized future, and are referred to
as the canonical correlations.
3235 Step 5: Estimate Model Order ‘

The model order (the number of state variables), M, can be determined from the
canonical correlations. In theory, exactly M canonical correlations should be nonzero, but due
to numerical and statistical estimation errors some may be nonzero. Methods for determining

model order are based on identifying the number of canonical correlations that are
meaningfully different from zero.

A number of methods exist for determining the model order. These methods are based
on:

e A. The canonical correlations
e B. The normalized running sum of the canonical correlations

32




C. The square of the canonical correlations

D. The normalized running sum of the squares of the canonical correlations
E. Log parameters

F. Normalized mutual information parameters

The user can circument the whole process of calculating the model order by entering the order
directly.

Method A.

The model order M can be determined as the largest value such that for all £ > M, the
canonical correlation p, is less than or equal to some user-specified (small) value between
zero and unity.

Method B.
The normalized running sum of the canonical correlations is defined to be:
i lp; |
NRS (k)= 57— . (3-75)
p fpi |

im]
In theory, all values of p; should be nonnegative, but numerical errors may lead to small
negative values. The model order can be selected as the smallest value M such that for all &
2 M, NRS (k) is greater than or equal to some user-specified (large) value between zero and
unity.

Method C.

The squares of the canonical correlations are merely p?, p3, ..., p7.. The model order M
can be determined as the largest value such that for all ¥ > M, the canonical correlation p? is
less than or equal to some user-specified (small) value between zero and unity.

. Method D. :
The normalized running sum of the squares of the canonical correlations is defined to be:
k
ol :
NRSS (k)= 57— . (3-76)
T of

iml
The model order can be the smallest value M such that for all £ 2 M, NRSS (k) is greater than
or equal to some user-specified (large) value between zero and unity.

Method E.

The log parameters are defined as -in(1~p}), -In(1-p3}), ..., ~In(1-p},). Since the
canonical correlations are sorted in decreasing order, the log parameters are also in decreasing
order. The model order M can be determined as the largest value such that for all £ > M, the
log parameter -In(1 - p?) is less than or equal to some user-specified (small) value between
zero and unity.
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Method F.
The normalized mutual information parameters are defined to be:

k
E h(l-pl

" — 317
¥ In(1-p?)

im]

The model order can be the smaliest value M such that for all £ 2 M, v, is greater than or
equal to some user-specifi*d (large) value between zero and unity.

Model order determination is an important step in the canonical correlations algorithm,
and can be implemented using any of the methods defined above.
32.3.6 Step 6: Compute Transformation Matrices

The two JL x JL "transformation” matrices T, and 7, are defined by Equations 3-78
and 3-79:

T, =VARFL, (3-78)
Tr = UXRFE, (3-79)
323.7 Step 7: Estimate the System Matrix

The column-shifted J L x J L block Hankel matrix is defined as follows:
i ) z

Ay Ay - A
A A A
| H .= (3-80)
;\LH AL+2 T AZL
. Next the following J L x J L matrix is caiculated:
Z = Tp FL.L T;‘ (3‘81)

Let Z be the square matrix formed from A by taking the first M rows and columns, where M
'udlemodeladerdewmmedusmgomoftbemethodsspecxﬁedepr Aside from
numerical errors, all columns of A beyond the Mth column are zero.

The system matrix F is estimated as:
FamS;RZSTE, (3-82)
where 572 is the M x M square matrix in the upper left of S, obtained using the SVD of A
as defined in Step 4. Matrix F is the system matrix in the innovations representation.
32.3.8 Step 8: Estimate Observation Matrix

Let Z,, denote the matrix formed from the first / rows and M columns of the matrix
H, . T#. Then the Hermitian transpose of the observation matrix H is estimated as follows:




HY =2, 872, (3-83)
This is the observation matrix in the innovations representation.

3239 Step 9: Estimate Backward Model Observation Matrix

Let Z; denote the first M rows and J/ columns of the matrix T H, .. Then ihe backward
M x J observation matrix I' is estimated as follows:

r =572 (3-84)

323.10 Step 10: Determine the Remaining System Model Parameters
The remaining system parameters are estimated as follows:

M=5, (3-85)
Q=Ag-HYTIH (3-86)
K =[C-FIHIQ. (3-87)

In the innovations representation, IT denotes the (zeroth lag) correlation matrix of the state
space vector, Q denotes the (zeroth lag) correlation matrix of the multichannel innovations
process, A, denotes the (zeroth lag) correlation matrix of the model output process, and X
denotes the Kalman gain.

3.3 Extreme Value Method

The determination of thresholds for given false alarm probabilities is one capability of
the MSPSS. Thresholds are found by simulating many realizations of the stochastic process
corresponding to the null hypothesis, which contains no signal. These realizations are passed
through the signal detection algorithm, thereby yielding a list of estimates of the loglikelihood
statistic. A threshold is estimated as a value of the statistic such that the probability of
exceeding this threshold is the given false alarm probability. Since the false alarm probability
is a tail probability, an accurate estimation of thresholds requires the generation of a very
large number of realizations of the modeled stochastic process. A full simulation analysis of
a signal detection algorithm is thus quite expensive in terms of time.

Prakosh Chakravarthi (92) has developed a method, known as the Extreme Value Theory
(EVT), to accurately estimate thresholds based on an order of magnitude less realizations, and
this method was implemented in the MSPSS under this effort. The EVT approximates the tail
of the distribution of the loglikelihood statistic by a Generalized Pareto distribution. The
parameters of the Generalized Pareto distribution can be estimated with fewer samples of the
loglikelihood statistic than is needed to directly estimate a threshold. Once the Generalized
Pareto distribution is fully known, thresholds can be calculated for any given false alarm
probabilities. The programs for estimating thresholds were modified to permit the user to
choose this method.

Let AV < A® < .. < A™ be ordered sample statistics for the loglikelihood ratio generated
under the null hypothesis without a signal present. Let F be the underlying cumulative
probability distribution for the (unordered) loglikelihood statistic, and let p denote the desired
false alarm probability. The problem treated here is to determine an estimate, #, of the
threshold such that




F(M)=Pr(A<n)s=l1-p, (3-88)
where 1 is an estimate of n.

The EVT (Rangaswamy 93) is based on approximating the tail of F, where the tail is
defined to be the following set of loglikelihood ratios:

(AlA22.1=-F (Ro) =a}. (3-89)

where a is a user-defined (small) probability. (In other words, Pr (A 29) =a.) The tail of
almost any distribution F can be approximated by the Generalized Pareto Distribution. The
distribution function, G, for the Generalized Pareto Distribution is given by Equation 3-90:

A -1y .
c(x).l-[u-%-J . (3-90)

The tail of F is approximated as follows:
FMm(Q-a)+aG(A=2).A> 2. (3-91)

‘Given estimates of Ao, v, and o, an estimate of the appropriate threshold can be found for any
false alarm probability:

ﬂ-&+2“ﬂyall (3-92)
Y a

(This formula disagrees with Equation 10.51 in (Rangaswamy 93), which is mistaken.)

Once procedures for estimating the tail percentile and the parameters of the Generalized
Pareto Distribution are given, the EVT is completely specified. The tail percentile is easily
estimated. Let j = [aN,J, where laN,J is the integer part of aN,. Then, the following
equation can be used as an estimate of the tail percentile:

i Jg=a®r), (3-93)
The tail is defined to be those loglikelihood ratios A%’ such that A > A, If A“* 7 is tied with
succeeding values, the tail may contain less than j values. LetZ,, <2, < ... < Z,, denote the
tail values, that is v

Zay =A™ 20, : (3-94)
Three methods are available for estimating the parameters of the Generalized Pareto
Distribution: .
e  Maximum Likelihood
e  Probability Weighted Measures
° Ordered Sample Least Squares

3.3.1 Maximurm Likelihood

The maximum likelihood method is based on reparameterizing the likelihood function for
the tail statistics in terms of ¢ and <, where

T=y/0. (3-95)
The derivative of the reparameterized loglikelihood function with respect to ¢ is




d : - g_ 1 §
=g BL (0. Tz z) + 021 '}:_‘,lln(l+1z ). (3-96)
(Equation 10.22 in (Rangaswamy 93) contains an error in transcription.) A value that
maximizes the loglikelihood ratio can be found by setting this derivative equal to zero. The
estimate for o is then found to be:

§(3) = ;,1— T In(l+z). (3-97)
iml

This expression can be used to express the reparameterized loglikelihood function in terms of

< alone:

-l (%2),...2y ) =m ln&(t)+[l+ } i In(l+1z). (3-98)

iw]

()t
An estimate for « is obtained by minimizing the above equation. The system minimizes this
function numerically by using the Nelder-Mead algorithm. The implementation of the Nelder-
Mead algorithm in the MSPSS is based on that in (Press 86). This numerical method requires
two initial guesses for . Our implementation uses two inital guesses based on the Probability
Weighted Moments estimates, which can be found in closed form. One is three halves of the
Probability Weighted Moments <, and the other is one half the Probability Weighted Moments

<.
Once t and 5(%) are found, v is estimated by
Yy=5&(%)%. (3-99)
The above procedure is obtained from (Rangaswamy 93). We did not check that the
hkehhoodﬁmhmmmdwdmmmmdbythesesoluﬁommdﬁat&eesmmsoobmned
do not characterize a minimum or a saddie point.
3.3.2 Probability Weighted Moments

Let ¢ and ¢, be the following probability weighted moments of the Generalized Pareto
Distribution:

eo=E[Z], - (3-100)
and
e=E[Z(1-G(Z))]. (3-101)
These parameters are estimated from the data as follows:
L T - (3-102)
&= 2 (m=-i)z (3-103)

m(m-—l)

Caiculating the relevant integrals yields equations for the probability weighted moments
in terms of the parameters of the Generalized Pareto Distribution:




com —2— (3-104)

ag
= 3G (3-105)

These equations can be solved for the Generalized Pareto Distribution parameters. The
following estimates of the parameters are thereby obtained:

2e s
-z _‘_°2“él (3-106)

] 5 28

jel-Zal- a,-e;e, (3-107)

(Equation 10.32 in (Rangaswamy 93) is another, but equivalent formulation.)

3.3.3 Ordered Sample Least Squares

The derivation of the Ordered Sample Least Squares method is given in (Rangaswamy
93). The expected value of each order statistic in the tail can be found as function of y and o.
The estimators of these parameters are chosen to minimize the sum of the squares of the
differences between the observed order statistics and their expected values.

Using this procedure, an analytical formula can be found for o in terms of y and the
observed data:

T 7,(Q(-1)

s(y) =y =2 . (3-108)
2‘,‘ (Q (v)-1»
where B
0 (=] 2i+l (3-109)

The parameter v is found by a numerical procedure that minimizes the following function:

sn=E @ -2 m-ny (3-110)

rel} .
We did not check that a solution exists to this minimization problem. The numerical method
requires two initial guesses for y. Our implementation uses two inital guesses from the
Probability Weighted Moments estimate of y. These guesses are three halves and one half the
Probability Weighted Moments v.

3.4 Ozturk’s Algorithm

Dr. Aydin Ozturk has invented a powerful algorithm for determining the distribution of a
random sampie (Ozturk 90a, 90b, and 90c). It provides a graphical representation of data. The
algorithm can be applied in two modes. Under the first mode, it provides a formal statistical
hypothesis test of the goodness of fit of a sample. The other mode provides a means of
estimating the distribution of the sample. These modes contrast with other goodness-of-fit
tests, which usually do not provide an indication of an appropriate distribution if they reject
the null hypothesis, where the null hypothesis is that the data come from a specified
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distribution. Both modes were implemented under this effort.

Typically, Ozturk’s algorithm cannot be applied to the data synthesized by the MSPPS in
its raw for— The MSPSS synthesizes multichannel complex data, while Ozturk’s algorithm
applies to real univariate data. Hence the problem arises concerning how to apply
Ozturk’s .gorithm to complex data. Two possibilities exist. Ozturk’s algorithm can be
extended to multichannel data (Romeu 90). Or procedures could be created to convert
multichannel complex data to univariate real data. The latter approach was adopted for this
task.

