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ABSTRACT

A method for passive ranging based on the principle of triangulation is considered

In the basic triangulation scheme that is a single baseline model the precision in the bearing

readings can be related to the precision in the range estimation. For some target orienta-

tions the precision in the triangulated target range is completely lost. This phenomenon is

known as "geometric dilution." A proposed orthogonal dual baseline scheme eliminates

the "geometric dilution" effect. The performance of each of the two orthogonal baselines

depends on target orientation. For specific target orientations the triangulation range mea-

surements for the two baselines are equivalent. The dual baseline scheme would require

"smart electronics" which would switch between baselines at crossover points in the range

estimation precision. It is shown that the crossover points depend primarily on the ratio of

the two baselines. A general expression for the maximum triangulation range consistent

with limitations in minimum tolerance precision in range estimation is derived. The depen-

dency between maximum range and target orientation are presented in polar form. Limita-

tions in the dual baseline model due to physical limitation created by the optical horizon

are also considered. Acce..ion For
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1. INTRODUCTION

A. REVIEW OF PRIOR WORK

Recent technological developments can turn an active radar system into a target for

anti-radiation missiles (ARM). In essence, a system designed to provide security against

missile attacks can become a security hazard. This thesis will present a methodology of

passive ranging based on triangulation and the use of IR sensors which could be imple-

mented on various kinds of military platforms. IR sensors provide for passive surveillance

and target identification and tracking, but targeting and fire control require a minimum

range to target.

Passive ranging is the Holy Grail of the defense community. The passive interroga-

tion of a scene greatly restricts the domain of applicable countermeasures. Therefore, with

passivc ranging the security of the intelligence operation is less likely to be compromised.

Various passive ranging schemes based on the radiating characteristics of a target

have been proposed. These can be classified under a variety of descriptors such as: time

difference of arrival (TDOA), frequency difference of arrival (FDOA), and angle differ-

ence location (ADL) [Ref I], [Ref 2]. The first two schemes, TDOA and FDOA require

that RF modulation be present on the target's electromagnetic spectrum [Ref 3]. Since

the thrust of this thesis is to focus on a potential ADL technique triangulation, which re-

quires only a target's unmodulated IR signature, no further discussion on TDOA or FDOA



methods will be included. Several methods for using atmospheric attenuation to predict

target range passively are covered in the next paragraph.

In the early 1960's several patents were approved which related IR signal's atmcs-

pheric attenuation to range. The first of these was based on the atmospheric absorption of

radiation from targets which have strong water vapor or carbon dioxide bands [Ref 4].

The scheme includes signal chopping, optical beam splitting, and controlled absorption of

the CO, band in a reference path. A nulling circuit, which uses a partially transmitting

wedge driven by a servomotor, balances the two signals. The error signal is then directly

related to the amount of energy in the CO, band of the original IR signal received. This er-

ror signal can be related to the length of the attenuation path, i.e., range. A second patent

[Ref 5] is again based on the principle of preferential atmospheric absorption of IR radia-

tion for some bands. However, in this case the authors proposes that if a target's total and

filtered radiation intensities are known, and if the effective radiation coefficients for total

and filtered bands could be ascertained, then ratios of measured intensities can be related

through analysis to the unknown range. The inventors of this patent also use a chopper

and comparison circuitry. Recent NPS theses have examined the passive ranging problem

using similar concepts [Ref 6], [Ref 7], [Ref 8].

The principle of the parallax effect, as applied in the optical range finder [Ref. 9], has

been modified to process IR signals. In this scheme, introduced as a patent [Ref 10], the

measurement of a parallax angle between two imaging sensors and a known baseline will

permit calculation of the range to a target. Another 60's patent [Ref II] suggests a model

for calculation closure time, the approximate time it will take one body to collide with

2



another. This parameter depends on range. The inventors show that the closure time can

be calculated from the time rate of change of the target's passively detected radiant energ3n

They provide a circuit for this application.

With the development of IRST passive sensors [Ref. 12], renewed interest in ADL

methods has occurred. In particular these devices are available on a rotating (30 rpm) plat-

form and can predict bearing azimuth data on low flying targets. A platform for an IRST

device is shown in Figure 1. The bearing resolution of such devices is classified- however

an interesting mathematical model for predicting resolution for targets in the presence of

noise has been proposed [Ref 13].

SIRST Payload

Roll Motor

PRCM Stabilizer

vtbration
isolator

Figure 1: IRST sensor platform (After Ref 12)



Most of the ADL methods are based on using two sensors, i.e., a single baseline ap-

proach (SBL) [Ref 14], [Ref 15]. In the late 70's a multiple sensor scheme based on a te-

chique known as circulation [Ref 16], which employs an interactive least squares

algorithm, has been investigated. Although the method eliminates the problem of "geomet-

ric dilution" the scheme can exhibit convergence problems. More recently a preliminary

study on an analytic dual baseline method has been introduced [Ref 17]. This description

is based on an approximate model for estimating the range sensitivity. Further develop-

ments on this dual baseline model will be presented in this thesis.

B. THESIS OVERVIEW

Chapter I covers the literature review and the thesis overview. In Chapter II the sin-

gle baseline analysis is developed, and the lack of precision in a triangulated range is re-

lated to the lack, f precision in the bearing measurements. It is shown that the precision of

the triangulation method for targets alligned with the single baseline is completely lost.

This problem is known as "geometric dilution." Chapter III explores the applicability of a

dual baseline scheme in order to circumvent this problem. In Chapter IV the dual baseline

model is applied to characterize a maximum range for triangulation consistent with a mini-

Sam precision in the measurement. The development in this chapter leads to a physical

polar representation for R. in terms of target orientation. Two paradigms, quadrature

addition and the more conservative sum of absolutes, are considered. In Chapter V the

limitations in range estimation due to earth's curvature are evaluated and included with the

dual baseline model. Some interesting qualifications for predicting the characteristics of

4



the polar plots studied in Chapter IV are provided in Chapter VI . Chapter VII provides

the conclusions.

Appendix A is the list of symbols provided for convenience in alphabetical order In

order not to complicate the main text some of the more mathematical derivations have

been relegated to the Appendices B, C, and D. Ir. Appendix B details on approximations

made on the single baseline model are presented. In Appendix C, an exact mathematical

expression 'or the single baseline triangulated range in terms of IRST sensors bearing is

derived. In Appendix D two paradigms for error estimation are analyzed. It is shown that

the sum of absolutes estimation is more conservative than estimation via quadrature addi-

tion Appendix E is a collection of the programs used in generating the plots seen in the

thesis.



11. BACKGROUND ANALYSIS

A. THE TRIANGULATION CONCEPT

The eye-brain system undoubtedly works in a fairly sophisticated manner in order to

extract information from paraliax. The geometric considerations of the corresponding pas-

sive sensor problem are fairly simple. In principle, the range prediction can be made with

100% accuracy; in practice the limitations in the accuracy of the measurements in orienta-

tion bearings introduce an error in the range prediction. The sensitivity for the range pre-

diction to variation in the bearing accuracy is dependent on target orientation, the distance

between the points of observation or baseline, and the range to the target. Currently IRST

bearings do not include elevation data. For targets which appear coming over the horizon

this should not represent a significant deficiency in the model. Therefore, the model to be

presented predicts horizontal range, not the slant range.

B. SINGLE BASELINE MODEL

A single baseline model, involving two sensors, located at the ends of a baseline, can

be analyzed for conditions sufficient foi triangulation. Starting from Figure 2 the points at

which bearing measurements are made, A and C, are located at a distance R, and F, re-

spectively from the target at T. Although no measurements are made at point B it serves

as a convenient symmetrical reference between observation points A and C. The range R

is defined as the distance from point B to the target. The characteristics of the single

6



baseline model in terms of symmetric variables R and 0 greatly facilitates the dual baseline

analysis presented later. The distance between the points A and C is the baseline (BL).

The initial objective of this analysis will be to relate the range R to the measurables in the

problem, i.e., baseline (BL) and orientation (0, and 0,). The next step in the procedure will

be to perform a sensitivity analysis with respect to variation in the orientation variables, 0,

and 0,.

The significant assumptions of the model are:

(1) There is no error in the baseline measurement;

(2) The tolerances in the bearing measurements are known, and will be denoted

A0 and A0,;

(3) The discrepancy between horizontal path range and slant-path range is not

significant.

1. A single baseline analysis

From the Figure 2, the apex angles satisfy the following relation

03 = 02 - 06 = 0 4+0 5 (1)

Another relation between the apex angles and 0OP 0, is obtained from the Law of Sines

sin 04 = •" sin0 2  (2a)

sin05 = L.sin 0 (2b)

7



Through expansion of (I) it follows that

sin((02 - 01) = sin0 4cos05 + cos0 4sin0s (3a)

and

2R2 I 1RSn0

Solving (3) for the range R, it follows that

R =• &m' --- in) -mie (4)sin (0 2 -0 1)

An exact expression for R-BL(01 , 02) can be obtained using symbolic mathematical proc-

essing. See Appendix C. The immediate objective is to obtain an expression for the range

sensitivity in terms of the bearing angles 0, and 02, which will be in the form

S=fl(0 1 ,0 2 )A01 +f2(01 , 02)A02  (5)

In order to not distract the reader, the mathematical details in obtaining the range sensitiv-

ity appear in Appendix B, and the final expression for it is

8



RAR ri+Us ,+sin (AO~e- 1)

-(~m *(cos02-suie 2cot(82--0j))-sinej I.-( Sin j o (0

• •R . (AO:) (6)SS 111 02  51- ( Mn 9 1)Y + s in e 0 1)2-Y

where it is understood that A01, and AO, are assumed to be zero mean random variables

A statistical model for eliminating "systematic error" has been proposed using a scheme

based on a method known as circulation [Ref 16]. Furthermore, the ratio "a" of rms val-

ues for AO, and AO, can be used and the final expression for the normalized variation in R

can be written as follows

Sin 02 4-Si 0

-_0

( ý(~sinei (CO (cs 2-sine02cot (02-O, ))-.sin a, i-!~sn 2  Cot(es-ei1)+1
Ue X-ei+e a (7)

where X, and X2 are independent random variables having zero mean and unity standard

deviation, and

a = F . (8)

9



It is noteworthy that (7) depends on R, 01, and 0, instead of the symmetrically defined

variables R and 0. Additional relations are needed at this point in order to express (7) and

(8) in terms of the symmetrically defined variables R and 0. From the Law of Cosines,

applied to Figure 2, it follows that

( 2(z)(~ 2  (-LJcsos (9a)

and

E0-= (-0- + W2 -(9b

From the Law of Sines, applied also to Figure 2, it follows that

sin6 2 =s sn0--,) (10a)

sin O, = sm un-•-(,,!S ) (lOb)

and, again from the Law of Sines applied to the same figure

sin(0 2 -e0)= sin(04 +0 5) = sin01 = Lsin0 2  (1!)

