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EXPERIMENTAL STUDY OF SOFTWARE DEPENDABILITY

Wei-lun Kao, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1994
Ravi K. Iyer, Advisor

There is trend of increasing demand for highly dependable software systems. The factors

that influence the dependability of software systems include software faults and hardware faults.-

To improve software dependability, it is necessary to understand the characteristics of these
faults and how they affect software systems. In this study, a distributed fault injection and
monitoring environment (DEFINE) has been developed. It consists of a target system, a fault
injector, a software monitor, a workload generator, a controller, and several analysis utilities.
DEFINE can inject software faults as well as hardware faults, can trace fault propagation in
software systems and among machines, can monitor whether faults are activated and when the
faults are activated, and has accurate time control. The fault models used are extracted from
the results of field error data analyses and fault simulations. Fault injection experiments on
the UNIX kernel (SunOS 4.1.2) and the Sun Network File System are conducted to study fault
impact and to investigate fault propagation. Three kinds of fault injections are conducted:
uniform fault injection, biased fault injection, and path-based fault injection. Based on the
experimental results, fault propagation models have been developed for both hardware and
software faults, and transient Markov reward analysis has been performed to evaluate the loss
of performance after a fault is injected.

Experimental results show that the majority of no-impact faults are latent. Memory faults
and software faults usually have a very long latency, while bus faults and CPU faults tend to
crash the system immediately. About half of the detected errors are data faults, and they are
detected while the system is trying to access a memory location it has no privilege to access.
Ounly about 8% of faults propagate to other UNIX subsystems. Fault propagation from servers
to clients occurs more frequently than from clients to servers. The fault impact depends on
the workload. Transient Markov reward analysis shows that the performance losses incurred by
bus faults and CPU faults are much higher than those incurred by software and memory faults.

Among software faults, the impact of pointer faults is higher than that of non-pointer faults.
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Chapter 1

Introduction

There is trend of increasing demand for highly dependable software systems. The first issue
that arises is hcw to evaluate software dependability. The second issue is how to improve
software dependability if it does not meet the specified criteria. One method : ‘mproving
software dependability is to use fault-tolerant mechanisms to detect and recover enors. To
design effective error detection and recovery mechanisms, it is necessary to understand the
characteristics of faults and how they propagate in éoftwa.re systems. The next issue is how to
validate fault-tolerant mechanisms.

Current approaches to studying these issues include analytical modeling, field error data
analysis, fault simulation, and fault injection. Accurate analytical models of software behav-
ior under faults are difficult to construct without the information provided by experimental
analysis. Field error data analysis is useful for understanding actual error behavior but is re-
stricted to those errors already detected. Fault simulation is easy to control and is able to
reveal fault characteristics and propagation in detail if no unrealistic assumptions are made;
however, this is time consuming and impractical for very large systems. Fault injection is an
appropriate approach for studying fault propagation if sufficient information can be extracted
from experimental results. In this study, a distributed fault injection and monitoring environ-
ment (DEFINE) has been developed, and fault injection experiments have been conducted to
study fault impact and to investigate fault propagation. The fault models used are extracted

from the results of field error data analyses and fault simulations. Based on the experimental




results, fault propagation models have been developed, and transient Markov reward analysis

has been performed to evaluate the loss of performance after a fault is injected.

1.1 Motivation

Factors influencing the dependability of software systems include software faults (software
design/implementation faults) and hardware faults (ha.fdwa.re—induced software errors). Most
of the previous fault injection studies emphasized hardware faults and assumed that software
faults can be removed by software testing. However, field error report analyses from IBM,
AT&T, and Tandem show that about 20% to 60% of system failures are due to software faults
[Iyer85, Sullivan91, Levendel90, Gray90]. Therefore, it is necessary to develop a tool with which
the impact of software faults can be studied.

Although fault injection has been applied to several computer systems, in most of these
experiments faults or errors are injected into systems and their final impact on the systems is
observed,.with an emphasis on error latency and fault coverage. What really happens after
a fault is inject.ed and how a fault propagates in a software system are not well understood.
In addition, without detailed monitoring, it is difficult to identify the vulnerable modules. To
study these issues, a tool that can trace fault propagation in detail is needed.

By observing only the final impact, it is impossible to distinguish between avoided faults
and non-activated faults if the faults do not have any impact. Without this information, it is
difficult to evaluate the dependability of software systems or the effectiveness of fault-tolerant
mechanisms accurately.

Accurate time control is important when injecting intermittent faults; otherwise, the dis-
tribution of interarrival times will not follow the specified distribution. Alternating executable
files or memory images cannot control activation times accurately. In addition, CPU and bus
faults have very high activation rates, but the aforementioned method cannot activate most of
the injected faults. Therefore, a new injection method that can guarantee fault activation and

can accurately control injection time and activation time is needed.




1.2 Target of the Study

Software behavior under faults depends strongly on the nature of software. Operating
systems are chosen as the study target because all the user applications need support from the
operating system. If the operating system crashes, all the applications running on that machine
will crash. Operating systems have some properties that most user application do not have.

They are:

e continuously running: the faults will remain in the kernel until they are recovered, the
system is rebooted (damage may have been caused), or the system is crashed. Faults in

user applications will be removed after the applications crash or finish.
¢ highly parameterized: many parameters and initial files are used.

e complex: they are written in both assembly and high-level languages, and a significant

portion of the data processed are pointers.

-~

e service programs: there is no certain output, as in application programs, to determine if

the result is correct.

e of high impact: the kernel has high privilege so that the impact of faults may not be
restricted to one process or one machine. User applications in the UNIX system cannot

access the kernel text or data except through system calls or device drivers.

e of broad spectrum of workloads: workloads vary significantly in different sites and appli-

cations.

The UNIX kernel already has many assertions to detect errors, but they are not good enough
to cover most of the errors. We have to understand fault propagation to design effective software
assertions and to know what kind of assertions are needed. Although the target of this study

is an operating system, the methodology can also be applied to user applications.

1.3 Thesis Overview

A brief description of software-implemented fault injection and related research is presented

in Chapter 2. The approaches to injecting faults by software methods are classified and dis-




cussed. The techniques for enhancing the capabilities of software-implemented fault injection
are also described.

Chapter 3 describes the fault models used in this study, including hardware and software
faults. The models are extracted from field error report analyses and fault simulations.

In Chapter 4, the design and implementation of DEFINE, a distributed fault injection and
monitoring environment, is explained and depicted. The methodology used in DEFINE is to
inject faults on-line into the UNIX kernel and to trace the execution flow and key variables of
the system. A comparison is then made between the faulty trace data and the fault-free one
under the same workload to identify the fault propagation. The faults injected by DEFINE
included both hardware faults (which induce software errors) and software faults. DEFINE
is composed of a target system, a fault injector for injecting hardware and software faults, a
software monitor for tracing the execution flow and key variables of the kernel, a workload
generator for activating injected faults, a controller for controlling experiments, and several
analysis utilities for analyzing fault propagation.

Experiments are conducted on SunOS 4.1.2 to show the fault propagation and the impact
of various types of faults. The experimental results and discussions are presented in Chapter
5. The results show that memory faults and software faults usually have a very long latency,
while bus faults and CPU faults tend to crash the system immediately. About half of the
detected errors are data faults, and they are detected while the system is trying to access a
memory location where it has no access privilege. The majority of no-impact faults are latent.
Analysis of fault propagation among the UNIX subsystems reveals that only about 8% of faults
propagate to other UNIX subsystems.

Chapter 6 describes the biased fault injection and path-based fault injection experiments
conducted on the Sun Network File System. The experiments are conducted on six Sun work-
stations, one as server and the others as clients. Faults are injected into the clients and the
server. Experimental results show that the fault impact depends on the workload, and fault
propagation from servers to clients occurs more frequently than from clients to servers.

Based on the experimental results, fault propagation models for hardware and software
fanlts are built and presented in Chapter 7. Transient Markov reward analysis is performed to

evaluate the loss of performance after a fault is injected.




Chapter 8 provides a summary of this research and highlights the important conclusion.
Suggestions for future study are also listed.




Chapter 2

Background

In fault injection studies, faults are injected by hardware or software. The hardware fault
injection approach is to inject faults to IC pins by hardware instrumentation [Lala83, Shin84,
Shin86, Finelli87, Arlat89, Arlat90] or to apply radiation rays to target components [Cusick85,
Karlsson89, Gunneflo89]. Software fault injection changes source code, executable files, or
the conte;lts of memory or registers to simulate the occurrence of hardware or software faults
[Segall88, Barton90, Chillarege89, Devarakonda90, Young92, Kanawati92, Rosenberg93, Han93,
Ka093, Kao94], or to emulate certain types of software faults [Ka093, Kao94]. Hardware fault
injection requires special hardware equipment and accessibility to the target components. In
addition, software faults can be injected only by the software approach, since the faults are
so particular that it is almost impossible to implement by the hardware approach. Therefore,
software fault injection is applied in the study.

In this chapter, the assumptions and the definitions of some terms used in this study are
listed in Section 2.1. Section 2.2 presents software-implemented fault injection approaches.
Section 2.3 describes related research in this area and comparison. The objective of this study

is presented in Section 2.4.

2.1 Assumptions and Terminology

In this fault injection study, two assumptions are made:

o The original system, including hardware and software, is perfect.




o All the abnormal behavior is due to the injected faults.

Several terms used in this study may be different from other studies; therefore, the definitions

of these terms are given here to avoid confusion.

e Hardware fault: hardware-induced software errors, that is, those caused by hardware
faults that are not detected by hardware detection mechanism and therefore propagate

to software and affect software execution.

o Software fault: software design or implementation fault. It is also as known as software

defect or software bug.
o Fault injection: changing the correct system to a faulty system. See Figure 2.1.

e Fault activation: executing or accessing the faulty part. Some studies call this fault

manifestation. See Figure 2.1.

o Errer detection: the system detects the error or the user observes the abnormal behavior.

See Figure 2.1.
o Fault latency: the time between fault injection and fault activation. See Figure 2.1.
e Error latency: the time between fault activation and error detection. See Figure 2.1.

e Fault propagation: the chain effect of a fault after the fault is activated. It is also called

error propagation.

2.2 Software-Implemented Fault Injection Approaches

The execution of software takes several steps, and faults can be injected at these steps. Fig-
ure 2.2 depicts the steps to execute software. The occurrence of faults is simulated by executing
the modified instructions. To achieve this, faults can be injected at different steps—modifying
source programs, libraries, executable code, or memory image. The next five subsections de-

scribe these approaches and discuss their advantages and disadvantages.




Fault Fault Error
Injection Activation Detection
> Time
Fault _ .  Error
Latency Latency
Figure 2.1 Some terminology used in fault injection.
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Source . Executable Memory Fault
Program Compiler File Image nadi Injection
Fault Fault
Injection Injection

Figure 2.2 Software-implemented fault injection approaches.