3.4.1 Splitting Channels

The simplest procedure for analyzing multichannel data is to apply Ozturk’s algorithm to
each channel separately. The capability to split multichannel data into its component channels
already existed at the beginning of this effort, and was not changed here.

In applying Ozturk’s goodness-of-fit test to each channel of a multichannel dataset, the
user must take into account how the significance level is altered. For example, suppose the
data consists of two stochastically independent channels. Consider testing the null hypothesis

° Hy : x;(n) is distributed F, and x,(n) is distributed F,
against the alternative
e H,: All other alternatives.
Let a denote the significance level of the overall test:
a = Pr (Reject HylHg true ). (3-111)
This statistical test can be considered as a combination of two independent statistical
tests. The hypotheses for the two subtests are '
®  H{ :x(n)is distributed F;
) H{: x;(n) is not distributed F;,
where j = 1, 2. The significance level for these subtests is a;:
a; = Pr (Reject H§ |Hj true ). (3-112)°

A natural decision rule for the overall test is to accept the null hypothesis if both subtests
accept their respective nulls. This decision rule implies Equation 3-113 for relating the overall
significance level to that of the two subtests:

1 - a=Pr((Accept H} ) and (Accept H3 )\ Ho true ) » (1 = a;)(1 - o). (3-113)

More generally, if a statistical test is the result of J independent subtests with identical
significance levels, the significance level of the subtests, as a function of the overall
significance level, is given by Equation 3-114:

a=1-(1-a)¥. (3-114)

This relationship is not encoded in the MSPSS. Rather, the user must account for it when
‘entering desired significance levels. The user must also account for any correlation between
channels and the conversion of complex data to real data.
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3.4.2 Real Components of Complex Data

The program impiementing Ozturk’s algorithm accepts single chaanel or univariate data
created by one of the other programs in the MSPSS. This data can be real or complex. The
user is provided four options for converting this data if it is complex. The user can analyze
the

Real part
Imaginary part
Magnitude
Angle.

3.4.3 The Quadratic Form q

A more sophisticated method of converting multichannel complex data to a univariate
quantity was also implemented in the MSPSS. This method is based on the theory of
Spherically Invariant Random Processes (SIRPs). In particular, a certain quadratic form is a
sufficient statistic for SIRPs, and Ozturk’s algorithm can be applied to many realizations of
that quadratic form. This quadratic form is further defined in this section.

Let x (1), x(2), ..., x (N ) be a multichannel, possibly complex, process. Each time sample

x(n) is itself a column vector. If there are J channels, the components of each time sample
are as shown in Equation 3-115:

r*’1(")T

x3(n)

x(n)=| |. . (3-115)

XJ(")4
The entire stochastic process can be represented as a single vector with / N elements:

[ x(1) ]
x(2)

s=| | (3-116)

Lx(N) ]

The JxJ/ block correlation matrix summarizes the correlation between channels and
among time lags. The correlation matrix for the lth lag is defined as in Equation 3-117:
RU)=E([x(n)x"(n-=1)]. (3-117)
The block correlation matrix is defined by Equation 3-118:




[ R(O) R(1) -+ R(N) ]
R(-1) R - R(N=1)

R = ) ’ ’ ) (3-118)
[R(-N) R(1=-N) R(0) |

The quadratic form which summarizes a SIRP can now be defined. It is given by
Equation 3-119:
q=x¥Rx (3-119)

This quadratic form is always real and positive. Given N, realizations of a multichannel radar
return, Ozturk’s algorithm can be applied to the sequence of real scalars ¢, q% ... ¢'*. This
data has the form needed to apply Ozturk’s algorithm.

The quadratic form is difficult to compute in practice. Radar returns in the MSPSS can
contain up to 4 channels and up to 20,000 time samples. Thus, the matrix R can be up to
80,000 x 80,000. Only a special case of the quadratic form was implemented so as to reduce
these storage requirements. This special case consists of data uncorrelated across time, but
possibly correlated across channels.

For this special case, the block correlation matrix R becomes:
[£0 --- 0]
el = " L (3-120)

: oo 7k
where I is the JxJ covariance matrix showing cross-channel correlation. The quadratic form
is then:

N
g=Y (n)'x(n). ' (3-121)

34.4 Ozturk’s Goodness of Fit Test

Let x4, € x5 < ... € xy, be an ordered random sample. These values can be sorted
quadratic forms as described above, a single channel of real data, the real part of a single
channel of complex data, etc. The application of Ozturk’s algorithm as a goodness of fit test
allows the user to test whether or not this sample is from a specified distribution. That is,
Ozturk’s algorithm provides a statistical test for deciding between the null hypothesis

®  H,: x, is from a specified probability distribution
and the alternative
[ H]:m.

The null hypothesis need only be specified as far as the type of the distribution and shape
parameters. Location and scale parameters can be any values. Normalization removes any
effect from location and scale parameters. The null hypothesis distribution should reflect
whatever conversions were used to generate the random sample to which Ozturk’s algorithm
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is applied. For example, suppose the data being tested is the magnitude of a complex
Gaussian process. The null distribution should be Rayleigh (Weibull with a shape parameter
of two), since the magnitude of a complex Gsussian random variable is Rayleigh.

Ozturk’s statistic Qy consists of the ordered pair (Uy, Vy) defined by Equations 3-122
through 3-125:

Uy L Iyolome. (3-122)

Vo= L lyolsne, . (3-123)

6,- 'ﬁ¢(m“))- (3'124)
where y;, are the standardized values for the ordered sample: |

Yir= ol S (3-125)

Sx

¥ and s, are the sample mean and sample standard deviation of the random sample and m;, is
the expected value of the ith order statistic from the reference distribution; that is, the
standard Gaussian distribution!. ®(w) is the Cumulative Distribution Function for the
reference distribution, as given by Equation 3-126:

S(w)= —ﬂ% le-"'zd: . (3-126)

Ozturk’s aigorithm can be visualized as tracing a path out in a two dimensional space
(U, V), as shown in Figure 3-7. The data defines the magnitudes |y,,| of a sequence of
- vectors in this space, which are then standardized by the factor (1/N). The sequence of
angles between these vectors are defined by the Gaussian reference distribution. The ordered
pair given by Ozturk’s algorithm is the endpoint of the path formed by linking the vectors
together. The null hypothesis defines the expected endpoint of this distribution, as well as the
statistical variation about this endpoint and the statistical variation of the path to this endpoint.

Theexpeaedadu'stansncsﬁomtheGausmrefmcedlsmbunonarefoundbya
" Monte Carlo estimation algorithm. Let w;, € wg < ... £ wy, be an ordered sample from a
Gaussian distribution with zero mean and unit variance. A user-gpecifed number of
realizations of these order statistics are synthesized. Estimates of the expected values of the
order statistics are found by averaging over these realizations (see Appendix D).

The user must know the distribution of Qy under the null hypothesis to decide between
the null and alternative hypotheses at a specified significance level. This distribution is not
known in closed form. The expected value of the Ozturk statistic is also found by Monte
Carlo simulation. Let Im S 2 S ... S Iy be an ordered m‘c from the null hypothals
distribution. Many realizations of this ordered sample are generated. The magnitude of the
linked vectors for each realization are given by Equation 3-127:

1A more generai version of Oznurk’s algorithm would allow the user 10 specify the reference distribution as well as the null distribu-
tion. Oztawk has shown, however, that the narmal distribution empirically works best.




Iz(‘»)—zl

(3-127)

lyg! = ]
The sample mean and variance are estimated anew for each realization. The angles between
the linked vectors do not change; they are based on the expected values of the ordered sample
from the reference distribution, as described above. The expected value of Ozturk’s statistic
is found by averaging over many realizations of the endpoint of these linked vectors. The
average path is shown in Figure 3-7.

Figure 3-7 also shows confidence regions for Ozturk’s statistic. These are needed for a
formal statistical test. The confidence region should be determined for a level 1 - a, where a
is the significance level of the test. If Ozturk’s statistic for the data lies outside the confidence
region, the user should reject the null hypothesis that the hypothesized distribution describes
the data. In the example, the data is rejected as coming from a Gaussian distribution at the
10% level, but accepted at the 1% level.
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Figure 3-7: Ozturk’s Algorithm
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Calculation of confidence regions is a fairly complex procedure. Two methods are
supplied. One is based on the assumption that the ordered pair (Uy, Vv) is approximately
bivariate normally distributed. The other is based on transformations from the Johnson family
of distributions. These procedures are explained in more detail in Appendix F.

34.5 Oxturk’s Algorithm as Parameter Estimation

The Ozturk algorithm traces a path in a8 two dimensional space whose endpoint is the
statistic. Bach distribution, when its shape parameters are specified, if any, results in a definite
expected endpoint. These endpoints can be compared with Ozturk’s statistic as determined
from an observed random sample. Under this theory, the distribution that best fits observed
data can be determined based on Ozturk’s statistic.

The statistic is caiculated from the data and compared with the endpoints from various
possible distributions. The endpoint closest to the observed statistic is identified, and the
distribution associated with this endpoint is selected as the best fit to the data. Figures 3-8,
3-9, and 3-10 show a "distribution approximation chart" needed for this purpose. In addition
to the path of linked vectors determined by the data, the expected endpoints are plotted for
several distributions. A single point is plotted when the Probability Density Function for the
distribution contains no shape parameters, only a location or scale parameter (Figure 3-8).
Distributions with a single shape parameter result in a curve, approximated by a finite number
of points along the curve (Figure 3-9). The K distribution in this figure is for a real process,
while the Gumbel distribution is of Type II. Distributions with two shape parameters, such as
the Beta and Johnson SU distributions in Figure 3-10, are shown by a family of curves. Each
curve for the Beta distribution, for instance, corresponds to a differeat value of one shape
parameter. The other shape parameter varies along the curve.

The distance between the data and the expected value of the statistic for a given
distribution and shape parameters is the Euclidean distance. A more precise method would be
based on probabilities. The Euclidean norm is reasonable if most confidence regions are
approximately circular. The closest distribution is then chosen as the desired distribution for
approximating the observed data.

345.1 Estimating Shape Parameters

- Shape parameters for the selected distribution can be determined from Ozturk’s
approximation chart. A distribution with one shape parameter will be represented by a single

curve in the approximation chart. The shape parameter can be estimated for such a

distribution by finding the point along this curve closest to the value of Ozturk’s statistic as

calculated from the data. In practice, this curve will not be known exactly. Instead, a finite

series of points along the curve will be known. Thus, the shape parameter estimate must be

Suppose (U,, V,) and (U, V,) in Figure 3-11 are points along & curve corresponding to a
distribution with one shape parameter v. Let (U, V) be a value of Ozturk’s statistic caiculated
from the data. The distribution curve is approximated by a straight line between (U,, V,) and
(Uy V2. The problem is to project (U, V) onto the line at point (U,, Vo) and determine the
corresponding shape parameter for this point.
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Figure 3-11: Linear Interpolation for Shape Parameter

The slope of the line between (U,, V,) and (U,, V,) is m:
Vy=-V,

me T, (3-128)
Tne equations for the two lines whose intersection is (U,, V) are:
yamx+(V,-mU,) (3-129)
-1 1
yox+(V+—U) (3-130)

One can substitute (U,, V,) into these two equations. The solution of the resulting system of
equations is:

mU,+m(V-V)+U

U
° m?+1

(3-131)
m:V +m(U - U,)+V,

m3+1 _
An estimate of the comresponding shape parameter is then found by linear interpolation
between the endpoints:

(3-132)




. Uy=U, [ U,-Uo]

Y= TJ;-—UTY' + (3-133)

where v, and v, are the shape parameters corresponding to the endpoints.

Estimating distributions with two shape parameters is more complicated. One method
would be to use linear interpolation based on three points around the observed statistic. The
method implemented in the MSPSS is simpler. Each curve is treated as a separate distribution.
The curve closest to the observed statistic is found. This determines one shape parameter. The
other is found by linear interpolation along the selected curve, as above.

3452 Estimating Location and Scale Parameters

Ozturk’s distribution approximation chart can be used to identify the distribution that
most closely matches an observed random sample. It can ailso be used to determine shape
parameters. Estimates of location and scale parameters, however, are not available from the
approximation chart. The approach described in (Shah 93) was implemented to estimate
location and scale parameters in a manner consistent with Ozturk’s algorithm.

