A PARALLEL PROCESSING HYPOTHESIS FOR SHORT-TERM AND LONG-TERM MEMORY IN APLYSIA

Dr Thomas J. Carew

Dept of Psychology
Yale University
2 Hillhouse Ave
Box 11A Yale Station
New Haven, CT 06520-7447

Dr Haddad
AFOSR/NL
110 DUNCAN AVE SUITE B115
BOLLING AFB DC 20332-0001

The primary focus of this program of research is a mechanistic analysis of the relationship between short-term and long-term information processing in central neural circuits of the marine mollusks Aplysia. During the last year we have completed several projects in this program; these projects fall into two broad classes which focus on facilitatory and, more recently, inhibitory information processing. We have identified several forms of behaviorally relevant cellular and circuit modifications which involve both facilitatory and inhibitory information processing. Our goal for the current year is to analyze each of these processes mechanistically, and determine their interaction in both short-term and long-term storage of information in identified neural networks.

DTIC QUALITY INSPECTED
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

| Block 1. Agency Use Only (Leave Blank) |
| Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year. |
| Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88). |
| Block 4. Title and Subtitle. A title is taken from DOE - See authorities the part of the report that provides the most NASA - See Handbook NHB 2200.2. meaning and complete information. When a NTIS - Leave blank. report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. |
| Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels: C - Contract G - Grant PE - Program PE - Program PE - Program TA - Task WU - Work Unit Accession No. |
| Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s). |
| Block 7. Performing Organization Name(s) and Address(es). Self-explanatory. |
| Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report. |
| Block 9. Sponsoring/Monitoring Agency Names(s) and Address(es). Self-explanatory. |
| Block 10. Sponsoring/Monitoring Agency, Report Number. (If known) |
| Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with ..., Trans. of ..., To be published in When a report is revised, include a statement whether the new report supersedes or supplements the older report. |
| Block 12a. Distribution/Availability Statement. Denote public availability or limitation. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR) |
| Block 12b. Distribution Code. |
| Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report. |
| Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report. |
| Block 15. Number of Pages. Enter the total number of pages. |
| Block 16. Price Code. Enter appropriate price code (NTIS only). |
| Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited. |
The primary focus of this program of research is a mechanistic analysis of the relationship between short-term and long-term information processing in central neural circuits of the marine mollusc *Aplysia*. During the last year we have completed several projects in this program; these projects fall into two broad classes which focus on facilitatory and, more recently, inhibitory information processing. I will summarize each class of findings in turn.

Facilitatory Processing

Aplysia shows both short-term and long-term memory for several forms of facilitatory learning, such as sensitization and classical conditioning. It is commonly thought that memories for most kinds of learning must be stored in short-term form before they are transferred or transformed into a long-term form. However, we have recently shown at identified excitatory synapses that are known to contribute into both short-term and long-term memory in *Aplysia* that the long-term process can be expressed in the complete absence of the short-term process (Emptage and Carew, 1993). We have also shown that the expression of the long-term process occurs throughout the neuron, even at synapses that have not been exposed to the modulatory transmitter (serotonin) which induces the long-term process (Emptage and Carew, 1993). Finally, we have recently found that the short-term process, also induced by serotonin, reaches its peak immediately (within 5 minutes) and decays away within 3 hours, whereas at the same synapse, the long-term process does not begin to be expressed for at least 6 hours, reflecting the time required for gene activation (translation and transcription) and for transport of gene products from the cell body to the synaptic terminal (Parker, Emptage and Carew, in preparation). We are currently determining the critical intracellular signals that initiate the short-term and long-term processes.
Inhibitory Processing

In parallel to the above studies, we have also examined inhibitory information processing in an identified interneuronal network mediating a behavioral reflex in *Aplysia*. We have discovered a form of short-term inhibitory processing that uses activity-dependent potentiation of recurrent inhibition as a mechanism of dynamic gain control in this reflex (Fischer and Carew, 1993) and have generated a computational model that captures important features of network processing (Blazis, Fischer and Carew, 1993). We have also identified a naturally occurring stimulus (the reflex release of ink from neighboring *Aplysia*) that triggers the short-term inhibitory process. Finally, quite recently we have found that the inhibitory modulation described above can be suppressed by a long-term process that is triggered by the same stimulus (tail shock) that produces long-term facilitation described in the previous section. This stimulus alters a specific form of inhibitory synaptic plasticity, apparently for several days or even longer (Fischer and Carew 1993, in preparation; and Blazis, Fischer and Carew, 1994). We are currently examining the cellular and molecular mechanisms of both the short-term and long-term forms of circuit modification.

In conclusion, we have identified several forms of behaviorally relevant cellular and circuit modifications which involve both facilitatory and inhibitory information processing. Our goal for the current year is to analyze each of these processes mechanistically, and determine their interaction in both short-term and long-term storage of information in identified neural networks.
ANNUAL TECHNICAL REPORT
Air Force Office of Scientific Research

PRINCIPLE INVESTIGATOR: Carew, Thomas J.

INSTITUTION: Yale University

CONTRACT/GRANT NUMBER: F49620-93-1-0273

REPORT PERIOD: May 1, 1993 - April 30, 1994

A. Publications in Reviewed Journals

A. Publications in Reviewed Journals (Cont.)

B. Book Chapters/Reviews Published

C. Graduate Students

Kent Fitzgerald, Ph.D. (Psychology/expected 1994)
Laura Stark, Ph.D. (Neuroscience, expected 1995)
Gretchen Parker, Ph.D. (Psychology, expected 1996)
Steven Fisher, Ph.D. (Psychology, expected 1996)

D. Post-Doctorates

Thomas Fischer, Ph.D., Psychology, US
Diana Blazis, Ph.D., Psychology, US
Julianna Maleshagen, Ph.D., Biology, GER
E. Awards

Elected Section Editor: Behavioral Neuroscience
Journal of Neuroscience.
This technical report has been reviewed and is approved for public release JAN AFR 190-12 – distribution in unlimited.

Joan Boggis
STINFO Program Manager