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SUMMARY

Given a sparse nonsquare system of linear equations Mx = b where MTM is
either dense or full, we present a direct method that generates a least squares
solution of the original system Mx by solving a smaller least squares problem.
The method accomplishes th ecomposition by applying orthogonal
transformations to a restructured Iin of the original system of equations. The
algorithms derived from the decomposition result are well-suited for both
sequential and parallel architecture machines. In a specific Navy signal processing
application, the presented algorithm computed on a Sun SPARC 10 workstation a
least squares solution of a rank deficient system comprising 703 equations and
592 variables in a number of floating point computations tenfold smaller than a
methodthat does not exploit the sparsity structure of M.
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1.0 INTRODUCTION

The method of least squares is a fundamental computational tool for
estimating unknown parameters, curve fitting, data smoothing as well as solving
nonsquare systems of equations. When the problem is formulated as a nonsquare
system of linear equations

Mx = b, (1)

in which M is an m by n full rank or rank deficient matrix, the linear least squares
problem is expressed in the standard form

min (I Mx- b 112. (2)
X

A number of efficient, direct methods for solving large and sparse linear least
squares problems have been developed using orthogonalization, elimination and
augmentation (George & Heath, 1980; Golub, 1965; Hachtel, 1974; Heath, 1982;
Heath, 1984; Liu, 1986; Peters & Wilkinson, 1970). A central assumption in all
these methods is that the matrix MTM is sparse. In this work, we expand the choice
of methods by developing a method that efficiently handles the case in which M is a
sparse matrix while MTM is dense, and possibly full. Our method is based on a
decomposition result obtained from the application of orthogonal transformations to
a restructured form of the system Mx = b. With this result, the original sparse linear
least squares problem is reduced to a smaller least squares problem. The size of
this smaller problem depends on the original zero-nonzero structure of the sparse
matrix M. For a specific Navy signal processing application in which M is a 703 by
592 sparse and rank deficient matrix and MTM is full, the smaller problem consisted
of a dense, rank deficient system comprising 231 equations and 120 variables. The
application of our direct method to the smaller problem produced a solution to the
original sparse linear least squares problem in a number of floating point
computations tenfold smaller than a method that did not exploit the sparsity
structure of M.

The algorithms derived from our decomposition method are well-suited for both
sequential and parallel architecture machines. This work covers results obtained
from implementations on a sequential machine, whereas future work will cover
results obtained from implementations on parallel architecture machines.

This report is organized as follows: Section 2 reviews some of the most
common methods for solving the sparse linear least squares problem. These
include the normal equations method, sequential row orthogonalization method
(George & Heath, 1980) and multifrontal QR factorization (Liu, 1986). Section 3
presents the main decomposition result; Section 4 discusses various sparsity
structures suitable for the proposed decomposition result including the block
bordered triangular form; Section 5 gives two high-level implementations of the
decomposition result; Section 6 reviews four methods available in the linear
algebra package Matlab (Mathworks, 1990) for solving dense and sparse linear
least squares problems; Section 7 presents a procedure to structure the



overdetermined matrix arising from the signal processing application into the block
bordered triangular form, and discusses the key computational issues in
permutating an arbitrary nonsqaure matrix into block bordered triangular form;
Section 8 outlines some of the parallel features inherent in our algorithms, and
concludes with numerical results and comparisons.

2.0 BACKGROUND AND MOTIVATION

The system of normal equations

MTMx = MTb (3)

plays a pivotal role in many methods developed for the solution of the linear least
squares problem. If M has full column rank, then the solution of the linear least
squares problem (2) is given by the solution of the system of normal equations (3).
This leads to the following three important contributions (George & Heath, 1980;
Heath, 1984; Liu, 1986) for solving the sparse linear least squares problem.

1) Normal Equations Method. For any n by n permutation matrix P, PTMTMP is
symmetric positive definite since matrix M has full column rank. As a result, the
normal equations method leads to the following algorithm (Heath, 1984) for the
solution of the sparse linear least squares problem.

procedure normalequations:
begin

determine symbolic structure of MTM;
find permutation matrix P so that PTMTMP has sparse upper Cholesky factor;
factor pTMTMp symbolically;
comment this generates a row-oriented data structure for Cholesky factor;
compute MTM and MTb numerically;
perform Cholesky factorization pTMTMp = RTR;
solve RTz = pTMTb, Ry = z and x = Py in that order

end

Although the normal equations method is appealing for its simple formulation, it
may give rise to serious loss of information in the explicit computation of the
products MTM and MTb. Also, the condition number of MTM is the square of the
condition number of M, and so an accurate solution of the system (1) may be
extremely difficult to compute if M is ill-conditioned. To avoid these potential
numerical instabilities associated with the normal equations method, George and
Heath (1980) combined orthogonalization with the normal equations method to
arrive at the following important method for solving the sparse linear least squares
problem.

2) Sequential Row Orthogonalization Method. Let Q be an m by m orthogonal
matrix and let P be any n by n permutation matrix so that
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QTMP = [O']. (4)

where R is an n by n upper triangular matrix and 0 is m-n by n zero matrix.
Combining (1) and (4), and partitioning QTb conformably into the direct sum of f
and h, gives rise to the upper triangular system

Ry=f (5)

in which y a pTx. The vector x = Py obtained subsequent to the solution of (5) is a
solution to the linear least squares problem (2) since the 2-norm is preserved
under orthogonal transformations (Golub, 1965). The matrix Q is usually obtained
using either Householder reflections or Givens rotations, or by Gram-Schmidt
orthogonalization (Golub & Van Loan, 1989; Lawson & Hanson, 1974).

While orthogonalization eliminates the potential numerical instabilities
encountered in the normal equations method, the application of orthogonal
transformations to the matrix MP may cause severe fill-in. George & Heath (1980),
however, noted the following identity

PTMTMP = RTR, (6)

which clearly shows that the upper triangular matrix R obtained from the application
of orthogonal transformations to the matrix MP is the upper Cholesky factor of the
symmetric positive definite matrix pTMTMP. This observation led George and Heath
to an algorithm which combines the attractive features in the normal equations
method and orthogonalization into the following algorithm.

procedure sequentialroworthogonalization:
begin

apply the first three steps in procedure normalequations;
compute R and f by applying Givens rotations to rows of [MP b] one at a time;
solve Ry = f and x = Py in that order

end

The most significant contribution of the sequential row orthogonalization
method is highlighted in step 2 of the above procedure where orthogonal
transformations are carried out using fixed (static) data structure for R (George &
Heath, 1980). This feature makes the sequential row orthogonalization method
extremely efficient for sparse linear least squares problems when MTM is assumed
to be sparse.

