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ABSTRACT

Many siting and other terrain analysis problems require the determination of

the visibility from large numbers of observer locations over their surrounding ter-

rain. The computational costs of existing visibility algorithms often require serious

compromises on the fidelity, accuracy, or scope of analysis in real world settings. A

highly accurate viewshed determina n algorithm, R2, is presented that executes

in O(R 2) time (where R is proportional to the number of points along the radius

of the potential viewshed) and does not suffer from numerical problems, complex

special cases, or high constant fact,•:s. Since the size of the output in viewshed

determination is also O(R 2 ), the time complexity of R2 is within a constant factor

of optimality.

The R2 algorithm is used to verify a fast and effective visibility index estima-

tion procedure, WeightF. WeightF has time complexity O(R) and produces visibility

index estimates with a correlated variation to R2 in excess of 0.9 on a variety of

terrain datasets and problem settings. These visibility indexes can be used to se-

lect points with best aggregate visibility in an area. On real terrain, analysis using

WeightF shows that points with significantly above average visibility index values

are only a very small number of the total observer points. This property and the

fast execution time of WeightF makes it useful for identifying high visibility points

for use in siting algorithms, and to produce a viewable visibility index image that

can display a large amount of visibility information in an intuitive fashion.

xi



CHAPTER 1

INTRODUCTION

1.1 Motivation

The explosion of capabilities for collecting and distributing digital elevation

data for terrain from around the world has led to a significant increase in the amount

of computation required to exploit this information for problems where visibility is

an important factor. Use of naive visibility determination algorithms results in much

greater than linear increases in computation requirements as elevation dataset sizes

increase.

The increasing power of widely available workstations and personal computers

invite exploitation of increasing volumes of terrain data. However, the straight-

forward use of existing visibility analysis procedures either degrades a significant

amount of the information present in the original elevation data or imposes compu-

tational requirements far in excess of current or anticipated hardware capabilities

when examining even modest real world problems. Various existing approximation

methods reduce this complexity but can suppress the effects of relatively minor

variations in terrain elevation that may have a major impact on visibility. Careful

design and selection of visibility estimating algorithms and representations can make

exploiting elevation data more computationally tractable.

Intrinsic to visibility is the concept of a line-of-sight. The term line-of-sight

(LOS) refers to a path connecting an observer and the point being observed (the

target). To determine a LOS, the location of the observer and the target must be

known in three dimensions - the two-dimensional geographic location and height

above some common referent. A LOS may be an essentially straight line, as in the

case of an optical LOS, or (for many electromagnetic signals) may 'bend' around
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irregularities in the terrain. If the LOS between two points is not obstructed by

terrain or other interference, it is referred to as clear. If some obstruction prevents

observation between the two endpoints of a LOS, it is considered blocked.

One important consideration in the problem of siting certain kinds of facilities

(such as radar and communication antennas) is the quantity and location of areas

visible from candidate sites. Many practical problems require maximizing the total

value of covered sub-regions without requiring complete coverage of the geographic

area of interest. The details of a specific siting problem are described in Appendix B.

In real world cases, such problems are characterized by insufficient facilities (e.g., air

defense units) to provide complete coverage of all important facilities within the Area

of Interest (AOl) and $he need to select and evaluate potential siting combinations

in an on-line fashion.

Traditional methods of comparing visibility from different locations become

difficult to use when more than a trivially small number of locations is being con-

sidered. Non-traditional methods of portraying visibility information for on-line

analysis might prove to be of great benefit to the process of interactive analysis and

decision making [Ray94].

1.2 Nature of Computation Costs in the Visibility Problem Domain

Storage requirements increase with the square of the linear density of data

points per unit distance on actual terrain. The terrain model employed here, based

on gridded elevation data, is described in Chapter 3. For a specific ground distance

radius, the computation cost for determining the visibility to all surrounding points

from a given observer point by naive methods increases with the cube of the linear

density of data points. The computation cost for determining the visibility to all

surrounding points from all potential observer points in a given ground area increases

with the fifth power of the linear density of data points.
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An example' using representative problem parameters illustrates the impact of

point density on computational cost. The costs for data storage and computation to

calculate visibility from each point in an area approximately 100 kilometers square

out to all points up to 40 kilometers distant are as shown in Table 1.1. These

results assume elevation values are stored as two-byte integers and that visibility

determination to each surrounding point from a given observer point takes on the

order of 1 millisecond of CPU time executed on a Sun IPC workstation for the case

of 80 meter spacing between points.

Point Spacing Storage (MB) Time
1000 meters 0.06MB 67 minutes

300 meters 0.69MB 19 days
80 meters 9.68MB 39 years
30 meters 68.84MB 52 centuries
10 meters 619.52MB 1,274 millennia

Table 1.1: Comparative Costs of Increasing Grid Density

Greater elevation point density is desirable to allow more faithful representa-

tion of the terrain for which any given analysis is being conducted. However, as

Table 1.1 shows, modest increases in the density of data lead to an unacceptable

explosion in the cost of computation when attempting a thorough visibility analysis

by traditional methods. Significant increases in point density for a variety of raster

terrain data have occurred in the past decade, and given the ongoing increases in the

ability to collect, store, and access large volumes of data this trend can be expected

to continue. For example, digital satellite imagery from the former U.S.S.R. is now

available on the commercial market at a resolution estimated at between 1.5 and 2

meters. Low and decreasing prices for GPS (Global Positioning System) receivers

and completion of the associated system of satellites will greatly reduce the cost

of collecting accurate digital elevation measurements, potentially leading to large

volumes of high density data. Sample 1 meter resolution elevation datasets have

1See Appendix A for details.
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already been produced at the U.S. Army Topographic Engineering Center (TEC)

using automated digital stereo extraction.

1.3 Methodology

To find suitable methods for performing visibility analyses at reduced compu-

tational cost, our general approach is to construct the necessary automated tools

to facilitate investigations using real and simulated data; define a formal elevation

model and problem setting for algorithm development; develop a computationally

tractable and highly accurate algorithm for viewshed determination to serve as a

benchmark for faster ordinal visibility estimation techniques; develop techniques to

rapidly and accurately estimate a relative ordinal value of visibility in large sets of

observer points; validate accuracy and predicted performance; and suggest potential

applications.

1.3.1 Construct Methods to Access Data

Digital elevation data is available from several sources, such as the Defense

Mapping Agency (DMA) and the U.S. Geological Survey (USGS). Datasets are pro-

duced at several resolutions based on different underlying models [USG90], and are

typically not organized in a form for efficient access and processing. A necessary

preliminary step in researching approaches to extracting and making use of visibil-

ity information derived from elevation datasets of significant size is the ability to

transparently access several existing formats of wide-coverage elevation data. Tools

constructed to provide this access should facilitate construction of higher levels of

abstraction as appropriate algorithms and representations are developed.
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1.3.2 Elevation Model and Problem Setting

In general, lines-of-sight between two locations will pass between points of

known elevation, not just directly over them. This requires that a strategy must

be selected for approximating the elevations of points not explicitly represented in

the data. On a rectilinear grid where the use of higher order than linear interpola-

tion methods is not warranted, we can establish data point selection guidelines for

designing and evaluating line-of-sight determining algorithms.

1.3.3 Viewshed Algorithms

A fundamental objective of this research is to construct and validate algorithms

that provide substantially improved levels of performance (required computation)

for given levels of accuracy.

Exhaustive, non-approximate determination (referred to as the R3 algorithm)

of the visibility from each grid point within the radius of interest from an observer

point varies with the cube of the linear density of elevation data points. An algorithm

(referred to as the R2 algorithm) for convex areas of interest was developed whose

complexity varies with only the square of the linear density of points while producing

high agreement (more than 90 percent) with the results of the R3 algorithm in

determining the visibility of target points from an observer point. Details of the R3

and R2 algorithms are presented in Chapter 4.

1.3.4 Visibility Index Algorithms

To derive some measure of visibility for each point in an area of realistic size,

the results summarized in Table 1.1 clearly demonstrate some form of estimation is

required. Assigning a visibility index to each point in the grid of elevation data pro-

duces a corresponding visibility grid. Relationships that exist between corresponding

elevation grids and the visibility grids need to be identified and exploited.
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Figure 1.1: Visibility Cells between Latitudes North 34-40 and Lon-
gitudes East 124-130.
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The process of investigating and refining visibility index estimation procedures

was conducted over a variety of terrain datasets in order to explore the broadest

applicability and to obtain insights from as many detected special cases as possible.

Digital Terrain Elevation Data (DTED) data cells (described in Appendix A) from

DMA that have been processed to produce visibility information are shown as the

outlined area in Figure 1.1

1.3.5 Accuracy and Performance Evaluation

The R2 algorithm, due to its reduced computational requirements, can be

used as a means to evaluate the accuracy of visibility index estimation algorithms.

Predicted variations in the computation costs with increasing problem size can be

compared to timing results obtained from tests conducted on actual hardware.

1.3.6 Potential Approach

To make the calculation of visibility values for candidate facility sites more

tractable, a hierarchical approach can be employed. First, an algorithm with greatly

reduced computation load can be employed to examine each possible site to rank

order them from worst estimated visibility to best estimated visibility by assigning

a visibility index to each point. Once this has been accomplished, a more computa-

tionally demanding procedure can be used to investigate a limited number of points

(those with the highest estimated visibility).

1.4 Issues and Goals

1.4.1 LOS Calculation Constraints

In keeping with the elevation model presented in Chapter 3, any LOS proce-

dures employed should take into account all relevant elevation data but prevent all

other elevation data points from influencing visibility results. Stated more formally:
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"* Criterion for Adequacy Every elevation point which is 4-neighbor (east,

west, north, or south) adjacent to a line-of-sight should contribute to deter-

mining visibility and line-of-sight height for that line-of-sight.

"* Criterion for Appropriateness Any point which is not 4-neighbor ad-

jacent to a line-of-sight should not contribute to determining visibility and

line-of-sight height for that line-of-sight.

1.4.2 Performance Improvements over Existing Algorithms

The execution time of the R2 algorithm compares very favorably with the

results from [Jun89] and [Sha9O]. Since the total number of locations, N, is propor-

tional to the square of the linear density of points for a convex area of interest, in

the terms of [Jun89] and [Sha9O] the R2 algorithm achieves a O(N) running time

with a low constant term, along with a lack of geometric special cases and floating

point round-off errors.

1.4.3 Empirical Validation of Algorithms on Real Terrain

Since we will attempt to capitalize on the spatial correlation present in real

terrain to reduce the computation required to determine useful estimates of visibility

index values, the results of such algorithms are checked and evaluated on real terrain

of various compositions and locations. Accuracy is evaluated based on demonstrated

utility in finding best visible points or in showing residual visibility uncertainty equal

to or less than that due to uncertainties in the elevation data.

1.4.4 Identification of Candidate Point Sites

Single point candidate sites can be selected based on their visibility index

values. However, naive selection of the n best sites over an entire area will produce

in some cases highly clustered results in potentially unsuitable areas. What is more
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likely to produce useful results is to select the m best sites in k subareas of the total

area, where n - k x m. Some mechanism for estimating the appropriate size of

subareas, based on the characteristics of the terrain or the specific siting problem

type, must be developed.

A straightforward procedure for forcing the selection of the n best sites to

spread over the entire area of interest by means of subarea histogramming has been

developed and demonstrated. This could be extended to use overlapping subareas

and employ local terrain characteristics to influence subarea size.

1.4.5 Exploit Parallel Processing to Compute Visibility Indexes

The independence of the computations involved in calculating the visibility

index for a given point (e.g., the rays out from the observer) and for each point

in the AOI suggests the applicability of parallel processing to reduce the real time

requirements for producing a visibility image of a given area. This has been employed

with success using a series of workstations of various capacities belonging to the

Department of Electrical Engineering and Computer Science at the U.S. Military

Academy at West Point. Disk storage requirements remained modest due to the

use of networked file systems. Similar parallelism can employed in use of the R2

algorithm to refine the estimated selection of best points produced by calculation

of the visibility index. Parallel computation at several levels of granularity was

employed in conducting visibility analyses, resulting in an increase in throughput

approximately linear in the number of processors employed.

1.4.6 Demonstration to User Community

At an interim point in this research, feedback from users with interests in ter-

rain visibility was sought by distributing preliminary results and soliciting evaluation

and comment on the most useful aspects and areas for further investigation.



10

A demonstration system that can execute on many common MS-DOS personal

computers has been constructed and furnished to TEC for evaluation and possible

distribution to a terrain user community within the U.S. Army (see Appendix D).

This system provides side-by-side presentation of elevation and visibility gray-scale

images with predetermined locations of high-visibility sites, along with data (reduced

'etail 16-to-1) for 12 one-degree cells on the Korean Peninsula. An enhanced

ri of this prototype may as the basis for a component of the next release of the

TL%- AirLand Battle Environment (ALBE) software suite.

TEC is also using algorithms developed as part of this research as part of their

prototype 1 meter spacing elevation dataset analysis project for the U.S. Marine

Corps. Applications include on-line viewshed display and visibility image genera-

tion. Plans are in progress to incorporate this work into TEC's Terrain Elevation

Module and in applications on the Department of Defense Simulation Network (SIM-

NET).

1.5 Organization of Thesis

This chapter presented an introduction to the general research topic and the

methodology, goals, and organization of the thesis.

Chapter 2 provides a survey of previous work on the analysis of elevation data,

methods for visibility determination, and approaches to making use of visibility

results, such as in siting decisions.

Chapter 3 presents a taxonomy of factors that affect the conduct of visibil-

ity analyses and an explicit, detailed model of the elevation data upon which our

research investigations will be conducted.

The development of basic and improved algorithms for determining the view-

shed from a given observer location is described in Chapter 4.
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Chapter 5 describes the rationale, development, and refinement of a fast pro-

cedure to determine accurate visibility index estimates for large numbers of observer

locations, including considerations for parallel execution.

In Chapter 6, the accuracy of the visibility algorithms developed during the

course of this research is analyzed in a variety of problem and terrain settings.

Chapter 7 presents the results of verifying the predicted execution time per-

formance of the viewshed determination and visibility index estimation algorithms.

Chapter 8 summarizes the results and contributions of this research and pro-

poses several avenues for continued work. Among the most significant results are

the development and validation of an accurate O(R 2 ) viewshed determination al-

gorithm, called R2, and a consistent visibility index estimation algorithm called

WeightF that executes in O(R) time.



CHAPTER 2

LITERATURE REVIEW

This chapter presents a summary of pertinent results regarding the visibility prob-

lem area and its associated aspects. Where they relate to specific points in other

chapters, certain references will be cited in that context.

2.1 Background

2.1.1 Visibility

Approaches to computer analysis of visibility have been examined for decades.

A method for determining visibility for air defense models, the Minimum Altitude

Visibility Diagram, was presented in [S171]. Several terrain visibility algorithms

with worst case execution times ranging from O(N 2 a(N 2 , N)) to O(N3 a(N 3 , N))

were evaluated 2 in [Jun89], with N proportional to the number of locations being

tested for visibility from a given observer. Empirical evidence was presented that

the method with the best worst case time, the Triangle Sort Visibility Algorithm,

had an average case execution time of O(N) but required substantial special condi-

tion handling. Noted in [Sha9O] was that the impact of the extremely high constant

term in the expression for the execution time of the Triangle Sort Visibility Algo-

rithm precluded its use on the datasets studied there (the quantity of elevation data

involved corresponded to the size of a DTED Level I cell). As a result, a visibility

algorithm with an empirically derived execution time of O(N 1"24) was employed.

Also presented in [Sha90] was a matrix of visibility counts based on visibility from

a 'scenic view' path and corresponding to the grid of elevation values.

Visibility calculations have been used in non-traditional ways, such as for use

2Where a(m, n) is the inverse of Ackermann's function and for all 'practical' purposes has an
upper limit of 4.

12
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in feature inference [DFFP+86], [DFNN88]. [DFJN92] present the use of visibility

counts for use in image interpretation by performing a visibility analysis on a gray-

scaled image by treating the pixel values as elevations and using a standard e(R 3 )

per observer visibility algorithm. A current overview of visibility computation issues

is presented in [Nag94].

2.1.2 Parallelism

Calculating visibility lends itself well to parallelized computation. Medium and

coarse grained parallelism in investigating the visibility properties of a large number

of observer points can be exploited without special programming or hardware (see

Section 5.8). A finer grained approach using hypercube hardware for parallelizing

visibility determination from a single observer is presented in [TD92], along with a

discussion of some of the common pitfalls possible in designing visibility algorithms.

Relative visibility values are often a factor in facility siting problems. The use of

a transputer array in a heterogeneous computing environment, including personal

computers, to execute a hierarchical location selection algorithm is described in

[Den93]. A strategy for integrating parallel computation hardware for use in spa-

tial analysis problems into existing networks and GIS environments is described in

[Li93]. [Mow93] presents a case study of implementing spatial analysis procedures

on Thinking Machines CM-2 and CM-5 parallel computing hardware, observing

that synchronous message passing operations common in fine grained parallelism

can significantly reduce overall computational throughput.

2.1.3 Siting

Methods of siting a limited number of resources to cover spatially distributed

demands have also been studied for some time. Optimal site selection under the

relatively simple constraint of a fixed maximum distance or time between a site and
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its serviced localities was considered in [TR72]. When each potential site can be

associated with coverage of a specific sub-region of the total AOI, determining the

minimum number of sites required to cover the entire region can be stated as the

Minimum Cover Problem [GJ79] which is known to be NP-Complete unless each

potential site covers two or fewer 'points' (distinct locations). The Maximal Covering

Location Problem as formulated in [CR74] incorporates maximizing coverage of a

population and presents several heuristics and a linear programming formulation of

solutions. [Mil93] presents a three by three location problem typology of nine distinct

combinations of point, line, and polygon natures of facility and client locations. It

was shown in [DFFP+86] that a standard set-covering algorithm can determine the

minimal set of observation points from which an entire surface can be inspected,

using a triangulated terrain model and determining the visibility regions of the

vertices to provide the required inputs.

2.1.4 Terrain Elevation Data

DTED Level I cells of elevation data typically represent a geographic area

measuring one degree of latitude by one degree of longitude. Such cells are often

referred to by the geographic coordinate of their southwest corner. For example,

'N37E127' refers to a cell of approximately 1.5 million elevation points in a 1201

by 1201 matrix. This cell represents terrain between latitudes 37 and 38 north and

longitudes 127 and 128 east. DTED Level I datasets (cells) have been produced for

large portions of the earth's total land area during the past 15 years.

2.2 Characteristics of the Problem and its Domain

While many approaches have been made to the problem " determining or using

visibility characteristics, such as Triangulated Irregular Networks (TIN) [PDDT92],

Blocking Edges [Nai88I, and Visibility Dominance [Lee92], none seem to translate
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well to the scope of current real world problems and datasets. Existing approaches

tend to become too computationally costly as the size and density of data increase,

or involve polygonal approximations of the available data resulting in loss of in-

formation significant enough to obscure the true relative visibility merit of some

potential sites. Results presented in [Kum92] contradict the notion of storage space

advantages to TINs over DEMs, as do cases cited in [Lay93]. Advances in the capa-

bilities and availability of on-line data compression and decompression technologies

may further the relative space efficiencies of DEM representations.

2.3 Practical Considerations

The need to clearly describe the models and algorithm implementations used

in visibility studies and GIS systems in general has been stated in [Fis93]. In many

commercial GIS systems, the algorithms and assumptions employed in viewshed and

other calculations are often not revealed due to commercial competitive or liability

considerations. This amplifies the potential utility of a set of efficient, experimentally

investigated, freely available visibility tools.

The general data model used here will be based upon a raster representation of

the elevation attributes of a terrain surface. Other representations exist and are in

common use, such as Triangulated Irregular Networks (TIN) and elevation contours.

An overview of TIN's and the use of Delaunay triangulation to generate them from

grid cell data is given in [Tsa93].

It is unavoidable that in attempting visibility determinations there will be

errors introduced in attempting to represent physical terrain with a model and

finite digital representation. [Goo92a] distinguishes between error descriptors and

error models. Error descriptors are measures of the difference between the value

of a model quantity and the ground-truth value. An error model forms the basis

for a stochastic process that can generate a population of sample instances of true
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terrain values that differ only in the distortions introduced by error. Generally, error

descriptors can be thought of as pertaining to inputs and error models help gauge

outputs.