10



Finally, along with the trigonometric rule

cotx (12)

co x = sin--" -

substitution of(8), (9), and (10) into (7), which is the normalized sensitivity of the range,

limits the dependence of variables to R and 0 only. Although this expression is not shown

explicitly in this form, it is readily evaluated in its implicit form via the substitution

procedure.

2. Approximate single baseline analysis (R>>BL)

To appreciate the factors that primarily limit the accuracy in the predicted

value for R it can be instructive to consider a simpler formulation of the problem. Consis-

tent with the conditions of assumption 3 the ratio of the range to the baseline can be con-

sidered much bigger than one (R/BL>>1). After application of this assumption to (3) the

second order terms in BL/2R can be neglected, leading from (4) to

-- sin( 2 - ) (13)

and the normalized variation in range would be

"• = 9 l 0 +.,•' cot(02-e, ) (Ae, I ) + - (2 01 2 (14)

!!



Equation (6) representing the normalized variation in R can then be expressed

A" - c.s .-- +cot(0.2-0 1 XI+(.s 0-,-cot(0:- 0) -X2 .a (15)

where again X, and X2 are independent random variables having zero mean and unity stan-

dard deviation, and "a" is defined by (8). Equation (15) can re-expressed in terms of R

and 0 after taking into account (9) through (12). Again the details appear in Appendix B.

3. Approximate single baseline analysis (R>>BL, R=R1 = R-2)

From the Law of Sines, Equation (8), it follows that

R, BL si0

BL= sin0 1  (16a)

and

R2 = sin 02 (16b)

Working with (12), and (13) the reasonable assumption R=R, =P, can be made and (14) is

easily converted into the approximate form

E= (Icte' +cot(02-0e))(Ae,)+(c'Ote02 -COt(0 2-01))(A0:) (17)

12



after noting that R _= R I =- R2 implies

sin 1  - sin 0_, = sin 0 (18)

Furthermore from (16)

sin (02 - 01) BýL sin 0 (19)
R

and substitution of( 18), and (19) into (17) leads to

~ In2 e +w Lsin@ (A + 2 sin 9 Sin j(A02)it (2 0 )

Using the ratio "a" of A0 2 and AO1 applied to (19), it follows that

ALL 1 + X1 +R IX2_-a (21)

RA@)= 2~ Rm &sn sine 8sine

This expression represents the normalized sensitivity in terms of the correct symmetrically

defined variables, R and 0.

4. Comparison of single baseline models

In order to continue the triangulation analysis a comparison between the three

single baseline models, Equations (7), (15), and (21), has to be made. Due to very com-

plicated expressions that stand for the three models a reasonable comparison of them can

13



complicated expressions that stand for the three models a reasonable comparison of them

can be made through graphical representation. In order to compare the three approximate

forms for the range sensitivity, the independence of the random variables X, and x.2 should

be considered. Since all three approximate expressions for the range sensitivity are of the

form

"RTIT = (ermI). X, + (erm2). X: (22)

the natural method of comparison is to take

I (erm1) 2 + (term2)2  (23)

or equivalently the coefficients of the sensitivity add in quadrature. This, as suggested in

Appendix D, may not be the most conservative estimate for the sensitivity. However for

purposes of evaluating the accuracy of the approximate model (21) relative to (7) and (15)

it is adequate. The three approximation levels of the range sensitivity expressed in Equa-

tions (7), (15), and (21) are compared in the Figures 3, 4, and 5 for three values of the

range to baseline ratio, and for ratio of bearing errors 0, 1 and 2.

5. Observations

Scrutinization of Figures 3, 4, and 5 indicates only small discrepancies between

the approximate solutions. It is concluded that the approximations of Equation (21),

14



characteristic of all the single baseline figures are worth noting. First the range sensitivity

is highest for angles close to 0' and 180'. This is the well known "geometric dilution" [Ref

14] that is characteristic of all the single baseline methods. In terms of measurements a

high normalized sensitivity would result in a high level of inaccuracy. This provides the

motivation for exploring the dual baseline method which is the focus of the later chapters.

Because the range sensitivity normalization is done with the respect to A0 1 the effect of in-

creasing "a" is to amplify the term proportional to AO1. Therefore, as seen from the fig-

ures, there is an overall increase in the normalized range sensitivity. Lastly, the farther the

triangulated target is from the baseline the more inaccurate the measurement. This is also

confirmed by the increase in the normalized range sensitivity of Figures 5a, 5b, and 5c

over the respective counterparts of Figures 3, and 4.

15
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Figure 2- Geometry for the single baseline model
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comparison of single baseline model sensitivity curves

200 , 1 , , 1 1

180I for more accurate case(equation 7)

o for R>>BL approximation case (equation 15)
160

+ for R>>BL & R-R1-R2 approximation case (equation 21)

.140 R/BL-10 a-0

120 n

100

r 80

60-

40 -

20" annnn nn nu EuEnuu u

0 I I
0 20 40 60 80 100 120 140 160 180

Theta in degrees

Figure 3a: Single baseline model sensitivity curves for RIBL= l0 & a-0
(via program in Appendix E. A)
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comparison of single baseline sensitivity curves
200 , , , , , ,

180 for more accurate case(equation 7) e -
1o

o for R>>BL approximation case (equation 15)160
+ for R>>BL & R-R1 -R2 approximation case (equation 21)

S140 R/BL-10 a-1

"( 120
(U

* 100

a: 80
tU

-- 60

40

20 E.

0 1 I 1 -- - - I -I j

0 20 40 60 80 100 120 140 160 180
Theta in degrees

Figure 3b Single baseline model sensitivity curves for RIBL=lO &1 ac=l

(via program in Appendix E. A)
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comparison of single baseline model sensitivity curves
300 , , , , , ,

Xe
* tor more accurate case(equation 7)

250 o for R>>BL approximation case (equation 15)

+ for R>>BL & R-R1 -R2 approximation case (equation 21)

9200- R/BL-10 a-2
t-

150

lioo- I *

50 R

0 1 I I II

0 20 40 60 80 100 120 140 160 180
Theta in degrees

Figure 3c Single baseline model sensitivity curves for R/BL= 10 & a--2
(via program in Appendix E. A)
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comparison of single baseline model sensitivity curves
2000 , , , 1 1 ,

1800 * for more accurate case(equation 7)

o for R>>BL approximation case (equation 15)

1600 + for R>>BL & R-R1 -R2 approximation case (equation 21)
R/BL-1 00 a-0

S1400

(D

1200

1000

a: 800

600

400
U U

* U

200i nm n

0 e I ,

0 20 40 60 80 100 120 140 160 180
Theta in degrees

Figure 4a Single baseline model sensitivity curves for R/BL= 100 & a=0
(via program in Appendix E. A)
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comparison of single baseline model sensitivity curves
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Figure 4b Single baseline model sensitivity curves for RBL= 100 & a- 1

(via program in AppendLx E. A)
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comparison of single baseline model sensitivity curves
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Figure 4c Single baseline model sensitivity curves for R/BL= 100 & 6=2
(via program in Appendix E. A)
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25 4 comparison of single baseline model sensitivity curves
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Figure 5a Single baseline model sensitivity curves for R/BL= 1000 & a=0

(via program in Appendix E. A)
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14 comparison of single baseline model sensitivity curves
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Figure 5b Single baseline model sensitivity curves for R/BL= 1000 & a= I

(via program in Appendix E. A)
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X10 4  comparison of single baseline model sensitivity curves
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Figure 5c Single basein=e model sensitivity curves for RJBL= 1000 & a •2

(via program in Appendix E. A)
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IIl. DUAL BASELINE MODEL

A. DUAL BASELINE MODEL ANALYSIS

Figure 6 shows a dual baseline model. The two baselines of the model are taken to

be orthogonal and they are referred to as the long base line (LBL) and the short baseline

(SBL) system. The features and the relations of the single baseline model analysis are ap-

plicable here but the superscripts S and L will be used to distinguish the two systems.

Furthermore, some new relations between the angles are needed, in order to express the

short baseline (SBL) model in terms of the same variables R and 0, as in the long baseline

(LBL) model.

B. GENERAL CONSIDERATIONS

From the Figure 6 it is clear that

cos0s = cos(0-90") = sin0 (24)

similarly

sin 0s = -cos 0 (25)

Therefore from Equations (9), (24), and (25)

LBL L) L 2 LL8L )+)~h~ o5 (26a)(-I- = 26 + (½) + G-)c
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(L )2 LB =( T 2+(L)2 B( T ose (26b)

R' s2 2 + R _L SF) -SBL 2 + n 0 (26c)

Similarly, from Equations (10), (24), and (25) it follows that

sin0t = sin 0 _L-- sin0 : (27a, b)

sin =-cos-±s 2 = s (27c, d)

SBL(1

and from Equations (11), (24), and (25)

sin (L - ) LL Sin(L = L sineO (28a)
2 )=B' sinO1 7sin2(2a

*(SIs SBL.S SL

sin 02 s-O Rsin0 = B sinOs2  (28b)
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For computation of - '-- let

)0 -0L 02 -(0L (29a, b, c, d)

and follow substitution (26a, b) and (27a, b). For computation of -- )' let

" BL "SBL L R 0 1 - 02 -0 (30a, b, c, d)

and follow substitutions (26c, d) and (27c, d). In Appendix B expressions for --

and ( a)s are shown for the various levels of approximation introduced in the previ-

ous single baseline description. As noted in this chapter the approximations R>>BL, and

R,=R.=R are quite good, and the dual baseline results (see (21)) for this case are provided

here for later reference

AR I JXi~' I PsO X2' 11L 9"•=Rs,) + + 2 s L aL(31a)

36sn_ _in•in@(o)2 2___-__ __-_-_o____

28 2 Co + 1 b)
(-o e)(CS9 2 (-cos 0) OSL (_cos 6) 42
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where XL, X2L, XS , 2s are independent random variables having zero mean and unity

standard deviation, and

(r-L = = (32a. b)

C. SENSITIVITY CURVES FOR THE DUAL BASELINE SCHEME

The expressions(jk) , and R--) in (31) represent the normalized sensitivity

for the long and the short baseline system respectively, in terms of the symmetrical de-

pendent variables, R and 0. It is obvious from (31) that the sensitivities of both long and

short baseline systems depend heavily on the terms (R/LBL), (R/SBL), A0 1L, AOL, A01 I

and AIs. To illustrate the dependence of the sensitivities to the above mentioned terms

some examples will be introduced with the use of (31) which, after (23). becomes

S1 jsIn + -(-•sin) ) + [_ -(L )2 J "aLJ (33a)

R A 9 2 sin ½ -- si e. ) I 2 s--n s ,i . a sJ
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where as previously described the terms are added in quadrature. However geometrical

considerations, described in Appendix D, suggest that a more conservative gauge for

range sensitivity is based on addition of absolutes

IL-L I = I(term) 1) + I(term2)l (34)

under this assumption Equation (31) would be evaluated according to

- - , T + + i0 I (-sie) 2  aL (35a)

+( (hAO sin+ 2 sin - ( OsinO

AR 2 (-cos 0) + B --cos 9) BL-os)JU 3b

It can be seen from Appendix D that for the discussion given, (35) for a' = as I is nomi-

nally more conservative than (33). Furthermore for aL= a= 0, Equation (33) and Equa-

tion (35) are equivalent.