2.2.1 Modification of Source Program

This approach is to change source programs to emulate certain types of faults. It is the best
way to inject software faults because it is intuitive and natural. This approach is similar to
mutation testing. However, it is difficult to inject certain types of hardware faults, such as CPU
and bus faults. In addition, this approach requires recompilation of source code and reloading

the code into memory. To inject different faults, the source programs need to be modified
| differently according to the fault type and then be recompiled and reloaded. The overhead is

significant if the target system is a big software system, such as an operating system.

2.2.2 Modification of Library

This approach is to add fault injection modules into libraries and then link these modules
into executable files. When the executable files are executed, the fault injection modules are
called to inject faults.

This g._pproa.ch requires the target programs to be relinked with the augmented libraries. If
the fault injection modules can inject various types of faults, the target programs need to be

relinked only once.

2.2.3 Maodification of Executable Code

This approach is to change or add instructions of executable code to inject faults. It is
flexible, but the executable code needs to be modified and reloaded into memory each time a
new fault is injected.

One variant of this approach is to change or add instructions of assembly code generated by
a compiler and then assemble and link the assembly code into an executable file. The advantage
of this variant is ease of control; it is easier to read, and libraries and symbol tables are not

included. The disadvantage is the extra overhead of running assembler and linker.

2.2.4 Modification of Memory Image

This approach is to change the contents of memory and registers to inject faults. It has

the lowest overhead, since no extra preparation is needed. However, it is not as flexible as




modifying executable code, because the code has already been loaded into memory and all the
modifications are limited in the existing space.

One variant is to use software traps to achieve better control over the target program.

2.2.5 Hybrid

It can be difficult to use only one fault injection approach when injecting more than one

type of fault. Therefore, some tools use different approaches to inject different types of faults.

2.3 Related Research

In this section, recent works on software-implemented fault injection are briefly reviewed.

The comparison of these works is presented in Table 2.1

FIAT [Segall88, Barton90]

FIAT-{Fault Injection Automated Testing), developed in Carnegie Mellon University, injects
faults by modifying memory images and is designed for distributed/parallel systems. The
injection approach is hybrid: it augments fault injection library and modifies the memory
image. It consists of two parts: the fault injection manager (FIM) and the fault injection

receptor (FIRE). Injectable faults include memory, register, and communication faults.

Chillarege and Bowen’s Work [Chillarege89]

Chillarege and Bowen of IBM T. J. Watson Research Center formalized the idea of failure
acceleration and injected software errors by modifying physical memory. The injection approach
is modification of memory image. The injected software errors are overlays. They have classified

the failure types, measured loss of service, and identified potential candidates for repair before

total failure.

Devarakonda, Goswami, and Chillarege’s Work [Devarakonda80]

Devarakonda, Goswami, and Chillarege of IBM T. J. Watson Research Center injected

software errors into the NFS request packages assuming that some unknown software faults

10




corrupted the packages. The injection approach is modification of source programs. The in-
jected software errors are oveilays. They have classified the failure types and investigated the

relationship between workloads and failure rates.

HYBRID [Young92]

HYBRID, developed in University of lllinois at Urbana-Champaign, injects faults by modi-
fying physical memory and cache, and uses a hybrid monitor to reduce the overhead of monitor-
ing. The injection approach is modification of memory image. Injectable faults include memory
(main memory and cache), and register faults. HYBRID consists of a fault injection system,
a hybrid monitor system, and a supervisory system. By using hybrid monitor, HYBRID can

measure very short fault latency and error latency.

FERRARI [Kanawati92]

FERRARI (Fault and ERRor Automatic Real-time Injector), developed in the University of
Texas at -,:Xustin, builds an extra layer, similar to a debugger, to control the experiments. The
injection approach is modification of memory image. It introduced the method of using software
traps to inject transient/permanent bus faults. Injectable faults include memory, control flow,
bus, and condition code flag faults. communication (lost, altered, or delayed messages), and

processor errors (adder or multiplier).

DOCTOR [Han93]

DOCTOR, developed in the University of Michigan at Ann Arbor, is an integrated software
fault injection environment. The injection approach is hybrid: modification of source program,
modification of executable code, and modification of memory image. It consists of a software
fault injector (SFI [Rosenberg93]), a synthetic workload generator, and a software monitor.
DOCTOR is designed for validating dependability mechanisms on an experimental distributed
real-time system, HARTS. It can inject intermittent faults in addition to transient and perma-
nent faults. The interarrival time between intermittent faults can be deterministic or follow
a specified exponential distribution. Injectable faults include memory (code, global variables,
or heap), communication (lost, altered, or delayed messages), and processor errors (adder or

multiplier).
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FINE [Kao093]

FINE, developed in The University of lllinois at Urbana-Champaign, was designed to inject
software faults and hardware errors and to trace fault propagation in software systems. FINE
is the predecessor of DEFINE, and all the the functions are covered in DEFINE. The injection

approach is modification of memory image. It consists of a fault injector, a software monitor, a

workload generator, a controller, and several analysis utilities. Injectable fauits include memory -

(text, data, or stack segment), CPU (ALU, opcode decoder, or registers), bus (address or data

lines), and communication (missing or corrupted messages) faults.

2.4 Objective of this Research

The objective of this study is to investigate the detailed (step by step) effect of hardware-
induced software errors and software faults on software execution, to understand fault impact, to
discover the most vulnerable portion of a system, and to provide feedback to system designers.

In this study, we emphasize and propose solutions to the problems mentioned in Section 1.1.
Here is a brief description of the solution. The detailed implementation is depicted in Chapter
4,

Software faults: substitute a set of instructions with another set on line to emulate certain

types of software faults.

e Fault propagation: use a software monitor to trace control flow and key variables of

software systems.

¢ Distinction of avoided faults and non-activated faults: use software traps to inject faults
so that the time of fault activation can be recorded and avoided faults and so that non-

activated faults can be distinguished.

e Accurate time control: use hardware clock interrupts to control fault injection and acti-

vation time.

12
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Chapter 3

Fault Model

Faults that affect software execution include hardware faults that lead to software errors
(hardware-induced software errors) and software faults (software design /implementation faults).
Most fault injection tools do not consider the causes of software errors and inject either hardware
faults or s_oftwa.re errors. To our knowledge, there has been no tool that can emulate software
design/in;pleménta.tion faults. DEFINE is capable of injecting both hardware-induced software
errors (for simplicity, they are called hardware faults in this thesis) and software faults. This
section describes the fault classes used in DEFINE. Faults are separated into hardware and
software faults. The classifications of these two kinds of faults are shown in Sections 3.1 and

3.2.

3.1 Hardware Faults

Although hardware faults may occur in any part of a computer system, only those faults
that can affect program execution directly or propagate to software, i.e., hardware-induced
software errors, are considered. Based on the results of field error report analyses and fault
simulations [Czeck92, Duba88, Iyer82, Iyer86, Yang92], such hardware faults are classified as
memory, CPU, bus, communication, and I/O faults.

Memory Faults

Memory faults are those that corrupt the contents of a particular memory location. They

can occur in text segments or data segments.
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CPU Faults

CPU faults include computation, control flow, and register faults. From the software view-
point, all these faults result in the corruption of registers. The corrupted registers can be
general registers or special registers, such as the program counter (PC), the next program

counter (nPC), the processor state register (PSR), or the stack pointer (SP).

Bus Faults

Bus faults can occur on address lines or data lines. They may affect bits in the instructions

or data which are transmitted through the bus.

Communication Faults

Commaunication faults are those faults that occur during message t insmission between ma-
chines. They may cause missing or corrupted messages. Both incoming and outgoing messages

may be affected.

I/O Faults

1/0 faults are from peripheral devices. Device drivers are designed to be able to handle
these exception situations, so this type of fault will not be discussed in this thesis.

According to [Laprie85], all these faults are hardware errors. We treat them as fault sources
from hardware that cause errors in software code or data. The faults may be permanent (stuck-

at-1 or stuck-at-0) or transient (value flipped).

3.2 Software Faults

Field error reports from different software systems have been analyzed to uncover the
cause, frequency, and correlation of software faults [Endres75, Chillarege91, Sullivan91, Tang92,
Lee92]. These studies classify software faults according to their causes or symptoms. Automatic
error logs available in several operating systems (e.g. in VAX/VMS and Tandem GUARDIAN)
usually give information only on error symptoms (e.g., allocation, range, pointer, synchroniza-

tion, and timing faults), because fault causes are not available from the logs. Analyses of
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human-collected error reports, especially from manufacturers, can usually provide insight into
the causes (e.g., incorrect computation, using incorrect data, missing operation, data definition
fault, and incorrect procedure interface) ard their relation to the symptoms. Since fault causes
and their locations are our key consideration in on-line fault injections (without recompila-
tion for software faults), DEFINE employs a fault classification based on causes. Specifically,
faults are classified into initialization, assignment, condition check, function, and documentation

faults.

Initialization Faults

Initialization faults include uninitialized variables and wrongly initialized variables/parame-
ters. The value of an uninitialized variable is compiler dependent. For C, the value is set to zero
if the variable is global or unknown if the variable is local. A smart compiler should be able
to detect most uninitialized variables. Wrongly initialized variables are similar to misassigned
variables. Wrongly initialized parameters are those that are initialized to incorrect values (e.g.,
defining a small value to a parameter MAXPAT HLEN). Incorrect arguments of function calls

are also initialization faults, because the arguments are wrongly initialized for the callees.

Assignment Faults

Assignment faults can be missing assignments or incorrect assignments. A fault in an
incorrect assignment may be in the right-hand side, causing one incorrect data value (e.g.,
using @ = b + ¢ for @ = b + d corrupts a), or in the left-hand side, causing two incorrect data

values (e.g., using @ = b + ¢ for d = b + ¢ corrupts a and d).

Condition Check Faults

Condition check faults include missing condition checks (e.g., fail to check return values)

and incorrect condition checks.

16
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Function Faults

Function faults mean that the faulty parts are not single statement faults; that is, these faults
are complicated, and the correction of this type of fault involves multi-statement modification

or function rewriting.

Documentation Faults

Documentation faults mean that the system messages or documents are incorrec:. Since

these faults do not affect program execution, they are excluded from the study.
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Chapter 4

Design and Implementation of

DEFINE

To conduct fault injection experiments, a fault injection tool is needed. Since the existing
tools canpot provide all the desired functions, a new distributed fault injection and monitoring
environment (ﬁEFINE) is developed for this study. DEFINE injects faults into the UNIX
kernel by software and then monitors the system behavior by software. The source code of the
operating system must be available to implement t“e software monitor. This chapter delineates

the structure of DEFINE and then described each component of DEFINE in detail.