Errors in DEM values can be distributed randomly or systematically. The

RMSE for many visibility analyses is often taken as about 7 meters [Fis92], based

on a common USGS standard. [Lay93] mentions two common types of systematic

DEM errors, spikes and strips, with the nature of the errors in a specific DEM

influenced by the methods used in its creation; strip error magnitudes of 10 meters

were reported. Aspect (directional, not gradient magnitude) measures were reported

as highly sensitive to the influence of random errors in DEMs.



CHAPTER 3

VISIBILITY PROBLEM TAXONOMY AND ELEVATION MODEL

In this chapter we first present a detailed taxonomy of the specific characteristics

of the type of visibility analyses we will be addressing. We then present a model

of the elevation values (based on raster elevation datasets) that will be used in

designing the desired viewshed and visibility algorithms, along with a description of

the general nature of LOS determination.

3.1 Taxonomy of Visibility Analysis Characteristics

Although a great deal of work has been done on various ways of examining

the general problem of determining visibility information from digital terrain data,

it is not always easy to directly compare the details and conclusions of various

investigations. In many analyses of typical GIS operations, the specific assumptions

and methods awe not consistently, clearly, and completely stated [Kna92]. The degree

of general applicability from any given analysis may be significantly impacted by

the problem parameters used; for example, an analysis may have been conducted

for a relatively short visibility range for only a few points in a heterogeneous terrain

setting.

To lay out a framework for developing and analyzing the various visibility al-

gorithms presented in later chapters, as an initial step it is necessary to explicitly list

some of the important dimensions of visibility problems. There will be no attempt

to claim that the specific results to be presented will span all of the characteristics

described below, but by clearly placing the context in which this research resides it

will be more straightforward to evaluate it, extend it, and identify contexts in which

it is most and least applicable.

17
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3.1.1 Terrain Characteristics

* Relative Complexity of terrain. The complexity of terrain, for the purposes

of visibility determination, is related to the degree and frequency of slope

changes. The significance of such changes is dependent on the assumed height

of the observer and target above ground level and of the length of the radius

of interest.

* Heterogeneity in the kinds of surface configuration making up the area being

investigated can complicate analysis; for example, the presence of large bodies

of water or plains areas adjacent to complex terrain can influence the raw

visiblity of points on the boundary between regions.

* Man-Made Features may have a significant impact on potential visibility due

to built-up areas or other construction.

* Vegetation can seriously impact visibility and is generally not represented in

digital elevation data [Slo93]. Other terrain data can provide vegetation infor-

mation (when available). Such data may be in a non-raster form, be affected

by seasonal variations, and have error characteristics much different from spa-

tially corresponding elevation data.

3.1.2 Elevation Data Characteristics

Density of the elevation grid (how many data points are used to represent a

given distance along the ground) affects the fidelity of the representation of

the physical terrain, the complexity and practicality of the types of analysis

which can be conducted, and even the nature of what is being measured.

For very dense grids, such as 1 meter between points, simply measuring the

elevation at the given location may be adequate. For more sparse grids, such
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as 100 meters or greater between points, the data collection agent may have

deliberately chosen a 'representative' value to best reflect, according to some

(often not explicitly stated) criteria, all of the terrain which is closer to the

point being measured than any other grid point. This is an instance of the

Modifiable Areal Unit Problem (MAUP) [Fot89]. To provide an intuitive feel

for the effect of point density in representing terrain elevation, Figure 3.1

depicts a grid of elevation values taken near cell coordinate (240,240) of DTED

cell N37E127 at 1:5, 1:2, and 1:1 samplings.

"* Dataset Size. Many visibility analyses are performed on datasets of modest

sizes, such as one to two hundred points on a side. This limits the amount

of computation required and mitigates issues such as earth curvature. How-

ever, it limits the ability to conduct large radius visibility analysis, the choice

of observer locations (since any observer location with a complete potential

viewshed must be no closer than the visibility radius to the edge of available

data), and the heterogeneity that can be encountered on real terrain.

"• Earth Curvature is often ignored in many studies that work with small datasets

that cover limited terrain areas [Fis93]. In attempting to work with larger

scale problems, however, earth curvature must be accounted for. A close

approximation for the variation in effective elevation drop with distance from

the observer is

AEc - RE - RE 2 -D0 2  (3.1)

where Do is the distance from the observer, RE is the effective radius of the

earth, and AEC is the change in elevation due to earth curvature.

3.1.3 Selection of Sample Observer Points

* Exhaustive selection simply chooses every point within an area of interest as
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an observer location for visibility analysis. The obvious advantage is complete

coverage of the available data (except for the points near the boundaries of the

available data for which elevation values are not available out to the radius of

visibility in all directions), the relative freedom from the risk of biasing results

because of sampling problems, and the large quantity of result values from

which to draw inferences. The obvious disadvantages are the potentially large

costs in computation time and, depending on the nature of the information

collected from the analysis, storage requirements.

* Arbitrary selection allows an analyst to investigate hypotheses and perform

intuitive exploration, but provides no systematic basis for identifying points

that best meet some particular criterion, such as having the highest visibility.

e Regular Sampling of the total grid of data points by choosing a subset of points,

where the points selected are equally 'spaced' according to some criterion, is

an easy way of selecting a sample from a raster of elevation values for the

purpose of reducing the amount of data to process when investigating the

visibility characteristics of an area. This can produce good coverage spread

over the entire area but is less desirable than random samples for the purposes

of statistical analysis and may interact with systematic errors in the elevation

dataset in unanticipated ways.

* Pseudorandom selection of observer locations can meet the dual requirements

of spatially distributing a sample of observer locations and preserving the

statistical independence of the sample locations from underlying patterns in

the elevation data, as long as the pseudorandom number generators are robust.

* Extreme Value selection can be used to attempt to match the subset of observer

points to particular requirements or investigations. Extreme (high or low)

values can be selected or computed based on raw elevation values, visibility
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estimates, local gradients, or any measure significantly less costly to calculate

than the visibility analysis to be conducted on the sample points themselves.

9 Dispersed Extreme Value selection employs extreme value selection constrained

in some way to ensure spatial dispersion. This can be accomplished by taking

the extreme valued point(s) from uniformly distributed subcells, pseudoran-

dom sampling that rejects points that are too close to all existing samples, or

other means.

3.1.4 Elevations for Non-Data Point Locations

"* Locations of Defined Elevations. Possible choices of the set of locations where

an elevation value is provided by the elevation model (based on the available

data) can include all areas, points on grid intersections and grid line segments

(see Section 3.2), data value points only, or a mapping of the available data

points to a less dense grid. The TerraBase system [Com88], for example,

for some operations maps screen coordinates to geographic coordinates that

generally do not fall on grid lines. It uses the four adjacent grid point elevation

values to interpolate a value for the desired coordinate.

" Interpolation Method. Interpolations can include step functions such as min,

max, and nearest; averaging the values of the nearest data points; simple linear

interpolation; and higher-order interpolations based on various combinations

of points that may use values beyond nearest neighbors.

3.1.5 Uncertainty in the Data

The importance of being aware and explicit about the inevitable data uncer-

tainty in the digital elevation information used as the basis for visibility determina-

tion has been cited in [WF93] and many other publications. One breakout of data

uncertainty issues is:



23

" Quantization error is inherent due to the nature of digital data representation

and the essentially continuous variation of elevation on real terrain.

"* Discrete Measurement error is the difference between the discrete data value

closest to the true ground elevation and the value actually present in the digital

data; see Equation 3.2

"* Magnitude of errors assumed present in the data, such as an estimated stan-

dard deviation. For analysis in which no error impacts are dealt with, this is

implicitly taken as zero.

"• Distribution of errors, including both a probability density form such as the

Gaussian and the degree of spatial autocorrelation (generally taken as zero

[Fis92]) presumed present in the errors.

3.1.6 Observer, Target, and LOS Characteristics

• Nature of Observer and Target Locations. Although commonly taken to be

points, the observer and the target can each be represented as a point, a line,

or an area. As an example, [TDD91] presents a region (area) to region parallel

visibility algorithm.

* Height of the Observer above the terrain. In many analyses the height of

the observer is taken as zero. This may not be the best choice because it can

make the analysis unduly sensitive to minor random, systematic, or discretiza-

tion errors in the elevation of the observer point and its eight neighbors. In

many potential applications of visibility analysis, the observer may be a person

standing upright, a facility, or an antenna; none of these take their visibility

from ground level.
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"* Height of the Target above the terrain. The height of the target is often taken

as zero, although in many cases the purpose of the visibility analysis is to

determine where objects such as antennas, buildings, aircraft, or eyesores can

be seen from the observer. Tops of such objects are generally not taken to be

at ground level.

"* Range from observer to target is often modest both in terms of number of

elevation grid points (100-200 on a side) and in the actual ground distances

(1-2 kin) corresponding to the analysis.

"* LOS Curvature. The LOS is often assumed to be 'straight', in the sense of

an optical LOS with negligible distortions. In problems involving antennas,

the ability of an electromagnetic signal to 'bend' around terrain features and

detect targets that are not visible to an optical LOS must be considered. Even

in these problems, determination of an optical viewshed may be a first step.

"* Tangent Conditions. Due to the integer representations of elevation common in

raster elevation datasets, situations where a computed LOS is exactly tangent

to an elevation can occur relatively often. An explicit determination of how

to treat such a LOS (clear or blocked at the point of tangency) is necessary.

3.1.7 Calculation Characteristics

* Integer. Use of integer arithmetic throughout visibility determination is at-

tractive because of its simplicity, speed, relative stability, and match to the

problem inputs of integer elevation values. Care must be taken on what inter-

mediate values are represented with integers: for example, if the LOS height

above ground at a given point is measured as an integer and carried forward as

the basis for the visibility determination for a point further from the observer,

accumulated error increases very rapidly.
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"* Floating Point calculations and representations of non-integer values such as

slope provide a convenient means of implementing visibility algorithms, but

can run substantially slower than integer or fixed point operations on many

hardware architectures and introduce complications when testing for equality

between values due to round-off error.

"* Fixed Point arithmetic can combine the speed and discrete comparison nature

of integer operations with some of the range and flexibility of floating point

operations when the range of values, intermediate results, and accuracy re-

quirements are well understood. Some programming languages (such as Ada)

provide built-in support for fixed point operations.

" Continuous interpolations provide modeled elevation values for locations which

do not have an exact corresponding data point in the elevation raster dataset

by means of some continuous function, such as linear or quadratic interpola-

tion.

"* Discrete approximations provide elevation values for non-data-value points

using functions such as min, max, or nearest; the effect of such approximations

is typically to propagate an existing elevation data value to some set of points

in its vicinity. For example, [TD92] use the elevation data value of a point

for visibility computations on any LOS passing through the rectangular cell

centered on that point.

"* Number of Calculation Instances. When we explicitly model uncertainty in

the data, we have the option of performing multiple analyses over several

instances, or possible realizations, of the elevation data.

"* Representation and Operation Ordering. The selection of the quantities to

be represented in visibility calculations and the order in which arithmetic
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operations are applied can have an impact on the outcome of specific visibility

results. Just the simple decision to carry forward the integer distance and

height values of a visibility-determining elevation instead of a fractional slope

value can impact visibility cases where ground elevation is close to the LOS

height based on the previous visible point.

3.1.8 Placement of this Research within Taxonomy

The models and analyses employed here, unless otherwise noted, are positioned

within the visibility taxonomy described in Section 3.1.1 according to the entries in

Table 3.1.

Although errors unrelated to quantization in the input elevation datasets are

generally not modeled here, see section 6.8 for some preliminary results on the

impact on visibility produced by assuming the presence of errors in the input data.

3.2 Elevation Model

Let a landscape L be the physical terrain surface of the AOI defined by a

real-valued function ZL = fL(XL, YL) where XL is the longitude, yL is the latitude,

and ZL is the height3 of the surface above mean sea level (elevation) at coordinate

(XL, yL). A tessellation T of integer values eT = fT(XT, YT) at discrete coordinates

(XT, YT) approximates the elevation at the corresponding location (XL, YL) in L.

Define discrete measurement error to be

reT - ZL - 0.51 if ZL > eT

dT= 0 if ZL =eT (3.2)

LeT -ZL + 05j if ZL < eT

This definition of dT specifies that there is a non-zero discrete measurement error

(in terms of whatever units are being employed, e.g., meters) in the approximation

3Although the unit of elevation measurement is arbitrary, meters are used in DTED data.
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Terrain Characteristics
Relative Complexity varied (complex)
Heterogeneity varied (high)
Man-Made Features none
Vegetation none

Elevation Data Characteristics
Density 70-120 meters (DTED Level I)
Dataset Size viewshed - 750,000 points
Earth Curvature Equation 3.1

Selection of Sample Observer Points
Exhaustive yes
Arbitrary no
Regular Sampling no (tools developed)
Pseudorandom yes
Extreme Value yes
Dispersed Extreme Value yes

Elevations for Non-Data Point Locations
Locations of Defined Elevations grid points & line segments
Interpolation Method linear

Uncertainty in the Data
Quantization integer (meters)
Discrete Measurement not modeled
Magnitude not modeled
Distribution not modeled

Observer, Target, and LOS Characteristics
Nature of Observer and Target points
Height of Observer 5 meters
Height of Target 25 meters
Range 40 kilometers
LOS Curvature straight (optical)
Tangent Conditions treat as visible

Calculation Characteristics
Integer yes (for LOS calculation)
Floating Point (only for full weighting)
Fixed Point yes (for LOS-height calculation)
Continuous interpolation yes (linear)
Discrete Approximations no
Number of Calculation Instances one
Representation & 32-bit integer intermediate;
Operation Ordering manually optimized

Table 3.1: Placement within Taxonomy
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of ZL by eT if the absolute difference between ZL and eT exceeds 0.5.

Note that for any given (z,y) E T, in general eT 3 ZL because eT is integer

valued while zL is real valued, or because eT may have been chosen by the data

collection agency to 'represent' the terrain in the vicinity of (XL, YL) rather than

most closely approximate the precise value of fL(XL, YL). The discussion of covering

triangles in this section provides an example of representative elevation selection.

The coordinates (XT, yT) E T that correspond to coordinates (XL, YL) E L

are typically discrete multiples of some fundamental geographic measurement, such

as degrees, minutes, or seronds of longitudinal (XL) or latitudinal (YL) arc. For

example, the typical DTED Level I data cell has longitudinal and latitudinal spacing

of 3 arc-seconds between 4-neighbor adjacent coordinates. While this method of

selecting discrete locations results in a constant latitudinal spacing (approximately

92.6 meters for a 3 arc-second interval), the variation in the longitudinal spacing

over such a cell may vary from about 0.02% near the equator to about 2% near north

or south 50 degrees latitude. As in many other visibility investigations making use

of real world elevation raster data, here the impact of the variation in longitudinal

spacing at different latitudes is assumed to be negligible in comparison with other

errors resulting from the measurement or sampling process. Variations due to the

possible use of ellipsoidal (as opposed to perfectly spherical) surface spheroids in

the compilation of geographic data are similarly ignored.

In contrast, elevation variations due to earth curvature cannot be ignored over

the distances encountered in many siting problems. For example, over a distance

of 40 km the drop due to earth curvature is approximately 125 meters (see Equa-

tion 3.1), a distance that is significant in the context of trying to track aerial targets

as low as 25 meters above the terrain. Accounting for earth curvature here will usu-

ally be accomplished by adjusting the elevation values for each point in the input

geographic datasets (which are generally referenced to mean sea level) by the amount
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of elevation drop corresponding to the distance between that point and some fixed

reference location, such as the center or the southwest corner of the dataset. If other

information, such as vegetation height, is available and is significant in determining

visibility, it can be incorporated in this step.

Consider a rectangular matrix grid of points M to be derived from T in ac-

cordance with the assumptions stated above. Every point in T has a corresponding

point in M. Therefore, if T is based on a latitude and longitude reference system, so

is M. Since M is rectangular then for any (xM, YM) in M without a corresponding

(XT, YT) in T an arbitrary value well outside the range of known actual elevations is

chosen as the value at M(xM, YM). Let M. be the number of distinct longitudinal

coordinates and M. be the number of distinct latitudinal coordinates represented

in M. The total number of points in M is nM = M, x M.. The terrain distance

corresponding to all longitudinally adjacent points in M is a constant, max, and the

terrain distance corresponding to all latitudinally adjacent points in M is a con-

stant, ma., for all points in M. Stated more formally, let GD[p1 , p2l be the ground

distance (for example, in meters) between points P1, P2 E L, that corresponds to

the two points pl, p2 E M. Then

S=

for i E {1, 2, ... , M.- 1}, j E {1, 2,.. ., My} (3.3)

may = GD[(x,, yi), (x,, yj+,)]

for i E {1, 2,..., Mx}, i E 11, 2,..., My- 1} (3.4)

Some terrain models (e.g., [TD92]) consider each grid point to be at the center

of a rectangular cell and use its value for the elevation of any location within the

rectangle whose elevation is required. Other models make provisions for estimating

elevation values of locations not coincident with a grid point as some function of

two or more points in their neighborhood. In the model presented here the only



30

locations for which elevation values are known or will be estimated occur either at

grid intersection points M(x1 , yi), i E 1 ... M,, j E 1 ... M. or on grid lines. Grid

lines inside M are defined by the equations

z = i fori E {1,2,...,M)} (3.5)

y = j forj E {l,2,...,MY (3.6)

A grid line segment is a portion of a grid line whose endpoints are grid points

in M that are 4-neighbor adjacent. Generally, the elevation value for a location

corresponding to a point on a grid line segment but not on a grid intersection will

be estimated by linear interpolation between the values at the endpoints. More

sophisticated estimation schemes (splines, etc.) for points on and off the grid lines

can be used where specific knowledge of the terrain or application warrant, but this

model in its basic form attempts to minimize the assumptions and computation

complexity in dealing with commonly available elevation raster datasets.

For dealing with the elevations of points not on grid line segments, we intro-

duce the concept of a covering triangle. Consider grid intersection points A, B, and

C in M, where B is longitudinally adjacent to A and C is latitudinally adjacent

to A. The triangle ABC is a covering triangle; in this model we assume that the

elevation of any point in L is no higher than the elevation of a corresponding point

in a covering triangle. There can be at most two distinct covering triangle elevations

corresponding to a particular (XT, YT), and we assume that fL(XL, YL) is no higher

than a projected point in any corresponding covering triangle. Given this assump-

tion, we can make LOS visibility determinations by examining the intersections of

LOS profiles with grid line segments and grid intersection points, and not have to

explicitly estimate the elevation of other (non-grid) points in L.

Using the previous definitions, consider the two-and-a-half-dimension surface

S constructed from the grid points and grid lines in M. Every location (XL, YL) in L

can be mapped to a corresponding location in S by adding an appropriate constant
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offset (OLS, OLS,) and scaling by m.. and ,n..

X = (XL + OLS,)/m,, (3.7)

ys = (L+ oLS,,)/m.,, (3.8)

In general, Zs and ys are real valued such that 0 _< XLS _ M. and 0 _ yLs • M,,.

Points in S which are not on grid intersection points or grid line segments are, by

assumption, not above their covering triangles and can have no effect on visibility

not already modeled by grid segment and grid intersection points. Conceptually,

questions about visibility between two points in L that correspond to points on grid

lines or grid line intersections in M can be analyzed by identifying the correspond-

ing points in S, performing the analysis using the model definition and available

elevation data, and applying the results back to the original points in L.

The elevation value, zs = fs(xs, ys), where 0 < xs _5 M. and 0 < Ys •_ My,

is defined as

M(Xs, Ys) if Xs= LzsJ,ys-= ysJ

INTERPX(xs, ys) if xs : [xsj, ys = hysj
INTERPY(zs, ys) if xs = lXsJ, ys # hYsj

undefined otherwise

where

INTERPX(x,y) M([rx,y) x (z- LzJ) + M([xJ,y) x (rxl - x)

INTERPY(x,y) M(x, [y]) x (y - [yJ) + M(x, [yJ) x (ry] - y)

where 'undefined' means irrelevant for LOS determination purposes (see the discus-

sion of covering triangles, above). Let Se,, be the set of points (x, y) for which zs is

defined.