Let x) S x5 S ... < x(v) be the ordered random sample which is to be used to estimate
location and scale parameters. Suppose the underlying Probability Density Function is
f(x.a.B), where a is the location parameter and p is the scale parameter. Consider the
standardized order statistics S(,'), i = 1, 2, ey 11

Sy x‘“ﬁ‘ a (3-134)
Let p; be the expected values of these standardized order statistics:
u.' = E [S(")] . (3'135)

In practice, u;, i = 1, 2, ..., n is found by Monte Carlo simulation. The order statistics S;, are
simuleted from the given PDF with a location parameter of zero and a scale parameter of
unity The expected value of X, is related to the location and scale parameters and the
expected values of S, as follows:

4 ElXjplma+y;B. (3-136)
Consider the statistics given by Equations 3-137 and 3-138:
T,= 3 Cos(8,)X, (3-137)
iwm]
Ty= Y Sin(6;)X;). (3-138)

im}
where 6, is as defined in Equation 3-124. These statistics closely resemble Ozturk’s statistic.
Their expected values are:

E[T,)Jmaa+bhB (3-139)

E[(T,)=ca+dB, (3-140)
where
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a -igCos 6) (3-141)
be .-2:31“‘ Cos (8;) | (3-142)
cm i)::lsm (8,) (3-143)
d= Y WSin(8). (3-144)

It’s fairly apperent by symmetry that ¢ must be equal to zero. Hence estimates of
location and scale parameters are:

p= 210 (3-145)
au El21-dB (3-146)

[

The expected values of T, and T, are found by Equations 3-137 and 3-138 from the observed
data. As has already been explained u; and 6, are found by Monte-Carlo simulation. With the
determination of the location and scale parameters, the Ozturk algorithm for parameter
estimation is completely specified.




4. IMPLEMENTATION

Section 3 describes new capabilities implemented under this effort. These capabilities
were implemented with several interacting programs under the menu-based subsystem and
new analysis sequences under the UFI-based system. Each program under the menu-based
system corresponds to a menu choice. Two menu-based programs and four UFI-based
analysis sequences were designed to implement the sensor fusion approach. Kalman filtering
was implemented with four programs and four analysis sequences. The Extreme Value
Theory resulted in the modification of loglikelihood calculation programs and all detection
analysis sequences. The Ozturk algorithm was implemented as one program.

4.1 Sensor Fusion

The sensor fusion approach requires the following capabilities:

e Synthesis of multichanne! data as ARMA processes where off-diagonal elements of AR
coefficient matrices are zero

e Estimation of single channel AR parameters along each channel of multichannel data

e Estimation of the error covariance matrix after tapped delay line structured prediction
error filters are applied to each channel of multichannel input

e A sensor fusion filter which applies a tapped delay filter to each channel separately and a
second phase at the fusion center for removing interchannel correlation.

Some of these capabilities can be viewed as special cases of functions that existed at the start
of this effort. In particular, the previously existing tapped delay line filter has parameters
corrasponding to an AR model of its input. This filter is functionally-equivalent to the sensor
fusion filter when the AR coefficients are diagonal:

(ai¢) 0 o ... o
0 4WU) O 0
0 0 a3() :
Aty =) . L o 4-1)
. . . .0
L0 0 0 ...4&W]

where J is the number of channels. The order of the vector AR process, where each single
channel is an AR process, is the maximum of the order of the single channel AR processes.

To take advantage of existing multichannel processing, all files of AR coefficients
created by new programs were stored as diagonal matrices. This design decision allowed
previous routines for synthesizing ARMA processes, filtering multichannel inputs, displaying
AR coefficients, etc. to be available for sensor fusion analysis.

4.1.1 Estimation Program

A menu-based program was written in which AR model parameters are estimated using
single channel estimators for each channel in a multichannel process. The input consists of
many realizations of a multichannel signal as generated by the muitichannel synthesis
routines. The output is a set of muitichannel AR parameters in which all off-diagonal
clements are zero. These parameters, or their average, can be stored in a file suitable for
reading by the multichannel tapped delay line filter and other programs in the system. In other
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words, the output file is the same format as the output file for the multichannel Yule-Walker
estimation program, for example.

On entry, the user is asked for the name of the input file. 'Iheusernsalsoaskcdtomput
an integer vector in which each element represents the order of the desired AR model for the
corresponding channel. The user is asked to choose an algorithm for estimating the AR
parameters. Current options consist of the Yule-Walker and Burg algorithms, these being the
available algorithms already implemented for single channel AR estimation. If the user wants
to use the Yule-Walker algorithm, the user must indicate whether biased or unbiased estimates
shouid be found.

For each realization, the program estimates AR parameters, including the variance, for an
AR model for each channel. These estimates are stored in a representation of a muitichannel
AR process with diagonal matrices for AR coefficients and the covariance matrix.

The method of displaying these estimates for each realization is modeled after the
already existing programs for estimating multichannel AR coefficients. The user is given the
option of saving the estimates, or their averages over many realizations to a specified file.
Variances are calculated and displayed for these averages. No option exists for calculating
error variances based on the actual values. Figures 4-1 and 4-2 show an example of user
interaction with this program.

4.1.2 Covariance Matrix Estimation

A menu-based program was also written to estimate the covariance matrix. The input is a
multichannel signal. This input could be the output of a tapped delay line structured prediction
error filter in which the AR coefficients are as determined by the AR estimation program. The
matrix used to remove interchannel correlation in the second phase of the filter should be set
to identity. By using the menu-based system in this fashion, the structure of the sensor fusion
approach is preserved. But the covariance matrix estimation program could be used in other
instances as well.

The program estimates the covariance matrix for each realization of the input process,
e.g. prediction error filter output. These estimates and their averages across trials are
displayed to the user. The estimates are calculated as in Equation 3-27 and 3-28. The user is
. given the option of saving the average estimates to a file. If the user chooses this option, the
user is given the option of storing these covariance estimates with AR parameters read from
an already existing file. This further option can produce a coefficient file suitably formatted to
serve as the parameters for the sensor fusion filter shown in Figure 3-1. Figure 4-3 shows an
example execution of the covariance estimation program. e

4.1.3 Sensor Fusion Analysis Sequences

Four new analysis sequences were written to implement sensor fusion in the UFI-based
subsystem. Figure 4-4 shows the UFI menu for sensor fusion sequences. The covariance
matrix estimation sequence merely generates a user-specified number of trials of white noise
and estimates the covariance matrix from those realizations.

The sensor fusion AR parameter estimation sequence is more complicated. A first set of
realizations of an AR process are generated. These realizations are used to estimate AR
parameters, where each channel is modeled as a single channel AR process. Once the average
of these AR parameters is determined, a new set of realizations of the AR process is
generated. These realizations are filtered by a tapped delay line. Each channel is filtered
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MYWB -- Estimates channel AR parameters by Yule-Walker or Burg algorithm.
Version 1.2
Input file name ? riv
Title: AR, a = (-0.625, -1.629), (0.25, 0.81)
Output coefficient file name ?
No file name entered, is this okay ? y
Display the estimates on the terminal (y/n) [Y] ?
Do you want to use the Yule-Walker or Burg method (y/b) ?
~ Enser "y" to use the single-channel Yule-Walker algorithm to
estimate AR parameters for each channel. Enter “b” to use the
Buryg algorithm.
Do you want to use the Yule-Walker or Burg method (y/b) 7 b
Enter the order of the AR process for each channel ? 2, 2
Trial 1 size: 20000
Covariance matrix estimate:
(1.0659¢+00.0.0000e+00) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (3.2686e-02,0.0000e+00)
AR coefficient estimates:
A(1)=(-6.2876¢-01.4.9529¢-03) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (-1.6330e+00.-3.5726e-03)
A(2)=(2.4834¢-01.-9.8383¢-04) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (3.1419e-01.3.7286e-03)
Process Next trial, All trials, or Quit (a/a/q) [N]1 ? a
Trial 2 size: 20000
Covariance matrix estimate:
(1.0574e+00,0.0000e+00) (0.0000e+00,0.0000e+00)
(0.0000e+00.0.0000e+00) (3.2398-02,0.0000e+00)
AR coefficient estimates:
A(1)%(-6.2185¢-01.4.2076e-03) (0.00000+00.0.0000e+00)
(0.0000e+00,0.0000e+00) (-1.63020+00,-1.5750e-04)
A(2)=(2.4799¢-01 2.3717¢-03) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (3.0997¢-01.5.3056¢-04)
Trial 3 size: 20000
Covariance matrix estimate:
(1.05622+00.0.0000e+00) (0.0000e+00.0.0000e+00)
(0.0000e+00,0.0000e+00) (3.2526e-02.0.0000e+00)
AR wuefficient estimates:
A(1)m(-6.3205¢-01.9.1982¢-03) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.00000+00) (-1.6264e+00.7.3044e-04)
A(2)=(2.5694¢-01.-6.7751¢-03) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (8.0736e-01.6.6720e-04)

Figure 4-1: Sensor Fusion AR Estimation
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Trial 4 size: 20000
Covarimnce matrix estimate:
(1.06240+00.0.00002+00) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (3.265%-02,0.0000e+00)
AR coefficient estimates:
A(1)=(-6.2828¢-01.-3.0305¢-03) (0.0000e+00.0.0000e+00)
(0.00000-+00.0.0000e+00) (-1.6307¢+00,1.485%-03)
A(2)=(2.5569¢-01,-3.2103¢-04) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (8.1168e-01.-1.2603e-04)
Trial 5 size: 20000
Covariance matrix estimate:
(1.0618¢+00.0.0000e+00) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (3.2341¢-02.0.0000e+00)
AR coefficient estimates:
A(1)=(-6.2449¢-01 .- 1.3675¢-02) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (-1.6273e+00.8.59582-04)
A(2)=(2.4287¢-01.7.6110e-03) (0.0000e+00.0.0000e+00)
(0.0000e-+00.0.0000e+00) (8.0730e-01.-2.3590e-03)
Mean values for 5 trials
Mean covariance matrix estimate:
(1.0607e+00.0.0000e+00) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (3.2622¢-02.0.0000e+00)
Variance in covariance matrix estimates:
1.5612¢-05 0.0000e+00
0.0000e+00 4.2464¢-08
Mesn AR coefficient estimates:
A(1)=(-6.2719e-01,3.3064e-04) (0.0000e+00,0.0000e+00)
(0.00C +00.0.0000e+00) (-1.6295¢+00.-1.3084¢-04)
A(2)»(2.5036e-01,3.8054¢-04) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (8.1010e-01.4.3827¢-04)
Variance in AR coefficient estimates:
A(1)=9.6361¢-05 0.0000e+00
0.0000e+00 1.1122e-05
A(2)m6.1818¢-05 0.0000e+00
0.0000e+00 1.3396e-05

Figure 4-2: Sensor Fusion AR Estimation (Continued)




MVAR -- Estimates muitichannel covarisnce matrix.