4.1 Overall Structure and Methodology

DEFINE consists of six parts: a target system, a controller, a software monitor, a fault
injector, a workload generator, and analysis utilities. The block diagram of DEFINE is shown
in Figure 4.1. The target system is a group of connected machines executing the same modified
UNIX kernel. Each machine can be a server, a client, or both. The controller, fault injector,
workload generator, and software monitor run on a separate host machine (other than the target
system) that is connected to the target system so that they will not be affected by the faults.

The fault injector can inject both hardware and software faults into the kernel or into any
user é.ppﬁcation on any machine in the target system. Each machine has a local fault injector
to receive the fault specification and to handle fault injection via hardware clock interrupts and

software traps.
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The software monitor is a distributed software monitor to trace the execution flow and key
variables of the software systems on every machine of the target system. For each machine in
the target system, software instrumentation is inserted into the kernel, and a message recorder
is added to collect data and send them to the software monitor. During the experimenis, the
UNIX kernel also writes system events to the system log file and creates dump files when it
crashes.

The workload generator, an extended version of the workload generator reported in [Ka092],
is a user-oriented synthetic workload generator that simulates user behavior based on real
workload characterizations or any specified distributions. It issues most types of system calls to
activate injected faults. It is used to accelerate the activation of injected faults, because some
seldom used system calls are invoxed more frequently than usual to reduce fault latency.

The controller specifies fault types and locations/machines for the fault injector, the key
variables/data for the software monitor, and the workload specification (distributions) for the
workload generator. The controller then initiates the experiments. The interface between the
target system and the DEFINE components is Remote Procedure Call (RPC).

Several utilities have been developed to extract trace data from trace and dump files and
to assist the analysis of fault propagation.

The structure just described is for distributed systems. This structure needs to be modified
to conduct experiments on a stand-alone computer. The structure is shown in Figure 4.2. This
is similar to the structure of FINE, the predecessor of DEFINE, which is a fault injection and
monitoring environment for uni-computer systems [Ka093]. In this structure, the fault injector,
the software monitor, the workload generator, and the controller have to be run on the target
machine, where they are four processes on the target system. The interface between the kernel

and the DEFINE components is a new system call created for this study.

4.2 Fault Injector

The fault injector consists of two parts: the host fault injector, which is running on the host
machine to send requests to the target system, and the local fault injector, which is running on
each machine in the target system to receive requests from the host fault injector and to inject

faults into the UNIX kernel. Since user applications do not have privilege to modify the kernel,
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Figure 4.2 Using DEFINE on a stand-alone computer.

the local fault injector has to be implemented in the kernel. The interface between the host
fault injector and the local fault injector is RPC and a new system call, ftrace. RPC is used
in the experiments on distributed systems; ftrace is used in the experiments on stand-alone
machines or in the experiments where the faults need to be injected by the workload to create
a particular scenario. The mechanisms used to inject hardware and software faults will be
described in the next two subsections. The detailed fault injection procedure is described in

Section 4.2.3.

4.2.1 Hardware Faults

In Section 3.1, we classified the hardware faults into memory, CPU, bus, and communication

faults. To inject these different types of faults, the following mechanisms are used:
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e A memory fault is injected by changing the contents of a particular location, either in the
text segment or the data segment of the kernel. To inject faults in the text segment, the
system protection must be turned off temporarily, since the text segment of the kernel is

write-protected.

e A CPU fault in a register is injected by issuing a new trap and changing the saved value
of the register so that the value of the register is wrongly restored after the trap returns.

e A bus fault is injected by changing the instruction to be executed or the register to be
used to read/write data and then restoring it back immediately after the execution. In
this way, the incorrect instruction or register emulates the effect of the fault on the bus.
A similar approach has been used in FERRARI [Kanawati92], which developed an extra
environment like a debugger to inject faults and control experiments. FERRARI is useful
for user applications, but not for operating systems, because FERRARI is also a user
application. We implement the fault injector in the kernel and use a new trap to inject

faults.

e For communication faults, since software-implemented fault injection cannot inject com-
munication faults into the network directly, we mimic the consequence of communication
faults by killing or corrupting messages in the User Datagram Protocol (UDP) and Trans-
mission Control Protocol (TCP) routines. The affected messages are selected based on

the fault type.

Note that these mechanisms inject transient faults. To inject permanent faults, these mech-
anisms should be invoked each time the faulty component is used. Table 4.1 lists the injection

mechanism and location selection for each hardware fault type.

4.2.2 Software Faults

Software faults have been classified into initialization, assignment, checking, and function
faults in Section 3.2. To inject these software faults on-line without recompilation, the ad-
dresses of the corresponding instructions and the semantics of the instructions must be known

in advance. Therefore, the assembly code (the assembly source code and the assembly code
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Table 4.1 Selection and injection of hardware faults.

| Fault Type

Memory Fault in Text

Injection Mechanism
Turn off the protection, corrupt an

Location Selection
Any location in

Segment instruction, and turn on the protection | text segment
Memory Fault in Data/ | Corrupt data Any location in
Stack Segment data/stack segment
CPU Fault in Opcode | Corrupt the instruction to be fetched | Any instruction
Decoder and then restore it back

CPU Fault in ALU

Corrupt the destination register or
PSR after an arithmetic instruction

Any arithmetic
instruction

CPU Fault in Registers

Corrupt a register

Any register and
any location

Bus Fault at Address
Line when Reading an
Instruction

Change the instruction to be fetched
and then restore it

Any instruction

Bus Fal_l_lt at Address
Line when Reading
Data

Corrupt the load instruction or the
indirect register and then restore it

Any load instruction

Bus Fault at Address
Line when Writing

Corrupt the store instruction or the
indirect register and then restore it

Any store instruction

Data

Bus Fault at Data Line | Corrupt the instruction to be fetched | Any instruction
when Reading an and then restore it

Instruction

Bus Fault at Data Line
when Reading Data

Corrupt the destination register
after the load instruction

Any load instruction

Bus Fault at Data Line
when Writing Data

Corrupt the source register before the
store instruction and restore it

Any store instruction

Incoming Message

Kill the incoming message without

Any incoming message

Missing processing it

Incoming Message Corrupt the incoming message Any incoming message
Corrupted

Outgoing Message Kill the outgoing message without Any outgoing message
Missing sending it

Outgoing Message Corrupt the outgoing message Any outgoing message
Corrupted
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Table 4.2 Selection and injection of software faults.

| Fault Type | Injection Mechanism | Location Selection |
Uninitialized Change the corresponding instructions | Any initialization
Data to nop
Incorrect Change the corresponding instructions | Any initialization
Initialized Data | to the desired instructions
Missing Change the corresponding instructions | Any assignment
Assignment to nop
Incorrect Change the corresponding instructions | Any assignment
Assignment to the desired instructions
Missing Change the corresponding instructions | Any condition
Condition Check | to nop check
Incorrect Change the corresponding instructions | Any condition
Condition Check | to the desired instructions check

compiled from the C source code) of the kernel has to be used. The instructions are changed

according to the following mechanisms to emulate various software faults:

e An initialization fault is injected by changing the instructions that initialize a particular
data area such that either the initialized value is incorrect or no initial value is given (only

nop’s (no operations) are executed).

e An assignment fault is injected by changing the corresponding instructions such that
the destination is assigned a wrong value, the evaluated expression is assigned to the
wrong destination (and the right destination is not assigned the evaluated value), or the

assignment is not executed (only nop’s are executed).

e A condition check fault is injected by changing the branch instruction to nop’s for a

missing condition check or changing the condition check for an incorrect condition check.

e DEFINE can also inject function faults as long as faulty instructions fit into the space of
the original instructions. There are no special fault patterns, so users have to specify the

faulty instructions for the faults they want to inject.

Table 4.2 lists the injection mechanism and location selection for each software fault type.

The software faults involved in the experiments are at the C language level.
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4.2.3 Fault Injection Procedure

In Section 2.4, we mentioned three fault injection techniques employed by DEFINE. This
section describes the fault injection procedure and implementation issues. To implement these
techniques, the system hardware clock interrupt routine has been modified to allow the fault
injector to control the fault injection, and two new software traps are created to help fault
injection and monitoring. The detailed procedure is shown in Figure 4.3. Basically, the fault
injection procedure for all the fault types except communication faults and memory faults in

the data/stack segment has these three steps:

(1) Choose the location where the fault is injected. The location may depend on main memory
(for memory faults), time (for CPU, bus, and communication faults), or software structure

(for software faults). Replace the instruction with the first software trap.

(2) When the trap instruction is executed, send a message to the message recorder to report
the time, fault type, and fault location. Then replace the trap instruction with the
instruction that emulates the specified fault, replace the next instruction with a second
software trap, and return. We cannot replace the next instruction in the first step because
the current instruction may be the delay instruction of a branch instruction (for RISC
machines) or a jump instruction (for CISC machines), so the next iustruction may not be

known in the first step.

(3) When the second trap is executed, replace the faulty instruction in step 2 with the first
software trap (for memory and software faults) or the original instruction (for the CPU
and bus faults). For CPU faults in the ALU, corrupt the destination register or the
Processor Status Register (PSR) right now. Then replace the current instruction with

the original instruction and return.

Memory faults in the data/stack segment are injected by corrupting data at the specified
location. For intermittent memory faults in the data/stack segment, we inject them intermit-
tently based on the interarrival time distribution. For permanent memory faults, the ideal
method is to inject them after each time the location is rewritten. Currently, we emulate per-
manent faults by checking the location periodically with a short interarrival time (10 ms in this

implementation). If the location has been rewritten, we inject the fault again.
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CPU and bus faults can affect any process, and the affected process may be in user mode
or supervisor mode. The fault injector allows users to specify target processes and the target
mode so that faults can only be injected into those processes and/or in the target mode. To
help biased fault injection, the fault injector also allows users to specify the range of memory
locations in which faults will be injected. The default is no restriction. In addition, the fault
injector also provides the traditional fault injection method in case users are interested in the
effect of faults when they occur during the execution of particular instructions.

Although DEFINE uses hardware clock interrupts to control injection and activation time,
when injecting intermittent faults the interarrival times still cannot perfectly follow the specified
distribution due to that the hardware interrupts may be disabled temporarily so that the
interarrival times will be lengthened a little. The impact of the overhead of fault injection on
the interarrival time is removed by subtracting the average time of fault injection from the

times given to the hardware timer.

4.3 Software Monitor

The software monitor traces the kernel execution flow and the values of key variables and
data. Since the target system of the fault injection experiments is the UNIX operating system,
we could not build an extra environment like a debugger to monitor the software behavior;
instead, we developed a software instrumentation embedded in the kernel to monitor the system
behavior and trace the fault propagation. In addition, core dumps are also analyzed to reveal
the reasons for system crashes.