3) Multifrontal OR Factorization Method. This method, originally called row
merging scheme (Liu, 1986), is a means to compute the upper triangular matrix R
in the OR factorization (4) by applying Householder reflections to small dense
submatrices in such a way that each submatrix is factorized independently of the
others. The allocation of these small submatrices (called frontal matrices) and the
subsequent treatment at the completion of their factorizations is accomplished by
exploiting the sparsity structure of the symmetric matrix R+RT.
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In what follows, we highlight the main motivation that has led to the formulation
of the multifrontal OR factorization method. For any i with 1< i < n, let ri and ci be two
arrays so that M(r, ci) is the submatrix of M consisting of the rows containing the
nonzeros in the ith column of M, and the columns containing at least one nonzero
in the submatrix M(rn, :). Then, the first row obtained from the OR factorization of the
submatrix M(r, ci) is the first row of matrix R in (4) for the case where P = I. Now let
M(:, j) be any other column of M such that

M(:, i)TM(:, j) = 0 k7)

Assume that no cancellation of nonzero elements takes place in (7). Then no row of
M contains nonzero entries in both M(:, i) and M(:, j), and so the first row obtained
from the QR factorization ot the submatrix M(ri, ci) is also a row of the matrix R in (4)
for the case where P = I. Consequently, for the case where P = I the first two rows of
R can be obtained by independent QR factorizations of the submatrices M(ri, ci) and
M(r., ci). Such submatrices are called frontal matrices, and the method derived from
the use of frontal matrices takes the following algorithmic form.

procedure multifrontalOR_factorization:
begin

apply the first two steps in procedure normal-equations;
set M to MP;
while M has any column do

begin
determine frontal matrices in M;
for each frontal matrix M in M do

begin
use Householder reflections to compute QR factorization QTM;
comment first row of QTM is a row of R in (4);
replace submatbix M of M by factorized frontal matrix QTM

end;
delete from M first row and column of each factorized frontal matrix

end
end

By equality (7), each pass of the for loop in the above procedure can be done
independently of the other passes. This feature makes the multifrontal OR
factorization method well-suited for parallel computation. However, the overall
effectiveness of the method rests on how efficiently the frontal matrices in M are
allocated and formed at each pass of the while loop. This subject is covered next
using a graph-theoretic setting. Our definitions are from (Tarjan, 1983).

Let G = (V, E) be the directed graph of the upper Cholesky factor R. Then G is an
acyclic graph since R is an upper triangular matrix, and so there exists in G at least
one vertex v such that no edge in G enters v. A vertex such as v is called a root. Let
X denote the set of roots in G. We will now show that each root in G leads to a
distinct frontal matrix. These are the frontal matrices (IXI in total) that are
determined at the first line of the while loop, and factorized at the first pass of the
for loop.
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Let G' = (V, E') be the undirected graph of the symmetric matrix R + RT. We want
to show that X is an independent set (no two vertices are adjacent) in G'. Assume
for contradiction that there exists in X a pair of vertices v and w so that v is adjacent
to w in G'. Then (v, w) is an edge in G', and so by the construction of G and G' it
follows that there exists in G a directed edge that either leaves v and enters w or
leaves w and enters v. In each case, we have established a contradiction since
both v and w are roots in G. Consequently, X is an independent set in G', which
means that X is an independent set in the undirected graph of pTMTMp since this
graph is a subgraph of G'. But if X is an independent set in the undirected graph of
pTMTMp, then each pair of columns in MP corresponding to a pair of vertices in X
satisfy relation (7). Hence, each root in G leads to a frontal matrix in MP.

Let M be the m - IXI by n - JXJ matrix obtained at the completion of the last step in
the while loop. By the property that the first row of each factorized frontal matrix in
the first pass of the for loop is a row of R in (4), the second pass of the for loop will
produce the next set of rows of R in (4). This process is repeated until all n columns
of M have been deleted, in which case the while loop terminates and the
computation of the upper triangular matrix R in (4) is completed.

In what follows, we cover some of the graph-theoretic details needed to form the
frontal matrices required at the start of the second through last pass of the for loop,
and also to connect our interpretation with the one that is usually used to describe
the multifrontal OR factorization method.

Let us set Xo to X, and define X1 as the set of roots in the induced subgraph
G(V-Xo). Since no vertex in X1 is in the initial set of roots X0, no vertex in X1 is a
root in G, which means that for every root x in G(V-Xo), there is at least one edge in
G which leaves a root in G and enters x. We will call the vertex v in X0 a parent of
the vertex x in XI. With this notation in hand, it is not hard to show that the frontal
matrix associated with a root x in G(V-Xo) is derived from the frontal matrices
associated with the parents of x in X0. It is important to note, however, that no two
distinct vertices x and y in X, have a common parent in XO. Otherwise, the pair (x, y)
will be an edge in the induced subgraph G(V-Xo) which contradicts the assumption
that x and y are roots in G(V-Xo).

We complete the description of the multifrontal OR factorization method with the
following algorithm.
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procedure roots:
begin

compute the set of roots X0 in G;V4-V-XQ;
14-0;
while V is not empty do

begin
i+-i+ 1;
compute the set of roots XY in G(V);
for each x in Xi do compute the set of parents of x in Xi
Ve-n V

endend

Let h denote the value of the integer i at the completion of procedure roots.
Then XO, X1, ... , Xh are the sets of roots computed at the completion of procedure
roots. Note that all parents of a root in any Xi are in the set of roots Xl -1 for all i > 0.
This means that any edge that has its end points in two non-consecutive sets of
roots is redundant as far as the computation of a frontal matrix is concerned. Let
G* = (V, E*) be the graph obtained from G by deleting all such edges. Then the
undirected version of G* obtained from G by replacing each directed edge by an
undirected edge is the elimination tree of the undirected graph G', and h is the
height of the elimination tree. An elimination tree is usually the means for
describing the multifrontal QR factorization method (Liu, 1986). However, this
approach requires several constructs which were not needed in our interpretation.

The problem of finding a permutation matrix P such that PTMTMP has sparse
upper Cholesky factor is crucial in each of the three mehods covered herein.
Therefore, the assumption that MTM is a sparse matrix is critically important since
these methods may behave very poorly for the case where the matrix MTM is
dense.

In this work, we expand '.he choice of methods for solving the sparse linear least
squares problem by developing a method that efficiently handles the case where M
is a sparse matrix while MTM is dense, and possibly full. The need to deal with this
case was motivated by an important Navy signal processing application in which M
is a highly sparse large overdetermined matrix and MTM is completely full.