Version 1.5
Input file name ? riv
Title: Complex Gaussian noise. mean = 0, var = (2, 1/2)
Save average covariance estimates to a file (y/n) [Y] 7 »
Display the estimates on the terminal (y/n) [Y] ?
Trial 1, Size: 20000 samples.
Channel 1: Mean=(2.5743¢-03.-1.0237¢-02)
Channe: 2: Mean=(4.3771¢-03.3.3758¢-03)
Covariances: (2.0144¢+00.0.0000e+00) (-5.3891e-03.2.2511e-03)
: (-5.3891e-03.-2.2511e-03) (5.0488¢-01.0.0000e+00)
Process Next trial, All trials, or Quit (n/a/g) [N] ?
Trial 2, Size: 20000 samples.
Channel |: Mean=(-9.7988¢-03.2.7998¢-03)
Channel 2: Mean=(6.9658¢-03.7.7491e-03)
Covariances: (1.9965¢+00,0.0000e+00) (4.3871e-03.-1.175%-04)
(4.3871¢-03,1.1759¢-04) (5.0255¢-01.0.0000e+00)
Process Next trial, All trials, or Quit (n/a/q) [N] ?
Trial 3, Size: 20000 samples.
Channel 1: Mean=(5.4823¢-03.-1.2353¢-02)
Channel 2: Mean=(2.4676e-03.3.3579-03)
Covariances: (2.0082¢+00.0.0000e+00) (-6.8590e-03.7.9171e-03)
(-6.8590e-03.-7.9171e-03) (4.9942¢-01.0.0000e+00)
Process Next trial, All triais, or Quit (n/a/q) [N] ?
Trial 4, Size: 20000 samples.
Channel 1: Mean=(2.5110e-03.1.6887¢-03)
Chamnel 2: Mean=(-3.4951e-03.1.2439¢-04)
Covariances: (2.0102¢+00,0.00000+00) (-3.8123e-04.-3.3313¢-03)
(-3.81230-04.3.3313e-03) (4.95622-01.0.0000e+00)
Process Next trial. All trials, or Quit (n/a/) [N] ?
Trial 5, Size: 20000 samples.
Channel |: Mean=(2.6013¢-03.-1.1193¢-03)
Channel 2;: Means(-2.6635¢-03.-2.5687¢-03)
Covariances: (2.0029¢+00.0.0000e+00) (5.9705¢-03.7.5592¢-03)
(5.9705¢-03.-7.5592¢-03) (5.0278e-01.0.0000e+00)
Process Next trial, All trials, or Quit (0/a/q) [N] ?
Memn values for 5 trials
Channel 1: Mean=(6.7404¢-04.-3.8440e-03) Variances8.4734e-05
Channel 2: Mean=(1.5304¢-032.4077¢-03) Variance=3.5430e-05
Covarisnces: (2.0065¢+00.0.00000+00) (-4.5434¢-04.2.85570-03)
(4.54340-04.-2.8557¢-03) (5.0105¢-01,0.0000e+00)
Variances in covariance estimates:
Variances: 4.7790e-05 5.6330e-05
5.6330e-05 1.3004e-05

_Figure 4-3: Estimating the Covariance Matrix
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Figure 4-4: Sensor Fusion Analysis Sequences

separately. The resulting multichannel output is then used to estimate the covariance matrix
for the signal produced after intertemporal correlation is removed. The final output of this
sequence is the average of these covariance matrix estimates.

The sequence for detection analysis in noise is based on the structure shown in Figure
2-1. The F, filter merely decorrelates its inputs across channels; it does not contain a tapped
delay structure. The covariance matrix used for this filter is estimated based on a number of
realizations of white noise. The F, filter has the structure shown in Figure 3-1 and its
parameters are estimated as in the seasor fusion AR parameter estimation algorithm. The
detection analysis proceeds by first determining the thresholds for given false alarm
probabilities. This requires the synthesis and filtering of many realizations of noise. The
probability of detection is estimated from many realizations of signal and noise. This whole
process is repeated a user-specified number of times so as to be able to estimate means and
variances for the thresholds and probabilities of detection.

The sequence for detection analysis in clutter and noise is close in structure. In this case,
both filters have the structure shown in Figure 3-1, with corresponding coefficient estimation .
loops. The output of this sequence is also estimates of thresholds and probabilities of
detection for given false alarm probabilities.

4.2 Model Identification

Four programs were added to the menu-based subsystem in support of state space model
identification. These programs convert AR model parameters to state space model parameters,
synthesize state space output processes, estimate state space model parameters from many
realizations of the output process, and implement a Kalman filter. Four sequences were added
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to the UFI-based subsystem.

4.2.1 Conversion of AR Parameters to State Space Parameters

The program for converting AR parameters to state space parameters allows the user to
either specify a file containing Autoregressive model parameters or enter them directly (Figure
4-5). These parameters are the lagged weights in the AR process and the covariance matrix
for the driving noise. The input file, if any, is produced by one of the other programs in the
system such as the AR process synthesis or Yule-Walker estimation programs.

As described in Section 3.2.1.3, an AR process can be modeled as an innovations
representation of a state space model. The program calculates the innovations model
parameters F, K, and H” as described there. The covariance matrix for the innovations
process is unchanged. The state space parameters are output to the user and to a user-
specified file. The output file is formatted such that it can be read by the state space process
synthesis or Kalman filter programs.

Converts AR parameters {0 state space parameters.
Version 1.3
Read AR parameters coefficients from a file (y/n) [Y] ?
Input file name ? rivar
Title: Actual AR coefficients
AR coefficients:
A(1)=(-6.2500e-01.0.0000e+00) (0.0000e+00.0.0000e+00)
(0.0000e+00.0.0000e+00) (-1.6290e+00.0.0000e+00)
A(2)=(2.5000e-01.0.0000e+00) (0.0000e+00.0.0000e+00)
(oonoomoomoo) (8.1000e-01,0.0000e+00)
noise covariance matrix:
(1.054688¢+00,0.000000e+00) (0.000000e+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (3.267052¢-02.0.000000e+00)

Are these parameters okay (y/n) [Y] ?

Output file name for state space parameter ? rivss

Title of this dataset ? State Space parameters

System Dynamics matrix F:
(6.250000e~01,0.000000e+00) (0.000000e+00.0.000000e+00) (-2.500000e-01,0.000000e+00) (0.000
(0.000000e+00.0.000000e+00) (1.629000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (-8.099
(1.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (0.0000
(0.000000e+00.0.000000e+00) (1.000000e+00.0.000000e+00) (0.0000002+00.0.000000e+00) (0.0000

Hermitisn transpose of Observation matrix H:
(6.250000e~01.0.000000e+00) (0.000000e+00.,0.000000e+00) (-2.500000e-01,0.000000e+00) (0.000
(0.000000e-+00.0.000000e+00) (1.629000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (-8.099

Kalman Gain:
(1.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (1.000000e+00.0.000000e+00)
(0.000000e-+00.0.000000e+00) (0.000000e+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00)

Covariance matrix for innovatious:
(1.054688¢+00.0.000000e+00) (0.000000e-+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (3.267052¢-02.0.000000e+00)

Figure 4-5: Converting AR to State Space Parameters
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4.2.2 State Space Process Synthesis

The state space process synthesis program (Figure 4-6) asks the user to either enter the
model parameters directly or provide them in an input file. These parameters consist of F, X,
and H” in the innovations representation of the state space model. The covariance matrix of
the innovations Q must be specified also. The state space parameters are used directly in
process synthesis; to date no “shaping function" approach has been defined or implemented.

Synthesizes stase space process

Version 14

Do you want to set the pseudo random generator seeds (y/n) {N] ?

Enter the number of trials of the signal to be generated ? §

Read state space parameters from a file (y/n) [Y] ?

Input parameter file name ? rivss

Title: State Space parameters

Decomposition method: Cholesky. LDU, or SVD (c//s) [C] ?

Do you want the driving noise to be a Gaussian or SIRP process (g/s) [(G] ?

Length of the generated signal in points ? 10000

Enter the number of points to be generated before saving data 7 2000

Driving noise: real only, imaginary oaly, or complex (r/i/c) 7 r

A 2 channel real order 4 state space process will be generated.

System Dynamics matrix F:
(6.250000e-01.0.0000000+00) (0.000000e+00.0.000000e+00) (-2.500000e-01.0.000000e+00) (0.000
(0.000000e+00,0.000000e+00) (1.629000e+00.0.000000e+00) (0.000000e+00,0.000000e+00) (-8.099
(1.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (0.0000
(0.000000e+00.0.000000e+00) (1.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00) (0.0000

Hermitian transpose of Observation matrix H:
(6.250000e-01.0.000000e+00) (0.000000e-+00.0.000000e+00) (-2.500000e-01.0.000000e+00) (0.000
(0.000000e+00,0.000000e+00) (1.629000e+00,0.000000e+00) (0.000000e+00.0.000000e+00) (-3.099

Kalman Gain:
(1.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (1.000000e+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (0.000000e+00.0.000000e+00)
(0.000000e-+00.0.000000e-+00) (0.000000¢+00.0.000000e+00)

Covarisnce matrix for inmmovations:
(1.0546880+00.0.000000e+00) (0.000000e+00.0.000000e+00)
(0.000000e+00.0.000000e+00) (3.267052¢-02.0.000000e+00)

Cholesky ition of covariance matrix: -
(1.026980e+00,0.000000e+00) (0.000000e+00,0.000000e+00)
(0.000000e+00,0.000000e+00) (1.807499¢-01.0.000000e+00)

The driving noise will be Gaussian.

10000 time samples will be generated, with. 2000 time samples priming the process.
Are these parameters okay (y/n) [Y] ?

Output file name ? rlv

Title of this dataset ? Synthesized state space process

Figure 4-6: State Space Synthesis
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The user can specify the covariance matrix directly or in factored form. Factorization
options coasist of the Cholesky, L-D-U, and SVD. The program does not provide any checks
on the factors the user enters. For example, the program does not venify whether the
cigenvector matrix provided as an SVD factor is Hermitian. If the user specifies the
covariance matrix directly, the user is asked which decomposition should be used in process
synthesis.

The user can choose to specify Gaussian or K-distributed Spherically Invariant Random
Process (SIRP) driving noise. The user must also specify the random number seed, the
number of time samples in a single realization of the output process, the number of
realizations (trials) of the process, and the number of time samples to first generate and then
discard in "priming” each realization. This last input allows the user to produce steady state
output processes by discarding transient behavior.

The program generates the specified realizations of the process and saves them in a
user-specified output file. The output file can be read by many other programs in the system,
including plotting, statistics, and estimation routines. The innovations are generated as

e(n)=Tz(n), 4-2)

where z(n) is either Gaussian or SIRP white noise uncorrelated across channels with
(diagonal) covariance matrix D. If the user chooses a Cholesky decomposition, D is the
identity matrix and T is the lower diagonal matrix C where

Q=CcCH. (4-3)

If the user chooses a L-D-U decomposition, T is the lower diagonal matrix L with ones along
- the main diagonal and where

Q=LDLY. (4-4)
If the user selects the SVD, D is the matrix of eigenvalues A and T is Q where
Q=QAQY. 4-5)

If the user enters the model parameters directly, the user is given the option of specifying
a file in which they are saved. This option permits the user to resynthesize a particular case; it
is also useful for the innovations filter program.
4.2.3 Estimation of State Space Parameters

In the program (Figure 4-7) for estimating the parameters of the state space model, the
user is asked to specify:

e The upper bound, L, on the size of the block state space vector

e Whether biased or unbiased estimates of correlations should be used
e The model order, if the user wants to input it directly

e The method to be used for calculating the model order

The bound for calculating the model order, if the user wants the model order to be
internally calculated

e Whether diagnostic information should be displayed on the user’s terminal
e The file containing the process from which the parameters are to be estimated
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e The output file in which the parameter estimates are to be stored.

Version 1.8

Input file name ? riv

Title: Synthesized state space process

Output file name for perameter estimates 7

No file name entered, is this okay ? y

Upper bound, L. on size of state space block vector ? 4
Caiculate biased or unbissed lags (u/b) ? u

MODEL ORDER MENU

0 - Emer the model order direcdy

1 - Use the canonical correlations to caiculate the model order
2 - Use the nomalized running sum of the canonical carrelations
3 - Use the squares of the canonical carrelations

4 - Use the normalized running sum of squares

5 - Use the log parameters

6 - Use the normalized mutual information parameters
Model order caiculation method ? 0

Model order ? 2

Display diagnostic information (y/n) ? n
Order: 2

System Dynamics matrix F:
(7.677540e-03.0.0000000+00) (-3.436075¢-01.0.000000+00)
(5.054108-02.0.000000e+00) (-1.029191¢-01,0.000000e+00)

Hermitian transpose of Observation matrix H:
(8.399569-02.0.000000e+00) (7.290421e-01.0.000000e+00)
(1.476353e-02.0.000000e+00) (-2.566631e-01.0.000000e+00)

(-3.226846e~04.0.000000e+00) (1.359702¢-+00.0.000000e+00)
(1.319421¢-02,0.000000e+00) (1.833456¢-01.0.000000e+00)

Covarisnce matrix for innovations:
(1.160445¢+00.0.000000e+00) (1.323281e-01,0.000000e+00)
- (1.323281e-01,0.000000e+00) (4.512954¢-01.0.000000e+00)

Figure 4-7: State Space Model Identification

The program averages the estimates of the lagged correlations over all trials to generate the
needed estimates A,. Using this information, the program estimates the state space model
parameters for an innovations representation using the algorithm in Section 3.2.3.
Specifically, the program generates estimates of the system dynamics matrix F, the Hermitian
transpose of the observation matrix H, the Kalman gain X, and the innovations covariance
matrix Q. The model order and these estimates are echoed to the user’s terminal. They are
also saved to a file in a format readable by the innovations filter program.