D. EXAMPLES

The examples discussed in this chapter will be based on the sensitivity expression us-

ing quadrature addition, Equation (33). The concepts applied are equally applicable to the
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more conservative equation (35). MATLAB programs for evaluating (33) are provided in

Appendix E. As a first example take

=100 SBLL.B -=00R600 (36a, b)

aL = 2 as=1 (36c, d)

After substitution of the data into (33) and plotting it the results are shown on Figure 7.

As a second example take

L = 1000= (37a, b)
SBI

aL =1  as= I (37c, d)

The plots following substitution of (36), and (37) into (33) are shown in Figure 8. In

both Figures 7 and 8 the performance of the short baseline system will exceed that of the

long baseline for angles close to 00 and 1800. For Figures 7 and 8 those crossing points are

approximately + 170 and + 15', respectively. To appreciate the utility of the analysis take a

simple example (i.e., that one sensor on each baseline has no bearing error,while the bear-

ing errors of the remaining sensors are equal). Then the situation can be described as

follows:

AOL =AO =AO (38a)
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A0L =- A =0 (38b)

thus, the long and the short parts of (33) after setting aL = as = 0 become

L ]s'20 1-(OL Sin@) (3 a
WiLli ) -

IL In (39a)
1R A0 2 Sin 0 L~L Sin

T 16)- T sco_ BLr (39b)

which permit the plotting of the sensitivities versus 0. This was done for the conditions

R R
1000 and SiL 5000 (40a, b)LBL SBL

and the results are represented on Figure 9. Note, as expected, the LBL does better over

a wider range of angles. Around 0=170' and 0=10' there is a crossover point for which

the short baseline system would produce more accurate range measurements at angles

0<10" and 0>170'. For illustration of the use of the curves assume that the bearing resolu-

tion is AOL' =AO', =AO 0 0. 1 mr and the range to the target is 20 Km. Note according to

(39) this implies long and short baselines of 20 m and 4 m, respectively, For 0--90', the

LBL best case, the uncertainty in the long baseline range measurement from (39a) is

AR,,eas = R A0. tan (41)
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where ARL is the uncertainty in the long baseline range, and

WL = atan T y - 1 (42)

Then, the range measured by the long baseline will be

RL AL

,ea = R eas (43)a)

RLmW=20 Km ± 2.0 Km (LBL) (43b)

For 0=-0 (or 1800), the SBL best case, the uncertainty in the short baseline range measure-

ment from equation (39b) is

ARmeas = R" AO - tan (44)

where ARS is the uncertainty in the short baseline range, and

Ws = atan (45)

Thus, the range measured by the short baseline will be

Rseas " R+ARSeas (46a)

R'. = 20 Km ± 10 Km (SBL) (46b)
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Although the inaccuracy in the measured value for R may be tolerable in the LBL case, the

SBL range estimate is probably not acceptable. Figure 9 shows what happens to the nor-

malized range sensitivity versus 0 for fixed range. For the dual baseline scheme the meas-

urement accuracy is at a minimum at the crossover points. For the conditions taken this

occurs at 0=+110' and 0=+1700.

E. RANGE LIMITATIONS FOR FIXED TARGET ORIENTATION

Rang". sensitivity curves plotted versus range for the principal directions 0 = 00 and 0

- 900 could be applied to predict maximum bearing error and/or minimum baselines in or-

der to accurately triangulate targets at desired distance limits. Under the assumptions in-

troduced by (38) the normalized range sensitivities are given in (39), which for the single

baseline model becomes

ASR I I+ (47)

Equation (47) is plotted with R/BL=100 to R!BL=1000, and for angle 0--90', 45°,and 22.5'

on Figure 10. In order to clarify the application of Figure 10 to dual baseline triangulation,

an example is presented based on the following conditions

LBL=20.0 m SBL=4.0 m (48a, b)

0=900 A0=0. I mr (48c, d)
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and precision in range < 5%, that means

S< 0.05 (48e)R --

From (48d), and (48e) the range sensitivity is evaluated as

"AL -<5 5 00 (49)

and therefore from Figure 10 the range to baseline ratio is found to be

L < 550 (50)

This condition is applicable to both the long and short baseline. In both cases the 90" con-

dition (48c) imposes the interpretation that the target appears along a line which is perpen-

dicular to the baseline.

For the LBL case it follows from Equation (48a) that

RLBL• 550x20m 11km (51a)

and similarly for the SBL case

RsBL•. 5 5 0x4.Om = 2.2km (51b)
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This demonstrates that the target must be significantly closer to be triangulated with 5%

accuracy if the oncoming direction is perpendicular to the short baseline- Nonetheless, as

previously mentioned, the closest unresolved range will occur for the previously noted

crossover angle. To demonstrate the relevance of this issue, Figure 11 shows the plot of

(47) for the angles 0=900, 0=80°,and 0=10'. The angle 10' was chosen because it repre-

sents the approximate crossover point for the conditions (38). After referring to Figure II

it is seen that the performance for the 0=-100 case is about six times worse than the 0=90'

case. Using the LBL baseline (51a) the range detected by the long baseline would be

approximately

R< 1.8kin (@ 10-) (52)

which is, as expected, worse than either of the baseline performances (51). It should be

noted that for a crossover point the long base line and short baseline performances are the

same. This can be checked by using the 0=800 curve with the SBL data.

F. COMMENTS ON THE EXAMPLES AND ANALYSIS

The primary objective of the preceding examples and discussion has been to demon-

strate a feasible modeling scheme for dual baseline triangulation. The results of this chap-

ter demonstrate several features of the dual baseline scheme. The problem of "geometrical

dilution" discussed in Chapter I can be avoided by using two orthogonal baselines. In gen-

eral the larger baseline will have a higher measurement accuracy. Because of typical ship

structure it is assumed that a second baseline would not be conveniently as long The
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scheme would require some "smart electronics" which would switch between baselines at

a performance crossover point. As seen from the discussion in section D the maximum tri-

angulation range, for a fixed range sensitivity, can be predicted for particular target ori-

entations, i.e., fixed 0. In the chapter to follow this concept is extended by solving for

Rma versus 0 under conditions of constant range sensitivity.
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dual baseline model sensitivity curves
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Figure 7: Dual baseline first example (R/LBL=100, R/SBL=600, a-2. aS= 1)

(via program in Appendix E. B)
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X 10 4 dual baseline model sensitivity curves
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Figure 8: Dual baseline second example(RILBL= 1000, RJSBL=5000. a-= 1. d= 1)

(via program in Appendix E.B)
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2 104 dual baseline model sensitivity curves
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Figure 9- Dual baseline third example(R/LBL= 1000, R/SBL=5000, d'r=0)

(via program in Appendix E. B)
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range estimation for fixed target orientation
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Figure 10: Range sensitivity for fixed target onientation (0= 90'. 45', and 22.5')
(via program in Appendix E. C)



range estimation for fixed target orientation
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Figure 11: Range sensitivity for fixed target orientation (0= 90', 800, and 10*)
(via program in Appendix E. C)
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IV. RANGE LIMITATIONS FOR FIXED SENSITIVITY

A. CHAPTER OVERVIEW

In this chapter a more graphical representation for Rm. versus orientation angle 0

will be developed. For target ranges less than R,,. the triangulation estimation will, by as-

sumption, be within a tolerable precision limit dictated by a maximum sensitivity. Two

paradigms for estimation are considered. The first is based on a quadrature addition of

terms. In this case an analytic solution can be obtained for the case a= 1, i.e., equal preci-

sion bearing measurements. In the second case the addition occurs as a sum of absolutes.

Here after making a reasonable approximation R/BL >>1, a solution for all "a" can be

obtained.

B. ANALYSIS BASED ON THE SUM OF ABSOLUTES

Define the normalized range sensitivity for long and short baseline respectively as

ARI L2 •6I-ct CL(A-L =CS=s (5 3a, b)

after noting for both LBL and SBL that

I F•'' < •,c•(53c)
7 -()sin(
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and after substituting, (35) simplifies to

I S,�,f (1--aL)+ ( (I +aL)=cL (54a)

"" sin ( -asin (0s) ( (54b)

For typical cases R >>BL (as previously assumed in Chapter II) the first terms, propor-

tional to (I-aUs), are very small compared with the second ones, proportional to (I+ai's),

so it is possible to neglect them without significant sacrifice in the accuracy. Then (54) be-

comes

~ ~(j s) 2 J(l+aL)=cL (55a)

AU $i (0s)(55b)

Solving (55a) for !-`, it follows that

(Eij L Si' 2 1.___________ RLBL __ (5 5 c,_d )
•"~~~~ =si ()0' -= sin (0) ••1

\ )X (I+a)L)425
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Equation (55d) can be used to create a polar plot of the range measured by the long base-

line normalized to the LBL. Solving (55b) for RS1L/ SBL, and after (25), it follows that

s7L - co•s ) (55e)

RSL = cos 2(6V)')+(1+<)2 (SLBL (55f)
L ,L (I.+as) 2 t L

Equation (55f) gives the range measured by the short baseline normalized with respect to

the LBL for convenient comparison with (54).