3.0 A DECOMPOSITION BASED ON THE SPARSITY OF M

Let P and S be permutation matrices such that PMS is a 2 by 2 block matrix

PIVs =[ AB (8)

in which the leading block A is an N by N square and nonsingular matrix.
Replacing M by PMS in the original system of equations Mx = b, we obtain the
following equivalent nonsquare system
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(PMS)(STx) = (Pb). (9)

Consider this system where PMS has the 2 by 2 block form in (8) and the
vectors STx and Pb have been partitioned conformably into the direct sums of y
and z, and u and v respectively. The system (9) then becomes

AB[ y g~=[u]. (10)
Now let K be the 2 by 1 block matrix defined by

K -=[1A1

Since block A is nonsingular, matrix K has full column rank and so there exists an
orthogonal matrix Q such that QTK has the following 2 by 1 form

QTK =.[R] (12)

in which R is an N by N upper triangular matrix with nonzero diagonal entries and 0
is a zero matrix. Define now the fUllowing identity

L ](,[ u], (13)

where X, A, f and h have the same dimensions as B, D, u and v respectively. Then,

by (9) through (13), it follows that the following two nonsquare systems of equations

(QTPMS)(STx) = (QTPb) (14)

and

RX[' =[f]W (15)
are equivalent.

Since M is a nonsquare matrix and R is a square matrix, it follows that the block
A in (15) is a nonsquare matrix, which means that the system of equations Az = h is
nonsquare. With this property of block A, we are in position to state the main result.
To facilitate the presentation of the result, we will designate the solution to problem
(2) as a least squares solution of system (1).
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Theorem 1. Suppose the m - N vector z* is a least squares solution of the
nonsquare system

Az - h.
Then the n vector x* defined by

x*=s[RI( fz-Xz"

is a least squares solution of the nonsquare system of equations Mx = b.

Proof. Assume for contradiction that the n vector x" is not a least squares
solution of the system Mx = b. Then there exists another n vector , such that

11 M4 -b 112 < 11 Mx* - b 112,
and so we get

II (QTPMS)(ST4) - (QTPb) 112 < 11 (QTpMS)(STX*) - (QTPb) 112, (16)

since the 2-norm is preserved under orthogonal transformations. Now let y* be the
N vector such that

STx* = (17)

Also, let us partition the n-vector ST4 conformably into the direct sum of VF and •.
Then, by (14) through (17), we obtain the following inequality

(IIRv + X- fll + lIA" - h112 )"1 < (IIRy* + Xz* - f112 + IIJAz* - hll )1)2. (18)

By the assertion of the theorem and relation (17), however, we have

Ry* + Xz* - f = 0. (19)

So, by combining relations (18) and (19) we get the inequality

liAr - h112 < IJ-A* - h112 ,

which is a contradiction since z* is a least squares solution of the nonsquare
system Az = h. This completes the proof.

Theorem 1 is applicable to both overdetermined and underdetermined systems
of equations. Also, Theorem 1 is applicable to both full rank and rank deficient
nonsquare matrices. If M has full rank, then the matrix A has full rank. Similarly, if M
is rank deficient, then A is rank deficient, and so any linear least squares method
chosen for the solution of the original nonsquare system of equations Mx = b can
be used for the solution of the smaller nonsquare system Az = h in Theorem 1.
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In computer implementations of the decomposition in Theorem 1, we compute
the orthogonal matrix 0 in (12) as the product of two m by m orthogonal matrices
Q1 and 02 so that

T =QTQT (20)

where Q1 has the special form
o[QT](21)

in which I is an m - N by m - N identity matrix. This product form of 0 allows us to
use the N by N orthogonal matrix Q in Q1 to exploit any special zero-nonzero
structure that tne leading block A might have. The other orthogonal matrix 02 in the
product form is chosen so that

Q2 (01K)= 62TrCA 0 (22)

where R is an N by N upper triangular matrix with nonzero diagonal entries and 0 is
a zero matrix.

The product form of Q in (20) is also suitable for dealing with the practical case
where the leading block A in PMS is a singular matrix. This is done as follows. Let r
denote the rank of the N by N singular block A. Without any loss of generality,
assume that the leading r columns of A are the linearly independent columns. Then
there exists an N by N orthogonal matrix Q such that

OTA [FR' a (23)

in which R' is an r by r upper triangular matrix with nonzero diagonal entries and
the O's are zero matrices. So, by combining (8), (21) and (23), we obtain the
following 2 by 2 block matrix

QTpMS [' B']. (24)

The N - r by r zero block in the first column of QTA is a submatrix of the block C',
while the N - r by N - r zero block in the second column of QTA is a submatrix of the
block D'. For the case that M is an overdetermined matrix and the zero block in the
first column of QTA occupies the last r rows of block C', the 2 by 2 block matrix in
(24) takes the zero-nonzero structure shown in figure 1.
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Figure 1. Zero-nonzero structure of Q1PMS when M is overdetermined.

Our next task is to zero the m - N by r dark shaded nonzero block below the
upper triangular matrix in figure 1. Let K be the 2 by 1 block matrix defined by

= [13] Co(25)

Since R' is an upper triangular matrix with nonzero diagonal entries, the matrix K
has full column rank, and so there exists an orthogonal matrix 02 such that

Q 0K - [ R] (26)

in which R is an r by r upper triangular matrix with nonzero diagonal entries and 0
is m - r by r zero matrix. Define now

QTPb = V] (27)

where u' and V are r and m - r vectors respectively. Also, let

where X, A, f and h have the same dimensions as B', D', u' and v' respectively.
Then, by (20), (21) and (23) through (28), it follows that the nonsquare system of
equations (15) is equivalent to the following nonsquare system

O0A Jz Jhi

in which y' and z' are r and m - r vectors respectively. Figure 2 illustrates the zero-
nonzero structure of the matrix QTPMS when M is overdetermined.

10



Figure 2. Zero-nonzero structure of matrix QTPMS when M is overdetermined.

Note that the N - r by N - r zero block in the block D' in Figure 1 remains zero in the
process of computing the block A in figure 2 since the N - r by r block right below
the upper triangular matrix R' in figure 1 is zero. Theorem 1 is now directly
applicable to the case where the leading block A in PMS is a singular matrix.

4.0 EXPLOTING THE STRUCTURE OF LEADING BLOCK IN PMS

The zero-nonzero structure of the leading block A in the 2 by 2 block matrix
PMS is central in the effective utilization of the decomposition in Theorem 1. If A is
a dense matrix, then Theorem I provides no advantage over other methods for
solving the sparse linear least squares problem. However, when A is a large
sparse matrix with rich structure, the benefits gained from the application of
Theorem 1 can be worthwhile.

Consider the most favourable situation where the leading block A in PMS is a
block diagonal matrix. Then PMS is called a block bordered diagonal matrix
(Zhang, Byrd & Schnabel, 1992). The following two observations highlight the key
advantages in using a bordered block diagonal matrix to compute a least squares
solution of the system Mx = b. First, each diagonal block of A can be orthogonalized
independent of the remaining diagonal blocks. This means that the orthogonal
matrix Q1 in (20) can be computed so that each of the N diagonal blocks of A is
handled by a different processor on a parallel architecture computer. Second, the
matrix R in (12) and R' in (23) are block diagonal matrices, which means that the
sparsity of the off-diagonal part of the block diagonal matrix A is fully preserved at
the completion of orthogonalizations in (12) and (23).