Other estimates such as the maximum, minimum, or average instead of linear

interpolation can be used to explore the tradeoffs between and sensitivity of various

algorithms.
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3.3 Characteristics of an Elevation Dataset
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Figure 3.2: Elevation Histogram of DTED Cell N37E127

As a specific example of an elevation dataset, we now consider the empirical

properties of the approximately 1.4 million elevation values in the DTED Level I

cell N37E127. Figure 3.2 provides a histogram of the elevations for this area, with

values ranging from 0 to 1400 meters above mean sea level. In this particular region,

clearly most locations are at the lower elevations. An interesting characteristic is

revealed when this same histogram is plotted on a log scale as in Figure 3.3.

With the exception of the very extreme values of elevation, the log plot of

frequency of points shows a near linearly decreasing profile, suggesting (again, for

this particular cell) an approximately exponential decline in the number of points at

a given elevation as elevation increases. A similar decreasing exponential relationship

for the number of points for given visibility index values is shown in Figure 5.4,

although as illustrated in Figures 5.5 and 5.6, and in Chapter 6, there is no apparent

strong relationship between high visibility and high elevation points.
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Figure 3.3: Log Scale Elevation Histogram of DTED Cell N37E127

3.4 Considerations in LOS Calculation

The details of calculating a LOS often receive relatively small mention in de-

scriptions of visibility analyses but can have a significant impact on both results

and execution times. Even given an elevation data structure as seemingly straight-

forward as a DTED grid, many interpretations of where and how to calculate LOS

information have been employed. In [TD921 calculations used the elevation and loca-

tion of the nearest grid data point. Some military terrain analysis systems ([Com88])

have evaluated LOS information at points on the interior of an elevation grid cell,

requiring an interpolation of elevation from the four surrounding data points. In

accordance with the model of elevation presented in this chapter, the LOS methods

employed here will only make use of elevation values or estimates on data grid points

or grid segments.

Figure 3.4 provides an example of a LOS profile. Shown are observer 0 located

a distance Oh above the ground and three potential target locations, A, B, and C.

There are several significant locations, signified by points p0 through p3 where certain
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Figure 3.4: Example of a LOS Profile.

LOS's intersect with or are tangent to the ground profile. Intuitively, observer 0

will have a clear LOS to all points on or above the ground between p0 and Pi, on

or above line segment pj-p, on or above the ground between p2 and p3, and on or

above the ray from 0 through p3.

Key in determining visibility over terrain is the slope from the observer to

points on the ground and to potential target points. Given that the elevation data

has been pre-adjusted to compensate for earth curvature, a slope value $ is deter-

mined by the familiar
Ah

S = A-d (3.9)
Ad

where Ah is the difference in the height and Ad the horizontal distance between

the endpoints of the line segment defining the slope. Using terminology from the

elevation model presented in this chapter, the slope S from the observer 0 to

point p, in Figure 3.4 is given by

1 _ fL(Xp,,yp1 ) - (fL(XO,YO) + Oh) (3.10)
0 -1 =GD[(xp, , yp, ), (xo, yo )]
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where O, is the height of the observer above ground level and (zo, yo) is the coordi-

nate of the observer projected into the zy-plane. In Figure 3.4 point po is at ground

level directly beneath the observer, i.e., (zo, yo) = (zp0, yop). Similarly, the slope

SUA from the observer to a target point A at height Al, above ground level would

be
= (fL(XA,YA) + Ah) - (fL(xo, yo) + Oh)GD[(XA, YA), (Xo, YO )] (.1

Consider the set of all ground surface points from the observer out to a distance

R along a fixed azimuth. Moving out from the observer, a given point on the ground

will or will not be visible from the observer. It will not be visible if the slope to

some point closer to the observer is greater than the slope to the given point. This

implies that a point can only be visible if the slope to it from the observer is equal to

or (more typically) greater than the slope from the observer to every ground point

between it and the observer. It follows that any ground point further out from the

given point can only be visible if the slope from the observer to that point is greater

than or equal to the slope to the given point. Thus, any visible ground surface

point P determines a controlling slope, equal to the slope of a line segment from the

observer to P, such that if a line with that slope is projected out from the observer

to a distance R then no point beyond P which falls below that line can be visible

from 0.

In the context of Figure 3.4 the initial controlling slope is -00, which is the

slope from the observer 0 to point po. Moving further out (to the right in Figure 3.4),

each subsequent ground surface point defines a new controlling slope until Pi is

reached. Point P1 is visible from 0 so by definition the controlling slope Sp, at p1

is the slope of line segment Up-. The ray 1- has slope Sp,, so all surface points

between pi and P2 are not visible from 0, and Sp, is the controlling slope between

Pi and N. The surface points (ZA, YA) and (ZB, YB) beneath potential target points

A and B are between p, and p2. Since S•-- > S-Op,, point A is visible from 0.
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Similarly, because 86g < oOSp-, point B is not visible from 0.

Since the entire surface line segment between p2 and p3 is visible, each suc-

cessive point from P2 to p3 defines a new (and progressively increasing) controlling

slope. No points beyond p3 in this example are visible, so S remains the control-

ling slope to the right of p3. Point C is beyond p3 and S > S 'Ps, so point C is

visible from 0.

Although as abstractions the components of LOS and visibility determination

appear straightforward, once we begin to address specific data models and realiz-

able execution environments then correctness and efficiency considerations begin to

make themselves felt. To some degree, common data models simplify the theoretical

probl. restricting elevation values to integers of a known range. For most mod-

els, however, the distance from the observer to various points along a LOS cannot

always be represented by integer values. Referring to Figure 4.3, we can observe

that although the ground distance between successive x-crossings or successive y-

crossings along a given LOS is constant and therefore scalable to integer values,

the ratio of all y-crossing to x-crossing interval distances is not. Slope values that

are quotients of elevation differences and ground distances (regardless of whether

in integer or real domains) are usually real valued, although when elevations and

ground or grid distances can be represented as integers then slope values can, of

course, be represented as the quotient of two integers.

3.5 Summary

This chapter has presented the problem setting taxonomy and elevation model

that will be used to develop and validate the desired viewshed and visibility index

algorithms, as well as to provide a specific basis to interpret the results of those

algorithms. The general nature of LOS determination based on elevation profile

data was also described.



CHAPTER 4

AREA VISIBILITY DETERMINATION-THE R2 ALGORITHM

4.1 Overview

The R3 algorithm provides a straightforward but relatively costly 0(n.3)

method of determining for which points within a fixed radius R or an average radius

R. of some observer point p. a target at height ht would be visible to an observer

at height h. above p.. It operates by determining a LOS to each potentially visible

point in S corresponding to a grid intersection point in M. Elevations are estimated

as necessary to fulfill adequacy and appropriateness criteria by whatever means are

assumed by the data model, such as linear interpolation (see Chapter 3). In this

chapter we will develop and validate a suitable viewshed determination algorithm,

R2, that executes in O(fnl) time.
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Figure 4.1: Octant Divisions.
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To provide a frame of reference for discussing certain aspects of constructing

practical algorithms for LOS determination, Figure 4.1 shows the numbering system

to be used in referring to specific octants. The definition of an octant does not

include points that are on the boundaries between octants, which fall on lines making

angles of k7r/4 with the x-axis, where k is an integer. Chapter 3 presents some

of the efficiency and correctness issues that can arise and must be addressed by

algorithms employed to compute a single LOS between two points using the data

model employed here. Figure 4.2 shows the views of just the first octant elevations

for the same elevation data samplings shown in Figure 3.1 earlier.

In the following discussion it is again assumed that the observer point is located

within (not on the boundary of) a convex region of target points, which is often

circular or elliptical. We consider the case of determining visibility from a single

observer point, as opposed to a possibly related group of observer points. Under

these conditions, in the absence of further information or assumptions about the

terrain other than the gridded elevation data, it is not possible to determine visibility

from the observer to the surrounding points in less than O(nR2 ) time because each

of the surrounding points must be examined at least once and there are 0(nf, 2) such

points.

4.2 Algorithm Considerations

The R3 algorithm meets the Criterion for Adequacy and Criterion for Appro-

priateness given in Section 1.4.1 but its cost of computation increases with the cube

of the average number of points along a LOS. Figure 4.3 shows the operation of

the R3 algorithm in the first octant. The algorithm evaluates a unique LOS from

the observer location to each target location, as signified by the dashed arrows.

In this case there are 10 target points, with the observer located at the lower left

corner. Also indicated are instances of an 2-crossing point and a y-crossing point.
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Figure 4.3: LOS Crossings of Grid Lines.

An x-crossing point occurs when a LOS intersects with a grid line in M which is

perpendicular to the x-axis, and y-crossing points occur when a LOS intersects a

grid line in M which is perpendicular to the y-axis. The observer location is not

considered a crossing point.

In octants I, IV, V, and VIII there will be more x-crossing points than y-

crossing points, with the reverse being true for the other four octants. Figure 4.3

depicts 10 LOS's (one for each target point), for which there are a total of 40 x-

crossings and 20 y-crossings. In general, for a triangular first octant extending out

X. x grid lines from the observer point, there will be n = = i target points,

~Z i(i + 1) x-cro-sing points, and E i(i + 1)/2 y-crossing points. Note that

the number of target points varies with x. 2 , that there are twice as many x-crossings

as y-crossings, and the number of x-crossings and y-crossings varies with x. . In

octants I, IV, V, and VIII we observe that 0(nf,) 1ý E(x,) and the R3 algorithm

must make an elevation determination at every x-crossing. By symmetry, a similar

relation holds for n, and y. in octants II, III, VI, and VII. Therefore, the R3
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algorithm cannot run in less than 0(n . 3 )

It would be desirable to construct an algorithm which ran closer to the intu-

itive limit of O(nf 2 ) than R3 does. If an approximation more simple than linear

interpolation is made for the elevation and LOS height for all crossing points on a

given segment (or given half-segment), computation would be reduced, but only by

a constant scale factor. This would produce less exact visibility determinations, but

may be acceptable depending on the uncertainty of the elevation data and the in-

tended application. Several obvious approximations would be minimum, maximum,

or simple average of the elevations and LOS-heights.

To achieve a running time faster than R3, an algorithm must either process

LOS's to fewer target points (nA2 for R3) or reduce the average cost of determining

the LOS to a target point (n.A for R3). Figure 4.3 provides a visual clue to one as-

pect of the R3 algorithm that is generating the extra factor of n, over our proposed

minimum cost of computation. Especially on grid segments close to the observer,

many elevation and LOS height determinations must be made for x-crossing points

(other than grid intersections) which are only slightly apart. Note that the LOS

height at a point, if accurately determined, completely represents all the necessary

LOS information between that point and the observer that may be needed to de-

termine the LOS height at points further out. A procedure to produce a suitable

LOS height estimate in constant time for all LOS's crossing a given line segment

would eliminate the multiple determinations on a single segment occurring in the

R3 algorithm, and provide the desired running time of O(nR2 ).

This idea of consolidating elevation and LOS height information along a grid

segment into an estimate represented at one or two points and using it as the basis

for LOS determinations for crossing points on the next column (for the case of the

first octant) of target points suggests the paradigm of an expanding wave front

(see Figure 4.4). This has the apparent potential to improve running time over the
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Figure 4.4: Progression of LOS Wave Front.

0(nfl 3) of R3 by reducing the cost of computing the LOS height of a target point to a

constant (instead of nR for R3). Several approaches have been developed to exploit

this idea. [TD92] developed an algorithm, MB, which required e(nR) processors

and e(nfl) time. The fast LOS procedure for the Xdraw routine in [RFM92])

executes in a non-parallel environment in e(n.R2 ). A similar implementation is

described in [Bro80]. Unfortunately, all of these approaches suffer from what is

referred to in [TD92] as chunk distortion. In the context used here, the Criterion for

Appropriateness is violated because in the course of the progressive application of

the approximation, elevation values that should have no influence on a given LOS

propagate thei- influence as shown in Figure 4.5.

Consider first the triangle of points labeled a, b, and c. For points in the first

octant, the angle 0 formed by the LOS and the x-axis must be between 0 and 7r/4,

so the LOS to a target point a must have an x-crossing on grid segment K that is

not at b or c. Given the elevation data model being used, the elevation estimate of

an x-crossing between b and c should be determined by the known elevation values
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Figure 4.5: Erroneous Propagation in Wave Front Algorithms.

for b and c, so those points are proper contributing points in determining the LOS

from the observer to a.

Applying the criteria for appropriateness and adequacy from Section 1.4.1

determines which points are proper contributing points in the determination of any

given LOS. In Figure 4.5, the triangle encompassing a, b, and c indicates that there

is a proper dependency of the current LOS on all three enclosed points. A shaded

triangle indicates the existence of an improper dependency - that one or more of

the enclosed points are contributing to the determination of the current LOS but

should not be.

With these terms in mind, the parallelogram region formed by the proper

and improper depen'ency triangles encompassing a LOS from the observer to point

7 illustrates the problem that arises from straightforward wave front algorithms.

One of the values properly contributing to the LOS determination for point 7 is

the LOS height at point 6. This was calculated when the wave front algorithm was
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determining results for points along the x grid line containing point 6, and one of the

points influencing the value calculated for point 6 was point 5. Looking one column

further back in the progression of the wave front reveals the improper influence of

point 4 in determining the LOS for point 7. Point 4 properly contributes to the

LOS determination for point 5, but by attempting to capitalize on point 5's value

(to avoid operations on values on grid lines closer to the observer and already passed

by the wave front) to determine a LOS height value for point 6 and subsequently

point 7, point 4 becomes an improper contributing point.

As suggested by the arrangement of contributing points and dependency tri-

angles, the number of proper contributing points flpc will vary from one to two

times the number of x grid lines crossed by the LOS, depending on 0. However,

there are drastic fluctuations in the number of improper contributing points, nic.

Assume an observer at coordinate (0, 0) and a LOS out to a grid point (X, y). Let

0' = arctan .. For 0 -+ 0 or 0 -+ r/4, npc < 2x and nic -+ 0. For 0 < 0 <7r/4,

npc < 2x but as 0 -+ 0' then nIc -- - - npc. In general, for 0 < 0 < /r/4 then

nic = O(X2) as x -+ oo. This does not bode well for the wave front approach, since

the ratio of improper contributing points to proper contributing points along a LOS

with a given 0 will increase proportionally with x.

Given this result, the likelihood that one or more relatively extreme elevation

values (such as a hill top or ridge line) will occur in the set of improper contributing

points increases as the LOS length increases, although its impact decreases with

its distance from the observer. A single such extreme value could produce patently

erroneous LOS height results for a large fraction of the total target points, raising

serious questions on the usefulness of a direct wave front approach.

Figure 4.6 shows the propagation of LOS-height error in an elevation dataset

in which all elevation data values are zero except for the point (3,3), which has an

elevation of one unit. The horizontal axis shows distance from the observer in x-axis
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intervals, and the vertical axis shows the maximum LOS-height error (based on the

criteria from Section 1.4.1) at that x-axis distance. Note that the maximum absolute

error increases essentially in a linear fashion with distance from the observer. Errors

introduced relatively close to the observer, even if small, can produce large changes

in LOS-height at longer ranges. Since 75% of the points in a circular region around

an observer will be found at the longer (greater than or equal to R/2) ranges,

avoiding chunk distortion error is important for any accurate visibility algorithm.

It is possible to modify the wave front approach to reduce or eliminate the

influence of improper points. [TD92] developed a modified algorithm, PB, which

runs in e(nlA) time but requires e(nlR 2) processors and so leads to an e(flR 3 ) pro-

cedure for sequential machines. Modifying the Xdraw procedure in [RFM92] to

incorporate careful control of the size and order of evaluation of subintervals of the

wave front can eliminate either of the 'wings' of improper contributing points, but

not both.
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4.3 R2 Algorithm Development

We turn now to Figure 4.7, another representation of selected aspects of the

R3 algorithm in operation in octant I, for insights into developing a more efficient

way of determining or adequately approximating visibility from an observer to all

grid intersection target points within a convex region. Target points on x grid lines

3, 4, and 5 are labeled a through i. The non-target point x-crossings of x grid lines

3 and 4 by LOS's to target points a through d are emphasized with small shaded

square markers; x-crossings on lines 1 and 2 are not emphasized due to congestion.
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Figure 4.7: Operation of the Basic R3 Algorithm.

Since in the R3 algorithm the order in which LOS's to target points are eval-

uated is not important, let us presume that LOS's to points a through d are de-

termined before any other points in the first octant. As a LOS is run from the

observer to each of points a through d, it encounters 4 x-crossings. Let ki represent
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the x-crossing where a LOS from the observer to point k crosses x grid line i. While

we know the visibility and LOS height at points a through d, we do not have any

exact corresponding information about the first octant target points on x grid lines

1 through 4 (such as points e through i). However, if during the operation of the

algorithm we save the LOS height values at x-crossings, we do have potential esti-

mates for the points e, f, and g in the form of a4 , b4, c4 , and d4 (the four shaded

boxes on x grid line 4). This suggests a general approach of running LOS's to the

outermost points of the region and using their intermediate results as estimates for

the visibility and LOS height information for interior target points. We achieve a

faster running time in comparison with R3 by reducing the number of points to

which complete LOS's are calculated, instead of reducing the cost of running (or

extending) a LOS to a specific point as in the wave front approach.

By visual inspection we can see that, of the x-crossings available, a4 is the

best (in terms of spatial proximity) estimate for point e and d4 is the best estimate

for point g. While the best estimate for f, b4 or c4 , is not readily apparent to

the unaided eye, it is an inexpensive determination to make during computation.

Considering x grid line 3, we see that if we used 1R3 there would be 7 x-crossings,

only the four emphasized crossings a3, b3, c3 , and d3 would be available here as

estimates for points h and i because e3, f3, and g3 would not have been computed.

LOS's would not be run from the observer to points e, f, g; their visibility and LOS

height information would be estimated as described above.

Note that as we work our way back towards the observer, the x-crossing points

on LOS's to the outermost points become more closely spaced and can generally pro-

vide estimates closer to target points than at x grid lines further from the observer.

An algorithm based on this idea of estimating interior point values from x-

crossings of LOS's to 'boundary' points would calculate a number of LOS's propor-

tional to 2 7rnR. The number of locations along each LOS at which operations (each
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taking no more than constant time) would be performed would be proportional to na.

Therefore, the expected running time of this method would be e(27rn, 2 ) = O(nR2).

Since this is our targeted improvement over the 0(n,,3 ) time in the R3 algorithm,

we refer to this approach for now as the initial R2 algorithm.

To implement this algorithm it is necessary to define more formally what

'boundary' points are. Initially, let B be the set of points on the boundary of a

convex region containing an observer such that all points in B are target points

(and therefore the distance between them and the observer is less than or equal to

R) and they are 4-neighbor adjacent to at least one point that is not a target point

(not in the convex region). An example of such points, labeled a through g, for the

first octant is shown in Figure 4.8
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Figure 4.8: Coverage Problems in the Initial R2 Algorithm.

The convex but non-circular outline of the region of target points in Figure 4.8

illustrates two problems that can arise with the boundary definition for the initial
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R2 algorithm. A type 1 problem is illustrated by shaded region 1. Intuitively, we

desire that any crossing point that is to provide a LOS height and visibility estimate

for a target point be within one-half of a grid segment length from that point. The

grid intersection point at the center of shaded region 1 has no x-crossing point

that close. A type 2 problem is illustrated by shaded region 2. In programming

an implementation of the R2 algorithm, it is possible to make the code simpler and

more efficient when (again from the perspective of the first octant) it can be assumed

that the grid segment beneath every target point contains at least one x-crossing.

This is perhaps less serious than a type 1 problem, but it would be useful if any

modification to the initial R2 algorithm to prevent occurrences of type 1 problems

also eliminated type 2 problems.

Both type 1 and type 2 problems derive from relatively wide angular separa-

tions between adjacent LOS's, which are in turn related to the distance between

adjacent boundary points. These distances are greatest when 0 approaches 7r/4

and the adjacent boundary points are not 4-neighbor adjacent (i.e., a line segment

between them is a diagonal, not a grid segment).