C. ANALYSIS BASED ON QUADRATURE ADDITION OF TERMS

After the reasonable assumption that a = 1, (33) becomes

, L 14 i s-t(,t,(h m-) +- I.-(h -s .,)

R 2" 2 = 2-s') P, (2 1sin W )) (56a)

"" A" 2 s• u •S + ( .- - "Lsi (9s)) 2 s'n es ((9sm(5 6 b )

After defining

I 1/--s,.(8) ( 7
2 m(- = - = "cot (0) = k (57)
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and

=m (57b)

in order to simplify the notation, and after (53), (56) it follows that

!/k•L +mLL)Z+(k•L-mBL ) =2(k•L +mf•L) =cz 5a

ý(LL+MB)2 kL- MLJL) 2L f (58a)

and

4(ksBL + msBL)- +(ksBL-mSBL)2 = 2(kiBL+m2SBL) = c' (58b)

In (58) only the terms m L, and m are R dependent and solving for them it follows that

2 (,)______L (cY)-2kil
mIAL = (cLf2-aJ and mSBL = (59a, b)

Finally after substituting (57) into (59) this leads to

R (C•i-o •co, 2 s8, + 1 (60a)
L.BL sm (0) )

R (cSf*O!c0:2((45) (60b)
SBL sin 2
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After referring to Figure 5 and solving (60a) for RLL it is found that

LLBL (-L)22ýo 22 +sine 20( 1a

Similarly, solving (60b) for RLL, and taken into account (24) it follows that

LRL._..z, = O,•W:0°•5si:0 2(9 +Cos 2(0)(61b
LBL2 BRSAL ~~P" )2c 2tx 8

Equations (61 a, b) can be plotted in polar form in order to show the target's range (nor-

malized to LBL) as it would be measured by a long and short baseline respectively.

D. RESULTS BASED ON SUM OF THE ABSOLUTES

Following (55d) and (55f), the maximum normalized range LBL and SBL have been

plotted in Figures 12, and 13 respectively, versus target orientation 0. This was done for

conditions aI=as= I, cL=cS=50 0 , and LBL=5 x SBL. For example, using 0"-90 on Figure

12 indicates that the maximum triangulation range is 250 x LBL. It is seen from Figure 13

that the SBL maximum occurs at 00 and it is 50 x LBL as expected. The combined effect

is easily visualized in the cartesian representation shown on Figure 14. The solid line is the

maximum triangulation range using the short baseline while the small circle plotting sym-

bol is the corresponding long baseline range. As mentioned, the assumption inherent in this

scheme is that the baseline producing the most precise estimate for range will automati-

cally be selected with the use of "smart eiectronics." Therefore the larger of the short and
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long baseline curves for Rmrx represents the ideal capabilities for the dual baseline scheme.

This is shown on Figure 14 with a large circle used as a plotting symbol. The more physi-

cal polar representation for this solution is provided in Figure 15. In this figure can be seen

the maximum range which is measured via the dual baseline scheme in any direction.

E. RESULTS BASED ON QUADRATURE ADDITION OF TERMS

Figures 16, 17, 18, and 19 are the counterparts for Figures 12, 13, 14, and 15 with

the same data (i.e., a1 =aS=l, cL=cs=500, and LBL=5 x SBL) but based on (61a), and

(61 b). It should be noted that these curves have a k., that as expected is approximately

2" higher (i.e., less conservative) compared with the previous case.

F. OBSERVATIONS

It is possible to obtain approximate analytic expressions for R / LBL in terms of

the target orientation. In the case of the more conservative sum of absolutes this can be

done for arbitrary bearing precision ratios aL and a5 . Figure 12, obtained using the sum of

absolutes paradigm, shows that the maximum value for the long baseline range is approxi-

mately 250 x LBL, where 250 is 50% of the long baseline sensitivity. This can be com-

pared with similar long baseline results for the quadrature addition paradigm shown on the

Figure 16. Here the maximum value for the long baseline range is approximately 350 x

LBL, where 350 is the 70% of the long baseline sensitivity. These observations, which

show that the range scales with the sensitivity, can be generalized to convenient rules of

thumb for calculating the maximum triangulated range for the long baseline system. The

details of this case are presented in Chapter VI. This suggest that for the condition c'
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=CS=c the general appearance of the two curves, independent of scale, will depend on the

ratio of the long baseline to the short baseline. This issue is clarified also in greater depth

in Chapter VI.
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normalized range detected by long baseline (sum of absolutes)
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ratio of the bearing errors in long baseline--1 normalized sensitivity of the long baseline =500

Figure 12: Normalized range measured by the long baseline sensors for aL= 1, and cL'=500
(based on the sum of absolutes and obtained via program in Appendix E. D)

51



normalized range detected by the short baseline(sum of absolutes)
9060

120 6

LBL=5 detected range

S_

270

180 0

ratio of bearing errors in short baselin=1 normalized sensitivity of the short baseline=-500

Figure 13 Normalized range measured by the short baseline for a'= 1, cs=5OO and
SBLILBL=0.2 (based on the sum of absolutes and obtained via program
in Appendix E. E)
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range detected by the dual baseline system in any direction(sum of absolutes)
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Figure 14: Cartesian plot of the normalized range measured by the short baseline, and the

long baseline, showing also the range measured by the entire dual baseline sys--

stem. (based on the sum of absolutes and obtained via program in Appendix

E. F)
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range detected by the dual baseline system in any direction(sum of absolutes)
90 250

120 60

range detected by the system 200 •LBL-5 x SBL

1530
150 .30

180 0
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ratio of bearing errors in both baselines=1 normalized sensitivity in both baselines=500

I

Figure 15 Plot of the normalized range measured by the dual baseline system in any di-
rection. (based on the sum of absolutes and obtained via program in Appen-
dix E. G)
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normalized range detected by long baseline(quadrature addition of terms)
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ratio of the bearing errors in long baseline=1 normalized sensitivity of the long baseline=500

Figure 16 Normalized range measured by the long baseline sensors for aL=], and CL=500

(based on the quadrature addition & obtained via program in Appendix E. H)
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normalized range detected by the short baseline(quadrature addition of terms)
908s

LBL=5 x S8L 60 deteced range

180 0

270
ratio of beanng errors in short baseline=1 normalized sensitivity in short baseline=500

Figure T7: Normalized range measured by the short baseline for a3= 1, cs=500, and
SBL/LBL=0.2 (based on the quadrature addition and obtained via program
in Appendix E. I)
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cartesian plot of the range detected by the dual baseline system(quadrature addition)
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Figure 18: Cartesian plot of the normalized range measured by the short baseline, and the
long baseline, showing also the range measured by the entire dual baseline sy-

stem. (based on the quadrature addition and obtained via program in Appendix
E. J)
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range detected by the dual baseline system in any direction(quadrature addition)
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range detected by the dabsei s md
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ratio ot bearing errors in both baselines-1 normalized sensitivity in bothl baseiines=500

Figure 19- Plot of the normalized range measured by the dual baseline system in any di-
rection. (based on the quadrature addition and obtained via program in Appen-
dix E. K)
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V. PHYSICAL LIMITATIONS OF THE TRIANGULATION METHOD

A. INTRODUCTION

The polar plots of the normalized sensitivity that were presented in the previous sec-

tions define limitations in the range measurement via the triangulation model. In this chap-

ter the physical limitation due to the optical horizon is considered.

B. GEOMETRIC AND OPTICAL HORIZON [REF. 181

The line at which the earth's curved surface apparently meets the sky is called the ho-

rizon. It can be observed very easily that the distance to the horizon increases as the height

of an observer's eye increases above the earth surface. The dependence of sighting dis-

tance on the height of the observer's eye is by itself an evidence that the surface of earth is

curved. As shown in Figure 20, two types of horizons can be distinguished: the geometric

horizon that extends to the point H, and the optical horizon that extends to the point H'.

The geometric horizon can be defined as the points where all the straight lines from a

given observer tangentially graze the surface of the earth. However, due to refraction an

observer can see a longer distance than that of the geometric horizon. This displaced hori-

zon is the only one that can be sensed by an observer and it is called the optical horizon.

So, the refraction enables the observer to see over and beyond the earth's surface at H.

The distance to which an observer can see depends on the height of the eye and the

amount of refraction, and uncertainties in this latter quantity can be troublesome when
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high accuracy is needed. The uncertainties arise from the fact that the line of sight to the

horizon lies too close to the earth's surface. Because of differences in air and land or water

temperature, abnormal temperature inversions or temperature gradients may occur in the

lowest few meters of the atmosphere. Thus, the amount that the line of sight is bent is a

variable and generally very difficult to predict, leading to a high level unpredictability in

the optical horizon location. Therefore the more conservative estimation for the optical

horizon, based on geometrical consideration alone, will be followed.

C. OPTICAL HORIZON GEOMETRIC ANALYSIS

As may be understood from the Figure 20, no part of the earth's surface whose ele-

vation angle is less than that of the optical horizon can be seen beyond this horizon. How-

ever, an elevated object such as an incoming missile, flying above the surface of the sea,

can be seen beyond this horizon. The geometry for a such an object is shown on Figure

21, and the foregoing analysis refers to an average steady-state condition of the air. From

Figure 21, it is obvious that

d= (Re + t)- sin Ot + (Re + s) sin 0s (65)

Again from the same figure

coso, = (66a)R,+t

Cos R.0 , (66b)
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After (66), (65) becomes

or

d /(t+2Ret) + F(s + 2Rs) (67b)

In (67b) the terms t and s2 are very small compared to the other terms witti factor R. and

can be neglected without error. After this assumption (67b) becomes

d--_ + F(68)

The geometric analysis ignores the effects of the refraction which can increase the distance

to the optical horizon. Therefore (68) represents a conservative estimation for the optical

horizon. The relation (68) gives an approximation of the distance at which an object at

height t above the surface of the earth can be seen by an observer or sensor at height s

above the surface of the earth. Taking R,=6.37x1O 6 meters. (68) can be written as

d=- 3569.6(1i + J) meters (69)

where d. t. and s are expressed in meters.
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D. EXAMPLES INCORPORATING THE GEOMETRIC HORIZON

The dual baseline triangulation model permits a maximum triangulation range to be

estimated within a maximum tolerable error criterion. In the case that the geometric hori-

zon appears at a distance shorter than the dual baseline prediction then the de-facto maxi-

mum triangulation range is the geometric horizon. The combined limitations of the dual

baseline triangulation system composed of the inherent and physical limitations can be

modeled and represented with computer plots. Such plots are presented in Figures (22a,

b) and (23a, b) and it can be seen that the limittions in the behavior of the system depends

either on the distance from the baseline to the geometric horizon or the parameters of the

system itself The data used to generate these plots are conveniently provided in Table I.