It is important to note that each diagonal block of the block diagonal matrix A is
a frontal matrix in M if the off-diagonal block C in PMS is a zero matrix. This is not
hard to see since any two columns of A taken from two different diagonal blocks will
satisfy equality (7) if C is a zero matrix. But if the diagonal blocks of A are frontal
matrices, then by the graph-theoretic interpretation of frontal matrices given earlier
there must exist in the undirected graph of the symmetric matrix MTM an
independent set of size N. However large independent sets are generally found in
graphs that are quite sparse. Hence for the case where MTM is assumed to be a

11



dense or full matrix, the diagonal blocks of A may not be found by the conventional
methods used for allocating frontal matrices.

The permutation of an arbitrary nonsquare matrix M into a block bordered
diagonal form is a very difficult computational problem. Moreover, the existence of
large block diagonal matrices in arbitrary nonsquare matrices have been seldom
reported. Unlike nonsquare or nonsymmetric matrices, block bordered diagonal
forms are abundant when the underlying sparse matrix is symmetric. Industrial
applications in which block bordered diagonal forms are extensively utilized
include domain decomposition, VLSI circuit design, structural engineering, and
power system network problems (Zhang, Byrd & Schnabel, 1992). Also, given any
sparse structurally symmetric matrix M, the work in Kevorkian (1993) gives a linear-
time algorithm for computing permutation matrices P and S so that PMS has a
block bordered diagonal form.

Another structural form of A that retains one of the attractive computational
features of a block diagonal matrix is the block triangular form. In sharp contrast to
block bordered diagonal matrices, 2 by 2 block matrices in which the leading block
is a block triangular matrix are encountered in real industrial and government
applications. One such application has been encountered in a Navy signal
processing problem involving the prediction of bistatic target scattering from
monostatic data (Schenk, 1968; Schenk, 1993; Schenk & Benthien, 1989). In this
particular application, the Helmholtz integral equation together with given
boundary conditions are discretized to arrive at the following algebraic system

Y = FX, (30)

in which Y is a p by p complex symmetric matrix (scattering function) with known
diagonal entries (monostatic data), F is a p by q complex matrix (far-field
propogator function), and X is a q by p matrix (surface pressures). The objective is
to use the monostatic data (diagonal of Y) and the principle of reciprocity (symmetry
of Y) to estimate the surface pressures (matrix X). This is done next.

Suppose we equate the diagonal of Y with the diagonal of the p by p product
matrix FX in (30). Then we get

F(i, :)X(:, i) = Y(i, i) i=1.., p (31)

Next, let us equate the (i, j) off-diagonal element of the symmetric matrix FX with its

(j i) element. Then we have

F(i, :)X(:, j) = F(j, :)X(:, i) i=1,...,p-1;j=i+1 ,...,p(32)

Equations (31) and (32) together form a system consisting of p(p+l)/2 linear
equations and pq unknown variables. To put this linear system of equations in
matrix form, we let x be the pq vector

12



X(:,1)'
X(= , (33)

LX(:,p)J

and let b be the pq vector

b = [dia,(Y)] (34)

where 0 is a zero column vector. Then, by combining (31) through (34), we obtain

the following nonsquare system of equations

Mx = b, (35)

in which M is a p(p+l)/2 by pq complex matrix. For the special case where p = 37
and q = 16, M is a 703 by 592 complex matrix with the zero-nonzero structure
shown in figure 3. This plot of matrix M was obtained using the "spy" utility in
version 4 of the linear algebra package Matlab (Mathworks, 1990).

Three key properties characterize the sparse linear least squares problem in
(35). These are as follows:

(a) MTM is a full matrix,
(b) M contains q nonzeros in first p rows and 2q nonzeros in remaining rows,
(c) M is a rank deficient matrix.

By property (a), all three methods of normal equations, sequential row
orthogonalization and multifrontal QR factorization would produce poor results for
this signal processing application. By property (b), there does not exist in M a small
subset of rows whose deletion will render the matrix MTM sparse. By property (c),
the bistatic target scattering problem is an inherently difficult problem whose
solution may require the use of singular value decomposition at some stage of the
computation process. This feature will be covered in more detail later on.

Exploitation of the sparsity structure of matrix M in figure 3 has led us to a
computer implementation that generates permutation matrices P and S so that the
N by N leading block A in PMS is a p by p block upper triangular matrix with the
following two distinct properties: (1) all p diagonal blocks are full square matrices,
(2) the leading p-q+1 diagonal blocks of A are q by q matrices while the remaining
q-1 diagonal blocks have sizes q-1, q-2, ... , 2, 1 in that order. As an immediate
consequence of the second property of the leading block A in PMS, we obtain

N = pq - q(q- 1)/2. (36)

Thus, for the case where p = 37 and q = 16, we have N = 472, which shows that a
large portion of the original 703 by 592 matrix M is a block upper triangular matrix.
Figure 4 shows the zero-nonzero structure of the 2 by 2 block matrix PMS.
Consistent with the definition of a block bordered diagonal matrix, we call a 2 by 2
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block matrix PMS a block bordered triangular matrix if the leading block A of PMS
is block triangular.

Suppose PMS is any block bordered triangular matrix in which the leading
block A [ JAui] is a p by p block upper triangular matrix with square diagonal blocks.
Then, the following result highlights a numerical property of PMS that will be
frequently used in subsequent developments.

T
Lemma 1. Let Q0 be an orthogonal matrix such that QT Aii is upper triangular, and

Then the N by N matrix GTA is upper triangular.

Proof. The proof is obtained by premultiplying A by QT.

5.0 IMPLEMENTATION OF THE DECOMPOSITION IN THEOREM 1

In this section, we use the decomposition in Theorem 1 to give detailed
algorithms to solve the sparse linear least squares problem for the case where
MTM is dense. To make the algorithms directly applicable to the bistatic target
scattering problem (35), we assume that the leading block A in the 2 by 2 block
matrix PMS is a block triangular matrix with dense diagonal blocks. All algorithms
will be presented in the Algol-like language in Aho, Hopcroft & UlIman (1976)
adopted earlier.