Similar to the fault injector, the software monitor consists of two parts: the host monitor
and the local monitor. The local monitor has to be implemented in the kernel. It provides an
interface for the host monitor to specify the probes and key variables, to turn the monitor on
and off, and to retrieve the trace data. The interface is RPC and the new system call, ftrace.
The local monitor consists of two parts: probes and a message recorder. The probes are inserted
into most of the significant functions to keep track of the execution flow and arguments. The
functionality of the probes is similar to the C function printf in that they simply report the
function name and arguments. The message recorder records time (in microseconds), uid, pid,

messages, and the values of the specified key variables into a trace buffer. Figure 4.4 shows five
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726737109 800856 200 3039 write 3 £7ff5ca4 4522
£8113£08: £8223000
£812c0a8: £81794f4
£8134470: 246
726737110 249314 201 3039 ftrace stamp: 201, Start of usim
£8113£08: £822d000
£812c0a8: £817966¢
726737110 251077 201 3039 copen System/File007 1 135100
726737110 251439 201 3039 'falloc
726737110 251693 201 3039 ufalloc 0

s

Figure 4.4 Example of trace data.

records of trace data. The fields in the first line of a record are the time in seconds since Jan.
1, 1970, microseconds, pid, uid, function name, and arguments, respectively. The remaining
lines of a record are the values of key variables. For example, in the first record, the left-hand
numbers are the addresses of the key variables uunix, masterproc, and nfile which are the,
respectively, pointer pointing to the current user structure, the pointer pointing to the current
process structure, and the maximum number of files can be opened. The right-hand numbers
are the values of the key variables. To reduce the trace data, the value of a key variable is
recorded only when it has been modified. The interface is also the new system call, ftrace.
The host monitor is a trace logger that specifies probes and key variables, turns the monitor on
and off, retrieves trace data from the trace buffer through ftrace, and writes the trace data to
a trace file. |

Since it is impractical to write down all the data at each check point (probe) and since the
key variables are dependent on the injected fault, the key variables have to be specified by their
addresses at the beginning of each experiment.

To trace fault propagation, the semantics of the fault and the contents of the fault location
should be known when a fault is injected. The symbol table of the UNIX kernel is used to
identify the faulty function/data and to specify the key variables,

In addition to tracing the kernel behavior, the software monitor can also trace user applica-
tions. The new system call, ftrace, can be inserted into user applications to report interesting

information, such as control flow and key data.
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The overhead of the software monitor may be up to 50% of system time, but the user time
is not affected. If the purpose of experiments is not on fault propagation, the software monitor
can be turned off to eliminate this overhead.

Other features of the software monitor are listed below.

e The interface for the software monitor is designed in such a way that users can design their
experiments flexibly. The features include reallocating the trace buffer, specifying the key
variables, turning the software monitor on and off, resetting the monitor, retrieving the
trace data from the buffer, marking an event to the trace data, checking the protection of
an area, peeking at the contents of an area, and modifying the contents of an area (while

keeping the same protection).

o The buffer for trace data is dynamically allocated so that the buffer size can be changed

on-line to fit different experiments.

o The probes of the software monitor are divided into several groups and can be turned on

and off b); group to control the trace data.

o If time is not important for the experiment, time stamps can be turned off to reduce trace

data.

e The fault injector also marks fault injection events and faults in the trace buffer to make

it easier to analyze fault propagation.

4.4 'Workload Generator

The workload generator is an extended version of the workload generator reported in
[Ka092]. It is a user-oriented synthetic workload generator that simulates user behavior based
on real workload characterization or any specified distributions. The workload generator gen-
erates system calls because system calls are the interface for users to utilize system resources.

The purposes of including the workload generator in the environment are:

e to accelerate the activation of injected faults and hence to be able to determine their

effects,
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o to generate two identical copies of worklcads (by giving the same seed to the random
number generator) for comparison between fault-free trace data and faulty trace data,

and

e to avoid interfering with normal work because DEFINE cannot be run while other users

are performing useful work.

Commonly used applications are not good enough to activate injected faults, because not
all of the system calls are exercised by these applications. Since latency is not the key point of
the study, the interarrival times between system calls are set to zero to accelerate experiments.
In addition, some seldom-used system calls are invoked more frequently than usual to reduce la-
tency time. The idea of failure acceleration is proposed by Chillarege and Bowen [Chillarege89].
To obtain a realistic latency time, the distributions of system calls and interarrival times should

be determined based on the real workload characterization.

4.5 Controller

The controller is a script file used to specify the fault to be injected for the fault injector,' the
key variables to be traced for the software monitor, and the workload to be generated for the
workload generator. When the specifications are completed, it then initiates the experiment.

Since the target system may crash during experiments and may need to be handled by
operators, it is impossible to automate a series of experiments unless the target system is a

fault-tolerant system.

4.6 Analysis Utilities

Several utilities have been developed to help analyze fault propagation. When the target
system crashes and creates dump files, an ADB debugger script is used to extract the remaining
portion of trace data, the values of key variables, and the information from the stack. A utility
is provided so that users can compare correct trace data with faulty trace data to identify
fault propagation. However, human interpretation is needed to identify fault propagation and

impact.
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Chapter 5

Experiments on the UNIX Kernel

Experiments are conducted on the SunOS 4.1.2 system to evaluate the impact and propa-
gation of various types of faults. The experiments are described in Section 5.1, and the results
are shown in Section 5.2 and 5.4. The locations of very-long latency faults and the possible

impact of these faults are discussed in Section 5.3

5.1 Experiment Description

The experiments are designed to evaluate the impact and propagation of various faults. One
fault is injected for each experiment, and its propagation and impact are analyzed individually.
Five hundred experiments are conducted: one half of them inject hardware faults, and the
others inject software faults. Sections 5.1.1 through 5.1.3 depict the experiment environment,

the experiment control flow, and the selection of faults and key variables.

5.1.1 Experiment Environment

The experiment environment is a Sun SPARCstation IPC connected to a local area network
system in a university laboratory. The operating system is the SunOS 4.1.2, which is derived
from the BSD 4.3 UNIX. The exact sizes of the kernel text and data segments depend on the
system configuration. The target version of the SunOS 4.1.2, excluding the DEFINE compo-
nents, the fault injector and the software monitor, has about 1.07 megabytes of text segment
and 1,426 global variables (about 56 kilobytes of bss (uninitialized data) and 158 kilobytes of
data that include system messages). The SPARC RISC CPU has 32 working registers (current
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window within a set of 136 registers) and 4 special registers. Floating point and coprocessor

registers are optional.

5.1.2 Experiment Control Flow

The overall experiment consists of a series of similar individual experiments. The control
flow of each experiment is shown in Figure 5.1. The software monitor starts first, and then the
workload generator is run once to generate a fault-free trace data. Next, the workload generator
is run again to duplicate the same workload. At this time, a fault is injected into the kernel
to generate a faulty trace data. Hardware faults, except for process-related faults, are injected
by the fault injector. Process-related faults are injected by the workload generator so that the
workload generator will be the process that is influenced. Software faults are injected by the
workload generator just before the workload is repeated. If the machine does not crash, we
stop the software monitor and reboot the machine for the next experiment.

If the target system crashes before an experiment is finished, the remaining portion of the
trace data is extracted from the system dump file and appended to the trace file. The fault-free
trace data and faulty trace data are extracted from the trace file and compared to identify the
fault propagation. If a fault does not affect the execution of the kernel, the assembly code has
to be traced to understand how the fault is recovered or avoided. If the target system crashes
before the next probe is reached (i.e., no information is recorded), the system dump file is
analyzed and the assembly code is also traced to investigate how the fault affects the system.
The system log file, the system dump file (if created), and the result of fault propagation
analysis are then analyzed to identify the fault impact on the target system.

5.1.3 Faults and Key Variables

In each experiment, one fault is injected into the kernel in the following manners:

e Memory faults at the text segment are generated by selecting an address randomly from
the kernel text segment and flipping a bit in the address at random.

¢ Memory faults at the data segment cannot be generated like memory faults at the text

segment because system messages are also in the data segment and injecting faults into
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Figure 5.1 Experiment control flow.

system messages (documentation faults) is not desired. Therefore, a global variable in

the kernel is randomly selected and a bit is randomly chosen to be flipped.

° Bu; and CPU faults are generated by selecting and changing an instruction that will be
executed in the near future. The code that will not be executed under a normal workload

is not considered.

o Three types of software faults are generated by a similar procedure. First, ar address in
the kernel text segment is selected randomly. Then, the nearest initialization, assignment
or condition check from the address is located and the corresponding instructions are
modified a.écording to the fault injection mechanisms in Section 4.2. This type of fault

cannot be generated automatically because it is not trivial to identify the instructions.

Since DEFINE traces the fault propagation in the UNIX kernel, faults are not injected in
the fault injector and the software monitor in the experiments because the fault injector and
the software monitor are not parts of the original UNIX kernel. In addition, it allows proper
injection and monitoring.

The hardware faults injected in the experiments include only those that occur in the kernel,
but we can estimate the probability of faults occurring in the kernel. For the memory faults,

we can calculate the probability by dividing the kernel size by the total memory size. For the
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bus and CPU faults, we can estimate the probability by dividing the system time by the total
time. All these probabilities are machine and application dependent.

The key variables to be traced are strongly related to the injected fault and are difficult to
specify thoroughly in advance. Sometimes, an experiment has to be repeated with more key

variables to identify the fault propagation.

5.2 Fault Impact on the System

A fault injected into the kernel can cause three possible effects on the system:

(1) System failure: The fault causes one or more errors, and one of the errors is detected by
hardware or software detection/protection mechanisms. The error is considered so serious
that the system should not continue its work. The system may reboot itself or need to

be checked by operators.

o No self-reboot: Hardware detects the error and returns control to the PROM (mon-
itor); This kind of error is considered very serious since the system will not reboot
itself automatically and needs operators to handle the situation. Operators usually

check the hardware first, and then reboot the system.

o Self-reboot: Hardware or software detects the error and returns control to the sys-
tem’s exception handling routine to report the error and reboot the system. This
kind of error is serious because the system is unavailable temporarily and all the jobs

in the‘system have been killed.

o System hung: The fault causes the system to enter an endless loop or to wait for
an event that will never happen. This kind of error is serious because the system
is virtually unavailable and needs operators to handle the situation (usually just to
reboot the system). Although this kind of error is not detected by the system, it is

still included in this group since no service can be provided under this situation.

(2) User application failure: The fault causes one or more errors, but the system fails to
detect these errors. The system survives, but user applications are affected. There are

two possible impacts:




Table 5.1 Distribution of hardware fault impact.