If the user indicates diagnostic information should be displayed, the following additional
information is displayed:




o The singular values of the past correlation matrix, Rp., ,

o The singular values of the future correlation matrix, Rr.; .

e The canonical correlations, their normalized running sum, the squares of the canonical
correlations, the normalized running sum of the squares, the log parameters, and the
mutual information parameters (Only the series used in calculating the order is printed if
the user indicates diagnostic information should not be printed)

e The singular values of the system dynamics matrix F

4.2.4 Innovations Filter Program

In the Kalman filter implementation (Figure 4-8), the user is required to specify the name
of a file containing the input. This file contains a number of trials of the process in the
customary format for multichannel processes in this system. The program also asks the user
for two output files. One file, which is optional, is for storing the estimates of the state
variables. The other file contains the decorrelated innovations filter output.

The user is given the option of reading the filter parameters F, X, H", and Q from a file
or inputting them directly. The user is asked for two additional parameters. One is the length
of the innovations sequence N,, which must be less than or equal to th: number of time
samples in the input process N. The program discards the first ¥ - N, time samples of the
innovations to remove transient behavior.

In order to whiten the innovations vector across channels, the covariance matrix Q is
factored. Pactorization options consist of Cholesky, LDU, and Singular Value
Decompositions. The values of the.resulting channel variances, o;%, are stored in a user-
supplied file for later use in calculating a loglikelihood ratio statistic. ' Given the user inputs,
the program calculates the innovations process by the Kalman filter as described in Figure 3-
6. A user-specified number of time samples of the innovations process are discarded. The
final output of the filter is decorrelated across channels as above.

4.2.5 Kalman Filter Analysis Sequences

Four new analysis sequences were written to implement the state space model and
KalmmﬁlterundatheUFI—basedsubsysm Figure 4-9 shows the UFI menu for state space
sequences. The sequence for estimating state space model parameters for a signal generates a
number of realizations of an AR process. These realizations are used to estimate state space
model parameters. These estimates are the final output of this analysis sequence.

The sequence for estimating state space model parameters for the sum of signal and
noise is very similar. Inthxscase,however the estimates are based on the sum of an AR
process and white noise.

The two detection analysis sequences closely resemble one another. They implement the
signal detection algorithm illustrated in Figure 2-1. Both filters F, and F, are Kalman filters.
The parameters of each of these filters are estimated before determining thresholds, given
false alarm probabilities, or probabilities of detection, given threshold. Like all other
detection analysis sequences in the UFI-based subsystem, this sequence encloses the whole
process in an outer loop. Thus, the final output includes means and variances for thresholds
and probabilities of detection.
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MEKAF -- Calculate the innovations process using the Kalman filter

Version 1.4

Input file name ? riv

Title: Synthesized state space process

File for decarrelated innovations output ? rivl

Title of this dataset ? Innovations

Fils for output of the stase variables, if desired ?

No file name entered, is this okay ? y

File for output of variznces of the decormrelated innovations ?

No file name entered. is this okay ? y

Enter the index of the first cutput valoe ? 9971

Do you want a Cholesky, LDU, or SVD (c/i/s) covariance decomposition [C] ?

Input the Kalman filter parameters directly or from a file (df) (D] 2 f

Parameter file name (Kalman filter matrices) 7 rives2

Title: Estimated state space parameters

A 2 channel order 2 state space process will be filtered.

System Dynamics matrix F:
(7.677540e-03,0.000000e+00) (-3.436075¢-01,0.000000e+00)
(5.054108e-02.0.000000e+00) (-1.029191e-01.0.000000e+00)

Bermitian transpose of Observation matrix H:
(8.399569¢-02.0.000000e+00) (7.290421¢-01,0.000000e+00)
(1.476353e-02.0.0000000+00) (-2.56663 1e-01.0.000000e+00)

Kalman Gain:
(-3.226846e-04.0.000000e+00) (1.359702¢+00.0.000000e+00)
(1.319421-02,0.000000e+00) (1.833456e-01.0.000000e+00)

Covariance matrix for innovations:
(1.160445¢+00,0.000000e+00) (1.323281e-01.0.000000e+00)
(1.323281e-01.0.0000000+00) (4.512954e-01.0.000000e+00)

Cholesky decomposition of covariance matrix:
(1.077240e+00.0.000000e+00) (0.000000e+00.0.000000e-+00)
(1.228400e-01.0.000000e+00) (6.604587¢-01.0.000000e+00)

Inverse of Cholesky decomposition:
(9.282985¢-01.0.000000e+00) (0.0000000+00,0.000000e+00)
(-1.726560e-01.0.000000e+00) (1.514099¢+00.0.000000e+00)

The first 9970 time samples will be discarded.

Length of innovations sequence was 30
Figure 4-8: Kalman Filter
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Figure 4-9: State Space Analysis Sequences

4.3 Extreme Value Theory

Implementing the Extreme Value Theory (EVT) did not require writing any new menu-
based programs or UFI sequences. Instead the programs impiementing loghkehhood ratios
were modified, along with the sequences that perform detection analysis with “a prioni”
estimates. Only two programs calculate loglikelihood ratios in the menu-based system. One
implements the SIRP and Gaussian multichannel loglikelihood ratio statistics. The other
implements the loglikelihood ratio for the unconstrained quadrature -case. The detection
analysis sequences were modified to include an option for the EVT.

Three preliminary modifications were made to the two loglikelihood ratio programs in
the menu-based system before adding the EVT. When this task began, these programs did not
calculate a threshold for a given false alarm probability. Nor did they calculate a detection
probability. Rather, in the threshold estimation mode, the user was asked for an index into a
sorted list of thresholds. In the detection probability estimation mode, the programs reported
the number of loglikelihood values above a given threshold and the total number of
loglikelihood values estimated. Finally, the user was originally required to rerun these
programs if detection probabilities were desired for different thresholds, even if these
estimates were based on the same sample of loglikelihood ratios.

These programs now report a detection probability. Let X, < X, < ... < X, be a sample of
order swutistics for the relevant loglikelihood ratio. For estimating the detection probability,
these estimates should be generated under the alternative hypothesis in which a signal is
_ present. Let n be the user defined threshold. Let j be the smallest index such that for all
k2j, X, >n. Consequently, n - j +1 is the number of loglikelihood values strictly greater
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than the given threshold. Previously, the programs reported n ~ j + 1 and n to the user. Now,
they also report (n - j + 1)/n, which is an estimate of the probability of detection.

The programs also now estimate a threshold for a given false alarm probability. The
linear interpolation procedure incorporated into the menu-based programs is the same as that
previously implemented in the UFI-based system. In this case, let X, < X, < ... < X, be a
sample of order statistics for the relevant loglikelihood ratio generated under the null
hypothesis without a signal. Let F be the underlying cumulative probability distribution, and
let p denote the desired false alarm probability. The program must find an estimate, f| such
that

FMM)=1-p, , (4-6)
where 1) is an estimate of 1.
Since F is the distribution function for a continuous probability distribution,
1-F(n)=Pr(X>n)=Pr(X 20). (4-7)

Ignoring ties, the number of sample values greater than or equal to X;,; is n - j. Thus, for
any j + 1, a reasonable estimate of F (X;,,) is

Fpm1-22lal, @-8)
of,
j=nF(X;,). (4-9)

Knan(l-p) is an integer, X, ,,; seems a reasonable value for 1. In general, this value cannot
be assured of being an integer. Therefore, let n (1\-p)=j + g where j is the integer part of
n(l-p)and 0<g < 1. The estimate of the threshold is

l=(l1-8)X;s1+8X;,2. : (4-10)

This is the estimate currently used in the MSPSS. The above argument is only a plausibility
argument, not a formal derivation. Equation 104 in (Rangaswamy 93) gives a slightly
different estimate which is asymptotically equivalent.

The two loglikelihood ratio programs now have an additional loop. Previously, if the
- user desired to calculate thresholds for different indices, or detection probabilities for different
thresholds, the user was required to rerun the program. Now, after reporting the desired
result, the program asks if the user would like to estimate another threshold or estimate
another detection probability, whichever is appropriate. This option is repeated until the user
indicates no more estimates are desired. Additional estimates are found based on the
previously calculated sample of loglikelihood ratios. Since most of the computational time is
expended in these programs in calculating this sample, additional estimates are reported very
quickly.
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Appendix A.
Notation
An intermediate matrix in the Canonical Correlations Matrix.
AR weights; each AR coefficient is a matrix.
Matrix AR coefficients for the clutter.
The Cholesky decomposition of E.
The Cholesky decomposition of L, .

(1) The diagonal matrix in the LDU decomposition of £. (2) A matrix in the
state space model.

The diagonal matrix in the LDU decomposition of L, .
The system dynamics matrix in the state space model.

(1) The filter corresponding to the null hypothesis. (2) A Cumulative
Distribution Function.

(1) The filter corresponding to the alternative hypothesis. (2) A Cumulative
Distribution Function.

A matrix in the state space model.

The observation matrix in the state space model.

An estimate of the stochastic block Hankel matrix in the Canonical
Correlations Algorithm.

The column shifted block Hankel matrix in the Canonical Correlations
The null hypothesis.

The alternative hypothesis.

The number of channels.

The Kalman gain matrix in the innovations representation of the ‘state space
model.

The amplitude matrix for the clutter.

(1) The lower triangular matrix in the LDU decomposition of £. (2) The
number of lags used in estimating correlation matrices in the Canonical
The lower triangular matrix in the LDU decomposition of E, .
’l'hedimensionofthest,ﬁevectorinthemteg -odel.

A sample mean for a sample size of k items.

The number of time samples in a realization of a stochastic process.

(1) The number of realizations used in estimating state space parameters in
the Canonical Correlations Algorithm. (2) The number of realizations of the
loglikelihood statistic in the Extreme Value Theory. -




R(Il)
R, (1)
EF:L.L

Rp.L.

The order of an AR process.

The matrix of right hand eigenvectors in the Singular Value Decomposition
of L.

Ozturk’s statistic.

The matrix of right hand eigenvectors in the Singular Value Decomposition
of L,.

The block correlation matrix for a radar return.

The correlation matrix showing cross channel correlations for a radar return at
lag l. .

The correlation matrix showing cross channel correlations for the clutter at
lag 1.

An estimate of the future block correlation matrix in the Canonical
Correlations Algorithm. |

An estimate of the past block correlation matrix in the Canonical Correlations
Algorithm.

A random variable used in generating SIRPs.

The sample variance.

The diagonal matrix of eigenvalues in the Singular Value Decomposition of

- the matrix A in the Canonical Correlations Algorithm.

A square matrix in the Canonical Correlations Algorithm formed by taking
the upper M rows and M columns of §,.

The diagonal matrix of cigenvalues in the Singular Value Decomposition of
the estimate of the future block correlation matrix in the Canonical
Correlations Algorithm.

The diagonal matrix of cigenvalues in the Singular Value Decomposition of
the estimate of the past block correlation matrix in the Canonical Correlations
Algorithm. "

The sample variance for a sample size of k items.

(1) Either C, L, . or Q in the Cholesky, LDU, or Singular Value
Decomposition of £. (2) A matrix representing a basis transformation of the
state space in the innovations representation of the state space model.

A statistic used in estimating location and scale parameters in the Ozturk
algorithm. :

A statistic used in estimating location and scale parameters in the Ozturk
algorithm. : ’ )
A transformation matrix in the Canonical Correlations Algorithm.

A transformation matrix in the Canonical Correlations Algorithm.

The sampling period for the clutter.