Let ki denote the order of the ith diagonal block of the p by p block triangular
matrix A = [A01] in PMS. The purpose of the orthogonal matrix Q1 in (20) is to zero
the strictly lower triangular parts of the p diagonal blocks of A. Thus, the
premultiplication of A by the transpose of the orthogonal matrix Q1 will zero all but
top element of the k, - j + 1 vector x defined by

x = Ago~: ki, j) i = 1, .. ,p; j = 1, .. ,ki -1. (37)

The other orthogonal matrix Q2 in the product (20) is called upon to zero block C' in
the 2 by 1 block matrix K in (25), and so the premultiplication of K by the transpose
of 02 will zero all but top element of the m - N +1 vector x defined by

x = 'j) j=1,..., N(38)

The vector x in both (37) and (38) is a dense subcolumn in the block bordered
triangular matrix PMS.
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Since MTM is a dense or full matrix, the matrix R in (15) and (29) is a full upper
triangular matrix, and so there are two ways to proceed with the implementation of
Theorem 1. First, set up a row-oriented data structure for a full upper triangular
matrix R, and subsequently use the sequential row orthogonalization method in
(George & Heath, 1980) to compute R by applying Givens rotations to rows of
[PMS Pb] one at a time. Second, avoid the use of sparse data structure since all
there submatrices R, X and A in (15) and (29) are full matrices. In this work, we
choose the second approach for the implementation of Theorem 1 since memory
savings brought about from the use of sparse data structure is not substantial for
problems where MTM is a dense or full matrix.

Let RS and CS be two single arrays so that

M(RS, CS) = [ PMS Pb].

A,.o, let IA be a (p+1) array defined by
IA = [1, 1. kl, ... , 1 +4- ki ].

in which the leading p elements are the pointers to the 1 st row of the p diagonal
blocks of the block triangular matrix A whereas the (p+1) th element is the pointer to
the first row of blocks C and D in PMS as well as the first column of blocks B and D.
From these three relations, one can readily allocate all diagonal blocks of A, blocks
B, C, and D and the sub-vectors u and v of Pb as given in (10).

For clarity of presentation, we first give an implementation of Theorem 1 in
which we assume that the leading block A is nonsingular. Next, we cover the more
challenging case where the leading block A is assumed to be singular.

5.1 LEADING BLOCK A IS NONSINGULAR

The following algorithm implicitly computes the two orthogonal matrices Q1 and
02 defined in relation (20). The integers a and z in procedure q_enq designate
the first and last rows of each diagonal block of A considered in the algorithm.

procedure qenq:
begin

comment compute Q (and so Q1);
for i +- 1 until p do

begin
a,- IA(i);
z (-IA(i+l) -1;

for j -- a until z -1 do
hshldr(RS(j: z))

end ;
comment compute Q2;
for j -- 1 until N do

hshldr([RS(j), RS(N+find(M(RS(N+1: m), CS(j)) • 0))])
end
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The procedure hshldr(rows) called in q_enq uses Householder reflections to
zero all but the top element of the column vector w = M(rows, CS(j)). If rows =
RSU: z), then x is the vector given in (37). In the same way, if rows = [RS(j),
RS(N+find(M(RS(N+1: m), CS(j)) * 0))], then x designates the nonzero part of the
vector given in (38). The function "find" is a Matlab utility for finding the indices of
the nonzero elements in a vector.

procedure hshldr(rows):
begin

x ,- M(rows, CS(j));
normx +- II X 112 ;
If normx > 0 then

begin
8 - x(1) + sign(x(1))*normx;
v +- [1; x(2:1 x 1) / 8 ] ;
w ,- - (2/(vT*v))*vT*M(rows, CS(j:n+1));
M(rows, CS(j:n+1)) +- M(rows, CS(j:n+I)) + v*w

end
end

Given x = M(rows, j), procedure hshldr(rows) computes a Householder vector v
so that the first element of the vector (I - 2vvT/vTv)x is nonzero and all other
elements are zero. The Householder vector v computed in hshldr(rows) is defined
in the standard way (Lawson & Hanson, 1974) as

v = x + sign(x(1))jl x 112e,

where el is the first column of lxi by lxi identity matrix. The signum function "sign"
ensures that I v(1) I = I x(1) I + 11 x 112, which means that II v 112 I 11 x 112, and so large
relative errors in the coefficient 2/vTv can be avoided in the process of computing
the product (I - 2wT/VTv)X. In addition to this standard practice, we also follow a
guideline established in (Golub & Van Loan, 1989) to normalize the vector v so that
v(1) = 1.

Since x = M(rows, CSO)), the submatrix M(rows, CS(j:n+1)) can be written in the

following augmented form

M(rows, CS(j:n+1)) = [x M(rows, CS(j+1 :n+l))].

Combining this with the last two lines in procedure hshldr we obtain the equality

2wT.
M(rows, CS(j:n+1)) = (IF- )-- v)[ x M(rows, CS(j+I:n+I))].

Thus, at the completion of procedure hshldr, the vector (I - 2vvT/vTv)x forms the first
column of the submatrix M(rows, CS(j:n+I)). Therefore, if x is the vector in (37),
then all the elements below the main diagonal in the jth column of block Aii will be
zero at the completion of procedure hshldr(rows). Similarly, if x is the vector given
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in (38). then all the elements below the main diagonal in the jth column of matrix
PMS will be zero. Hence at the completion of procedure qenq we will obtain the
following three identities.

R M(RS(1 :N), CS(1 :N)),
[X f = M(RS(1:N), CS(N+I:n+I)),

[A h ] = M(RS(N+I :m), CS(N+I :n+l)).

At this point, we are in position to compute a least squares solution of the smaller
nonsquare system Az = h in Theorem 1. However, before we do this, we require
the following result pertaining to the upper triangular matrix R.

Lemma 2. Suppose the N by N leading block A in the block bordered triangular
matrix PMS is nonsingular. Then the upper triangular matrix R computed in
procedure qpenq has nonzero main diagonal.

Proof. Since the block A has full rank, the N by N leading block QTA is an upper
triangular matrix R' with a nonzero main diagonal at the completion of the first for
loop in procedure qenq. Consider now any call to hshldr(rows) in the second for
loop in procedure qenq. Then x = M(rows, CS(j)) consists of the vector given in
(38). Thus R'(j, j) is the element at the top of vector x which is nonzero since R' has
a nonzero main diagonal. This means that the top element in the vector
(I - 2vvT/vTv)x is also nonzero. But by the construction of the vector x, R(j, j) is the
element at the top of the vector (I - 2wT/vTv)x. Hence, the upper triangular matrix R
has a nonzero main diagonal at the completion of the second for loop in procedure
q_enq. This completes the proof.

By Lemma 2, the condition normx > 0 is satisfied at each call to hshldr, and so
for the case where the leading block A is nonsingular, the line "if normx > 0 then"
in procedure houshldr can be deleted.

5.2 COMPUTING A LEAST SQUARES SOLUTION OF Az = h

Choosing a method for computing a least squares solution of the sparse
nonsquare system Mx = b strongly depends on the rank of the matrix M. If M has full
rank, then the block A has full rank, and so one can obtain a least squares solution
of the nonsquare system Az = h either by QR factorization or by Cholesky
factorization of the system of normal equations

(ATA) z = (ATh). (39)

Thus, if z* is the solution of the triangular system resulting from the OR factorization
or the solution of the normal equation (39), then the n vector x* defined in Theorem
1 is a least squares solution of the original nonsquare system of equations Mx = b.