It is noted that the specification aL=aS=I is consistent with the criterion that all bearing

sensors have the same precision in bearing measurement. On the other hand the specifica-

tion (= cs=c is consistent with the condition that the range measurement should be

worked with the same precision limit regardless of the baseline used. Note that Figures

22a and 23a are based on the sum of absolutes, while the Figures 22b and ?3b are based

on the quadrature addition of terms. On all figures, a2 =aS=1, and cL=cs=500.

TABLE 1. DATA FOR THE FIGURES (22, 23)

t (m) s (m) GH (m) LBL (m) SBL (m)

Figures 22a, 23a 10 10 22,480 100 20

Figures 22b, 23b 3 3 12,365 20 4
* On all figures aas= I , and c- =cS=500

** Figures (22a), and (22b) are based on the sum of absolutes
* Figures (23a), and (23b) are based on the quadrature addition of terms
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0

H"H

center of earth

Figure 20ý Horizon geometry and effects of refracion (Afier Ref 18)
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dT
T

Sa

, s

Re
Re es 

t

t = height of the target above surface (in)
s = height of the sensor above surface (in)

d = geomerical horizon (m)
Re = radious of the earth (6.371x 10"6 meters)
0 = center of the earth

Figure 21 Geometrical horizon geometry in case that both sensor and target are above

the surface of the earth
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detected range is limited by the system (sum of absolutes)
901.4e+004

120 0 0 60

range detected by the system

f• 8000
150 !30

geometric horizon

00
180 - 0

long baseline length-20m

short baseline length-4m 240. 30

270

height of the target above surface-3m height of the sensor above surface-3m

Figure 22b The maximum detected range is [imited to 5.000m due to •,he merntod, instead
the [2.365m which is the geomernc horizon (based on me sum of absolutes

and obtained va prora2 m in Appendix E.L)
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detected range is limited by the geometric horizon (quadrature addition)
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detected range is limited by the system (quadrature addition)

901.4e+004

rag dtctdb tesytm 120 00 A 60

8000

geometric horizon 150 30

00

270

18 20 3 0

long baseline leng w(20h i---

short baseline length-4m 20 0

height of target above surface=3m 20height of sensor above surface=3m

Figure 23b The maximum detected rangee is limrited to 7,000m due to the method, instead
the 12.365m which is the geometric horizon (based on the quadrature addi-

tion of terms and obtained via program in Appendix E.M)
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VI. GENERALIZATION OF THE RESULTS FOR FIXED SENSITIVITY

A. MOTIVATION

As seen in the previous chapter the condition for fixed sensitivity leads to polar

curves for maximum triangulation range using both a LBL and a SBL. The crossing point

for these curves, 0 CROSS, defines the complimentary application domains for the respective

baselines. In this chapter some simple guidelines for predicting 0 CROSS, the maximum SBL

range, RS.. (at 0--00), and the maximum LBL range, Rm, (at 0=900), are derived. This is

done for the quadrature addition of terms and the more conservative sum of absolutes.

B. A SIMPLE FORMULA FOR THE LBL & SBL CROSSOVER

1. Analysis for the sum of the absolutes

It is observed that in the crossover points of the LBL and SBL polar plots the

normalized range in respect to LBL for both baselines has to be equal. That means

R L5L _ROlL
J. = ý..• (70a)LBL LBL

Taking into account (61), and (62), (70a) becomes

i" _ (0)"_'_L)7 7)_ _c_____ (,C)2+4(-+aS)2 (SBL (
(I+aL)2 (70b)
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or

(cL):):+I +a')" (0s +.1+62-)

sinu(O) Cos- L, (70c)

Furthermore (70c) becomes

(s~t~z,,.v?(71)tan 2(O) = LBL0 (,, .. )! .

Normally in (71), the terms of the form (c"S )2 are much bigger than the terms of the form

(I + aLs )2 and dominate, so (71 ) can be written

tan2(0) =LBL )(CY (72)
)H (,S)2

For the typical case when cL=cS=c, Equation (72) becomes

tan(0)-) (73a, b)

and finally

O8Ross= atanr (74)

It is worth noting for the correction of (70) that if aL=as and cL=cs then (74) is exact
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2. Analysis based on the quadrature addition of terms

Similarly to the previous case at the crossover points the normalized ranges of

both baseline systems are equal. This implies that

I-- = I• " (75)LBL LBL (75

and finally after (63) and (65), (75) gives

rcL)2sn2(,L)O 5cos2(9L) +sin 2 (OL) C((CS)2s3l2O(9S)-.O5Cos2(os) +sin2(0 ))(•') (76)-,~ ~ L-•2 BL

and after (24), and (25), (76) become

4c, :szn8o• . cos2(o) + sin2(O) = (0(c.-)2 cas2(s) + cos2(O) (BL (77)

or

(c'fszn 2(e)_o I -stn'() (0) (C)2(1_S2() )_O S&(e) + * SBL *+ sin-) + Sin 2(O) , L) (78)

After assuming that CL=Cs=c and substituting sin'(0) with "y," in (78), it follows that

0.5c 2y- 0.25+ l.25y = (0.5c 2 - 0.5c2y+ I - 1.25v) (79a)
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and finally

0.5c2+ 1.25+0.5c2(-- +I._ 2,= 0.25 +0.5c- + T (79b)

Solving for "y," that is sin 2(0), and after back substitution into (77), it follows that

sin2(0) = --. , (80)
I 2-5+Sc2+0O5c2(AL)1+1. (LBL)

It can be observed at this point, that after dividing both terms of the ratio by c2 and ne-

glecting the very small terms that follow, (78) becomes

sin (0) = (81a)

or

sin (0) (81b)

and finally

OCRoSS =- asin ( ) -- atan (S-L ) (82)
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3. Observations

After the analysis of both methods have been completed the very obvious result

is that the crossover point depends only on the ratio of the two baselines and it is approxi-

mately independent of the range sensitivity factor c. To demonstrate the above statement

the more exact (80) and the approximate (82) crossover angle is plotted in Figure 24 for a

fixed baselines ratio SBL!LBL=0.2 versus the variable normalized range sensitivity. The

approximate form (82) is nearly equivalent to (80).

C. SIMPLE SCALING FORMULA FOR DUAL BASELINE MODEL RANGES

1. Analysis for the sum of the absolutes

As seen in Chapter IV the sensitivity-fixed triangulated ranges, normalized by

the LBL, become maximum at the angle of 900, measured with respect to each baseline.

This maximum normalized range can be evaluated from expressions (61) and (62) for the

long and short baselines respectively, as follow

" ,o = c L)2+fl+alf (83a)
tBL - 1 (aL)

2

and

RWIý (C. )2+(I+OS)
2  

__

LBL (83b)

After assuming that c=cs=c, and a=as= 1, (81) becomes
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I kRntt., C
2

4(SBI

L, L ... and (84a, b)

2. Analysis for the quadrature addition of terms

Following the same procedure described above (63), and (64) give

RL'u"n. I 9 --W'. F2 + 1 (85a)

and

L 1" .oS9o-= + "(sL "(Lt + (85b)

Finally supposing cL=cS=c, (83) follows that

and (86a, b)
LYL 2 E 2 LBL

As expected, a factor of 2"2 increase in the less conservative quadrature addition of the

terms is seen by comparing with (84).

3. Observations

The most obvious result of the analysis above is that the scale of the R•

curves increases linearly with the normalized range sensitivity. More specifically for the

sum of absolutes paradigm the maximum ranges satisfy the following rules of thumb
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RLIL(m) =- l x LBL(m) and RsR, (m) ×SBL(m) (87a, b)

Similarly, for the quadrature addition of terms paradigm the maximum ranges satisfy the

following relations

RLtL(m)- xLBL(m) and RsBL(m)--c-'XSBL(m) (88a, b)

For both paradigms the crossover angle is given by the rule of thumb

OcRoss - atan (•. L (89)

The general characteristics of the dual baseline triangulated ranges and baseline crossing

points are shown on Figure 25.
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comparison crossover angle approximations

121

cc11.8F
11.4

11.3•

"11.2- ap roximate cross angle e 821 1.2f IIP

11.

500 550 600 650 700 750 800 850 900 950 1000
normalized range sensitivity

Figure 24a Crossover angle or long and short baseline based on the accurate expression
(80) and the approximate expression (82). There is not discrepancy betv een

them in this area of the scale of the y axis. (via program in Appendix E. N)
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comparison between crossover angle approximations
11.3103 , , ,

11.3102•

11.3102. accurate cross angle (eq 80)

. 11.3101

ao

11.31

arorroximate cross angle (eq 82)

11.31 -

11.3099'
500 550 600 650 700 750 800 850 900 950 1000

normalized range sensitivity

Figure 24b: Crossover angle of long and short baseline based on the accurate expression
(80) and the approximate expression (32). The discrepancy between the two

expressions becomes obvious as the scale on the y axis goes to the third deci-
mal point. (via program in Appendix E. N)
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R- L B U m C ca w A

LBL 2

RBL - cawo B

S'SBLLLN 0Ossatan(ý-!

eCROS LBL.,

S// /

/ /
R- - R (SBL/ cas A

LBI. 2\ LBL

SRI max)c(SBL) casw B
Rs. L__ (SBL

(case A sum of absolutes, case B quadrature addition of terms)

Figure 25 : Properties which characterize the performance of the dual baseline Iriangula-
tion scheme. The maximum normalized range which can be detected by the
system is linearly dependent on the sensitivity. The crossover angle of the
long and short baseline approximately depends only on the ratio of the two
baselines.
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VII. CONCLUSIONS

A. RESULTS OF THE WORK

A dual baseline scheme based on the triangulation principle proposed for passive

range measurements was presented and its performance was examined in this work In