Figure 4.9 illustrates a modification to the R2 algorithm that increases total

computation by no more than a factor of two and which prevents occurrences of type

1 and type 2 problems. Here, the definition for B is changed so that all boundary

points may be 8-neighbor (instead of 4-neighbor) adjacent to at least one point

outside the region of target points. LOS's running from the observer to points co,

do, eo, fo, and go have been added as a result of changing the definition of B. In

particular, the LOS to do removes the type 1 problem and the LOS to fo removes

the type 2 problem. The additional LOS rays also provide more spatially proximate

estimates for many other interior points.
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4.4 Validity of R2 Algorithm

The degree of agreement between the R2 and R3 algorithms can be evaluated

in several ways, depending on the intended use of the visibility results. One direct

way is to measure the difference in the LOS-height at each target point between the

value calculated by R3 and the estimate provided by R2 and call this difference the

R2 LOS-height error.
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Figure 4.10: Distribution of R2 LOS-Height Differences (meters).

The degree of agreement between the R2 and R3 algorithms can be charac-

terized by measuring the differences in the LOS-heights calculated by each method

at each target point. A histogram of these LOS-height differences, computed using

an observer-point with a high visibility index in DTED cell N37E127, is shown in

Figure 4.10. In this figure the LOS-height produced by the R3 algorithm is taken

as the reference height, with the R2 algorithm producing the estimated height. The

difference between these two LOS-heights at a given point is the LOS-height error

of the R2 algorithm.

Figure 4.10 shows a histogram representation of the distribution of these errors
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over a circular area of ground radius 24,500 meters in the southwest quadrant of

N37E127, encompassing over 276,000 interior octant points. The mean difference

between calculated LOS heights was less than one meter, with a standard deviation

of less than four meters. The basic statistics of the LOS-height error for these points

are given in Table 4.1. Further confirmation of the validity of using the results from

the R2 algorithm as an accurate visibility measure is presented in Figure 4.12.

LOS-height Error Statistics
Mean error -0.82 meters
Min error -67 meters
Max error 60 meters
Std deviation 3.4 meters

Table 4.1: Properties of R2 LOS-Height Error.

Both Figure 4.10 and Table 4.1 suggest a generally high degree of agreement

between the LOS-heights produced by each algorithm. Further evidence of the

utility of the estimates produced by the R2 algorithm is provided by considering a

simpler question: is or is not a target at a given point visible from the observer,

without regard to specific LOS-height? Table 4.2 shows for the same sample area

mentioned above the total interior quadrant points considered, the number of points

where the two algorithms agreed on whether or not the point was visible from the

observer, and the total number of points predicted to be visible by each algorithm.

Total Matching Visible Visible
Points Points by R2 by R3

276,460 273,144 124,161 122,627

Table 4.2: Count of Visible Points by R2 and R3.

The two algorithms agree on a point-by-point basis on over 98.8% of points,

and on their respective counts of visible points they vary by less than 0.6% of the

total points. In the visibility results over two test sites from 7 GIS systems presented

in [Fis93], the reported number of visible points within the potential viewsheds
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varied from 1780 points to 2610 points for one site and from 1465 points to 2270

points for the other. The standard deviation of the reported number of visible points

was 322.4 for the first site and 363.9 for the second. Compared with the reported

variation in results from established GIS systems, the correspondence between R2

and R3 is excellent.

The preceding analysis was conducted using a version of the R2 algorithm that

linearly interpolates elevations between 4-neighbor adjacent grid points as described

in the model of the elevation data in Chapter 3. Some constant time savings can

be achieved by employing other methods of estimating such elevation values, such

as taking the maximum, minimum, or simple average of the two known elevations

at the end of the pertinent grid segment.
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Figure 4.11: Comparing 4 Variants of R2

The distribution of LOS-height errors resulting from these and from linear

interpolation are shown in Figure 4.11. While all produce good agreement with

R3, the original linear interpolation method provides the best match in terms of

minimizing the average and standard deviation of the absolute error. The cost for



54

its additional floating point interpolation operations is minimal compared to the

basic cost of the operation of the algorithm, especially on a superscalar or other

pipelined architecture.

A more systematic evaluation of the consistency of the agreement between the

visibility fractions calculated by R3 and R2 was conducted by selecting 1041 points

spatially distributed across the DTED cell N37E127. Figure 4.12 shows the high

degree of agreement between the R2 and R3 results across the spectrum of visibility

values for the points sampled. Each potential viewshed consists of 740,843 points.

Approximately 25 days were required to compute the R3 values; R2 values were

computed in less than 8 hours.
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Figure 4.12: Agreement of R2 and R3 Values for 1041 Points in
N37E127

Note that the form of the equation fitted to the observations is y = a + bx,

with a very high 0.999776 degree of correlated variation between the R2 and R3

visibility fractions. The y-intercept value of 0.00002945 is very close to the expected

value of 0, and the proportional term of 0.99324 is very close to the expected value

of 1.
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4.5 Initial R2 Execution Time Results

The entire purpose of devising the R2 algorithm is to create a procedure with

acceptable, if approximate, results with a running time of EO(nl 2 ) instead of the

0(n.') time for R3. Although it is clear from the design of R2 that it should

achieve this goal, actual execution time information is in order for confirmation

purposes.

Radius Number of R2 Time R3 Time
(meters) Points (seconds) (seconds)

24500 278K 18 896
12500 70K 4-5 131

Table 4.3: Sample Execution Times of R2 and R3.

Table 4.3 illustrates the variation of execution time with radius of interest

for the same region in N37E127 used for Figures 4.10 and 4.11. As the radius of

visibility increases by a factor of 1.96, the execution time of R2 increases by about

a factor of 4. The time of R3 increases by close to a factor of 6.8, which is close

to the factor of 7.5 predicted by a cube relation. Variations between expected and

actual timings for different values of R are explained in part by the fact that the

cost of operations at each crossing point will be different for visible and non-visible

points. Visible points may require updates to the determining LOS data, whereas

non-visible points do not. Since the ratio of visible to non-visible points for areas

with different values of R will not in general be identical, their relative per-point

execution times will vary within a bounded constant factor from direct quadratic

or cubic relations. This is in addition to small variations due to virtual memory

operations, caching patterns, etc., on the host workstation.

It is worth noting that even for relatively modest distances, Table 4.3 shows

the R2 algorithm is already between one and two orders of magnitude faster than
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R3 (similar program coding techniques having been employed in implementing each

method). The performance advantage of R2 over R3 can be expected to increase

linearly with the increase in the radius of visibility. An interesting speculation at

this point is that the radius of visibility (for this region) at which R3 becomes more

efficient than R2, due to the internal bookkeeping and boundary sequence control

required in R2, may be at about 3000 meters, which is between 35 and 45 grid

points for the sample dataset, depending on azimuthal direction. More detailed

information on R2 execution time performance is presented in Chapter 7.

4.6 Summary

Have our goals for the R2 algorithm been achieved? The modified R2 algo-

rithm has run time O(nR2), and is therefore within a constant factor of optimality

as discussed above. It provides exact results only for points in B, points on the

boundary lines between octants, and for the relatively few interior points where a

LOS to a point in B crosses a grid intersection point. For the majority of points for

which only estimates are provided (in the form of exact results from spatially close

crossing points), values for target points closer to the observer will on average have

close- pproximating points than target points further out towards the boundary.

Figure 4.12 provides further evidence of the accuracy of R2 based on a large number

of test points.

In a narrow sense the criteria for appropriateness and adequacy will not be

satisfied in all cases, because the LOS from the observer to the estimating crossing

point will be 'near' but not identical to a LOS from the observer to the target point.

In a broader sense, however, these criteria are satisfied in that the problems with

wave front algorithms illustrated in Figure 4.5 - the undue influence of extreme

elevation points over large areas - have been eliminated.

Depending on the use intended for the results of the R2 algorithm, it may
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be appropriate to view its operation as generating an alternative tessellation to

one that corresponds to a normal rectangular grid. Figure 4.13 shows the pattern

generated by the x-crossings of the modified R2 algorithm. For points in B, on the

boundary between octants I and II, and certain interior locations, the points in this

alternative tessellation correspond to those of the original elevation grid. Figure 4.14

shows the same points with the LOS lines removed for greater clarity. The increasing

divergence between the elevation data tessellation and the R2 tessellation can be

noted as distance from the observer increases.

Given that the original layout of elevation values is only one of many choices of

patterns to represent the underlying terrain, it may be valid to consider the points

produced by the R2 algorithm as an alternative pattern for representative visibility

values, which closely follows but is not identical to the pattern of the elevation

data. In this sense, the pattern produced by the R2 algorithm are not estimates for

points in the elevation data pattern, but simply an alternative spatial sampling. For

latitudes where the inequality of north-south and east-west ground spacing among

elevation sample points in DTED data results in a pronounced rectangular (non-

square) grid, the variations in the R2 pattern from the original grid may on average

provide a more uniform sampling of the terrain.

Tradeoffs between computational cost and fidelity to the original grid can be

made by extending the value of R used in determining the boundary points by some

constant scale factor C; for example, let M' = CR. In determining boundary points

we follow a boundary that is a distance M' from the observer, but when actually

running a LOS we only extend it to points within distance R from the observer.

The cost of execution is now E((2rnAR) = e(27rCnR2) = O(nR2 ), which is within

constant factor C of R2 when K' = R.

A further generalization of R2 would be to employ an angular separation

between adjacent LOS's that is not determined by ending each LOS on the exact
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location of a boundary point. Other criteria could be used, such as minimizing the

number of LOS's to avoid type 1 and type 2 errors, or providing the most uniform

coverage (best match to the original grid) for a given number of LOS's. Another

question that could be investigated is determining the fraction of interior points for

which R2 computes an exact LOS height as a function of R and convex region shape.



CHAPTER 5

DEVELOPMENT OF LOS RAY ESTIMATOR ALGORITHMS

In this chapter we will propose several visibility index determination algorithms,

all based on sampling potential visibility from an observer by constructing a set of

equally spaced LOS rays from an observer. The computational cost for all of these

algorithms is 8(n,), compared with e(nR3 ) for R3 and 0(n.') for R2.

The analysis of visibility information for a significant real world problem area

(in excess of 23 million observer points representing approximately 150,000kmn2 of

terrain on the Korean Peninsula) was conducted to develop, refine, and validate

visibility index estimation algorithms. Elevation data was adjusted according to

Equation 3.1 prior to conducting visibility calculations. Selected terrain regions have

been analyzed to examine changes in visibility estimates produced by variations in

approximation parameters such as ray density and point-distance weighting.

5.1 VL Algorithm

The basic VL (Visibilty-LOS) algorithm to calculate an estimated visibility

index from a specific observer location is shown below. It borrows from the Object-

Oriented notation from the C++ programming language and some additional syntax

from the Ada programming language. The fundamencal object, gi, contains the

adjusted elevation raster and various descriptive and visibility state information

accessed and manipulated by method routines.

The method DineEi•e•atfmo.Profile creates a one dimensional vector of elevation

values for each location on the grid where the LOS ray crosses an x grid line in

octants I, IV, V, and VIII and where it crosses a y grid line in octants II, III, VI,

and VII. Where the LOS ray crosses a grid line segment that is not on a grid point,

linear interpolation between the endpoint values of the segment crossed provides the

60
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# Basic VL algorithm.

Ray.Grdpokft:= 0;
Vhibke.-Gpo := 0;
FOR i IN I ... Num,,b,..OS.Ray

grid.Deb-Elvati.Pmfie(Obuem.LOSRayEndpointr);
Ray-Grdpokist += grid.Vahmiu-Proik;
ri.WOCa.ate ,oLroihf);

Visible.Gvidpoints += grid.Visible.ProfleoPoints;
Vimued-fLactk_.Visible:= V .ibleGridpoints / RayGridpoints;

elevation value used. The method CalculateiOS.o"_Profile takes the vector of elevation

values which represents the one dimensional visibility profile and determines the

visibility of each point in the profile.

# CalculateLOS-onProfile method.

CoatrollhSlope:= -oo;
PointsVisible:= 1;
FOR i IN 1 ... Number..oProfilePoints

CurreLSIop:= (ProflleElevation[iJ + TargetHeight - ObserverElevation) / i;
IF CurrenLSiope ý> ControllingSlope THEN

ThisSlope := (Prolile.Elevation[i] - Observer-Elevation) / i;
IF This.Slope Ž> ControllingSlope THEN

Coetrolling.Slope:= ThisSlope;
PointsVisible += 1;

Note that the counter of the number of points visible from the observer is

initialized to 1 instead of 0 because the observer point is always visible from itself.

5.2 Investigating Visibility Index Estimates

An estimate of the visibility index for each point in an area of interest can

be computed by constructing some number nvi of equally spaced LOS's from each

observer out to the range of interest and summing the number of points visible
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from the observer along each LOS. This ýum can be scaled to make best use of the

representation being used to store the result; for a 16-bit signed integer, the result

could be scaled to the range 0-32767. Evidence that using LOS samples from each

observer point can produce a consistent visibility index estimate was gathered by

performing the same analysis using 32, 64, 128, and 256 LOS's from each observer

point, using the VL algorithm. The results are shown graphically in Figure 5.1 by

a sampling of 256 points from the terrain represented by cell N37E127, comparing

results obtained using 32 rays and 128 rays.
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Figure 5.1: 40-kilometer Visibility Index Values, 32 and 128 LOS
Rays, N37E127.

Each point in the figure represents the visibility index values of the same

location on the ground as estimated using 32 and 128 rays. The evident near-linear

relationship of results obtained from each ray density suggests that using 32 rays

produces estimates very similar to those achieved using four times as many rays;
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even fewer rays may be appropriate for this particular cell. Also evident is the

relatively small number of points with visibility values at the high end of the total

range.

A gray-scale view of elevation in the northwest section of the DTED Level I

cell N37E127 is shown in figure 5.2. This same area is shown in figure 5.3, with

lighter levels of gray representing locations of high visibility. Initially, more than

50 days of execution time on a Sun IPC workstation were required to produce the

visibility image for a DTED Level I cell. Subsequent refinements (see Section 5.4)

reduced the time required to between 4 and 5 days. Parallel processing of separate

terrain areas on networked workstations reduced elapsed time by a factor essentially

linear in the number of workstations used.

5.3 Hypotheses and Characteristics

Consider the possible distributions of visibility values. If a very small number

of points occur that have visibility indexes in the high range of visibility values for the

entire AOI, this would significantly reduce the number of locations to be examined by

specific site selection algorithms or interactive on-line analyses. Analysis conducted

on over a dozen terrain cells suggests that such distributions are common on real

terrain.

The density histogram of points having particuar LOS values for the visibility

iudexes computed for N37E127 is shown in figure 5.4. The near linear decline in the

log of the number of points as LOS value increases suggests a negative exponential

relationship. For terrain where this or similar relationships occur, we can expect to

find relatively few points with high LOS values.

When spatial relationships among data points are ignored, an examination

of corresponding elevation and visibility points in N37E127 reveals the lack of any

obvious correlation between elevation and visibility values. Although the elevation
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Figure 5.2: Gray-Scale Elevation Image of DTED Cell N37E127.

Figure 5.3: Gray-Scale Visibility Image from DTED Cell N37E127.
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Figure 5.4: Log Distribution of LOS Index Values from DTED Cell
N37E127.

values of data points have significant spatial correlations, the elevation of a given

location is by itself only slightly correlated to its visibility index estimate. A sample

of 256 points in figure 5.5 shows this graphically. Chapter 6 provides a more detailed

examination of possible relationships between elevation and visibility.

Because it can be important in siting problems to identify a limited number of

candidate sites with the best visibility (largest numbers of potential viewshed points

visible), a legitimate question is whether some correlation exists between elevation

and visibility for the best candidate sites, even if correlation is low overall. Evidence

to date suggests that this is not the case. The pattern of elevation and visibility

for the 110 points in N37E127 with the best VL visibility is shown in Figure 5.6. A

more detailed presentation of the low correlation between the elevation and visibility

index value at given points is provided in Chapter 6.
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5.4 Pseudo-Fixed Point Optimizations

Although many programming languages lack built-in support for fixed point

operations, careful partitioning of relative long (32-bit and greater) native integer

representations can achieve the same effect, as long as attention is paid to the pre-

cision required by the problem and the number of times values must be converted

to and from the pseudo-fixed point format. For example, since the maximum dif-

ference in elevation between any observer and target elevations on earth are known

to be less than 16384 meters, only 13 bits in a 32-bit integer are needed to repre-

sent any such difference value. During visibility calculations where the divisor is an

integer grid count, this allows a relatively accurate (18-bit fractional component of

the quotient) pseudo-fixed point division to take place by shifting such an elevation

difference value left (a computationally inexpensive operation on typical hardware)

by 18 bits and performing a standard integer division. Use of such techniques to

eliminate most floating point operations during the execution of the VL algorithm

improved execution time by approximately a factor of 4 on Sun IPC hardware.

5.5 WeightF Algorithm

Real terrain manifests a significant degree of spatial correlation. We do not

observe a mountain peak within one grid point of a valley bottom in normal elevation

datasets. If we hypothesize that this correlation extends significantly to visibility

subregions, then we could add to the accuracy of the visibility index estimates

produced by the VL algorithm by using the visibility value for each point on a LOS

ray to infer the visibility characteristics about the unsampled points in its vicinity.

A straightforward way of doing this is to weight each point on a LOS ray by the

percentage of the area within the total potential viewshed that is closer to it than

to any other point on any LOS ray. This percentage is proportional to the distance

of the point from the observer, which serves as the basis for modifying the VL
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algorithm to produce the WeightF (Weighting-Full) algorithm.

# Weight-F algorithm.

V'iVwshedactn-Vsible:= W
FOR i IN I ... Numbu'.dJ.LOS..Rays

grld. Debe..ELwaiu..PmfiObImms.LOSRayEadpoieoiJ]);

VFW.Ca ~~-WeghO..LOSouPIe;
ViwwshedraVctionLfVibh +=

gdd.Wegl'tedPI.i&Vhible / grId.LOSRay.Ara;
Viewsb'•d'actio.Viuible /= Nunber-oLLOSRays;

The individual LOS profile visibility calculation is modified to weight the count

of visible points by the relative distance from the observer for each visible point. It

also tracks a weighted count of all visible points which corresponds to the total area

of the potential viewshed.

# Modified LOS profile visibility calculation.

Caoitrl.giloe:= -oo:
WeightedPoints.Visible:= 0;
LOSRayArn := 0;
FOR i IN I ... Number-ooLProfilePoints

LOSRay.Arm += i;
CurreuLSIope:: (Profile.Elvation[i] + TargetHeight - ObseverElevation) / i;
IF CarrenLSlope > Controlling.Slope THEN

This-Slope:= (ProfileElevation[iI - Observer-Elevation) / i;
IF This.Slope Ž_ Controlling.Slope THEN

Controlling.Slope:= This-Slope;
WeightedPointsVisible += i;

5.6 Weight Algorithm

The standard implementation of the WeightF algorithm requires the accumula-

tion of fractional contributions or other floating point representations to determine
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the sum of contributions weighted by their true distance from the observer. An

integer-only approximate weighting is employed in the Weight algorithm that uses

the grid segment distance along the most rapidly varying axis as a proxy for distance

from the observer.

# Weight algorithm.

SumWeigtd&PoWti$_VWiWe 0;
SuenWeighted_TotaLAra := ;
FOR i IN I ... Number-ofLOSRays

grid.De.ne.Ekevation.Profie(Obwrver.LOS.Ray.Endpoint[i]);

grid.Cakulatf.Weighted.LOS-o.LProfileO;
SunWeightedPointLVisible += grid.WeightedPointsVisible;
Sum.WeightedTotaL~rea += grid.LOSRayAea;

V'kwsbe&FractiwV'u.ibk:= Sum_WeightedPoinUs_VWbke / SumWeightedTotaArea;

This saves one floating point divide operation for each LOS ray computation

and replaces a floating point addition with two integer additions. The impact of the

resultant distortion in the weighting of points in LOS rays (off of the horizontal and

vertical axes) is shown in Chapter 6.

5.7 Visibility Images

The VL, WeightF, and Weight algorithms have computational requirements

that are low enough to allow the calculation of visibility index estimates over sub-

stantial viewsheds for large numbers of observer points. This offers the potential to

create visibility images providing full AOI coverage that can be used for interactive

exploration and analysis.

5.7.1 Magnitude-Only Visibility Images

By mapping visibility index values to intensity values for gray-scale display

screens or even black-and-white hardcopy media with adequately fine dithering, a
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visibility image of an area analogous to an elevation gray-scale image can be ren-

dered (for example, see Figure 5.3). The ability to produce such images in quantity

(i.e., over many areas and using many combinations of LOS parameters) offers a new

way of displaying large amounts of visibility information in an intuitive fashion. The

military applications of magnitude-only visibility images are obvious ([Ray94]), but

many users of GIS capabilities may also find such visual, non-numerical representa-

tions appealing and useful.