In the bistatic target scattering application, the overdetermined matrix M is rank
deficient and so the block A is rank deficient too. Therefore, the solution of the
system of equations Az = h by OR factorization will break down since a diagonal
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element in the triangular system will be zero. Similarly, the use of the system of
normal equation (39) will fail since the matrix ATA is singular which means that the
Cholesky factorization will break down.

In sharp contrast to the OR factorization, normal equations and other linear least
squares methods, the singular value decomposition (SVD) is applicable to full rank
as well as rank deficient matrices. In view of this practical consideration, the SVD is
our choice for the solution of the nonsquare system Az = h.

Given any m by n nonsquare matrix M with rank r, there exists an m by m
orthogonal matrix U and an n by n orthogonal matrix V so that UTMV is a diagonal
matrix Z with r positive diagonal elements in decreasing order and n - r zeros
(Forsyth & Moler, 1967). Thus, if al through an denote the diagonal elements of E,
then we have

1 ;-> 0 2  t... > Or > Or+1 .,. = 0n =0

The numbers al through an are called the singular values of M.

Now let U and V be orthogonal matrices so that UTAV is a diagonal matrix Z.
Also, let r denote the rank of A. Then the nonsquare system of equations Az = h
can be written in the following equivalent form

(UI-vT) z = h. (40)

Now since the block A is a matrix with rank r, the leading r diagonal elements of Z
are nonzero whereas the remaining n - r elements are zero. This means that the
system of equations (40) can be written as

U(:, l:r)_(l:r, 1:r)VT(l:r, :)z = h . (41)

Thus, if z* denotes the solution of this system of equations, then we obtain

z* = V(:, 1:r)_(1:r, 1:r)1'U(:, l:r)Th. (42)

The vector z* is a least squares solution of the nonsquare system Az = h.

With these results, the implementation of the decomposition in Theorem 1 takes
the following algorithmic form when the leading block A in PMS is nonsingular.
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1rocedure Is-dec:
begin

q_en_q;

use SVD to compute A = U._,.VT;
r ,- rank(_) ;
z* V(:, 1 :r)._(1 :r, 1 :r)-l"U(:, 1 :r)T*h
y* • RI(f - X.z*)
x* -S.[ y* ; z*

end

5.3 LEADING BLOCK A IS SINGULAR

For the case in which the block upper triangular matrix A is singular, our primary
objective is to use the orthogonal matrix Q1 to detect the columns that are linearly
independent in each of the diagonal blocks of A. This information is then used to
update arrays RS and CS so that the premultiplication of matrix M(RS,CS) by the
transpose of the orthogonal matrix Q1 gives rise to the 2 by 2 block matrix given in
(24) in which the leading block R' is an upper triangular matrix with nonzero
diagonal entries.

For the detection of linearly independent columns, we use a Boolean array VC
(Visited Columns) setting VC(j) = 1 if and only if the jth column of block A is a
linearly independent column in a diagonal block of A. The entire algorithm called
uls-dec (Unrestricted Least Squares Decomposition) is presented below.

procedure ulsdec:
begin

VC +-- zeros(l, N)
q_and_q ;
use SVD to compute A = U.-.VT;

r +- rank(') ;
z* 4- V(:, 1 :r).-Z(1 :r, 1 :r)-l.U(:, 1 :r)T*h;
y* R-R'l*(f - X-z*);

x*- S-[y* ;z*]
end

Comparison of procedures Isdec and ulsdec shows that the key difference
between the two procedures is the replacement of procedure q._enq by q_and_q
and the introduction of array VC. The procf-Jure q_andq is given below.
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procedure qandcq:
begin

comment compute a (and so Q0);
for I 4- 1 until p do

begin
a ,- IA(i);
z4 IA(i+) -1
root •- a;
for j -a until z do

hshldra(RS(root: z))
end ;

comment update arrays RS and CS;
LI ,- find(VC , 1);
NN *-I LI I ;
if NN < N then

begin
LD+- find(VC == 0);
RS ,- [ RS(LI), RS(N+I: m), RS(LD)];

CS(1 :N) 4-[ CS(LI), CS(LD) ];
N+-NN

end ;
comment compute 02;
for j -- 1 until N do

hshldrc([RS(j), RS(N+find(M(RS(N+I: m), CSU)) ; 0))])
end

There are three distinct parts in procedure q_andcq (highlighted by the
comment lines). The first and third parts (which compute the orthogonal matrices
Q1 and 02 respectively) are derived from procedure q._enq, whereas the second
part in procedure qandq concerns the update of the arrays CS and RS using
array VC. The computation of the array VC is carried out in procedure hshldra
called in the first part of qandq. This procedure is given below.

procedure hshldra(rows):
begin

x +- M(rows, CS(j))
normx +- II x 112 ;
if normx > 0 then

begin
VC(j) +- 1;
root -- root +1;
8 ,- x(1) + sign(x(1))*normx;
V +- [1; x(2:1 x 1) / 8 ] ;
w ,- - (2/(vT*v))*vT*M(rows, CS(j:n+1));
M(rows, CS(j:n+1)) +- M(rows, CS(j:n+1)) + v*w

end
end
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Each time the condition normx > 0 is satisfied, the vector x is nonzero, which
means that the jth column of the ith diagonal block of the block upper triangular
matrix A is linearly independent. Consequently, VC(j) is set to 1 and the integer root
is incremented by 1. The purpose of the integer root is to insure that the
triangularization of each diagonal block of A is properly done. Note that procedures
hshlkdra and hshldr are the same if the first two lines in the begin block of
procedure hshldra are deleted.

At the completion of the orthogonal matrix O1, the computation of the array VC
in procedure qandq is complete. Subsequently procedure qandq begins with
its next task which is to update arrays RS and CS so that the matrix Q1M(RS,CS)
has the 2 by 2 block form given in (24). To do the update, we construct an array
ILIC of pointers to the linearly independent columns detected in procedure hshldra,
and let NN = J LI I. Thus, if NN = N, then we concude that the leading block A in
PMS is nonsingular, and so we skip the part in procedure q_andq that involves
the update of the arrays RS and CS.