Chapter I the approximations on which the proposed model was based were examined,

and the general characteristics of the triangulation principle were reviewed. The conclu-

sion was that the approximations R>>BL, and R=R, =R2 have not noticeably changed the

accuracy of the model, and that for angles close to 0°and 1800due to "geometric dilution"

no range measurements can be performed. Furthermore it was shown that the precision in

the range measurement was dependent on the precision in the bearing measurement. Lastly

it was shown that the more distant the target to be triangulated is from the baseline the

more inaccurate the measurement. In Chapter III, feasible modeling for a dual baseline tri-

angulation scheme was examined. It was shown that two orthogonal baselines eliminate

the "geometric dilution" problem and that, in general, the larger baseline will have a

higher measurement accuracy. Finally, for further study of the characteristics of the dual

baseline scheme two gauges were proposed. The first one is based on the quadrature addi-

tion of the terms which express the range sensitivity of each sensor for each baseline, and

the second one is approximate and is based on the sum of absolutes of the same terms. It

was shown in Appendix D that the latest one is more conservative with respect to the er-

ror in the range measurement, and it can be used for arbitrary bearing precision of the

79 j



sensors. Instead, the less conservative quadrature addition of terms can be used only for

the case when the sensors have the same bearing precision. In Chapter IV the perform-

ance of the dual baseline model was studied by the above mentioned gauges through the

polar plots of the normalized range versus the target orientation angle. The conclusion

from this chapter was that with the use of the conservative sum of absolutes the predicted

maximum range is 21'2 less than the range predicted by the quadrature addition of terms. In

Chapter V the physical limitation in the range measurements due to optical horizon was

considered. The effect of refraction introduces a complicated situation in the prediction of

the optical horizon. Thus, a more conservative estimation for the optical horizon based on

the geometrical consideration alone was taken. It was shown in this chapter that the pre-

dicted maximum range depends more generally on sensor and target height above the

earth's surface, and the ratio of the two baseline lengths. Therefore the range measurement

can be limited either due to the optical horizon or the dual baseline system. In Chapter VI

the general features of the polar plots that are characteristics of the dual baseline method

were considered. It was shown that the maximum range scales with the range sensitivity of

the baselines. In the case when the normalized sensitivity in both baselines is the same

then the general appearance of the two curves will depend only on the ratio of the long

baseline to the short baseline. More specifically, the crossover angle of the two curves, to

a high degree of approximation, depends only on the ratio of the two baselines, and it is

independent of the range sensitivities.
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B. FUTURE DEVELOPMENTS

The dual baseline model was studied under the assumption that the mean bearing er-

ror was zero, but in the real world that is not true. Thus future work is needed to enhance

the model to handle systematic errors in the bearing measurements. This future work

could employ the "circulation method" instead of triangulation. A second point for future

development could be the implementation of the dual baseline model with some "smart

electronics" which would switch between baselines at a performance crossover point
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APPENDIX A: LIST OF SYMBOLS

A. SYMBOLS IN ENGLISH

BL: the baseline (platform length) in the triangulation method (m)

c: normalized range sensitivity in triangulation method

CL'S. normalized range sensitivity in long/short baseline

d: distance to the geometrical horizon (m)

LBL: the long baseline in the dual baseline triangulation scheme (m)

R: the range from the middle of the baseline to the target (m)

R.: radious of the earth (6.371 x 106 meters)

RLBL: the range from the middle of the long baseline to the target (m)

R~s.B: the range from the middle of the short baseline to the target (m)

R,,,: the range from the first second sensor to the target (m)

SBL: the short baseline in the dual baseline triangulation scheme (m)

s: height of the sensor above the surface of the earth (m)

t: height of the target above the surface of the earth (m)

B. SYMBOLS IN GREEK

a : ratio of the mean values of the bearing errors in the triangulation method

a's : ratio of the mean values of the bearing errors in long/short baseline

A0112 : bearing error of the first/second sensor (rad)
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0 the target orientation angle measured from the middle of the baseline (degrees)

0 tangle to the target measured from the middle of both baseline (degrees)

6,: angle to the target measured from the first/second sensor (degrees)

x1 L S: independent random variable having zero mean and unity standard deviation in

long/short baseline in respect of first/second sensor
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APPENDIX B: MATHEMATICAL PROOFS

A. SINGLE BASELINE MODEL

1. Single baseline model analysis

The distance from the middle of the baseline to the target given by Equation

(4) is repeated here

'=2'('IL •°'/-= = (B. 1)
I sm(82--6)

The derivatives of (B. ]) with respect 01, and 0, are respectively

S•Bt COS t .,n. sin 82

d-? -IB c (ý i no2) - - -g(O1.0:,R) (B. 2)
A i 2 s in( 8:-* 4i4 2R T(s~

dBL jCosfj I(sin 0 -2 +g9(f01,0 2.R)I (B. 3)
A2~ 2 [st1(0:-81) ~ ~ I(ji0)

where

g(O 1C0,,R O=(' ) = :"% (sinO: 1-( sinO ) +sinO04 1-(L'sinlo):>.- (B. 4)
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and

AR = dL +-&-A0,_ (B. 5 )

The expressions (B.2), (B.3), and (B. 4) above are approximate because the derivatives of

the small terms proportional to (BL/R)2 on the RHS of Eq. (B. 1) have not been included.

The terms

SM-(-61 and sin (a 2-,e) (B. 6)
Sm (e,-o, )an ( -- ,

can be factored out of Equations (B.2), and (B.4). Also the terms

and sin( 2  (B. 7)
smn(e,-8e) smn(er-e,)

can be factored out between Equations (B.3), and (B.4). Then Equation (B.2), after Equa-

tion (B.6), becomes

S(f+f2) (B. 8a)

where

f- - (cos0 1 +sin0 1cot(Oz-6 1)) (B 8b)
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and

sh - ý.-OI lcot(02 -01 ,(s,,o) a,) (B. 8c)

Similarly. Equation (B.3), after Equation (B.7), becomes

•---= +, (B. 9a)

where

fl sin (0-8,) (cos02-sin 02cot((02- 01)) (B. 9b)

and

f2 (sz
2  t((2 , -o 01-,)f + ,- o (B. 9c)

Equation (B. 5), after (B. 8), (B.9), and after dividing by (B. 1), becomes

ctosA( +S M e,- I Co t (0 2- o-0 1 , S in 2  
2-N,'" •oI f--o

--& = • -1 (A0• •-
sin 02  t 8 6+sin8 1 - J
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HEsinu, (coO.-sfin82 COO(ý:- ))-~i~ lsn2 I( sin o, I-( E ksin2 co 8, R I(0 2  (B 10S(0) (B. 10)
stnO 4-smE) ý s Ol1-ý S 6

as cited in the main text.

2. Single baseline model analysis (R>>BL)

A reasonable assumption that R>>BL can be made, and it follows from Equa-

tion (4) that

R= _LL(stl92+sin•9 (B. I)

The derivatives of(B. 11) with respect 0O, and 0_, are

? =L( B cos _-g1(Oi,02) (B. 12)
S 2 sxn(O,-O1 )

and

= "L c 9 (010:,) (B 13)
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where

g(co0, -- s), +sn- _ (B1 14)smi:(-e-8)

Equations (B. 12), and (B. 13) after (B. 14) can be re-expressed as follow

d$E B s=•,.i.)(cos0G +cot(0.2 - 0 (sin01 +sine 2 )) (B. 15)d~l 2" in8- 1

and

E L i (cos 02 -cot(02 - 0 )(sin02- sin 0 0) (B. 16)
d62 2 si1(0)-80

Combining Equations (B. 15), and (B. 16), and after dividing by (B. 11) leads to

_-=_,____,i - (AO,)_+( ,e,01 cot(0 e-01) (Ae2) (B. 17)

as cited in the main text.

B. DUAL BASELINE MODEL

Following the substitutions suggested by Equations (23), (24), (26), and (27) the

expressions for--• , and are obtained for the various approximation cases of

the dual baseline model analysis introduced in Chapter III.
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1. Dual baseline model analysis

a. Long baseline (LBL)

(... L= Ii fsin8 Bi co6 sinez cot 81.-el Iji

) 2R 1 F 7 ,,L .BL I

b. Short baseline (SBL)

Ofej (cos8l+sin9e1coi (e!-efl )'.qm *f i(aj fwe ~cot (~.~) ~~2~IXa B 9+ aoi_• °•: °~,( .•:''-° • ' (B. 18)

2. Dual baseline model (R>BL)

a. Long baseline (LBL)

~~ = 1 +co ~(9_ S OL ) +sin@, ~ ~ cot (~ e> 1 ~ L ( 0

89
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b. Short baseline (SBL)

F A + cot - ~)x+(c~ cot ~of Y'(.1
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APPENDIX C: EXACT EXPRESSION FOR THE RANGE

A. GENERALITIES

From Figure 2 the expression (3b), which relates the range of the target to the apex

angles on the baseline, had been derived. Solving (3b) for R gives the exact expression

that has to be used to solve the problem in the triangulation method.

B. ANALYSIS

In order to simplify the notation the following definitions are introduced

.sx=- sin (02 - 01) (C. Ila)

sy sin 02 (C. I b)

sw sin0 1  (C. lc)

Then from (3b)

After substituting

R(C. 3)
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symbolic processing using MAPLE [Ref. 19], produces

4Z 4 .SY,2(-l +Z 2 s4'2 )sw2(-I +Z S~Y 2 ) = (Z2.s' 2 -_2Z 4 '.-sYAM2 + Z2 .sir -.S-") (C. 4)

and then again symbolic processing produces the two solutions

(Z 1) 2  1 -2sxsy 2 - 2sw2 sX2 +4 -sx 4 s'sw 2 (-+ (C. 5a)

2 _4sw2SY2sx2 - Sy4 + 2swISy 2 _ sw4

(Z2)2 1 -2sx 2Sy 2 -2sw 2sx 2 -4 +-Sx4Sy2s2(-I + SX 2 )= (C. 5b)
2 -4SW2sy2sx 2 _ sy4 + 2sw2 y 2 - sw 4

It can be shown using MAXSYMA [Ref 20], that the root (C. 5a) is real and (C 5b) is

imaginary. Therefore the exact expression for normalized range in terms of angles 01, and

0, is

(2R 2- 4 -S/ +2SW 2Sy2 -SW 4  (C. 6)
BL -2sx 2sy' - 2sw 2sx2 +4 ý-sx4 s. 2SW2 (-1 +sx2)
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APPENDIX D: RANGING ERROR IN TRIANGULATION METHOD

A. GENERALITIES

In single triangulation the target lies at the intersection of the two lines that run from

the sensors. These two lines make angles with the baseline that vary due to mechanical

limitations of the sensors. The variation in the angles, A01 and A6., determine the varia-

,;,on in the measured range of the target.