5.7.2 Directional Visibility Images

Color displays have been used as an alternative to gray-scale representations for

the purpose of depicting raster intensity values, such as elevation or visibility indexes.

An alternative use of color capabilities is to map hues to directions, analogous to

a color wheel. While this method does suffer from some limitations (such as the

many-to-one mapping of visibility distributions to specific hues), it adds another

way of visualizing visibility relationships in a region [FR94b].

5.8 Parallelism Considerations

Characteristics of many visibility algorithms are well suited to parallel execu-

tion at several degrees of granularity. During the conduct of this research, practical

experience with parallelism on several levels was gathered. Even finer grained uses

can be employed without significant changes to the basic algorithms. Operation of

any of the VL-based LOS ray algorithms can be executed for the same observer by

dividing the n total rays over m available processors (assuming m < n), although

the efficiency of such a scheme would be heavily dependent on memory organization

and capacity. Even an interactive use of the R2 algorithm could easily parallelize

over 8 processors by assigning one octant per processor.
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" WAN-Connected Stations. Workstations geographically dispersed (at Troy,

New York and at West Point, New York) executed visibility analysis proce-

dures on locally stored copies of elevation and output datasets. Summary

results and visibility datasets were collected via the Internet. One disad-

vantage was the need for separate copies of input datasets. The advantages

included reliability (both sites were down intermittently but never at the same

time), ease of parallelization, and lack of mutual interference. Monitoring was

straightforward via multiple windowed telnet sessions and Network File Sys-

tem (NFS) file status monitoring and distribution. To fully exploit the overall

reliability of geographically distributed computation, robust and automatic

checkpoint and restart facilities were built into the software implementing the

visibility algorithms.

"* LAN-Connected Stations. At each site, multiple workstations shared common

input datasets via LAN-connected shared file systems. A disadvantage was

that outage of key file servers could affect ail running analyses since the file

system was not redundant. The ability to maintain single copies of input

and intermediate files was an advantage. Problem sets as small as 30,000

observer points were divided across physical workstations, with control and

results consolidated through shared directories.

"* Multi-Processor Stations. Individual workstations, such as the Sun 670-MP

with 2 to 4 physical processors each, were used to run visibility analysis on

processors while leaving adequate processors free to service interactive loads.

Although not exploited, physical memory and virtual memory demands could

have been reduced through the use of shared memory . gments.
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5.9 Summary

In this chapter we have proposed three e(nfl) visibility index estimation algo-

rithms: VL, WeightF, and Weight. Investigation on real terrain showed consistent

visibility estimates can be produced by the comnmon underlying approach of sam-

pling visibility by calculating a set of equally spaced LOS rays from an observer.

The results of the visibility index analysis on a sample elevation dataset suggested

that observer points with relatively high visibility index values may be a very small

part of the total set of observer locations. Programming optimizations and use of

parallel execution to speed up visibility analyses was also described.



CHAPTER 6

ACCURACY OF VISIBILITY ESTIMATES

This chapter investigates the critical issue of how accurately various O(R) visibility

algorithms based on determining the visibility along a fixed number of LOS rays can

estimate the true viewshed fraction from an observer. The R2 algorithm is used as

an accurate reference value of true viewshed fraction because it requires significantly

less computation than R3.

6.1 Overview of Methodology

Unless otherwise stated, all visibility calculations in the following examples

were calculated usin- a 40 km radius, a target height of 25 meters, an observer

height of 5 meters, and were taken from the DTED Level I one-degree cell with a

southwest corner located at 37 degrees north latitude, 127 degrees east longitude

(N37E127). This cell contains elevation values ranging from 0 to 1462 meters above

mean sea level. Mean elevation is 197 meters, median elevation is 152 meters, and the

standard deviation of elevation values is 161.0 meters. Visibility measures are stated

as the fraction of points in the potential viewshed at which a particular algorithm

determined or estimated a target would be visible from the observer location.

The algorithms employed include:

"* R2 The circumference sweep point-by-point visibility estimation algorithm

described in Chapter 4.

"* VL The initial visibility estimation algorithm employing a specified number

of LOS rays without weighting individual points described in Chapter 5.

"* WeightF A visibility algorithm employing a specified number of rays that

uses an accurate area weighted technique, described in Chapter 5.

73
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* Weight A visibility algorithm employing a speciiied number of rays that uses

an approximate point weighting technique, described in Chapter 5.

A commercial curve-fitting and analysis software package was used in selecting

and evaluating possible equations and parameters that could best describe the ob-

servations. The equations selected for display in the following figures were selected

based on best correlated variation, strongest relationships suggested by F-statistics,

elimination of spurious fits (step functions, sinusoidal functions, peak functions,

etc.) on observations that lacked any strong fit, preference for simpler functions to

more complex ones when the degree of fit provided was essentially the same, and

elimination of equations that showed nonsensical behavior immediately outside the

region for which observations had been collected. The equations relating visibility

measures, or elevation and visibility, that were most often selected include:

"* y=a+bx

"* y=a+bX
2

"* y=a+bX
3

"* y=a+blogx

It is of interest to note that using the criteria mentioned above, equations with

multiple x terms such as y = a + bx + cx 2 were generally not preferred to equations

with only a single x term, such as y = a+bx2 . This may have occurred in many cases

because equations with quadratic and higher x terms were selected to fit observations

where all curve fits were weak and no underlying lower-order trend justified inclusion

of other terms.

For many visibility and elevation samples used to analyze the various algo-

rithms, a standard set of 1024 pseudorandomly distributed point coordinates was

selected. The resulting pattern is shown in Figure 6.1. The x and y coordinate for
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Figure 6.1: Spatial Distribution of 1024 Pseudorandom Points.

each point were drawn from separate pseudorandom number generators provided in

the class libraries furnished with the Free Software Foundation's G++ compiler. Dif-

ferent seeds were used to start each generator. The generators permute the output

of a Linear Congruential method [Knu81] with a Fibonacci Additive Congruential

generator to obtain improved independence between sequential samples.

The R2 algorithm will be used as a reliable and computationally effcient

reference to evaluate the accuracy of the visibility fraction estimates produced by

other algorithms. Evidence of the agreement between the results from the R2 and

R3 algorithms was presented in Chapter 4.

6.2 Performance of the VL Algorithm

Figure 6.2 suggests that the VL algorithm has substantial capability to predict

visibility (as measured by R2 visibility values on the Y axis). The correlated varia-

tion of 0.776 is evidence of a strong relationship, and the fitted equation y = a + bX2

is free from fitting artifacts and bizarre behavior at the extremes of the range of
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the independent variable (the estimated visibility fraction calculated by the VL

algorithm).
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Figure 6.2: N3'TE127 - VL and R.2 Visibility for 1024 Random Points.

Note that the estimates produced by the VL algorithm for most points sub-

stantially overestimate the visibility fraction calculated by R2. For example, points

with a VL value of around 0.15 have R2 values clustered close to 0.05. It would

be expected that points with very high actual visibility (e.g., centered on an open

plain) would be accurately estimated by VL. We can observe that this hypothesis

is supported in Figure 6.2 because points of very high VL estimated visibility (the

right side of the graph) are as a percentage less overestimated than points near the

center of the graph.

We might infer that relatively few points would be found beyond the VL values

at which the fitted equation intersects y = z. This is because at and beyond that

point the high degree of agreement between VL and R2 might indicate a boundary

condition for the relation, just as a high degree of agreement occurs at the boundary

of lowest visibility near (0, 0). For the fitted equation in Figure 6.2 the intersection
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between it and the y = x line would occur for a visibility fraction of about 0.4455

for VL and R2, and in fact in this figure and in Figure 6.4 (which focuses on high

visibility points) very few points are found near or beyond that value.

The relative uncertainty in visibility associated with the VL estimated value

decreases as the estimated visibility increases. This suggests that the VL algorithm,

in spite of its poorer performance at lower values, might still be suitable for identi-

fying the locations of highest visibility in an area. Sets of the 256 and 100 highest

VL estimated visibility points will be used below to more closely examine visibility

relationships present in high visibility points.

By examining the residual error after fitting y = a + bx2 to the points in Fig-

ure 6.2, we can gain a better understanding of the performance of the VL algorithm

as a predictor of visibility over a range of visibility fraction values.

N37E127 - 1024 Random Points

500

-1000-. __

-1500 i _

-2M0

0 0:1 0:2 0'3 0.4
VL Fraction

Figure 6.3: N37E127 - Fit Residuals, VL and R2 Visibility, for 1024
Random Points.

Figure 6.3 shows the percentage residual error after the curve fit to the VL and

R2 ialues from Figure 6.2. Ignoring the large error percentages encountered for VL

values close to 0 as manifestations of the .. nall number problem, it can be observed
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that using the estimates employed by VL in conjunction with a simple adjustment

calculation (i.e., the fitted equation from Figure 6.3) produces estimates of visibility

fractions whose relative error decreases as the visibility fraction increases. This is

further evidence of the potential utility of the VL algorithm in finding points with

the highest visibility.

Figure 6.4 suggests that for points of genuine high visibility, the VL algorithm

provides better estimates (based on percent residual error) than for points of mod-

erate to low visibility. Only points with the highest 256 VL estimated visibility

values out of the total 1.44 million (12012) points in the N37E127 cell are shown.

Note that only the low computational cost of the VL algorithm (compared to the

R2 or R3 algorithm) makes is practical to compute visibility estimates for every

point in the cell, consuming approximately four days of computing time on a Sun

IPC workstation.
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Figure 6.4: N37E127 - VL and R2 Visibility for Top 256 VL Points.

Comparing the range of actual R2 visibility values in Figure 6.4 with those

in Figure 6.2 demonstrates that points of high visibility have in fact been selected
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by choosing points with the highest VL visibility estimates. For points with VL

estimated visibility values above 0.4 there are no R2 values less than 0.2, and in all

of the 1024 pseudorandomly selected points in Figure 6.2 only one point had an R2

visibility in excess of 0.2.

The layout of points in Figure 6.4 again demonstrates that the VL algorithm

for many points underestimates the visibility fraction, although with decreasing

severity as the visibility values increase. For VL values above 0.48 in this set of

observations, underestimation seems to have disappeared or been subsumed in more

random error from the straight linear regression of R2 on VL.

The ability to accurately predict which points will have high visibility values

shows the suitability of the VL algorithm for many purposes that focus on points

with the 'best' visibility.

6.3 Relationships to Elevation

N37E127 - 1024 Rwndom Points
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Figure 6.5: N37E127 - Elevation and R2 Visibility for 1024 Random
Points.
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Appendix C provides a detailed investigation of elevation and visibility rela-

tionships in different quadrants of the cell N37E127. To show an overview here of

the relationships between elevation and visibility, a set of observations of elevation

and R2 visibility fractions is shown in Figure 6.5. It plots, for the set of 1024 pseu-

dorandomly selected points shown in Figure 6.1, the elevation in meters against

the fraction of their total potential viewshed which was found visible by the R2

algorithm. The fitted equation, y = a + b.2, might suggest a trend to a moder-

ate increase in average visibility as the elevation of points increases. However, the

scattering of points, low correlated variation (0.048), and presence of the highest

visibility points in the middle of the elevation range argue that there is no basis for

inferring a genuine, direct relationship between elevation and visibility.

Figure 6.6 makes an initial use of the top 256 VL valued points from the

N37E127 cell to examine possible relationships between elevation and visibility

among points with high visibility values.
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Figure 6.6: N37E127 - Elevation and R2 Visibility for Top 256 VL
Points.

A moderate relationship (r2 = 0.4556) exists between elevation and visibility
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using the equation y = a + b log z for this set of observations. However, recall that

these points were not selected using their raw elevation values; they were selected

using their estimated VL visibility fraction. What is shown in Figure 6.6 is a cor-

relation between visibility fraction and elevation in a set of points known to have

relatively high visibility. Even this correlation is not necessarily very useful. It only

suggests a limited increase of visibility with elevation and provides no direct clues

on how to use elevation values by themselves to select the highest visibility points,

which in fact occur near the middle of the elevation range (around 550 meters).
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Figure 6.7: N37E127 - Elevation and VL Visibility for Top VL 256
Points.

Figure 6.7 shows the virtually nonexistent relationship between elevation and

the higher visibility estimates produced by the VL algorithm, with an extremely

low correlated variation of 0.0096 using a fitting equation of the form y = a +

blog x. The virtual lack of correlation confirms the impression gathered by visual

inspection, which is that raw elevation is not a suitable predictor of the visibility

values estimated by the VL algorithm. As previously shown in Figure 6.4, in the high

visibility ranges VL is a good predictor of the accurate visibility values produced by
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Figure 6.8: N37EI27 -Elevation and VL Visibility for Top VL 100
Points.

Figure 6.8 demonstrates that when restricted to an even more select set of

the highest 100 estimated visibility points, there continues to be no substantial

relationship between elevation and visibility. The actual correlation value, 0.0235,

has increased slightly but remains quite small, and the form of the fitted equation

has changed to y = a + bX3 . Note that the second derivative has changed from

negative in Figure 6.7 to positive in Figure 6.8, suggesting further that even the

best available curves represent spurious fits to data on measures (elevation and

visibility) possessing essentially no direct relationship.

Whether over the general range of elevations and visibility values, or when

focusing specifically on the best prospective points for high visibility, individual

elevation values provide no consistent predictive ability for visibility. This observa-

tion holds true even when the points being sampled have been restricted to those

predicted by a valid estimation algorithm to have high visibility.
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6.4 Improvements to VL Estimation Algorithm

As described in Chapter 5, with a relatively modest constant-time increase in

the computational requirements of the VL algorithm we can attempt to make use

of the spatial correlation of real terrain by weighting each point on a LOS ray in

proportion to the area it 'represents' - the area to which it is the closest point froG..

all points in all LOS estimating rays. This weighting will be proportional to the

distance of the point from the observer. The Weight algorithm uses an integer-based

approximate weighting of sample points by their grid distance from the observer

along a LOS ray. A full weighting using floating point arithmetic is employed in the

WeightF algorithm.

Figure 6.9 shows the impact on estimated visibility fractions of the previous

set of 256 points with high estimated visibility of applying full weighting to the VL

algorithm.
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Figure 6.9: N37E127 - VL and WeightF Visibility for Top VL 256
Points.

Referring back to Figure 6.4 which depicted visibility results from the VL and

R2 algorithms, we note a striking similarity. This suggests that when a definitive
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comparison of the results of the WeightF algorithm is made against the standard

benchmark results from the R2 calculations, there should be a strong correlation.

This key result is confirmed in Figure 6.10.
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Figure 6.10: N37E127 - WeightF and R2 Visibility for Top VL 256
Points.

There is an impressive agreement over the entire range of visibility values. In

addition to the high correlated variation of 0.9227 and the appealing linear form of

the fitted equation, there is evidence that the overestimation problem from the VL

algorithm has been sigzifirantly mitigated. WeightF is shown to have the potential

to be an outstanding visibility fraction estimator.

Figure 6.11 shows the relationship between WeightF and R2 values as we

broaden the focus from high visibility points to a range of pseudorandomly selected

points. The correlated variation of 0.9821 is even higher than in Figure 6.10. Note

that in this and some subsequent figures different (although still linear) x and y

distance scales are used to better show detail in the data and curve fits.

The linear form of the fitted equation re:nains. The proportional term of 0.995

is very close to one, and the constarL term in the equation (0.00008965) is very small
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Figure 6.11: N37E127 - WeightF and R2 Visibility for 1024 Random
Points.

in relation to the quantities being related. Together they suggest not only a good fit,

but that there is no substantial over- or underestimation of visibility taken over the

entire sample set. For the very high visibility points with WeightF and R2 visibility

fractions above 0.15, the linear fit remains strong and all points are crdered correctly.

In other words, if we rank all locations in order using the WeightF algorithm and

then using the R2 algorithm, the ordering would be the same. In addition to its

general robustness, this is further evidence of the utility of WeightF in identifying

points with the best visibility.

Although a strong relationship to R2 is shown in Figure 6.11 when using

WeightF with 32 LOS rays, this suggests the question of how much the correlation

would improve with more rays. Continuing with the practice of using ray counts

which are powers of 2 and mindful that many measures that are essentially descrip-

tive statistical values improve not linearly but with the square or higher power of

the sample size, an appropriate value for an increased ray count higher than 32 will

be 128. Figure 6.12 shows the results obtained by running WeightF on the same
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Figure 6.12: N37E127 - WeightF (128 rays) and R2 Visibility for 1024
Random Points.

points used in Figure 6.11, but using 128 rays.

The increase in correlation from an already high 0.9821 to 0.9984 is noticeable,

but the utility of such an increase when compared to the increased computation cost

(a factor of 4) will depend on the specific application and the inherent uncertainty

in visibility values produced by errors presumed present in the data (see Section 6.8

below). The RMSE decreases from 0.0030486 for 32 rays to 0.00090769 using 128

rays, a decrease of approximately a factor of 3. Both in absolute and relative terms,

the bulk of the error is concentrated in regions of low visibility.

A visual inspection of Figure 6.11 and Figure 6.12 suggests that the linear

model fits particularly well at higher visibility values, a conclusion supported by

an examination of the values of residuals between the observed data and the fitted

equations. As shown in Figure 6.13, increasing the number of estimating rays from

32 to 128 for the set of high visibility points increased the correlation from 0.9227

to 0.9940, an increase which might be justified in trying to sort out the points with

the very highest visibility. A valid strategy for finding points with the best visibility
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Figure 6.13: N37E127 - WeightF (128 rays) and R2 Visibility for Top
256 VL Points.

might be to run WeightF with a relatively modest ray count such as 32, selecting a

set of candidate points based on this initial run, and then running WeightF with a

higher ray count. This would only result in a constant time improvement, however,

and so the utility of this approach will depend on the specific application.

The Weight algorithm runs faster than WeightF by a constant factor because

it weights points by their grid distance from the observer along the most rapidly

varying axis instead of tracking its fractional distance out along the LOS using

floating point operations. We would expect that any systematic error introduced

by this approximate weighting method will result in an overestimation of visibility.

This is because for rays furthest off of either axis, the contributions of their furthest

points will be undervalued. This will result in an increase in the significance of

points closest to the observer, which tend to have a greater fraction visible than

points further away. Figure 6.14 shows the impact on accuracy resulting from using

Weight instead of WeightF.

Although a linear fit of estimated (Weight) visibility fractions to benchmark
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Figure 6.14: N37EI27 -Weight and R2 Visibility for 1024 Random
Points.

(112) visibility fractions is maintained, the correlated variation has dt-treased from

0.98210 in Figure 6.11 to 0.74418; the y-axis intercept has not drifted greatly but

the proportional term has decreased by about 10%, suggesting the Weight is over-

estimating average visibility for this case much more than WeightF did. This is in

accordance with our expectations. The overall poorer performance of Weight when

compared to WeightF suggests that its modestly lower computational requirements

would not generally justify its use.

6.5 WeightF to R2 Correlation as a Function of Ray Density

By varying the number of rays used in running the WeightF algorithm and

comparing the resulting correlation to the corresponding R2 results, we can observe

how the accuracy of the estimated visibility provided by WeightF increases with

computational effort.

In Figure 6.15 we can observe a strong fitted relationship between the num-

ber of rays employed in producing WeightF visibility estimates and the correlated
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Figure 6.15: N37E127 - Correlation Variation of R2 to WeightF.

variation observed between the corresponding WeightF and R2 values (based on the

y = a + bx model). The lowest number of rays employed in this sample was four,

and the ascending 'tail' of the curve as the number of rays approaches 1 should be

discounted as an artifact. The correlated variation of 0.99883 observed using the

equation

logy = a + (blogx)/lx (6.1)

is suggestive of both the logarithmic relationships often encountered in terrain-based

characteristics and the inverse square relationship between many statistical sample

sizes and the accuracy of the results dcrived from those samples.