Either C,, L,, or Q, in the corresponding decomposition of L., .




Ua

Un
Ur

The matrix of right hand eigenvectors in the Singular Value Decomposition
of the matrix A in the Canonical Correlations Algorithm.

A component of Ozturk’s statistic, the ordered pair ( Uy, Vy ).

The matrix of right hand eigenvectors in the Singular Value Decomposition
of the estimate of the future block correlation matrix in the Canonical
The matrix of right hand eigenvectors in the Singular Value Decomposition
of the estimate of the past block correlation matrix in the Canonical
Correlations Algorithm.

The matrix of left hand eigenvectors in the Singular Value Decomposition of
the matrix A in the Canonical Correlations Algorithm.

A component of Ozturk’s statistic, the ordered pair ( Uy, Vy ).

The complex conjugate of X.

The inverse of the matrix X.

The Hermitian transpose of the matrix X .

The upper square matrix in the Canonical Correlations Algorithm consisting
of the appreciably non-zero entries in the matrix A.

A one-element lag in a system block diagram.

A matrix in the Canonical Correlations Algorithm formed from the first J
rows and M columns of the matrix H, , T*".

A tail value of the ordered loglikelihood statistics,

A matrix in the Canonical Correlations Algorithm formed from the first M
rows and J columns of the matrix To H, ,.

A scalar AR weight.

An estimate of an AR coefficient.

A parameter used in generating K. distributed SIRPs.

Multichannel clutter (e.g. a vector AR process).

An index over the AR weights.

The lag value at which the shaping function for the clutter peaks.

The number of loglikelihood statistics in the tail.

In Ozturk’s algorithm, the expected value of an order statistic from the

~ standard reference distribution.

(1) Noise (e.g. Gaussian white noise correlated across channels, but not in
time). (2) An index for time in a vector stochastic process. (3) The sample
size.

A false alarm probability.

A quadratic form that is a sufficient statistic for a Spherically Invariant
Random Process (SIRP).
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xj(n)
y(n)
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A
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Pz
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The quadratic form g as calculated for the ith realization of the stochastic
process modeling a SIRP.

A multichannel signal (e.g. a vector AR process).
A sample standard deviation.
The input process in the state space model.

(1) Noise (e.g. Gaussian white noise cormrelated across channels, but not in
time). (2) Measurement noise in the state space model.

In Ozturk’s algorithm, an order statistic from the standard reference
distribution.

A multichannel radar return (vector stochastic process).

The nth time sample from the ith realization of the stochastic process x (n).
An estimate of a muitichannel radar return.

 An element of a random sample.

An element of a ordered random sample, an order statistic.

A sample mean.

A channel in the multichannel radar return x (n ).

The state vector process in the state space model.

In Ozturk’s algorithm, the standardized value of an order statistic.

An order statistic generated in Ozturk’s algorithm by Monte Carlo simulation
of the null distribution.

A matrix in the Canonical Correlations Algorithm.

(1) A loglikelihood statistic. (2) The diagonal matrix ofexgenvalua in the
Singular Value Decomposition of E.

The ith order statistic in a sample of loglikelihood statistics.

The correlation matrix at lag /; notation used in the Canonical Correlations
Algorithm.

An estimate of the correlation matrix at lag /.

The diagonal matrix of eigenvalues in the Singular Value Decomposition of
L.

The (zeroth lag) correlation matrix among the state space vectors.

(1) The covariance matrix for e(n). (2) The covariance matrix for x (n ).

An estimate of the covariance matrix.

The covariance matrix for the driving noise process in an AR model of the
clutter.

The covariance matrix for the white noise process w (n ).

The (zeroth lag) correlation matrix for the multichannel innovations process
in the innovations representation of the state space model.
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vi(n)
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(1) A probability defining the tail in the Extreme Value Theory. (2) The
significance level of a statistical test. (3) The location parameter of the
distribution to be estimated by Ozturk’s algorithm. (4) A parameter used in
generating K distributed SIRPs.

The significance level of a statistical test.

The state vector in the innovations representation of the state space model.

An estimate of the state space vector in the innovations representation of the
state space model.

(1) The scale parameter of the distribution to be estimated by Ozturk’s
algorithm. (2) A parameter of the Gamma probability distribution.

The state vector after a basis transformation of the innovations representation
of the state space model.

(1) A parameter in the Generalized Pareto distribution. (2) A confidence
level.

An estimate of a parameter in the Generalized Pareto distribution.
A probability weighted moment used in the Extreme Value Theory.
An estimate of ,.

A probability weighted moment used in the Extreme Value Theory.
An estimate of &,.

A driving noise term, uncorrelated across time but possibly correlated across
channels.

The mean over time samples of process e(n).

The driving noise term for the clutter.

A threshold for a given false alarm probability.

An estimate of 1.

The angle with. the abscissa of linked vectors in Ozturk’s algorithm.

A loglikelihood statistic.

The loglikelihood statistic defining the tail in the Extreme Value Theory.
The one-lag temporal correlation (matrix) parameter for the clutter.
Expected values of certain order statistics in Ozturk’s algorithm.
Innovations, uncorrelated both in time and across channels.

The innovations, uncorrelated both in time and across channels, for the null
hypothesis model.

The innovations, uncorrelated both in time and across channels, for the
alternative hypothesis model.

A zero-mean normally distributed random vector, uncorrelated both in time
and across channels; used in generating Gaussian white noise w (n).

The jth canonical cormrelation, sorted in decreasing order, in the Canonical
Correlations Algorithm.




F ()
F@)

G ()
Q (v)

f,(s)
F(v)
Sfw(w)
I'(x)
O(w)

A parameter in the Generalized Pareto distribution.

An estimate of a.

A variance.

An estimate of a channel variance.

A parameter in a reparameterization of the Generalized Pareto distribution.
An estimate of <.

The Doppler shift for the clutter.

The cumulative probability distribution function for the loglikelihood statistic
under the null distribution.

An approximation of the cumulative distribution function for the loglikelihood
statistic under the null distribution.

The cumulative distribution function for the Generalized Pareto distribution.

A function used in calculating Ordered Samples Least Squares estimates of
the Generalized Pareto distribution.

The probability density function for the random variable §.
The probability density function for the random variable V.
The probability density function for the random variable w.
The Gamma function.

The Cumulative Distribution Function for the reference distribution in
Ozturk’s algorithm.
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Appendix B.
A Single-Channel MiniSystem

During a previous effort (Vienneau 93), a version of the menu-based system was
delivered to Dr. Jorge Romeu. This minisystem contained capabilites for synthesizing single-
channel proceses and saving them to a file. A new version of this minisystem was produced
under this effort. This new version of the minisystem is distinguished from the original by the
addition of a capability to calculate a quadratic form useful in assessing the performance of
SIRP synthesis routines.

The system is delivered on a tar tape containing source code and object files for certain
library routines. It is intended to be read on a Sun computer. Object code for the libraries is
provided for both the Sun 3 and Sun 4 architectures. Reading the tape creates a subdirectory
called "schan" under the user’s current directory. This subdirectory contains the files
described in Table A-1.

To run this system, there must be an environment variable called ARCH already defined
in the user’s environment. Currently the Sun 3 and Sun 4 architectures are supported and
ARCH must be set to one of these two values. Also, the software requires access to the Unix
f77 and make programs.

The system is executed by first changing the working directory to “"schan." 1nen "schan
[return]” is entered at the Unix prompt to invoke the Single Channel Process Synthesis Menu.
The menu contains the following options:

e  Generate K-distributed SIRP

e  Generate Gaussian noise

e  Generate single channel AR process with SIRP or Gaussian driving noise
e Calculate the SIRP quadratic form

e  (Calculate histogram data for the SIRP quadratic form

e Convert a file to ASCII in a format suitable for Dr. Romeu’s software

e Convert data to ASCII file

The user should select the appropriate menu prompt. The selected progfams are automatically
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Table B-1:

Files in the Minisystem

File Description
README Describes how to install and run the system
data An empty subdirectory
source A directory of Fortran source code.
source/cbta.f Converts binary data files to ASCII
source/cgwn.f Generates single channel Gaussian white noise
source/data2ascii.f Converts binary files to ASCII in Romeu format
source/qhist.f Histogram of quadratic form for SIRPs
source/qsirp.f Quadratic form for SIRPs
source/scarsirp.f Generates single channel AR processes
source/sirpm.f Generates single channel SIRP noise
source/Makefile Compiles and links above programs
source/sun4.make Called from Makefile
source/sun3.make Called from Makefile
schan A c-shell for invoking the system
hip A directory of help files associated with the main programs
hip/cbta.hip
hip/cgwn.hlp
hip/data2ascii.hip
hlp/scarsirp hp
hip/sirpm.hip
sun3 Sun 3 object code for various library routines
sun3/libfsl.a
sun3/libmat.a
sun3/libmc.a
sun3/libmv.a
sun3/libvec.a
sund Sun 4 object code for various library routines
_sund/libfsl.a
sun4/libmat.a
sund/libmc.a
sun4/libmv.a
sund/libvec.a
bin A directory to contain linked executables and object code
bin/sun3 A directory to contain compiled Sun 3 object code
bin/sun4 A directory to contain compiled Sun 4 object code
bin/exe A directory to contain linked executables
bin/menul A c-shell for the main menu
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Appendix C.
Generation of K-Distributed SIRPs

The MSPSS includes an option for generating K-distributed Spherically Invariant
Random Processes (SIRPs). This capability was added during a previous effort (Vienneau 93).
The algorithm specified in (Rangaswamy 91) is used to generate a SIRP. This algorithm asks
the user to enter the two parameters a and b. As a matter of fact, SIRPs can be generated
with knowledge only of a. The parameter b is totally unneccesary. This appendix provides the
mathematical foundation for this claim. The approaches described here are not implemented in
the MSPSS. This appendix is only provided to document these findings.

K-distributed SIRPs rely on the generation of a random variable S with the following
Probability Density Function (PDF):

2a 2a-1,-as? -
) s e . §>0. (C-1)

Rangaswamy suggests S can be generated based on the following theorem:

fi(s)=

Theorem: Let V be a random variable with the following PDF:

2b

Rayz 07Vl v >0 (C-2)

f,(v)-

Let§ -V/a,wnaeaz-%g‘-. Then § is distributed as above with PDF f,(s).

. W

The random variable V can be generated from V -
distribution with 2a degrees of freedom.

Alternately, S can be generated based on either of the following two theorems:

where W is from a Chi Squared

Theorem: Let W be from a Chi Square distribution with 2a. degrees of freedom. Let
S -'\/-i—”a. Then S is distributed as above with PDF f,(s ).

Theorem: Let W be from a Gamma distribution with parameters « and B, where B = 1/a.
That is, W has the following PDF:

f\v(w)-

a-1_-x/p K
I"(a)ﬂ"‘w e . x>0. (C-3)

Let S = YW Then S is distributed as above with PDF f,(s).
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Appendix D.
One-Pass Algorithms for Calculating Moments of Distributions

Many programs in the Multichannel Signal Processing Simulation System provide the
user with the capability to estimate certain parameters for each of many realizations of a
stochastic process. Estimated parameters include Autoregressive coefficients, means, the
covariance matrix, and correlation functions. Often the program reports the mean and variance
of these estimates calc.:lated over all realizations of the stochastic process.

D.1 Means and Variances

The structure of the MSPSS makes it convenient to calculate these means and variances
from one pass over the stochastic process realizations. Since the variance is defined in terms
of the mean, calculating the variance from one pass through the data requires some care. The
so-called "calculator" formula, found in many statistics textbooks, should not be used:

- 1 ; =)= 1 s 2___ N 32

(n_l)‘g(& x) (n_l)igx. a-D> (D-1)
Equation D-1 yields a one-pass algorithm for calculating the variance, but this algorithm is
numerically unstable. The two terms in the difference can be of the same order of magn.tude,
leaving the variance to be determined by round-off error.