B. APPROXIMATE RANGING ERROR ANALYSIS

Figure 26 shows the geometry of range measurement in the single baseline triangula-

tion scheme. The quadrangle KLMN is established due to variation in the angles. The lines

DE, and FG have values AR and AR, respectively, and approximately represent the un-

certainties in the range of the target from the sensors. The line MK represents the total un-

certainty due to the system and it has value AR. In first approximation the error

quadrangle can be treated as a parallelogram and the following relation is derived from

parallelogram on Figure 26

ARQ -ARPARALUELOGRAM - ARp (D. 1)

or

ARp = (AR,1)2+ (,AR2) 2+ 2 1• .R Rcos (1), 2)
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where "4" is the angle between AR, with AR.

For R>>BL, as shown in Figure 27, _= 0, and therefore

cos 1 (D. 3)

Thus, it follows from Equation (D. 2) that

AR, - AR< IAR, + IJAR1 (D. 4)

and therefore via comparison with (D.2) it follows that

I(ARI)2+(AR2 '-2 - lAR 1, +AR- 2 l (D.5)

In fact, under the case that

IAR, I =IAR21 (D.6)

e.g. at a point of symmetry, and

cos, I (D. 7)

the sum of quadratures estimate will be 2"2 smaller than the sum of absolutes. So, in gen-

eral, the sum of absolutes is a more conservative gauge for the lack of precision in the tri-

angulation measurment.
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Figure 26: Geometry for ranging error in single baseline triangulation
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Figure 27 Error quadrangle for R>>BL
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APPENDIX E: M-ATLAB CODES

A. SINGLE BASELINE MODEL

clear-
b~input ('put the ratio RIBL=');-
y1.b
a=input('put the ratio DTH2./DTH I='),
step~pi./40,
theta=O: step: pi;
u~sin(theta),
v-cos(theta),
q--tan(theta);
j=1 ./q,
c=(b.A2+.5.A2+b.*v..5, % c=R2/BL eq. 9a,

d(.A2+5A2-b.*V). A5 - ' d=RlI/BL eq. 9b,
thetalI=asin(u. *b./c), eq. IlOb;,
e=sin(theta 1)
f'-cos(theta I)
theta2=asin(u. *b./d), eq. IlOa,
g=sin(theta2),
h=cos(theta2),
theta2lI=asin(1./d.*e), eq. 11
zt-an(theta2 I)
k=I .Iz,
I=(.5. *y), % ]=BL /2R;
m1l. *g. % m=(BL/2R)*sin(theta2);

ptl *e, % p=(BL/2R)*sin(theta 1),
q=( I _..pA

2 ). A.
5 ,

r-.g*q+e.*fl % r--denom. of eq. 7;
w--k-(l. 2.*e.*f/q. 2),
x~k+(l. 2.*g *h./m A2),

B~n.*(f+e.*k)+g.*q *w,
C~q. *(h-g * k)-. * n. *x,

F=(sqrt(i _(y. *u). A2 )./(y. *u));-
% s represents the general solution for single baseline model eq. 7;,
s=((B. /r). ^2+((C. /r). * a) A 2)A .5,
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% t represents the approximate solution (R»>BL) eq. 15

%z represents the approximate solution (R»>BL,R I=R21=R) eq. 21
z=((.5 *j+F)A^2+((.5*j..F).*a)./A2).A.5-1
theta--theta. * I 80./pi"

axis([0 180 0...
xlabelf Theta in degrees'),
ylabel('Idelta R / (R * delta theta) j'),
title('comparison of single baseline model sensitivity curves'),-
gtext('* for more accurate case (equation 7)')-
gtext('o for R»>BL approximation case (equation I 5)')l-
gtext( + for R»>BL & R=RI=R2 approximation case (equation 2 1)')-,

gtext('a='),

B. DUAL BASELINE MODEL

clear,
rovlbl~input('put the ratio RILBL='), % rovlb]=R/LBL,
y-- I./rovlbl, % y-LBL/R.-
rovsbl=input('put the ratio RISBL=');- % rovsbl=RISBL.-
x= I ./rovsbl, % x=SBL/R,
a=input('put the ratio DTI-L2/DTHL I==)},
aa~input(fput the ratio DTHS2 ./DTHS 1=),
step~pi./40,
theta=O step: pi,
u~sin(theta).-
v--cos(theta),
m=( I -sin(theta). ^2)..5~
k=v./u,- %/ k=cot(theta)l-
c=y. * U, % c=(LBL/R)*sin(theta);1
b=( I -c. 2). A. 5,- % b=( I .((LBL/R)* sin(theta)A2)^. 5

d ~ 5;I+. 2) % d=(l~(cos(theta)A,2)`A.5;
g=x *(-v);- % g=(SBL/R)*(-cos(theta)):
f=-( I &g2). A.5- % f=-( I ((SBL/R)*(-cos(theta)))A2)A.5;1
% the following relation is for LBL model eq. 33a;

% the following relation is for SBL model eq. 33b ,
s=(( 1/2. *d/(..v)+f /g)A^2+(( 1/2. *d./(..v)..f /g). *aa)A^2)A/15,
theta-theta. * 180./pi;

axis([0. 180, 0, 2.5* 10^4])-l
title(' dual baseline model sensitivity curves'),
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xlabel('Theta In degrees')
vlabel(QDelta RI(R * Delta Theta')-
gtext('o for long, baeie)
gtext('* for short baseline'),
gtext(fRfLBL='),
gtext('RISBL=');.

gtextf rati fbern err i og aein=
gtext('ratio of bearing errors in short baseline='),

C. RANGE LIMITATIONS FOR FIXED TARGET ORIENTATION

clear,
maxrovbl=input(' input the maximum ratio of r/bl ~
minrovbl=input(' input the minimum ratio of r/bl )
thetv-1 :3,
thetv(lI)= input (' angle] in degrees other than O,pi~),
thetv(lI)=pi/1 80*thetv( I)-
thetv(2)= input (' angle2 in degrees other than O,pi');
thetv(2)=pi/l 80*thetv(2)-
thetv(3)= input (' angle3 in degrees other than O,pi'),
thetv(3)~=pi/l 8O*thetv(3),
nmax=input(' input the # points )
long-l :nxnax;
longl=l :nmax;
long2= I:nmax-
long3=1 :nmax.
Iongv--long9*thetv-
difr=- (maxrovbl-minrovbl)/(nmax- 1),
for k=1: 3,
thet--thetv(k),
for i= 1:nrmax,
rovbl(i)= minrovbl~difr*(i- I),

ro~vblk~rovbl(i);
v-sin~thet)
z--an(thet),
x=l Ii/,

long(i)= 112.*x + (sqrt(l-((I./rovbII).*v).A2))./((I./rovbll).*v)) %eq. 47
Iongv(i,k)=long(i)-;
end;,
end-
for i=I :nmax
long I (i)=longv(i, I),
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long2(iýc ngv(i,2);
Ionv' I-",--Iongv(',. 30,

plot(rovbllong I ,'o',rovbl,long2,`*,rovbl,long3,'x')
title ( symmetrical analysis )
xlabel ( range/base-line ')
vlabel ( delta R/(R* delta theta) ')
gtext('o for target approching at an angle -- degrees');
gtext('* for target approching at an angle -- degrees')-
gtext('x for target approching at an angle -- degrees'),

D. LONG BASELINE POLAR PLOT (SUM OF ABSOLUTES)

clear,
%al=input('put the ratio of the bearing errors DTH2L/DTHIL=').
al=l,
%cl=input('put the critical value of the normalized sensitivity=');
cl=500,
theta=00.05:2*pi;
% rIovibl represents the eq.55d ;
rlovlbl=abs((sin(theta).A2.*((cl."2+(I+al).^2.)/(I+al).^2)).^.5);
polar(thetarlovlbl);
title('normalized range detected by long baseline (sum of absolutes)'),
gtext('ratio of the bearing errors in long baseline='),
gtext('normalized sensitivityof the long baseline='),
gtext('detected range');

E. SHORT BASELINE POLAR PLOT (SUM OF ABSOLUTES)

clear;
%as=input('put the ratio of ratio of the bearing errors DTH2S/DTHIS='),
as= I I
%f=-input('ratio of the two baselines SBL(m)/LBL(m)=');
f-= -0.2
% cs=input('put the critical value of the normalized sensitivity-');
cs=500,
theta=0 0.05:2*pi.
% rsovlbl represents the eq.5 5f,
rsovlbl=abs((cos(theta).^2. *((cs."2+( I +as). ̂ 2)./( I +as).^2) *f ̂ 2)". 5);
polar(thetarsovlbl);
title('normalized range detected by the short baseline (sum of absolutes)');
gtext('LBL=5 x SBL');
gtext('ratio of the bearing errors in short baseline=');
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gtext('normalized sensitivity of the short baseline='),
gtext('detected range').-

F. LBL & SBL CARTESIAN PLOT (SUM OF ABSOLUTES)

clear ,
%cl=input('critical value of the normalized sensitivity in long baseline='),
cI=500 

'%al =Input('ratio of the bearing errors in LBL (DTH2/DTH)=)
al=I-
%f_ýinput('ratio (SBL(m) /LBL(m)='),
f--O. 2
%VcS=input('critical value of the normalized sensitivity in short baseline =)

cs=500,
%as~input('ratio of the bearing errors in SBL (DTH2/DTH )')
as= I
thetaO0:O.05:2*pi;
rlovlbl=abs((sin(theta).-A2. *((cl./A2+(l +al).A 2). /(1I +al.A 2)). ^. 5); % eq. 55d
rsovlbl=abs((cos(theta). A2. *((cs. A2+( 1+as).A2)./( 1+as). .2). % q. Sf
f A2). A. 5), /oeq 5

rmax=max(rlovlbl, rsovlbl);
%polar(theta,rmax),
theta--theta. * I 80./pi,-
pl ot(theta, rlovlbl,'. ',theta, rsovlbl,'-. ', theta, rmax,'o);
%P~text('ak=2')-
"%gtext('cl=5OO')-
%gtext('SBLfLb_=O. 2');,
xlabel('theta in degrees'),
%ylabel('rlbl/lbl, rsbl/lbl, rmax/Ibl');-
title('cartesian plot of the range detected by the dual baseline system (sum of
absolutes)')-,
gtext('ratio of the bearing errors in both baselines=V1);
gtext('normalized sensitivity in both baselines=500');
gtext('LBL=5 x SBL'),
gtext('range detected by short baseline');
gtext('range detected by long baseline'),
gtext('range detected by the system');