System failure Multiple User No Error
Without With System | Application Fault Very Long
Fault Type Self-Reboot | Self-Reboot | Hang Failure Avoided | Latency
Memory Fault T
in Text Segment 2%* 22% 2%* 0% 6% 68%
Memory Fault
in Data Segment 2%* 14% 0% 8% 18% 58%
Bus Fault on
| Address Line 0% 82% 0% 10% 6% 2%*
Bus Fault on
Data Line 0% 76% 0% 10% 14% 0%
CPU Fault in
Registers 0% 66% 0% 0% 34% 0%

*Not statistically significant.

o Multiple program failure: More than one user application crashes or produces incor-
rect results. The error still remains in the system, and may affect subsequent user
applications. Usually, the system needs to be rebooted, since it cannot provide full

- service.
e Single program failure: The fault affects only one user application, and the fault is
recovered after the application has crashed or finished.
(3) No error: The fault does not cause any damage. There are two possible reasons:
o Fault avoided: The fault has no effect on the execution or is recovered before it causes
any propagation or damage.

o Very long latency: The fault will not be activated under normal execution condition.
The impact of the fault is unknown. To evaluate the impact of such faults, other
specially designed workloads need to be used to activate the faults.

The following sections discuss the impact of hardware and software faults, and the system

error detection mechanisms.

5.2.1 Impact of Hardware Faults

The impact of hardware faults on the system is shown in Table 5.1. Rows represent injected

fault types and columns represent impacts on the system. The numbers are the percentages
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of different impacts on the system for each fault type. There are 50 experiments for each row.
Since the single-user application failure is not observed, this kind of impact is not shown in
the table. Very long latency includes very long fault latency and very long error latency. Fault
latency is the time between the fault occurrence and the activation, and error latency is the
time from the error occurrence (a fault is activated and causes an error) to the detection. If a
fault is not activated by the workload generator, which runs for about 20 minutes each time,
this fault is assumed to have a very long fault latency. If an error does not propagate and is
not detected during the experiment, this error is assumed to have a very long error latency.

Several lessons can be learned from the experiments:

o A significant part of the UNIX kernel is not exercised although the accelerated workload
is used, so most of the memory faults at the text segment (68%) have a very long fault
latency. Detailed investigation of the locations and possible impact of these non-activated
faults are discussed in Section 5.3. For those memory faults with very long fault latency,
we can use a memory scrubber, a system routine for early error detection, to recover them
before théy are activated [Saleh90]. For those memory faults in the data segment, we can
apply robust data structures to recover them [Taylor80, Kant90].

e Two system failures without self-reboot are observed, both of which cause watchdog
reset. The incurred errors are so serious that dump files cannot be created by the monitor
command sync, because sync calls the kernel’s function panic. One of them even hangs
the system when syncing the file systems (trying to dump memory to dump area) and
cannot be interrupted by the hardware interrupt, making power-off the only way to solve

the problem.

e Only one system hang is observed. In fact, the fault causes system crash with self-reboot
first, and then the system gets stuck when syncing file systems. The reason is as follows:
the fault is injected into the file system, a hardware trap is invoked when the workload
generator issues a file operation, and then the system issues another file operation to dump
memory that causes another hardware trap that has been disabled. The system is thus
hung. No system dump file can be created in this situation. Although this case and the
two system failures without self-reboot are not statistically significant, we still mention

them because they are unexpected and have serious impact. In addition, no dump file
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can be created, which makes debugging almost impossible when these faults occur in the
field.

¢ Bus and CPU faults have a very short error latency. Therefore, multiple instruction retry

is a feasible mechanism to recover these two types of transient faults [Li91, Alewine92).

¢ Some global pointer variables like uunix are very sensitive. If their values are corrupted,

the system is crashed immediately and is unable to reboot itself.

e When an experiment is repeated several times, the results are not always the same. This
is because the timing of the fault injection is not fixed unless the fault is injected by the

workload generator.

¢ Propagation through global variables may not be caught in the experiments. This is
because there is no cross-reference for global variables, pointers are widely used in the

kernel, and some global variables have the same name (a very confusing implementation

style).

e In SPARC instruction set, some instructions do not use all the bits. Thus, if a memory
fault in the text segment or a bus fault on the data lines when reading a instruction affect

these “don’t-care” bits, the fault is avoided.

o If there is no memory scrubber in the system, memory faults in the kernel text segment
cannot be recovered. This is because the kernel text will not be swapped out, and there-
fore, no cofrect copy will be swapped in to overwrite the faulty pages. However, user
applications can recover from memory faults at the text segment if the correct copy of
the faulty pages are already stored in the swap area (the faulty pages will be discarded

when they are swapped out, and the correct ones will be swapped in later).

5.2.2 Impact of Software Faults

The impact of software faults on the system is shown in Table 5.2. The rows, columns, and
numbers represent the same things as in Table 5.1. There are 50 experiments for each row.

Since no system failure without self-reboot nor single-user application failure is observed, these
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Table 5.2 Distribution of software fault impact.

System failure Multiple User No Error
With System | Application Fault | Very Long
Fault Type Self-Reboot | Hang Failure Avoided | Latency
Uninitialized
Pointer 46% 0% 0% 0% 54%
Misassigned
Pointer 40% 0% 0% 0% 60%
Missing
Condition Check 22% 0% 2%* 20% 56%
Incorrect
Condition Check 26% 0% 0% 12% 62%
Uninitialized/
Misassigned 26% 2%* 6% 6% 60%
Non-Pointer Data

two kinds of impacts are not shown in the table. From the experiments, several phenomena

can be observed:

¢ Similar to memory faults at the text segment, many of the injected software faults (54%
to 62%) have a very long latency.

e Except for those with a very long latency, pointer faults cause system failures because the

system tries to access a memory location where it has no privilege to access.

e One system hang is observed. In this case, the fault is injected into a signal-processing
function, and the fault simulates missing initialization of a variable (signal number). The

fault thus causes the system to wait for an event that will never happen.

5.2.3 System Error Detection Mechanisms

When the injected faults cause errors, the system can detect the errors by hardware (traps)
or software (panics) mechanisms. Table 5.3 shows the distribution of errors detected by these
detection mechanisms.

The hardware detection and protection mechanisms are the first barrier to detect errors,
and they are quite effective. Nearly 90% of detected errors are detected by hardware. If an

error passes the first barrier, software assertions and panics provide the second barrier to
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Table 5.3 Distribution of errors detected by system error detection.

Hardware Traps
Text | Data | Memory Address Dlegal Software
Fault | Fault Alignment Instruction | Panics

[16% | 47% | 19% [ 6% | 12% |

Table 5.4 Distribution of locations of very long latency faults.

Error Handling |
or Other Case | Device | Initial
Handling Driver | Routine

[ 40% [ 47% 13% |

stop the error. However, about 5% of errors are not detected by the system and cause the
system to hang or affect user applications. About half of the detected errors are data faults
(47%), and they are detected when the system tries to read/write data from/to the area where

it has no privilege to do so.

5.3 Very Long Latency Faults

Although the workload generator is designed to activated injected faults, about 60% of
memory and software faults are still not activated. Thus, the locations of these very long
latency faults in the source code are studied to find out why so many faults are not activated.
Table 5.4 lists the distribution of locations of very long latency faults. About 47% of very long
latency faults are injected into device drivers where the corresponding devices are not installed
in the target system. About 40% are injected into error handling routines or those handling
routines that are seldom exercised. To activate these faults, two faults need to be injected, or
special inputs need to be designed. About 13% are injected into initial routines, which will not
be executed again once the machine is booted. Other fault injection approaches need to be
applied to activate these faults.

Assuming these very long latency faults can be activated, their possible impact is listed
in Table 5.5. The impact of most of the faults (66.7%) cannot be determined before really

executing the code, because the impact depends on the value of registers or memory when the
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Table 5.5 Possible impact of very long latency faults.

Text | Data Illegal Fault Non-
Fault | Fault | Instruction | Avoided | deterministic

[6.7% [6.7% | 6.7% | 13.3% 66.7% |

faults are activated. About 13.3% of these faults will always be avoided, while 20% will always
crash the system. Among these 20% of faults, one third of them (6.7%) will cause the system
to execute illegal instructions. This kind of impact can be easily determined, and none of the
non-deterministic faults will cause this impact. The percentage (6.7%) of this impact is very

similar to that (6%) in Table 5.4.

5.4 Fault Propagation

The p}'evious section showed the impact of various faults on the system. What really
happens ;.fter a fault is injected is described in this section. After a fault propagates to another
part, the propagated part is like a new fault and may propagate to other parts. Such chain
effects will continue until the system crashes or is rebooted (damages may have been caused).
The following sections discuss the fault propagation of hardware and software faults, and the

fault propagation among the UNIX subsystems.

5.4.1 Hardware Fault Propagation

The first level of fault propagation of hardware faults is shown in Table 5.6. Rows represent
injected fault types, and columns represent the first level of fault propagation. The numbers
are percentages. The subsequent fault propagation (error propagation) of hardware faults is
shown in Table 5.7. Rows represent current fault propagation states, and columns represent the
next fault propagation states. The numbers are percentages. Several phenomena are observed

from the experiments:

e A same kind of error can be caused by several differect types of faults. For example,
the execution of an incorrect instruction can be caused by a memory fault at the text

segment, a bus fault at address lines, or a bus fault at data lines.
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e The SPARC CPU is a RISC processor, and load/store instructions read/write memory
indirectly (through registers). When registers are corrupted or the system reads incorrect
instructions or data, there is a very high probability that the system will crash in the

next few instructions.

e SPARC uses PC and nPC to implement delayed control transfers, wherein the instruction
that immediately follows a control transfer may be executed before control is transferred
to the target address. A CPU fault in PC register caused incorrect instruction executed,

and a CPU fault in nPC causes incorrect control flow.

e nPC register faults and incorrect jumps/calls tend to distract the debugging direction,

because the system traceback routine gives an incorrect procedure call sequence.

¢ Some memory faults at the data segment change the procedure call table, and their
effects are the same as memory faults at the call instructions and CPU faults in the

nPC register.

e When a bus fault on the address lines occurs during reading an instruction or data, it
is possible that the contents of the wrong address happen to be the same as those in
the correct address, so the fault is avoided. However, this scenario did not occur in the

experiments.

5.4.2 Software Fault Propagation

The first level of fault propagation of software faults is shown in Table 5.8. The subsequent
fault propagation (error propagation) of software faults is shown in Table 5.9. The rows,
columns, and numbers represent the same things as in Tables 5.6 and 5.7. The results reveal

several phenomena:

o The percentage of software faults with very long latency is slightly lower than that of mem-
ory faults at the text segment (Table 5.6), although they should have similar percentages.
This is because the locations of the software faults are shifted to the nearest initialization,
assignment, or checking instructions (determined by our fault injection methodology), and

the shifting increases the probability that the faults are activated.
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¢ Faults involving pointers and faults involving non-pointer variables/parameters have quite
different properties, thus faults are divided into pointer related and non-pointer related

faults.

e Pointer faults tend to crash the system immediately if they are activated. If the faults
are not detected immediately, the propagation is unpredictable because they may cor-
rupt other data that are not related to the faults. Therefore, error detection/recovery

mechanisms should pay closer attention to pointers.