SZ

The approach for calculating the variance was obtained from (Chen 83) and is based on
the two following theorems:

Theorem D-1: Suppose

M&'Mk-l‘*%(«‘t'Mk-l) (D-2)
and
Mo =0. (D-3)
Then
1 k
Mk = T E X; . (D‘4)

iw]

In other words, M, , as defined by the above difference equation, is the sample mean of x,, x,,
voey Xg o

Theorem D-2: Let M, be as above. Suppose

(k-1)52=(k=-2)52., + (Tf—l—)(x. -M ), (D-5)
for k = 2, 3, 4, ... Suppose
Si=0. (D-6)
Then
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k
St e & i - M. (D-7)

iwl

for k = 2, 3, 4, ... In other words, S; is the sample variance of x,;, x3, ..., %.

A computer program based on these theorems would update M, and S? from a singie pass of
the data. M, must be updated before S since M,, not M, _,, appears in Equation D-5. On
completion, the final values of M, and S, will be the desired means and variances.

For completeness, proofs of these two theorems are provided below. A discussion of
their numerical properties is provided in the referenced paper.

Proof of Theorem D-1 (by induction):

First, show the theorem holds for £ = 1. By hypothesis,

MI'MO""i—(xl-Mo) (D-8)

M1-0+l(x1-0)-x| (D‘g)
1 ]

My=— Y x .- (D-10)

i

im}
Second, assume the theorem holds for £ - 1:

k=1
Mk-l.k_ll" pIER ) (D-11)

iwl]

Finally, prove the theorem holds for &:

Mt-Mk-l"'%(‘tk-Mk-l) (D-12)

Mk'%(kMk-l'.’xk"Mt-l) (D-13)

M,-%[(k—l)M._,d-x,) (D-14)

M=l -n—L_"¥ |

k';’( - )(k-l),»?,x‘”* (D-15)
lk-l

Mk - -t' Zl X + X (D.16;'
lt

Mk--k'zx,‘ (D.l7)

But this is what was t0 be shown.




Proof of Theorem D-2 (by induction):

First, show the theorem holds for k£ = 2. By hypothesis,

(2-1)S} = (2-2)S}., + ?2—3—1—)(1:,- M,) (D-18)
2 2 1 2
153 -OSI+T[32-E(11+X2)] (D-lg)
Xy =X 2
s%.z[ 5 ‘] (D-20)
P4 p 4 2 X X 2
z- 1= 42 2™ A _
WEREES
§2 X+ X, 2 ( X1+ X2 ? (D'22)
2 =X~ 2 +lx2" )
S3 = (x) = M)? + (x; - M) (D-23)
2
§3 =521 L (i - Mo (D-24)
iwl
Second, assume the theorem holds for k - 1:
1 k=1
.1 -'(—k—_-z—)igl(x,- -M, P (D-25)
Hence,
k=1
(k=-2)S2., = .Zl(xi -M,_ ) (D-26)
Finally, prove the theorem holds for :
k k=1 R
.Zl(x.- -M V= .Zl(x.- M, P+ (x5 -M ) (D-27)
& k=1 1
'zl(xi"Mt)z'.zl[xi-Mk-l"k'(xk"Mt-I)]z
(k-1)
* oD M (D-28)
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iwl ial] iml
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iml

1
(k )(Xt Mk)z

k
Y(xi-M)P=(k- 2)s.-1-—(x.-u,, ,)2x.

iwl ial}

2(k

—'—Q(It M, M, _, + (k-1)

kz

(% -M, )
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-—k_ 1
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1 (= Mt-l)(k D Y x

im]
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2(k
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: 21)(xk'Mk-l)2

k 1
+(k_l)(x,‘ Mk)z"'(k—-'i')—k—z(k&-k”k_l-xk'l'Mk_l)z

2(k-1)
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im]
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iwl]
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k2
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X
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2
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(D-29)

(D-30)

(D-31)

(D-32)

(D-33) )
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k
L (5 =My = (k= DSEy + s (= ML (D-35)
iwl]
Therefore,
(k=1)S2=(k -2)S3., + TE%D“" -M, (D-36)
k
(k=1)S%= ¥ (x; - M ) (D-37)
iml]
or
1 L] 2 ’
Si= *-D zz."n(x‘ -M,) (D-38)

which was to be shown.

D.2 Correlation Coefficients

A one-pass algorithm for calculating the correlation coefficient was needed in
implementing Ozturk’s algorithm. The algorithm implemented relies on the following
theorem:

Theorem D-3: Suppose

mlﬂMox -M{; -0. (D'39)
and

ME =M+ (n - ME)., (D-40)

ME=M{ s v+ On - ML), (D-41)

fork =1, 2, 3, ... Suppose

SXY,-SXY,_,-i--Ef—l(xk-M{)(y,-M{). ' (D-42)

fork =2,3,4, .. Then,
[
5XY, = ¥ (x ~=ME)(y: ~ M]). (D-43)

iml
Given two random samples, x,, x, ..., x, and y,, ¥, ..., y., the customary sample estimate
of the correlation coefficient is given by Equation D-40:
R =X '
" (n-1)§ESY
A proof of Theorem D-3 follows.

(D-44)
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Proof of Theorem D-3 (by induction):

From Theorem D-1, we know

k
M=p T 5 (D-45)
r.l g
Mi=3 L n (D-46)

First, show the theorem holds for k = 2. By hypothesis,
SXY,-SXY,-o-T%—l-(xz-M’{)(yz-M{) (D-47)
2 1 1

SXY; = SKYy + T (5= 5 (2, +x2)1{y2 = 5 (y1 +2)] (D-48)

m,-[%(x, +x,)-x21[—;-(yl +y2) =yl +[xs- %(x. +x)10ys ~ %(y, +y)1  (D-49)

2x - -2 2y, - -2y,
SXY:-[ X x;;xz xz” Y1 )H;Yz Y-} +(xp= M5 )(yp - MY) (D-50)
+ +
SXY5 = [xl- = 2"’] [yl- -’—‘—2—1’3] +(xa= M) (y2 - M}) (-51)
SXY; = (% = MI)(y1 =~ ME) + (x2- M%) (y, - M}) (D-52)
2
SXY,= Y, (x = MT)(y; = M}) _ (D-53)
iml
Second, assume the theorem holds for k - 1:
k=1
mt~l".zl(xi-ka-l)(.Yi‘Mky-l) _ (D-54)
Finally, prove the theorem holds for k:
] k=1 i
T (5 -MOG-MD= T (5 =MD, - M) + (% - MDY (3 - M) (D-55)

im] im}

k k-1
L (- MO =MD = X Usi =My = G = ME_ D10y = MY = £ O = ME )]

iml im]

+(x -MH(n -M]) (D-56)
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2(—‘5 -Mf)(y,»-M,")- E (xi‘M{-l)(yi'Mky-l)

-—(xk’Mk I)E(yl -M{_y)

k=]
~ R =M (5 - MEL)

(kk 1)(xl-Mk-l)(Yk -M_))

+ (x5 =M -M) (D-57)
The inductive hypothesis is used at this step.

Z‘,(«t = M) (y; = M) = SXY, 1--(Xx-Mx l)[zYu"("‘l)Mk—ll

iwl iwl]

k=1
-%(»-Mz-.)[ T x - (k- 1DME-, ]

im]

(k.zl) (x =MF_ )y =M _y)

+ (% =M (n -MD) (D-58)
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Appendix E.
RANDOM VARIATE GENERATION

Ozturk’s algorithm relies on the simulation of random variates from certain probability
distributions. Currently, 15 distributions are implemented in the software implementation of
Ozturk’s algorithm. This appendix defines these distributions and explains how variates are
generated from them.

E.1 Uniform Variates

Variates from all other distributions are generated based on transformations of variates
from a uniform distribution. For example, a common technique for generating a variate from a
given distribution is to invert the Cumulative Distribution Function (CDF). Then a random
variate X can be generated from the desired distribution by Equation E-1:

X =FY(U), (E-1)
where U is uniform on (0, 1) and F is the CDF of the desired distribution.

The generation of random variates from a uniform distribution is a problem commonly
treated in the literature. The random number generator used in the MSPSS is based on an
“universal” random number generator algorithm developed by George Marsaglia of the
Supercomputer Computations Research Institute (SCRI) at Florida State University. This
algorithm has passed stringent tests for randomness and independence. The generator has an
extremely long period, about 2'“, and, for the default seed values, it generates exactly the
same sequence of 24-bit random numbers in a variety of language and machines. (Harmon 88)

E.2 Beta Variates

A method for generating variates from Beta distributions was already embodied at the
beginning of this in the Gamma generator for the MSPSS. This method, which differs from
that used by Ozturk, is described here.

The Probability Density Function (PDF) of a Beta distribution is given by Equation E-2:

’ F'(a+b+2)

F(a+1)L(b+1)
a+l (a+1)(b+1)

a+b+2 (@+b +2P(a+b+3)

The method used for transforming uniform variates into Beta variates is based on the
following theorem:

Theorem: Let U, and U, be independent identically distributed random variables from
a uniform distribution on (0, 1]. Let

f(x)= #(1-x), 0<x<l. (E-2)

The mean of a Beta distribution is , and the variance is

Y, =Ulle, (E-3)
YZ-UZ‘“’ . (E'4)
If Y, +Y, is less than or equal to unity, set ¥ to
y -t
= Yl + Yz : (E.S)

Then Y is from a standard Beta distribution with parameters a and b.




s

E.3 Cauchy Variates
The PDF of the Cauchy distribution is

f(x)-n(“x,)- (E-6)
The Cumulative Distribution Function (CDF) is
LA R
F(x)-z-o-nTan (x). (E-7) i
A variate can be generated from this distribution as
X =Tan Hu--;-]]. (E-8)
where U is uniform on (0, 1).
E.4 Exponential Variates
The PDF for the Exponential distribution is
f(x)--ﬁe““‘. x20. (E-9)
The CDF is
' F(x)ml=e™ z20. (E-10)
A variate from this distribution can be generated as ,
Xm-ula(U). (E-11)

where U is uniform on (0, 1].

E.S Extreme Value Variates

The PDF for the Type I Extreme Value distribution for minimum elements, also called
the Gumbel distribution, is

LS
x

f(x)-:l,-e;-‘q. , (E-12)

where o is the scale parameter. The CDF is

F(x)ml=e"’. (E-13) v

(Dr. Ozturk code is mistaken in the calculation of the Extreme Value CDF in the routine
THETA for calculating the angles between the linked vectors and the abscissa.) A random
variate can be generated from this distribution as

Xmoln(-Ln(U)]. (E-14)
where U is uniform on (0, 1).
E.6 Gamma Variates

The capacity to generate Gamma variates already existed in the MSPSS at the beginning
of this effort. The algorithm used is taken from (Fishman 73). It tends to create overflow and
underflow problems for a < 0.25 or a > 100.0. Warning messages alert the user to these
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. problems. The algorithm tends to become much slower as the number of degrees of freedom
increases. This algorithm differs from the one embedded in Ozturk’s code.

The PDF for a Gamma distribution is
f(x)=

a=1_,-a/p -
I'(a)b"x e . x>0, (E-19)

where a is the shape parameter and P is the scale parameter. The mean of the Gamma
distribution is ag, and the variance is ap?.
The algorithm first generates a random variable ¥ with a Gamma distribution with a

scale parameter equal to unity. Once Y is generated, a variable X is set to BY. X then has the
desired shape and scale parameters. This procedure relies on the following theorem:

Theorem: Let Y be a random variable from a Gamma distribution with an arbitrary
shape parameter a but a scale parameter equal to one. Let

X=pY. (E-16)
Then X has a Gamma distribution with shape parameter a and scale parameter g.

The random variate Y is generated by partioning a into an integer part and a real part.
Gamma variates are generated for each of these parts, and their sum is the desired Gamma
variate:

Theorem Let V be from a Gamma distribution with a shape parameter t = [ a] and an

unit scale parameter. Let W be from a Gamma distribution with a shape parameter
a -k and an unit scale parameter. Let

YsVa+W (E‘17)
Then Y is from a Gamma distribution with shape parameter a and unit scale parameter.

A Gamma-distributed random variate with an integer shape parameter and unit scale
parameter is generated as the sum of exponential random variates:

Theorem Let A,, i = 1, 2, .., t be independent and identically distributed random
variables from an exponential distribution with unit means. Let

VaAi+A+ - +A;. (E-18)
Then V is Gamma distributed with a shape parameter of £ and an unit scale parameter.