G. LBL & SBL POLAR PLOT (SUM OF ABSOLUTES)

clear 
,%/,cl=input('cn'tical value of normalized sensitivity in long baseline=')-,

cl=500,-
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%a!=input('ratio of the bearing errors in long baseline (DTH2L/DTH ILW)'
al=1;
%f-ýinput('ratio (SBL(m) /LB3L(m)=');-
fO - .2,
%cs=input('critical value of normalized sensitivity in short baseline ~)
cs=500 

'
%as~input('ratio of the bearing errors in short baseline (DTH2 SfDTH1IS)=');
as=l 1,
theta=0- 0.05:2 *p1
rlo,, lbl=:abs((sin(theta).A^2. *((clA 12+(]I +al). /12)./(lI +al). ̂ 2)),1..5), % eq. 55d
rsovlbl~=abs((cos(theta).A2. *((cs. A9+( I+as)."2)./( I+as)."2).*...
f ^2). .5) -, % eq. 5 5f;

rmax=max(rlovlbl,rsovlbl);
polar(theta,rlovlbl,'. ',theta,rsovlbl,'-. ',theta,rmax,'o'),
title('range detected by the dual baseline system in any direction(sum of absolutes)'),
gtext('ratio of bearing errors in both baselines= V'),
gtext('norinilized sensitivity in both baselines=500'),
gtext('LBL-=5 x SBL');

H. LONG BASELINE POLAR PLOT (QUADRATURE ADDITION OF TERMS)

clear,
theta=OO0.05:2 *pj,
%cll=input('critical value of the normalized sensitivity in long baseline='),
cll=500;-
% riovibi represents eq. 6 1a;
rlovlbl=abs((( 1/2. *(cil./2.*sin(theta).A2-0.5.*cos(theta). "2)+sin(theta). "2)). "0.5),
polar(theta, rlovibi),
title('normalized range detected by long baseline (quadrature addition of terms)')-,
gtext('ratio of the bearing errors in long baseline= V')-,
gtext('normalized sensitivity of the long baseline=500'),
title('detected range');

1. SBL POLAR PLOT (QUADRATURE ADDITION OF TERMS)

clear,
theta=0:0.05 .2 pi,
%css~input('cfitical value of the normalized sensitivity in short baseline='),-
css=500;
%f--input('ratio SBL(m) /LBL(mn)'),
f--0. 2 -
% rsovlbl represents eq. 6 1b,
rsovl bl =ab s((( 1 /2. * (css ^2. * cos(theta). ^2-0.5. * sin(t heta). ^2)+ ..
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cos(theta).A2). #fA2).A0.5)

polar(theta, rsovlbl),
gtext('ratio of the bearing errors in short baseline= 1F)-
gtext ('normalized sensitivity of the short baseline=500'):,
title('normalized range detected by the short baseline (quadrature addition of terms').
gtext('LBL=5 x SBL');
gtext('detected range'),

J. LBL & SBL CARTESIAN PLOT (QUADRATURE ADDITION OF TERMS)

clear-,
%clk~input('critical value of the normalized sensitivity in long baseline='),
cll=SOO;
%ff-input('ratio SBL(m) / LBL(m)=');
ff =_0....
%css=input('critical value ot the normalized sensitivity in short baseline='),
css=500;-
theta=O:O.05:2*pi;
% riovlbl represents eq. 61 ]a;
rlovlbl~abs((( 1/2. *(cll.A2 * sin(theta) A2..

0.5,*cos(theta)A2)+sin(theta)A^2)) '10. 5);
%rsovlbl represents eq. 6 1b;
rsovlblkabs(((] /2. *(css. A2. *cos(theta) A 2-0.5.* sin(theta) .A2)+...
cos(theta).A2). *ffA 2).A0 .5),
rmax=max(rlovlbl,rsovlbl),
plot(theta,rlovlbl,'. ',theta,rsovlbl,'-. ',theta,rmax,'o');
xlabel('theta in degrees');
ylabel('r`1l~bl/l rsbl/lbl, rmaxllbl'),
ti~ie('cartesian plot of the range detected by the dual baseline systecn(quadrature
addition)'),
gtext('ratio of bearing errors in both baselines = V),
gtext('normalized sensitivity in both baselines=500');
gtext('LBL=5 x SBL');
gtext(' range detected by short baseline');
gtext('range detected by long baseline');

K. LBL & SBL POLAR PLOT (QUADRATURE ADDITION OF TERMS)

clear;
%cll=input('critical value of the normalized sensitivity in long baseline='),
c11=500,
%ff--input('ratio SBL(m) / LBL(m)=');
ff-0. 2;
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%css=input('critical value of the normalized sensitivity in short baseline=').-
css=500;
theta=O:0.05:2 *pi;
% rlovib] represents eq. 6l1a ,
rlovlbl=abs((( 1/2. *(c~lA 9 2*sjn(theta)A^2-0.5*cos(theta) A2)+sin(theta).A12)).AO. 5).

% rsovlbl represents eq. 61b
rsovlbl=abs((( 1/2. *(css. "2). *cos(theta)."2-0.5. * sin(theta). ,2 )+...

cos(theta). /12). *ff. A)O )/.5),
rmax=max(-.lovlbl. rsovlbl),
polar(theta,rmax),
theta--theta. *1I 80./pi,
title('range detected by the dual baseline system in any direction (quadrature
addition)'),
gtext('ratio of bearing errors in both baselines=V ),
gtext('normalized sensitivity in both baselines=500'),
gtext('LBL=5 x SBL'),
gtext('ass= I ');
gtext('range detected by the system');

L. LIMITATIONS IN THE MEASURMENT OF THE RANGE (S. A)

clear-,
% S. A is for the sum of absoluets;
%al=input('ratio of the bearing errors in the long baseline( DTH2L/DTH I L)=');
akl=
%cl=input('critical value of the normalized sensitivity in long baseline=),-
cl=5OO;
%lbl=input('lengt~h of the long baseline(m)='),
lbklO10/20;
theta=0:O.05:2 *pi;,
% ri represents the eq. 55d,
rl=abs((sin(theta). 2.*lbl. "2*((cl."2+(I+al)" 2)./..
(I +al)"2)).".5),
%as=input('ratio of the bearing errors in short baseline (DTH2S/DTH I S)='),
as=l -
%cs=input('critical value of the normalized sensitivity in short baseline=');
cs=500;
%sbl=input('length of SBL(m)='),
sbl=20/4,

%rs represents the eq. 55f;
rs=abs((cos(theta).A2. *sbl."2. *((cS. A2+(l1 +as) .A2)./.

rmax=max(rl~rs),
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% re represents the radius of the earth (6.371 x 10^6 meters),
re=6.371 * 10.^6,
%s=input('height of the sensor above surface (m)=');
s= 10/3;
%t=input('height of the target above surface (m)=');
t= 10/3;
% d represents the eq. 68.
d=(2. *re. *t).^.5+(2. *re. *s).^. 5
% r represents the geometrical horizon-

r=(d. ̂ 2. *cos(theta). ̂ 2+d./'2. *sin(theta). ̂ 2). A. 5;
if d>rmax

polar(thetar);
hold on
polar(theta,rmax);

else
polar(theta,rmax);
hold on
polar(theta,r);

end;
title('detected range is limited by the geometric horizon / by the system (sum of
absolutes)');

gtext('long baseline length= I 00/20m');
gtext('short baseline length =20/4 m');
gtext('height of the target above surface=] 0/3m');
gtext('height of the sensor above surface = 10/3m');
gtext('geometric horizon');
gtext('range detected by the system');
gtext('detected range');

M. LIMITATIONS IN THE MEASURMENT OF THE RANGE (Q. A)

clear;
% Q.A is for the quadrature addition of terms,
%cll=input('critical value of the normalized sensitivity in long baseline=');
c!1=500;
%lbl=input('length of the long baseline(m)-').
1bl= 100/20;
%sbl=input('iength of the short baseline(m)=');
sbl=20/4;
%css=input('critical value of the normalized sensitivity in short baseline=');
css=500;
theta=0:0.05:2*pi;
% rl represents eq. 61 a;
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rl=abs((( 1/2. *(cll. /2. *sin(theta). ̂ 20.5. *cos(theta).^2)+...
sin(theta).^2). *lbl. 2)A0.5);
% rs represents eq. 61b;
rs=abs((( 1/2. *(css. 2. *cos(theta). ̂ 2-0.5. *sin(theta). 2)+

cos(theta).^2). *sbl. ^2). ̂ 0.5);
rmax=max(rl,rs);
% re represents the radious of the earth (6.37 1x 10^6 meters);
re=6.371 * 10.'6,
%s=input('height of sensor above surface (m)=');
s=10/3;
%t=input('height of terget above surface (m)=');
t=10/3;
% d represents eq. 68;
d=(2. *re. *t).^.5+(2. *re. *s).^.5;

% r represents the geometrical horizon,
r=(d.A2.*cos(theta).A2+d.A2.*sin(theta).^2) .^5;
if d>rmax

polar(theta,r);
hold on
polar(theta,rrmax);

else
polar(theta,rmax);
hold on
polar(theta,r);

end;
title('detected range is limited by the geometric horizon/by the system (quadrature
addition)');
gtext('long baseline length= I 00/20m');
gtext('short baseline length=20/4m');
gtext('height of the target above the surface = 10/3m');
gtext('heigt of the sensor above the surface= 10/3m');
gtext('geometric horizon');
gtext('range detected by the system');
gtext('detected range');

N. CROSSOVER ANGLE

clear;
% f=-input('ratio of the two baselines SBL(m)/LBL(m)=');
fi0.2;
% c is the normalized sensitivity of both baselines which assumed to be the same-
% clower= input ('lower limit of the normalized sensitivity=');
clower500;
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% cupper+input ('upper limit of the normalized sensitivity =');
cupper= 1000;
%cstep=input ('step of normalized sensitivity');
cstep= 10;
c=clower: cstep:cupper,
theta I =atan(f.*(c./c)); % eq. 82;
theta2=asin(sqrt((O.25+O.5. *c 2. *f. 2+...
fA-2)./(1.25+0.5.*C.A2+0.5. *c.A2. *fA2+f.^2))), % eq. 80;
theta --theta 1. * I 80/pi;
theta2--theta2. * 180/pi;
plot(c,theta I);
hold on;
plot(c,theta2,'.');
axis([500 1000 11.3 11.4]);
xlabel('normalized range sensitivity');
ylabel('angle theta in degrees');
title('comparison crossover angle approximations');
gtext('accurate cross angle (eq. 80)');
gtext('approximate cross angle (eq. 82)');
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