¢ In the software fault propagation, incorrect control flow is the major effect for the first
level of propagation, and data corruption is the major effect for the subsequent propaga-
tion. The system crashes are usually caused by the corrupted data, and the symptom is
data fault shown in Table 5.3. Robust data structures can be used to recover the data

corruption caused by pointer faults [Taylor80, Kant90].

5.4.3 Eault Propagation among the UNIX Subsystems

The previous two subsections investigated the fault propagation of various faults but did
not consider whether the affected parts are in the same subsystem where the faults occur. This
section analyzes the fault propagation among the UNIX subsystems, that is, the locations of
faults and propagated errors.

Basically, the UNIX operating system can be divided into process management, memory
management, file management, and exception handling subsystems. Experiment results show
that only about 8% of faults propagate to other subsystems, and that most of the propagation
is caused by function calls with incorrect arguments. The reasons for the low percentage are
that hardware errors tend to crash the system (detected by the system) in a few instructions
and do not have chance to propagate faults, that the corrupted data are usually accessed by the
same subsystem, and that the incorrect control flow caused by software faults usually affects

the same subsystem.
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Chapter 6

Experiments on the Sun Network

File System

In Chapter 5, the fault impact and propagation in the UNIX kernel have been investigated,
but the fault impact and propagation are restricted to the faulty machine. The faults may
cause no error,' user application failure, or system failure. However, the probability of fault
propagation through the network is so low that no fault propagation among machines is observed
during the experiments.

In this chapter, the strategy of fault location selection is changed in order to increase the
probability of fault propagation through the network. The strategy is biased fault injection;
that is, faults tend to be injected into certain parts of the kernel. The target software system is

the Sun Network File System (NFS). The experiments are conducted on six Sun workstations

" (one as server and the others as clients) to study fault characteristics and propagation in a

distributed system. The fault scenario we are simulating is that one machine is faulty due to
one hardware or software fault, and the fault may affect the processes on the faulty machine,
crash the faulty machine, or propagate to other machines.

The remainder of this chapter is organized as follows. Section 6.1 describes uniform fault
injection and biased fault injection. A brief introduction of the Sun NFS is presenied in Sec-
tion 6.2. The fault propagation model of the NFS is described in Section 6.2.1. Section 6.3
explains the experiment design. In Section 6.4, the the possible impact of an injected fault

on a distributed system is described, and the gystem behavior under biased fault injection is
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presented and discussed. The impact of faulty user applications is described in Section 6.5.
Section 6.6 presents the path-based fault injection experiments, where faults are injected along
popular control paths to increase the activation rate of software faults to 100% and to create a

particular scenario.

- 6.1 Uniform Fault Injection and Biased Fault Injection

In the experiments described in Chapter 5, faults are injected into the UNIX kernel uni-
formly. This kind of fault injection is called uniform fault injection; that is, faults are injected
into the UNIX kernel without any preference. On the other hand, if faults tend to be injected
into certain parts of the kernel, the fault injectioh is called biased fault injection. The purpose
of biased fault injection is to increase the probability of certain kind of fault impact. In this
Chapter, the purpose is to increase the frequency of fault propagation through the network.

Since most network traffic in a distributed system is related to remote file operations, fault

propagatien through the network may be observed more frequently if more faults are injected

into the file system, especially the distributed file system. The underlying philosophy is to’

increase the probability of fault propagation, which is similar to the failure acceleration proposed
in [Chillarege89). In this study, the distributed file system used is the Sun Network File System
(NFS). Therefore, the target software in this Chapter is the Sun NFS.

6.2 NFS Overview

The Network File System (NFS) is a client-server mechanism whereby several computers
can share file systems [Gould86]. The NFS structure is shown in Figure 6.1.

The arrows mean requests and responses, and most of them are function calls and return
values (some values are passed through global variables). User applications can issue system
calls (e.g., open, read, and write) directly or indirectly through libraries, such as the C library.
The system call interface is usually implemented by software traps.

The NFS is embedded in the kernel just like the UNIX file system. NFS is an extension
of the UNIX file system and provides a transparent view for local file systems and remote file

systems. It adds one more layer, vnode manipulation, above the UNIX inode manipulation.
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Figure 6.1 Structure diagram of NFS.
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In addition to vnode manipulation routines, NFS has server routines and client routines
which are initialized by nfsd and biod daemons respectively. The server and client routines
can be included into the kernel configuration when the kernel is built, and thus the machine
can be a server, client, or both by issuing nfsd, biod, or both. If the kernel of a machine does
not have server routines, this machine cannot be a NFS server; similarly the absence of client

routines presents a machine from being a client.

6.2.1 Fault Propagation Model for the NFS

To delineate the software characteristics, we develop software-structure-level fault propaga-
tion models. Because software-structure-level fault propagation models include software system
structure, they are built for specific software systems and are different for different software
systems. The software-structure-level fault propagation model for the NFS is shown in Fig-
ure 6.2. For simplicity, the figure just demonstrates one diskless NFS client and one NFS sever
connected by network. Generally, there are several machines connected by network, and each
machine iilay have a local disk and can be a client or server or both.

The left column in the figure shows that faults can occur at any part of the computer
network system. The middle column illustrates the fault/error propagation in the NFS. The
right column depicts the fault impact on the network system.

Arrows in the middle column mean fault/error propagation. The only way that a fault
can propagate from user applications to the kernel is through system calls. Propagation in a
client or a server can be made possible through global variables or arguments/return values
of function calls. Propagation between a client and a server has to go through network com-
munication. Propagation between two clients must go though network communication and the
shared server(s).

In the right column, fault avoided means the fault has no effect on the execution or is
recovered before it causes any propagation or damage. After an error is produced, it may be
avoided, recovered, or cause further errors until the error(s) is detected or its impact is observed.
The six states of fault impact on the network system are not exclusive. For instance, when a
client crashes, all the user applications running on that client also crash. When a server crashes,
all the user applications on clients that access files on the server will be hung until the server is

up. After the server is up, the hung user applications will continue their execution, and may or
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may not crash depending on the following situation. If an application is hung during reading,
it can continue the work without crash; if an application is hung during writing, the correctness

of the application depends on whether the transaction has been recovered from the crash.

6.3 Experiment Description

In each experiment, one machine is selected, either a server or a client, and a fault is injected
into that machine’s kernel. Although faults may occur in both the kernel and user applications,
we are interested in the faults in the kernel because the kernel has higher privilege and the

impact is more serious.

For communication faults, the impact of corrupted messages has been described in [Devarakonda90),

and the impact of missing messages has been shown in [Rosenberg93]; therefore, we do not show
them again by conducting another experiment. Instead, we show the impact of one faulty ma-
chine and the natural process of fault propagation.

The experiments are conducted on six Sun workstations (one as server and the others as

clients) to study fault characteristics and propagation in a distributed system.

6.3.1 Experiment Procedure

To identify fault propagation, we need to execute the workload twice—once without any
fault and once with one injected fault—and then compare the trace data collected from the
two runs. The overall experiment consists of a series of similar individual experime-ts. The

following procedure is used in each experiment:

(1) Set up the experiment, and make sure that all the machines work perfectly.
(2) Start the software monitor.
(3) Run workloads on all machines, and wait until all the workloads complete.

(4) Run workloads on all machines again with the same setting to duplicate the same work-

loads.
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(5) During the execution of the second run, select one machine and send a message to the
local fault injector of that machine to inject a fault. If the fault is a software fault, it is

injected before the second run of the workload generator.
(6) Observe the distributed system, and record any abnormal behavior.
(7) ¥ any machine crashes, save the dump file for further analysis.
(8) After all the clients finish the workload, stop the software monitor.
(9) Analyze the results.
o For crashed machines, analyze the trace files to identify fault propagation and the

memory dump files to obtain the reason of the crash in detail.

o For clients that finish the workload without failure, test their outputs for irregular
results and check the trace files to identify any possible undetected errors.

o If the faulty machine does not crash, check whether the fault is activated. If it is

activated, trace the source code to understand how the fault is avoided.

6.4 Fault Impact on a Distributed System

A fault injected into the kernel of a client can cause six possible effects on the distributed

system:

(1) No impact: The fault does not cause any damage. The two possible reasons are fault
avoided and very long latency. Very long latency means the fault will not be activated

under normal execution conditions and the impact of the fault is unknown.

(2) User application failure on the faulty client: The fault causes one or more errors, but the
client fails to detect these errors. The client survives but user applications are affected.

Usually, the machine needs to be rebooted since the machine cannot provide full service.

(3) Faulty client failure: The fault causes one or more errors, and one of the errors is detected
by the hardware or software detection/protection mechanism. The error is considered so
serious that the client should not continue its work. The client may reboot itself or need

to be checked by operators.
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(4) User application failure on other clients: The fault propagates to the server but the server
fails to detect these errors (but the server is still working). When user applications on

other clients try to get service from the server, they are affected.

(5) Server failure: The fault propagates to the server and causes the server to crash. The
server may reboot itself or need to be checked by operators. Since the server crashes, all
the clients cannot get responses from the server, and all user applications that access data

in the server will be suspended until the server is up.

(6) Other client failure: The fault propagates to the server but the server fails to detect these
errors (but the server is still working). When other clients try to get service from the
server, they are affected and crash. Usually, this effect should not be experienced because
fault propagation through the network twice without being detected is a very serious
reliability problem.

Very long latency means the fault will not be activated under normal execution conditions
and the impact.of the fault is unknown.
A fault injected into the kernel of a server can cause five possible effects on the distributed

system:

(1) No impact: The fault does not cause any damage. The two possible reasons are fault
avoided and very long latency. Very long latency means the fault will not be activated

under normal execution condition and the impact of the fault is unknown.

(2) User application failure on the server: The fault causes one or more errors, but the server
fails to detect these errors. The server survives but user applications are affected. Usually,

the server needs to be rebooted since the server cannot provide full service.

(3) Server failure: The fault causes one or more errors, and one of the errors is detected
by the hardware or software detection/protection mechanism. The error is considered so
serious that the server should not continue its work. The server may reboot itself or need

to be checked by operators.

(4) User application failure on clients: The fault causes one or more errors, but the server fails
to detect these errors. The fault propagates to clients and affects the user applications

running on the clients.
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Table 6.1 Distribution of fault impact of one faulty client.

No Impact Faulty | User Application Failure

Very Long | Fault | Client | At Faulty | At Other Server

| Fault Type Latency | Avoided | Failure Client Clients Failure
[ Memory Fault | 40% 8% | 46% 6% 0% 0%
CPU Fault 0% 30% 70% 0% 0% 0%
| Bus Fault 0% 16% 80% 4% 0% 0%
[ Tnitialization 28% 4% 68% 0% 0% 0%
Assignment 38% 6% 56% 0% 0% 2%
Condition Check 34% 20% 42% 1% 0% 0%

(5) Client failure: The fault propagates to the clients and causes one or more clients to crash.