Suppose NN < N. Then, the leading block A in PMS is singular, and so we
proceed with the update of the arrays RS and CS in procedure q_andcq. To begin
with, we construct an array LD of pointers to the columns of A that have not been
marked as linearly independent. Now, by the construction of procedure hshldra, the
NN by NN submatrix M(RS(LI), CS(LI)) in M is an upper triangular matrix with
nonzero diagonal entries at the completion of the first part in procedure qandq.
Thus, to obtain the 2 by 2 block form in (24), we update arrays RS and CS so that
rows RS(LI) and columns CS(LI) are moved to the front of arrays RS and CS
respectively. As for the remaining rows and columns of block A, these are moved to
the rear of array RS and sub-array CS(1:N) respectively so that the matrix
M(RS, CS) has the 2 by 2 block form shown in figure 1 at the completion of the
update. It should be noted however that the blank parts (zero submatrices) in
blocks C' and D' shown in figure 1 may contain nonzero entries in this case since
the triangularization in procedure hshldra is confined to the diagonal blocks of the
block triangular matrix A. The advantages for executing hshldra in this way will be
apparent when we discuss parallel implementations of the decomposition in
Theorem 1 later on.

The purpose of the orthogonal matrix 02 computed in the third part of procedure
q_andcq is to zero the block C' given in (24). Procedure q_ancLq accomplishes
this task by calling procedure hshldrc given below.

procedure hshldrc(rows):
begin

x +- M(rows, CS(j))
normx -- 11 x 112;
84- x(1) + sign(x(1))*normx;
v +- [1; x(2:1 x I) / 8 1 ;
w ,- - (2/(vT*v))*vT*M(rows, CS(j:n+1));
M(rows, CS(j:n+I)) +- M(rows, CS(j:n+I)) + v*w

end
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6.0 SOLVING THE LINEAR LEAST SQUARES PROBLEM
USING MATLAB

The Matlab linear algebra package (Mathworks, 1990) provides an excellent
computational platform for numerical comparisons. There are at least four distinct
methods to compute a least squares solution of a nonsquare system of equations
Mx = b in Matlab. These are the following:

(I) Normal Equations Method. The sparse Matlab implementation of the normal
equations method is identical to the algorithm covered earlier in section 2. For the
bistatic target scattering problem, the m by n matrix M is rank deficient, which
means that the n by n matrix MTM is singular and so the Cholesky factorization will
break down. Also, MTM is a full matrix and so the use of sparsity data structure for
solving the bistatic target scattering problem by the normal equations method will
be disasterous since a sparse data structure will be used to handle a large full
matrix.

(11) Augmentation Method. If we split the system of normal equations (3) into the
following two systems

r + Mx = b
MTr = 0,

then we arrive at the following 2 by 2 block matrix system

MT 0 x]M[ =[b] (43)

proposed in (Hachtel, 1974) for solving the sparse linear least squares problem. If
the identity matrix I and the vector r in (43) are replaced by al and (a-1r)
respectively, where a is some nonzero constant, then we have the form used in
(Bjorck, 1967) for computing linear least squares solution iteratively. In Matlab, the
2 by 2 block matrix in (43) is ordered by the minimum degree algorithm and then
the system is solved by elimination. The augmented method is a complicated way
of forming the system of normal equations, and so this algorithm will break down in
the process of solving the bistatic target scattering problem since M is a rank
deficient matrix.

(111) OR Factorization. Since the overdetermined matrix M in the bistatic target
scattering problem is rank deficient, the upper triangular matrix produced by the OR
factorization of matrix M will have a zero on the main diagonal, and so this method
will also break down in solving the upper triangular system.

(IV) Singular Value Decomposition. The singular value decomposition has
been the only means in Matlab to produce reliable least squares solutions of the
overdetermined system of equations in the bistatic target scattering application. For
this important practical consideration, we have opted to avoid sparse data
structures here to have a meaningful comparison basis for algorithms Isdec,
ulsdec and method (IV) in Matlab.
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7.0 COMPUTING PERMUTATION MATRICES P AND S

To promote the use of the bistatic target scattering overdetermined system of
equations (35) for comparison purposes, we present a procedure called simsys(p,
q) that simulates the overdetermined system (35) for any positive integers p and q.
This simulated version of the bistatic target scattering problem retains all structural
and numerical properties of the original problem. This procedure is as follows.

procedure simsys(p, q):
begin

comment generate m by n zero matrix;m n p*(p+1)12;
n ,- p*q ;
M - zeros(m, n);
comment compute first p rows of 0 -1 matrix M
for i ,- 1 until p do

M(i, 1 + (i - 1)*q: i'q) +-- ones(l, q)
comment compute remaining rows of 0 -1 matrix M;
for i -- 2 until p do

begin
a -- (i -1 )*(2*p - i)/2
5 1 + (i -2)*q :(i -1)*q
for j +- i until p do

begin
Mo + a, 0) -- ones(l, q)
Ma, 1 + (j - 1)*q: j*q) +- ones(l, q)

end
end ;

comment compute single arrays RS and CS;
p__Adanc-s ;
comment select nonzero entries of matrix M and vector b;
recast

end

For the case p = 37 and q = 16, the procedure simsys (excluding procedures
p_jand.s and recast) generates the 703 by 592 overdetermined matrix M shown in
figure 3.

The procedure pand.s called in simsys computes row and column sequences
RS and CS so that

M(RS, CS) =[PMS Pb].

Procedure p__ands also computes the single array IA used in procedures qen_q
and qandcq for allocating the blocks in PMS and the subvectors in Pb. The entire
procedure is given below.
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procedure pands:
begin

comment initialize arrays RS, CS and IA and markers VR, VC;
RS -zeros(l, m) ;
CS- 1:n+1
IA -- [];
VR - zeros(l, m) ;
VC -zeros(l, n+1);
comment compute parts of RS and CS needed to construct A;

8+-p;

a+-1;
for i +- 1 until p do

begin
IA(i) ,- a;

p -min(r, q) -1
z--a+p;
RS(a:z) +-[i , 8:8+p- 1];
If v < q then CS(a:z) -k+l: k+ ;
k,- i*q;
,C +-r I-1;

a z +1
end ;

comment compute remaining parts of RS and CS;
IA(p+1) <- a;
N+-z;
VR(RS(1 :N)) 4-ones(1 :N) ;
VC(RS(1 :N)) i-ones(1 :N) ;
RS(N+I :m) <- find(VR == 0);
CS(N+I :n+l) +-find( VC == 0)

end

For the case p = 37 and q = 16, the application of procedure pands to the
703 by 592 overdetermined matrix in figure 3 produces the block bordered
triangular matrix shown in figure 4.

The procedure recast called at the completion of procedure pands in simsys
accomplishes four distinct tasks. These are as follows:

(a) Fixing rank of leading block A. For any application of Isdec, procedure
recast modifies the main diagonal of A so that rank(A) = N. Procedure recast does
this as follows. Since m = p(p-1)/2, n = pq and m > n, we have

p > 2q +1. (44)
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Also, by the construction of the 0 -1 matrix M in simsys, each row in the first p rows
of M has exactly q l's while each of the remaining m - p rows has exactly 2q l's,
and so by (44) we obtain

p >

Thus, if the main diagonal of A is modified so that each diagonal entry is set to p,
then A becomes a positive definite matrix with rank(A) = N. Procedure recast
accomplishes this task by using the relation

M(RS(i),CS(i)) = p, i = 1.... , N,

since A = M(RS(1 :N),CS(1 :N)). For applications requiring a singular leading block
in PMS, we modify A so that each of the p-q+1 diagonal blocks of A has exactly one
linearly dependent column. All remaining q -1 diagonal blocks of A are converted
to positive definite matrices by setting all diagonal elements of these diagonal
blocks to p.