As a specific instance of the manner in which the WeightF estimates degrade

as ray density decreases, we can examine the plot of comparative WeightF and R2

results in Figure 6.16 using a ray density of 8. The overall correlation has decreased

from 0.98210 in the 32 ray example from Figure 6.11 to 0.82943, with increasing

magnitudes of error in the higher visibility regions. An examination of residuals

shows the error in the WeightF estimates remains approximately proportional to
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Figure 6.16: N37E127 - Correlation Variation of R2 to WeightF (8
rays).

visibility magnitude over the entire set of observed values. Referring back to Fig-

ure 6.15, we see that we could increase the correlated variation between WeightF

and R2 values from 0.82943 to 0.91795 by increasing the ray count by 50% to 12

rays from each observer.

6.6 Analysis of Other Locales

6.6.1 Dijon Area

A natural question regarding the results presented so far is to what degree

they are specific to the particular terrain (cell N37E127) that has been used for ex-

perimentation. It is a relatively complex region on the Korean Peninsula, proximate

to the Yellow Sea, which has been shaped by geological forces much different from

those in many other areas of real terrain. For comparison, an analysis is presented in

Figure 6.18 that uses terrain from the DTED cell N47E005 in the vicinity of Dijon,

France. Elevation ranges from 176 meters to 635 meters, with a median elevation
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of 257 meters above mean sea level. The mean elevation is 280.4 meters, with a

standard deviation of 76.8 meters.

The gray-scale elevation image of cell N47E005 is shown in Figure 6.17. This

image was generated by median sampling 6 point (east-west) by 4 point (north-

south) subcells in the elevation data for each image pixel. This compensates to

within 5% for the unequal average east-west (92.61 meters) and north-south spacing

(62.57 meters) between grid points.

This terrain encompasses plains regions from the Saone and Doubs rivers, as

well as higher plateau and mountain areas. The same (x, y) pseudorandom coordi-

nates used for the examples from N37E127 were used here to minimize the impact

of differences in the spatial distribution of sample points as a source of variation.

The general appearance of the sample data, the y = a + bx form of the fitted

equation, and the correlated variation of 0.9922 all compare favorably and consis-

tently with the values from the data in Figure 6.11 for the N37E127 cell. The

constant and proportion terms also suggest a very consistent relationship between

WeightF and R2, without substantial over- or underestimation. The improvement in

the 32 ray WeightF to R2 correlated variation from 0.9821 for the N37E127 terrain

to 0.9922 conforms to our subjective expectations, given the less complex nature of

the terrain in the Dijon area.

6.6.2 Pripyat' Area

As a final local to investigate the performance of the WeightF algorithm and

the properties of the resulting visibility output, an analysis was conducted for the

one degree DTED cell N52E028 (also drawing on its eight surrounding cells as

required), which is near the center of the Pripyat' Marshes in Beloruss, northwest

of the Ukrainian city of Kiev. Figure 6.19 shows the elevations of cell N52E028 as

a gray-scale image. This cell was median-sampled on 4 point by 5 point subcells.
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Figure 6.17: N47E005 - Gray-Scale Elevation Image.
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Figure 6.18: N47E005 - WeightF and R2 Visibility for 1024 Random
Points.

The N52E028 cell differs significantly from previous examples in two ways.

First, the longitudinal spacing changes from 3 arc seconds to 6 arc seconds, result-

ing in half as many longitudinal divisions in the cell with an average longitudinal

distance between points of 112.76 meters instead of distances in the 60-75 meter

range as in previous examples. Due to the decreased longitudinal density, each cell

will have only 721,801 observer locations instead of the 1,442,401 locations for cells

in previous examples. In addition, the N52E028 area consists of terrain with ele-

vations that are relatively low and uniform. Elevations only range from 96 to 198

meters above mean sea level, with a mean elevation of 123 meters and a standard

deviation of only 11.5 meters. Median elevation is 121 meters. In spite of the re-

duced standard deviation and range of elevations when compared to N37E127, the

elevation histogram of N52E028 in Figure 6.20 shows the same log-linear form over

most of the range of elevations as was shown in Figure 3.2.

N52E028 was selected to see how the accuracy of the WeightF visibility esti-

mates and the distribution of visibility values would be affected by relatively low,
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Figure 6.19: N52E028 - Gray-Scale Elevation Image.
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Figure 6.20: N52E028 - Elevation Histogram for 1024 Random Points.

uniform terrain. Intuitively, we might suspect that the accuracy of the estimates

and overall visibility would increase due to the less complex nature of the terrain.

Figure 6.21 shows the results of running the WeightF algorithm on the same pseu-

dorandom spread of 1024 points used in previous examples.

The same strong linear trend that has been observed in previous examples is

still present. As expected, the range of visibility fractions extends into significantly

higher values. For the complex terrain in cell N3713127, in Figure 6.11 the highest

observed R.2 visibility fraction is 0.25646 and for N52E028 (as shown in Figure 6.21)

this has increased to 0.56028, more than doubling. In spite of the general increase

in visibility, however, very high visibility points (for example, those above an R2

visibility fraction of 0.4) still occur in very small numbers (also shown in Figure 6.23).

The correlated variation of 0.987477 is somewhat higher that the corresponding value

of 0.982097 obtained in cell N37E,27, which is in accord with the hypothesis of the

impacts of the greater spatial cohesion present presumed present in N52Es28.
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Figure 6.21: N IE028 - WeightF and R2 Visibility for 1024 Random
Points.

To investig. 'e how visibility relationships change with differing LOS parame-

ters, Figure 6.22 displays the results obtained by performing the same calculations

on the same points as in Figure 6.21 but with an alternative set of LOS parameters.

This parameter set uses a radius of visibility of 4 km instead of 40 kin, an observer

height above ground of 1 meter instead of 5 meters, and a target height above ground

of 3 meters instead of 25 meters. This set of parameters is more representative of

visibility problems involving human vision instead of antennas.

Using this new set of parameters, a strong linear relationship between the

WeightF estimates and the R2 benchmark values remains. The correlated variation

has decreased slightly from 0.987477 using the original parameters to 0.970265 using

the alternative parameter set. A greater change is observed in the constant of

proportionality. This decreases from 0.99329 to 0.92305 and suggests that under

these conditions of a smaller potential viewshed, WeightF is still very successful

in assigning relative visibility estimates but overestimates visibility as measured by

R2. Still apparent is the pattern of very small numbers of points with high visibility
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Figure 6.22: N52E028 - WeightF and R2 with Alternate LOS Parame-
ters for 1024 Random Points.

values (for example, R2 values above 0.6). We also note a modest increase in the

maximum visibility value from 0.56028 using the original parameters to 0.71719

under the alternative parameter set.

Figure 6.23 shows a histogram of R2 visibility values from N52E028 using

the original LOS parameter set. All visibility observations were categorized into 32

equally spaced slots. Use of a log scale on the y-axis brings out a strong linear trend

over much of the range of plotted points, corresponding to a decreasing exponential

relationship between visibility values and the number of points. Log-linear regions

are common in the distributions of many real world characteristics ([FR94a]) and

reflect a product-form instead of an additive relationship between underlying con-

tributing factors. For example, two factors contributing to the total visibility from

an observer location are the configuration of the terrain in its immediate vicinity

and the extent of visibility barriers at intermediate ranges. Neither factor by itself

is adequate to ensure high visibility at longer ranges where the majority of the total

viewshed lies; only when both of these factors are favorable can a high total visibility
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Figure 6.23: N52Eo28 - Histogram of R2 Visibility for 1024 Random
Points

value occur. The impact of both factors being favorable has a much greater than

additive effect in producing a high count of total points visible.

The data displayed in Figure 6.23 support the subjective observations from

previous figures that a relatively small set of points will have visibility values distin-

guishably higher than the bulk of points in a given area. This relationship reinforces

the value of searching through an entire area for the points with highest visibility

when siting small numbers of observers.

We can see the trend between visibility and frequency of points again in Fig-

ure 6.24, which is a histogram similar to that in Figure 6.23 but for the alternative

set of LOS parameters. This figure also displays substantial linearity in the visibility

range between 0.2 and 0.6 when plotted using a y-axis log scale. The onset of this

trend at a value of 0.2 occurs at a higher visibility than in Figure 6.23, where it oc-

curred at approximately 0.05. This is consistent with the generally higher visibility

values present in the alternative LOS parameter setting.
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Figure 6.24: N52E028 - Histogram of R2 Visibility with Alternate LOS
Parameters for 1024 Random Points

6.6.3 Summary

The WeightF algorithm is a highly effective and efficient modification to the

basic VL algorithm, extending the predictive power of VL for high visibility points

to the entire range of points.

6.7 Confidence in Finding Highest Points

To further verify the accuracy of the WeightF algorithm and to investigate

how many of the points with the highest WeightF visibility index estimates should

be selected in order to have high confidence that the n highest 'true' (R2 valued)

visibility points had been included, an exhaustive study of the central 400 by 400

grid region of the DTED cell N37E127 was undertaken. This required approximately

45 days of CPU time to calculate R2 values for each point; actual execution was

shared across several workstations. Execution time for calculating WeightF values

was approximately 6.1 hours.

One practical measure of the utility of the WeightF algorithm in finding the
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Figure 6.25: Center of N37E12'T - WeightF Points Required to Find the
Highest R2 Points

n& highest visibility points in a region is given by determining how many of the top

We~ightF points in addition to n must be evaluated by R2 to have high confidence

that all of the true highest n valued points have been found. Figure 6.25 shows how

many WeightF points had to be evaluated to find a given number of top R2 visibility

points in the central 400 by 400 grid of N37E127. From the inflection of the curve

it is evident that the ratio of WeightF points required to R2 highest points desired

is highest in the region located approximately between 10000 and 100000 highest

points. This can be seen more clearly by plotting the ratios of required to desired

points, which is done in Figure 6.27. It is useful to bear in mind when examining the

relationship between desired and required points that in practical siting problems,

the number of locations to be selected for analysis will be very much less than the

total number of points in the elevation grid.

Figure 6.26 suggests that the number of highest visibility points that have

values in the top 50% of the total range of visibility values encountered may be only

a few dozen out of over a 160,000 total points. In fact, in the top third of the total
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Figure 6.26: Center of N37E127 - Histogram of R2 Visibility Values

range of visibility values, only 50 points occur.

While the general shape of the observations in Figure 6.26 suggests a log-

normal distribution, if such a distribution is fitted to the peak in the data it is too

high for values to the left of the peak and too low for values above it. Nevertheless,

the fitted curve of log y = a + b%/'i + c/id does exhibit many of the characteristics

of the log-normal distribution.

Figure 6.27 shows the variation between the required number of highest WeightF

points to find a given number of highest R2 points by plotting the ratio of the two

versus the number of highest R2 points desired. Note that the ratio of WeightF

points required to find a given number of highest R2 points never exceeds 4, and

for the range of R2 highest points from 1 to 10000 it never exceeds 3. Using more

than 32 rays in the WeightF estimated visibility values would be expected to reduce

the ratios of required WeightF to desired R2 highest points, and a tradeoff in exe-

cution time between number of WeightF rays and subsequent R2 evaluations could

be performed on specific hardware and problem settings.

26='•
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Figure 6.27: Center of N37E127 - Ratio of WeightF Points Required to
Number of Top R2 Points

6.8 Impact of Errors in Elevation Data

One reason why evaluating the impact of errors in elevation data is important

is because it can help evaluate the relative significance of other uncertainties in the

results produced by particular visibility estimation techniques. In [Fis92I one con-

clusion was that introducing simulated error reduces viewsheds. This is consistent

with the concept that the existence of substantial visibility is related to the pres-

ence of significant spatial correlation in real terrain. As an experiment, elevations

for the cell N37E127 and its surrounding cells were perturbed pseudorandomly from

a Gaussian distribution with mean of zero, standard deviation of 7 meters, and with

no introduction of spatial correlation in the errors.

Figure 6.28 shows clearly that the points least impacted by the introduction of

errors in the elevation data are those points with the highest visibility values. This

lends credence to the use of consistent and unbiased visibility estimation techniques

for the purpose of identifying the points in an area with the highest visibility values
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Figure 6.28: N37EI27 - R2 Visibility for Original and Perturbed Ele-
vations

in spite of the presence of errors in the elevation data.

The existence of efficient algorithms to calculate visibility fractions (112) and

to identify points in with the highest visibility values (WeightF) makes it possible

to make inferences such as mentioned above regarding Figure 6.28, because large

numbers of points and their visibility results can be examined, calculated, and ag-

gregated.

6.9 Summary

In this chapter, we have evaluated the accuracy of several algorithms that use

a fixed number of LOS rays to estimate the visible fraction of a potential viewshed

from a given observer. The R2 algorithm was used to provide the reference value

for viewshed fraction. It was determined that the most direct LOS ray algorithm,

VL, was useful in identifying points with high or low relative visibility, but had

a correlated variation of only 0.776 using the standard data cell and visibility pa-

rameters. It suffers from a non-linear systematic overestimation of visibility that is
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most sever for points of moderate visibility. An algorithm which weights each point

along an LOS ray by its distance from the observer produces excellent viewshed

fraction estimates, with a correlated variation using the standard data cell and visi-

bility parameters in excess of 0.98 and relatively uniform performance for the entire

range of visibility values. This performance was evaluated using a variety of LOS

ray densities, three different geographic settings, and an alternative set of visibility

parameters.



CHAPTER 7

EXECUTION TIMES

7.1 Overview

In this chapter we investigate the execution times of the R3, R2, and LOS

ray estimation algorithms and compare empirical measurements to predicted per-

formance

A sample set of 256 points was drawn from the standard set of 1024 pseu-

dorandomly generated coordinates described earlier. These points were sorted into

ascending order according to data layout to minimize the impact of paging on the

timing results. Timing values were based on the sum of 'user' timc and 'system'

time reported by the UNIX 'time' command. The output of this command is in-

tended to measure time spent by processors in running or supporting (e.g., paging)

the execution of the problem program, regardless of 'real' (wall clock) time. Each

run was executed as one process on a 4-processor Sun 670-MP. Total available real

memory was 128MB.

To reduce variations in timing measurements unrelated to running the visibil-

ity calculations, several precautions were taken. Runs took place on identically con-

figured Sun 670-MP computers with negligible workloads (network daemons, etc.).

Output volume was minimal - a few hundred characters of textual summary in-

formation. A delay of 180 seconds was imposed between successive runs to reduce

the impacts of coincidental cached resources from one run to the next. To minimize

the effects of possible caching of disk-based input data by the operating system,

the 25.9MB input file was kept on the disk system of a separate Sun 670-MP and

accessed by means of remote mounting using the Network File System (NFS) pro-

tocol.

105
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7.2 R3 Execution Time Performance Evaluation

We should expect that using the R3 algorithm we will observe startup time

(loading the elevation file, adjusting the effective heights of the elevation data for

curvature of the earth, establishing a working set in real memory, etc.) to be rela-

tively constant between all runs, and the time of 225.2 seconds for the run with the

shortest radius (1250 meters) provides an upper limit for the estimated value of the

startup time. The execution time for the R3 algorithm should vary with the cube

Radius Run Time Fitted Model
(kcm) (seconds) Time(seconds)
1.25 225.2 230.3
2.50 229.4 233.7
5.00 259.0 260.8
7.50 335.4 334.6

10.00 487.3 478.3
15.00 1088.2 1068.4
20.00 2243.3 2217.6
30.00 6944.1 6938.8
40.00 16084.4 16132.6

Table 7.1: R3 Execution Times as a function of the Visibility Radius

of the radius. Figure 7.1 shows the run times for the R3 algorithm using conditions

similar to those used to compile execution time data on R2, with the exception that

8 points were used instead of 256 on each run and longer ranges were not measured

due to the excessive run times required.

To account for knowledge that the run times of the shorter radii form a ceiling

on the startup time, the y = a + bz3 form of the fitted equation was selected by

using raw timing data. Then, in order to more properly reflect the significance of

the lower radii run time values in establishing a ceiling on startup time (the value

of the a parameter), the fitting procedure was run again with each point weighted

by the reciprocal of its run time.

The fit to weighted data is what is displayed in Figure 7.1. Weighting the
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Figure 7.1: NSTE127 - 8 Random Points; Weighted Curve Fit

fit changes b from 0.24776 to 0.24848 and decreases the correlated variation from

0.99999296 to 0.9999503, but brings the value of a (which should reflect average

startup time) from 238.3 to 229.8 seconds, with 95% confidence interval boundaries

of 237.0 and 222.6 seconds. This is a noticeable improvement in agreement with

the two lowest run time values of 225.2 and 229.4 seconds. The high correlated

variation using either weighted or unweighted data for a fitted curve of the form

y = a + bz 3 confirms the anticipated cubic relationship between the run time of the

R3 algorithm and the radius of visibility.

7.3 R2 Execution Time Performance Evaluation

The number of points within the visibility radius for which the R2 algorithm

must make a visibility determination is shown in Figure 7.2 as it varies with radius

length. Use of log scale on both axes reveals a relatively straight line relationship

that brings out the simple power relationship (in this case quadratic) between radius

and points within the boundary followed by R2.
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Figure 7.2: N37EI27 - Points within R2 Radius

Note that the radius units are meters, not grid points. For the cell N37E127

the average spacing in meters between points is 73.475 meters per 3 arc seconds of

longitude and 92.614 meters per 3 arc seconds of latitude. The relation between the

radius and the points within it takes the anticipated form, in that

V- = a"+ bx (7.1)

is tantamount over our range of interest to

y = a' + b'z + cx 2  (7.2)

where

a' = a 2 = 1.5942

Y = 2ab = 0.054259

c = b2 = 0.00046167

The non-zero y-intercept of 1.5942 corresponds to an intuitive limiting case

of one point for a zero radius, that point being the observer location itself. The
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number of LOS rays computed by R2 is determined by the number of boundary

points (see Chapter 4), which is in turn proportional to the circumference around

the area of the points within the given radius of visibility. Since the number of

operations involved in computing a single LOS is also proportional to the visibility

radius, the work required in the R2 algorithm in running all LOS's to the boundary

points is proportional to the square of the radius. As shown above, the number of

operations to set visibility values for interior points (based on results from running

LOS's to the boundary) is also quadratic in the visibility radius. Therefore, in terms

of performance we expect that the execution time of R2 would vary with the square

of the visibility radius, after accounting for program startup time. In Figure 7.3 and

Table 7.2 we can examine this hypothesis in the context of actual run data.
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Figure 7.3: N37E127 - R2 Execution Times for 256 Random Points

Superficially, Figure 7.3 suggests that a good fit between the observed data

and the predicted quadratic behavior of the R2 algorithm has been achieved, fitting

the expected form of

Y= a + bX2 (7.3)
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The correlated variation of 0.99908 seems high, but there are warning signs that

an improved fit can be found. For radius values in the range between 17.5km and

60km the fitted curve consistently overestimates the observed data. For radius values

less than 17.5km, the fitted curve consistently underestimates the observed data.

In particular, the y-intercept value of 103.8 seconds substantially underestimates

the clear evidence of the points with the smallest radius values that the minimum

execution time (due to startup operations) is very likely to lie between 200 and 250

seconds.

Radius Run rime Fitted Model
(km) (seconds) Time(seconds)

1.25 227.3 223.5
2.50 242.3 240.1
3.75 268.4 267.8
5.00 302.8 306.6
6.25 356.1 356.6
7.50 411.6 417.6
8.75 485.6 489.7

10.00 563.4 572.9
12.50 775.4 772.5
15.00 1012.1 1016.5
17.50 1305.2 1304.9
20.00 1643.0 1637.7
20.00 1643.0 1688.7

25.00 2491.2 2479.0
30.00 3487.6 3477.6
40.00 6187.4 6124.6
50.00 9682.1 9672.6
60.00 14087.8 14155.8
80.00 26058.9 26039.8

"Table 7.2: R2 Exect•tion Times as a function of the Visibility Radius;
Separate Fitted Curves for each Group

By experimenting with breaking the observations into two groups, varying the

break point, and evaluating the curves fitted to each group, substantially better

results were obtained. The results of the separate fits are presented in Table 7.2



111

and in Figures 7.4 and Figure 7.6. A breakpoint of 20km was selected by examining

how the F-statistic for each of the fitted curves varied as the breakpoint varied.

For points with radius values in the range between 0 and 20km, the form of the

fitted equatior -emains y - a+bX2 . The y-intercept value has changed from 103.8 to

217.9, which is a significant improvement in the estimate of the minimum execution

time over the previous value obtained by fitting a curve to the entire range of points.

The correlated variation has improved from 0.99908 to 0.99984, representing a nearly

five-fold decrease in the amount of uncorrelated variation remaining.