The experiments in this section are performed using biased fault injections. The next two

subsections describe the system behavior when faults are injected into the NFS.

6.4.1 i}npact of a Faulty Client

The impact of faults injected into a client is shown in Table 6.1. All the numbers in Tables 6.1
and 6.2 are percentages.

The distributed nature of DEFINE allows us to monitor fault propagation among machines.
From the experiments, we found that the impact of all the hardware faults was restricted to the
faulty client and the majority of software faults do not propagate to other machines. This is
because the error latency of hardware faults tends to be very short, and thus the client usually
crashes in a few instructions before the fault can propagate to other parts of the kernel or other
machines. In addition, the locations of all the faults are randomly selected from the specified
biased range in the experiments, so they may not hit the critical locations. The specified biased
range covers the entire NF'S, which includes server routines that are never accessed by a client.

By using software traps to inject faults, we can distinguish very long latency faults from
avoided faults. The results showed that 40% of memory faults and 33% of software faults
(average of initialization, assignment, and condition check faults in Table 6.1) still are not
activated although the workload is designed to activate as many faults as possible. This is

because the NFS server routines are also in the client kernel, and those faults that are injected
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into server routines will never be activated. Besides, there are many handling routines for
special situations, and it is difficult to activate those faults that are injected into these routines.

DEFINE uses hardware clock interrupts to inject CPU and bus faults, so all the CPU and
bus faults are activated (no dormant faults). From Table 6.1, we found that CPU and bus
faults crash the faulty client more frequently than other faults. This is because SPARC is
a load/store architecture and all the memory accesses are performed indirectly via registers.
Therefore, when the contents of a register are corrupted due to a CPU or bus fault, there
is a high probability that the next memory access via this register will access an inaccessible
location and thus cause a client failure.

If a fault has no impact, we trace the source code to understand how the fault is avoided.
Those no-memory faults that have no impact usually corrupt the don’t-care bits (those bits
in an instruction that are not used for decoding and execution). Table 6.1 shows that 30% of
CPU faults have no impact on the execution. Most of these faults corrupt registers which are
overwritten before they are referenced. Another example of faults that have no impact are those
faults that occur in condition codes of the processor status register (PSR), and the corrupted
condition codes are not used. For bus faults that have no impact, some of them corrupt the
don’t-care bits when fetching instructions, and some of them do cause errors (corrupt data), but
the errors remain dormant. The NFS keeps statistical data of utilization, and these data are for
reference only. The faults related to these data will not have any impact on the execution and
will not propagate to other parts of the kernel or other machines. In the NFS, there are many
condition checks for errors that occur rarely. If we inject missing-condition-check faults for
these condition checks, there is usually no impact. This accounts for most of the fault-avoided
condition check faults.

More client hangs were experienced than with uniform fault injection because more faults
were injected into the file system and thus more faults could affected the system dump file
creation procedure when the client crashed. When this situation occurs, the client needs an
operator to interrupt it with a hardware interrupt and to reboot the client without creating a
dump file. If a memory dump is forced when the operator reboots the machine, the machine will
be hung again, and hardware interrupts cannot rescue the machine at this moment. Turning

power off and on is the only solution. In either case, no memory dump files are created, so
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Table 6.2 Distribution of fault impact of one faulty server.

No Impact Faulty | User Application Failure

Very Long | Fault | Server | At the At Client

Fault Type | Latency | Avoided | Failure | Server Clients Failure
Memory Fault | 36% 8% 44% 8% " 4% 0%
CPU Fault 0% 26% 72% 2% 0% 0%
Bus Fault 0% | 16% 82% 2% 0% _ 0%
Initialization | 28% | 2% 68% [ 2% 0% | 0%
Assignment 36% 6% 50% 6% 2% 0%
Condition Check 32% 18% 44% 2% 0% 0%

source code tracing is the only way to explore the reasons of crashes, and the detailed reason

of crashes might not be well understood.

6.4.2 Impact of a Faulty Server

The same faults injected into clients in the previous experiments are injected into the server,
and the impact of faults is shown in Table 6.2.

Using DEFINE to monitor fault propagation among machines, we find that more faults
propagate to other machines (clients) and cause user applications on clients to crash or produce
incorrect outputs when faults are injected into a server. Although the server crashes many
times and user applications on clients fail several times, all the clients survive through all the
experiments.

DEFINE can separate dormant faults and avoided faults. From Table 6.2, we find that
about 36% of memory faults and about 35% of software faults were not activated because the
NFS client routines were not exercised. The reasons for non-activated faults were similar to
those in the previous section.

When faults are injected into the server, more system hangs are observed—about a quarter
of server failures are system hangs. It is interesting that the same faults that caused client
failures with self-reboot when the faults are injected into a client might cause server hangs
when the faults are injected into the server although the server and clients used the same UNIX
kernel. In addition, when faults are injected into the server, the same faults might cause server

failures with self-reboot or server hangs under different workload settings. That is, the fault
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impact depended on workloads. Since memory dump files are not created when the server is
hung, further analysis of these faults should be performed to understand the detailed reasons.

In some cases, user applications on clients crashed, but user applications on the server
completed without any error, while some other cases had opposite results. This is because the
user application on the server accesses data through vnode manipulation routines and then call
the UNIX File System (UFS), but remote file operations are handled by the NFS server routines
and then call UFS routines to finish the operaﬁions. The routines involved are not the same,
although many common routines are used by both UFS and N¥S. In the experiments, more
user application failures on the server than user application failures on clients are observed.
This implies that the error checking or detection in the UFS interface may be not as good as
in the NFS interface.

There was one case that the fault even corrupted the file system on the server’s disk. The
fault was injected into a function dealing with buffer allocation. The server crashed but could
not reboot itself properly. The operator needed to do a file system check to recover unconnected
files, bad references, bad flag, etc. After the server was up, the working directory was still not
recovered; therefore, all the user applications were crashed because data were not accessible. In
addition, all the clients needed to unmount and then mounted the file system again to access
the data in that file system. This was the most serious fanlt impact in the experiments.

From the experimental results, we found that the server was more vulnerable than clients
because the server crashed more often than clients. In addition, the impact of a faulty server
was more serious than that of a faulty client because the server could not reboot itself in about

one fourth of server failures.

6.4.3 Correlated Errors

In the experiments, multiple errors in different machines due to the same fault are observed.
Sinca these errors are caused by the same faults, they are correlated errors although they occur
in different machines. In field error data analysis, same errors in different machines that occur
in a short period (e.g., five minutes) are considered as correlated errors [Tang92]. For these
multiple errors in different machines due to the same fault, the time difference between errors
can be adjusted, in the experiments, according to the workload. Since the workload used. in the

experiments is designed to accelerate the experiments, the time difference is short. When we
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éha.nge the workload on one machine to a much lighter workload (by lengthening the interarrival
time between system calls) while keeping the workload on the other machines the same, the
time difference can be lengthened to more than five minutes. If this is done and we only look
at the error report, this error may be considered as an isolated error caused by another faults.
This scenario illustrates the fact that correlated errors are not so easy to identify from field

error data.

6.5 Fault Impact of Faulty User Application on the NFS

The NFS system is supposed to be able to handle any bad arguments of system calls from
user applications, and returns an error code if the arguments are invalid. However, during the
experiment that simulates bad users, the simulator crashes when some arguments of system
calls pathconf, pipe, poll, and utime are invalid. In addition, poll even prints out many
garbage messages on the screen. Similar experiments have been conducted to test the reliability
of UNIX utilities and C libraries [Miller90, Suh92].

Except for 1;hose system calls that may crash user applications, the rest of the system calls
are used in the workload generator to activate those faults that are injected into error handling

routines.

6.6 Path-Based Fault Injection

In this section, a new fault injection method, path-based fault injection, is introduced. It
incorporates software testing techniques, specially path testing techniques. The procedure is
as follows. First, apply path testing techniques to find the interesting path and the test data
that can drive the program to execute that path. Second, inject faults into the modules in the
path. Third, use the test data to drive the experiment and investigate the fault impact and
propagation.

The advantages of path-based fault injection are:

o All the faults can be activated.

e All possible impact of faults can be investigated.
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Table 6.3 Distribution of fault impact of faulty injection along control paths.

No Impact Faulty | User Application Failure
Very Long | Fault Client | At Faulty | At Other Server
Fault Type Latency | Avoided | Failure Client Clients Failure
Initialization 0% 6% 94% 0% 0% 0%
Assignment 0% 10% 86% 2% 0% 2%
Condition Check 0% 30% 64% 6% 0% 0%

In Chapter 5, about 60% of software faults are not activated. In Section 6.4, although all
the faults are injected into the Sun NFS and all the workload is related to file operations, more
than 30% of software faults are still not activated. In this section, path-based fault injection
is applied, and all the software faults are activated. Table 6.3 lists the distribution of fault
impact. The distribution of fault impact is similar to that in Table 6.1 when the very long
latency faults are filtered out. This is because the activation rate is increased to 100%, and all
the other-situations are kept the same. The similar results from these two experiments imply
that we can conduct fewer experiments by path-based fault injection to obtain results similar
to biased fault injection or uniform fault injection. Although only software faults are studied,
path-based fault injection can also be used to study hardware faults.

In the previous experiments, we found that the same faults may cause different impact if
we repeat the experiment with the same fault but different workloads. One possible reason is
that different control paths that cover the same faulty module are executed. Path-based fault
injection is an a.pbpropriate approach to investigate this case, because different paths that cover
the faulty module can be exercised to understand all the possible impact of this fault. This
procedure is useful to validate error detection/recovery mechanisms. The disadvantage of this

application is that it is usually not easy to find the test data to cover all the possible paths.
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Chapter 7

Fault Propagation Model Analysis

We have mentioned that analytical models for software system behavior under faults are
difficult to build. However, using the data measured in the experiments, we can build fault
propagation models. The models can give an overall picture of the system behavior under faults.
They ca.n__a.lso be used to perform Markov reward analysis to provide a better understanding
of the impact of faults on the system performance. Section 7.1 presents a hardware fault
propagation model and a software fault propagation model. Section 7.2 conducts transient
Markov reward analysis based on the models to evaluate the performance loss after a fault is
injected.

7.1 Fault Propagation Models

Pa2sza ou the transition probabilities measured in Section 5.4, two models are built to
illustrate the fault propagation. The fault propagation model for hardware faults is shown in

Figure 7.1, and the fault propagation model for software faults is shown in Figure 7.2.