(b) Modifying block D. We compute in the bipartite graph of block D a maximal
matching, and subsequently we set the locations in M corresponding to the
elements of the maximal matching to p. This task creates in D a positive definite
matrix of size equal to the computed maximal matching.

(c) Converting M to a complex matrix. In the original bistatic target scattering
application, the matrix is complex and, so to create a similar environment in our
numencal tests, we convert M to a complex matnx using the relation

M = M + 0.2 * (4-1) *M.

(d) Choosing right-hand side vector b. We choose b so that component i of
vector b is equal to the sum of the absolute values of the nonzero entries in row i of
matrix M. For the case where A is nonsingular (applications of procedure Is_dec),
this task combined with task (b) in procedure recast produces a least squares
solution x in which each component is equal to 1.

7.1 COMPUTING P AND S FOR THE GENERAL CASE

Given an arbitray nonsquare sparse matrix M, the finding of permutation
matrices P and S such that PMS is block bordered triangular matrix is a
computationally very difficult problem especially when certain constraints are
imposed on the size of the leading block A in PMS. In the special case where M is
a square matrix, the permutation of M to block bordered triangular form is closely
related to the NP-complete problem of finding a minimum feedback vertex set in the
directed graph of M.

In this section we give a simple greedy-type linear algorithm to put a nonsquare
sparse matrix M into the block bordered triangular form PMS. The method
proceeds as follows. First, compute in the bipartite graph of matrx M a maximal
matching H. Let k = IHI and assume without any loss of generality that k < min(m,n).
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Then the maximal matching H gives rise to a permutation matrix P' so that P'M is a
2 by 2 block matrix in which the leading block is a k by k matrix with nonzero main
diagonal. Let G - (V, E) be the directed graph of the leading block in PM. Second,
use depth-first search (Aho, Hopcroft & UlIman, 1976) to compute the strongly
connected components of G in topologically sorted order. Let p be the number of
strongly connected components in G. Then at the completion of the second step we
have permutation matrices P" and S such that the matrix P"(P'M)S is a 2 by 2 block
matrix in which the leading block is a p by p block triangular matrix of size k. This
completes the construction of the block bordered triangular matrix PMS, where
P . P"P'.

The parameters k and p dictate the usefulness of the block bordered triangular
matrix PMS in Theorem 1. If the maximal matching H computed in the first step has
a small cardinality, then the block triangular part in PMS will be small, and the
advantages of the decomposition in Theorem 1 will be limited. Thus, to make the
greedy algorithm more effective, one may require algorithms that produce large
maximal matchings. Similarly, if G is a strongly connected graph or with few
strongly connected components, then the leading block A in PMS will not have an
interesting structure for the decomposition in Theorem 1 since the parameter p will
be small.

For the case where G contains few strongly connected components, we suggest
the following step. In the depth-first search tree of the directed graph G, there are
three types of edges (Aho, Hopcroft & UlIman, 1976). These are forward edges,
back edges, and cross edges. By construction, each back edge in the depth-first
search tree gives rise to a cycle in G, and so the vertex incident with the largest
number of back edges is common to a large number of cycles in G. Thus, if we
remove such vertices from G, then the resulting graph may have much greater
number of strongly connected components. This means that the leading block
triangular matrix A in PMS may have a large number of diagonal blocks. This
approach for increasing the size of the parameter p was an essential step in our
successful structuring of the bistatic target scattering problem into the block
bordered triangular form shown in figure 4.

For a more rigorous treatment of this problem, more research effort is needed.
We hope that the successfull application of Theorem 1 to a real practical problem
may be the stimulus for further research in this important area.

8.0 NUMERICAL RESULTS AND COMPARISONS

The linear least squares algorithms Isdec and ulsdec are well-suited for
parallel architecture machines. For example, the computation of the orthogonal
matrix Q1 in procedures qenq and q_andq can be readily done on a parallel
machine as each of the p passes of the for loop (used for computing Q1) is
independent of the other p-1 passes. Also, the computation of the orthogonal matrix
02 can be done in such a way that the parallel architecture of a machine is fully
explored. The parallel features of algorithms Is-dec and ulsdec will be the topic of
further work in this area. Here, we present numerical results and comparisons to
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demonstrate the effectiveness and accuracy of these two algorithms on
conventional machines.

Tables 1 and 2 summarize the results obtained from the application of
algorithms Isdec, uls-dec and the singul3r value decomposition in Matlab to five
instances of the bistatic target scattering problem. Column 1 in these tables gives
the parameters p and q used in procedure simsys to generate the m by n
overdetermined matrix M. Column 2 includes the size of matrix M in each of the five
examples while column 3 gives the size N of the nonsingular leading block A in the
structured matrix PMS. Columns 4 and 5 give the number of floating-point
operations (flops) required to compute a least squares solution while columns 6
and 7 give a measure of the accuracy of the computed results.

The results in tables 1 and 2 reflect the effectiveness of the decomposition result
in Theorem 1 to compute a least squares solution of an overdetermined rank
deficient system using singular value decomposition. The improvements on a
parallel architecture machine are expected to be more substantial.

Table 1

Applications of Isdec and Matlab to the bistatic target scattering problem

(p, q) m by n N flops IIMx - b112
(106) (10.12)

Isdec Matlab Isdec Matlab

(26, 10) 351 by 240 215 73.86 700.96 2.44 13.14
(30, 13) 465 by 390 312 185.87 2057.60 5.67 18.62
(37,16) 703 by 592 472 630.98 6764.70 13.36 21.57
(42,20) 903 by 840 650 1413.20 16958.00 21.75 61.56
(44,22) 990 by 968 737 1897.10 23350.00 27.12 62.74
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Table 2

Applications of ulsdec and Matlab to the bistatic target scattering problem

(p, q) m by n N flops IIMx - b112
(106) (10-12)

Is dec Matlab Isdec Matlab

(26, 10) 351 by 240 198 92.04 731.99 3.24 4.97
(30, 13) 465 by 390 294 220.68 1995.10 8.29 7.86
(37,16) 703 by 592 450 720.31 6565.40 19.83 18.48
(42, 20) 903 by 840 627 1578.60 16663.00 37.35 22.46
(44,22) 990 by 968 714 2109.70 * 45.53 *

• memory limitations
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