An examination of the residuals between the observed and modeled execution

times also shows improvement when specifically fitting the 0 to 20km range. When

fitting the entire range, the trend of the residual percentages forms a smooth, con-

tinuous pattern of decreasing values from 0 to 30km, with the first 10 of the 12 total

observations between 0 and 20km being positive. After fitting y = a + bxz2 to the

range of 0 to 20km, the residuals pattern becomes much more erratic, a sign of an

improved fit. The longest run of residuals with the same sign is now 5 instead of

10, with an even total split of 6 positive and 6 negative residuals.

The constant of proportionality on the x 2 term on the equation fitted in Fig-

ure 7.4 has decreased to 3.55 from the value of 3.98 obtained when fitting the entire

range of radius values. This is consistent with the increase in the y-intercept value

while improving the fit with all of the data points in the 0 to 20 km range.

For convenience, Figure 7.5 shows the execution times for R3 and R2 from 0

to 20 km on the same graph, using a logarithmic scale for time. The dotted line

represents the time performance for R3 for 256 points, derived from the curve fitted

to R3 observations for 8 points in Figure 7.1 by multiplying the constant on the

XI term by 32. The solid line with boxes indicating observed values represents the

same R2 information depicted in Figure 7.4. The pronounced time advantage of R2

over R3, especially for longer radius values, is readily apparent.
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Figure 7.5! Comparison of R3 and R2 Execution Time for 256 Points.
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Figure 7.6 and the second portion of Table 7.2 show a significant improvement

resulting from separately fitting the range of points between 20 and 80km. When

fitting the entire range of points, the 7 residuals in the 20 to 80km range were

negative for the first 6 observations. By specifically fitting the 20 to 80km range the

residuals split to 5 positive and 2 negative values, with four positive values being

the longest consecutive constant sign run of values. The correlated variation has

increased from 0.99908 to 0.99997, representing a 30-fold decrease in uncorrelated

variation.
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Figure 7.6: N37E127 - R2 Execution Times for 256 Random Points
(upper range)

The most significant item to note about the curve best fitted to the data values

in the 20 to 80km range is that the form of the fitted equation has changed from

y-- a + bX2  (7.4)

to

y = a + bxc (7.5)
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Although the power coefficient value c = 2.1665 is not far from the value of c = 2

for a simple quadratic relation, it represents a distinguishable difference from the

original fit to the entire 0 to 80k1m range and to the improved quadratic fit on the

0 to 20k1m range.

Since the R2 algorithm performs the same pattern of steps regardless of the

visibility radius, one other place to look for an explanation of the small upward

deviation in run time is to the architecture of the underlying hardware. As with

many current system architectures, in addition to system main memory the processor

modules on a Sun 670-MP contain small on-chip data and instruction caches. There

is also an external cache between each processor and system main memory. Although

the on-chip processor caches are too small to account for any performance change

observed for radii above about 2-5 km (depending on assumptions about cache

operation), interactions between the problem size and the external cache may have

some impact on execution time for larger radius values. Given a finite cache size

and the known characteristics of the R2 algorithm, it is likely that Equation 7.5

represents a transition zone between shorter ranges where cache hits dominate data

accesses and longer ranges where cache misses dominate data accesses. In each of

these zones a quadratic relationship in the form of Equation 7.4 would describe the

relationship between visibility radius and execution time, but with a higher b value

at longer ranges.

An approximation of the possible relationship between external cache size and

the radius value at which the problem size and access patterns may start to generate

a substantially increased cache-miss rate (and therefore longer execution times) can

be formulated as follows. We assume that most but not all of the external cache

can be used to hold elevation data to speed processing of the visibility calculations,

because some of the cache will be used to hold program code, operating system

functions, or will be malutilized in the visibility calculations due to address mapping
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or related conflicts. Since we assume that more than half but less than all of the

cache will be used for the visibility calculations, we arbitrarily chose an estimate

of 75% cache use for visibility calculation elevation data. Each elevation value

requires two bytes to represent. The minimum number of points per kilometer in

cell N37E127 is

10.8 points per km = (1000 meters)/(92.6 meters per North-South grid)

and the maximum number of points per kilometer is

13.6 points per km = (1000 meters)/(73.5 meters per East-West grid)

so we will use an average of 12 points per kilometer in this approximate analysis.

Since we have an empirical indication of a change in run time performance charac-

teristics at a radius of around 20km, this would correspond to an external processor

cache size of approximately:

Cache Size (bytes) = ?rr 2 points x 2 bytes per point/Cache Utilization

- r x [20 kilometers x 12 points per kilometer]2 x 2/0.75

= 482549 bytes

or approximately 471KB. This agrees with the 1024KB actual size of the external

cache on the Sun 670-MP processors to within about a factor of two. This should not

be taken as confirmation of the hypothesis regarding the size and manner in which

cache size will affect the execution time of the R2 algorithm, but only as support for

its plausibility. Further research using larger problem sizes and processors with easily

controllable cache operation (such as 80486 or Pentium class personal computers)

would be able to better determine the interactions between problem and cache size.

7.4 WeightF Execution Time Performance Evaluation

The WeightF algorithm exhibits a strong linearity in execution time for visi-

bility ranges out to 60 km. The same measurement methodology used for measuring
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the performance of R2 and R3 algorithms was employed, with the exception that

the 256 point sample set was executed 16 times during each run to obtain longer

times that stood out better from 'noise' variations for shorter ranges. Figure 7.7

shows the accurate linear fit.
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Figure 7.7: N37E127 - WeightF Execution Times for 16 runs of 256
Pseudo-Random Points (out to 60 kilometers)

The same break from the linear trend at longer ranges occurred for WeightF

as was observed for R2, although at a longer specific range (60 km instead of 20

kin). This break is clear when comparing the 70 km and 80 km values (which were

excluded from the linear fit) to the fitted line.

A different phenomenon here is responsible for the higher than expected exe-

cution times at higher ranges than was observed for execution time for R2 at longer

ranges. The processor time devoted to system functions (approximately 140-170

seconds) is much higher for the 70 km and 80 km values in Figure 7.7 than for

runs at smaller ranges (approximately 25-35 seconds), which was not the case for

R2 runs. This is more likely to be attributable to paging operations than memory

cache behaviors.
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Figure 7.8: N37E127 - WeightF Execution Times for 16 runs of 256
Pseudo-Random Points (from 70 to 90 kilometers)

Figure 7.8 shows observations of WeightF execution times conducted for vis-

ibility ranges between 70 km and 90 kin, with a 1 km change in range between

adjacent runs. These runs were conducted in parallel on separate processors on the

same Sun 670-MP in groups of 10 or 11 consecutive ranges per processor, with each

run being preceded by a 'dummy' run at the lowest range in the group in an attempt

to establish a common base of buffered data files, etc.

Starting out each sequence of runs with a 'dummy' run and using a fine range

granularity (1 kin) produces a sequence of execution times for the 70 km to 90 km

range much more in accord with the observations for lesser ranges from Figure 7.7,

with the exception of the observation for the 89 km range (this point was manually

excluded from the curve fit). The system time for this point was approximately 140

seconds, more than 100 seconds above the system times observed for the remainder

of the observations. The user time for this point is also somewhat higher than what

would be predicted by the fitted curve. If the jump in system time is caused by

increased paging requirements to bring the elevation data required by the longer
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LOS lengths into memory, this modest jump in user time may be due to increased

context switching charged to the user process, increased cache misses, or other

inefficiencies.

7.5 Summary

Strong empirical evidence exists that the predicted execution times for R3

[0(R 3 )], R2 [0(R 2)], and WeightF [O(R)] match the behavior observed running the

algorithms using real data on physical hardware. Anomalies have been observed for

some points or transition zones which may be due to caching or paging behavior.



CHAPTER 8

SUMMARY AND CONCLUSIONS.

The potentially immense demands involved in computing visibility and the utility

of visibility analyses makes finding ways of reducing the computational complexity

of suitable visibility algorithms an important problem. We have focused here on

developing and validating algorithms that are accurate, significantly faster than

existing methods, practical to implement, and robust on real world data. This

chapter summarizes methods and results, and then lists some areas for extensions

and future research.

8.1 Summary

To facilitate development and evaluation of algorithms dealing with terrain

datasets of significant size, a variety of access routines coded in C++, an object-

oriented third generation computer language, were written, tested, and refined.

These routines provide transparent access to five types of USGS data, DMA (Defense

Mapping Agency) DTED Level I data, TEC (U.S. Army Topographic Engineering

Center) TerraBase data, and to any other raster based layout that can be described

by parameters such as grid orientation, geographic location, ground spacing, etc. A

uniform format for representing datasets of gridded elevation and visibility values

was devised to provide for efficient storage and access.

To be able to investigate and validate very fast [O(R)] LOS ray methods of

computing visibility indexes, it was necessary to develop an accurate viewshed com-

putation algorithm that was substantially more efficient than 18(R 3)] naive methods

such as those used in the common R3 algorithm. The R2 algorithm [O(R 2)] devel-

oped here meets these requirements. For the standard case of a 40 km viewshed

119
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in the DTED Level I cell N37EI27 with common startup time discounted, view-

shed calculation time on a Sun 670-MP for 256 observer locations using R3 takes

approximately 5.89 days but only 1.66 hours using R2.

In order to produce accurate visibility index values in 0(R) time, a method to

exploit the spatial correlation of real terrain was designed. This used a fan of equally

spaced LOS rays from observer points to sample the visibility of the surrounding

terrain and produce an estimated visibility index.

The initial LOS ray algorithm, VL, was evaluated on a large number of terrain

datasets and found to be useful in identifying points of high visibility but was less

accurate for other points and tended to overestimate true visibility index values (as

measured by R2). Investigation and experimentation demonstrates that a weighted

version of the VL algorithm, WeightF, provides very accurate (correlated variation

to R2 above 0.9) visibility index estimates over the entire range of values for only

a minimal constant time increase in computation. Accurate estimates for visibility

index values requiring approximately 1.66 hours to compute using R2 (see above)

can be calculated in less than 10 minutes using WeightF.

To gain confidence in the visibility algorithms developed, experiments were

run on terrain from several parts of the world ranging from mountainous to river

valley to marshland. Over two dozen DTED Level I cells were analyzed, each with

over 1.4 million observer locations and viewsheds of over 740,000 points from each

observer. Parallelism in various degrees was employed to spread the work over

several workstations and processors.

Verification of predicted execution time behavior as a function of problem

parameters was performed by controlled runs of the algorithms on several platforms.

Some variation from expected timing results for R2 was observed, which may be

attributable to memory cache characteristics.
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8.2 Significant Contributions and Accomplishments

There are several contributions realized by the results of the research described

in this thesis.

a The existence of significantly faster algorithms for viewshed and visibility index

calculation broadens the range of applications that can be developed and the

scope and nature of further visibility research that can be undertaken.

* The existence of efficient and implementable viewshed and visibility index

algorithms provides benchmarks for developing even faster methods based on

genetic algorithms, hierarchical data structures, or other means.

* Experimental evidence that terrain datasets routinely contain a very few well

defined highest visibility points is important to the manner in which solutions

to certain types of siting problems are undertaken.

* A specific elevation model and visibility characteristics taxonomy is presented

to enable the results of this research to be understood and extended in a

manner that facilitates further development and meaningful comparisons with

other work.

Several issues and goals relating to this work were described in Chapter 1.

They have been addressed as follows:

1. We use all relevant data from the elevation raster. No points are dropped

by simplifying the dataset, and the criterion for adequacy and criterion for

appropriateness are satisfied.

2. Significant improvements in performance over existing implemented and accu-

rate algorithms have been achieved for total viewshed determination by R2 in

O(R 2) time and for visibility index estimation by WeightF in O(R) time.
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3. The accuracy and utility of the algorithms developed have been confirmed on

examples of different types of terrain (mountain, river valley, marshland) and

for different LOS parameters (antenna, human vision).

4. Visibility indexes on real terrain have been observed to follow distributions

resembling negative exponential or log-normal forms; a very limited number

of points with high visibility index values for their region can be identified and

used as input to various site selection algorithms.

5. Parallelism at various degrees of granularity and architectural dispersion have

been successfully employed to tackle visibility analyses with large, real world

problem sizes. This exploitation of parallel execution included robust recovery

and input data sharing.

6. The algorithms developed have been shown to be practical and implementable;

demonstration viewers for inexpensive platforms have been made available

to user communities to confirm the utility of visibility index images and to

identify areas for further research. The utility of these algorithms have been

demonstrated on 1 meter spacing elevation datasets.

Any existing algorithms or applications that make use of visibility rankings or

viewsheds can potentially benefit from using faster visibility determination methods.

GIS-related applications are obvious instances. Use of R2 instead of R3 in an on-line

viewshed display application reduces the cost of visibility computation to the same

order as for screen pixel update operations. Outside of the traditional GIS area, the

visibility image applications described in [DFJN92J and [Ray94] benefit from total

scene analysis times reduced from O(R3 ) using naive methods to e(R/) by using R2

and (if accurate enough in the specific problem domain) to O(R) using WeightF.

Given the existence of a set of portable, reusable, and extensible implementa-

tions of algorithms to conduct fast and accurate visibility analysis of large elevation
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datasets, a variety of new approaches to existing problems can be undertaken. Com-

putationally cheap and robust visibility calculations can open new possibilities for

analyzing the occurrences and nature of errors in elevation datasets. In addition to

the analytical possibilities (such as the impact of elevation data errors on visibility

in Figure 6.28), new visual aids in error identification become possible.

Figures 8.1 and 8.2 show an instance of such an application. They show the

elevation and visibility gray-scale images of a portion of the terrain in the southeast

corner of DTED cell N37E126. Note the dark vertical line in the northeast corner of

the visibility image. This line is barely distinguishable in the elevation image, even

knowing where to look for it, and is virtually undetectable to the unaided eye on a

standard gray-scale workstation display of elevation data. The line corresponds to

an erroneous drop of 10-20 meters in the elevation values recorded on the boundary

of a DTED cell. This appears to be another instance of the nature and magnitude of

DEM strip error mentioned in Section 2.3. It is difficult to identify in the elevation

image, but the visibility values for the corresponding points in the visibility image

decrease in intensity by 60% to 80% and show the problem area clearly.

8.3 Future Work

e Faster Real Terrain Visibility Methods Tools already created can facili-

tate the investigation of even faster visibility determination algorithms. Such

methods could capitalize on correlated viewshed subregions between adjacent

points, terrain configuration local to an observer point, genetic algorithms,

neural networks, quadtree representations of minimum and maximum eleva-

tion values within subregions, and various other approaches. The ultimate

objective of such investigations would be to produce algorithms that run sig-

nificantly faster than WeightF and R2 but yield the same relative degrees of

accuracy (or better).
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Figure 8.1: Elevation Vicinity n37e126y

Figure 8.2: Visibility Vicinity n37e126y



125

e Variations in Elevation Point Density Given the availability of reliable ele-

vation datasets of varying densities for the same area, the relative impact of

random error and grid density on visibility results can be investigated. Sim-

ple elimination of points from an existing grid may not prove suitable, since

an agent producing a reduced density DEM for real applications would be

likely to take into account issues of 'representativeness' and apply some type

of adjustment to the chosen values.

9 Terrain Complexity Categorization Computationally efficient means of cat-

egorizing terrain complexity can be evaluated by observing the relationship

between their measures and the number of WeightF LOS rays needed to ob-

tain a specified degree of visibility accuracy for given terrain data sets. The

general concept of using the emergence of patterns between GIS operations

as a means of identifying valid and properly scaled measurement methods is

mentioned in lOpe89]. Existing methods such as the 2D-Fourier Transform

and Fractal Dimension Estimation are computationally intensive, and sim-

ple statistics (e.g., elevation standard deviation) are insufficient to distinguish

between terrain types such as gradually sloping plains and rolling hills. Pos-

sible measures to investigate include the number of rays required for accurate

WeightF estimates, slope sign changes along rows or columns of elevation data,

and spatial correlation of elevation data.

* Relationship of Aspect Error to Visibility As mentioned in Section 2.3, ran-

dom DEM errors may have significant impacts on the apparent directional

aspect of a terrain feature represented in a DEM. Aspect errors may result

in significant visibility errors for some terrain features by narrowing or ex-

panding their potential field of view around obstructions. The algorithms

developed during this research can be used to help investigate variations in
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visibility strongly related to error-induced aspect variations. The visibility

images described in Section 5.7.2 can aid in visualizing aspect and visibility

relationships.

Other areas for extensions and future research include investigation of other

terrain areas (including those on Venus or Mars by using data from NASA), incre-

mental application of W-ightF calculations for early identification of best visibil-

ity points, modeling memory cache behavior during visibility calculations on large

viewsheds, and weighting point contributions to viewsheds using the calculated LOS

height at the point.



LIST OF SYMBOLS

S•r The controlling slope at any specific state in the process of a visibility
determination.

B The set of target points on the boundary of an an area viewed from
a given observer.

C A class of observed point associated with a specific weight vector for
the value of covering it by various numbers of observer facilities.

Do Distance from the observer in earth curvature calculations.

AEc Change in elevation due to earth curvature.

GD[p.,pb] The ground distance between points P. and Pb in L.

G. One specific arrangement of facilities within S1 .

L The surface of the landscape of an AOL.

M A matrix of points corresponding to T.

Oh The height of an observer above ground level.

P. A point in 3D space on or above L.

R The maximum range for which visibility is significant.

R/. The average range for which visibility is significant.

RE Effective radius of the earth.

S A 21D surface where elevation is defined only for locations corre-
sponding to grid points or grid lines in M.

S! Set of points in S where it is possible to place an observer facility.

S•v The set of (x, y) coordinates in S for which elevation is defined.

T A tessellation of integer valued elevations which approximates L.

V~b Visibility function of observer at P, and target at Pb.

cli The class of the point at location i in S.

cia The class of the point at location i using facility arrangement a.

fL A function mapping a 2D geographic coordinate to the elevation of
L at that point.

dT The error in the approximation of L by T at a given point.

ht The lowest height above ground for which it is necessary to establish
a LOS to a target.

M"= Constant terrain distance between all longitudinally adjacent points
in M.
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mow Constant terrain distance between all latitudinally adjacent points
in M.

nc Number of classes of covered points in S.

n! Number of observer facilities available.

nG The number of possible distinct arrangements of facilities.

nm The number of points in M.

nlrc The number of points improperly contributing to a LOS.

"npc The number of points properly contributing to a LOS.

nit The average number of grid point or grid segment crossings along
an LOS of length R.

ns The number of elevation data points in S.

ns, The number of potential observer site points in Sf.

nvi The number of LOS rays used in calculating a visibility index esti-
mate.

Pa A point in M corresponding to a point P6 in L.

Whi Weight (value) of covering a point in class Ck by i facilities.

ZL The elevation of a point in L.

zs The elevation of a point in S where elevation is defined.

190 notation bounds a function to within constant factors.

O0( notation gives an upper bound for a function to within a constant
factor.

fl() notation gives a lower bound for a function to within a constant
factor.



GLOSSARY

4-Neighbor Adjacent Relationship between two points that are immediately

north-south or east-west adjacent on a grid.

8-Neighbor Adjacent Relationship between two points that are immediately

north-south, east-west, northwest-southeast, or northeast-southwest adjacent

on a grid.

ALBE Air-Land Battle Environment. An evolving set of terrain analysis applica-

tions sponsored by TEC which serves as a testbed for new concepts.

AM Altitude Matrix. A regular rectangular grid of point measures that forms the

most common type of Digital Elevation Model [Wal89].

AOI Area of Interest. The total area which must be represented to evaluate a

potential siting solution for a given situation.

Controlling Slope With respect to a given observer, the slope of a line segment

beneath which no point is visible on or over the terrain for which that slope

is the controlling slope.

Covering Triangle A triangle defined by two grid line segments with one common

endpoint which is assumed to be no lower than any corresponding terrain

points.

DEM Digital Elevation Matrix.

DMA Defense Mapping Agency.

DTED Digital Terrain Elevation Data produced by DMA, typically in cells repre-

senting an area of one degree of latitude by one degree of longitude. DTED
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Level I data has a typical grid spacing of three-arc-seconds, while typical

DTED Level II data has grid spacing of one-arc-second.

FSO Field Support Office, TEC.

GIS Geographic Information System.