A Gamma-distributed random variate with a real shape parameter between zero and one
is generated as the product of a Beta-distributed random variate and an exponentially-
distributed random variate:

Theorem Let Z be from a Beta distribution with parameters a=aandb =1-a Let
A be exponentially distributed with unit mean. Let
W=ZA. (E-19)

Then W is Gamma distributed with shape parameter a and unit scale parameter.

E.7 Gumbel (Type II) Variates
The PDF for a Gumbel (Type II) Extreme Value distribution is




f(x)-%[ﬂ et*l  rso. (E-20)

where a is the scale parameter and p is the shape parameter. The CDF is

-9
| F(x)-e-[:] x>0 (E-21)
A variate can be generated from this distribution as
1
-o| o5 | 22
X “[u.w)]' (E-22)

where U is uniform on (0, 1).

E.8 Johnson Variates
The PDF of a Johnson S, distribution is
f(x)m mm[-—[y s+1|l.n{—[v-s+‘4(y-e)!+l!”ﬂ (E-23)

¢ is the location parameter, A is the scale parameter, and vy and n are shape parameters. A
random variable from a Johnson S, distribution can be generated by transforming a standard
normally distributed variate:

X =c+ ;.m[l;;l] : (E-24)
where Z is standard Gaussian.
E.9 K Distributed Variates
The ability to generate random variables from a K distribution existed in the MSPSS
when this project began. Appendix C describes how this capability is implemented. The PDF
of a K distribution includes a shape parameter a.
E.10 Laplace Variates
The PDF for the Laplace distribution is
1 i

f (x)-i¢°|" . (E-25)
.The mean of this distribution is zero, and the variance is two. The CDF is
|
2¢: x <0
F(x)m 1 £20 (E-26)
1w =e™*,
2
A variate from the Laplace distribution can be generated by
1
U<—=
o). 2 E27)
-Ln{2(1-U)). Uzl
2

where U is uniform on (0, 1).




E.11 Logistic Variates
The PDF for the Logistic distribution is

-

€
f(x)'(l+e.‘)z~ (E'28)
The CDF is
F@oy=1e ®-29)
A variate can be generated from this distribution as
x--u.[‘—;]g-]. (E-30)

where U is uniform on (0, 1).

E.12 Lognormal Variates
A random variable is from a Lognormal distribution if its natural logarithm is normally
distributed. The PDF of a lognormal distribution is
1 {u (x)-p r
2

o

(E-31)

. x>0.

f(x)=

nox "
p and o are the mean and standard deviation, respectively, of the normal transformation, not
the mean and standard deviation of the lognormal distribution.

Lognormal variates are generated by transforming normal variates:

X =e?, (E-32).
where Z is normally distributed with mean p and variance o®. (The generation of lognormal
variates is not implemented correctly in Dr. Ozturk’s code.)

E.13 Normal Variates

The capability to generate normal variates already existed in the MSPSS at the beginning
of this effort. The algorithm described here is based on (Press 86). The PDF for the Normal
distribution is

_(z=ppP

- 1 0 (E'33)
f(x) Boo e. . |

where u is the mean and o® is the variance.

In generating normal variates, it is sufficient to design an algorithm to generate, zero-
mean, unit-variance normal variates. Normal variates with arbitrary means and variance can
thun be generated by means of the following transformation:

x-u+aZ.” (E"34)
where Z is normal with mean zero and unit variance. The resulting variate X is normally
disributed with mean p and variance o>

The algorithm used to generate standard normal variates is as follows. A pair of random
variates (V,, V,) are generated where the pair is uniformly distributed on the unit circle. Then,




the random variables Z, and Z, given by

Z‘ - Vl - (E‘BS)

“2R
J R

(B-36)

are stochastically independent and normally distributed with mean zero and unit variance,
where R is

Zz- Vz -2

R=V}+Vi. (E-37)

E.14 Pareto Variates
The PDF for the Pareto distribution is
f(x)=6,20,x . x20,. (E-38)

The mean is 6,6,/(6,-1). The variance is 676,/[(8;-1)*(6,~2)]. The CDF for this
distribution is

-(6,+1)

0, |
Fx)mi-|=| . x28,. (E-39)

A variate from the Pareto distribution can be generated as follows:
X =6,(1/U)%, (E-40)
where U is uniform on (0, 1].

E.15 Weibull Variates
The PDF for the Weibull distribution is

f(x)--a%x'-'e-('l“’. x 20, (E-41)

where a is the scale parameter and  is the shape parameter. The CDF is
F(x)ml=eta? ;50 (E-42)

The mean is aI'(1 + 1/8) and the variance is a?[['(1+2/8) -T2(1+1/p)]. A Weibull variate
can be generated as

' X =af-Ln (U)1'®, (E-43)
where U is uniform on (0, 1}. .




Appendix F.
CONFIDENCE REGIONS

Implementing Ozturk’s goodness-of-fit test requires the calculation of confidence regions
for Ozturk’s statistic. This appendix outlines the theory behind these calculations.
F.1 Bivariate Normal Distribution

Consider the problem of determining a confidence ellipse for a pair of random variables
from a bivariate normal distribution. Let X, and X, have the joint Probability Density Function

[ (x1.x2):
11 d ke 2+ ol ko B Sl O S Bl :
fGxpx)= S e{-z (I-pz)[[ o ] 2’[ ° H % ] { % H} (F-1)
21:0102\’1 - p2
This is the PDF of a bivariate normal distribution where X; has mean y; and variance 0?2, i =
1, 2. The correlation coefficient for X, and X, is p. The problem is to determine a confidence
region C such that the probability of X, and X, being in C is 100 y%.

Consider the transformation defined in Equations F-2 and F-3:

X, -
Zl -ul(Xl.XZ)- ! H (F'z)
4]
1 X;-W Xi-1 )
Z = x ,x - — - =
2= ux(X.X3) ‘rl_:—p![[ P ] p[ o ]] (F3)
The inverse transformation is given by Equations F-4 and F-5:
X,aw(Z,,Z;) =y, +0,2Z, (F-4)
Xy mwy(Z1.Z3) =y + 0202, + 0, V1 = 9?2, (F-5)
The Jacobian of this transformation is
dwl dw,
&, dz,
Jo = dw, dw, -010’2Jl—p2. (F.6)
dz, dzp

Let g (z,.2;) be the joint PDF for Z, and Z,. From a theorem in analysis relating to a change
of variables in integration (Hogg 78), the joint PDF of Z, and Z, is related to the joint PDF
for X, and X, by:

8(zn27)m L, I f (wi(21,22)wa(2.22)). (F-7)
Or

8(z122)= Le

2n (-8)

So the transformation has converted the original random variables into stochastically
independent standard normal variates.

A confidence region in the transformed space is a circle:
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u(C)={(z1.29) | 2% +23 <c?}), (F-9)

where the radius ¢ is chosen 30 as to ensure the probability of membership in this circle is the
desired value y. This probability can be found as follows:

Pr(z} +23 <c?) = (21.22)dz 2 .
r(zf +27 <c j(c[)f 21.22)dz dz; (FlO).
I 1 _r
Pr(z} +13 <c’)-1‘[5;e 2 ,drde (F-11)
<
Pr(z +23 <c})ml=-ec 2. (F-12)
Set this probability to vy, and solve for c:
c =V=Zh(T-Y). (F-13)

The confidence region for Z, and 7, can be transformed back into the original space. Thus, a
1001%conﬁdenceellipsefa'x, and X, is

= { (x1,%2) | [uy (20, 22) P + [u2(2,x2) P < =2In(1 - y) }. (F-14)

An approximate confidence ellipse is formed by using sample estimates for the means,
variances, and correlation coefficients in Equation F-14.

F.2 The Johnson System of Transformations

Ozturk’s statistic need not be from a bivariate normal distribution. The problem then
arises of approximating a confidence region for other distributions, even if the distribution is
unknown. The Johnson system of transformations addresses this problem (Shah 93).

A distribution can be completely characterized by its moments, when they exist. This
suggests that any distribution can be closely approximated by a distribution matching the first
few moments. The Johnson system of transformations spproximates the first four moments of
a random variable, known as the mean, variance, skewness, and kurtosis. The Johnson family
of distributions is defined by Equation F-15:

] Ruy+nf;(GiAe) i=123, _ (F-15)
where R is from a standard normal distribution. ¢ is a location parameter, A is a scale
parameter, and y and n are shape parameters.

The Johnson S, distribution is defined by

f1(Gide) = mn-'[‘;JL : (F-16)

o

The Johnson S, distribution is defined by

fz(G;La)-h[lfe-jG‘ . E<G <e+A. (F-17)
Finally, the Johnson S, distribution is given by
fs(G:Le)-h[G;S] . G>e. (F-18)

The Johnson S, distribution can be reparameterized in terms of yv°, where




T

Y =y-nln(e). (F-19)
The transformation for the Johnson S, distribution becomes
R=y +MIn(G -¢). G >e. (F-20)

The Johnson S, divides the skewness-kurtosis space into two parts. The S, distribution
occupies one of the resulting regions, and the S, distribution occupies the other. One could
decide which member of the Johnson family best fits a random sample based on the sample
skewness and kurtosis. Estimates of skewness and kurtosis, however, are highly variable for
small samples. A more dependable method has been found based on the heaviness of the tails
as compared with the center.

F.2.1 Fitting the Johnson Distribution

Let G(,, £ G(3) < ... < G(,) be an observed ordered sample. The problem is to fit G with a
Johnson distribution. Consider any given positive number r (0.775449 is used in the Ozturk
algorithm). r is used to divide the axis for the normal transformed data into three intervals,
each of length 2r: (<3r,-r), (-r,r), (r.3r). The Johnson family of transformations maps the
observed sample into percentile estimates along the normal axis: R, £ Rz) £ ... S R(,,
Appropriate indices for approximating the endpoints of the given intervals can be found by
solving Equation F-21:

kL -12

Pr(R<a)= —. (F-21)
where
 am<3r,-r.r.3r. (F-22)
The solution is
k, =[nPr(R <a)+1/2], (F-23)

where [*] denotes the nearest integer. Since the Johnson transformations are strictly
monotonically increasing, the corresponding percentiles in the untransformed data can be
estimated as g, & _, &, and g . Parameters that characterize the tails are given by
Equations F-24 through F-26:

mug, ~8& (F-24)
lmg =8, (F-25)
P =8 —8&_ (F-26)

These parameters can be used to decide which member of the Johnson family best
characterizes the random sample as follows:

l

> 1 for Johnson S (F-27)

2 %
—~ [

=1 for Johnson S, (F-28)

h- ]
)
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L;'-zi <1 for Johnsor (F-29)

Since G is a continuous  _.om variable, Equation F-28 will be true with probability zero.
Therefore, in practice, one accepts the data is from a Johnson S, distribution if the left hand
side is in a small region around unity.
Parameter estimates for the Johnson S, distribution are:
2r

w—nl_l_ [ﬂ . Lﬂ (F-30)

=
2

y=qsioh!| —2 B2 (F-31)

(F-32)
m l m
> +p-2]'\’p -'»pi +2

=
==z [,,, , ] (F-33)
2|12 422
p p
Parameter estimates for the Johnson S, distribution are:
n= 2r
wl™ (F-34)
14
Z-
v‘-nln-Lm (F-35)
PN
LS
8r+g-r _El
2 2 m_, - A (F-36)
4

Parameter estimates for the Johnson S, distribution are:

r

=

N=

(F-37)




A= .
2er _,
m |l
4]
NETHIPOPS .
2P _,

m |

F.2.2 Confidence Regions

(F-38)

(F-39)

(F-40)

A confidence region for Ozturk’s statistic can be constructed using the Johnson
transformation. The Monte Carlo data for (Uy, Vy) is used to determine the appropriate
Johnson transformation. Uy and Vy can be transformed by different members of the Johnson
family. The Monte Carlo data is then transformed, and sample means, variances, and the
correlation coefficient are calculated in the usual manner from the transformed data. A
confidence ellipse is constructed in the transformed Bivariate Normal space. A confidence

region in the original space is then formed from inverse Johnson transformations.
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