7.2 'Transient Markov Reward Analysis

To calculate transient performance loss during the fault propagation, a reward function is
defined for the fault propagation models. Then the models are treated as Markov models and

reward analysis is conducted based on them.
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State (H;) Hy|H, | H; | Hy | Hs | Hg | Hy | Hs | Hy | Hyo | H1; | H12 | H13
RewardRate(r;) | 1 | 1 [ 1 | 1 [ 1] 0 |05]03| 0 0 0 0 1

Table 7.1 Reward rates for hardware fault propagation model.

State (S,‘) Si|S21 83 Ss|Ss| Se | S7 19| Se | S| S11
Reward Rate(r;) [ 1 [ 1 | 1] 1| 1[05[03]0[0] 0 1

Table 7.2 Reward rates for software fault propagation model.

The reward rate r; for each state is defined in Tables 7.1 and 7.2. A reward rate of 1 means
that the system can provide 100% of its performance; a reward rate of 0 means that the system
cannot provide any service; a reward rate between 0 and 1 means that part of the performance
does not contribute to useful work. After a fault is injected and before the fault is activated,
the system still has 100% of performance (r = 1 for states Hy to Hs and $; to S5). If the
fault does not affect the system or the fault is recovered, the system returns to the normal
state and” provides full performance (r = 1 for Hj3 and Sy1). When t;he system crashes or
needs to be rebooted, no service is provided (r = 0 for Hg to Hy; and Sg to Sy9). No useful
work is done when the system is executing incorrect instructions (r = 0 for Hg). Only partial
work is useful after some data are corrupted or after the control flow is changed (H7, Hs, Se,
and S7). Reward rates for these states with degraded performance are estimated based on our
experimental results.

To obtain expected reward rate, we need to know the holding times or latency for all
transient states (non-failure and non-error states). Since the overhead of software probes is
about 100 microseconds, it is imp;)ssible to measure extremely short latency. In addition,
usually no more than two probes are inserted into a function. The holding time for the states
into which the system goes after faults are activated cannot be measured accurately without
assistance from other hardware monitors. Therefore, the mean holding time of the states are
estimated based on the experimental results, as shown in Tables 7.3 and 7.4. The time unit is
the execution time of one instruction. Bus faults propagate faults or are avoided immediately.
CPU faults propagate faults or are avoided in a few time units. More than half of memory faults
and software faults have a very long latency; the rest of the faults may take a few time units to

several seconds to propagate. Executing incorrect instructions propagates faults immediately.
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Sta.te(H,-) H, |H, | Hs| Hy | Hs | Hg | H7 | Hg
Mean Holding Time | 10° [ 1 | 1 [10°| 5 | 1 [ 5 | 5

Table 7.3 Mean holding time for hardware fault propagation model.

State (S.) St | S2 | 83| S84 | S5 | Se¢ | 57
Mean Holding Time | 10° | 10° | 105 [ 105|105 5 | 5

Table 7.4 Mean holding time for software fault propagation model.

Corrupted data and incorrect control flow tend to change states in a few time units. The
purpose of this study is to understand the effect and propagation of faults, not the latency;
therefore, the holding times are rough estimations. The purpose of the Markov reward analysis
is to show how much performance we can expect after a fault occurs. For an analysis that
addresses the latency, another experiment with a hardware monitor has to be conducted to
measure accurate latency. To calculate expected reward rate, system failure states (Hg, Hio,
Hy,, Ss, Sg), user application failure states (Hy2, S10), and non-error states (H;3, S11) are set
to absorbing states.

Given a time t, the expected instantaneous reward rate at that time X(¢) can be evaluated
as [Goyal87, Trivedi92]:

EX(t) = ripi(t)
i

where p;(t) is the probability of the system being in state i at time . The expected time-
averaged accumulated reward over the time period (0, t), i.e., the expected interval reward rate

[Goyal87, Trivedi92], Y (t), can be calculated by
1 rt
ElY(?)] = ;/0 Zr,-p.-(z)dz .

E[X(t)] is a measure of the instantaneous capacity of system performance assuming a 100%
capacity at time 0 (i.e., when a fault is injected). We will call 1 — E[X(¢)] reward loss or
performance loss. E[Y(t)] is a measure of the time-averaged accumulated service provided by
the system. Figures 7.3 through 7.8 show the computed E[X(t)] and E[Y(t)] after a fault is
injected.

A common feature of these figures is that after some time point, E{X(¢)] will be stable,

approximately staying at a constant value forever. This value is an approximation of the
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Figure 7.3 Expected reward rate after 2 memory fault is injected.
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Figure 7.4 Expected reward rate after a bus fault is injected.
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Figure 7.5 Expected reward rate after a CPU fault is injected.
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Figure 7.6 Expected reward rate after a pointer fault is injected.
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Figure 7.7 Expected reward rate after a check fault is injected.
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Figure 7.8 Expected reward rate after a non-pointer data fault is injected.

65




probability that the system will not be affected by the injected fault, assuming that a long
latency has no effect on the system. The constant value also reflects the expected impact of the
fault on the system in the long run. The figures show that the bus faults have the most serious
impact on the system performance (reward ioss = 0.93), followed by the CPU faults (0.63). All
other faults have much lower performance impact (0.36 to 0.20). The impact of pointer faults
(0.36) is higher than that of non-pointer faults (0.20).

The transient values of E[X(t)] before they become stable quantify the system performance
during the fault propagation. For instance, after a bus fault occurs, the system can be expected
to function at 10% of its capacity at the sixteenth instruction. The performance loss is not so
high for a CPU fault—50% of its capacity is expected at the ninth instruction. The system is
expected to have better transient performance under all other faults. The time needed to reach
a stable state is about 20 time units for bus and CPU faults and 2 x 10° time units for other
faults. That is, compared to other faults, bus and CPU faults have a much shorter latency.

An unusual phenomenon is that E[X(1)] is less than E[X(2)] for the bus fault (Figure 7.4).
This is bécause.more than half of bus faults cause the system to execute incorrect instructions,
and the reward rate (rg) for executing incorrect instructions is 0, but the reward rate (r7; and
rs) goes up after the faults propagate to “other data corrupted” or “incorrect control flow”.

E[Y ()] is the expected percentage of full performance which can be delivered by the system
up to the time point ¢, after a fault injection. If a software fault occurs, the system is expected
to deliver 67% to 82% of its full performance for the 107 instructions of operation, while only

10% of the full performance can be delivered in 100 instruction cycles after a bus fault injection.
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Chapter 8

Conclusion

Fault injection has been used to evaluate the dependability of computer systems, but some
functions are not included in the previous studies. This study emphasizes the following four
issues and proposes techniques to enhance the capability of software-implemented fault injec-

tion:

-~

o Software faults are not studied.
¢ Detailed fault propagation in software systems are not well understood.

o The information about whether the faults are activated and when the faults are activated

is not always available.

o Fault injection and activation time cannot be controlled accurately, and CPU and bus

faults are not always activated.

This thesis has presented the methodology, design, and implementation of DEFINE, a dis-
tributed fault injection and monitoring environment. DEFINE injects faults intc the UNIX
kernel by software and traces the execution flow and key variables of the kernel by software. It

solve the aforementioned issues by the following methods:

e Software faults: substitute a set of instructions with another set on line to emulate certain

types of software faults.

e Fault propagation: use a software monitor to trace control flow and key variables of

sofiware systems.
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¢ Distinction of avoided faults and non-activated faults: use software traps to inject faults
so that the time of fault activation can be recorded and avoided faults and non-activated

faults can be distinguished.

e Accurate time control: use hardware clock interrupts to control fault injection and acti-

vation time.

DEFINE consists of a target system, a fault injector, a software monitor, a workload gen-
erator, a controller, and several analysis utilities. The target of the study is the UNIX kernel
because it is a continuously-running, highly parameterized, complex service program with high
impact and a broad spectrum of workloads.

Experiments on SunOS 4.1.2 have been conducted to evaluate the impact and the fault
propagation of various types of faults. Results show that memory faults and software faults
usually have a very long latency, while bus faults and CPU faults tend to crash the system
immediately. About half of the detected errors are data faults (47%), and they are detected
while the system is trying to access a memory location where it has no privilege to access.
The majority of no-impact faults are latent. Analysis of fault propagation among the UNIX
subsystems reveals that only about 8% of faults propagate to other UNIX subsystems.

To increase the frequency of fault propagation through the network, biased fault injection
has been applied, with more faults injected into the Sun Network File System, a distributed file
system. Another approach, path-based fault injection is also applied to activate all the software
faults. Experimental results show that fault propagation from servers to clients' occurs more
frequently than from clients to servers. The fault impact depends on the workload.

Fault propagation models are built for both software and hardware faults. Transient Markov
reward analysis has been performed based on the models to evaluate the performance loss after
a fault is injected. Markov reward analysis shows that the performance loss incurred by bus
faults (0.93) and CPU faults (0.63) are much higher than that incurred by software and memory
faults (0.20 to 0.36). Among software faults, the impact of pointer faults (0.36) is higher than
that of non-pointer faults (0.20).
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8.1 Limitations

DEFINE can inject software faults as well as hardware faults, can trace fault propagation,
can monitor whether and when faults are activated, and has accurate time control. However,
there are several limitations. First, when injecting intermittent faults, the interarrival times
may not follow the specified distribution perfectly. This is because hardware interrupts may
be disabled temporarily, lengthening the interarrival times. Second, the overhead of software
monitor may up to 50% of system time, though the user time is not affected. If the focus is not
on fault propagation, the software monitor can be turned off to eliminate this overhead.

The target software system is the UNIX kernel, whose operations are not deterministic;
thus, the experiments are not always repeatable. Some interesting results, such as the one that

crashed the local disk, could not be repeated for further investigation.

8.2 Suggestions for Future Work

This is the-first attempt of the detailed investigation of fault propagation in the UNIX
system, and DEFINE is shown to be a useful tool for this study. Possible improvements and

follow-up work include the following:

¢ DEFINE can inject many types of hardware faults, but only a few types of software faults
can be injected now. More mechanisms will be developed to cover other types of software

faults.

¢ Using software traps to activate faults can tell us whether faults are activated for most
faults, but it cannot be applied to memory faults in the data/stack segment. Another

mechanism is needed to solve this problem.

o There is no special error detection/recovery mechanism embedded in the SunOS, so faults
can propagate and crash the system easily. Error detection/recovery mechanisms could
be added to the kernel, and DEFINE could be used to evaluate the effectiveness of the

error detection/recovery mechanisms.

e The obtained understanding of fault characteristics can be used to design error detec-

tion/recovery mechanisms.
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o The methodology can be applied to user applications by inserting probes into the target
applications. The current probes need to be modified so that messages can be passed to
the message recorder in the kernel. Possible solutions include using a new system call or
using a pseudo device. If fault propagation is not the objective, probes can be ignored.
Since each user application has its own user address space, the fault issuer has to be
inserted into the application. The fault injector also needs to be modified to inject faults

into user address spaces.
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