GPS Global Positioning System. A system of orbiting satellites and associated

standards for receiving their signals which allows determination of relatively

precise 3D locations anywhere on the surface of the earth.

HAWK A mobile medium-capability air defense missile and radar system capable

of tracking and engaging targets within a 3600 circle of its emplacement site

subject to minimum and maximum target range and altitude constraints.

KB Kilobytes - approximately 1 thousand bytes.

LAN Local Area Network. A network connecting stations residing in essentially

the same geographic location. Throughput is typically on the order of 1 MB

per second (max) delivered to each station.

LOS Line-of-Sight.

LOS Height The lowest height at which a target at a given location is visible from

the observer.

MAUP Modifiable Areal Unit Problem. Affects on the values, relationships, and

inferences derived from spatial data due to the number and size of the zones

used to report the data.

MB Megabytes - approximately 1 million bytes.

NFS Network File System.
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Radius of Visibility The maximum geographic distance (meters or kilometers)

for which visibility from the observer is significant. This might be the maxi-

mum range of a radar, or of optical visibility under prevailing weather condi-

tions.

RMSE Root Mean Squared Error.

SPECmark A relatively standard measure of CPU performance between different

processors.

TEC U.S. Army Topographic Engineering Center.

TerraBase A terrain database system for MS-DOS based personal computers orig-

inally developed at the U.S. Military Academy and now supported at the FSO.

TIN Triangulated Irregular Network.

USGS United States Geological Survey.

Viewshed The points within the radius of visibility that are visible from the ob-

server.

Visibility Fraction The ratio of the number of points in the viewshed to the total

number of points within the radius of visibility.

Visibility Index A single numeric measure of the amount of terrain which is visible

from a particular point compared with other possible observer points in the

same dataset.

WAN Wide Area Network. A network connecting stations that are geographically

distributed, generally with throughput an an order of magnitude less than

found on LANs.
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APPENDIX A

Computation and Storage Costs of Visibility Determinations

As discussed elsewhere, the general case of establishing a LOS from an observer to

all surrounding grid elevation points requires running a unique evaluation to each

point for which an existing collinear LOS (to a previous point) cannot be extended.

The actual execution time on a Sun IPC workstation with a performance level of

approximately 11 SPECmarks provided a mean throughput of 256 point-to-point

LOS evaluations per second with a maximum radius of visibility of 40km in DrED

cell N37E127. This distance was selected from [Jan89] and [Jan90] as representative

of existing a 4 projected medium capability air defense radar ranges.

A standard DTED Level I cell represents a rectangular area approximately

100km on a side, which is a realistic magnitude for communications or radar plan-

ning. The grid for such a cell is typically 1201 x 1201 for a total of 1,442,401

elevation points. Given a three-arc-second grid spacing in each cell, the ground

distance (North-South and East-West) between points varies between 60 and 100

meters, depending on the specific latitude. The rest of this analysis uses an average

figure of approximately 80 meters (this matches the 1200 grid spaces per side of a

DTED Level I cell covering approximately 100km). Since each elevation point is

measured in meters, a two-byte integer (which can represent values between 32,767

to -32,768 meters of altitude from mean sea level) is a common storage unit for ele-

vations. The total storage requirements to represent a 10, 000km 2 area is therefore

approximately 3MB. However, the need to include surrounding areas out to the de-

sired radius of visibility requires additional storage. Extending data coverage 40km

in each direction requires a grid of approximately 2200 x 2200 points for a storage

requirement of approximately 10MB.

A program to calculate visibility values on the Sun IPC was coded in the
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G++ implementation of the C++ programming language, using all-integer operations

in critical program segments. Actual throughput for 40km LOS evaluations was

approximately 128 evaluations per CPU second. When evaluating LOS's to each

point on a fixed number of LOS rays within a 40km radius of visibility, the average

distance will be 20km, implying a throughput of approximately 256 LOS evaluations

per CPU second. Allowing for an improvement by a factor of four in some other

common environment (more powerful hardware, better optimizing compiler, etc.), a

throughput of approximately 1000 LOS evaluations per second under the conditions

stated above seems reasonably obtainable, implying 1 millisecond of CPU time per

LOS evaluation.

The computational cost to evaluate a given LOS will vary linearly with the

density of grid points to ground distance. This is because determining the LOS

between two points requires values (or estimates) of elevation based on all elevation

data points in between. If the cost to calculate a LOS between two points is 0.001

seconds when the average grid spacing is 80 meters, it would take approximately

0.002 seconds if the average grid spacing were 40 meters.

The estimated CPU time to evaluate the LOS from each point in a 10000kmi2

area to each point on the elevation data grid within a 40km radius of visibility in

terms of the ground spacing between grid points can be calculated from the following

relations:

Ak. = (100km)
2

NkM = 1000m/S,

N. = A,,/ Nkm,,,

No = (X R )IS

T108 o (0.08sec/m)/Sg (A.1)
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Tt.t= N x N x TI., (A.2)

where

Ak., Area containing potential observer points, in km 2.

N,. Number of observer points per linear k1m.

N. Number (approximate) of target points in a circle of radius I. meters from a
given observer point.

N. Number of observer points.

P. Radius of visibility, 40, 000 meters in this case.

S. Average ground spacing between points, in meters.

TI.o Time (mean) to evaluate a single 20km LOS, estimated as 0.001 seconds when
So = 80 meters.

Tot Total time to evaluate a LOS to each target point from each observer point, in
seconds.

If D. is defined as the average linear density of grid points per kilometer

(1000m/S,), then from the above relations an expression for total time is found to

be:

Tt°t = (100kM)2 x D.2 x 7r x (40km)2 x D. x 0.00008 x D,

This reduces to:

Tota = (1280ff)DO (A.3)

so clearly

Ttot = O(D ) = O(D ) = Q(D )

for this particular visibility algorithm, where [CLR91I:

* e notaticn bounds a function to within constant factors.

* 0 notation gives an upper bound for a function to within a constant factor.
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0 i notation gives a lower bound for a function to within a constant factor.

Therefore, the total time to evaluate the LOS from each potential observer point to

all corresponding target points will vary with the linear data point density raised to

the fifth power.



APPENDIX B

Formal Definition of the HAWK Siting Problem

The variety of approaches to the problems of visibility determination and facility

site selection have naturally led to different forms of notation in describing specific

problem domains. The following description attempts to make use of aspects com-

mon to several existing definitions ([DFN88I, [Lee9la], [S171], [CR74]). The model

of the elevation data and its relationship to the physical terrain setting are described

in Chapter 3.

Consider a surface S which contains a total of ns elevation data points and

corresponds to the landscape L that contains the AO0 for a given siting problem.

Let h. be the effective height of the observer (in this case a HAWK radar antenna)

above the ground and let ht be the minimum height above ground level at which it

is deemed necessary to track a target. To be able to accurately track (as opposed

to just detect) an aerial target, the target must be visible from the observer. In this

model points P. and Pb in three-dimensional space are each visible from the other

if a straight line between them is not beneath the surface S at any point where

the elevation zs is defined. Stated differently, if for any point (zi, yi, zi) on the line

connecting P. and Pb where (zi, yI) E Sn it is true that z1 >_ zs then P. is visible

from Pb and Pb is visible from P..

The symmetry in visibility between P. and Pb in general three-dimensional

space no longer holds when we consider points which are the projections onto S

of potential observer and target locations. If an observer O. is positioned at point

(-,Ya, z.), where (x., y.) E S,, and z. = fs(xay.), then for visibility determina-

tion we consider lines-of-sight to originate at (zx, y., (z. + ho)) and extend out to

(xb, Yb, (zb + ht)) where (zb, Yb) E Sv. Since in general h. 6 hi, if an observer at P.

can see a target at Pb this does not imply that an observer at Pb could see a target
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at P.. Define the visibility function Vb to have the value 1 if a target no lower than

height ht above point Ab on surface S is visible from an observer at height h, above

point P4 on surface S and the distance between P. and PA is not greater than some

constant R. Let n, be the average number of crossings corresponding to points in

M (see Chapter 3) where a LOS of length R crosses a grid line segment.

Vb has a value of 0 otherwise. Note that the value of Vb implies nothing about

the value of Vb.. If V.b = 1 we say that point Pb can be covered from an observer at

point P..

Let n1 be the number of facilities (HAWK units) available. The number of

units (0... nf) covering the various points in S determines the effectiveness of a

particular arrangement of HAWK units in an AOI. For each location i E S, where

i = 1,2,... ,ns let fi = 1 if there is a facility at location i and fi = 0 otherwise.

The number of facilities at any given location is always either 0 or 1.

Not all points in S will have the same importance for coverage. Each point in

S is considered to belong to exactly one of nc classes for the purposes of evaluating

the value (weighting) of covering it. Let cq be the class of the point at location i.

Within each class Ck, k = 1 ... n,, a different weight exists which corresponds to the

number of facilities (0... nr) covering a point in that class. Let wki be the weight

assigned to the value of covering a single point in class Ck by exactly j facilities. We

impose no particular restrictions on the values chosen for these weights other than

-oo < w < oo, although a typical scenario would have 0 <w < oo with the value

of wkj increasing as j increases.

Let S! be the set of points in S where it is possible to place a facility, and

let ns, be the number of such points. nst •_ ns, and generally nst = fl(ns) over

various AOI's. If k E S, then fk = 1. In typical real world situations nf < ns1 . Let

G. be an arrangement of facilities, a E 1,..., nG, such that for each arrangement

there are exactly nf locations i E Sj for which fi = 1. There will be no possible
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distinct arrangements, where

ns1 ! (B.1)
no = n!(nsi - ni)!

For a specific problem with a fixed number of available facilities n/ = k and where

n1 <. ns,, then nh! = k! and we can approximate the variation in nG with ns, as

nf i (ns,)"' (B.2)

Observe that if the linear density of points on the ground (see Table 1.1) doubles,

then the number of possible arrangements can be expected to increase by a factor

of approximately 4k.

We can now state the initial, or static weight HAWK siting problem as finding

an arrangement G. which maximizes

F, Wjbi(B.3)
iEs

where

PEG.

for locations p E G.. Note that this formulation implicitly assumes that there is no

change in weights between different arrangements, and therefore no value is imputed

to coverage of one facility by another.

Since in the real world this is often not the case (air defense units are sited to

cover each other, when possible), an alternative formulation to represent the value

of overlapping coverage becomes finding an arrangement G. which maximizes

E• Wj.b, (B.4)
iEs

where cqo is the class to which location i belongs under arrangement a. This problem

is referred to as the dynamic weight HAWK siting problem. The class of a given

location will vary depending on whether coverage of that location is considered

significant in defending one or more HAWK sites in any given arrangement.
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It is useful at this point to emphasize that it is necessary to perform the sum-

mations in either problem formulation for all locations i E S, not just locations

where specific targets (or HAWK sites, in the dynamic weight formulation) are lo-

cated. This is due to need to intercept or deter potential attackers before they have

approached close enough to their targets to release stand-off munitions, which have

a range of several kilometers or more. The need to evaluate the contribution of all

covered points in S also conforms well to the problems related to siting communi-

cations facilities and other applications influenced by visibility considerations.



APPENDIX C

Investigation of Elevation-Visibility Relationships

A variety of factors influence the degree of correlation observed between elevation

and visibility at given points. These include but are not limited to the roughness

and extent of the sample area, presence of significant coastline and sea level areas,

considering all or only selected sets of points in the sample area, the model used

to relate elevation and visibility, and the method used to calculate the visibility

index for observer points. The results of some of these correlation calculations are

presented here in tabular form for two models. The linear model assumes that for

the area sampled

Vi = Ao + Olzi + f (C.1)

while the quadratic model assumes

Vi= flo+PIZ$? + Ci (C.2)

where Vi is the visibility index at location i, zi is the elevation at location i, flo and P,

are parameters, and ci is the error between the predicted and actual visibility index

at location i. The empirical basis for not including a linear term in Equation C.2

is presented in Chapter 6. The most significant results of the regression analysis

are the sign and magnitude of the correlation coefficient r. The value of r2 (the

correlated variation) reflects the portion of the variation in the value of Vi that is

explained by the assumed relationship to zi. Many other models relating elevation

and visibility can be constructed; here we attempt only to examine the results of

these two simple models over a variety of terrain areas for which elevation data is

available and visibility index values have been computed.

Results obtained by applying the two models described above to several DTED

cells are shown in Table C.1. Points with elevation values of zero (i.e., sea level) were

146
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Correlation of Visibility to Elevation: Best Points

Cell Non-0 Vis Index Best r r Cell
Name Elevs Range Points Linear Quadratic Type

N37E127 1441304 144-16976 2071 0.240055 0.161028 Mountain
Lowland

N36E127 1439567 160-19800 9980 0.271448 0.201289 Mountain
I _Lowland

N36E128 1442399 160-16648 690 0.20519 0. 176861 Mountain
Upland

N36E126 759014 184-31704 1529 -0.024374 -0.052767 Coastal
N37E127-W 1441304 8-14624 582 0.068689 0.018259 Mountain

I I_ Lowland

Taoble C.1: Best Points Visibility-Elevation Correlations.

excluded from the correlation calculations, but not in the calculation of the visibility

index values for points that are considered. As mentioned elsewhere, the potential

values for a visibility index for a given point may range from 0 (perhaps from the

bottom of a well!) to 32767 (all points within radius .R are visible). The number

of observations used in calculating correlations varies with the number of sea level

points excluded. N36E128 has almost no points excluded (from a maximum possible

of 1,442,401), while N36E126 is almost one-half ocean and has almost 50% of its

points excluded. The '-W' in the cell name N37e127-W indicates that in computing

the visibility index values, the contribution of each point along each of the 32 LOS's

calculated was weighted approximately according to its distance from the observer

point. This variant is included to evaluate the impact of treating each point along

a LOS as representing a sample of all unevaluated points closer to it than to any

other evaluated (i.e., on a LOS) point.

Several significant trends can be noted in Table C.1. First, the number of

points with visibility values in the top half of the total range of values for a given

cell is much smaller than the total points in the cell. For example, for N37E127 out

of 1,441,304 non-sea level points in the cell, only 2071 had visibility index values
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in the top half (i.e., Vi > 8560). This provides evidence for the hypothesis that

visibility index calculations can identify a relatively small group of points out of

the total set of potential observer locations for further investigation. N37E127-W

produces an even smaller number (582) of points with visibility values in the top

half of the total range (i.e., V' > 7316). However, more detailed investigation reveals

that points selected from weighted processing tend to cluster together more than

in unweighted processing when ranked by visibility index, and can actually require

consideration of a larger number of points to achieve a desired minimum number of

distinct geographic locations as candidate observer areas.

Another observation to be made from Table C.1 is that magnitude of the

correlation between elevation and visibility index is never large, and for the cells

shown the value of r2 for either model never exceeds 0.073684 - hardly a vote of

confidence for using either of these elevation-based models to find the best observer

points. In some cases the correlation (such as it is) is in fact negative. The results

for N36E126 may be heavily influenced by the presence of substantial coastal areas

(with relatively low elevations) which have extensive visibility out over the ocean.

Whether or not visibility over the ocean is of the same import as visibility over land

is a function of the specific application; here they are treated equally.

Achieving marginal results in this initial attempt to use elevation as a guide to

determine points with the best visibility, Table C.2 shows the results of applying the

same models to the more general problem of relating elevation and visibility for all

(non-sea level) points throughout an area. Also shown are some results of the impact

of changing the extent of the total area correlated by presenting values for subareas

of N37E127-W. Cell names with lowercase letters and suffixed with a lowercase 'w',

'x', 'yI, or 1z' are quadrants of a complete DTED cell. A 'w' suffix indicates the

southwest quadrant, 'x' the northwest quadrant, 'y' the southeast quadrant, and 'z'

the northeast quadrant.
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Correlation of Visibility to Elevation: All Points

Cell r r Remarks
Name 11 Linear Model Quadratic Model

N37E127 -0.119575 -0.016950
N37E127-W 0. 196629 0.243252 Weighted

N36E127 -0.236553 -0.098787
N36E128 0.041409 0.11115

n37e127w-W 0.291576 0.378529 SW Quadrant
n37e127x-W 0.214607 0.263673 NW Quadrant
n37e127y-W 0.257636 0.281329 SE Quadrant
n37e127z-W 0.500397 0.557214 NE Quadrant

n37e127z-W 0.205598 0.170632 164 Points in Top
11 1 50% of Vis Range

"Table C.2: All Points Visibility-Elevation Correlations.

For several complete cells the results are no better - or even significantly

worse - than correlations for best visibility points from Table C.1. In some cases

(N37E127, N36E127) the sign of the correlation has switched from positive to neg-

ative. However, the correlation for N37E127-W for both models has manifested a

marked improvement. Selecting this cell for further investigation, subsequent en-

tries in the table show the impact of narrowing the scope of the areas examined to

cell quadrants. There is significant variation in the degree of correlation between

elevation and visibility among the four quadrants, with n37e127z-W manifesting the

highest correlations. For this area, in both the linear and quadratic models nearly

25% of the variation in visibility can be matched to elevation.

It could be hypothesized that by starting with the cell and LOS estimation

method yielding the highest initial correlations (N37E127W), examining subareas

within it (its quadrants), and selecting the subarea with the highest internal corre-

lation between elevation and visibility (n37e127z-W) that for this restricted set of

data it might be possible to obtain useful results in using elevation values to predict

the best visibility points. However, as shown in the last entry for Table C.1, the
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correlated variation for the 164 points occupying the top 50% of the range of visi-

bility values is still quite low (r2 of approximately 0.04 or less) and are in fact below

the results of Table C.1 using unweighted visibility index values for all of N37E127.

In summary, over the visibility measures, models, and sample areas and sizes

presented here, there is no evidence of any straightforward relationships between

elevation and visibility that would be useful in quickly selecting most of the best

observer sites in a given region. Other models relating elevation to visibility are

of course possible, such as those making use of several adjacent elevation values.

Given the presence of visibility information for a sufficiently encompassing region, it

may be possible to produce a variety of methods more effective than the two models

used here through genetic algorithm development or by employing various heuristics.

More sophisticated models will of course involve higher computation costs, and in

any case would still require a base of visibility estimates or rankings (such as those

used here) to evaluate their success in selecting promising observer points.



APPENDIX D

Demonstration to User Community

Although the generation of a visibility grid corresponding to the elevation data

for an AOI provides the basis for extracting concise information for a variety of

siting algorithms, it also offers the opportunity to provide a display to augment

existing ways of visually representing terrain considerations for planners and decision

makers. Many users of digital terrain data who could provide useful insights into

various methods of rendering a visibility image may not have access to workstation

environments common in research and academic settings.

In an attempt to make some form of visibility display available to users with

relatively restricted computing resources, a standalone demonstration system was

developed whose primary screen display is shown in Figui D.1. It can execute on

any Intel 80x86 architecture running an MS-DOS or compatible operating system

with a standard VGA (640 x 480 x 16 color) display. The entire demonstration

package is distributed on a single 1.2MB 5.25 inch floppy disk, which can hold the

demonstration program, background and operating information text, and elevation

and visibility data for 12 areas corresponding to one-degree DTED Level I cells.

Also provided for each area are lists of the 16 best and 64 best visible points, as

selected from the entire cell and as selected from within 16 equal sub regions with

a cell to reduce clustering.

To accommodate the size and color limitations consistent with reaching a

large audience, the available elevation (16-bit) and visibility (effectively 12-bit) data

are sampled from a 1201 x 1201 grid down to a 300 x 300 grid. Elevation and

visibility values are each scaled into thirteen discrete values in a 4-bit nibble, leaving

three reserved colors for ocean coloring and two separate highlighting colors for

selections of best visibility points. As a result of this reduction, a combined total
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Figure D.1: Screen from PC Demo Application.
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of approximately 5.8 MB of elevation and visibility data in one DTED Level I

cell is transformed into approximately 90 KB of data for use in the demonstration

program. While certainly lacking the detail present in the original data, initial

response from the ALBE group at TEC indicates that the reduced data remains

useful and representative.

Comments on the initial implementation of the demonstration set led to an

enhanced version which provides for legend displays. User configurable palettes

were suggested and implemented to allow unanticipated uses of the data, such as

highlighting areas of very limited visibility (for concealment) by reversing the normal

palette. An application based on this demonstration set is being implemented at

TEC in a UNIX X-Window environment to be integrated into the existing ALBE

software suite for fielding in the first part of 1994.


